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Abstract: A novel approach for multichannel epilepsy seizure classification which will help to
automatically locate seizure activity present in the focal brain region was proposed. This paper
suggested an Internet of Things (IoT) framework based on a smart phone by utilizing a novel feature
termed multiresolution critical spectral verge (MCSV), based on frequency-derived information for
epileptic seizure classification which was optimized using a flower pollination algorithm (FPA). A
wireless sensor technology (WSN) was utilized to record the electroencephalography (EEG) signal
of epileptic patients. Next, the EEG signal was pre-processed utilizing a multiresolution-based
adaptive filtering (MRAF) method. Then, the maximal frequency point at which the power spectral
density (PSD) of each EEG segment was greater than the average spectral power of the corresponding
frequency band was computed. This point was further optimized to extract a point termed as critical
spectral verge (CSV) to extract the exact high frequency oscillations representing the actual seizure
activity present in the EEG signal. Next, a support vector machine (SVM) classifier was used for
channel-wise classification of the seizure and non-seizure regions using CSV as a feature. This process
of classification using the CSV feature extracted from the MRAF output is referred to as the MCSV
approach. As a final step, cloud-based services were employed to analyze the EEG information from
the subject’s smart phone. An exhaustive analysis was undertaken to assess the performance of
the MCSV approach for two datasets. The presented approach showed an improved performance
with a 93.83% average sensitivity, a 97.94% average specificity, a 97.38% average accuracy with
the SVM classifier, and a 95.89% average detection rate as compared with other state-of-the-art
studies such as deep learning. The methods presented in the literature were unable to precisely
localize the origination of the seizure activity in the brain region and reported a low seizure detection
rate. This work introduced an optimized CSV feature which was effectively used for multichannel
seizure classification and localization of seizure origination. The proposed MCSV approach will
help diagnose epileptic behavior from multichannel EEG signals which will be extremely useful for
neuro-experts to analyze seizure details from different regions of the brain.
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1. Introduction

Epilepsy is the most common neurological illness, impacting 50 million people glob-
ally [1]. Epilepsy is exhibited by recurrent seizures in the brain due to its association with
the central nervous system. EEG signals are used to explore the functioning of the brain
during an epileptic seizure [2]. The cause of an epileptic seizure is due to the presence
of uncontrolled potential interruption in the brain. These abruptly occurring seizures are
tricky and may lead to very dangerous situations [2]. Epileptic persons are three times more
prone to die early as compared to a non-epileptic human being [1]. In addition, epileptic
seizures generally start and end instinctively without any exterior intrusion. Also, they
may remain unobserved. Hence, the analysis and detection of epileptic EEG signals has
always been of great interest to researchers.

In view of this, continuous monitoring of real-time signals, such as EEG, is performed
by employing WSN technology, one of the most promising emerging techniques for real-
time monitoring of patients remotely. WSN utilizes body sensor network (BSN) that records
vital signs of an epileptic patient such as EEG. A huge amount of data is generated with
the rise in the use of BSN. Cloud computing (CC) facilitates storing and analyzing such
rapidly produced EEG sensor data in real time from different patients located in distinct
geographic regions. CC combined with BSN facilitates a framework to monitor and analyze
the EEG data efficiently, in real time [3].

The main aim of this work was to develop an efficient cloud-based epileptic seizure
monitoring system to help neuro experts automatically classify epileptic seizures. The
proposed automated seizure monitoring system will assist neuro experts as an additional
tool to take decisions with more precision. The objectives of this paper were to capture
high frequency oscillations (HFO) related to seizure information for seizure classification
using the CSV feature in real time; and employ the FPA technique for optimization of the
CSV feature, thereby facilitating localization of the brain focal region where the seizure has
occurred. In order to obtain these objectives, we have developed a model employing BSN,
mobile phone, and cloud infrastructure.

The proposed work is presented as given below: Section 2 explains the literature;
the technique utilized for the prediction of epileptic seizures is described in Section 3.
An exploration of the results for multichannel classification of the epileptic seizure is
presented in Section 4. Section 5 discusses the proposed approach; a comparative study
of the proposed MCSV approach is detailed in Section 6 to predict seizures. Section 7
concludes the paper.

2. Literature

The literature work is divided into two sections. The first section discusses various fea-
ture extraction techniques used for the classification of epileptic seizures. The second section
details the use of sensor technology by utilizing WSN and CC in the seizure classification.

2.1. Epileptic Seizure Classification Techniques

Various EEG analyses show that dynamic variations of brain activity occur in relation
to time, frequency, and space parameters. In regard to a non-linear signal, frequency-related
techniques are employed to analyze the working of the epileptic EEG data processing [4–6].

Research has been carried out on the diagnosis of seizures from long-term EEG record-
ings [7]. Time-varying methods and time-frequency methods have been proposed to
interpret the EEG seizure frequency spectra during non-seizure and ictal periods. Various
2techniques studied for analyzing epileptic rhythms and spectral sub-bands include: domi-
nant frequency representations [8], adaptive-based techniques [9], decomposition based
on discrete wavelet transform (DWT) [10,11]; independent component analysis (ICA) [12],
and multi-dimensional systems [13]. The interpreted features thus obtained are further
analyzed by employing statistical methods.

Automated seizure detection methodology can be carried out either on a single chan-
nel data or on multichannel information [14,15]. In a single channel-based seizure detection
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mechanism, the correct selection of the EEG channel containing the strongest seizure infor-
mation is very difficult. To obtain better seizure detection, seizure information contained
in multichannel EEG signals is required to be processed effectively to extract spatial- tem-
poral related knowledge [16]. Various studies have been proposed to find the correlation
between multichannel data to spot the most prominent features and information network
among different regions of the brain [17]. In [18,19], a weighted multichannel approach
was utilized to extract the maximum power present in different frequency ranges. Other
multichannel epileptic data processing methods were proposed in [20].

In order to interpret seizure information effectively and efficiently, a segment-wise
analysis is proposed in literature. Kiranyaz et al. have used a segment-wise seizure detec-
tion strategy in lengthy EEG signals along with Particle Swarm Optimization (PSO) [21].
This approach has attained an average true positive rate of 89%, and an average false rate
of 93%. In a similar line, Dong Wang et al. employed a single channel-segment wise seizure
identification algorithm for lengthy EEG data [22]. This work has attained an average
seizure detection rate of 95.82% [22].

A majority of the state-of-the-art studies that have been undertaken perform automatic
diagnosis on single channel EEG signals. These techniques have overlooked correlations
between the various channels which is clinically baseless [22]. Recently, deep learning
networks have shown better performance in the classification of various EEG abnormalities.
However, these techniques are unable to localize the seizure region [23]. Multichannel
EEG recordings have a significant role in the recognition of seizure activities from the
lobes of the brain. Automated computer-aided multichannel seizure diagnosis will assist
neurologists in locating the specific area of the brain lobes where the seizure activity is
taking place. Moreover, such automated diagnosis will prevent false alarms and result in
the neurologists making educated and increasingly accurate decisions.

The work presented in this research paper has come up with a technique to detect
epileptic seizures automatically from multichannel EEG recordings segment-wise and to
localize the seizure region of the brain accurately. The proposed approach extracts the
actual seizure information using the optimized MCSV feature by employing a bio-inspired
(BI) algorithm, namely, FPA.

Clinically, visual interpretation of the epileptic EEG data is performed by brain experts.
However, the task of examining these long-term seizure signals is very exhausting, time
consuming, and difficult to diagnose. EEGs need to be analyzed by a fully automated
computer-based system so that such limitations can be eliminated. It is also challenging to
classify the exact epileptic seizure region in long duration EEG recordings. In this paper,
multichannel segment-wise seizure classification was performed using FPA [24] which also
helps to find the exact location of the occurrence of epileptic seizures.

2.2. Sensor Technology in the Seizure Classification

Currently, many research studies have explored the usefulness of integrating the WSN
with the CC framework. However, very few research efforts have been undertaken to
establish the feasibility of integrating cloud-enabled frameworks with BSN, facilitating
online and offline monitoring of epileptic seizure events. Forkan et al. employed a model
using a service-oriented framework to enable an assisted living service in real time. It
employed a middleware layer that reduces the complexity of real time data from various
distinct sensors and contextual information [25]. The authors of [26] have proposed an
architecture using BSN and CC infrastructure. The aim of this research work was to
monitor assisted living by adopting a wearable sensor that sends data to the cloud by
using a mobile phone. Research in [27] has presented a prototype for collecting sensor
information efficiently from wireless networks namely, the body area network (BAN). It
employed a virtual machine and virtualized cloudlet. Recently, Lounis et al. employed a
secure cloud-based framework based on WSN to process real time data for patients under
critical supervision [28].
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3. Methodology

The block schematic of the proposed multichannel seizure classification using the
cloud storage and processing, and FPA approach is represented in Figure 1.
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In the proposed approach, cloud storage and the processing part consist of distinct
modules such as pre-processing and data management, feature extraction and dimension-
ality reduction, and multichannel classification. The IoT part comprises a smart phone and
cloud to capture and transmit data blocks. The smart phone is connected through a proper
communication protocol to the cloud server.

In the data processing module, initially the multichannel epileptic EEG data is pre-
processed segment-wise using MRAF [29]. It is followed by the extraction of an optimized
CSV feature using FPA and data dimensionality reduction using principal component
analysis (PCA). Finally, the attained best feature set is transferred through to classifiers
such as K-Means clustering, k-Nearest Neighbour (k-NN), and SVM for classification.

3.1. Segmentation of EEG Signal

The input EEG signal read from the multichannel is split into segments. For segmenta-
tion, a sliding window approach is used which breaks up the raw EEG data into sections or
segments for feature extraction [24]. In the proposed work, the sliding time window for the
EEG signal is 1040 data points (4 s) without any overlaps. The proposed MCSV approach
is carried out for each EEG segment, for every frequency band such as delta, theta, alpha,
beta, and gamma in the multichannel EEG signal.

3.2. MRAF-Based Pre-Processing

Frequently, EEG seizure details are affected by the presence of physiological arti-
facts [3]. So, it is very crucial to reduce such EEG interferences which hamper identification
of the epileptogenic zone accurately. MRAF helps to remove the physiological artifacts by
preserving the information of the epileptic seizure [29].

MRAF is implemented in three main steps:

(i) To begin with, the EEG signal that is input is decomposed into multiple frequency
levels making use of DWT;

(ii) Next, soft thresholding is brought into use with the DWT coefficients to generate a
signal with minimized abrupt changes;

(iii) Finally, MRAF is undertaken to produce an EEG signal that contains minimal physio-
logical EEG artifacts.
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Here, soft thresholding is executed on the obtained high frequency wavelet coefficients.
Soft thresholding is rendered by (1) as follows [29]:

Tl = σl
√

2logR (1)

where Tl is the threshold number, σl is the standard deviation of the input signal, l is the
limit of the DWT decomposition, and R is the number of samples of the EEG.

MRAF is then performed to produce the pre-processed information of the seizure zone.
The data thus obtained is expressed by the MRAF expression [29]:

Xo(n)per (b) = ∑s−1
i=0 wi(n)xi(n− j) (2)

where Xo(n)per (b) is the output of MRAF which can be obtained for each band b. Here,
bands such as delta, theta, alpha, beta, and gamma are considered at the output stage,
where all bands represent different resolutions of frequency and hence multiresolution
filtering is achieved. wi(n) represents the weight of the MRAF approach and represents the
newly adapted components of the adaptive filter.

3.3. Proposed Feature Extraction Technique

After pre-processing the EEG signal using MRAF, features are extracted for each
EEG segment. The first step of feature extraction is the computation of the average of
spectral values (average PSD) for each frequency band such as delta, theta, alpha, beta,
and gamma. For each frequency band, for each segment, the PSD is calculated. Then the
maximal frequency point at which the PSD of the segment is greater than the average PSD
of the corresponding frequency band is computed which is termed as spectral verge (SV).
However, due to the involvement of undesired glitches in the low frequency region most
of the seizure related information is missed. In order to ensure that no seizure details are
missed, the SV is optimized further using the FPA. Then, by considering the SV point as the
seed point, optimization is performed by the FPA utilizing Levy’s path. The optimized point
thus obtained is called the CSV. The CSV is obtained for each segment of the multichannel
EEG signal.

Important steps for the computation of CSV given below:

Step 1: Process segment k of an EEG signal
Step 2: Process band b of an EEG signal
Step 3: Calculate power spectral values of all segments and all bands.
Step 4: Take the average of the calculated power spectral values.
Step 5: Apply the FPA to optimize and calculate the CSV.
Step 6: Add values of each calculated CSV to the feature map.

3.4. Mathematical Model

As per Equation (2), we have achieved multiresolution filtering. The filtered output
Xo(n)per (b) can be named as x (n), for simplicity. Then x (n) is split segment-wise for
feature extraction. x (n), is represented as ‘x’ where ‘n’ represents the sample index which
is omitted. Now we represent the signal ‘x’ in the form of segments as:

Let x = {x1, x2, . . . , xk} where, k represents the segment index.

Number o f segments, k =
Number o f samples, n

fs × segment size
(3)

where fs is the sampling frequency.
The filtered signal in each band can now be spilt in a similar manner and the process

is repeated for all frequency bands.
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Now, the average spectral power is computed for each segment as uniform distribution
of spectral power is observed for a high frequency range for the epileptic seizure segment.

Let PSkb be the power spectrum of the segment xk, for band b where PSk can be
expressed as PSk = {PSkb(0), PSkb(1), . . . , PSkb(m)} and m = 0,1, . . . , fs. For example, the
power spectrum contains 250 points if f_s = 250 Hz then m = 0,1, . . . , fs are the frequency
points between 0 to fs. The power spectrum has power spectral densities of all frequency
points between 0 to fs Hz. The average spectral power is expressed as:

PSavg = ∑m
i=0

PSkb (i)
fs

(4)

Now, we are interested in frequency point ‘m’ between 0 to fs Hz which satisfies the
following conditions:

Condition 1: Power spectral density of that frequency point is greater than PSavg.
Mathematically, if ms is the set of frequencies for which

ms =
{

m ∈ PSkb(m) > PSavg
}

(5)

Condition 2: The frequency point ‘m’ itself is greater than any other point that satisfies
condition 1.

Mathematically, if max(ms) is the spectral verge point for which

spectral verge = max(ms) (6)

In the presented analysis, we have considered this spectral verge point as a criterion
for classifying seizure activities. However, due to patient-specific frequency variations
present in the seizure region, misleading frequency points in some segments lead to
misclassification. In order to optimize this, we chose FPA as a swarm-based intelligence
technique inspired by the pollination behavior of flowering plants. In order to solve this
optimization problem, the primary requirement for FPA is initialization of the objective
function f(x) and seed solution. We have considered a combination of (5) and (6) as our
objective function which is as follows:

max
{

m ∈ PSkb(m) > PSavg
}

(7)

A seed solution was obtained from the objective function and used as input for the
first iteration as the best fit solution.

We can state the solution function in a generalized form as fsi to simplify the process
further in terms of the FPA algorithm.

Now we need to optimize this seed solution to get the best fit using the pollination
method as explained in the algorithm below:

FPA uses the concept of a biotic process of global and local pollination to search for
the best fit, which we have used anonymously as global and local seizure abnormalities.
In order to differentiate between the local and global seizure abnormalities, FPA iterates
through local and global abnormalities effectively and optimizes the solution to correctly
identify the epileptic seizure segments using the pollination algorithm.

The optimal solution is defined by:

Si = best f it { fsi} (8)

where i = 1, 2, . . . , d are the decision variables which are expected to be from a possible
range of 0-fs.

So, the resultant solution will be in the upper frequency bound ( f s) to the lower
frequency bound (0 Hz).
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The criterion for the best fit is the solution for which stability is achieved over possibil-
ities of all solutions or maximum iterations are reached for solution generation.

In order to reach the best solution, define the population function map given as:

Solution map = {Si} (9)

where Si is the set of solutions from the map to iterate.
FPA can now be applied to the population of solutions above to get the optimized solution.
A biotic or abiotic process of search for the optimized solution from the map of Si is

performed by evaluating the relation with the current best fit solution:
The biotic process is given as:

xi
(t+1) = x(t)i + L

(
g∗ − x(t)i

)
(10)

where g* is the current best solution; xi represents the pollen or current solution vector;
xi

(t+1) is the next solution; L refers to the strength of pollination derived using the Levy
flight to mimic the distance step characteristic of each pollen.

Levy’s distribution is expressed as:

L ∼ λ γ(λ)sin(πλ/2)

π (S1 + λ)
(11)

where γ(λ) is the gamma function with λ = 0.5.
The abiotic process is given as:

xi
(t+1) = x(t)i + ∈

(
x(t)i − xk(t)

)
(12)

At each iteration the probability switch is calculated using random distribution to
define which path to follow, local or global pollination.

There can be various stopping criteria for stopping the iteration. Here, we have chosen
a finite number as the maximum iteration to achieve stability.

Finally, we get the best solution as the CSV which is the optimized solution of all the
solutions in the map.

Now the CSV can be obtained similarly for all the EEG segments as CSV1, CSV2, . . . , CSVn
for each segment.

For each band, alpha (α), beta (β), gamma (γ), theta (θ), delta (δ), and full band (fb), the
CSV can be obtained in a similar fashion. The feature map thus formed can be represented
by (13) as: 

CSVα1, CSVα2, . . . , CSVαk

CSVβ1, CSVβ2, . . . , CSVβk

CSVγ1, CSVγ2, . . . , CSVγk

CSVθ1, CSVθ2, . . . , CSVθk

CSVδ1, CSVδ2, . . . , CSVδk

CSVf b1, CSVf b2, . . . , CSVf bk


(13)

This CSV as an optimal feature map represents the signal relation between each EEG
segment from 1 to k, each frequency band ranging from α to f b and EEG channels. This
research proposes the computation of this CSV-based optimal feature map.
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3.5. Feature Dimensionality Reduction

The features extracted by the proposed MCSV approach reflect the connectivity be-
tween each EEG segment, and EEG channels at different frequencies. Then, the MCSV
values from channel 1 to channel N at frequency ‘f’ are acquired for each of the EEG
segments. If we consider data from 21 channels, then, the 21 × 21 feature matrix for every
frequency is extricated from the EEG signals received originally. When CSV values are
dealt with directly, the outcome of the detection of seizure can be unsatisfactory as the
complexity of the computation is very high making it very difficult to distinguish between
the segments of the EEG signals that contain seizure information and those segments that
do not [28]. Hence, it is very critical for a reduction in feature dimensionality to enhance
the generalization capability of the classifier and make designing it easier. PCA establishes
a new coordinate system for the EEG data, such that each data point can be identified by
a combination of orthogonal components [24]. The dimensionality of the extracted data
set is reduced by neglecting the components associated with small eigenvalues, namely,
low frequency components which are related to the non- seizure signal. Given that the
volume of the information about the frequency details that is emitted by the epileptogenic
area during the seizure is very large, it is possible for the MCSV information to distinguish
variations in the frequency information in the non-seizure events as well as onsets of the
seizures. Hence, the calculation of the MCSV of each one of the EEG channels reduces a
multi-dimensional matrix with a size of 21 × 21 to a vector of size 21 × 1 which is low
dimensional. This is accomplished by applying the PCA. This matrix functions as input
for the classifier to assist in distinguishing seizure periods from the non-seizure periods of
EEG signals.

3.6. Classifier

Finally, the robustness of the suggested MCSV method is tested by using classification
techniques to produce output labels. This method helps differentiate the undisclosed
testing dataset into proper classes depending on the training set details. As a result of
subsequent analysis from literature to check the accuracy of the proposed approach, this
research paper utilizes three well- known classifiers. Out of the three, two are supervised
classifiers, namely, k-NN [30] and SVM [31] and one is an unsupervised classifier namely,
K-Means clustering [32].

3.7. Data Processing Using IoT- Cloud

In the proposed IoT-cloud based on the MCSV approach, an Android smart phone
application (App) was developed which performs the EEG capturing and transmission.
Here, the TUH EEG data available in the cloud is directly interfaced with the multichannel
EEG acquisition and transmission components. It was followed by the epileptic seizure data
processing module which was hosted on the cloud to process the multichannel EEG. This is
performed by employing Raspberry-pi 4 and Amazon Elastic Compute Cloud (EC2) using
Active Directory (AD) to install the App in the processing unit. From Figure 2, IoT devices
are implemented as low-cost processing platforms, Raspberry-pi 4 with Message Queuing
Telemetry Transport (MQTT) protocol as a communication protocol, as it is optimized
to work on constrained devices. MQTT utilizes a publishers-subscriber model. In order
to inform the patient about any abnormal changes ensuing from the EEG signal from
the brain lobe, MQTT is made use of. The IoT data generated were transmitted using
the Representational State Transfer (REST) HTTP protocol, which provides flexibility and
interoperability for developers to create RESTful web services.
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4. Results
4.1. Dataset Description

Epileptic EEG signals are recorded by using scalp electrodes or intracranial electrodes.
Various elements impede epilepsy detection. Seizure recordings use scalp electrodes and
because of the presence of noises from the scalp, detection of epileptic signals is hampered.
However, scalp seizure signals are easier to examine compared to intracranial signals.
Hence, the epileptic seizure database used in this paper is obtained using scalp electrodes.

This research work confirms that all experiments were performed following relevant
guidelines and regulations. The TUH EEG dataset used for the experimentation is an open
access data. Also, this work confirms that the data obtained from the local hospital has been
obtained and analysed under the consent and the guidance of Dr. Nandan Yardi, Senior
consultant in epileptology and President, Indian Epilepsy Association, Pune chapter, Pune.

4.1.1. Dataset 1

The first dataset used for the analysis of the proposed novel approach comprised
records of ten patients with medically complex partial seizures obtained from an open access
dataset, Temple University Hospital Electroencephalography Corpus (TUH EEG) [32]. EEG
electrodes were placed adapting to the 10–20 electrode placement system. The TUH EEG
comprises 21 channels of signals with annotations. The signals were sampled at a frequency
range of 250–400 Hz with 16 bits per sample. The file format of the epileptic EEG signal
was the European Data Format (EDF+). This version of the database included mainly two
types of annotations such as: (i) seizure events including the start-end time, channel label,
and seizure category, and (ii) regular or unusual classification of a signal. The label files
had event related markings which indicated the information of the occurrence of the event
in a specific channel or a set of channels.
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4.1.2. Dataset 2

In this study, the second dataset used was obtained from a local hospital in Pune,
India, with the consent of the ethical committee. EEG recordings were Unipolar 21 channel
recordings obtained from three different patients. The length of the EEG recordings was
from one to eight hours. The international 10–20 electrode placement was utilized for
placing electrodes and the data were recorded at a sampling rate of 250 Hz. A neuro-expert
annotated the data as seizure and non-seizure data. A detailed explanation of the datasets
used for the experimentation is displayed in Table 1.

Table 1. Segment wise Dataset Description.

Subject
Index Dataset Total No. of

Samples
Sampling

Frequency (Hz)
No. of

Seizures
Start of

Seizure (s)
End of

Seizure (s)

1 TUH 79,200 400 2 5.15 37.207
2 TUH 135,600 400 2 10.27 142.98
3 TUH 357,000 250 5 83.94 1271.23
4 TUH 400,250 250 10 20.63 1521.94
5 TUH 109,000 250 4 162.1 580.90
6 TUH 518,500 250 3 63.85 1355
7 TUH 373,500 250 17 57.86 1493
8 TUH 302,750 250 7 1 1112.276
9 TUH 96,250 250 4 52.54 374.48

10 TUH 269,250 250 16 1 678.93
11 Local 14,547,500 250 2 12.63 62.14
12 Local 10,412,470 250 4 46.8 192.12
13 Local 192,860 250 1 71.25 118.33

4.2. Evaluation Parameters

Initially, the length of the analysis window is the basis for the segmentation of the
EEG signals. For the purpose of this study, the authors chose 4 s as the length of the
analysis window. A comparison of the outcome of seizure detection acquired by the
algorithm proposed in this paper and the results decided by experienced epileptologists
was conducted by making use of parameters such as average detection rate, specificity,
sensitivity and accuracy [33]. The sensitivity (Sen) was utilized for measuring the capability
of detecting ictal periods of EEG segments. The specificity (Spe) was used for measuring the
capability of detecting interictal periods, the average detection rate (ADR) was indicated
by the means of sensitivity and specificity periods of the EEG segments.

The evaluation parameters are given by (14), (15), (16), and (17), respectively,

Sensitivity(Sen) =
True Positive (TP)

True Positive (TP) + False Negative(FN)
(14)

Speci f icity(Spe) =
True Negative (TN)

True Negative (TN) + False Positive(FP)
(15)

Accuracy (Acc) =
TP + TN

TP + FN + TN + FP
(16)

Average detection rate (ADR) =
Sen + Spe

2
(17)

where TP denotes the number of seizure periods that are correct; FP represents the number
of incorrect seizure periods; TN denotes the number of correct non-seizure periods; and FN
shows the number of incorrect non-seizure periods.
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The proposed approach was validated making use of a ten-fold cross validation
technique [17]. To start with, the EEG signal was partitioned into ten equal portions. Nine
out of ten parts were utilized for training and one remaining part was used for testing the
performance of the proposed MCSV approach. By moving the training and the testing
datasets the strategy used for the validation was iterated ten times. Finally, the sensitivity,
specificity, and accuracy were computed as an average of these evaluations.

4.3. Selection of Segment Size

Choosing the appropriate length of the segment window as well as the window
overlap for the segmentation of the EEG signals was critical. In order to investigate the
effect of different lengths of non-overlapping windows on the result of seizure detection,
three different window sizes of 2 s, 4 s and 5 s, were considered for analysis in this work.

From this analysis it was observed that there was no significant effect when different
segment sizes are used, with or without overlapping of segments in the epileptic identifi-
cation results. However, the EEG segment should not be too small such that the analysis
takes more time. A data length of 4 s with a non-overlapping window was considered as
an optimal window size in this proposed work.

4.4. Seizure Detection Using the Proposed MCSV Approach

The presence of a seizure event can be seen in the low as well as high frequency
bands. It is important to retrieve the seizure information from these frequency bands
by filtering out abrupt changes. This purpose was served by the MRAF technique. In
addition, the technique was able to localize the epileptogenic area indicating the start
and end of seizures present in the seizure signal accurately [29]. Initially the seizure data
were segregated into either low or high frequency coefficients, adopting DWT so as to
be able to obtain the seizure signal that was present in the frequency band that is the
highest. The mother wavelet used is db5 with a four-level decomposition [34]. Then, soft
thresholding was executed to achieve the smoothened details of the EEG. Soft thresholding
was applied to suppress the abrupt variations existing in the seizure signal. Multiresolution
smoothening was achieved as a result of the threshold value computed for various ranges of
frequencies [35]. The MRAF method outplayed the soft thresholding performed with DWT
by automatically adapting to the high frequency characteristics of an epileptogenesis area.
In the annotation shown in Table 1, for example, the seizure of subject 1 starts at 5.15 s and
ends at 37.2075 s. Hence, the start of the seizure was at 5.15× sampling frequency, which is
a 2060 sample, and terminated at 37.2075× sampling frequency, which is a 14,883 sample.
This information regarding the presence of a seizure was properly preserved by the MRAF
method. The proposed MCSV approach was tested for three types of classifiers, namely,
K-Means clustering, k-NN, and SVM.

Figure 3 shows comparative results of the K-Means clustering, k-NN, and SVM clas-
sifiers for the proposed MCSV approach. The accuracy (ACC) based on the proposed
algorithm ranged between 92.99% and 99.45%, and for most of the patients the ACC
reached above 98%. The performance of the proposed approach using SVM in terms of the
parameter ACC was noted as an average accuracy of 97.38%, the average sensitivity for the
method was 93.83%, the average specificity was 97.94% and the average rate of detection
was 95.89%. It was observed from the analysis that the average specificity was 62.85%,
88.97%, and 97.94% for K-Means, k-NN and SVM methods, respectively.

From this analysis it was observed that the proposed MCSV approach using the SVM
classifier provided a better detection rate as compared to MCSV with K-Means and k-NN
as classifiers because it was able to handle outliers. Moreover, the SVM classifier is superior
to K-Means and k-NN in two ways: (i) the boundary decision that SVM determined was
more accurate; and (ii) the non-linear classification accuracy for SVM was higher. Therefore,
we used the MCSV-SVM classifier combination in this work to detect epileptic seizures.
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4.5. Localization of the Brain Focal Region of the Seizure Activity

The proposed MCSV approach extracted segment-wise multichannel seizure informa-
tion at each EEG frequency band. Figure 4 shows the result of the frequency information
present in the various EEG bands. It can be seen that the MCSV method can pick-up HFOs,
above 120 Hz present in the gamma frequency band. As per the work conducted by [24],
HFOs act as significant EEG characteristics which confirm the epileptic seizure activity.
Also, by using the CSV as the feature, the HFOs are properly chosen by all 21 channels. The
presence of HFOs is reflected in the full frequency band information, which contains all
frequencies contained in the EEG signal. The other EEG frequency bands are able to identify
information related to low frequency content present in the signal. This analysis was further
extended to observe the effectiveness of the proposed MCSV approach in the localization
of the seizure activity in the brain region, by using a topographic map representation.
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Figure 5 shows the topographic map highlighting the localization of the seizure activity
in the brain. Here, the topographic map is plotted using the ggplot Python library. The
warmer the color, the stronger is the activity in a particular area. In Figure 5 gamma band
and full bands show stronger activity (in red color) originating from the left and right ear
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lobes. This shows that the power is distributed in the frequency range above 120 Hz, which
are HFO activities. This result is again verified with the annotations provided for subject 1.
From the dataset annotations for subject 1, for example, the seizure activity starts from the
left and right ear lobes. By utilizing the MCSV approach, it is observed from Figure 5 that
strong seizure signals are emerging from the ear lobes and are captured by gamma and
full frequency bands of the MCSV. Details corresponding to the delta frequency represent
the effect of the signal from the ear lobe electrodes. This demonstrates the significance of
MCSV approach in the localization of the origin of the seizure region in the brain.
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Figure 6 shows the data capturing and processing unit, data analysis unit and the
report generation part in the App. Here, the data can be captured either in the online or
offline mode.
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5. Discussion

The cloud application was used for reading and storing the EEG sensor data that were
input. The IoT system enabled by Raspberry pi 4 was used to store and process the EEG
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data to enable the user to view it at any time and at any place utilizing a Web browser and
an Internet connection. Specific modules like pre-processing and data management, feature
extraction and dimensionality reduction, and multichannel classification were processed by
the Raspberry pi 4 processing unit. In the proposed work, HTTP was utilized by making
use of a GET and POST request to transmit information from the Raspberry pi enabled IoT
to the cloud application. In the proposed work, cloud service Storage as a Service (STaaS)
was made use of as a host for the cloud application that has the function of storing the EEG
signal information and visualizing it.

Segmenting the signal into small sections helps to identify the seizure region accurately
in the EEG signal. Segment-wise variation in the spectral power helps to track normal EEG
segments from abnormal seizure segments. This research work utilized spectral changes to
trace this abnormal seizure information using the MCSV approach. The proposed MCSV
approach extracted the actual seizure information using the optimized CSV feature by
employing a BI algorithm, namely, FPA. FPA, in comparison to other BI algorithms, has
shown better results in terms of flexibility, scalability, and adaptability, especially for non-
stationary signals such as an EEG signal. The proposed CSV feature was able to capture
HFOs represented by the gamma band of the EEG signal. Detection of origination of HFOs
from the brain region facilitated localization of the seizure activity. The proposed MCSV
approach was able to capture HFOs thereby precisely localizing the seizure information in
the brain region.

The primary goal of this work was to examine HFO characteristics and the utility of
the CSV features that are extricated from the EEG signal for classifying seizures early. The
MCSV feature employed in this work was made up of six characteristics, namely, full band,
gamma, beta, alpha, theta, and delta bands. The percentage of the explained variances
for the main components was calculated by taking in to account the abovementioned six
bands and then applying the PCA. Results of the investigation indicated that a variance
of 81.71% was noted in the first component, 80.93% was noted in the second component,
in the third component 43.06% was observed, for the fourth 24.31% was noted, 21.69%
for the fifth was observed and for the last a variance of 4.37% was noted. This analysis
of variance was undertaken to note how much information is lost with the application of
dimensional reduction. The six characteristics were projected in two dimensions. Once the
reduction was accomplished, it was noted that there was no specific meaning for each of
the components. It was also noted that when fitting the original data to two dimensions,
the reduction from six to two dimensions did not permit separation of the classes from
each other in an ideal way. Taking into account these observations, it was found that it is
not suitable to undertake the reduction for more than two dimensions for classification of
the seizure classes.

6. Comparative Performance Analysis of the Proposed MCSV Approach
6.1. Single Channel vs. Multichannel

To assess the seizure detection functioning of the proposed MCSV approach, multi-
channel classification was performed against single channel classification using the SVM
classifier. The results of MCSV-SVM method for single and multichannel EEG data are
summarized in Table 2.

Table 2. Classification result based on MCSV-SVM using single and multichannel.

Channel

MCSV-SVM Method

Average Values

SEN
(%)

SPE
(%)

ACC
(%)

ADR
(%)

Single 92.8 98.13 96.53 95.46
Multi 93.83 97.94 97.38 95.89
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Based on Table 2, the accuracy for the single channel dataset was 96.53%, the sensitivity
was 92.8%, the specificity was 98.13%, and the ADR was 95.46%. Whereas the accuracy
for the multichannel dataset was 97.38%, the sensitivity was 93.83%, the specificity was
97.94%, and the ADR was 95.89%. As information carried by all channels was considered
for classification improvement in terms of sensitivity, specificity, accuracy, and ADR in the
EEG seizure analysis, it was observed that more channels from the EEG data carried more
information and therefore there was an increase in the sensitivity, specificity, accuracy, and
ADR in EEG seizure analysis.

6.2. Comparison of the Proposed MCSV Approach with Existing Approach

Various methods for epileptic seizure detection are introduced in literature. A brief
exploration of a few of the techniques and their connected investigations with the suggested
MCSV-based approach is presented in this section. Table 3 displays this comparative
exploration. It can be seen that a majority of the studies highlighted the importance of
power spectra-based features and the use of wavelet domain-based information. All these
parameters act as significant factors for effective and efficient seizure diagnosis. The work
recommended by this paper detected almost all the seizures for all the subjects considered.
The MCSV approach helped to attain better seizure detection accuracy in comparison to
all the proposed techniques. This may be due to the following reasons: (i) the use of EEG
seizure information from multi-channels; and (ii) the proposed MCSV approach is able to
capture HFOs representing the seizure information precisely.

Table 3. A Summary of Literature Presenting Various Techniques for Epileptic Seizure Detection.

Authors with
Reference Number

Channel/Segment
(in Seconds, s)

Technique
Used

Localization
of Seizure

Origination

SEN
(%)

SPE
(%)

ACC
(%)

ADR
(%)

Sriram et al. [36] Multi/NS Multifeatures and multi
layer perceptron NO 97.1 97.8 NS NS

Anubha Gupta
et al. [37] Single/NS

Hurst component and
autoregressive moving average

based features are used
NO NS NS 97 NS

M.G.Moha
mmadi et al. [26] Multi/NS CNN-MLP/LSTM/

ResNet NO 76.84/
94.24 NS NS NS

Acharya, U. R.
et al. [38] NS 13 layer CNN NO 95 90 88.67 NS

Gao et al. [39] Multi/NS Maximal overlap DWT NO NS NS 94.12 NS
M.G.Moha

mmadi et al. [40] Multi/0.9 s HMM-Deep learning NO Above
90 95 NS NS

Zimeng et al. [41] Multi/NS Multi-step
spike detection algorithm YES 97.4 96.5 96.9 NS

Cura et al. [42] Multi/NS DMD-spectral moments NO 92.5 98.6 96.5 NS

Yao et al. [43] Multi/NS BiLSTM
with CNN NO 87.3 88.3 NS NS

S.Roy et al. [27] Multi/NS Deep
Learning NO

75
to

91.6
NS NS NS

The proposed work Multi/4 s CSV based
MCSV-SVM approach YES 93.83 97.94 97.38 95.89

NS represents Not Specified.

In addition, refs. [44–46] have attained epileptic seizure detection accuracy of 100%,
but they have been unable to locate the exact seizure onset region present in the brain. Also,
none of these methods discussed the classification of multichannel EEG signals segment-
wise, which play a crucial role in the recognition of seizure activities from the lobes of
the brain.
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However, it is a challenge to compare the proposed approach with the present tech-
niques, since all the discussed methods have their own method of channel-segment selec-
tion, their own type and number of features selected, and type of classifier used for analysis.
Nevertheless, it was observed from the literature summary that the MCSV approach re-
ported maximum possible average accuracy by considering classification of the seizure
signals for all the EEG channels segment-wise. Even though a few methods report greater
accuracy than the presented one, it is worthwhile to note that they have reported the results
only for a single channel. In addition to this, few approaches have shown superiority for
multichannels by considering only a few channels from the entire EEG channel set. Also,
the MCSV approach used all the channels without adapting to any channel selection algo-
rithm. In addition, the MCSV approach enhanced the classifier performance by extracting
the high frequency seizure component, which a majority of the existing methods fail to do.

The authors of [33] showed that there is a very close association between high fre-
quency information and epilepsy. It is evident that the MCSV approach can better describe
the epileptic behavior present in the seizure signal. As indicated by Figure 5, the maximum
seizure spread is indicated clearly in the MCSV obtained gamma and full bands. This
highlights the significance of MCSV approach in the proper detection of epileptic seizure.

7. Conclusions

A novel MCSV approach for multichannel epileptic seizure classification was pre-
sented in this paper. The proposed approach will help in the real-time monitoring of the
EEG signal by utilizing an IoT-based system utilizing a smart phone and the cloud. In the
data processing unit, the input EEG signal is pre-processed using the MRAF method for
the elimination of physiological artifacts. Choice of the segment size greatly affects the
performance of the segment-wise seizure classification. Segment-wise analysis was carried
out for EEG segments with and without overlap. From this analysis, we observed that a 4 s
segment without overlap performs better for seizure classification. The classification per-
formance of the proposed MCSV approach was tested for three standard classifiers, namely,
K-Means clustering, k-NN and SVM. It was observed that the classification performance of
the MCSV approach with SVM was superior to the K-Means clustering algorithm and the
k-NN classifiers. The MCSV-SVM classifier achieved 97.38% accuracy and a 95.89% average
detection rate. This result was further analyzed by employing a topographic map in which
the gamma band showed stronger activity related to the origination of the seizure from the
left and right ear lobes. We also tested the MCSV approach for single and multichannel EEG
signals. It was noted from the analysis that multichannel seizure classification carried more
information in comparison to a single channel thereby increasing the average detection
rate of the epileptic seizure classification. Also, the proposed MCSV approach outperforms
other multichannel-based seizure techniques presented in the literature.
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