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Abstract

Event-driven trials with staggered entry are frequently encountered in clinical practice.
However, the associated data involve dependencies, and it is not obvious whether in-
dependent censoring 3which is an essential condition for the validity of the common
survival methodology 3 applies in this context. The corresponding proof is subject to
the restriction that the calendar times are masked, as information on the order of the
events may otherwise derange the underlying intensities. Using simulations, we show
that violations of said constraint can entail erroneous results. Furthermore, we analyse
simulated data by means of Efron9s classic bootstrap. This resampling method is based
on the assumption of random censoring, and thus, leads to bias, whereas the outcomes
obtained by the wild bootstrap are correct. When analysing event-driven trials with stag-
gered entry, one should therefore both exclude calendar time information and resort to
martingale-based techniques in order to draw valid conclusions.

The second focal point of this work is on methods for statistical inference about causal
effect estimators. We define the treatment effect in terms of the cumulative incidence,
which allows for the incorporation of competing risks.
A corresponding effect estimator can be determined using the g-formula. The distri-

bution of the associated stochastic process is rather complex, however, and in practice,
researchers mostly resort to resampling by Efron9s nonparametric bootstrap in order to
construct confidence intervals and bands. We show that the classical bootstrap, a resam-
pling method based on the influence function, as well as the wild bootstrap can be used
to approximate the asymptotic distribution of the stochastic process of interest. More-
over, we conduct a simulation study to compare confidence regions derived by means
of the respective resampling techniques. It becomes apparent that the wild bootstrap
generally yields the most accurate results, unless the event of interest is observed only
rarely. In that case, the approach based on the influence function attains valid confi-
dence regions. For time-simultaneous confidence bands, the classical bootstrap should
be considered.

Apart from the g-formula, propensity score matching provides another possibility
for estimating the causal treatment effect. There exists only little research, however,
regarding suitable variance estimators that take into account the particular structure of
the matched data. We adapt a double-resampling technique as well as a cluster-based
variance estimator to the situation at hand and, once more, perform simulations com-
paring the corresponding confidence regions. Both approaches yield appropriate, yet
somewhat conservative outcomes, and will thus be further improved as part of future
investigations.
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Zusammenfassung

Ereignisgesteuerte Studien mit zeitversetztem Eintritt werden in der klinischen Praxis
häufig eingesetzt. Die zugehörigen Daten weisen jedoch Abhängigkeiten auf und es ist
nicht offensichtlich, ob in diesem Zusammenhang von unabhängiger Zensierung 3 einer
wesentlichen Voraussetzung für die Gültigkeit der gängigen Überlebenszeitmethodik 3
ausgegangen werden kann. Der entsprechende Beweis setzt voraus, dass keine Kalen-
derzeiten in die Analyse miteingehen, da Informationen zur Reihenfolge der Ereignisse
andernfalls die zugrundeliegenden Intensitäten stören können. Mit Hilfe von Simula-
tionen zeigen wir, dass Verletzungen der genannten Einschränkung falsche Ergebnisse
erzeugen. Außerdem analysieren wir simulierte Daten unter Verwendung von Efrons
klassischem Bootstrap. Diese Resampling-Methode basiert auf der Annahme zufäl-
liger Zensierung und führt deshalb zu Verzerrungen, wohingegen der Wild-Bootstrap
in unseren Untersuchungen korrekte Ergebnisse liefert. Bei der Auswertung ereignis-
gesteuerter Studien mit zeitversetztem Eintritt sollte man daher einerseits Kalenderzeit-
informationen ausschließen und andererseits auf Martingal-basierte Methoden zurück-
greifen, um gültige Rückschlüsse ziehen zu können.

Den zweiten Schwerpunkt dieser Arbeit bilden Methoden zur statistischen Inferenz für
kausale Effektschätzer. Wir definieren den Behandlungseffekt in Bezug auf die kumu-
lative Inzidenz, sodass auch konkurrierende Risiken berücksichtigt werden können.
Ein entsprechender Schätzer lässt sichmittels der g-Formel bestimmen. DieVerteilung

des zugehörigen stochastischen Prozesses ist jedoch relativ komplex, weshalb man sich
in der Praxis zur Herleitung von Konfidenzintervallen und -bändern meist mit Resam-
pling durch Efrons nichtparametrischen Bootstrap behilft. Wir weisen nach, dass der
klassische Bootstrap, eine Resampling-Methode basierend auf der Einflussfunktion,
sowie der Wild-Bootstrap verwendet werden können, um die asymptotische Verteilung
des untersuchten stochastischen Prozesses zu approximieren. Außerdem führen wir
eine Simulationsstudie durch, um Konfidenzregionen zu vergleichen, die mit Hilfe der
erwähnten Resampling-Techniken bestimmt werden. Wie sich zeigt, führt der Wild-
Bootstrap im Allgemeinen zu den treffendsten Ergebnissen, es sei denn, das interessie-
rende Ereignis wird nur selten beobachtet. In diesem Fall erzielt die Methode, die auf
der Einflussfunktion beruht, gültige Konfidenzregionen. Der klassische Bootstrap emp-
fiehlt sich für zeitsimultane Konfidenzbänder.

Neben der g-Formel bietet zudem Propensity Score Matching eine Alternative für
die Schätzung des kausalen Behandlungseffektes. Es liegen jedoch kaum Untersuchun-
gen zu geeigneten Varianzschätzern vor, welche die besondere Struktur der gematchten
Daten einbeziehen. Wir passen eine Doppel-Resampling-Technik sowie einen cluster-
basierten Varianzschätzer an die gegebene Situation an und führen erneut Simulationen
zum Vergleich der entsprechenden Konfidenzregionen durch. Beide Methoden liefern
gültige, aber etwas zu konservative Ergebnisse und sollen deshalb im Rahmen zukün-
ftiger Untersuchungen weiter verbessert werden.
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1. Introduction
In this thesis, we apply considerations relating to the fields of survival analysis and causal
inference with the aim to enable statistical reasoning based on resampling.
The chapter at hand highlights the relevance of our investigations in view of the cur-

rent state of research, describes our objectives, and finally, gives a brief overview of the
following chapters.

1.1. Motivation

Time-to-event (TTE) data account for a significant proportion of the data considered
in clinical trials, especially in the field of oncology. Approaches that can handle right-
censoring are therefore well-established, and yet, it appears that the underlying require-
ments w.r.t. censoring processes are not fully understood. Inconsistent definitions and
unnecessarily deviating assumptions further contribute to the confusion (cf. O9Quigley,
2008, p. 122� Kleinbaum and Klein, 2012, p. 38). Andersen (2005) has provided an
overview of the various censoring mechanisms encountered in practice, and Overgaard
and Hansen (2021) discussed assumptions that are frequently imposed on them. Par-
ticular focus is placed on independent right-censoring (Andersen, Borgan, et al., 1993,
p. 139), which, in short, ensures that the intensity w.r.t. the event of interest is not affected
by the additional information conveyed through the censoring process. This condition
is a necessary prerequisite for the application of the common analysis methods.
We concentrate on the specific case of event-driven trials for now, where the aim is to

achieve a pre-specified number of observed events. Such study designs usually occur in
combination with staggered study entry (cf. Elisei et al., 2013� McLaughlin et al., 2015�
Sitbon et al., 2015� Husain et al., 2019� Baden et al., 2021). Aalen, Borgan, and Gjessing
(2008, p. 59) showed that scenarios with simple type II censoring actually do satisfy the
condition of independent censoring. However, successive entry times induce additional
randomness due to the projection of the data onto the study time scale, which leads to
uncertainty regarding the assumption of independent censoring, and accordingly, the va-
lidity of the usual analysis methodology.
It is clear, on the other hand, that event-driven trials involve dependent data, since ad-

ministrative censoring is determined by the timing of the events. One should therefore
refrain from using methods based on the assumption of random censoring, such as the
nonparametric bootstrap proposed by Efron (1979) (cf. Singh, 1981� Friedrich, Brunner,
and Pauly, 2017� Hrba et al., 2022). Whether this restriction is in fact taken into account

1



1. Introduction

in situations where resampling is the only feasible method to draw statistical conclusions
is questionable, though.

Beyond the context of classical TTE analysis, the combination of survival methodology
with tools for causal inference has gained increasing importance in recent years. The re-
sulting approaches can for example be used to identify causal treatment effects on TTE
endpoints in observational studies, where the confounding factors are not distributed
equally across treatment groups. We focus on effects quantified by the cumulative inci-
dence function (CIF) in this work, as such characterizations permit both the analysis of
competing risks settings as well as the circumvention of the issues associated with haz-
ard ratios (HRs) in causal contexts (Hernán, 2010� Martinussen and Vansteelandt, 2013�
Aalen, Cook, and Røysland, 2015). Causal effects like the one described here are often
considered in cardiovascular trials (cf. eg. Lamberts et al., 2014� Stærk et al., 2017).

A commonly employed strategy to identify the average treatment effect (ATE) in a
given study sample is to use the g-formula (Robins, 1986). To be more specific, this
involves computing the standardized expectations of the outcome given both treatment
levels and then forming their contrast. The distribution of the stochastic process that
corresponds to the g-formula estimator of the causal CIF is rather complex, which is
why statistical inference is usually based on resampling. In practice, researchers almost
exclusively use Efron9s nonparametric bootstrap (Lamberts et al., 2014� Stærk et al.,
2017). It has been mentioned before that this approach is not optimal in settings that
involve dependencies, though, and investigations about potential alternatives are scarce:
Ozenne, Scheike, et al. (2020) have applied a resampling approach based on the influ-
ence function (IF) in their experimental study (cf. Scheike and Zhang, 2008). It further
stands to reason that approximations based on the martingale-based wild bootstrap yield
decent outcomes (cf. Lin, Wei, and Ying, 1993� Beyersmann, Di Termini, and Pauly,
2013� Dobler, Beyersmann, and Pauly, 2017).
Another way to approximate the ATE is to perform matching with replacement on the

propensity score (PS) (i.e. the conditional probability to be treated given the confounder
values). Only few investigations have addressed appropriate ways to assess the vari-
ability of the associated estimator in the presence of TTE data, as the special set-up of
the matched data is hard to factor in. What is more, Abadie and Imbens (2008) demon-
strated that the classical bootstrap is not suitable for inference on estimators obtained
by matching with replacement. The weighted bootstrap approach proposed by Otsu and
Rai (2017) does solve this issue, but disregards the variance that results from the estima-
tion of the PSs. Other suggestions for methods that give insights into the distribution of
PS-matched effect estimators for TTE data merely refer to the causal HR (Austin and
Cafri, 2020� Adusumilli, 2022� Wang et al., 2024).
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1.2. Contribution of this thesis

1.2. Contribution of this thesis

In this thesis, we establish that the censoring process underlying event-driven trials with
staggered entry fulfils the condition of independent censoring in the counting process
sense. This way, we justify the use of the common survival methodology for the analysis
of such trials.
It turns out that the validity of independent censoring in the given context is subject

to the exclusion of all information related to the calendar times of the events. We use
simulations to illustrate the consequences in case this constraint is violated, and thereby,
highlight potential sources of bias that should be avoided in practice.
Another empirical study moreover demonstrates the limitations of techniques based

on random censoring against the backdrop of event-driven trials with staggered entry.
For this purpose, we compare the results obtained by means of the classical bootstrap to
those provided by the wild bootstrap (cf. Efron, 1979� Lin, Wei, and Ying, 1993).
Lastly, real data covering immunotherapy in cancer patients are analysed with the aim

of exemplifying the extent to which the incorrect application of the classical bootstrap
may impact analysis outcomes in practice (cf Rittmeyer et al., 2017).

The second part of the dissertation focuses on the exploration of different resampling
methods for statistical inference about the ATE.

We first derive a martingale representation of the stochastic process that characterizes
the g-formula estimator of the ATE, and on the basis thereof, we demonstrate that the
classical bootstrap, a multiplier-based resampling approach building on the influence
function, as well as the wild bootstrap are all suitable for approximating the asymptotic
distribution of the estimated ATE (cf. Efron, 1979� Scheike and Zhang, 2008� Lin, Wei,
and Ying, 1993). The corresponding proofs are based on arguments similar to those used
by Cheng, Fine, and Wei (1998), Akritas (1986), and Dobler, Beyersmann, and Pauly
(2017).

Extensive simulations are further conducted to examine the performance of these
methods under varying conditions. We derive pointwise as well as time-simultaneous
confidence regions and assess the associated coverage probabilities. By means of com-
parisons between the resampling techniques, we establish guidelines for their use in
distinct scenarios.
The application of the investigatedmethods is finally illustrated considering real study

data on the progression of Hodgkin9s disease after treatment with radiation (Pintilie,
2006).

In order to gain insight into potential approaches allowing for inferences about the PS-
matched ATE estimator, we further adapt the double-resampling technique according to

3



1. Introduction

Wang et al. (2024) as well as the clustered variance estimator proposed by Austin and
Cafri (2020) to the case where the ATE is determined by the CIF.

The performance of the resulting procedures is explored using the same simulation
set-up as already considered w.r.t. the resampling approaches relating to the g-formula
estimator. We evaluate the adequacy of the new methods based on the coverage prob-
abilities of the generated confidence regions and identify conditions under which they
tend to deteriorate.
Eventually, the Hodgkin9s disease data are re-analysed to test how the PS matching-

based approaches perform when applied to real world data.

1.3. Outline

The remainder of this dissertation is structured as outlined hereafter.
In Chapter 2, we introduce the theoretical background necessary for developing the

ensuing ideas, which includes topics related to survival analysis (Section 2.1), causal
inference (Section 2.2), and resampling (Section 2.3). The notation used throughout the
thesis is set up in this context.
Chapter 3 addresses the dependence structure of the data in event-driven trials with

staggered entry. After stating the theorem that verifies the condition of independent
censoring in such trials (Section 3.1), we present the associated simulation studies in
Section 3.2, and subsequently describe the analysis of the real data example considered
in this context (Section 3.3).
Chapter 4 next investigates resampling-based inference for the ATE. In Section 4.1,

we concentrate on the g-formula estimator and start by proving the validity of the distinct
resampling methods for statistical inference on this parameter. The simulations compar-
ing the respective approaches is presented afterwards, and the section closes with the
analysis of the Hodgkin9s disease data. The focus in Section 4.2 is then put on infer-
ence about the PS-matched ATE estimator, which necessitates an introduction to suit-
able methods for this purpose. We highlight two such methods, study their performance
by means of simulations, and discuss the results. Lastly, we repeat the analysis of the
Hodgkin9s disease data applying the new methods for PS-matched data.

The dissertation eventually concludes with a summary, followed by a discussion of
our findings and a brief outlook on future research.

All statistical analyses in this thesis are performed using the open source software R
(version 4.4.1, R Core Team, 2024). The corresponding code can be accessed through
the GitHub repository (https://github.com/jruehl).
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2. Preliminary background
In this chapter, we introduce the theory that lays the foundation for the remainder of the
thesis, including concepts of survival analysis, causal inference, and different resampling
techniques.

2.1. Survival analysis

The target of inference for survival analysis is the survival time, i.e. the duration of the
time period between a pre-specified origin and the occurrence of an event of interest. In
clinical trials, the temporal origin is usually defined by a subject9s entry into the study
(e.g. at the time of randomization). The event of interest could for instance be death,
but contrary to its name, survival analysis is not restricted to the evaluation of life spans
only.

Standard statistical methods are inappropriate for the analysis of TTE data because
in general, part of the survival times are not fully recorded. For individuals who have
not experienced the event of interest by the end of the observation period, it is merely
known that the true survival time is at least as large as the duration of the time under ob-
servation. The corresponding, incomplete data points are said to be right-censored. We
distinguish between different types of right-censoring with varying implications: Simple
type I censoring arises in experiments that end at a predetermined, deterministic point of
time, such that all participants whose event happens afterwards are censored. If the end
of a trial is determined by a fixed number of events to be observed, we speak of simple
type II censoring. Beside administrative factors, right-censoring may also result from
subject withdrawal or loss to follow-up.

Left- and, more generally, interval-censoring are less common kinds of censoring,
addressing survival times that are only known to fall below an observed threshold, or
to range within a specific interval, respectively. Sometimes, the observation of survival
times is subject to additional constraints: In the presence of left-truncation, an indi-
vidual9s inclusion into the study depends on whether their event occurs after a specific
incident, which marks the beginning of the observation period. Right-truncation can be
defined analogously, but this condition is less relevant in practice.

To account for censored data while still including all the given information, survival
analysis relies on specific methods, which we will introduce in this section. The pre-
sented theory is largely based on the books by Aalen, Borgan, and Gjessing (2008) and
Andersen, Borgan, et al. (1993).
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2. Preliminary background

2.1.1. Basic concepts & counting process representation of time-to-event data

In the following, we consider the probability space (Ω,F , P ) and focus on the study
time interval [0, Ç ] that lasts until the terminal time Ç .

Let the absolutely continuous, non-negative random variables T1, . . . , Tn be independent
survival times with survival function Si(t) = P (Ti > t) and hazard

³i(t) = lim
∆t¹ 0

P
(
Ti ∈ [t, t+∆t) | Ti ≥ t

)

∆t
,

respectively, for i ∈ {1, . . . , n}, n ∈ N. Due to practical reasons, we will mostly adopt
the alternative notation ³i(t) dt = P

(
Ti ∈ [t, t+ dt) | Ti ≥ t

)
on the basis of the differ-

ential dt throughout this dissertation. It is easy to see that the survival function and the
hazard rate are linked by the relation Si(t) = exp

(
−Ai(t)

)
, i ∈ {1, . . . , n}, with (finite)

cumulative hazard function

Ai(t) =

∫ t

0

³i(u) du.

Aalen (1978) significantly enhanced the theory underlying survival analysis by repre-
senting TTE data via counting processes. To signify whether the event of interest has
happened by time t for subject i ∈ {1, . . . , n}, define the counting process

(
N c

i (t) = 1{Ti ≤ t}
)
t*[ 0,Ç ] .

We use the expression 1{·} to refer to the indicator function of the event in the argument.
Note also that the superscript 8c9 is applied to emphasize that 8complete9, i.e. uncensored,
data are observed.
Since the past usually affects the subsequent behaviour of a stochastic process, it is

helpful to establish a formalization of the history through right-continuous filtrations
(Ft)t*[ 0,Ç ] (henceforth denoted by (Ft), and likewise for processes), that is, increas-
ing families of sub-Ã-algebras of F fulfilling Fu =

⋂
t>u Ft. The pre-t Ã-algebra

Ft2, informally, reflects the information available at time t about events (or the ab-
sence thereof) over the past interval [0, t). Our focus w.r.t. the multivariate process(
Nc(t) =

(
N c

1(t), . . . , N
c
n(t)

))
is on the so-called self-exciting filtration

(
F c

t

)
that is

generated by the counting process itself:

F
c
t = Ã

((
Nc(u)

)
uft

)
.

We say that
(
Nc(t)

)
is adapted to

(
F c

t

)
, whichmeans simply thatNc(t) isF c

t -measurable
for every t ∈ [0, Ç ].
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2.1. Survival analysis

Taking the history into account, the behaviour of
(
N c

i (t)
)
is characterized by its in-

tensity process
(
»F c

i (t)
)
, i ∈ {1, . . . , n}, via

»F c

i (t) dt = P
(
dN c

i (t) = 1 | F c
t2
)
.

The term dN c
i (t) above refers to the (binary) increment of the counting process over the

infinitesimal interval [t, t+ dt), and hence, it follows that »F c

i (t) is equal to the product
of the hazard ³i(t) and Y c

i (t) = 1{Ti ≥ t}, the value of the at-risk-process at time t.

Next, we introduce the non-negative, possibly random censoring times C1, . . . , Cn in
order to extend the described set-up by right-censoring. This leads to observed data of
the form (

(Ti∧Ci, Di)
)
i*{1,...,n} .

The first expression in the tuple above represents the minimum of Ti andCi, i.e. the time
under observation, whereas the second entry,Di denotes the censoring status1{Ti ≤ Ci}.
As some of the survival times are masked, we need to consider an adjusted version(

Ni(t)
)
of
(
N c

i (t)
)
, i ∈ {1, . . . , n}, that jumps at observed survival times only:

Ni(t) =

∫ t

0

Y o
i (u) dN c

i (u) = 1{Ti∧Ci ≤ t, Di = 1}. (2.1)

Here, Y o
i (t) = 1{Ci ≥ t} refers to the value of the left-continuous censoring process

for subject i at time t. The summation over the entire cohort,

N(t) =
n∑

i=1

Ni(t),

yields the aggregated counting process
(
N(t)

)
, assuming Ti 6= Tj ∀i 6= j or, in words,

no ties (to which we adhere subsequently).
One can further formalize the observable past under right-censoring by the multivari-

ate processes
(
N(t) =

(
N1(t), . . . , Nn(t)

))
and

(
Y(t) =

(
Y1(t), . . . , Yn(t)

))
, where the

at-risk indicator
Yi(t) = Y c

i (t)Y
o
i (t) = 1{Ti∧Ci ≥ t} (2.2)

implies whether an event of subject i ∈ {1, . . . , n} at time t ∈ [0, Ç ] is both possible and
detectable. A more specific definition of the history is as follows:

(
Ft = Ã

((
N(u),Y(u)

)
uft

))
.
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2. Preliminary background

This filtration, essentially, reflects the knowledge about preceding events that is usually
available in real-life studies, and it gives rise to the intensity

(
»F
i (t)

)
of
(
Ni(t)

)
, which

is 3 similarly to the uncensored case 3 determined by

»F

i (t) dt = P
(
dNi(t) = 1 | Ft2

)
.

Because the counting process
(
Ni(t)

)
is a (local) submartingale w.r.t. the history (Ft),

we obtain the following key result: One can split Ni(t) uniquely into the sum of∫ t

0
»F
i (u) du and

Mi(t) = Ni(t)−
∫ t

0

»F

i (u) du

according to the (localized)Doob-Meyer decomposition (P.-A.Meyer, 1962� P.-A.Meyer,
1963), where

(∫ t

0
»F
i (u) du

)
is a predictable compensator and

(
Mi(t)

)
defines a purely

random, local square-integrable (Ft)-martingale. By predictability of the compensator,
it ismeant that

(
»F
i (t)

)
ismeasurablew.r.t. theÃ-algebra generated by all left-continuous,

adapted processes.
The counting process representation at hand permits to exploit practical results of mar-

tingale theory for the analysis of survival data, provided that a vital condition explained
in the subsequent paragraph is met.

To that end, consider a third, enlarged filtration, which combines the history
(
F c

t

)
ob-

served in the absence of censoring with details on the individual censoring processes,
i.e.

Gt = Ã
(
F

c
t ∪ Ã

((
Y o
1 (u), . . . , Y

o
n (u)

))
uft

)
.

The definition above implies that
(
F c

t

)
is nested within (Gt), and according to Equa-

tions (2.1) as well as (2.2), so is the history (Ft) that is observed under censoring. Thus,
while

(
N c

i (t)
)
and

(
Ni(t)

)
are
(
F c

t

)
- and (Ft)-adapted, respectively, but not vice versa,

both counting processes are adapted to (Gt). Similarly,
(
Y c
i (t)

)
,
(
Y o
i (t)

)
, as well as(

Yi(t)
)
are (Gt)-predictable for i ∈ {1, . . . , n}. We now define a third intensity

(
»G
i (t)

)

w.r.t. (Gt) as follows:
»G

i (t) dt = P
(
dN c

i (t) = 1 | Gt2
)
.

Definition 2.1 (Independent censoring):
Censoring is said to be independent if

»G

i (t) = »F c

i (t) (2.3)

for all i ∈ {1, . . . , n} and for all t ∈ [0, Ç ].
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2.1. Survival analysis

The condition of independent censoring in Definition 2.1 ensures that the censoring pro-
cess does not comprise any information that changes the intensity of

(
N c

i (t)
)
. This

assumption leads to a crucial finding: By the law of total expectation, we obtain the
equality »F

i (t) dt = E
(
Y o
i (t)»

G
i (t) dt | Ft2

)
, and under independent censoring, it fol-

lows that »F
i (t) dt = Yi(t)E

(
³i(t) dt | Ft2

)
since »F c

i (t) = Y c
i (t)³i(t). Throughout

this thesis, wewill assume that the hazard is (Ft)-predictable so that »F
i (t) = Yi(t)³i(t).

One can therefore regard the course of events among the subjects at risk as representa-
tive of what would have happened without censoring.

Random censoring, i.e. stochastic independence Ti⊥⊥Ci of the event and censoring
times, is a fairly restrictive example of independent censoring. Besides, simple type I
and type II censoring (where F c

t = Gt ∀t ∈ [0, Ç ]) as well as random left-truncation
(with the 8censoring9 process characterized by truncation) also fulfil Condition (2.3).

It should be noted that the term 8independent censoring9 is not defined consistently
in the literature (cf. O9Quigley, 2008, p. 122, Kleinbaum and Klein, 2012, p. 38� differ-
ent concepts of independent censoring are discussed by Martinussen and Scheike, 2006,
p. 52-57). We will adhere to the notion proposed by Andersen, Borgan, et al. (1993,
Definition III.2.1) here. For further details on the properties of censoring processes, see
also Andersen (2005).

Suppose now that the hazard is deterministic with³i(t) = ³(t) ∀i ∈ {1, . . . , n}, t ∈ [0, Ç ],
and that censoring is independent. Then,

(
N(t)

)
satisfies 8Aalen9s multiplicative inten-

sity model9 (Aalen, 1978), that is,

»F (t) = Y (t)³(t),

with aggregated intensity process
(
»F (t)

)
defined by »F (t) = P

(
dN(t) = 1 | Ft2

)
,

and
(
Y (t)

)
denoting the total number of subjects at risk at time t ∈ [0, Ç ], i.e.

Y (t) =
n∑

i=1

Yi(t).

We consequently obtain a uniformly consistent estimator of the cumulative hazard A(t),
namely the Nelson-Aalen estimator

Â(t) =

∫ t

0

1{Y (u) > 0}
Y (u)

dN(u)

(with the convention 0/0 := 0� Nelson, 1969� Nelson, 1972� Aalen, 1978) if we assume
that infu*[ 0,t] Y (u) P−→∞ as n→∞ for t ∈ [0, Ç ].
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2. Preliminary background

Further large sample properties of the Nelson-Aalen estimator and many other quanti-
ties in survival analysis can be derived by means of the following version of Rebolledo9s
martingale central limit theorem (1980):

Theorem 2.1 (Central limit theorem for stochastic integrals w.r.t. counting processes):
For each n ∈ N and j ∈ {1, . . . , k}, with k ∈ N fixed, let

(
N

(n)
j (t)

)
be a counting pro-

cess defined on [0, Ç ]with intensity
(
»
(n)
j (t)

)
, so thatN (n)

j (t) =
∫ t

0
»
(n)
j (u) du+M

(n)
j (t).

Furthermore, let
(
H

(n)
j (t)

)
be a locally bounded, predictable process.

The conditions

(i)
k∑

j=1

∫ t

0

(
H

(n)
j (u)

)2
»
(n)
j (u) du P−→

n³>
V (t) ∀t ∈ [0, Ç ],

for a deterministic, continuous, strictly increasing function V on [0, Ç ], with
V (0) = 0

and

(ii)
k∑

j=1

∫ t

0

(
H

(n)
j (u)

)2
1{
∣∣H(n)

j (u)
∣∣ > ÷}»(n)

j (u) du P−→
n³>

0 ∀t ∈ [0, Ç ], ÷ > 0

imply that on the Skorokhod space D[0, Ç ],

k∑

j=1

∫
H

(n)
j (u) dM (n)

j (u)
D−→

n³>
U,

where
(
U(t)

)
is a Gaussian martingale defined by U(t) = W

(
V (t)

)
and

(
W (t)

)
de-

notes the Brownian motion.

The expression 8Xn
D−→ X on D[0, Ç ]9 in Theorem 2.1 indicates weak convergence of

a sequence of processes
(
Xn(t)

)
to
(
X(t)

)
, with the sample paths of

(
Xn(t)

)
as well

as
(
X(t)

)
mapping [0, Ç ] to R and being right-continuous with left limits (càdlàg) (cf.

Fleming and Harrington, 2005, Appendix B). Moreover, the Brownian motion
(
W (t)

)

is a continuous process that is zero at time zero, has almost surely continuous sample
paths as well as independent, normally distributed increments with mean zero and vari-
ance equal to the size of the respective increment.
Applying Theorem 2.1 to theNelson-Aalen estimator, one finds that

√
n
(
Â(·)− A(·)

)

converges weakly to a Gaussian martingale on D[0, Ç ] if there is a non-negative func-
tion y defined on [0, Ç ], with infu*[ 0,Ç ] y(u) > 0, such that ³/y is integrable over [0, Ç ]
and supu*[ 0,Ç ]

∣∣Y (u)/n− y(u)
∣∣ P−→ 0 as n→∞. An estimator for the variance of Â(t)

is further obtained as

V̂ar
(
Â(t)

)
=

∫ t

0

1{Y (u) > 0}
(
Y (u)

)2 dN(u).
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2.1.2. Cox proportional hazards regression

For the purpose of regression modelling, let Zi ∈ Rp denote a bounded vector of p base-
line covariates for individual i, i ∈ {1, . . . , n}, so that the survival times T1, . . . , Tn are
independent given (Z1, . . . ,Zn). Consider the hazard ³(t | z) that is defined conditional
on the covariate values. We extend the histories

(
F c

t

)
as well as (Ft) (and to that ef-

fect, (Gt)) by information on Z1, . . . ,Zn accordingly, and assume that Condition (2.3)
applies, i.e. censoring may depend on the measured covariates. Under the premise of
time-constant covariate effects on the multiplicative scale, it is convenient to study the
following semiparametric model for the hazard at time t ∈ [0, Ç ] (Cox, 1972):

³(t | z) = ³0(t) exp
(
βT
0 z
)
. (2.4)

Model (2.4) characterizes ³(t | z) by a non-negative, integrable baseline hazard ³0(t)

and a vector β0 ∈ Rp of regression parameters. It follows that for j ∈ {1, . . . , p},

³
(
t |
(
z1, . . . , zj21, zj+1, zj+1, . . . , zp

))

³
(
t |
(
z1, . . . , zj21, zj, zj+1, . . . , zp

)) = exp
(
³0j

)
,

i.e. the j th element ³0j ofβ0 describes the logarithm of the HR between two observations
whose covariate vectors only differ by one unit in component j.

The starting point for the estimation of the regression coefficients ³01, . . . , ³0p is the
partial likelihood

L(β) =
∏

t*[ 0,Ç ]

n∏

i=1

(
Yi(t) exp

(
βTZi

)
∑n

j=1 Yj(t) exp
(
βTZj

)
)∆Ni(t)

.

We define

S(r)(β, t) =
1

n

n∑

i=1

Yi(t) exp
(
βTZi

)
Z·r

i ,

for z·0 = 1, z·1 = z, as well as z·2 = zzT , r ∈ {0, 1, 2}, and

E(β, t) = S(1)(β, t)

S(0)(β, t)

as functions of a vector β ∈ Rp and time t ∈ [0, Ç ]. The vector of score functions
w.r.t. L(β) is therefore given by

"

"β
logL(β) =

n∑

i=1

∫ Ç

0

(
Zi − E(β, t)

)
dNi(t).
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Note that this expression reduces to
∑n

i=1

∫ Ç

0

(
Zi − E(β0, t)

)
dMi(t) if β = β0, which

is due to the Doob-Meyer decomposition and the definitions of S(0), S(1), and E above.
We will for now suppose that the observations

(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n} are indepen-

dent and identically distributed (i.i.d.), with Ti⊥⊥Ci | Zi and strictly positive probability
P (Yi(t) = 1) ∀i ∈ {1, . . . , n}, t ∈ [0, Ç ]. Let

s(r)(β, t) = E
(
S(r)(β, t)

)
,

for r ∈ {0, 1, 2}, and
e(β, t) = s(1)(β, t)

s(0)(β, t)
.

One can show that there is a compact neighbourhood B of the true parameter vector β0

so that for r ∈ {0, 1, 2} and n→∞, the function S(r) converges uniformly to s(r) in
probability on the Cartesian product B × [0, Ç ]. Besides, the limits s(r) are continuous
functions of β ∈ B uniformly in t ∈ [0, Ç ], and on B × [0, Ç ], they are bounded, with
s(0) being additionally bounded away from zero (Fleming and Harrington, 2005, Theo-
rem 8.4.1). These findings now permit to conclude that the score function evaluated at
β0 is asymptotically normally distributed, or more specifically,

1√
n

n∑

i=1

∫ Ç

0

(
Zi − E(β0, t)

)
dMi(t)

D−→ N (0,Σ), (2.5)

provided that the standardized information matrix Σ = −E
(

1
n
· "2

"β2 logL(β)|β=β0

)
,

with
Σ =

∫ Ç

0

(
s(2)(β0, t)

s(0)(β0, t)
−
(
e(β0, t)

)·2
)
s(0)(β0, t)³0(t) dt, (2.6)

is positive definite (Andersen and Gill, 1982). The proof relies on the martingale central
limit theorem presented at the end of the previous section.
Andersen, Borgan, et al. (1993, Theorem VII.2.1) showed that as n→∞, the proba-

bility that there is a unique vector β̂ maximizing the partial likelihoodL(β) tends to one,
and if it exists, this vector is consistent. The asymptotic normality of the score statistic in
Equation (2.5) further entails that

√
n
(
β̂ − β0

)
is asymptotically Gaussian with mean

zero and covariance matrix Σ
21. In practice, one usually resorts to iterative methods

like the Newton-Raphson algorithm to approximate the value of the Cox estimator β̂.
It is worth mentioning that the results above can also be obtained under relaxed as-

sumptions (cf. Andersen, Borgan, et al., 1993, TheoremVII.2.1 and VII.2.2), but we will
later rely on several findings that are based on the independence constraints considered
here. For example, Tsiatis (1981) showed that if the data are i.i.d., Ti ⊥⊥ Ci | Zi, and
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2.1. Survival analysis

P
(
Yi(t) = 1

)
> 0 ∀i ∈ {1, . . . , n}, t ∈ [0, Ç ], then the Cox estimator converges almost

surely to the true parameter vector.

Apart from β0, another unknown component in Model (2.4) is the baseline hazard ³0(t),
i.e. the hazard if all predictors are equal to zero. While we do not need to know this
function tomake inference about the HR, an estimate of³0(t) is yet necessary to examine
other functionals of the hazard rate subject to the Cox model. Breslow (1972) proposed
the subsequent estimator of the cumulative baseline hazard A0(t) =

∫ t

0
³0(u) du for a

given vector β̂:

Â0(t) =

∫ t

0

1{Y (u) > 0}
nS(0)

(
β̂, u

) dN(u).

(Note the parallel to the Nelson-Aalen estimator.) The strong uniform consistency of Â0

can be demonstrated under the same assumptions as above (Lopuhaä and Nane, 2013),
and consequently, Â(t | z) = Â0(t) exp

(
β̂T z

)
approximates the cumulative hazard for

an individual with covariate vector z. It will be convenient later on to represent Â(t | z)
by means of martingales in order to investigate large sample properties of hazard-based
processes. Lin, Fleming, andWei (1994) proceeded similarly as Andersen, Borgan, et al.
(1993, proof of TheoremVII.2.3), by exploiting the weak convergence in Equation (2.5),
to show that

√
n
(
Â(t | z)− A(t | z)

)
is asymptotically equivalent to

1√
n

∫ t

0

exp
(
βT
0 z
)

S(0)(β0, u)
dM(u) +

1√
n

(
h(t | z)

)T
Σ

21
n∑

i=1

∫ Ç

0

(
Zi − E(β0, u)

)
dMi(u),

with
h(t | z) =

∫ t

0

(
z− e(β0, u)

)
dA(u | z).

As noted earlier, the Cox model depends on the rather strong assumption of proportional
hazards. One possibility to check whether covariate effects are in fact time-constant
is to test for a correlation between the scaled Schoenfeld residuals and the (possibly
transformed) failure times. Under proportional hazards, we expect the correlation to
be zero (Grambsch and Therneau, 1994). Besides, a graphical display of the estimated
coefficients in a model with time-varying effects should not reveal any pattern over time.
If there is evidence that the proportional hazards assumption is violated for some of the
covariates, one might alternatively consider an additive hazards model (Aalen, 1989) or
a combination in the form of an additive-multiplicative Cox-Aalen model (Scheike and
Zhang, 2002).
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2. Preliminary background

2.1.3. Competing risks

So far, the focus of our considerations has been on the setting where subjects may only
experience one single type of event. A more general framework (which includes the
previously described situation as a special case) builds upon competing risks models.
This concept is suitable if the occurrence of a certain event is prevented by prior incidents
of other, 8competing9 events.
Suppose that the data take the form

(
(Ti∧Ci, Di)

)
i*{1,...,n}, where Ti now denotes the

time until the first event (regardless of its cause) and the indicator Di ∈ {0, 1, . . . , K}
specifies the corresponding event type. (A value of 0 marks censored observations.) The
cause-specific hazard rate of cause k ∈ {1, . . . , K} is defined by

³k(t) dt = P
(
T ∈ [t, t+ dt), D=k | T ≥ t

)
.

We capture the number of observed type k events until time t ∈ [0, Ç ] as the sum over
Nki(t) = 1{Ti∧Ci ≤ t, Di=k} for i ∈ {1, . . . , n}, which results in the counting pro-
cess

(
Nk(t)

)
. Extending the history (Ft) by the past values of all cause-specific count-

ing processes, the intensity
(
»F
k (t)

)
is determined analogously to the standard setting.

This gives rise to the martingale
(
Mk(t)

)
, withMk(t) = Nk(t)−

∫ t

0
»F
k (u) du. An esti-

mator of the cause-specific cumulative hazard Ak(t) =
∫ t

0
³k(u) du is further obtained

as in Subsection 2.1.1: Under the assumption that the multiplicative intensity model
holds, we approximate Ak(t) by Âk(t) =

∫ t

0
1{Y (u) > 0}/Y (u) dNk(u), where Y (t)

now excludes subjects with any event or censoring prior to t. Similarly, one may fit
a cause k specific Cox regression model with given baseline covariates, while treating
events of type k̃ 6= k as censored. Large-sample inference is then based on a multivari-
ate version of the martingale central limit theorem.
Even though the approach above allows for consistent estimation of the cause-specific

cumulative hazard, it is in general not appropriate to simply censor individuals with com-
peting events and adopt the relations that apply in the standard survival setting. To see
why, note that the survival probability S(t) = exp

(
−∑K

k=1Ak(t)
)
depends on all K

cause-specific hazards if there are multiple event types. The one-to-one correspondence
between ³k(t) and the risk of experiencing a type k event until t, as quantified by the
CIF

Fk(t) = P (T ≤ t, D = k) =

∫ t

0

S(u−)³k(u) du,

is therefore no longer valid, and the naive estimator 1− exp
(
−Âk(t)

)
will generally suf-

fer from upward bias. In particular, one may obtain values greater than 1 by summing
over all causes (which is inconsistent with the equivalence

∑K

k=1 Fk(t) = P (T ≤ t)).
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2.1. Survival analysis

The risk according to this biased estimator pertains to a hypothetical setting where com-
peting causes are eliminated so that everyone will experience a type k event eventually,
but in reality, subjects who failed from other events are no longer exposed to the cause
of interest (Andersen, Geskus, et al., 2012). For the analysis of competing risks data,
one should rather evaluate all cause-specific hazards (and, ideally, CIFs) to gain a full
understanding of the covariate effects on each type of event and the interactions between
them.

Fine andGray (1999) suggested tomodel a 8subdistribution hazard9 analogously to Equa-
tion (2.4), but keeping subjects with competing events at risk for the cause of interest.
This way, the one-to-one correspondence between subdistribution hazard and CIF is
maintained. The regression coefficients in the subdistribution model relate to Fk(t) in-
stead of ³k(t), k ∈ {1, . . . , K}, and thus quantify the effect of the covariates on the CIF,
but lack an intuitive interpretation other than that. (Note that associations between co-
variates and competing events also contribute to the model parameters for the cause of
interest.) In addition, the sum over all estimated CIFs may exceed the value of 1 when
separate Fine and Gray models are fitted for each cause (Austin, Steyerberg, and Putter,
2021).

More complex situations than those discussed so far can be investigated, too, by con-
sidering multistate models with transient states and imposing the time-inhomogeneous
Markov property. In fact, standard survival and competing risks scenarios are only spe-
cial cases of multistate models, and the corresponding analysis methods can be

Figure 2.1: Illness-death model without recovery.
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extended rather straightforwardly
(see e.g. Putter, Fiocco, and
Geskus, 2007, Section 4� Beyers-
mann, Allignol, and Schumacher,
2012, Part III). An example of a
more general multistate model is
the illness-death model without
recovery (see Figure 2.1). Here,
individuals might move to the ab-
sorbing state either directly or af-
ter a sojourn in an intermediate
state.
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2. Preliminary background

2.2. Causal inference

Regardless of whether survival or another endpoint is examined, clinical trials mostly
aim to identify causal relationships between some kind of intervention and the outcome
of interest. Knowledge of the underlying causal connections helps to better understand
the mechanisms by which the intervention operates on the outcome, possibly facilitating
treatment decisions in the future. However, standard statistical methodsmeasure associa-
tion rather than causation, and their naive application bears the risk of erroneously identi-
fying a causal link between variables that is really just due to confounding. A condition
that yet allows to approximate the causal effect using common estimators is random-
ization. By arbitrary allocation of participants to treatment groups, any confounders 3
whether they are known to the researcher or not 3 are expected to be distributed equally
across the groups, so that association and causation between treatment and outcome may
be regarded as equivalent. Randomization is not always possible, though: It would for
instance be unethical to investigate the effect of a harmful substance by deliberately ad-
ministering it to part of the subjects. Besides, the exposure of interest is often beyond
the researchers9 control. One has to rely on observational studies in such cases, which
means that there is a high chance of unsolicited factors being associated with both the
exposure and the outcome, and side-by-side comparisons between treatment groups will
consequently yield biased estimators of the (direct) treatment effect.

The framework of causal inference provides tools to eliminate such bias under cer-
tain identifiability conditions. In addition, there are ways to improve the analysis of
randomized trials, e.g. by accounting for non-compliance.

A variety of causal techniques has been proposed during recent years (see e.g. Hernán
and Robins, 2020), but for the sake of brevity, our focus lies only on those relevant
within this thesis.

We will adhere to the counterfactual approach to causal inference in the following
(Rubin, 1974): In summary, one aims to compare the potential outcomes that would
have occurred under different exposures, but otherwise identical conditions. It is only
possible to observe one of these potential outcomes for each individual, though (i.e. the
one corresponding to the exposure they were actually subject to, as opposed to the poten-
tial outcomes reflecting settings that are 8counter to the fact9). Due to this 8fundamental
problem of causal inference9, one tries to estimate the mean potential outcomes among
the whole study population. This leads to the subsequent definition of the ATE on the
additive scale, considering the outcome O and comparing exposures a and a2:

ATE = E
(
OZA=a

)
−E

(
OZA=a2).
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2.2. Causal inference

The expression OZA=a, or Oa in short, represents the potential outcome if the expo-
sure status ZA was set to a. (As of now, let ZA be the first entry of the covariate vec-
tor Z, followed by other measured covariates ZL.) We will assume throughout that
ZA ∈ {0, 1} is a binary indicator for a single-point treatment, so that the ATE is given
by E(O1)− E(O0).

2.2.1. Identifiability conditions, standardization & propensity score matching

It has already been hinted that several assumptions need to hold to allow for the identifi-
cation of the ATE. These assumptions are briefly explained below (see e.g. Hernán and
Robins, 2020, Section I.3, for more details):

(Conditional) exchangeability ensures that there are no unmeasured confounders.
Given the covariate vectorZL, the mean outcome among the treated subjects is therefore
equal to the mean counterfactual outcome among the untreated subjects under treatment,
and vice versa. More formally, conditional exchangeability implies that

Oa⊥⊥ZA | ZL, a ∈ {0, 1}. (2.7)

If the independence above applies marginally, we speak of unconditional exchangeabil-
ity.

Positivity holds if it is both possible to be treated or untreated, respectively, condi-
tional on every covariate combination that may occur in the target population:

P
(
ZA = 1 | ZL= l

)
∈ (0, 1) ∀ l : P (ZL = l) > 0. (2.8)

This assumption is necessary to enable comparisons between treatment groups while
taking confounders into account.
Lastly, consistencywarrants that the potential outcome under treatment coincides with

the observed outcome among treated subjects, just like the potential outcome under no
treatment matches the observed outcome among untreated individuals. Formally, we
write

Oa = O if ZA = a, a ∈ {0, 1}. (2.9)

It seems obvious that this condition is met, but consistency depends on the precise defini-
tion of the potential outcomes via (sufficiently) well-defined treatment levels that corre-
spond to the treatment levels actually pursued, and if there are any discrepancies between
the potential and actual treatment levels, they must not affect the outcome. Consistency
is also related to the condition of no interference, which ensures that an individual9s treat-
ment (or the absence thereof) does not act on another individual9s potential outcome (as
it may be the case e.g. in studies of infectious diseases).
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2. Preliminary background

Exchangeability, positivity, and consistency are referred to as identifiability condi-
tions. In (ideal) randomized trials, we expect them to be fulfilled, with exchangeability
and positivity applying even marginally. As a consequence, association measures ob-
tained from randomized samples are consistent estimates of causal effect measures. If
an observational study suffices the identifiability conditions, it may be treated as if it was
conditionally randomized given the covariates ZL, which means that the causal effect
can be derived using methods that will be introduced hereafter. An empirical verifica-
tion of the identifiability conditions is generally not possible, though, and to assess their
plausibility, one needs to rely on expert knowledge about potential confounders. It is
recommended to explicitly state any assumptions made during the causal analysis, so
that the outcome is open to critical scrutiny. There are certain situations that permit
causal inference under violations of the identifiability conditions (Pearl, 1995� Angrist,
Imbens, and Rubin, 1996), but the corresponding approaches are based on alternative,
fairly strong assumptions.

Suppose that Conditions (2.7), (2.8), as well as (2.9) are fulfilled. Then one finds that
for a ∈ {0, 1},

E(Oa) =

∫
E
(
Oa | ZL= l

)
dFZL

(l)

(2.7),
=
(2.8)

∫
E
(
Oa | ZA= a,ZL= l

)
dFZL

(l)

(2.9)
=

∫
E
(
O | ZA= a,ZL= l

)
dFZL

(l),

where FZL
is the joint cumulative distribution function (CDF) of the covariate vector ZL

and the integral is taken over its domain. This equivalence is an instance of the so-called
g-formula (Robins, 1986), and it gives rise to the direct standardization estimator

ÂTEds =
1

n

n∑

i=1

(
Ê
(
O | ZA= 1,ZL= ZLi

)
− Ê

(
O | ZA= 0,ZL= ZLi

))
,

letting ZLi denote the vector of covariate values for subject i ∈ {1, . . . , n}. If the con-
ditional expectations in the expression above are estimated nonparametrically, the same
estimate of the ATEmay be obtained by inverse probability of treatment (IPT) weighting,
i.e. by assigning the weight 1/P̂ (ZA = ZAi | ZL= ZLi) 3 or, for reduced variability, the
stabilizedweight P̂ (ZA = ZAi)/P̂ (ZA = ZAi | ZL= ZLi) 3 to individual i ∈ {1, . . . , n}
whose actual treatment indicator is ZAi, respectively, and subtracting the (weighted)
mean of the outcomes among the controls from that among the treated. The pseudo-
population generated by IPTweighting suffices for unconditional exchangeability, given
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2.2. Causal inference

that exchangeability conditional on ZL holds in the original sample, because the weights
balance the confounders in ZL over the treatment groups. It thus follows that the dif-
ference of the weighted means of the outcomes is consistent for the ATE (Hernán and
Robins, 2020, Section I.2).

In case of high-dimensional data or continuous covariates ZL, we have to estimate
E
(
O | ZA= a,ZL= l

)
and P

(
ZA = a | ZL= l

)
based on models (that is, a so-called

8Q model9 for the expected outcome and, usually, a logistic regression model for the
treatment probability). The corresponding standardized and IPT-weighted estimates of
the ATE will most likely deviate from each other although both aim to approximate the
g-formula specified above. This is because they rely on different model assumptions,
and model misspecification is unavoidable up to a certain degree. One should ideally
obtain similar results for both estimators, however. An alternative option are doubly-
robust estimators of the ATE that are consistent if either of the two models is correctly
specified (Robins, Rotnitzky, and Zhao, 1994� van der Laan and Rubin, 2006).

The treatment model applied to calculate the IPT weights also comes into play with
another method for the estimation of the ATE. Let

PS (ZLi) = P
(
ZA = 1 | ZL= ZLi

)

denote the PS of subject i ∈ {1, . . . , n}, i.e. the probability of treatment given i9s co-
variate values. As mentioned before, estimates of the PSs can be obtained by logistic
regression. It has proven helpful to compare histograms of P̂S (ZLi) among treated and
untreated individuals, since substantial disparities in the supports indicate positivity vio-
lations. On the other hand, equally distributed PS in both treatment groups suggest that
there is no confounding by the covariates in ZL. The estimation of the PSs is further
worthwhile because the covariates are compressed into a single value that maintains
identifiability: By the law of total expectation, exchangeability and positivity condi-
tional on ZL remain valid conditional on the PS (Rosenbaum and Rubin, 1983), and
thus, the outcomes of treated and untreated individuals can be directly compared given
PS (ZLi). Note that the PS should be defined w.r.t. covariates that are expected to en-
sure exchangeability rather than accurate prediction of the treatment group, or else, the
resulting estimate of the ATE may suffer from bias or high variance.

Matching on the PS creates a new sample that includes pairs (or, with many-to-one
matching, larger sets) of subjects with similar PSs but different treatment levels. This
way, the measured covariates are equally distributed across treatment groups, and after
assigning a match to each individual, we estimate the ATE as the difference between
the mean outcomes of treated and untreated individuals in the matched population (sup-
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2. Preliminary background

posing that positivity holds). Exact matches w.r.t. continuous variables are unlikely,
though, so that it is necessary to define a measure of proximity between PSs. One usu-
ally considers the absolute difference between the estimated PSs. For the estimation of
the ATE in the entire population, nearest-neighbour matching with replacement is com-
monly employed as it generates sufficient eligible matches for each (treated or untreated)
individual (Abadie and Imbens, 2006� Otsu and Rai, 2017). It is possible to match with-
out replacement if the aim is to identify the average treatment effect in the treatment
group with fewer individuals. While this facilitates variance estimation, the effect esti-
mate may be biased, though, due to the risk of incomplete matching (Austin and Cafri,
2020).

Figure 2.2: Directed acyclic graph.
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Causal analyses often benefit from a con-
ceptualization of the underlying assump-
tions by means of directed acyclic graphs
(DAGs). A visual display of the potential
causal relations between variables may re-
veal hidden sources of bias and thus, di-
rect researchers towards suitable evalua-
tion strategies.

DAGs consist of nodes representing
random variables and directed edges be-
tween them. As implied by the name
8DAG9, the included edges must not form cycles. We connect nodes by edges to de-
pict conjectured causal effects, whereas the lack of an edge that links two nodes encodes
the assumption of no (direct) causal relation between them. The DAG in Figure 2.2 sug-
gests for example that variable ZA has a causal effect on variable O, and in that case,
ZA is referred to as a 8parent9 of O. If we follow the edges in a DAG3 possibly against
the indicated direction 3 from one node to another, such that any node along the way is
passed only once, we obtain a 8path9 between the first and the last node. There are mul-
tiple paths from ZA to O in Figure 2.2, namely the direct one (ZA → O) as well as the
indirect routes via ZA ← UL → ZL1

→ O and ZA → ZL2
← O. The nodes that can be

reached by a directed path from a given variable are called its 8descendants9: Consider
e.g. variable O with descendants ZL2

and ZL3
. By these definitions, we may eventually

express the main premise underlying DAGs: The causalMarkov assumption states that a
variable in a DAG is independent of all other variables, except for its descendants, if we
condition on its parents. Consequently, any common parents of two variables 3whether
they are measured or not 3 need to be included in the DAG (Hernán and Robins, 2020,
Section I.6).

20



2.2. Causal inference

The use of DAGs for the identification of causal effects is now attributed to the fact
that such graphs do not only disclose causation but also association: Two nodes in a
DAG are associated if there is an edge between them, or if they share common causes.
In order to determine the causal effect of ZA on O in the setting illustrated in Figure 2.2,
we therefore need to eliminate the spurious association between ZA and O that is due to
the (unmeasured) common cause UL. More generally, Pearl (1988) and Pearl (1995) de-
veloped a framework for the probabilistic theory underlying DAGs, which implied that
the direct effect between two variables is identified by 8blocking9 all non-direct paths
between them. A path can be blocked if one conditions on a variable that builds either
a 8chain9 or a 8fork9 on that path. Here, chains are structures of the form 8→ ZL →9
or 8← ZL ←9, whereas forks correspond to the pattern 8← ZL →9. If a path includes a
sub-structure like 8→ ZL ←9, it is blocked inherently, and one should refrain from un-
blocking it by conditioning on the 8collider9 ZL or any descendants thereof. The direct
effect of ZA on O in our example may thus be determined by conditioning on the vari-
able ZL1

, which forms a chain on the path ZA ← UL → ZL1
→ O, but one may neither

condition on the collider ZL2
nor its descendant ZL3

. For a more thorough introduction
to causal DAGs, we refer to Greenland, Pearl, and Robins (1999) and Hernán and Robins
(2020, Section I.6).

2.2.2. Causal inference for time-to-event data

When causal inference is to be drawn for TTE data, one should be aware of certain is-
sues related to the use of the HR as effect measure. Martinussen and Vansteelandt (2013)
pointed out that, unlike risk differences and risk ratios, HRs are non-collapsible, i.e. the
marginal HR may differ from the conditional HR given an independent risk factor for
the event of interest, even if there is no confounding. This means that the causal HR
cannot be expressed as a (weighted) average of the HRs across strata. In a trial that satis-
fies the identifiability conditions and has unlimited sample size, the treatment effect as
measured by the HR may still vary if one adjusts for a risk factor that is not associated
with the event of interest at all. Besides, identification of potential confounders via HRs
is prone to errors (Daniel, Zhang, and Farewell, 2021).

Figure 2.3: Selection bias of the HR.

ZA Y (t) dN(t)

UL

Hernán (2010) further warned about the
so-called 8built-in selection bias9 of the
HR, which is illustrated by the DAG in
Figure 2.3: The hazard rate at time t is de-
fined conditional on survival up to t, and
since the at-risk status Y (t) is a collider
on the path ZA → Y (t)← UL → dN(t),
a spurious association is introduced be-
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tween ZA and dN(t). In other words, exchangeability will fade away over time among
the subjects at risk if treatment does actually affect survival, because a higher propor-
tion of 8frail9 individuals is removed from the risk set in the group with lower chances of
survival (see also Aalen, Cook, and Røysland, 2015� Post, van den Heuvel, and Putter,
2024). One could however argue in favour of the HR by pointing out that the interest is
generally in the effect of treatment among the complete study population over the entire
study period (as quantified by the HR) instead of the effect of treatment at a single time
point t among subjects at risk at t. (Note that Figure 2.3 only represents a 8snapshot9 of
the causal relations at a given time point.) Nevertheless, HRs cannot reflect any changes
in the ATE over time.
While Cox regression may be used as a tool to obtain meaningful causal effect esti-

mates, the interpretation of the causal treatment effect should not be based directly on the
HR, taking all the mentioned concerns into account (Martinussen and Stensrud, 2023).
Aalen, Cook, and Røysland (2015) and Martinussen and Vansteelandt (2013) proposed
to consider the difference between the hazards in an additive model. Because of the
intuitive understanding of the risk, we define the ATE at time t ∈ [0, Ç ] w.r.t. the CIF,
which means that competing risks settings are covered on top:

ATE(t) = FZA=1
1 (t)− FZA=0

1 (t). (2.10)

Here, F a
k (t) = P (T a ≤ t,Da = k) denotes the potential CIF for cause k ∈ {1, . . . , K},

a ∈ {0, 1}, and the interest is w.l.o.g. on type 1 events. The g-formula can for instance
be applied to approximateATE(t), provided that the identifiability conditions (as formu-
lated w.r.t. the potential outcome Oa = 1{T a ≤ t,Da = 1}) are met (see Section 4.1).

In the presence of competing risks, the ATE defined in Equation (2.10) summarizes the
direct influence of the therapy on the time to the event of interest as well as any impact
that is due to advancing or preventing competing events. Thus, ATE(t) measures the
total effect on the investigated cause. In contrast, the direct effect refers to the influence
of the therapy in a hypothetical setting where the occurrence of any competing event is
rendered impossible (Young et al., 2020). Direct effects may improve our understanding
of the mechanisms by which the treatment acts on the event of interest, but they are often
of minor interest in clinical trials, since interventions that eliminate competing events
are generally not realistic. Stensrud et al. (2022) and Martinussen and Stensrud (2023)
suggested possible ways to separate direct from indirect effects on the basis of untestable
assumptions.
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2.3. Resampling

2.3. Resampling

One of the central tasks of statistical analyses is to evaluate the accuracy of a given esti-
mate. For this purpose, we consider pointwise confidence intervals (CIs) and 3 in case of
time-dependent estimators 3 time-simultaneous confidence bands (CBs): It is expected
that (1 − ³) ·100% of the (1 − ³) ·100% CIs computed in a series of trials conducted
under equivalent conditions will cover the true point estimand. Similarly, (1−³)·100%
of the CBs at level (1−³) should include the true estimand over an entire, pre-specified
time interval. The derivation of valid CIs and CBs can be difficult, however, since many
estimators have rather complex distributions and the central limit theorem only provides
a poor approximation in case of small sample sizes.
As a remedy, one may resort to resampling, that is, repeated generation of subsamples

from the given data sample. These subsamples can then be used to infer statistical proper-
ties of the estimator at hand. Resampling requires hardly any distributional assumptions,
and is used for various applications apart from the construction of confidence regions,
e.g. for hypothesis tests or in the context of machine learning. Depending on how the
subsamples are created, there are different approaches to resampling, including permu-
tation and bootstrapping (Chernick, 2012). We will focus on the latter hereafter.

2.3.1. Efron9s nonparametric bootstrap

The resampling method that is most commonly applied to derive CIs is the nonpara-
metric bootstrap introduced by Efron (1979), subsequently abbreviated as EBS. For an
i.i.d. sample (X1, . . . , Xn)) of n observations and a statistic »̂ that approximates the
parameter », the idea is to draw many times with replacement (say B = 1, 000 times),
creating B subsamples

(
X

7(b)
1 , . . . , X

7(b)
n

)
of size n (b ∈ {1, . . . , B}), and to determine

the statistic of interest in each of these bootstrap samples. One thus generates B boot-
strap statistics »̂7(1), . . . , »̂7(B) based on the empirical distribution given the original data.
In fact, this approach is equivalent to repeatedly computing the weighted statistic after
assigning multinomialM

(
n, (1/n, . . . , 1/n)T

)
-distributed weights. Provided that the

distribution of the bootstrap statistics conditional on the data approximates the sampling
distribution, we may eventually construct an asymptotic (1−³)·100%CI for » by using
the ³/2 and 1− ³/2 sample quantiles of the bootstrap statistics as limits.

The functional delta method yields a condition that ensures the validity of the clas-
sical bootstrap for a particular statistic (van der Vaart and Wellner, 1996, Chapter 3.9�
Kosorok, 2008, Chapter 12). Before presenting the corresponding theorem, we need to
introduce a suitable concept of a directional derivative: A mapping » : D→ E between
normed spaces D and E is said to be Hadamard differentiable at G ∈ D tangentially to
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D0 ⊆ D if there exists a continuous linear map "»G : D0 → E such that

sup
H*C

∥∥∥∥
»(G+ ÷H)− »(G)

÷
− "»G(H)

∥∥∥∥
E

−→
÷³0

0

for all compact sets C ⊂ D0. The derivative "»G according to this definition satisfies
a chain rule, which can be exploited to determine the Hadamard derivative of complex
expressions.

Theorem 2.2 (Functional delta method� cf. e.g. Kosorok, 2008, Theorem 2.8):
Let D and E be normed spaces, and let » : D→ E be Hadamard differentiable atG ∈ D

tangentially to D0 ⊆ D. Suppose that an (Gn −G) D−→ H as n→∞ for some se-
quence of constants an →∞, a sequenceGn taking its values inD, and a tight processH
with values in D0. Then,

an
(
»(Gn)− »(G)

) D−→
n³>

"»G(H).

Van der Vaart and Wellner (1996, Theorem 3.9.11) and Kosorok (2008, Theorem 2.9)
concluded by means of Donsker9s theorem that the EBS is valid if we consider plug-in
estimators based on Hadamard differentiable statistical functionals, with finite variance
of the derivative evaluated at the CDF. Examples include e.g. the sample mean and
variance. There are actually several cases where the bootstrap approximation converges
at a faster rate than the normal approximation� consider e.g. the mean of continuous
variables (Singh, 1981). For a more detailed insight into bootstrap theory, we refer to
van der Vaart (1998, Chapter 23).

The EBS does not rely on any parametric assumptions, but the underlying data generally
need to be i.i.d. Singh (1981), Friedrich, Brunner, and Pauly (2017), and Hrba et al.
(2022) pointed out situations where dependencies lead to poor approximation. Another
drawback of this bootstrap method is the computational effort, which entails excessive
execution times for large datasets.

2.3.2. Resampling based on the influence function

In order to establish a second resampling approach, we define the IF of a Hadamard
differentiable statistical functional » = »(F ), with F denoting the CDF, by

IF»(x) = "»F
(
1[x,>) − F

)
.

Note that 1[x,>)(·) is just another representation of the expression 1{· ≥ x}. IFs were
first mentioned explicitly by Hampel (1974), and pursuant to the definition as (general-
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2.3. Resampling

ized) directional derivative, they quantify how the functional of interest is affected by
adding a small point mass to the underlying distribution (see Figure 2.4, Zepeda-Tello
et al., 2022). For an i.i.d. sample (X1, . . . , Xn) with true CDF F and empirical distri-
bution function F̂ , the empirical IF ÎF »(Xi) = IF»(x)

∣∣
F=F̂ accordingly measures the

8influence9 of observation Xi on the plug-in estimator »̂ = » (F̂ ) (i ∈ {1, . . . , n}).

Figure 2.4: Illustration of the directional derivative: Considering functions on multidimensional
spaces, the directional derivative reflects the slope of the tangent plane w.r.t. a specific direction.
The Hadamard derivative is a generalization of the directional derivative to infinite-dimensional
spaces. It ensures that the derivative towards direction z coincides with the limit of the deriva-
tives towards any sequence of directions that converges to z. The graphic is based on Figure 1(c)
in Zepeda-Tello et al. (2022� licensed under CC BY 4.0).

x

y

f(x, y)

An additional application of the IF is variance approximation. Van der Vaart (1998, Chap-
ter 20) used the von Mises expansion, a 8functional9 analogue of the Taylor expansion,
to show that √

n
(
»(F̂ )− »(F )

)
=
√
n "»F

(
F̂ − F

)
+ oP (1),

considering once more an i.i.d. sample (X1, . . . , Xn) with true and empirical CDFs F
and F̂ , respectively. This representation can be further advanced by the linearity of the
Hadamard derivative: One obtains

√
n
(
»(F̂ )− »(F )

)
= "»F

(
1√
n

n∑

i=1

(
1[Xi,>) − F

))
+ oP (1)

=
1√
n

n∑

i=1

IF»(Xi) + oP (1)

(2.11)
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as well asE
(
IF» (X1)

)
= 0 so that it is tempting to invoke the central limit theorem. The

functional delta method (see Theorem 2.2), together with Donsker9s theorem, suggests
in fact that

√
n
(
»(F̂ )− »(F )

)
converges in distribution to a normal distribution with

mean zero and variance equal to Var
(
IF» (X1)

)
if the second moment of IF» (X1) is

finite. We may hence approximate the variance of »̂ by

V̂ar
(
»̂
)
=

1

n2

n∑

i=1

(
ÎF »(Xi)

)2
.

The estimator above allows to construct a CI for » without resampling. A not so com-
mon, yet effective resampling approach to derive time-simultaneous CBs for stochastic
processes has been described by Scheike and Zhang (2008). They consider multiple time
points over an interval of interest. For each of these time points, they compute the IFs
w.r.t. all observations, multiply them with independent standard normal variables and
take the sum over the population. This procedure is repeated a large number of times
in order to imitate the distribution of

√
n
(
»(t; F̂ )− »(t;F )

)
over the examined interval

(cf. Equation (2.11)).

Resampling as described above is less time-intensive than the execution of the classical
bootstrap, since it is not necessary to recalculate the functional of interest in multiple
data sets. The derivation of the IF can be facilitated by means of Gateaux derivatives
and standard differentiation rules� guidance has been given e.g. by Kennedy (2022). Still,
the theory underlying vonMises calculus relies on an i.i.d. set-up, and therefore, approx-
imations hinging on dependent data may be inconsistent.

2.3.3. Martingale-based resampling

The third resampling approach we consider in this thesis traces back to a method initially
described by Wu (1986). The author suggests to emulate the heteroscedastic residuals
in a linear regression model based on their first and second moments, by reweighing the
estimated residuals using random multipliers. The same idea can also be applied to the
martingale residuals in a counting process model, which makes it particularly appealing
w.r.t. TTE data (see Subsection 2.1.1). Here, we focus on the so-called wild bootstrap
(WBS) as proposed by Lin, Wei, and Ying (1993).
It is easy to see that under the multiplicative intensity model, the variance of the mar-

tingale increments dMi(t) given the past Ft2 is (nearly) equal to the expectation of the
counting process increments dNi given Ft2 (i ∈ {1, . . . , n}). Following the scheme of
Wu (1986), we may thus approximate dMi by the product of dNi with suitable random
multipliers. Choices include independent standard normally distributed random vari-
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2.3. Resampling

ables (as considered by Lin, Wei, and Ying, 1993) as well as independent and centred
unit Poisson variables (Beyersmann, Di Termini, and Pauly, 2013). Generally, the mean
and variance of the multipliers need to converge in probability to 0 and 1, respectively,
in order to ensure that the first and second moments of the resampled and the true count-
ing processes are asymptotically equal. A more thorough delineation of the conditions
imposed on the multipliers as well as a proof of the validity of this resampling approach
when applied to the CIF can be found in Dobler, Beyersmann, and Pauly (2017).

The martingale-based WBS and its variants may be used in a multitude of settings (Lin,
1997� Bluhmki et al., 2019� Ditzhaus and Pauly, 2019). As the underlying theory is
built upon the condition of independent censoring (rather than random censoring), the
described resampling approach is expected to yield valid outcomes for data that deviate
from a strict i.i.d. structure (as long as the censoring process fulfils Condition 2.3). What
is more, it can be implemented faster than the EBS for similar reasons as thosementioned
in Section 2.3.2.
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3. Independent censoring in
event-driven trials with staggered
entry

The focus of this chapter is on a study design that is specific to clinical studies with time-
to-event endpoints. Due to right-censoring, the number of observed events 3 termed the
effective sample size 3 generally falls short of the actual sample size. It is common to
plan clinical trials according to a predetermined target number of events in order to ac-
count for this discrepancy. This leads to so-called event-driven trials. Studies subject to
simple type II censoring are for instance event-driven, and while this censoring scheme
is non-random and entails dependent data, it still satisfies the condition of independent
censoring (see Subsection 2.1.1).
The participants of clinical trials are usually recruited at different time points through-

out an enrolment period, though. If an event-driven set-up is combined with staggered
patient entry, additional randomness emerges by the projection of the event times onto
the study time scale. As a consequence, considerations about the dependence structure
of the data are complicated.

The subsequent section establishes the validity of independent censoring in event-driven
trials with staggered entry. Afterwards, we conduct simulations to showcase potential
issues related to the trial set-up at hand, and demonstrate the impact of these issues by
examining real data on immunotherapy for non-small cell lung cancer.

The contents of this chapter have already been published with Biometrics (Rühl, Bey-
ersmann, and Friedrich, 2023), and figures as well as tables shown hereafter have been
adopted from this source.

3.1. Validity of independent censoring

To illustrate the aforementioned dependence under (simple) type II censoring, consider
the setting with sample size n = 2 and a follow-up period that lasts until the first event,
so that Ci = T1∧ T2, i ∈ {1, 2}. The observed data

(
Ti∧Ci, 1{Ti≤Ci}

)
i*{1,...,n} can

thus be represented as
((

T1∧T2, 1{T1≤T2}
)
,
(
T1∧T2, 1{T2≤T1}

))
.

It is clear from the characterization above that the data of the two subjects depend on
each other.
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3. Independent censoring in event-driven trials with staggered entry

If participants enter the study in a successivemanner, one needs to look at two different
time scales: The censoring times are determined by the chronological sequence of the
events, as defined on the calendar time scale, whereas TTE analysis is based on the study
time scale with a common origin t = 0 for all subjects. Let Qi and Ri denote the entry
and event times of subject i in calendar time scale, respectively. Then, it holds for n = 2

that Ti = Ri −Qi as well as Ci = R1∧R2 −Qi, i ∈ {1, 2}, and the observed data are
therefore of the form

((
R1∧R2 −Q1, 1{R1≤R2}

)
,
(
R1∧R2 −Q2, 1{R2≤R1}

))
.

Figure 3.1 depicts the possible scenarios w.r.t. the order of study entries and events,
still considering n = 2. Regardless of the sample size, the last observed event generally
determines the available information on the censored units in the given trial set-up. With
less events recorded until the end of follow-up, the number of censored observations
increases so that more data points hinge on the time of the last captured event. The
dependence within the study data will consequently be stronger.

Figure 3.1: Possible study scenarios in event-driven trials with staggered entry and n = 2.
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Most analysis techniques for TTE data (implicitly) rely on the assumption of indepen-
dent censoring to generate unbiased outcomes (see Definition 2.1). Such techniques are
also used to examine event-driven trials with staggered entry, which are rather frequent
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3.2. Simulation studies

in clinical practice (see e.g. Elisei et al., 2013� McLaughlin et al., 2015� Sitbon et al.,
2015� Husain et al., 2019� Baden et al., 2021). We demonstrate that the condition in
Definition 2.1 does in fact hold in event-driven trials with staggered entry in order to
ensure that inferences are valid for this particular study design.
For simplicity, our focus is on a standard survival setting without competing risks. Re-

call now the filtrations
(
F c

t

)
, (Ft), and (Gt) from Subsection 2.1.1. While

(
F c

t

)
refers

to the history in a (hypothetical) world without censoring, and thus relates to the param-
eters of interest, (Ft) denotes the observable, censored history that is actually studied
for the analysis. The 8joint9 filtration (Gt) combines both the information from

(
F c

t

)
as

well as details on the censoring process.

Theorem 3.1 (Independent censoring in event-driven trials with staggered entry):
Consider an event-driven trial with n participants. Suppose that the survival times
T1, . . . , Tn are independent and let Qi and Ri denote the calendar times of study entry
and the event of interest for subject i, respectively, such that Qi < Ri ∀i ∈ {1, . . . , n}.
Let further R(1) < R(2) < · · · < R(n) be the ordered event times (w.r.t. calendar time),
assuming no ties. We define the observation period to end at time R(m), for a fixed num-
ber m ∈ N with 0 < m < n. Then, it holds that »G

i (t) = »F c

i (t) for all i ∈ {1, . . . , n}
and for all t > 0, i.e. the condition of independent censoring is fulfilled.

The statement above suggests that the usual analysis methods (including Nelson-Aalen
estimator and Cox regression) can be applied to examine event-driven trials with stag-
gered entry.

We defer the proof of Theorem 3.1 to Section A.1 in Appendix A. What should be
noted is that one must not condition on the calendar times Qi and Ri, i ∈ {1, . . . , n},
when analysing the data, or else, the additional information obtained through the cen-
soring process may allow to predict whether a subject experiences the event in the next
instant, so that the intensities w.r.t. (Gt) and

(
F c

t

)
will differ.

3.2. Simulation studies

We conducted two simulation studies in order to explore the impact of the dependence
structure inherent to the data in event-driven trials with staggered entry when it comes
to practical investigations. The first experiment is based on the final remark in the pre-
ceding section: The idea was to condition on the calendar time of study entry 3 contrary
to the concomitant issue of non-independent censoring insinuated by the proof of Theo-
rem 3.1 3 and to compare the outcomes to those obtained by an analysis that is oblivious
to the calendar times. A second simulation study further aimed to examine the use of
analysis methods that are based on the assumption of random instead of independent
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3. Independent censoring in event-driven trials with staggered entry

censoring. Since the survival and censoring times cannot be expected to be independent
in the given study set-up, such analysis methods may lead to bias.

3.2.1. Impact of conditioning on calendar times

To perform the first experiment, we simulated event-driven trials with staggered entry
according to the scenarios listed in Table 3.1. The study design was determined by the pa-
rameters (n,m) ∈ {(600, 300), (300, 150), (50, 25), (50, 10), (26, 13)}, wheren denotes
the sample size andm is the number of events to be observed. Our focus on rather small
sample sizes is due to the fact that the dependence within the data increases with smaller
values of n and, in particular, m (see Section 3.1). The survival times followed either
an exponential or a Weibull distribution, respectively, with the distribution parameters
specified to achieve a target HR out of {0.8, 1, 1.25} between randomly allocated, equal-
sized groups.
For each data set, a binary group indicatorZAi was assigned to subject i ∈ {1, . . . , n},

so that
∑n

i=1 1{ZAi = 0} =∑n

i=1 1{ZAi = 1} = n/2. We generated survival times Ti

corresponding to the respective group-specific target distribution and added them to uni-
formly distributed entry timesQi. This yielded the calendar times Ri of the events. The
time from entry to censoring was then determined by the mth largest value of Ri, or
more specifically, Ci = R(m) −Qi. One last variable, ZNi =

∑n

j=1 1{Qj < Qi}, was
furthermore derived on the basis of the entry times. As a result, we obtained a data set
of the form

(
Ti∧Ci,1{Ti≤Ci}, Qi, ZAi, ZNi

)
i*{1,...,n}, which served as the foundation

for the subsequent analysis.
Table 3.1 also includes three randomly censored scenarios that were implemented

for comparison. By contrasting the analysis outcomes of the event-driven and the ran-
domly censored scenarios, we hoped to be able to assess if any peculiarities are in fact
attributable to the interaction between staggered study entry and type II censoring. The
data for the randomly censored scenarios were generated in a similar fashion as described
above, except that the censoring times were sampled from an exponential distribution
and the subject-level data were simulated individually until we acquired m uncensored
events. (This meant that the intended sample sizen could be attained only approximately,
with the accuracy depending on the distribution of the censoring times.)

Following the simulation step, the generated data were analysed by means of three differ-
ent Cox regression models. First, we fitted a model that quantifies the HR between the
groups defined by the indicator ZA, without controlling for any other covariates. Since
we did not condition on calendar times, Theorem 3.1 implies that the outcomes should
be unbiased. The corresponding model, hereinafter termed the 8Standard Model9, was
thus used as a reference.
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Table 3.1: Simulation scenarios considered w.r.t. the impact of conditioning on calendar times
in event-driven trials with staggered entry.

Distribution of TCensoring HR (ZA = 0 /ZA = 1) n m Distribution of Q

event-driven 1.00 Exp(1) /Exp(1) 600 300 U(0, qExp (1)(0.5)
)a

300 150 U(0, qExp (1)(0.5)
)a

50 25 U(0, qExp (1)(0.5)
)a

50 10 U(0, qExp (1)(0.2)
)a

26 13 U(0, qExp (1)(0.5)
)a

Wb(0.5, 1) /Wb(0.5, 1) 600 300 U(0, qWb (0.5, 1)(0.5)
)a

300 150 U(0, qWb (0.5, 1)(0.5)
)a

50 25 U(0, qWb (0.5, 1)(0.5)
)a

50 10 U(0, qWb (0.5, 1)(0.2)
)a

26 13 U(0, qWb (0.5, 1)(0.5)
)a

0.80 Exp(1) /Exp(0.8) 600 300 U(0, qExp (1)(0.5)
)a

300 150 U(0, qExp (1)(0.5)
)a

50 25 U(0, qExp (1)(0.5)
)a

50 10 U(0, qExp (1)(0.2)
)a

26 13 U(0, qExp (1)(0.5)
)a

Wb(0.5, 1) /Wb
(
0.5, 1

0.82

)
600 300 U(0, qWb (0.5, 1)(0.5)

)a

300 150 U(0, qWb (0.5, 1)(0.5)
)a

50 25 U(0, qWb (0.5, 1)(0.5)
)a

50 10 U(0, qWb (0.5, 1)(0.2)
)a

26 13 U(0, qWb (0.5, 1)(0.5)
)a

1.25 Exp(1) /Exp(1.25) 600 300 U(0, qExp (1)(0.5)
)a

300 150 U(0, qExp (1)(0.5)
)a

50 25 U(0, qExp (1)(0.5)
)a

50 10 U(0, qExp (1)(0.2)
)a

26 13 U(0, qExp (1)(0.5)
)a

Wb(0.5, 1) /Wb
(
0.5, 1

1.252

)
600 300 U(0, qWb (0.5, 1)(0.5)

)a

300 150 U(0, qWb (0.5, 1)(0.5)
)a

50 25 U(0, qWb (0.5, 1)(0.5)
)a

50 10 U(0, qWb (0.5, 1)(0.2)
)a

26 13 U(0, qWb (0.5, 1)(0.5)
)a

random 1.00 Exp(1) /Exp(1) ≈50 25 U(0, qExp (1)(0.5)
)a

(C ∼ Exp(1))b
random 1.00 Exp(1) /Exp(1) ≈50 10 U(0, qExp (1)(0.2)

)a

(C ∼ Exp(4))b
random 1.00 Exp(1) /Exp(1) ≈26 13 U(0, qExp (1)(0.5)

)a

(C ∼ Exp(1))b
a The m/n quantile of the survival time distribution was set as upper limit of the entry times in order to
keep the probability of entries after themth event low. (qD(x) denotes the x quantile of the distributionD.)
b The distribution parameters of the censoring times were chosen so that P (T ≤ C) = m

n
.
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Two less conventional Cox models were further considered to illustrate the effect
of conditioning on calendar times: In addition to the group indicator, 8Model 19 also
included the entry time Q as a second covariate. 8Model 29 moreover covered a third
predictor on top of ZA and Q, namely the variable ZN , which represents the number of
study participants that have already been recruited at a subject9s admission time. The
rationale behind this covariate choice was to mimic the calendar time information that
is conveyed through counting processes more directly. We hoped that the greater level
of detail on the order of the subject entries would distinctly distort the intensities in
Model 2.
It is important to note that we do not propose the use of calendar time models when

analysing event-driven trials with staggered entry, but rather investigate Models 1 and 2
to examine the potential bias that may arise due to the violation of independent censor-
ing.

The process of generating data and performing the Cox regression analyses was repeated
100,000 times for each of the scenarios specified in Table 3.1. Some of the iterations
in the settings with small values of m involved data with all (or all but one) of the ob-
served events occurring among subjects from the same group. The resulting HRs were
estimated extremely high or low, which is why we disregarded such data and assessed
the accuracy of the three Cox models based on the summarized outcomes of the remain-
ing iterations. As our outcomes showed, this only reduced the total magnitude of the
deviations, but did not alter the interrelations between the biases observed in the distinct
models.

Figure 3.2: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1, n = 50,
andm = 10. The shadow lines are restricted to a random sample of size 2,000 for greater clarity.

Figure 3.2 depicts the Breslow estimators of the cumulative baseline hazards in each
model, considering the Weibull scenario with an underlying HR of 1 and parameters
n = 50 as well as m = 10. Note that 1,034 iterations were excluded because the ob-
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served events in the corresponding data were not distributed sufficiently well across the
groups. One can see that the median of the Breslow estimators in the Standard Model
nearly coincides with the true cumulative baseline hazard. Differences are visible only
at late time points, when few events were observed, so that the amount of available data
was rather low. It is, in contrast, clear that the medians of the estimated cumulative
baseline hazards in Models 1 and 2 are too small at all times, while the mean curve in
Model 2 suffers from severe upward bias.
The extent of these deviations is moreover quantified in Table 3.2. Looking at several

individual time points over the study time interval, the mean bias in Model 1 is fairly
similar to that found in the Standard Model. In Model 2, however, we encountered dis-
crepancies that were multiple times as high, even with the Monte Carlo standard errors
(MCSEs) taken into account. The median bias in Models 1 and 2 further amounts to
more than 5 times its value in the Standard Model, which means that the calendar time
models must have yielded distorted estimators for a large number of iterations. We also
computed the root mean square errors (RMSEs) in order to evaluate the precision of the
estimated cumulative baseline hazards. The results reflect the deficiency of Model 2
even more distinctly.

Table 3.2: Bias of the Breslow estimators in the Weibull scenario with HR 1, n = 50, and
m = 10, considering selected time points.

Standard Model Model 1 Model 2
Time Measure

of bias Value MCSE Value MCSE Value MCSE
0.03 mean bias 0.01094 0.00034 0.00138 0.00064 0.07112 0.02678

median bias -0.00859 0.00004a -0.04163 0.00027a -0.04837 0.00020a
RMSE 0.10663 0.00193a 0.20163 0.04030a 8.42391 5.87212a

0.05 mean bias 0.02570 0.00054 0.01440 0.00083 0.10420 0.02868
median bias -0.00620 0.00073a -0.04226 0.00009a -0.05025 0.00071a
RMSE 0.17141 0.00572a 0.26164 0.03001a 9.02352 4.96754a

0.07 mean bias 0.03267 0.00075 0.02099 0.00101 0.12607 0.03180
median bias -0.00917 0.00003a -0.04829 0.00028a -0.05604 0.00075a
RMSE 0.23794 0.00758a 0.31989 0.02447a 10.00564 4.39934a

a The MCSEs are determined by means of the jackknife estimator (Efron and Stein, 1981).

Apart from the Breslow estimators, the estimated regression coefficients in each model
were considered, too (see Table 3.3). We studied their performance in terms of the log-
transformed rather than the actual HRs, since the distribution of the corresponding esti-
mators is symmetric (see Subsection 2.1.2), and thus, their accuracy is easier to assess.
As Table 3.3 shows, the mean bias of the estimated log-HR for covariate ZA differs
hardly between the three models. The median bias is likewise very small, but one can
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still observe a slight increase proceeding from the Standard Model over Model 1 to
Model 2. Such an increase is also present w.r.t. the RMSEs. Besides, the coverage prob-
abilities of the CIs for the log-HR decrease by a small amount when passing from model
to model.
A different picture emerged concerning the additional covariates included in the cal-

endar time models. While the bias of the log-HR for predictor ZN in Model 2 can be
neglected, bothModel 1 and 2 drastically overestimate the influence of the entry timesQ.
The mean and median biases as well as the RMSEs are very high, which implies that
conditioning on the calendar times does in fact disturb the intensities. Nevertheless, the
CIs for the log-HR of Q seem to be accurate.

Table 3.3: Bias of the estimated log-HRs in the Weibull scenario with HR 1, n = 50, and
m = 10.

Standard Model Model 1 Model 2
Covariate Measure

of bias Value MCSE Value MCSE Value MCSE
ZA mean bias 0.00235 0.00209 0.00263 0.00213 0.00227 0.00220

median bias 0.00258 0.00000a 0.00290 0.00144a 0.00337 0.00000a
RMSE 0.65654 0.00146a 0.66925 0.00149a 0.69106 0.00156a
coverage 0.98294 0.00041 0.97954 0.00045 0.97413 0.00050

Q mean bias 9.19421 0.09133 1.22950 0.80990
median bias 8.25649 0.03593a 2.99396 0.16478a
RMSE 30.16661 0.09055a 254.78666 0.83921a
coverage 0.95076 0.00069 0.95095 0.00069

ZN mean bias 0.00809 0.00079
median bias 0.00571 0.00016a
RMSE 0.24807 0.00080a
coverage 0.95100 0.00069

a The MCSEs are determined by means of the jackknife estimator (Efron and Stein, 1981).

Similar findings to those described above were also obtained with other sample sizes,
event time distributions and HRs (see Section B.1 in Appendix B for the outcomes in the
remaining scenarios). The bias of the estimators derived in the calendar timemodels was
less pronounced for larger values of the parameters n andm and for greater proportions
of m/n, though. This is not surprising bearing in mind that the data involved stronger
dependencies in those cases.

As mentioned earlier, we further re-simulated some of the scenarios, but implemented
random instead of event-driven censoring. The resulting Breslow estimators in the ex-
ponential scenario with HR 1 and parameters n = 50 as well asm = 10 are shown in the
second row of Figure 3.3. The first row moreover depicts the corresponding outcomes
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3.2. Simulation studies

under event-driven censoring. Note that we excluded 2,133 and 1,032 iterations, respec-
tively, because (nearly) all of the observed events occurred in one group. (Individual
iterations with only two observed events in one of the treatment groups still led to very
extreme results in the randomly censored scenarios� see the extreme slopes of the curves
that illustrate the means of the Breslow estimators.) Even though the mean curves do not
resemble the true cumulative baseline hazard function in either the event-driven or the
randomly censored case, it is indicated by the medians that the estimators in the calendar
time models are no longer biased if censoring is random. This confirms the combination
of staggered study entry and type II censoring as the cause of the distortions.

Figure 3.3: Shadow plots of the Breslow estimators in the exponential (first row) and the ran-
domly censored (second row) scenarios with HR 1, n = 50, andm = 10. The shadow lines are
restricted to a random sample of size 2,000 for greater clarity.

All in all, our simulations demonstrated that conditioning on calendar times in event-
driven trials with staggered entry does disturb the underlying intensities. The extra in-
formation on the sequence of the events that is provided if one also conditions on the
number of recruited subjects deranges the intensities even more. With small sample
sizes and few observed events until the end of follow-up, analyses are therefore prone
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3. Independent censoring in event-driven trials with staggered entry

to bias, which may affect Cox regression estimates as well as Breslow estimates, and
consequently, predictions of the survival probabilities.

3.2.2. Impact of using methods based on random censoring

Applying the considerations in Subsection 2.3.1 to TTE data, it turns out that the EBS
should only be used under random censoring, or else, there will be non-i.i.d. data. The
WBS, on the other hand, is valid if censoring is independent (see Subsection 2.3.3). Our
second simulation study compared the outcomes obtained after employing these two re-
sampling techniques in an event-driven setting with staggered entry, where censoring is
independent but not random.
Preliminary simulations suggested that the interrelations between the data in a classi-

cal two-state survival model are too simple to reveal any noteworthy effects. This is why
we performed our investigations based on the illness-death model without recovery that
has been introduced in Subsection 2.1.3 (see Figure 2.1). The idea was that internal left-
truncation caused by the transition into the intermediate state might reinforce potential
effects because of the additional pressure exerted on statistical procedures.

To generate data conforming to the illness-death model, we followed the simulation pro-
cess described by Nießl et al. (2021), but implemented staggered study entry and event-
driven censoring. First, n uniformly distributed entry times were simulated over the
interval between 0 and 60. The time until the transition to the subsequent state was then
determined by exponentially distributed random values, considering a rate parameter
of 0.04, which reflects the sum of the transition hazards from the initial state to illness,
that is, ³01(t) = 0.01, and to death, i.e. ³02(t) = 0.03, for t ∈ [0, Ç ] (see Figure 2.1).
The type of the event was randomly selected between illness and death, with proba-
bilities ³01(t) /

(
³01(t) + ³02(t)

)
= 0.25 and ³02(t) /

(
³01(t) + ³02(t)

)
= 0.75, respec-

tively (Beyersmann, Latouche, et al., 2009). Subjects who had transitioned to the illness
state died after a waiting time that followed an exponential distribution with parame-
ter 0.1. We finally specified the end of the follow-up period as the time at which the
mth death occurred, and transformed the data to the study-time scale afterwards.

As can be seen in Table 3.4, varying values of the parameters n and m were exam-
ined. Besides, the simulations also covered simultaneous study entry for purposes of
comparison.

The next step was to apply both the EBS and the WBS to the generated data. We did
so by deriving 95% CIs for the cumulative hazard A12(t), our focus being on the transi-
tion from illness to death because of the internal left-truncation mentioned earlier. See
Bluhmki et al. (2019) for the theoretical justification of the WBS in this setting.
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3.2. Simulation studies

To improve small-sample performance, we studied log-transformed CIs according to
the formula given by Andersen, Borgan, et al. (1993, Subsection IV.1.3.1.):

[
Â12(t) exp

(−q(0.975)
√
Ã̂2(t)

Â12(t)

)
, Â12(t) exp

(
q(0.975)

√
Ã̂2(t)

Â12(t)

)]
.

The quantile q(0.975) and the variance estimator Ã̂2(t)were based on the respective boot-
strap statistics, however. In case of the EBS, the empirical variance of

(
Â

(b)
12 (t)

)
b*{1,...,B}

was thus used for Ã̂2(t), with Â(b)
12 (t) referring to the bootstrap estimator obtained in the

bth bootstrap sample. The term q(0.975) further represented the empirical 0.975 quantile
of ((

Â
(b)
12 (t)− Â12(t)

)/√
Ã̂2(t)

)

b*{1,...,B}
.

When the CIs were constructed by the WBS instead, the expression Ã̂2(t) described the
empirical variance of the bootstrap processes

U (b)(t) =
n∑

i=1

∫ t

0

1{Y1(u) > 0}
Y1(u)

dN12i(u)G
(b)
i

for b ∈ {1, . . . , B}, while q(0.975) characterized the empirical 0.975 quantile of the set
(
U (b)(t)/

√
Ã̂2(t)

)
b*{1,...,B}. Note that the subscript of Y1(u) in the definition above in-

dicates that we address the risk set for the transition from illness to death (i.e. subjects
who have fallen ill before time u and are still alive just prior to u), and dN12i(u) is the
increment of the counting process that jumps if subject i ∈ {1, . . . , n} dies after illness.
The term G

(b)
i moreover labels the ith component of a (standard normally distributed)

vector of multipliers.
We generated B = 1, 000 bootstrap samples for both resampling approaches, respec-

tively, and evaluated the accuracy of the CIs at time points t ∈ {16, 18, 20}. For that
purpose, we took the coverage and the widths of the CIs into account.

Each scenario was simulated 1,000 times in order to keep the MCSE w.r.t. the coverage
probabilities of the CIs below 1.6%. The mean outcomes are summarized in Table 3.4.

It is evident that for large sample sizes, the CIs derived by the WBS were somewhat
narrower than their counterparts obtained by means of the EBS. At the same time, both
resampling methods achieved coverage probabilities close to the nominal level of 95%.
When the parameters n andm were below 200 and 100, respectively, the WBS yielded
wider CIs that clearly outperformed the EBS in terms of coverage, though. This effect
can once again be explained by the higher degree of dependence associated with smaller
sample sizes.
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3. Independent censoring in event-driven trials with staggered entry

Table 3.4: Coverage probabilities (in %) and mean widths of the bootstrapped CIs at selected
time points.

Staggered entry Simultaneous entry

EBS WBS EBS WBSn m Time

Coverage Width Coverage Width Coverage Width Coverage Width

600 300 16 93.9 1.430 93.9 1.372 95.0 1.256 94.4 1.205
18 93.9 1.492 93.3 1.432 95.0 1.294 94.7 1.244
20 93.5 1.559 93.6 1.492 95.2 1.326 94.5 1.273

400 200 16 93.9 1.732 94.1 1.663 93.7 1.521 94.3 1.490
18 93.6 1.811 94.2 1.729 92.8 1.567 94.3 1.535
20 94.6 1.897 94.7 1.804 94.4 1.612 94.6 1.570

200 100 16 91.1 2.230 93.3 2.354 91.8 2.030 93.1 2.056
18 90.9 2.339 94.8 2.463 92.1 2.107 93.8 2.122
20 90.5 2.444 94.0 2.582 93.4 2.162 93.1 2.171

100 50 16 83.0 2.217 95.3 3.298 88.2 2.294 94.7 2.901
18 84.3 2.298 95.6 3.455 87.9 2.370 94.2 2.971
20 82.0 2.349 95.9 3.640 88.1 2.422 94.2 3.030

80 40 16 77.6 2.031 94.8 3.631 83.2 2.241 93.8 3.181
18 77.1 2.079 95.4 3.811 83.9 2.302 94.1 3.258
20 76.2 2.076 96.1 4.000 85.1 2.354 93.7 3.319

50 25 16 66.1 1.508 89.9 3.952 73.0 1.832 93.3 3.812
18 61.2 1.492 91.8 4.216 72.3 1.871 94.6 3.922
20 61.3 1.470 94.5 4.493 73.9 1.901 95.0 4.005

Similar outcomes were observed when we simulated simultaneous study entry. The
difference between the two resamplingmethodswas less pronounced in this case, though.

It follows that martingale-based analysis methods, which rely on the assumption of inde-
pendent rather than random censoring, are indeed preferable in event-driven trials with
staggered entry.

3.3. Analysis of the OAK trial

In addition to the simulation studies, we further examined the implications of Theo-
rem 3.1 considering real study data. The randomized, open-label OAK trial was con-
ducted among 1,225 patients suffering from advanced-stage or metastatic, previously
treated non-small cell lung cancer with the aim to compare the efficacy and safety of
the immunotherapy agent atezolizumab to that of docetaxel, the standard of care at that
time. Participants were enrolled in 194 oncology centres over a period from March to
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3.3. Analysis of the OAK trial

November 2014 (Rittmeyer et al., 2017). We concentrated on the primary efficacy pop-
ulation that comprised the first 850 enrolled subjects, 425 of whom were assigned to
receive docetaxel and atezolizumab, respectively. The primary endpoint was overall
survival. According to the statistical analysis plan, the OAK trial was designed event-
driven, with the follow-up period scheduled to end when about 595 deaths had occurred
(CDER, 2016). Gandara et al. (2018) have made the data for the primary efficacy popu-
lation publicly available as part of their supplementary material.
We proceeded as described in the previous subsection to derive CIs for the cumulative

hazard function of death by means of the EBS and the WBS, respectively. Figure 3.4
depicts the pointwise Nelson-Aalen estimates together with the corresponding 95% CIs.
Our (naive) analysis showed a slight advantage of atezolizumab over docetaxel (namely,
an estimated cumulative hazard of 1.26 vs. 2.91 after 27 months). It is further obvi-
ous that the CIs obtained with the two resampling approaches hardly differ, which we
attribute to the large sample size of 850 patients.

Figure 3.4: 95% CIs for the cumulative hazard of death derived using the EBS and the WBS,
respectively.

In order to demonstrate the impact of applying inappropriate methods to smaller samples,
we repeated the analysis for subsets of the original data that were generated by randomly
drawing observations (without replacement) until a pre-specified numberm of observed
events was achieved. See Figure 3.5 for an illustration of the CIs in subsets withm = 75

andm = 40 observed events, respectively. As the figure shows, the differences between
the intervals are more distinct here, with the CIs resulting from the classical bootstrap
being wider, in particular at later time points.
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3. Independent censoring in event-driven trials with staggered entry

Such small-sample subsets are relevant in practice in the context of interim analy-
ses, where data are evaluated prior to the closure of the study. Similar to our artificial
example, only a fraction of the ultimate number of events has been observed by then.

Figure 3.5: 95% CIs for the cumulative hazard of death derived using the EBS and the WBS in
random subsets including 75 (first row) and 40 (second row) observed events, respectively.

Weconclude that it is important to carefully deliberate on appropriate analysis techniques
when evaluating event-driven trials with staggered entry, in particular with data that only
involve few observed events.
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4. Resampling-based inference for the
average treatment effect in
competing-risks data

In the subsequent chapter, we shift our focus to a competing risks setting as described
in Subsection 2.1.3. Our goal is to compare the treatment groups in terms of the time to
the event of interest, while controlling for confounding bias.
It has been mentioned that the HR3 probably the most common effect estimator for

TTE data 3 is subject to non-collapsibility, selection bias, and time invariability (see Sub-
section 2.2.2). These issues are particularly challenging when causal conclusions are to
be drawn. We therefore adhere to the definition of the ATE given in Equation (2.10):
The treatment effect is measured by the risk difference between the two exposure groups,
considering the event of interest. An estimate can for instance be obtained by means of
direct standardization (see Butt et al., 2021) or PS matching (see Chauhan et al., 2022).

In clinical trials, researchers typically not only wish to estimate the extent of the treat-
ment effect, but also assess the (un)certainty of the obtained effect estimate. This can
be accomplished by constructing pointwise CIs and time-simultaneous CBs. Due to
the complex distribution of stochastic processes associated with causal estimators of
the ATE, the derivation of exact confidence regions is quite involved, though. The usual
approach to tackle this problem is to approximate the asymptotic distribution of such pro-
cesses by means of resampling, and in practice, statisticians basically always resort to
the classical bootstrap (cf. Neumann and Billionnet, 2016� Lesko and Lau, 2017� Ryalen
et al., 2020). It has been indicated in Subsection 2.3.1 and, in particular, in Chapter 3
that the EBS is flawed, however, if the underlying data are not i.i.d.

The chapter at hand thus investigates the performance of alternative resampling ap-
proaches 3 namely a technique building on the IF (see Subsection 2.3.2) as well as the
martingale-based WBS (see Subsection 2.3.3) 3when applied to approximate the limit-
ing distributions of the stochastic processes that relate to the g-formula estimator and the
PS-matched estimator of Equation (2.10), respectively.
We first consider the ATE estimator that results from direct standardization. A mar-

tingale representation characterizing the asymptotic distribution of the corresponding
process is derived, which we use to prove the validity of the three resampling methods
in the given context. For a comparison of the techniques in practical applications, we
conduct a simulation study and analyse real study data on the long-term disease progres-
sion among patients with early-stage Hodgkin9s disease.
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4. Resampling-based inference for the ATE in competing-risks data

Afterwards, the same simulation set-up and study data are further adopted to examine
the performance of (suitable variants of) the resampling approaches given PS-matched
data.

The proofs in Subsection 4.1.1 have been released in the Scandinavian Journal of Statis-
tics before (Rühl and Friedrich, 2024a). In Subsections 4.1.2 and 4.1.3, we further report
results 3 including figures and tables 3 of the simulation study as well as the real data
analysis published with Statistics and Computing (Rühl and Friedrich, 2024b).

4.1. Inference using the g-formula

The basis for estimating the ATE in competing risks settings is an i.i.d. data sample of
the form

(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n}, considering the event indicatorDi ∈ {0, 1, . . . , K}

(withDi = 1 w.l.o.g. identifying the cause of interest) and the vector Zi =
(
ZAi,ZT

Li

)
T ,

which combines subject i9s treatment indicator ZAi ∈ {0, 1} with their bounded covari-
ate vector ZLi ∈ Rp, i ∈ {1, . . . , n} (see Subsection 2.1.3 and Section 2.2). Hereafter,
assume the absence of ties and the conditional independence Ti⊥⊥Ci | Zi. Another pre-
requisite is that the covariates in ZL are sufficient to fulfil the identifiability conditions
stated in Subsection 2.2.1.
By means of the g-formula, one obtains the following estimator of the ATE:

ÂTEds(t) =
1

n

n∑

i=1

(
F̂1(t | ZA= 1,ZL= ZLi)− F̂1(t | ZA= 0,ZL= ZLi)

)
.

We may derive F̂1(t | a, l) by fitting cause-specific Cox models with covariates ZA and
ZL for each event type, which yields the estimated values of

Âk

(
t | ZA= a,ZL= l

)
= Â0k(t) exp

(
β̂T
k

(
a, lT

)
T
)
,

with

Â0k(t) =

∫ t

0

dNk(u)∑n

i=1 Yi(u) exp
(
β̂T
k Zi

) ,

for k ∈ {1, . . . , K}, and plugging Âk(t | a, l) into the subsequent formula proposed by
Benichou and Gail (1990) (see Ozenne, Scheike, et al., 2020):

F̂1

(
t | ZA= a,ZL= l

)
=

∫ t

0

exp
(
−

K∑

k=1

Âk(u | a, l)
)
dÂ1(u | a, l).

Here, β̂k =
(
³̂kA, β̂

T
kL

)
T ∈ Rp+1 denotes the vector of the regression coefficients esti-

mated in the Cox model for cause k. Note that it is reasonable to take the (log-)HRs
into account despite their shortcomings in the context of causal inference, since the in-
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terpretation of the ATE does not directly depend on β̂k. Besides, it should be mentioned
that the described approach of fitting k cause-specific Cox models implicitly imposes
the proportional hazards assumption on each event type.

4.1.1. Asymptotic distribution of the process for the average treatment effect &
resampling-based approximations

We study the asymptotic distribution of the stochastic process
(
Un(t)

)
t*[ 0,Ç ]

determined
by

Un(t) =
√
n
(
ÂTEds(t)− ATE(t)

)

as n→∞. Before doing so, recall the definitions of the expressions S(r)(β, t), s(r)(β, t)
(for r ∈ {0, 1, 2}),E(β, t), e(β, t), andΣk in Subsection 2.1.2, which have been adapted
to the competing risks setting here by using the quantities obtained in the kth cause-
specific Cox model, respectively (k ∈ {1, . . . , K}). In addition, take account of

hk

(
t | ZA= a,ZL= l

)
=

∫ t

0

((
a, lT

)T− e(β0k, u)
)
dAk(u | a, l),

ϕ1

(
t | ZA= a,ZL= l

)
=

∫ t

0

S(u− | a, l) dh1(u | a, l),

ψ1k

(
t | ZA= a,ZL= l

)
=

∫ t

0

(
F1(t | a, l)− F1(u | a, l)

)
dhk(u | a, l).

These functions stem from the appendix of Cheng, Fine, andWei (1998), with the vector
β0k =

(
³0kA,β

T
0kL

)
T ∈ Rp+1 denoting the true regression coefficients in the proportional

hazards model for cause k, and S(t | a, l) = exp
(
−∑K

k=1 Ak(t | a, l)
)
.

For k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, we introduce

Hk1i(u, t) =
H̃k1(u, t)√

nS(0)(β0k, u)
and

Hk2i(u, t) =
1√
n

(
H̃k2(t)

)T
Σ

21
k

(
Zi − E(β0k, u)

)
,

with

H̃11(u, t) =
1

n

n∑

i=1

((
S
(
u− | ZA=1,ZLi

)
−F1

(
t | ZA=1,ZLi

)
+F1

(
u | ZA=1,ZLi

))

· exp
(
βT
01

(
1,ZT

Li

)
T
)

−
(
S
(
u− | ZA=0,ZLi

)
−F1

(
t | ZA=0,ZLi

)
+F1

(
u | ZA=0,ZLi

))

· exp
(
βT
01

(
0,ZT

Li

)
T
))
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as well as

H̃k1(u, t) =
1

n

n∑

i=1

((
F1

(
t | ZA=0,ZLi

)
−F1

(
u | ZA=0,ZLi

))
exp
(
βT
0k

(
0,ZT

Li

)
T
)

−
(
F1

(
t | ZA=1,ZLi

)
−F1

(
u | ZA=1,ZLi

))
exp
(
βT
0k

(
1,ZT

Li

)
T
))

(k ∈ {2, . . . , K}),

and

H̃12(t) =
1

n

n∑

i=1

((
ϕ1

(
t | ZA=1,ZLi

)
−ψ11

(
t | ZA=1,ZLi

))

−
(
ϕ1

(
t | ZA=0,ZLi

)
−ψ11

(
t | ZA=0,ZLi

)))

along with

H̃k2(t) =
1

n

n∑

i=1

(
ψ1k

(
t | ZA=0,ZLi

)
−ψ1k

(
t | ZA=1,ZLi

))
(k ∈ {2, . . . , K}).

All the definitions above allow us to proceed similarly as Cheng, Fine, and Wei (1998)
in order to represent the limiting distribution of the process

(
Un(t)

)
based on the martin-

gales Mki(t) = Nki(t)−
∫ t

0
Yi(u) dAk

(
u | ZAi,ZLi

)
(k ∈ {1, . . . , K}, i ∈ {1, . . . , n}).

Asymptotics refer to the setting where n→∞ in the following.

Lemma 4.1 (Martingale representation of Un(t)):
It holds that

Un(t) = Ũn(t) + oP (1)

for t ∈ [0, Ç ], with

Ũn(t) =
K∑

k=1

n∑

i=1

(∫ t

0

Hk1i(u, t) dMki(u) +

∫ Ç

0

Hk2i(u, t) dMki(u)

)
.

Proof:

We can describe the process
(
Un(t)

)
evaluated at time t by

Un(t) =
√
n

(
1

n

n∑

i=1

(
F̂1

(
t | ZA=1,ZLi

)
− F̂1

(
t | ZA=0,ZLi

))

− EZL

(
F1

(
t | ZA=1,ZL

)
− F1

(
t | ZA=0,ZL

)))
.
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The strong law of large numbers suggests that

Un(t) =

√
n

n

n∑

i=1

((∫ t

0

Ŝ
(
u− | ZA=1,ZLi

)
dÂ1

(
u | ZA=1,ZLi

)

−
∫ t

0

S
(
u− | ZA=1,ZLi

)
dA1

(
u | ZA=1,ZLi

))

−
(∫ t

0

Ŝ
(
u− | ZA=0,ZLi

)
dÂ1

(
u | ZA=0,ZLi

)

−
∫ t

0

S
(
u− | ZA=0,ZLi

)
dA1

(
u | ZA=0,ZLi

))
)

+ oP (1)

=

√
n

n

n∑

i=1

((∫ t

0

(
Ŝ
(
u− | ZA=1,ZLi

)
−S
(
u− | ZA=1,ZLi

))

· dÂ1

(
u | ZA=1,ZLi

)

+

∫ t

0

S
(
u− | ZA=1,ZLi

)
d
(
Â1

(
u | ZA=1,ZLi

)

−A1

(
u | ZA=1,ZLi

)))

−
(∫ t

0

(
Ŝ
(
u− | ZA=0,ZLi

)
−S
(
u− | ZA=0,ZLi

))

· dÂ1

(
u | ZA=0,ZLi

)

+

∫ t

0

S
(
u− | ZA=0,ZLi

)
d
(
Â1

(
u | ZA=0,ZLi

)

−A1

(
u | ZA=0,ZLi

)))
)

+ oP (1).

Now consider themartingale representation of the process
√
n
(
Âk(t | a, l)− Ak(t | a, l)

)

via

W̃k(t | a, l) =
1√
n

n∑

i=1

(∫ t

0

exp
(
βT
0k

(
a, lT

)T)

S(0)(β0k, u)
dMki(u)

+
(
hk(t | a, l)

)T
Σ

21
k

∫ Ç

0

(
Zi − E(β0k, u)

)
dMki(u)

)
,

as proposed by Lin, Fleming, and Wei (1994) (see Subsection 2.1.2). Together with the
(uniform) consistency of the estimators β̂1 and Â01 (see Subsection 2.1.2), a first-order
Taylor approximation of the function f : x 7→ exp(−x) around x =

∑K

k=1 Ak(t | a, l)

47



4. Resampling-based inference for the ATE in competing-risks data

yields

Ŝ(t− | a, l)− S(t− | a, l) = − 1√
n
S(t− | a, l)

K∑

k=1

W̃k(t | a, l) + oP (1),

and thus, noting that S(t− | a, l) dÂ1(t | a, l) = dF1(t | a, l) + oP (1), we have

Un(t) =
1

n

n∑

i=1

((∫ t

0

S
(
u− | ZA=1,ZLi

)
dW̃1

(
u | ZA=1,ZLi

)

−
K∑

k=1

∫ t

0

W̃k

(
u | ZA=1,ZLi

)
dF1

(
u | ZA=1,ZLi

))

−
(∫ t

0

S
(
u− | ZA=0,ZLi

)
dW̃1

(
u | ZA=0,ZLi

)

−
K∑

k=1

∫ t

0

W̃k

(
u | ZA=0,ZLi

)
dF1

(
u | ZA=0,ZLi

))
)

+ oP (1).

Furthermore, integration by parts implies
∫ t

0

W̃k(u | a, l) dF1(u | a, l) = W̃k(t | a, l)F1(t | a, l)−
∫ t

0

F1(u | a, l) dW̃k(u | a, l),

so that

Un(t) =
1

n

n∑

i=1

((∫ t

0

S
(
u− | ZA=1,ZLi

)
dW̃1

(
u | ZA=1,ZLi

)

−
K∑

k=1

∫ t

0

(
F1

(
t | ZA=1,ZLi

)
− F1

(
u | ZA=1,ZLi

))

· dW̃k

(
u | ZA=1,ZLi

))

−
(∫ t

0

S
(
u− | ZA=0,ZLi

)
dW̃1

(
u | ZA=0,ZLi

)

−
K∑

k=1

∫ t

0

(
F1

(
t | ZA=0,ZLi

)
− F1

(
u | ZA=0,ZLi

))

· dW̃k

(
u | ZA=0,ZLi

))
)

+ oP (1).

The desired representation is eventually obtained by inserting the definition of W̃k and
reordering the terms.
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4.1. Inference using the g-formula

Let the functions h̃k1 and h̃k2 be defined as the large-sample limits of H̃k1 and H̃k2,
respectively, e.g.

h̃12(u, t) = EZL

((
ϕ1

(
t | ZA=1,ZL

)
−ψ11

(
t | ZA=1,ZL

))

−
(
ϕ1

(
t | ZA=0,ZL

)
−ψ11

(
t | ZA=0,ZL

)))
.

Lemma 4.1 provides the basis to prove the subsequent core statement:
Theorem 4.1 (Asymptotic distribution of

(
Un(t)

)
):

The process
(
Un(t)

)
converges weakly to a zero-mean Gaussian process with covariance

function ¿(t1, t2) =
∑K

k=1 ¿
(k)(t1, t2),

¿(k)(t1, t2) =

∫ t1't2

0

h̃k1(u, t1) h̃k1(u, t2)
dA0k(u)

s(0)(β0k, u)
+
(
h̃k2(t1)

)T
Σ

21
k h̃k2(t2) ,

on the Skorokhod space D[0, Ç ].

Proof:
We treat the covariate vectors Zi, i ∈ {1, . . . , n}, as fixed from now on. According to
Lemma 4.1, it is sufficient to study the limiting distribution of the process

(
Ũn(t)

)
.

Note that the counting processes Nki and Nli associated with subject i cannot jump
at the same time for distinct causes k 6= l, which means that the martingalesMki(t) and
Mli(t) are orthogonal. In addition, w.r.t. the predictable covariation process given below,
we find that

〈 n∑

i=1

∫ ·

0

1√
nS(0)(β0k, u)

dMki(u),
n∑

i=1

∫ ·

0

1√
n

(
Zi − E(β0k, u)

)
dMki(u)

〉
(t)

=
1

n

n∑

i=1

∫ t

0

1

S(0)(β0k, u)

(
Zi − E(β0k, u)

)
Yi(u) exp

(
βT
0kZi

)
dA0k(u)

=

∫ t

0

1

S(0)(β0k, u)

(
S(1)(β0k, u)− E(β0k, u)S

(0)(β0k, u)
)
dA0k(u)

=

∫ t

0

(
E(β0k, u)− E(β0k, u)

)
dA0k(u) = 0,

(4.1)

so that the terms
∑n

i=1

∫ t

0
Hk1i(u, t) dMki(u) and

∑n

i=1

∫ t

0
Hk2i(u, t) dMki(u) referring

to cause k ∈ {1, . . . , K} are also orthogonal by the definitions of Hk1i and Hk2i.
Now recall the asymptotic normality of the score function atβ0k (see Subsection 2.1.2).

Together with the fact that the functionsϕ1 andψ1k are deterministic, it follows that the
second summand

∑K

k=1

∑n

i=1

∫ Ç

0
Hk2i(u, t) dMki(u) in Ũn 3 as a sum of asymptotically

normal distributed terms with mean zero 3 is likewise asymptotically normal with mean
zero.
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4. Resampling-based inference for the ATE in competing-risks data

What remains to be examined is the limiting distribution of the first summand. The
processes H̃k1(u, t), k ∈ {1, . . . , K}, are deterministic and continuous in u ≤ t, with

∣∣∣H̃k1(u, t)
∣∣∣ ≤

(
exp(³0kA) + 1

)
max

i*{1,...,n}
exp

(
βT
0kLZLi

)
,

∣∣∣
(
H̃k1(u, t)

)2∣∣∣ ≤
(
exp(2³0kA) + 2 exp(³0kA) + 1

)
max

i,j *{1,...,n}
exp

(
βT
0kL

(
ZLi+ZLj

))
.

Besides, provided that P
(
Yi(t) = 1

)
> 0 ∀i ∈ {1, . . . , n}, t ∈ [0, Ç ], the function

S(0)(β0k, t) converges uniformly to s(0)(β0k, t) in probability on [0, Ç ], with the limit
s(0)(β0k, t) being bounded away from zero (see Subsection 2.1.2). The conditions of
Theorem 2.1 are hence fulfilled w.r.t. the process

(
Hk1i(u, t)

)
u*[ 0,t] for k ∈ {1, . . . , K}

and t ∈ [0, Ç ]: It holds that

n∑

i=1

∫ t

0

(
Hk1i(u, t)

)2
Yi(u) exp

(
βT
0k Zi

)
dA0k(u)

P−→
∫ t

0

(
h̃k1(u, t)

)2

s(0)(β0k, u)
dA0k(u)

based on the definitions of Hk1i and S(0), and |Hk1i(u, t)| P−→ 0 ∀i ∈ {1, . . . , n} as
n→∞. One may deduce that the stochastic integral

∑n

i=1

∫
Hk1i(u, ·) dMki(u) con-

verges weakly to a Gaussian process with mean zero on D[0, Ç ], and by the previous
considerations, so does

(
Ũn

)
.

As a final step, we derive the covariance function ¿̃ of
(
Ũn

)
. Because of the equivalence

n∑

i=1

∫ ·

0

Hk1i(u, t1)Hk2i(u, t2)Yi(u) exp
(
βT
0kZi

)
= 0

for k ∈ {1, . . . , K}, t1, t2 ∈ [0, Ç ] (cf. Equation (4.1)), it is

¿̃(t1, t2) =
〈 K∑

k=1

n∑

i=1

(∫ ·

0

(
Hk1i(u, t1)1{u ≤ t1}+Hk2i(u, t1)

)
dMki(u)

)
,

K∑

k=1

n∑

i=1

(∫ ·

0

(
Hk1i(u, t2)1{u ≤ t2}+Hk2i(u, t2)

)
dMki(u)

)〉
(Ç)

=
K∑

k=1

(
n∑

i=1

∫ t1't2

0

H̃k1(u, t1) H̃k1(u, t2)

n
(
S(0)(β0k, u)

)2 Yi(u) exp
(
βT
0kZi

)
dA0k(u)

+
n∑

i=1

∫ Ç

0

1

n

(
H̃k2(t1)

)T
Σ

21
k

(
Zi − E(β0k, u)

)

·
(
H̃k2(t2)

)T
Σ

21
k

(
Zi − E(β0k, u)

)

· Yi(u) exp
(
βT
0kZi

)
dA0k(u)

)
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4.1. Inference using the g-formula

=
K∑

k=1

(∫ t1't2

0

H̃k1(u, t1) H̃k1(u, t2)

S(0)(β0k, u)
dA0k(u)

+
(
H̃k2(t1)

)T
Σ

21
k

(∫ Ç

0

1

n

n∑

i=1

(
Zi − E(β0k, u)

) (
Zi − E(β0k, u)

)T

· Yi(u) exp
(
βT
0kZi

)
dA0k(u)

)

·
(
Σ

21
k

)T
H̃k2(t2)

)
.

Noting that

1

n

n∑

i=1

(
Zi − E(β0k, u)

)(
Zi − E(β0k, u)

)T
Yi(u) exp

(
βT
0kZi

)

= S(2)(β0k, u)− S(1)(β0k, u)
(
E(β0k, u)

)T− E(β0k, u)
(
S(1)(β0k, u)

)T

+
(
E(β0k, u)

)·2
S(0)(β0k, u)

=

(
S(2)(β0k, u)

S(0)(β0k, u)
−
(
E(β0k, u)

)·2
)
S(0)(β0k, u) ,

we have

¿̃(t1, t2) =
K∑

k=1

(∫ t1't2

0

H̃k1(u, t1) H̃k1(u, t2)

S(0)(β0k, u)
dA0k(u)

+
(
H̃k2(t1)

)T
Σ

21
k

(∫ Ç

0

(S(2)(β0k, u)

S(0)(β0k, u)
−
(
E(β0k, u)

)·2
)

· S(0)(β0k, u) dA0k(u)

)(
Σ

21
k

)
T H̃k2(t2)

)
,

and by the strong law of large number as well as the continuous mapping theorem, the
uniform convergence of S(r)(β0k, t), r ∈ {0, 1, 2}, together with Equation (2.6), yields
that ¿̃(t1, t2) P−→ ¿(t1, t2).

Thus, the asymptotic distribution of the process
(
Un(t)

)
has been established. We pro-

ceed from Theorem 4.1 hereafter to show that this distribution can be approximated by
different resampling approaches.
In the following, let ĥk, ϕ̂1, ψ̂1k,

̂̃
Hk1, and

̂̃Hk2 refer to the plug-in estimators of hk,
ϕ1, ψ1k, H̃k1, and H̃k2, which are obtained by replacing β0k, A0k, Ak, s(r), S, F1 with
β̂k, Â0k, Âk, S(r), Ŝ, F̂1, respectively (k ∈ {1, . . . , K}, r ∈ {0, 1, 2}). Furthermore, we
introduce

Σ̂k =
1

n

∫ Ç

0

(
S(2)

(
β̂k, u

)

S(0)
(
β̂k, u

) −
(
E
(
β̂k, u

))·2
)
dNk(u).
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4. Resampling-based inference for the ATE in competing-risks data

Efron9s nonparametric bootstrap (EBS)

Our first focal point is the classical nonparametric bootstrap.
Theorem 4.2 (Approximation of the distribution of

(
Un(t)

)
by the EBS):

The process
ÛEBS
n (t) =

√
n
(
ÂTE

7
ds(t)− ÂTEds(t)

)
,

with ÂTE
7
ds(t) being the ATE estimated in the bootstrap sample, converges weakly to the

same limiting process as
(
Un(t)

)
for almost all data samples

(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n}

if inft*[ 0,Ç ] Y (t) P−→∞.

As the EBS is the most widely applied resampling approach for making inferences about
the ATE, it is important to prove its validity in the setting at hand.

Proof:
Akritas (1986) pointed out that the general martingale arguments are valid conditional
on Ë for almost all outcomes Ë in the sample space Ω. Let

(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n} be

the data sample corresponding to such an Ë ∈ Ω, and suppose that the bootstrap sample((
(T∧C)7i , D

7
i ,Z7

i

))
i*{1,...,n} is obtained according to the approach described in Sub-

section 2.3.1. Following the argumentation of Akritas (1986), the target functions in the
bootstrap sample correspond to the estimators in the original sample:

A7
0k(t) = Â0k(t), A7

k(t | a, l) = Âk(t | a, l),
and

s(r)7(β, u) = S(r)(β, u), e7(β, t) = E(β, t),

for k ∈ {1, . . . , K}, r ∈ {0, 1, 2} and t ∈ [0, Ç 7], with Ç 7 = maxi*{1,...,n} (T∧C)7i . The
validity of the latter two equivalences is easy to see if we characterize the resampled data
via multinomial weights assigned to the original observations. Consider e.g.

S(0)7(β, t) =
1

n

n∑

i=1

wi Yi(t) exp
(
βTZi

)
,

(w1, . . . , wn)
T ∼M

(
n,
(
1/n, . . . , 1/n

)
T
)
, which implies E

(
S(0)7(β, t)

)
= S(0)(β, t),

given a fixed data sample
(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n}. It follows that

Σ
7
k = Σ̂k

as well as

h7
k(t | a, l) = ĥk(t | a, l), ϕ7

1(t | a, l) = ϕ̂1(t | a, l), ψ7
1k(t | a, l) = ψ̂1k(t | a, l).
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4.1. Inference using the g-formula

According to the reasoning of Prentice and Kalbfleisch (2003), we derive the asymp-
totic equivalences β̂7

k = β̂k + oP (1) and Â7
0k(t) = Â0k(t) + oP (1) on [0, Ç 7] as n→∞.

Moreover, one can show that
√
n
(
Â7

k(t | a, l)− Âk(t | a, l)
)

=
1√
n

n∑

i=1

(∫ t

0

exp
(
β̂T
k

(
a, lT

)T)

S(0)7
(
β̂k, u

) M7
ki(du)

+
(
ĥk(t | a, l)

)T
Σ̂

21

k

∫ Ç7

0

(
Zi − E7(β̂k, u

))
M7

ki(du)
)

+ oP (1)

by transferring the ideas of Lin, Fleming, andWei (1994) to the situation at hand. A time-
discrete setting is considered here, and our focus is on the (discrete-time) martingales
M7

ki(t) = wi

(
Nki(t)−

∫ t

0
Yi(u) dÂk

(
u | ZAi,ZLi

))
, k ∈ {1, . . . , K}, i ∈ {1, . . . , n}.

Let the functions H7
k1i and H7

k2i be defined analogously to Hk1i and Hk2i, but on the
basis of the bootstrap sample

((
(T∧C)7i , D

7
i ,Z7

i

))
i*{1,...,n}. The findings above allow

us to proceed as in the proof of Lemma 4.1 in order to demonstrate that

ÛEBS
n (t) =

K∑

k=1

n∑

i=1

(∫ t

0

H7
k1i(u, t)M

7
ki(du) +

∫ Ç7

0

H7
k2i(u, t)M

7
ki(du)

)
+ oP (1)

on [0, Ç 7].

We will continue similarly as it has already been done in the proof of Theorem 4.1. First,
note the considerations of Gill (1980, Theorem 2.3.1) on discrete-time martingales. It
follows that

〈 n∑

i=1

∫ ·

0

1
√
nS(0)7

(
β̂k, u

) M7
ki(du),

n∑

i=1

∫ ·

0

1√
n

(
Zi − E7(β̂k, u

))
M7

ki(du)
〉
(t)

=
1

n

n∑

i=1

∫ t

0

1

S(0)7
(
β̂k, u

)
(
Zi − E7(β̂k, u

))
wi Yi(u)

(
1− Âk

(
∆u | ZAi,ZLi

))

· Âk

(
du | ZAi,ZLi

)

=

∫ t

0

(
E7(β̂k, u

)
− E7(β̂k, u

))
Â0k(du)

− 1

n

n∑

i=1

∫ t

0

1

S(0)7
(
β̂k, u

)
(
Zi − E7(β̂k, u

))
wi Yi(u) exp

(
2β̂T

k Zi

)

· Â0k(∆u) Â0k(du),
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4. Resampling-based inference for the ATE in competing-risks data

and this expression is equal to
∫ t

0

1

S(0)
(
β̂k, u

)
(
E
(
β̂k, u

)
S
(0)
2

(
β̂k, u

)
− S(1)

2

(
β̂k, u

))
Â0k(∆u) Â0k(du) + oP (1) (4.2)

for S(r)
2 (β, u) = 1

n

∑n

i=1 Yi(t) exp
(
2βTZi

)
Z·r

i , r ∈ {0, 1, 2}.
One may further exploit the arguments given in the proof of Theorem 4.1 as well as

in Theorem 2.4.1 by Gill (1980) to infer that the limiting distribution of the stochastic
integral

∑n

i=1

∫
H7

k1i(u, ·)M7
ki(du) is a zero-mean Gaussian process with covariance

function asymptotically equivalent to

K∑

k=1

∫ t1't2

0

( ̂̃
Hk1(u, t1)

̂̃
Hk1(u, t2)

S(0)
(
β̂k, u

) Â0k(du)

−
̂̃
Hk1(u, t1)

̂̃
Hk1(u, t2)(

S(0)
(
β̂k, u

))2 S
(0)
2

(
β̂k, u

)
Â0k(∆u) Â0k(du)

)
.

(4.3)

Eventually, Prentice and Kalbfleisch (2003) showed the normality of

1√
n

n∑

i=1

∫ Ç7

0

(
Zi − E7(β̂k, u

))
M7

ki(du)

as n→∞. The mean of this expression tends to the null vector and the covariance
matrix can be approximated by Σ̂k−Σ̂k,2, where Σ̂k,2 is defined by

∫ Ç7

0

(
S(2)
2

(
β̂k, u

)
− S(1)

2

(
β̂k, u

)(
E
(
β̂k, u

))T− E
(
β̂k, u

)(
S(1)
2

(
β̂k, u

))T

+ E
(
β̂k, u

)(
E
(
β̂k, u

))T
S
(0)
2

(
β̂k, u

)
)
Â0k(∆u) Â0k(du).

(4.4)

Now, bearing in mind that there are no ties in the original sample, we deduce the inequal-
ity

S(r)
2

(
β̂k, t

)
Â0k(∆t) Â0k(dt)

=
1

n

n∑

i=1

Yi(t) exp
(
2β̂T

k Zi

)
Z·r

i

∆Nk(t) dNk(t)(∑n

i=1 Yi(t) exp
(
β̂T
k Zi

))2

≤
maxi*{1,...,n}:Yi(t)=1

{
exp

(
2β̂T

k Zi

)
Z·r

i

}

(
Y (t)

)2mini*{1,...,n}:Yi(t)=1

{
exp

(
2β̂T

k Zi

)}
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4.1. Inference using the g-formula

for k ∈ {1, . . . , K}, r ∈ {0, 1, 2}, t ∈ [0, Ç 7]. It follows that S(r)
2

(
β̂k, t

)
Â0k(∆t) Â0k(dt)

vanishes as n→∞, for r ∈ {0, 1, 2}, due to the boundedness of the covariates, and thus,
the expression in Equation (4.2), the subtrahend in Equation (4.3), as well as the matrix
in Equation (4.4) do likewise.
We finally conclude that ÛEBS

n (t) converges weakly to a zero-mean Gaussian process
with covariance function ¿ on D[0, Ç 7], using the arguments from the proof of Theo-
rem 4.1.

Influence function approach (IF)

Scheike and Zhang (2008) proposed another resampling approach that relies on the the-
ory revolving around IFs.
Theorem 4.3 (Approximation of the distribution of

(
Un(t)

)
by the IF):

For i.i.d. multipliers Gi ∼ N (0, 1), i ∈ {1, . . . , n}, the process

Û IF
n (t) =

1√
n

n∑

i=1

ÎFATE (t; Ti∧Ci, Di,Zi)Gi

converges weakly to the same limiting process as
(
Un(t)

)
on D[0, Ç ], conditional on the

data
(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n}.

The definition of ÎFATE is delineated in the subsequent proof.

Proof:
LetFO denote the CDF of the random vectorO =

(
T∧C,D,ZT

)
T that gathers the avail-

able data. One finds that
√
n
(
ÂTEds − ATE

)
D−→ "ATEFO

(
W (FO)

)
on D[0, Ç ] by

Theorem 2.2 and Donsker9s theorem. (We label the Brownian motion by
(
W (t)

)
.)

On the other hand, due to the linearity of the Hadamard derivative, the process Û IF
n (·)

can be expressed as

1√
n

n∑

i=1

IFATE (·;Oi)
∣∣
FO=F̂O

Gi

=
1√
n

n∑

i=1

"ATEFO

(
F̂Oi
− FO

)∣∣∣
FO=F̂O

Gi

= "ATEFO

(
1√
n

n∑

i=1

(
F̂Oi
− FO

)
Gi

)∣∣∣∣
FO=F̂O

,

where F̂Oi
= 1[Ti'Ci,>]×{Di,Di+1,...,K}×{ZAi,1}×[ZLi1

,>]×···×[ZLip ,>] and F̂O = 1
n

∑n

i=1 F̂Oi
.

It is easy to see that for fixed data, 1:
n

∑n

i=1

(
F̂Oi
−FO

)
Gi converges to a Gaussian pro-

cess with mean zero and a covariance function characterized by
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Cov
(

1√
n

n∑

i=1

(
F̂Oi

(t1, d1, a1, l1)− FO (t1, d1, a1, l1)
)
Gi,

1√
n

n∑

i=1

(
F̂Oi
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(
1
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(
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·
(
F̂Oi
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)
− FO (t1, d1, a1, l1)FO (t2, d2, a2, l2)

on D[0, Ç ]. This process coincides exactly withW (FO).
According to the definition of the Hadamard derivative, and by the uniform consis-

tency of F̂O, we conclude that
(
Un(t)

)
and

(
Û IF
n (t)

)
have the same limiting distribution.

In order to determine the IF of the ATE, we proceed as suggested by Kennedy (2022),
i.e. we treat the data as if they were discrete and compute Gateaux derivatives, exploiting
standard differentiation rules.
The first step is to rewrite the (discretized) ATE as

∑

l

(
F1

(
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)
− F1

(
· | ZA=0,ZL= l
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and to apply the product rule, yielding
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where o = (t, d, a, lT )T . Note that IFP (ZL=̃l)(l) is obtained by computing the Gateaux
derivative

"

"÷

(
(1− ÷)P (ZL = l̃) + ÷1{̃l = l}

)∣∣∣
÷=0

= 1{̃l = l} − P (ZL = l̃) .
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Next, consider the function F1(· | a, l) =
∫
0
exp

(
−∑K

k=1 Ak(u | a, l)
)
³1(u | a, l) ds.

The product and chain rules suggest that

IFF1
(·, a2, l 2; o) =

∫ ·

0

− exp
(
−

K∑
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Ak(u | a2, l 2)
)( K∑
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)
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+

∫ ·

0
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Similarly, for Ak(· | a, l) = exp
(
βT
0k(a, lT )

T
)
A0k(·), k ∈ {1, . . . , K}, one finds
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2, l 2T )T
)
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(·; o).

Let now P (t, d, a, l) be short for P (T∧C= t,D=d, ZA=a,ZL= l). The fourth (dis-
cretized) function to be studied,
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∫

0

∑
t,d,a,l 1{t≤u, d=k}P (t, d, a, l)∑
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du,

has the IF
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on account of the quotient and product rules. Using that

IFP (t̃,d̃,ã,̃l)(o) = 1{t̃= t, d̃=d, ã=a, l̃= l} − P
(
t̃, d̃, ã, l̃

)
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4. Resampling-based inference for the ATE in competing-risks data

(see the Gateaux derivative above) and
∑

t,d,a,l 1{t≤u, d=k}P (t, d, a, l)∑
t,d,a,l 1{t ≥ u} exp

(
βT
0k(a, lT )T

)
P (t, d, a, l)

= ³0k(u),

we eventually obtain
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+ A0k(·)

=
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∫ ·
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The IF

IFβ0k
(o) = Σ

21
k

(
1{d = k}

(
(a, lT )T − e(β0k, t)

)

− exp
(
βT
0k(a, lT )T

) ∫
1{t̃≤ t, d̃=k}

(
(a, lT )T − e(β0k, t̃)

)

s(0)(β0k, t̃)
dFO

(
t̃, d̃, ã, l̃

)
)

can lastly be derived based on the score function and the information matrix of the Cox
partial likelihood (Gerds and Schumacher, 2001).
Empirical counterparts ÎFATE , ÎFF1

, ÎFAk
, ÎFA0k

, ÎFβ0k
of the IFs derived above arise

simply by the plug-in principle. See also Ozenne, Sørensen, et al. (2017) for comparison.

Wild bootstrap (WBS)

Let us now turn to the third resampling approach, namely the WBS with its variants.
One may notice the parallels between the subsequent theorem and Theorem 1 pro-

posed by Dobler, Beyersmann, and Pauly (2017).
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4.1. Inference using the g-formula

Theorem 4.4 (Approximation of the distribution of
(
Un(t)

)
by the WBS):

Consider the random multipliers Gi, i ∈ {1, . . . , n}, that fulfil the following conditions:

(i)
√
n maxi*{1,...,n} E

(
Gi | FÇ

)
P−→ 0,

(ii) maxi*{1,...,n}Var
(
Gi | FÇ

)
P−→ 1,

(iii) 1:
n
maxi*{1,...,n} E

(
G4

i | FÇ

)
P−→ 0,

(iv) P
(
G1≤g1, . . . , Gn≤gn | FÇ

)
=
∏n

i=1 P
(
Gi ≤ gi | FÇ

)
,

(v)
∑n

i=1 E

(
(Gi2E(Gi|Fτ))

2

3n
j=1(Var(Gj |Fτ))

· 1
{

(Gi2E(Gi|Fτ))
2

3n
j=1(Var(Gj |Fτ))

> ÷
} ∣∣∣FÇ

)
P−→ 0 ∀÷ > 0.

It holds that the plug-in estimator

ÛWBS
n (t) =

K∑

k=1

n∑

i=1

(
Ĥk1i(Ti∧Ci, t)Nki(t)Gi + Ĥk2i(Ti∧Ci, t)Nki(Ç)Gi

)

converges weakly to the same process as
(
Un(t)

)
on D[0, Ç ] conditional on the data(

(Ti∧Ci, Di,Zi)
)
i*{1,...,n} in probability.

Remark 4.1 (see also Example 1 by Dobler, Beyersmann, and Pauly, 2017):
The following choices of multipliers fulfil the conditions in Theorem 4.4:

" independent standard normal multipliers Gi
i.i.d.∼ N (0, 1), i ∈ {1, . . . , n}

(cf. Lin, Wei, and Ying, 1993),
" independent, centred unit Poisson multipliers Gi

i.i.d.∼ Poi(1)− 1, i ∈ {1, . . . , n}
(cf. Beyersmann, Di Termini, and Pauly, 2013),

" conditionally independent, centred binomial multipliers that correspond to the
weird bootstrap described by Andersen, Borgan, et al. (1993, Subsection IV.1.4),
i.e. Gi ∼ Bin

(
Y (Ti∧Ci) , 1/Y (Ti∧Ci)

)
− 1, with Gi1⊥⊥Gi2 | FÇ for i1 6= i2.

In order to demonstrate the convergence claimed in Theorem 4.4, we rely on several lem-
mata, which are proven in Section A.2 of Appendix A based on ideas of Beyersmann,
Di Termini, and Pauly (2013), Dobler and Pauly (2014), as well as Dobler, Beyersmann,
and Pauly (2017).
Let i ∈ {1, . . . , n}, k ∈ {1, . . . , K}, and 0 ≤ t1 ≤ · · · ≤ tl ≤ Ç for l ∈ N. The trian-

gular arrays X(k)
n,i =

(
X

(k)
n,i (t1), . . . , X

(k)
n,i (tl)

)
T serve as a starting point for our consider-

ations, with

X
(k)
n,i (t) =

∫ t

0

̂̃
Hk1(u, t)

dNki(u)√
nS(0)

(
β̂k, u

)

+

∫ Ç

0

1√
n

( ̂̃Hk2(t)
)T

Σ̂
21

k

(
Zi − E

(
β̂k, u

))
dNki(u).
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4. Resampling-based inference for the ATE in competing-risks data

It should be noted that ÛWBS
n (t) can be expressed as

∑K

k=1

∑n

i=1 X
(k)
n,i (t)Gi according

to the definition above.

Lemma 4.2:
For each k ∈ {1, . . . , K}, the triangular arrays X(k)

n,i satisfy the following conditions:

(i) maxi*{1,...,n}
∥∥∥X(k)

n,i

∥∥∥ P−→ 0 (where ‖·‖ denotes the Euclidean norm),

(ii)
∑n

i=1 X(k)
n,i

(
X(k)

n,i

)
T P−→

(
¿(k)(tr, ts)

)
r,s*{1,...,l}

.

Lemma 4.3:
For 0 ≤ tr ≤ ts ≤ Ç and k ∈ {1, . . . , K}, it holds that

max
i*{1,...,n}

∣∣∣X(k)
n,i (ts)−X

(k)
n,i (tr)

∣∣∣ ∈ OP

(
n21/2

)
,

where OP (an) indicates asymptotic boundedness in probability by the sequence an.

The bound in Lemma 4.3 is in fact independent of the considered time points!

Lemma 4.4:
Consider 0 ≤ tq ≤ tr ≤ ts ≤ Ç , k ∈ {1, . . . , K}, and the functionL(k)

n (t) defined in Sec-
tion A.2 of Appendix A. Provided that the conditions in Theorem 4.4 are fulfilled, the
expectation

E

(( n∑

i=1

X
(k)
n,i (tr)Gi −

n∑

i=1

X
(k)
n,i

(
tq
)
Gi

)2( n∑

i=1

X
(k)
n,i (ts)Gi −

n∑

i=1

X
(k)
n,i (tr)Gi

)2 ∣∣∣FÇ

)

has the upper bound
(
L
(k)
n (ts)− L

(k)
n

(
tq
))3/2 ·OP (1).

Proof of Theorem 4.4:

Lemma 4.2 and the conditions w.r.t. the multipliersGi in Theorem 4.4 ensure that the as-
sumptions stated in Lemma 1 of Dobler, Beyersmann, and Pauly (2017, Supplementary
Material) are fulfilled for each k ∈ {1, . . . , K}. Hence, the finite-dimensional distri-
butions of ÛWBS; (k)

n (t) =
∑n

i=1

(
Ĥk1i(Ti∧Ci, t)Nki(t)Gi + Ĥk2i(Ti∧Ci, t)Nki(Ç)Gi

)

converge weakly to Gaussian processes with mean zero and covariance functions ¿(k)

conditional on the history FÇ in probability.
One may further apply Theorem 2.1 to demonstrate that

1

n

n∑

i=1

∫ Ç

0

(
Zi − E

(
β̂k, u

))·2

dNki(u)
P−→ Σk,
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which suggests 3 again by Theorem 2.1 3 that the functionsL(k)
n introduced in Lemma 4.4

converge uniformly to the non-decreasing and continuous mappings

l(k)(t) =
(
exp(2³0kA) + 2 exp(³0kA) + 1

)
EZL

(
exp

(
2βT

0kLZL

)) ∫ t

0

dA0k(u)

s(0)(β0k, u)

+ EZL

(((
F1

(
t | ZA=1,ZL

))2 exp(2³0kA) +
(
F1

(
t | ZA=0,ZL

))2)

· exp
(
2βT

0kLZL

))∫ Ç

0

dA0k(u)

s(0)(β0k, u)

+

∫ t

0

EZL

(((
1,ZT

L

)T − e (β0k, u)
)T

Σ
21
k

((
1,ZT

L

)T − e
(
β0k, u

))

· exp
(
2β0k

(
1,ZT

L

)T)) dA0k(u)

s(0)(β0k, u)

+

∫ t

0

EZL

(((
0,ZT

L

)T − e (β0k, u)
)T

Σ
21
k

((
0,ZT

L

)T − e
(
β0k, u

))

· exp
(
2β0k

(
0,ZT

L

)T)) dA0k(u)

s(0)(β0k, u)

+ EZL

(((
F1

(
t | ZA=1,ZL

))2

·
∫ Ç

0

((
1,ZT

L

)T − e (β0k, u)
)T

Σ
21
k

((
1,ZT

L

)T − e
(
β0k, u

))

· exp
(
2β0k

(
1,ZT

L

)T)) dA0k(u)

s(0)(β0k, u)

+ EZL

(((
F1

(
t | ZA=0,ZL

))2

·
∫ Ç

0

((
0,ZT

L

)T − e (β0k, u)
)T

Σ
21
k

((
0,ZT

L

)T − e
(
β0k, u

))

· exp
(
2β0k

(
0,ZT

L

)T)) dA0k(u)

s(0)(β0k, u)

on [0, Ç ] (cf. the proof of Lemma 4.2). As a result, we can show the conditional tightness
of the processes

(
Û

WBS; (k)
n (t)

)
(cf. Dobler and Pauly, 2014, proof of Theorem 3.1): The

subsequence principle for convergence in probability implies that for every subsequence
of N, there is another subsequence n such that for almost every fixed Ë in the sample
space, one finds values n0 ∈ N, ³ > 0, and a sequence of non-decreasing, continuous
functions l(k)n (converging uniformly to l(k)) so that

E

(( n∑

i=1

X
(k)
n,i (tr)Gi −

n∑

i=1

X
(k)
n,i

(
tq
)
Gi

)2( n∑

i=1

X
(k)
n,i (ts)Gi −

n∑

i=1

X
(k)
n,i (tr)Gi

)2 ∣∣∣FÇ

)

≤ ³
(
l(k)n (ts)− l(k)n

(
tq
))3/2
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4. Resampling-based inference for the ATE in competing-risks data

if n ≥ n0 (cf. Beyersmann, Di Termini, and Pauly, 2013). Note that the choices of n0 and
³ are independent of the time points tq, tr, ts. As indicated by Dobler and Pauly (2014),
the conditional tightness follows by extending Theorem 13.5 in Billingsley (1999) point-
wise along subsequences. This establishes the conditional convergence in distribution
of
(
Û

WBS; (k)
n (t)

)
in probability for each k ∈ {1, . . . , K}.

Eventually, considering that the processes
(
Û

WBS; (k)
n (t)

)
and

(
Û

WBS; (k2)
n (t)

)
are inde-

pendent conditional on FÇ for k 6= k2 (because dNki(t)dNk2i(t) = 0), we conclude that
(
ÛWBS
n (t)

)
converges weakly to a zero-mean Gaussian process with covariance function

¿ on [0, Ç ] given the data in probability.

4.1.2. Simulation study comparing the resampling approaches

The performance of the discussed resampling approaches was compared by means of
intensive empirical investigations along the lines of the simulation study presented by
Ozenne, Scheike, et al. (2020).

We generated competing risks data involving K = 2 event types as follows: Based
on p = 12 independent covariates ZL1

, . . . , ZL12
, with ZL1

, . . . , ZL6

i.i.d.∼ N (0, Ã2) and
ZL7

, . . . , ZL12

i.i.d.∼ Bin(1, 0.5), the treatment variable ZA, the event and censoring times
T and C, as well as the event indicator D were modelled as

ZA ∼ Bin (1, pA) ,

T ∼ Wb
(
2,
√

2t
³1(t)+³2(t)

)
,

C ∼ Wb
(
2,
√

2t
³C(t)

)
,

D = 1{T ≤ C}DT ,

with

pA =

(
1 + exp

(
−
(
³0 + log(2)

(
ZL1
−ZL2

+ZL6
+ZL7

−ZL8
−ZL12

))))21

,

³1(t) = 0.02 exp
(
³01A + log(2)

(
ZL1

+ZL3
+ZL6

+ZL7
+ZL9

+ZL12

))
t,

³2(t) = 0.02 exp
(
log(2)

(
−ZL1

+ZL5
+ZL6

−ZL7
+ZL11

+ZL12

))
t,

³C(t) =
2

·
exp
(
log(2)

(
−ZL1

+ZL4
−ZL6

−ZL7
+ZL10

−ZL12

))
t,

DT − 1 ∼ Bin
(
1, ³2(T ) /

(
³1(T ) + ³2(T )

))
.

Accordingly, the data conform to a multistate model with cause-specificWeibull hazards
³1 and ³2 (cf. Beyersmann, Latouche, et al., 2009). The DAG in Figure 4.1 depicts the
relations between the individual variables� see also Table 4.1 for an overview of the
covariate effects.
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4.1. Inference using the g-formula

Figure 4.1: Causal relations between the covariates, treatment and the event times.

ZA

ZL3
, ZL9

ZL2
, ZL8

ZL1
, ZL7

ZL4
, ZL10

ZL5
, ZL11

ZL6
, ZL12

Competing
event

Event of
interest

Censoring

Table 4.1: Effects of the covariates on the treatment probability, the event and the censoring
times.

Odds Ratio w.r.t.
treatmentCovariate
probabilitya

Hazard ratio w.r.t.
event of interestb

Hazard ratio w.r.t.
competing eventc

Hazard ratio w.r.t.
censoringd

exp(β01A
),

ZA 3
β01A ∈ {−2, 0, 2}

exp(β02A
) = 1.0 exp(β0CA

) = 1.0

ZL1
exp(γL1

) exp(β01L1

) exp(β02L1

) exp(β0CL1

)

ZL7
exp(γL7

) = 2.0 exp(β01L7

) = 2.0 exp(β02L7

) = 0.5 exp(β0CL7

) = 0.5

ZL2
exp(γL2

) exp(β01L2

) exp(β02L2

) exp(β0CL2

)

ZL8
exp(γL8

) = 0.5 exp(β01L8

) = 1.0 exp(β02L8

) = 1.0 exp(β0CL8

) = 1.0

ZL3
exp(γL3

) exp(β01L3

) exp(β02L3

) exp(β0CL3

)

ZL9
exp(γL9

) = 1.0 exp(β01L9

) = 2.0 exp(β02L9

) = 1.0 exp(β0CL9

) = 1.0

ZL4
exp(γL4

) exp(β01L4

) exp(β02L4

) exp(β0CL4

)

ZL10
exp(γL10

)= 1.0 exp(β01L10

)= 1.0 exp(β02L10

)= 1.0 exp(β0CL10

)= 2.0

ZL5
exp(γL5

) exp(β01L5

) exp(β02L5

) exp(β0CL5

)

ZL11
exp(γL11

)= 1.0 exp(β01L11

)= 1.0 exp(β02L11

)= 2.0 exp(β0CL11

)= 1.0

ZL6
exp(γL6

) exp(β01L6

) exp(β02L6

) exp(β0CL6

)

ZL12
exp(γL12

)= 2.0 exp(β01L12

)= 2.0 exp(β02L12

)= 2.0 exp(β0CL12

)= 0.5

a P (ZA = 1) =
(
1 + exp

(
γ0 + γ

T
L

ZL

))
−1, with γL =

(
γL1

, . . . , γL12

)
T .

b α1(t) = 0.02 exp
(
β01AZA + βT

01L
ZL

))
t, with β01L =

(
β01L1

, . . . , β01L12

)
T .

c α2(t) = 0.02 exp
(
β02AZA + βT

02L
ZL

))
t, with β02L =

(
β02L1

, . . . , β02L12

)
T .

d αC(t) =
2

δ
exp

(
β0CAZA + βT

0CL
ZL

))
t, with β0CL =

(
β01L1

, . . . , β0CL12

)
T .
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Other than that, we used the parameters Ã2, ³0, and · to control the dispersion of the
normally distributed covariates, the overall treatment probability, and the intensity of
censoring. In order to investigate the performance of the resampling approaches when
censoring is non-random, we further simulated a two-state survival setting with event-
driven censoring and staggered study entry (see Chapter 3). Each of the considered sce-
narios was implemented with sample sizes n ∈ {50, 75, 100, 200, 300} as well as treat-
ment effects according to the coefficient ³01A ∈ {−2, 0, 2}. Table 4.2 summarizes the
characteristics of the data in the distinct settings.

Table 4.2: Simulation scenarios considered.
% censoreda % type 1 eventsa

β01A = β01A =Scenario

-2 0 2 -2 0 2

% treated Var
(
ZL1

)

No censoring 0.0 0.0 0.0 35.7 56.1 70.3 56.4 1.00
Light censoring 16.7 14.0 11.0 32.2 51.5 66.2 56.4 1.00
Heavy censoring 35.3 29.7 23.0 27.0 44.5 60.1 56.4 1.00
Low treatment probability 14.9 14.0 13.1 43.7 51.5 56.6 22.3 1.00
High treatment probability 18.2 14.0 8.3 23.5 51.5 75.6 85.8 1.00
Low variance of the covariates 13.7 10.7 7.3 32.4 55.2 72.0 57.4 0.25
High variance of the covariates 22.0 20.2 17.9 32.6 45.6 56.4 54.6 4.00
Type II censoring 49.7 39.2 25.0 50.0 49.5 48.4 56.4 1.00

aDetermined at t = 9 except for the scenario with type II censoring, where the percentages are determined
at t = 10, 5, 2.5 for β01A = −2, 0, 2, respectively.

After the data had been generated, we derived 95% CIs and CBs for the ATE by means
of the resampling approaches explored in Subsection 4.1.1. Our interest w.r.t. the point-
wise CIs and the time-simultaneous CBs was in the time points t ∈ {1, 3, 5, 7, 9} and
the interval [0, 9], respectively. (In case of the type II censored scenario, we exam-
ined t ∈ {2, 4, 6, 8, 10}, {1, 2, 3, 4, 5}, {0.5, 1, 1.5, 2, 2.5} and the intervals [2, 10], [1, 5],
[0.5, 2.5] for the respective values −2, 0, 2 of ³01A.) Each resampling technique was
realized using B = 1, 000 replications.

The CI limits regarding the EBS were simply specified as the empirical 0.025 and
0.975 quantiles of the bootstrap estimates

(
ÂTEds; b

7
(t)
)
b*{1,...,B}. The CB w.r.t. the

EBS, on the other hand, emerged as

[
ÂTEds(t)− qEBS(0.95)

√
V̂arEBS

(t), ÂTEds(t) + qEBS(0.95)

√
V̂arEBS

(t)
]
,

where qEBS(0.95) denotes the 0.95 quantile of

 sup

t*[0,9]

∣∣∣∣∣∣
ÂTEds; b

7
(t)− 1

B

∑B

b̃=1 ÂTEds; b̃

7
(t)√

V̂arEBS(t)

∣∣∣∣∣∣




b*{1,...B}
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and V̂arEBS
(t) refers to the sample variance of

(
ÂTEds; b

7
(t)
)
b*{1,...,B} (cf. Theorem 4.2).

Note that we used the 0.95 quantile and the absolute value for qEBS in order to enhance
stability.
Concerning the IF approach, the initial step was to determine the empirical estimator

V̂arIF(t) = 1
n2

∑n

i=1

(
ÎFATE (t; Ti∧Ci, Di,Zi)

)2 and the 0.95 quantile qIF (0.95) of

 sup

t*[0,9]

∣∣∣∣∣∣
1

n

n∑

i=1

ÎFATE (t; Ti∧Ci, Di,Zi)√
V̂arIF(t)

GIF
ib

∣∣∣∣∣∣




b*{1,...B}

,

with i.i.d. standard normally distributedmultipliersGIF
ib
, i ∈ {1, . . . , n}, b ∈ {1, . . . , B}.

Theorem 4.3 consequently yields the CI

[
ÂTEds(t)− qN (0,1)(0.975)

√
V̂arIF(t), ÂTEds(t) + qN (0,1)(0.975)

√
V̂arIF(t)

]

and the CB
[
ÂTEds(t)− qIF (0.95)

√
V̂arIF(t), ÂTEds(t) + qIF (0.95)

√
V̂arIF(t)

]
.

We lastly obtained
[
ÂTEds(t)− qWBS(t; 0.95), ÂTEds(t) + qWBS(t; 0.95)

]

and, similarly,

[
ÂTEds(t)− qWBS(0.95)

√
V̂arWBS(t), ÂTEds(t) + qWBS(0.95)

√
V̂arWBS(t)

]

as CI and CB for the WBS according to Theorem 4.4. Here, qWBS(t; 0.95) denotes the
0.95 quantile of

( ∣∣∣ÛWBS; (b)
n (t)/

√
n
∣∣∣
)
b*{1,...,B}, whereas qWBS(0.95) is the 0.95 quantile

of 
 sup

t*[0,9]

∣∣∣∣∣∣
Û

WBS; (b)
n (t)√
n V̂arWBS(t)

∣∣∣∣∣∣




b*{1,...B}

,

with plug-in estimators

ÛWBS; (b)
n (t) =

K∑

k=1

n∑

i=1

(
Ĥk1i(Ti∧Ci, t)Nki(t)G

WBS
ib

+ Ĥk2i(Ti∧Ci, t)Nki(Ç)G
WBS
ib

)
,

b ∈ {1, . . . , B}, and sample variance V̂arWBS(t) of
(
Û

WBS; (b)
n (t)

)
b*{1,...,B}. We exam-

ined different choices of multipliers GWBS
ib

pursuant to Remark 4.1: While standard
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4. Resampling-based inference for the ATE in competing-risks data

normally distributed random variables conform to the original wild bootstrap, centred
Poisson variables and binomial multipliers as specified in the remark are supposed to
improve small-sample performance (Beyersmann, Di Termini, and Pauly, 2013� Dobler,
Beyersmann, and Pauly, 2017). The subversions of theWBS according to these multipli-
ers will hereafter be referred to as the Lin, Beyersmann, and weird bootstrap approaches,
respectively.

The capability of the individual resampling techniques to imitate the distribution of the
process

(
Un(t)

)
was finally compared considering the coverage probabilities of the cor-

responding confidence regions. Each simulation scenario was implemented 5,000 times
so that the MCSE w.r.t. the coverage was restricted below 0.75%.

Since we investigated rather small samples, some Monte Carlo iterations entailed
too few observed events for the cause-specific Cox models to converge, and as a conse-
quence, we could not determine any CIs and CBs. The respective coverage probabilities
were therefore based on less than 5,000 iterations. For similar reasons, parts of the confi-
dence regions relating to the EBS were obtained using less than 1,000 bootstrap samples.
Table B.8 in Appendix B quantifies the frequency of these issues. It becomes apparent
that the simulation outcomes for the settings with sample size n = 50 and parameter
value ³01A = 2 should be treated carefully.

Figure 4.2: Approximated ATE (except for the scenarios with
σ2 6=1 and those with type II censoring).

-0.2

0.0
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0.4

1 3 5 7 9
t

A
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E
(t
)

³01A = −2 ³01A = 0 ³01A = 2

In order to assess the va-
lidity of the confidence
regions, we had to de-
termine the true ATE,
but its analytical calcu-
lation is difficult when
multiple covariates are
involved. We hence ap-
proximated its value nu-
merically. For this pur-
pose, 1,000 data sets
were generated as de-
scribed earlier, with sample size n = 100, 000. The treatment groups were however
allocated at random (by setting the parameter pA to 0.5) and censoring was suppressed.
We then estimated the difference F1

(
t | ZA=1

)
− F1

(
t | ZA=0

)
in each of the 1,000

data sets and determined the median. Figure 4.2 shows the resulting approximation of
the ATE over the time interval [0, 9].
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4.1. Inference using the g-formula

Looking at the generated CIs, the coverage probabilities obtained by the distinct resam-
pling approaches generally complied with the scheme depicted in Figure 4.3: The EBS
and the IF approach produced the most conservative and the most liberal CIs, respec-
tively, whereas the WBS yielded coverages in between that were, on average, the most
correct. Taking into account all scenarios, sample sizes, and time points, the mean ab-
solute deviation from the target level of 95% was 2.42% for the WBS as compared to
2.49% and 2.61% for the IF approach and the EBS (see Section B.2 in Appendix B for
the coverage probabilities in the scenarios not displayed here). This ranking applied to
most settings with ³01A ∈ {0, 2}, although the performance of the various methods was
not consistent w.r.t. early time points t (see Figures B.32, B.37, B.39, B.44, and B.45).

Figure 4.3: Coverage of the g-formula CIs in the scenario with light censoring and β01A=2.
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It should be mentioned that the accuracy of the WBS CIs peaked in particular at later
analysis times (see Figures 4.3, B.32, B.39, B.42, B.45, B.51). The reason for this up-
turn is that the WBS relies on the product of the counting processes Nki(t) with the
multipliersGWBS

ib
, k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, b ∈ {1, . . . , B}. At late times, more

instances of Nki jump, and thus, a larger number of multipliers is factored in, which
leads to a better approximation of the target distribution.

What is more, the different multipliers considered w.r.t. the WBS did not result in
any noteworthy differences except that the CIs obtained by the Lin and Beyersmann
approaches were more conservative. The associated coverages consequently exceeded
those attributed to the weird bootstrap approach, but we did not find a general rule that
characterizes the validity of the distinct WBS variants.

An exception to the ranking of the resampling methods according to Figure 4.3 oc-
curred for instance in the scenario with high variance of the normally distributed co-
variates. Here, all resampling techniques entailed rather conservative CIs so that the IF
approach 3 as the most liberal method 3 outperformed the other resampling techniques
by a small margin (see Figures B.47 and B.48). Similar findings were made in several
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4. Resampling-based inference for the ATE in competing-risks data

settings with ³01A = −2 (excluding the time point t = 1, where coverages generally fell
short� see Figure 4.4 as well as Figures B.33, B.35, B.41, and B.43). The common trait
of all these cases is that the competing event dominated over the cause of interest (see
Table 4.2), and in consequence of the small proportion of observed type I events, the CIs
apparently became too wide.

Figure 4.4: Coverage of the g-formula CIs in the scenario with no censoring and β01A=−2.
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There were, conversely, several settings involving no treatment effect (³01A = 0)
where the IF approach yielded coverage probabilities that did not come particularly close
to 95% even if the sample size approached 300 (see Figures 4.5, B.31, B.36, B.39).
Ozenne, Scheike, et al. (2020) made similar observations, and they counteracted this
distortion by means of a non-robust variance estimator.

Figure 4.5: Coverage of the g-formula CIs in the scenario with high treatment probability and
β01A=0.
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Lastly, it is worth noting that the WBS did not outperform the other resampling meth-
ods in the scenario with type II censoring and staggered study entry. Despite non-random
censoring, the dependence structure in our examples was apparently not strong enough
to reveal any issues with the methods relying on random censoring (cf. Chapter 3).
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4.1. Inference using the g-formula

Figure 4.6:Coverage of the g-formula CBs in the scenario with heavy censoring and β01A=−2.

n

We observed comparable patterns to those described above considering the time-simulta-
neous CBs. The coverage probabilities w.r.t. EBS, WBS, and IF mostly followed a de-
scending order (see Figures B.53, B.56, B.58, B.61, B.64, B.67), yet all resampling
techniques achieved only low coverages if ³01A = −2 and n was small (see Figures 4.6,
B.52, B.55, B.63, B.66). The latter finding is likely attributable to an inadequate ap-
proximation of the distribution of Un(t) for the time point t = 1, taking account of the
similarity between the listed figures and the first panel in e.g. Figure 4.4. It follows that
the conservative EBS bands accomplished the most accurate coverages overall, with a
mean absolute deviation of 4.75% from the nominal level, in comparison to 5.53% and
5.70% for the WBS and IF approaches, respectively. This result is also due to the fact
that the EBS performed particularly well in settings with ³01A = 2 (see e.g. Figure 4.7).

Figure 4.7: Coverage of the g-formula CBs in the scenario with low variance of the covariates
and β01A=2.

n
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4. Resampling-based inference for the ATE in competing-risks data

As already noted for the pointwise CIs, the CBs likewise showed no evidence that the
different multiplier options for the WBS might have any significant impact. In addition,
the CBs derived by the WBS did not stand out particularly in the scenario with type II
censoring and staggered entry.

We further examined the size of the CIs and CBs. Figure 4.8 depicts the distribution
of the CI widths at time t = 5 in the case without censoring and with parameter value
³01A = 2. It is evident that the IF approach led to the narrowest intervals, and this ob-
servation applied to nearly all examined scenarios. The range of the EBS CIs was either
between or above the widths of the IF and WBS intervals, with the exception of the
settings where ³01A = −2. Here, the CI widths varied considerably. With increasing
sample sizes, the disparities w.r.t. the distinct resampling approaches became negligible,
though.
A similar scheme was also observed in view of the time-simultaneous CBs.

Figure 4.8: Widths of the g-formula CIs at time t = 5 in the scenario with no censoring and
β01A=2. Note the spacing of the x-axis!

n

As a last aspect, we compared the running times of the methods, and in this context, it
should be mentioned that the computation of the bootstrap replicates for the EBS ap-
proach was parallelized, whereas C++ code was interfaced to perform the calculations
for the IF and WBS methods. (The EBS and IF approaches were implemented by adapt-
ing the function 8ate9 of the R package 8riskRegression9 created by Gerds, Ohlendorff,
and Ozenne, 2023.) We ran the simulation study on a high-performance computing clus-
ter operating on 2.4 GHz Intel® processors with 128 GB RAM, while using 16 cores for
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4.1. Inference using the g-formula

parallel computations. Figure 4.9 illustrates the execution times corresponding to each
resampling method in the scenario without censoring and with parameter value ³01A = 2.
(Note that the computation time for the WBS comprises all three subversions, since the
additional steps necessary to cover the distinct multipliers contribute only marginally to
the overall running time after the general components of the process have been deter-
mined.) The computation time for the EBS clearly surpassed that of the IF and WBS
approaches by many times, which might limit its relevance in practical applications that
involve larger sample sizes. The reason for the large imbalance between the execution
times is that the EBS relies on repeated calculation of the ATE, whereas the IF method
and theWBS approximate the distribution of the target process based on multipliers (see
Section 2.3).

Figure 4.9: Mean computation times for the g-formula confidence regions in the scenario with
no censoring and β01A=2. Note the spacing of the x-axis!

n

To sum up, our simulations showed that the EBS, the IF approach, as well as theWBS can
be used for valid inference regarding the ATE. The performance of the distinct methods
varied, however, depending on the circumstances: When a sufficient amount of events
had been observed for the type of interest, the WBS yielded the most accurate results.
Otherwise, our results suggested to resort to the IF approach.

4.1.3. Analysis of the Hodgkin9s disease study

In order to illustrate the application of the resampling methods to real-world data, we
analysed the ATE of radiation combined with chemotherapy vs. radiation therapy alone
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in terms of the long-term disease progression among patients suffering from early-stage
Hodgkin9s disease (cf. Pintilie, 2006). The study data included 865 subjects with stage I
or II lymphoma who had been admitted to the Princess Margaret Hospital in Toronto
between 1968 and 1986. As a primary endpoint, we considered the time (in years) from
diagnosis to first relapse or death, whichever occurred first. Table 4.3 summarizes the
covariates recorded for each subject. One may access the data of the Hodgkin9s dis-
ease study through the 8randomForestSRC9 R package created by Ishwaran and Kogalur
(2024).

Table 4.3: Summary of the covariates recorded for the Hodgkin9s disease study.
Therapy

Radiation &
chemotherapy

Covariate Radiation
(n = 616) (n = 249)

Age [mean (SD)] 35.93 (16.37) 33.77 (12.86)
Sex
female 285 (46.27%) 117 (46.99%)
male 331 (53.73%) 132 (53.01%)

Lymphoma stage
I 266 (43.18%) 30 (12.05%)
II 350 (56.82%) 219 (87.95%)

Mediastinum involvement
none 382 (62.01%) 82 (32.93%)
small 211 (34.25%) 77 (30.92%)
large 23 (3.73%) 90 (36.14%)

Extranodal disease
no 587 (95.29%) 199 (79.92%)
yes 29 (4.71%) 50 (20.08%)

We assumed for the analysis that the variables in Table 4.3 sufficed to fulfil the identifi-
ability conditions presented in Subsection 2.2.1. Besides, it was necessary to manipulate
repeated event times by adding N (0, 1026)-distributed random values so that any ties
stemming from rounding were broken. Tests on the scaled Schoenfeld residuals were
then conducted for cause-specific Coxmodels addressing relapse and death, respectively,
to check whether these models fitted the data appropriately (cf. Subsection 2.1.2). The
outcomes implied no violations of the proportional hazards assumption except for the
variable 8age9 in the relapse model, and the estimated coefficient in a corresponding
model with time-dependent covariate was nearly constant (see Figures B.74 and B.75 in
Section B.2 in Appendix B). We thus proceeded by analysing the ATE based on simple
Cox models with time-constant covariates.
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Figure 4.10:G-formula confidence regions for the average treatment effect on the risk of relapse.

Figure 4.10 depicts the estimated effect of the combination therapy in comparison to
treatment with radiation alone, the focus being on the event of first relapse. According
to our analysis, the risk of recidivism would be reduced by 17.89% after 30 years had ev-
ery patient been exposed to both radiation and chemotherapy instead of everyone being
treated with radiation only. The risk of death, on the other hand, would rise by 9.49%
(see Figure 4.11).

Figure 4.11: G-formula confidence regions for the average treatment effect on the risk of death.

It can further be seen that the ATE shown in Figure 4.10 decreases rather suddenly within
the first 5 years after diagnosis, while the risk difference concerning death rises gradu-
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ally throughout the entire study period. Our conclusion is that the combination therapy
effectively prevents relapse among the studied patient collective. This means, however,
that more subjects remain who will die later without experiencing any relapse event.

Figures 4.10 and 4.11 also illustrate the CIs and CBs for the ATE that have been ob-
tained using the EBS, the IF approach and the WBS, respectively. Since there were 291
observed relapses and 135 deaths, the variation between the confidence regions in Fig-
ure 4.10 is somewhat smaller than in Figure 4.11. Overall, the differences are minor,
though, with the only peculiarity relating to the CB for the event of death that has been
determined by the EBS: Its width exceeds that of the remaining CBs, and this finding
conforms to the results of the simulation study presented in Subsection 4.1.2, which iden-
tified the EBS CBs as the most conservative bands. Other than that, we did not find the
order of the confidence widths in Figures 4.10 and 4.11 to be consistent, however.

4.2. Inference using propensity score matching

So far we have concentrated on the estimation of the ATE by means of the g-formula.
An alternative approach is to identify

(
ÂTEm(t)

)
based on a PS-matched sample of the

original population, as outlined in Subsection 2.2.1. Due to the nature of the matched
data, one needs to take certain matters into account when employing resamplingmethods
for inference about the ATE.
Consider an i.i.d. sample of n observations that includes the (general) outcomeOi and

the vector Zi, which combines the treatment indicator ZAi and the covariate vector ZLi,
for i ∈ {1, . . . , n}. Wewill focus on one-to-one PSmatching with replacement here. For
each individual i, a counterpart ji is determined, e.g. by nearest-neighbour matching on
the PS:

ji = argmin
j*{1,...,n}:ZAj ;=ZAi

∣∣∣P̂S (ZLi)− P̂S
(
ZLj

)∣∣∣ .

The variable ni =
∑n

k=1 1{jk = i} specifies how many times observation i serves as a
match. Then, the matching estimator of ATE = E

(
OZA=1

)
− E

(
OZA=0

)
is given by

ÂTEm =
1

n

n∑

i=1

(1 + ni)
(
1{ZAi=1} − 1{ZAi= 0}

)
Oi.

Abadie and Imbens (2006) investigated the asymptotic properties of a broader class of
matching estimators that incorporates the one above as a special case. They discovered
that ÂTEm is biased, or more specifically, that the difference ÂTEm − ATE −Bn is
asymptotically normally distributed with mean zero for n→∞. The bias term Bn is
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given by

1

n

n∑

i=1

(
1{ZAi=1} ·

(
E

(
O | ZA= 0, P̂ S (ZLi)

)
+ ni E

(
O | ZA=1, P̂ S (ZLi)

))

−1{ZAi= 0} ·
(
E

(
O | ZA=1, P̂ S (ZLi)

)
+ ni E

(
O | ZA= 0, P̂ S (ZLi)

)))
.

(4.5)
It follows that the corrected estimator ÂTEm

c
= ÂTEm − B̂n should be preferred over

ÂTEm, where B̂n results from replacing E
(
O | ZA= a,ZL= l

)
in Equation (4.5) by a

consistent estimator Ê
(
O | ZA= a,ZL= l

)
(Abadie and Imbens, 2011).

Let us now focus on TTE data
(
(Ti∧Ci, Di,Zi)

)
i*{1,...,n} of the same set-up as already

considered in Section 4.1. Our interest is on the outcome O = 1{T ≤ t,D = 1}. One
finds that

ÂTEm(t) =
1

n

n∑

i=1

(1 + ni)
(
1{ZAi=1, Ti ≤ t,Di=1}
−1{ZAi= 0, Ti ≤ t,Di=1}

)

= 2P̂m(ZA=1, T ≤ t,D=1)− 2P̂m(ZA=0, T ≤ t,D=1)

= P̂m

(
T ≤ t,D = 1 | ZA=1

)
− P̂m

(
T ≤ t,D = 1 | ZA=0

)
,

with P̂m denoting the empirical probability in the matched population, and due to censor-
ing, we determine ÂTEm(t) as the difference between the estimated CIFs given ZA=1

and ZA=0, respectively, after matching. The bias estimator B̂n further results as

1

n

n∑

i=1

(
1{ZAi=1} ·

(
F̂1

(
t | ZA= 0, P̂ S (ZLi)

)
+ ni F̂1

(
t | ZA=1, P̂ S (ZLi)

))

−1{ZAi= 0} ·
(
F̂1

(
t | ZA=1, P̂ S (ZLi)

)
+ ni F̂1

(
t | ZA= 0, P̂ S (ZLi)

)))
.

It has been pointed out by Abadie and Imbens (2008) that the EBS does not provide
valid variance estimates in the given setting because it fails to replicate the distribution
of ni, the number of times observation i is used as a match. This is because the matching
step is performed anew in each bootstrap sample, and consequently, the matches vary
between the samples. As a remedy, Otsu and Rai (2017) proposed to resample from
the linear form of ÂTEm

c in the context of a weighted bootstrap procedure, so that ni

is regarded as part of the data. Their solution refers to the case of matching on the full
vector ZL, however, and cannot simply be adopted when matching on the PS, as it does
not account for the variability of the estimator P̂S (ZL). Adaptations of the suggested
bootstrap procedure to PS matching have e.g. been investigated by Bodory et al. (2016)
and Adusumilli (2022).
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When TTE outcomes are considered, matters are complicated even more, since the
usual survival estimators cannot be represented as linear forms. Wang et al. (2024) thus
approximated the variance of the estimated causal HR by means of martingale residuals,
while using a double-resampling (DR) approach similar to that suggested by Adusumilli
(2022) in order to take the uncertainty of the PS estimators into account. We will here-
after adjust their technique to make inferences that pertain to the ATE.
The proof of Lemma 4.1 implies that

√
n
(
ÂTEm(t)− ATE(t)

)

=
n∑

i=1

(1 + ni)
(
1{ZAi=1} − 1{ZAi= 0}

)
MRi(t) + oP (1),

with martingale residuals

MRi(t) =
1√
n

K∑

k=1

∫ t

0

(
1{k=1}·S

(
u− | ZAi

)
− F1

(
t | ZAi

)
+ F1

(
u | ZAi

))

· exp(³0kZAi)

S(0)(³0k, u)
d
(
Nki(u)− Yi(u) exp(³0kZAi)A0k(u)

)

+
1√
n

K∑

k=1

∫ t

0

(
1{k=1}·S

(
v− | ZAi

)
− F1

(
t | ZAi

)
+ F1

(
v | ZAi

))

·
(
ZAi − e(³0k, v)

)
exp(³0kZAi) dA0k(v)

·
∫ Ç

0

ZAi − e(³0k, u)

Σk

d
(
Nki(u)− Yi(u) exp(³0kZAi)A0k(u)

)
,

if for each k ∈ {1, . . . , K}, the structural hazards models ³a
k(t) = ³0k(t) exp(³0ka) are

valid with corresponding functions A0k(t), S(0)(³0k, t), e(³0k, t), S
(
t | a

)
, F1

(
t | a

)
, as

well as the Fisher information Σk.
The first step of the DR approach is to determine the secondary (nearest-neighbour)

matches

jSMi (a) =





i if ZAi = a,

argmin
j*{1,...,n}:ZAj=a

‖ZLi − ZLj‖2 if ZAi 6= a,

and the set Si of indices j ∈ {1, . . . , n} with ZAj 6= ZAi, for which P̂S
(
ZLj

)
falls into

the same quintile partition of P̂S (ZL) as P̂S (ZLi) (i ∈ {1, . . . , n}). After randomly
selecting an element jSi

of Si, the parameter ni may be imputed by

n
imp
i (a) =




ni if ZAi = a,

njSi
if ZAi 6= a.
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4.2. Inference using PS matching

Adusumilli (2022) argues that the secondary matches jSMi should be based on the full
covariate vector ZL rather than on P̂S (ZL) to maintain the correlation between ZL and
the bootstrap residual, conditional on P̂S (ZL). Other than that, one may note that nimp

i

is not imputed by matching. The reason why we consider the partition of the PS quintiles
instead is to avert correlation between nimp

i and the original parameter ni.
As a next step, the bootstrap quantities

Z
(b)
Ai ∼ Bin

(
1, P̂ S (ZLi)

)
,

P̂ S
(b)

i = P̂
(
Z

(b)
Ai = 1 | ZL=ZLi

)
,

GDR
ib
∼ N (0, 1)

are simulated for each b ∈ {1, . . . , B}, and the estimate

µ̂
(b)
a,i(t) = Ê

(
MR(t) | ZA= a, P̂S (ZL) = P̂S

(b)

i

)

is obtained by linear regression. Eventually, the DR technique approximates the distri-
bution of the process Un through the replicates

(
ÛDR; (b)
n (t)

)
b*{1,...,B}

=

( n∑

i=1

(
r
(b)
i (t)−R(b)(t)

)
GDR

ib

)
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,

where

r
(b)
i (t) = µ̂

(b)
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(b)
0,i(t)

+
(
1

{
Z

(b)
Ai =1

}
− 1{Z(b)
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)(
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(
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(b)
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·
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(
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(b)
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for i ∈ {1, . . . , n} and

R(b)(t) =
1

n

n∑

i=1

(
µ̂
(b)
1,i(t)− µ̂

(b)
0,i(t)

+ P̂S
(b)

i

(
1 + n

imp
i (1)
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))
,

for plug-in estimators M̂Ri(t) of MRi(t). Note that the bootstrap residuals specified
by Wang et al. (2024) have been adjusted because we consider a linear contrast when
examining the ATE instead of the HR.
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4. Resampling-based inference for the ATE in competing-risks data

An alternative way to derive an estimator for the variance of ÂTEm has been described
by Austin and Cafri (2020). They reason that such an estimator needs to factor in sev-
eral sources of correlation: Firstly, subjects and their matches have similar covariate
values (given that their PSs are close to each other), and therefore, they are likely to
have similar outcomes. Secondly, individuals may be used as a match more than once,
so that there is correlation between the distinct instances of the same unit within the
matched data. The fact that identical subjects can belong to separate matched pairs fi-
nally necessitates accounting for the corresponding cross-classification, which is accom-
plished by treating all subjects in the matched sample as independent, since the same
individual will not be part of a matched pair more than once. Austin and Cafri (2020)
3who focused on the HR as target outcome 3 hence proposed the total variance estimator

V̂ar
c
=

nmp

nmp − 1
V̂armp +

ndi

ndi − 1
V̂ardi +

ncc

ncc − 1
V̂arcc, (4.6)

with nmp, ndi, and ncc denoting the number of matched pairs (i.e. nmp = n), the number
of distinct individuals in the matched data (ndi = n), as well as the size of the matched
sample (ncc = 2n). The terms V̂armp, V̂ardi, and V̂arcc furthermore refer to the vari-
ance estimators that are obtained by accounting for the clustering of the matched pairs,
the distinct individuals, as well as the separate observations in the matched sample, re-
spectively (cf. Lin and Wei, 1989). Note that the factors preceding the variance terms
in Equation (4.6) are supposed to improve the performance of the estimator if the cor-
responding number of clusters is small. By its definition, V̂arc can be adapted to the
case where inference targets the ATE considered here in a rather straightforward way,
although correlations between distinct time points cannot be reflected.

4.2.1. Simulation study comparing the resampling approaches

We investigated the accuracy of the presented methods for PS matching-based inference
about the ATE within the scope of a simulation study that followed the set-up described
in Subsection 4.1.2. The data were generated the same way as before, but the ATE was
estimated by ÂTEm

c instead of ÂTEds. For this purpose, we approximated PS (ZL) by
means of a logistic regression according to the model

PS (ZL) =

(
1 + exp

(
−
(
³0 + ³1ZL1 + · · ·+ ³12ZL12

)))21

,

and performed nearest-neighbour matching with replacement on the resulting esti-
mates P̂S (ZL). Cause-specific Cox models were then fitted on both the original and
the matched data, respectively, in order to derive the CIFs that define ÂTEm and B̂n
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4.2. Inference using PS matching

(see Section 4.2). We used the Peto-Breslow method to handle ties in the matched data
(cf. Peto, 1972� Breslow, 1974).

With the aim of illustrating its limitations in the given setting, the EBS was applied
to identify confidence regions for the ATE: After drawing (with replacement) from the
original data and PS-matching the obtained bootstrap sample, the bias-corrected estima-
tor ÂTEm; b

c∗
(t) was calculated. We repeated this procedure for b ∈ {1, . . . , B} (with

B = 1, 000) and computed CIs as well as CBs in the same way as it had been done
when conducting the EBS with regard to the g-formula estimator of the ATE (see Sub-
section 4.1.2).
The DR approach described earlier was additionally implemented with the CI

[
ÂTE

c

m(t)− qDR(t; 0.95), ÂTE
c

m(t) + qDR(t; 0.95)
]

as well as the CB
[
ÂTE

c

m(t)− qDR(0.95)

√
V̂arDR(t), ÂTE

c

m(t) + qDR(0.95)

√
V̂arDR(t)

]
.

Here, qDR(t; 0.95) and qDR(0.95) denote the 0.95 quantiles of the sets( ∣∣∣Ûn
DR; (b)(t)/

√
n
∣∣∣
)
b*{1,...,B} and


 sup

t*[0,9]

∣∣∣∣∣∣
Û

DR; (b)
n (t)√
n V̂arDR(t)

∣∣∣∣∣∣




b*{1,...B}

,

respectively. The expression V̂arDR
(t) furthermore refers to the empirical variance of(

Ûn
DR; (b)(t)

)
b*{1,...,B}.

Lastly, we employed the clustered variance estimator proposed by Austin and Cafri
(2020) for the derivation of the confidence regions. To do so, both the IF and WBS ap-
proaches from Section 4.1 were applied to thematched data, but considering treatment as
the only covariate and accounting for the respective clusters that lead to the variance es-
timators V̂armp

IF (t), V̂ardiIF(t), V̂arccIF(t) as well as V̂armp
WBS(t), V̂ardiWBS(t), V̂arccWBS(t). (The

estimators for both approacheswere determined using standard normally distributedmul-
tipliers.) We then calculated V̂arcIF(t) and V̂arcWBS(t) in line with Formula (4.6). The
corresponding CIs were obtained as

[
ÂTE

c

m(t)− qN (0,1)(0.975)

√
V̂arcIF(t), ÂTE

c

m(t) + qN (0,1)(0.975)

√
V̂arcIF(t)

]

as well as
[
ÂTE

c

m(t)− qN (0,1)(0.975)

√
V̂arcWBS(t), ÂTE

c

m(t) + qN (0,1)(0.975)

√
V̂arcWBS(t)

]
,
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4. Resampling-based inference for the ATE in competing-risks data

respectively. For the CBs, we considered the formalizations

[
ÂTE

c

m(t)− qcIF (0.95)

√
V̂arcIF(t), ÂTE

c

m(t) + qcIF (0.95)

√
V̂arcIF(t)

]

and
[
ÂTE

c

m(t)− qcWBS(0.95)

√
V̂arcWBS(t), ÂTE

c
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√
V̂arcWBS(t)

]
,

with the 0.95 quantile qcIF (0.95) of

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b*{1,...B}

(for ÎFATE; c (t; Om
i ) denoting the empirical IF of the ATE in thematched sample w.r.t ob-

servation i, allowing for clustering according to c ∈ {mp, di, cc}), as well as the 0.95 quan-
tile qcWBS(0.95) of


 sup

t*[0,9]


 nmp

nmp − 1

∣∣∣∣∣∣
Û

WBS; (b)
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(with the WBS plug-in estimator ÛWBS; (b)
n; c (t) determined in the matched sample while

accounting for clustering by c ∈ {mp, di, cc}). For comparison, we also considered the
confidence regions obtained by the standard (unclustered) IF and WBS approaches (see
Subsection 4.1.2).

Each of the simulation scenarios listed in Table 4.2 was implemented with 5,000 Monte
Carlo iterations. Table B.9 in Appendix B specifies the corresponding numbers of iter-
ations that involved errors. Note that in addition to the issues already encountered with
the simulation study described in Subsection 4.1.2, there were also some cases where
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4.2. Inference using PS matching

the Cox model that relates to the bias term suffered from convergence problems because
of extreme PS estimates. For that reason, one should not attach too much importance to
the results covering the settings with sample size n = 50, in particular for the scenarios
with high treatment probability and with high variance of the covariates.

The CIs obtained by the methods that factor in the specific variance structure of the
matched data generally led to coverage probabilities that were closer to the nominal
level of 95%: Overall, the mean absolute deviation amounted to 6.27%, 6.31%, and
6.71% for the clustered IF approach, the clustered WBS method, and the DR technique,
respectively, in comparison to 9.23%, 10.70%, and 15.20% for the WBS, the IF, and
the EBS approaches. We did not observe a consistent order w.r.t. the coverages of the
distinct methods like it was present for the simulations in Subsection 4.1.2, though.

Figure 4.12: Coverage of the PS-matched CIs in the scenario with light censoring and
β01A=−2.
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Figure 4.12 depicts the coverage probabilities in the scenario with light censoring and
parameter ³01A = −2. It can be seen that for later time points, the clustered variance es-
timators led to accurate, yet slightly conservative CIs. The unclustered IF and WBS, on
the other hand, were too liberal for early time points, but performed better if t ∈ {7, 9}.
The CIs for the DR method were also found to be liberal, and the associated coverages
interestingly dropped between the time points t = 3 and t = 5, only to increase again
thereafter. Eventually, we noted that the EBS CIs were highly inaccurate for large sam-
ple sizes. This finding is plausible considering that there is greater variation w.r.t. the
subjects that serve as a match if n is high. Since the choice of the matches is not repro-
duced by the EBS, there are strong deviations in the distribution of the matched bootstrap
samples. Other scenarios with a treatment effect according to ³01A = −2 revealed simi-
lar outcomes as those shown in Figure 4.12 (see Figures B.76, B.81, B.88, and B.94).
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4. Resampling-based inference for the ATE in competing-risks data

The case with parameter ³01A = 0 yielded findings along the lines of Figure 4.13
(see also Figures B.77, B.79, B.89, B.95). We discovered that the coverages attained
by the clustered resampling methods were again somewhat too high, while the standard
IF and WBS approaches achieved correct results at later time points, given sufficiently
large sample sizes. The DR method did not perform consistently throughout the distinct
scenarios, however. The corresponding coverages actually worsened with larger values
of n if t ∈ {5, 7}. In contrast to Figure 4.12, the EBS further provided very conservative
CIs, which highlights that the bias of the associated variance estimator can point into
both directions (see also Abadie and Imbens, 2008).

Figure 4.13:Coverage of the PS-matched CIs in the scenario with heavy censoring and β01A=0.
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The differences between the resampling approaches were less pronounced for treat-
ment effects according to ³01A = 2 (see Figures B.78, B.80, B.82, B.90, B.96). In this
setting, the clustered IF and WBS yielded the most accurate coverages, whereas the DR
approach was slightly too conservative, and the unclustered IF andWBSmethods tended
to be too liberal. The failure of the EBS became once again apparent in the form of low
coverage probabilities for large sample sizes, especially w.r.t. early analysis time points.
The scenarios with extreme treatment probabilities as well as the one with highly dis-

persed covariates led to slightly different findings compared to those described so far.
At least one treatment group involved a smaller pool of suitable matches here than it had
been the case for the other scenarios, so that the resulting pairs were less compatible. As
a consequence, the resampling methods tailored to matching-based inference seemed to
perform particularly well (see Figures B.83, B.84). The DR technique excelled in the
scenario with high treatment probability (Figures 4.14, B.86, B.87). On the other hand,
the coverages of the IF and WBS CIs were mostly too low (Figures B.91, B.92, B.93).
The EBS further exhibited the same problems as already mentioned.
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4.2. Inference using PS matching

Figure 4.14: Coverage of the PS-matched CIs in the scenario with high treatment probability
and β01A=2.
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Turning our focus on the time-simultaneous CBs, there were hardly any surprises, except
for the fact that the coverage probabilities associated with the EBS were comparably
accurate: Their mean absolute deviation of 10.00% from the target level of 95% was
only outperformed by the clustered WBS and IF methods, achieving 8.14% and 8.17%
each, whereas the DR technique as well as the standard WBS and IF approaches yielded
average deviations of 11.80%, 22.80%, and 24.10%, respectively.

Figure 4.15: Coverage of the PS-matched CBs in the scenario with light censoring and
β01A=−2.

n

In the settings with ³01A = −2, all methods were rather liberal. The clustered resam-
pling approaches performed best, their coverages ranging above those obtained by the
DR method, which in turn exceeded the coverages for the standard IF and WBS. The
EBS furthermore provided accurate results for small sample sizes. However, the corre-
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4. Resampling-based inference for the ATE in competing-risks data

sponding CBs became too liberal with increasing values of n (see Figures 4.15, B.97,
B.102, B.111, and B.117).
Small sample sizes likewise entailed liberal CBs for the unclustered IF and WBS ap-

proaches in the settings without treatment effect, whereas the EBS yielded conservative
bands. All three resamplingmethods improvedwith growingn. TheDR techniquemore-
over performed well for each of the sample sizes considered. What was disappointing
is that the clustered versions of the IF and WBS attained too high coverages throughout
(see Figures B.98, B.100, B.103, B.112, B.118). It has already been mentioned that the
clustered variance estimator cannot reflect the dependence between the increments of
the process for the ATE so that this observation is not too striking.
Finally, none of the resampling methods stood out particularly given treatment effects

according to ³01A = 2. While the clustered IF and WBS as well as the DR technique
produced conservative CBs, the IF and WBS approaches were too liberal. The coverage
probabilities for the EBS CBs furthermore proceeded from being too high to assuming
fairly low values when n became larger (see Figures 4.16, B.99, B.101, B.104, B.113).

Figure 4.16: Coverage of the PS-matched CBs in the scenario with type II censoring and
β01A=2.

n

There were again some exceptions to the described findings in the scenarios with
extreme treatment probabilities and the one with high variance of the covariates. The
unclustered IF and WBS approaches were 3 as before 3 too liberal, but the performance
of the clustered methods, the DR technique, as well as the EBS varied. For high treat-
ment probabilities, the DR approach provided appropriate coverages (see Figures B.109,
B.110), and the EBS generally performed well (see e.g. Figures B.106, B.116). The cov-
erages of the CBs obtained by means of the clustered IF and WBS differed between the
settings, though (see e.g. Figures B.105 and B.114).
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4.2. Inference using PS matching

Figure 4.17 depicts the widths of the CIs derived in the scenario with no censoring and
³01A = 2. As can be seen, the DR technique resulted in the largest intervals. The CIs
corresponding to the clustered approaches were somewhat wider than those obtained
using their unclustered versions (with the IF CIs having smaller ranges than the WBS
CIs). This observation is not surprising considering that the clustered methods account
for the additional variance that arises from the matching procedure. The widths of the
EBS CIs, relative to the remaining intervals, varied depending on the sample size.
We observed similar patterns for the CI and CB widths in the other settings, although

the confidence regions for the DR technique were narrower if ³01A = 0, and especially
if ³01A = −2.
Figure 4.17: Widths of the PS-matched CIs at time t=5 in the scenario with no censoring and
β01A=2. Note the spacing of the x-axis!

n

Finally, the execution times for the different resampling methods are illustrated in Fig-
ure 4.18. With the exception of the EBS, which was conducted via parallel computations,
all approaches employed interfaced C++ code for increased speed. We used the same
processors as specified in Subsection 4.1.2 for our simulations. It is evident that the
EBS was by far the slowest method, which can be attributed to the repeated calculation
of ÂTEm

c in distinct samples. The DR technique was about two to three times as fast,
but still took significantly more time than the remaining methods due to its complexity.
Furthermore, the clustered methods were slightly slower than their unclustered coun-
terparts. This is because they involve performing the same computations three times,
namely once w.r.t. each cluster structure.
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Figure 4.18: Mean computation times for the PS-matched confidence regions in the scenario
with no censoring and β01A=2. Note the spacing of the x-axis!

n

All in all, we found that valid CIs for the PS-matched ATE are provided by the DR
technique as well as the clustered IF and WBS, although the latter, in particular, are
somewhat conservative and their unclustered versions do not perform crucially worse.
The EBS may in contrast entail considerable bias in large samples. To our surprise, the
EBS CBs were fairly accurate in the investigated scenarios, however.

4.2.2. Analysis of the Hodgkin9s disease study

Figure 4.19: Distribution of the PSs.
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In order to demon-
strate the use of the
discussed resampling
methods, we re-ana-
lysed the data already
examined in Subsec-
tion 4.1.3 by means
of PS matching. The
PSs were approached
by logistic regression
on the covariates listed
in Table 4.3. Fig-
ure 4.19 contrasts the
frequencies of the dis-

86



4.2. Inference using PS matching

tinct PS estimates in both treatment groups. Even though the supports of both distribu-
tions have gaps, they do mostly overlap so that we may assume positivity. Besides, the
PSs do not seem to be distributed equally in the groups, implying that there is in fact
confounding by the considered covariates.

Figure 4.20: PS-matched confidence regions for the average treatment effect on the risk of
relapse.

The estimated ATEs of the combined therapy vs. radiation alone are depicted in Fig-
ures 4.20 and 4.21, addressing the events of first relapse and death, respectively. The
30-year estimators of the risk difference reached values of -16.51% as well as 5.59%,
and were thus more conservative than the corresponding g-formula estimators (which
had been calculated as -17.89% and 9.49%, respectively).

Figure 4.21: PS-matched confidence regions for the average treatment effect on the risk of
death.
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We found the confidence regions obtained by the matching-based resampling methods
to be considerably wider than those computed on the basis of the g-formula (see Fig-
ures 4.10 and 4.11). The clustered IF and WBS approaches and the DR technique re-
sulted in the largest confidence regions, with the clustered methods yielding particularly
wide ranges for the time-simultaneous CBs. In contrast, the confidence regions obtained
by the standard IF and WBS were rather small. The EBS produced CIs and CBs that
were comparably narrow, which is in line with our observations in the simulation study
described in Subsection 4.2.1, given that the sample size of the Hodgkin9s data amounted
to 865.
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5. Conclusion

In this thesis, we investigated the use of resampling methods for statistical inference on
TTE data. Particular attention was paid to the dependence structure of the data in event-
driven trials with staggered subject entry as well as to endpoints defined by the causal
risk difference.
We summarize and discuss the findings from the previous chapters hereafter and point

out potential topics for further research.

5.1. Summary

Our first focal point was the special case of event-driven trials that involve successive
entry of the participants. Because the study duration 3 and thus, administrative censor-
ing 3 is determined by the event times, the data in such trials are dependent. We estab-
lished that the condition of independent censoring in the counting process sense is yet
fulfilled, provided that the calendar times of the events are concealed. Consequently, it
is valid to use standard survival methodology for the analysis of event-driven trials with
staggered entry.

We conducted a simulation study to showcase the consequences of conditioning on
calendar times when analysing studies of the given type. The additional information
on the sequence of the events that is provided through the calendar times led to biased
estimators of the associated Cox regression coefficients, and thus, to biased Breslow es-
timators of the cumulative baseline hazard. The extent of the bias was more pronounced,
themore specific the available information on the order of the events was, and the smaller
we chose the sample size as well as the number of events to be observed until study clo-
sure.

Another simulation study further contrasted the EBS and the WBS in the setting of
event-driven trials with staggered entry (cf. Efron, 1979� Lin, Wei, and Ying, 1993). It
should be noted that the EBS relies on the assumption of independent data, whereas
the WBS is valid under independent censoring. Event-driven trials with staggered en-
try, however, involve independent, but not random censoring. We used both resampling
methods to derive CIs for the cumulative hazard function, and did in fact find the cov-
erage probabilities obtained by the wild bootstrap to be more accurate. The differences
between both approaches were more marked in smaller samples and when fewer events
had been observed before the end of follow-up.
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5. Conclusion

Lastly, we examined the performance of the EBS and the WBS on the basis of real-
world data that covered the survival of patients with non-small cell lung cancer (Rittmeyer
et al., 2017). While the application of the resampling methods to the original data did not
result in any noteworthy findings, differences between the respective CIs for the EBS
and the WBS became apparent in random data subsets involving only few patients.

For the remaining considerations, we shifted our focus to causal effect estimates in gen-
eral clinical trials. The ATE was defined as the difference between the causal CIFs in
the treatment groups, so that both standard survival as well as competing risks settings
could be accommodated.

As a first step, we characterized the stochastic process related to the g-formula estimator
of the ATE via martingales, which allowed us to prove the validity of three different
resampling methods 3 namely the EBS (Efron, 1979), a technique on the basis of the IF
(where resampling is, strictly speaking, only necessary to draw conclusions that apply
to multiple time points simultaneously� see Scheike and Zhang, 2008), as well as the
WBS (Lin, Wei, and Ying, 1993� Beyersmann, Di Termini, and Pauly, 2013, Andersen,
Borgan, et al., 1993, Subsection IV.1.4) 3 for approximating the asymptotic distribution
of the ATE estimator.
The finite-sample performance of thementioned resamplingmethodswas subsequently

examined by simulations. Each approach was applied throughout a variety of scenarios
to derive pointwise CIs and time-simultaneous CBs for the ATE, and we found that the
confidence regions obtained by the WBS ranged mostly between the more conservative
EBS and the liberal IF regions. Overall, the WBS provided accurate coverages for the
pointwise CIs unless the amount of the observed events was very small. In that case, the
IF performed better, and w.r.t. the time-simultaneous CBs, the EBS achieved the most
appropriate coverages (which may be attributed to the poor performance of the other
approaches at early analysis time points). As the sample size increased, the confidence
regions associated with the distinct methods became more similar. It should finally be
mentioned that the computation times for the EBS were considerably higher than those
measured for the IF approach and the WBS.
To illustrate the application of the resamplingmethods, we derived confidence regions

for the ATE considering real data on the disease progression among patients suffering
from Hodgkin9s disease (Pintilie, 2006). The sample size was quite high, though, so that
the obtained CIs and CBs differed only marginally.

Our investigations eventually addressed resampling-based inference relying on
PS-matched estimators of the ATE. We adapted a DR technique (Wang et al., 2024)
and a cluster-based variance estimator (Austin and Cafri, 2020) 3which had both been
proposed for inference about the causal HR 3 to the definition of the ATE at hand.
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5.2. Discussion

The performance of these methods was evaluated w.r.t. the same simulation set-up as
already implemented when exploring the g-formula methods. In order to enable com-
parisons, we further applied the EBS as well as the standard IF and WBS approaches to
the PS-matched data. There was no consistent pattern characterizing the corresponding
coverage probabilities, but the DR technique and the clustered variance estimator gen-
erally provided decent, yet somewhat conservative confidence regions. The standard IF
and WBS tended to be too liberal, on the other hand. We expected considerable devia-
tions concerning the EBS (cf. Abadie and Imbens, 2008), but to our surprise, the bias
observed in the coverages of the CIs dissolved for the greater part w.r.t. the CBs.
The Hodgkin9s disease data was finally re-analysed on the basis of PS matching, and

the resulting confidence regions turned out to be notably wider than those derived earlier.
We also discovered large differences between the outcomes that were associated with the
different resampling methods. To be more precise, the DR technique and the clustered
variance estimator led to wider confidence regions than the remaining approaches.

5.2. Discussion

Event-driven trials with staggered entry are frequently employed in clinical practice. It
is all the more important to raise awareness of the dependence that is inherent to the data
collected in such trials, since the validity of the standard survival techniques hinges on
the condition of independent censoring and it is not obvious whether that condition is
met in the setting at hand. Theorem 3.1 ensures that event-driven trials with staggered
entry indeed entail independent censoring. Thus, we have justified the use of the com-
mon statistical methodology for the evaluation of these studies.
The proof of the mentioned theorem requires that no information about the calendar

times of the events is used for the analysis, because this would allow to retrace the order
of the occurrences and accordingly, the underlying intensities would be deranged. Ex-
amples where this constraint is disregarded can be found in several studies conducted
during the COVID-19 pandemic. To differentiate between the diverse conditions pre-
vailing between 2019 and 2023, clinical trials were often subdivided into pre-, during,
and post-pandemic stages based on calendar times (cf. EMA, 2020� R. D. Meyer et al.,
2020). The potential consequences of such an approach became apparent in our simula-
tions: Even though the bias of the estimated Cox regression coefficients for the treatment
indicator was only minimal, the estimated HRs for the entry times deviated significantly
from their true values so that we obtained flawed Breslow estimates. For practical ap-
plications, the corresponding bias in predictions of the survival probabilities may be of
greater concern. It is therefore vital to carefully deliberate the choice of the covariates
when analysing event-driven trials with staggered entry.
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5. Conclusion

The considerations surrounding Theorem 3.1 further implied that methods relying on
random censoring are not valid in the given setting. Our simulations exhibited that un-
der certain conditions, the EBS may in fact lead to CIs with fairly inaccurate coverage
probabilities. This issue was only observed under additional pressure exerted through
internal left-truncation and in small samples, however, while in reality, trials typically
involve more participants. Interim analyses, on the other hand, involve only subsets of
the original population, so that the outlined problem may very well be relevant. One
should generally stick to survival methods based on martingale properties for valid in-
ference, as such methods depend on the assumption of independent rather than random
censoring.

When changing our focus to causal effect estimation, we decided to define the ATE on
the basis of the CIF to avoid the issues that arise with causal inferences pertaining to HRs.
Note that the concomitant interpretation of the treatment effect does not depend directly
on the HR although the underlying hazards are specified by Coxmodels (see e.g. Hernán,
2010� Martinussen and Vansteelandt, 2013� Aalen, Cook, and Røysland, 2015 for more
insights into the limitations of HRs in the context of causal investigations).
By our definition of the ATE, we capture the total impact of an exposure on the event

of interest, but cannot distinguish between direct and indirect effects. Approaches that
are able to do so have been suggested by Rubin (2006), Stensrud et al. (2022), and
Martinussen and Stensrud (2023). Those methods are generally based on untestable pre-
conditions, though. We focus for now on situations where the interest lies on the total
effect.
The estimation of the ATE and the justification of the corresponding resampling tech-

niques require several assumptions, including the validity of the identifiability condi-
tions, the absence of ties, conditional independence between the event and censoring
times, as well as proportional hazards w.r.t. each cause. We have restricted our delibera-
tions to the case where these conditions are fulfilled. For a relaxation of the proportional
hazards assumption, one may consider alternatives to the Cox model, such as an addi-
tive model (Aalen, 1989) or the additive-multiplicative Cox-Aalen model (Scheike and
Zhang, 2002). Using a different hazards model necessitates to re-evaluate the proofs in
Subsection 4.1.1 as well as the considerations in Section 4.2 w.r.t. the new definition of
the CIFs, however. Similarly, the use of the Fine-Gray model is possible, but likewise
requires the reassessment of our proofs (Fine and Gray, 1999). The assumption-lean
Cox regression proposed by Vansteelandt et al. (2024) is another reasonable option that
offers greater flexibility when modelling the association between covariates and event
times.
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5.3. Outlook

Inference for the g-formula estimator of the ATE is in practice almost always made by
means of the EBS. The limitations of this approach w.r.t. dependent data have already
been discussed (see also Singh, 1981� Friedrich, Brunner, and Pauly, 2017� Hrba et al.,
2022). We have proposed two alternative resampling methods and demonstrated that
given i.i.d. data, all three are valid for approximating the asymptotic distribution of the
ATE estimator. Our simulation study further explored the performance of these methods
in distinct scenarios. Based on the outcomes, we were able to give recommendations on
which approach to use in which situation.

The simulations did not replicate the failure of the EBS in light of type II censoring
with staggered entry (probably due to the weak dependence of the data), but made it
clear that the IF and WBS are considerably faster. What is more, both approaches offer
the possibility to implement aspects characteristic for TTE data (such as left-truncation)
without further endeavour, since their set-up already accommodates the counting process
framework inherent to survival analysis.

We also investigated resampling methods adapted to the PS-matched estimator of the
ATE� however, our considerations on this subject should be regarded as preliminary.
Research addressing inference for PS-matched TTE data is scarce and there are particu-
larly few sources that focus on endpoints other than the HR.
We found the DR technique and evenmore so, the clustered variance estimator to yield

rather conservative results, especially w.r.t. the time-simultaneous CBs. An explanation
for the latter is that the clustered variance approach has been introduced as a method for
inference about pointwise estimators, and hence, correlations w.r.t. distinct time points
are not taken into account. Other than that, one should note that the execution of the DR
technique is relatively slow.

5.3. Outlook

Our considerations and findings throughout this dissertation opened up scope for a num-
ber of related research topics.

The first simulation study implied that the intensities in event-driven trials with staggered
entry might be deranged even more by additional information on the order of the events.
It would be interesting to explore the consequences of disclosing which individuals had
entered the study earlier than a particular subject, respectively. Besides, it remains to be
checked whether the data involve stronger dependencies for smaller ratios between the
numberm of observed events and the sample size n than those considered here.
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5. Conclusion

We plan to investigate the effects of deviations from the assumptions imposed w.r.t. the
ATE. The use of hazards models other than the Cox model has already been mentioned
before. Apart from that, we want to examine the extent to which the outcomes change
if the individual preconditions are violated.
In order to permit the application of the considered resampling methods in more gen-

eral contexts, they shall be extended to allow for left-truncation. (Note however that the
matter of left-truncation in causal contexts bears potential for controversy, see Vanden-
broucke and Pearce, 2015� Hernán, 2015.)

Therapies and confounders that change over the course of time are another com-
monly encountered issue that needs to be explored. The naive application of time-
dependent Cox models leads to incorrect causal conclusions (Hernán, Brumback, and
Robins, 2000). Estimators that can handle time-varying confounding and may hence
serve as a foundation for our investigations have for instance been suggested by Hernán,
Brumback, and Robins (2000), Keogh et al. (2023), and Rytgaard and van der Laan
(2024).
Lastly, the scope of the resamplingmethods studied here could be expanded considerably
by extensions to multistate models, although it is to be expected that the corresponding
proofs involve higher levels of complexity. Among the situations that would be covered
are illness-death-scenarios, recurrent events, as well as more elaborate settings (cf. e.g.
Gran et al., 2015� Bühler, Cook, and Lawless, 2023).

When it comes to the PS-matched ATE estimator, future research will involve refine-
ments of the examined resampling methods that ideally lead to less conservative results.
It might also be enlightening to repeat our simulations using other matching methods
and higher numbers of matches.

Finally, we seek to complement the findings of this thesis by insights into approaches
that allow inference for IPT-weighted and doubly-robust estimators of the ATE. The
derivation of the asymptotic distributions for these estimators as well as the justification
of the respective resamplingmethods provide plenty ofmaterial for future considerations
(see Ozenne, Scheike, et al., 2020 for the corresponding IFs).
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Appendix A: Proofs
In this chapter, we provide the pending proofs of the theorems from the main text.

A.1. Independent censoring in event-driven trials with staggered
entry

Proof of Theorem 3.1:
To show that »G

i (t) = »F c

i (t) ∀i ∈ {1, . . . , n}, t > 0, note that

»F c

i (t) dt = P
(
Ti ∈ [t, t+ dt) |

(
1{Tj ≤ u}

)
j∈{1,...,n}, u<t

)

= 1{Ti ≥ t} · P
(
Ti ∈ [t, t+ dt) | Ti ≥ t

)

by the independence of the survival times, and

»G

i (t) dt = P
(
Ti ∈ [t, t+ dt) |

(
1{Tj ≤ u},1{Cj ≥ u}

)
j∈{1,...,n}, u<t

)

= 1{Ti ≥ t}

· P
(
Ti ∈ [t, t+ dt) | Ti ≥ t,

(
1{Tj ≤ u},1{Ck ≥ u}

)
j∈{1,...,n}\{i},
k∈{1,...,n}, u<t

)
.

(We omit any baseline information possibly included in the filtrations.)
Let w.l.o.g. i = 1. Using the calendar timesRi andQi to represent Ti and Ci (without

conditioning on them individually), we need to prove that

P
(
R1−Q1 ∈ [t, t+ dt) | R1−Q1 ≥ t

)

= P
(
R1−Q1 ∈ [t, t+ dt) | R1−Q1 ≥ t, (∗)

)
,

where
(∗) =

(
1{Rj−Qj ≤ u},1{R(m)−Qk ≥ u}

)
j∈{2,...,n},

k∈{1,...,n}, u<t

.

Hence, we consider the components of (∗) and demonstrate that they do not imply
R1−Q1 > t.

Case 1: R(m) = R1

IfR(m) = R1, then the indicator1{R(m)−Q1 ≥ u} in (∗) equals1{R1−Q1 ≥ u}, which
is already covered by the conditionR1−Q1 ≥ t in »G

1 (t), with t > u. We may therefore
restrict our considerations to the set

(∗) =
(
1{Rj−Qj ≤ u},1{R1−Qj ≥ u}

)
j∈{2,...,n}, u<t

.
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Besides, it holds that

R1 −Qj ≥ u

⇐⇒ R1 −Q1 ≥ u+Qj −Q1.

Supposing there was a j ∈ {2, . . . , n} and some u < t such that R1−Qj ≥ u as well as
u+Qj −Q1 > t, one could conclude that R1−Q1 > t, i.e. »G

1 (t) dt = 0. The calendar
times Q1 and Qj are not given, however, and the value of the difference Qj −Q1 can
merely be deduced from the study time variables Tk and Ck, k ∈ {1, . . . , n}. We might
consider Qj −Q1 = (R1−Q1)− (R1−Qj) = T1 − Cj , so that

u+Qj −Q1 > t

⇐⇒ T1 > t+ Cj − u,

but the inequality in the second line is only verifiable if a time point v > t+ Cj − u is
observed such that T1 ≥ v. We have v > t+R1 −Qj − u ≥ t due to the assumption
R1 −Qj ≥ u, though, meaning that v is no element of the past until t. In summary, the
knowledge of the censoring times does not affect the intensity »G

1 . The expression (∗)
can thus be further reduced to

(∗) =
(
1{Rj−Qj ≤ u}

)
j∈{2,...,n}, u<t

.

Because of the independence of the survival times, conditioning on this set has no impact
on »G

1 either, and we conclude that »G
1 (t) = »F c

1 (t) in case that R(m) = R1.

Case 2: R(m) 6= R1

The censoring times Ck = R(m)−Qk do not add any information on T1 = R1−Q1 for
any k ∈ {2, . . . , n} if R(m) 6= R1, so that our interest is on

(∗) =
(
1{Rj−Qj ≤ u},1{R(m)−Q1}

)
j∈{2,...,n}, u<t

.

If there was a time point u < t with both R(m)−Q1 ≥ u as well as u+R1 −R(m) > t,
we would be able to infer that R1−Q1 > t, since

R(m) −Q1 ≥ u

⇐⇒ R1 −Q1 ≥ u+R1 −R(m).

The study time data available for the analysis merely conveys information onR1 −R(m)

via (R1−Q1)− (R(m)−Q1) = T1 − C1, however, which yields the inequality
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u+R1 −R(m) > t

⇐⇒ T1 > t+ C1 − u.

Similarly as before, one would have to observe a time point v > t+ C1 − uwith T1 ≥ v

to confirm that T1 > t+ C1 − u. But v > t+R(m) −Q1 − u ≥ t by assumption, and
thus, the observed past does not include v. The set we need to investigate hence reduces
to

(∗) =
(
1{Rj −Qj ≤ u}

)
j∈{2,...,n}, u<t

,

and the independence of the survival times can be exploited once again to conclude that
»G
1 (t) = »F c

1 (t) also if R(m) 6= R1.

A.2. Approximation of the distribution of
(
Un(t)

)
by the WBS

Proof of Lemma 4.2:
The counting processes Nki, k ∈ {1, . . . , K}, i ∈ {1, . . . , n}, jump at most once, so

max
i∈{1,...,n}

∣∣∣∣
∫ tr

0

̂̃
Hk1(u, tr)

dNki(u)√
nS(0)

(
β̂k, u

)

∣∣∣∣

<
(
exp

(
³̂kA

)
+ 1
)

max
i∈{1,...,n}

exp
(
β̂T
kLZLi

) 1
√
n infu∈[ 0,tr] S(0)

(
β̂k, u

) .

Bear in mind that on Bk×[0, Ç ], the function S(0) converges uniformly to s(0) (where
Bk is a compact neighbourhood of β0k). Since s(0) is bounded away from zero, and β̂k

is strongly consistent, one obtains that the maximum above almost surely converges to
zero for every r ∈ {1, . . . , l}.
We further have

max
i∈{1,...,n}

∣∣∣∣
∫ Ç

0

1√
n

( ̂̃Hk2(tr)
)T

Σ̂
−1

k

(
Zi − E

(
β̂k, u

))
dNki(u)

∣∣∣∣

≤ 1√
n

max
i∈{1,...,n}

{
1

n

n∑

j1=1

∫ tr

0

(∣∣∣∣
((

1,ZT
j1

)
−
(
E
(
β̂k, v

))
T

)
Σ̂

−1

k

∫ Ç

0

(
Zi − E

(
β̂k, u

))

· dNki(u)

∣∣∣∣ exp
(
³̂kA

)

+

∣∣∣∣
((

0,ZT
j1

)
−
(
E
(
β̂k, v

))
T

)
Σ̂

−1

k

∫ Ç

0

(
Zi − E

(
β̂k, u

))

· dNki(u)

∣∣∣∣

)

· exp
(
β̂T
kLZLj1

) dNk(v)

nS(0)
(
β̂k, v

)

}
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<
1√
n

(
max

i,j1 ∈{1,...,n}
sup

u∈[ 0,Ç ], v∈[ 0,tr]

∣∣∣∣
((

1,ZT
j1

)
−
(
E
(
β̂k, v

))
T

)
Σ̂

−1

k

(
Zi − E

(
β̂k, u

))∣∣∣∣

+ max
i,j1 ∈{1,...,n}

sup
u∈[ 0,Ç ], v∈[ 0,tr]

∣∣∣∣
((

0,ZT
j1

)
−
(
E
(
β̂k, v

))
T

)
Σ̂

−1

k

(
Zi − E

(
β̂k, u

))∣∣∣∣
)

·
max{exp

(
³̂kA

)
, 1} maxj1∈{1,...,n} exp

(
β̂T
kLZLj1

)

infv∈[ 0,tr] S(0)
(
β̂k, v

) .

The previous considerations and the boundedness of s(1) as well as s(2) on Bk×[0, Ç ]

imply that the expression above also vanishes for every r ∈ {1, . . . , l}. This proves
Condition (i).

To show that Condition (ii) is fulfilled aswell, we consider the time points 0 ≤ tr ≤ ts ≤ Ç .
The process Nki jumps only once, and thus,

n∑

i=1

X
(k)
n,i (tr)X

(k)
n,i (ts)

=
1

n

n∑

i=1

∫ tr

0

̂̃
Hk1(u, tr)

̂̃
Hk1(u, ts)

dNki(u)
(
S(0)

(
β̂k, u

))2

+
1

n

n∑

i=1

∫ tr

0

̂̃
Hk1(u, tr)

( ̂̃Hk2(ts)
)T

Σ̂
−1

k

(
Zi − E

(
β̂k, u

)) dNki(u)

S(0)
(
β̂k, u

)

+
1

n

n∑

i=1

∫ ts

0

( ̂̃Hk2(tr)
)T

Σ̂
−1

k

(
Zi − E

(
β̂k, u

)) ̂̃
Hk1(u, ts)

dNki(u)

S(0)
(
β̂k, u

)

+
1

n

n∑

i=1

∫ Ç

0

( ̂̃Hk2(tr)
)T

Σ̂
−1

k

(
Zi − E

(
β̂k, u

)) ( ̂̃Hk2(ts)
)T

Σ̂
−1

k

(
Zi − E

(
β̂k, u

))

· dNki(u).

(1)

Due to the Doob-Meyer decomposition, the first summand in Expression (1) is equal to

1

n

n∑

i=1

∫ tr

0

̂̃
Hk1(u, tr)

̂̃
Hk1(u, ts)

dMki(u)
(
S(0)

(
β̂k, u

))2 +
∫ tr

0

̂̃
Hk1(u, tr)

̂̃
Hk1(u, ts)

dA0k(u)

S(0)
(
β̂k, u

) .

We may apply Theorem 2.1 to infer that the left-hand side above converges to zero as
n → ∞ because of the uniform consistency of ̂̃Hk1 and S(0) as well as the boundedness
of H̃k1 and s(0).
The use of similar arguments on the remaining summands in (1) yields that the sum

n∑

i=1

X
(k)
n,i (tr)X

(k)
n,i (ts)

converges in probability to
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∫ tr

0

h̃k1(u, tr) h̃k1(u, ts)
dA0k(u)

s(0)
(
β0k, u

)

+

∫ tr

0

h̃k1(u, tr)
(
h̃k2(ts)

)T
Σ

−1
k

(
s(1)(β0k, u)− e(β0k, u) s

(0)(β0k, u)
) dA0k(u)

s(0)(β0k, u)

+

∫ ts

0

(
h̃k2(tr)

)T
Σ

−1
k

(
s(1)(β0k, u)− e(β0k, u) s

(0)(β0k, u)
)
h̃k1(u, ts)

dA0k(u)

s(0)(β0k, u)

+
(
h̃k2(tr)

)T
Σ

−1
k

(∫ Ç

0

( s(2)(β0k, u)

s(0)(β0k, u)
−
(
e(β0k, u)

)⊗2
)
s(0)(β0k, u) dA0k(u)

)

·
(
Σ

−1
k

)
T h̃k2(ts) ,

which equals ¿(k)(tr, ts). Hence, Condition (ii) is proven.

Proof of Lemma 4.3:
It holds that

√
n max
i∈{1,...,n}

∣∣∣X(k)
n,i (ts)−X

(k)
n,i (tr)

∣∣∣

≤ max
i∈{1,...,n}

{∫ ts

0

∣∣∣ ̂̃Hk1(u, ts)− 1{u ≤ tr} ̂̃Hk1(u, tr)
∣∣∣ dNki(u)

S(0)
(
β̂k, u

)

+

∫ Ç

0

∣∣∣∣
( ̂̃Hk2(ts)− ̂̃Hk2(tr)

)T
Σ̂

−1

k

(
Zi − E

(
β̂k, u

))∣∣∣∣ dNki(u)

}

<
2
(
exp

(
³̂kA

)
+ 1
)
maxi∈{1,...,n} exp

(
β̂T
kLZLi

)

infu∈[ 0,Ç ] S(0)
(
β̂k, u

)

+ max
i∈{1,...,n}

sup
u,tr,ts ∈ [ 0,Ç ]

∣∣∣∣
( ̂̃Hk2(ts)− ̂̃Hk2(tr)

)T
Σ̂

−1

k

(
Zi − E

(
β̂k, u

))∣∣∣∣,

i.e.
√
n maxi∈{1,...,n}

∣∣∣X(k)
n,i (ts)−X

(k)
n,i (tr)

∣∣∣ ∈ OP (1) by the (uniform) consistency and
the boundedness of the involved terms.

Proof of Lemma 4.4:
We first split the expectation in Lemma 4.4 into terms with identical sum indices. Due
to Condition (iv) in Theorem 4.4, it follows that an upper bound is given by

max
j∈{1,...,n}

E
(
G4

j | FÇ

) n∑

i=1

(
X

(k)
n,i (tr)−X

(k)
n,i

(
tq
))2(

X
(k)
n,i (ts)−X

(k)
n,i (tr)

)2

+2 max
j1∈{1,...,n}

∣∣∣E
(
G3

j1
| FÇ

)∣∣∣ max
j2∈{1,...,n}

∣∣∣E
(
Gj2 | FÇ

)∣∣∣
n∑

i1=1

(
X

(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
))2

·
∣∣∣X(k)

n,i1
(ts)−X

(k)
n,i1

(tr)
∣∣∣

·
n∑

i2=1

∣∣∣X(k)
n,i2

(ts)−X
(k)
n,i2

(tr)
∣∣∣
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+2 max
j1∈{1,...,n}

∣∣∣E
(
Gj1 | FÇ

)∣∣∣ max
j2∈{1,...,n}

∣∣∣E
(
G3

j2
| FÇ

)∣∣∣
n∑

i1=1

∣∣∣X(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
)∣∣∣

·
n∑

i2=1

∣∣∣X(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
) ∣∣∣

·
(
X

(k)
n,i2

(ts)−X
(k)
n,i2

(tr)
)2

+ max
j∈{1,...,n}

(
E
(
G2

j | FÇ

))2 n∑

i1=1

(
X

(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
))2 n∑

i2=1

(
X

(k)
n,i2

(ts)−X
(k)
n,i2

(tr)
)2

+2 max
j∈{1,...,n}

(
E
(
G2

j | FÇ

))2( n∑

i=1

∣∣∣X(k)
n,i (tr)−X

(k)
n,i

(
tq
)∣∣∣
∣∣∣X(k)

n,i (ts)−X
(k)
n,i (tr)

∣∣∣
)2

+ max
j1∈{1,...,n}

E
(
G2

j1
| FÇ

)
max

j2∈{1,...,n}

(
E
(
Gj2 | FÇ

))2 n∑

i1=1

(
X

(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
))2

·
( n∑

i2=1

∣∣∣X(k)
n,i2

(ts)−X
(k)
n,i2

(tr)
∣∣∣
)2

+4 max
j∈{1,...,n}

(
E
(
Gj | FÇ

))2
max

j2∈{1,...,n}
E
(
G2

j2
| FÇ

) n∑

i1=1

∣∣∣X(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
)∣∣∣

·
n∑

i2=1

∣∣∣X(k)
n,i2

(tr)−X
(k)
n,i2

(
tq
)∣∣∣

·
∣∣∣X(k)

n,i2
(ts)−X

(k)
n,i2

(tr)
∣∣∣

·
n∑

i3=1

∣∣∣X(k)
n,i3

(ts)−X
(k)
n,i3

(tr)
∣∣∣

+ max
j1∈{1,...,n}

(
E
(
Gj1 | FÇ

))2
max

j2∈{1,...,n}
E
(
G2

j2
| FÇ

)( n∑

i1=1

∣∣∣X(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
)∣∣∣
)2

·
n∑

i2=1

(
X

(k)
n,i2

(ts)−X
(k)
n,i2

(tr)
)2

+ max
j∈{1,...,n}

(
E
(
Gj | FÇ

))4( n∑

i1=1

∣∣∣X(k)
n,i1

(tr)−X
(k)
n,i1

(
tq
)∣∣∣
)2( n∑

i2=1

∣∣∣X(k)
n,i2

(ts)−X
(k)
n,i2

(tr)
∣∣∣
)2

.

Let this bound be denoted by (2).
An informal representation of the first summand in (2) results from the (uniform)

consistency and boundedness of the involved terms:

max
j∈{1,...,n}

E
(
G4

j | FÇ

) 1

n2

n∑

i=1

(∫ tr

0

dNki(u) ·OP (1) +

∫ Ç

0

dNki(u) ·OP (1)

)2

·
(∫ ts

0

dNki(u) ·OP (1) +

∫ Ç

0

dNki(u) ·OP (1)

)2

= max
j∈{1,...,n}

E
(
G4

j | FÇ

) 1

n
·OP (1).
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The equality in the last line holds because Nki is a one-jump process. By means of
Condition (iii) in Theorem 4.4, we infer that the first summand of Expression (2) can be
neglected if n → ∞.
Next, note that

∑n

i=1

∣∣∣X(k)
n,i (ts)−X

(k)
n,i (tr)

∣∣∣ ≤
√
n
(∑n

i=1

(
X

(k)
n,i (ts)−X

(k)
n,i (tr)

)
2
)
1/2

according to Hölder9s inequality. It follows that the second summand in (2) is bounded
by

2
√
n max
j1∈{1,...,n}

∣∣∣E
(
G3

j1
| FÇ

)∣∣∣ max
j2∈{1,...,n}

∣∣∣E
(
Gj2 | FÇ

)∣∣∣

· max
(t0,tp)∈{(tq ,tr),(tr,ts)}

( n∑

i=1

(
X

(k)
n,i

(
tp
)
−X

(k)
n,i (to)

)2
)3/2

max
i∈{1,...,n}

∣∣∣X(k)
n,i (ts)−X

(k)
n,i (tr)

∣∣∣.

(We used here that the function f(x) = x3/2 increases monotonically in x, so that the
maximum w.r.t. the time points

(
to, tp

)
can be placed outside of the brackets.) The

application of Jensen9s inequality to Condition (iii) (considering the convex function
f(x) = x4/3), together with Condition (i) as well as Lemma 4.3, eventually yields

max
(t0,tp)∈{(tq ,tr),(tr,ts)}

( n∑

i=1

(
X

(k)
n,i

(
tp
)
−X

(k)
n,i (to)

)2
)3/2

·OP (1) (3)

as an upper bound of the second summand in (2). Keep in mind that the OP (1)-term
does not depend on the time points tq, tr, ts (cf. Lemma 4.3)!
It turns out that similar considerations (involving Hölder9s inequality, Lemma 4.3, as

well as Conditions (i) and (ii) of the Theorem) apply to each of the summands in (2).
Thus, Expression (3) forms a general upper bound for the expectation in Lemma 4.4.

The proof is complete if we find a function L(k)
n such that

n∑

i=1

(
X

(k)
n,i

(
tp
)
−X

(k)
n,i (to)

)2 ≤
(
L(k)
n (ts)− L(k)

n

(
tq
))

·OP (1)

for
(
to, tp

)
∈ {
(
tq, tr

)
, (tr, ts}.

In this regard, note that (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R and therefore,

n∑

i=1

(
X

(k)
n,i

(
tp
)
−X

(k)
n,i (to)

)2

≤ 2

n

n∑

i=1

(( ∫ tp

0

̂̃
Hk1

(
u, tp

) dNki(u)

S(0)
(
β̂k, u

) −
∫ t0

0

̂̃
Hk1(u, to)

dNki(u)

S(0)
(
β̂k, u

)

)2

+

(∫ Ç

0

( ̂̃Hk2

(
tp
)
− ̂̃Hk2(to)

)T
Σ̂

−1

k

(
Zi − E

(
β̂k, u

))
dNki(u)

)2
)
.

(4)
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The definition of ̂̃Hk1 implies that the first line of Expression (4) is bounded by

2

n

n∑

i=1

(
1

n

n∑

j=1

(
3 exp

(
³̂kA

)
+ 3

)
exp

(
β̂T
kLZLj

) ∫ tp

to

dNki(u)

S(0)
(
β̂k, u

)

+
1

n

n∑

j=1

((
F̂1

(
tp | ZA=1,ZLj

)
− F̂1

(
to | ZA=1,ZLj

))
exp

(
³̂kA

)

+
(
F̂1

(
tp | ZA=0,ZLj

)
− F̂1

(
to | ZA=0,ZLj

)))

· exp
(
β̂T
kLZLj

) ∫ to

0

dNki(u)

S(0)
(
β̂k, u

)

)2

.

Using again that (a+ b)2 ≤ 2a2 + 2b2 as well as the Cauchy-Schwarz inequality and the
fact that Nki jumps only once, we observe that the term above is smaller or equal to

2

n

n∑

i=1

(
2

n

n∑

j=1

(
9 exp

(
2³̂kA

)
+ 18 exp

(
³̂kA

)
+ 9

)
exp

(
2β̂T

kLZLj

) ∫ tp

to

dNki(u)
(
S(0)

(
β̂k, u

))2

+
2

n

n∑

j=1

(
2
(
F̂1

(
tp | ZA=1,ZLj

)
− F̂1

(
to | ZA=1,ZLj

))2
exp

(
2³̂kA

)

+ 2
(
F̂1

(
tp | ZA=0,ZLj

)
− F̂1

(
to | ZA=0,ZLj

))2)

· exp
(
2β̂T

kLZLj

) ∫ Ç

0

dNki(u)
(
S(0)

(
β̂k, u

))2

)

≤ 2

n

n∑

i=1

(
2

n

n∑

j=1

(
9 exp

(
2³̂kA

)
+ 18 exp

(
³̂kA

)
+ 9

)
exp

(
2β̂T

kLZLj

) ∫ tp

to

dNki(u)
(
S(0)

(
β̂k, u

))2

+
2

n

n∑

j=1

(
2

((
F̂1

(
tp | ZA=1,ZLj

))2

−
(
F̂1

(
to | ZA=1,ZLj

))2
)
exp

(
2³̂kA

)

+ 2

((
F̂1

(
tp | ZA=0,ZLj

))2

−
(
F̂1

(
to | ZA=0,ZLj

))2
))

· exp
(
2β̂T

kLZLj

) ∫ Ç

0

dNki(u)
(
S(0)

(
β̂k, u

))2

)
.

(5)

We exploited the non-negativity of the hindmost term (since to ≤ tp) to extend the limit
of the corresponding integral. Besides, the last inequality follows from (a− b)2 ≤ a2 − b2

for 0 ≤ b ≤ a.
Let us now consider the matrix

Σ̃ki =

∫ Ç

0

(
Zi − E

(
β̂k, u

))⊗2

dNki(u).
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Because Nki is a one-jump process, the matrix Σ̃ki is symmetric, and real numbers are
equal to their transpose, the second part of Expression (4) can be represented by

2

n

n∑

i=1

( ̂̃Hk2

(
tp
)
− ̂̃Hk2(to)

)T

Σ̂
−1

k Σ̃kiΣ̂
−1

k

( ̂̃Hk2

(
tp
)
− ̂̃Hk2(to)

)
.

One may further express the difference ̂̃Hk2

(
tp
)
− ̂̃Hk2(to) as

1

n

n∑

i=1

∫ tp

to

(
χ̂k1,A=1

(
u, tp

)
− χ̂k1,A=0

(
u, tp

)) dNki(u)

S(0)
(
β̂k, u

)

− 1

n

n∑

i=1

∫ to

0

(
χ̂k2,A=1

(
u, to, tp

)
− χ̂k2,A=0

(
u, to, tp

)) dNki(u)

S(0)
(
β̂k, u

) ,

with the functions χ̂k1,a and χ̂k2,a determined by

χ̂k1,a(u, t) =
1

n

n∑

i=1

(
1{k = 1}Ŝ

(
u− | a,ZLi

)
− F̂1

(
t | a,ZLi

)
+ F̂1

(
u | a,ZLi

))

·
((
a,ZT

Li

)T − E
(
β̂k, u

))
exp

(
β̂T
k

(
a,ZT

Li

)T)
,

χ̂k2,a(u, s, t) =
1

n

n∑

i=1

(
F̂1

(
t | a,ZLi

)
− F̂1

(
s | a,ZLi

))((
a,ZT

Li

)T − E
(
β̂k, u

))

· exp
(
β̂T
k

(
a,ZT

Li

)T)
.

Taking into account that the matrix product Σ̂
−1

k Σ̃kiΣ̂
−1

k is positive semidefinite accord-
ing to the definitions of Σ̂k and Σ̃ki, we obtain the upper bound

2

n

n∑

i=1

(
2

n

∫ tp

to

(
χ̂k1,A=1

(
u, tp

)
− χ̂k1,A=0

(
u, tp

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

·
(
χ̂k1,A=1

(
u, tp

)
− χ̂k1,A=0

(
u, tp

)) dNk(u)
(
S(0)

(
β̂k, u

))2

+
2

n

∫ to

0

(
χ̂k2,A=1

(
u, to, tp

)
− χ̂k2,A=0

(
u, to, tp

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

·
(
χ̂k2,A=1

(
u, to, tp

)
− χ̂k2,A=0

(
u, to, tp

)) dNk(u)
(
S(0)

(
β̂k, u

))2

)

for the second part of (4), since Nki jumps at most once, and because

(a − b)TA (a − b) ≤ 2aTAa + 2bTAb
as well as ( n∑

i1=1

ai1
)T

A
( n∑

i2=1

ai2

)
≤ n

n∑

i=1

aTi Aai
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for a positive (semi-)definite matrix A and suitable vectors a, b, a1, . . . , an. This bound
may be refined even further, resulting in

2

n

n∑

i=1

(
4

n2

∫ tp

to

n∑

j=1

(
1{k = 1}Ŝ

(
u− | ZA=1,ZLj

)
− F̂1

(
tp | ZA=1,ZLj

)

+ F̂1

(
u | ZA=1,ZLj

))2

·
((
1,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
1,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
1,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

+
4

n2

∫ tp

to

n∑

j=1

(
1{k = 1}Ŝ

(
u− | ZA=0,ZLj

)
− F̂1

(
tp | ZA=0,ZLj

)

+ F̂1

(
u | ZA=0,ZLj

))2

·
((
0,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
0,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
0,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

+
4

n2

∫ to

0

n∑

j=1

(
F̂1

(
tp | ZA=1,ZLj

)
− F̂1

(
to | ZA=1,ZLj

))2

·
((
1,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
1,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
1,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

+
4

n2

∫ to

0

n∑

j=1

(
F̂1

(
tp | ZA=0,ZLj

)
− F̂1

(
to | ZA=0,ZLj

))2

·
((
0,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
0,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
0,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

)

by the inequalities (a − b)TA (a − b) ≤ 2aTAa + 2bTAb and
∑n

i1=1

∑n

i2=1 aTi1Aai2

≤ n
∑n

i=1 aT
i Aai. Lastly, we use that (a− b)2 ≤ a2 − b2 for 0 ≤ b ≤ a to see that the

second part of Expression 4 is smaller or equal to

2

n

n∑

i=1

(
4

n2

∫ ts

tq

n∑

j=1

((
1,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
1,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
1,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2
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+
4

n2

∫ ts

tq

n∑

j=1

((
0,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
0,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
0,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

+
4

n2

∫ Ç

0

n∑

j=1

((
F̂1

(
ts | ZA=1,ZLj

))2 −
(
F̂1

(
tq | ZA=1,ZLj

))2)

·
((
1,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
1,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
1,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

+
4

n2

∫ Ç

0

n∑

j=1

((
F̂1

(
ts | ZA=0,ZLj

))2 −
(
F̂1

(
tq | ZA=0,ZLj

))2)

·
((
0,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k Σ̃kiΣ̂
−1

k

((
0,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
0,ZT

Lj

)T) dNk(u)
(
S(0)

(
β̂k, u

))2

)
.

Bear in mind that Σ̂
−1

k Σ̃kiΣ̂
−1

k is positive semidefinite, which is why it is possible to
extend the integral limits.

One may finally conclude by the bounds in Term (5) and above that

n∑

i=1

(
X

(k)
n,i

(
tp
)
−X

(k)
n,i (to)

)2 ≤ 36
(
L(k)
n (ts)− L(k)

n

(
tq
))3/2

for k ∈ {1, . . . , K},
(
to, tp

)
∈ {
(
tq, tr

)
, (tr, ts)}, and the function

L(k)
n (t) =

1

n

n∑

j=1

(
(
exp

(
2³̂kA

)
+ 2 exp

(
³̂kA

)
+ 1
)
exp

(
2β̂T

kLZLj

) ∫ t

0

dNk(u)

n
(
S(0)

(
β̂k, u

))2

+

((
F̂1

(
t | ZA=1,ZLj

))2

exp
(
2³̂kA

)
+
(
F̂1

(
t | ZA=0,ZLj

))2
)

· exp
(
2β̂T

kLZLj

) ∫ Ç

0

dNk(u)

n
(
S(0)

(
β̂k, u

))2

+

∫ t

0

((
1,ZT

Lj

)T − E
(
β̂k, u

))T
Σ̂

−1

k

( 1
n

n∑

i=1

Σ̃ki

)
Σ̂

−1

k

·
((
1,ZT

Lj

)T − E
(
β̂k, u

))

· exp
(
2β̂k

(
1,ZT

Lj

)T) dNk(u)

n
(
S(0)

(
β̂k, u

))2
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+

∫ t

0

((
0,ZT

Lj

)T − E
(
β̂k, u
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Appendix B: Further simulation results
This chapter gathers additional results obtained from the simulations described in Chap-
ters 3 and 4.

B.1. Impact of conditioning on calendar times in event-driven trials
with staggered entry

The following figures and tables pertain to the simulation study presented in Subsec-
tion 3.2.1. Note that iterations with less than two observed events in one treatment group
are excluded. The shadow lines in the shadow plots are further restricted to a random
sample of size 2,000 for greater clarity.

Figure B.1: Shadow plots of the Breslow estimators in the exponential scenario with HR 1,
n = 600, andm = 300.

Figure B.2: Shadow plots of the Breslow estimators in the exponential scenario with HR 1,
n = 300, andm = 150.



Figure B.3: Shadow plots of the Breslow estimators in the exponential scenario with HR 1,
n = 50, andm = 25.

Figure B.4: Shadow plots of the Breslow estimators in the exponential scenario with HR 1,
n = 26, andm = 13 (4 iterations excluded).
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Table B.1: Bias of the estimated log-HRs in the exponential scenarios with HR 1.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

600 300 mean bias 0.00004 0.00002 0.01829 0.00003 0.02890 -0.00001
median bias -0.00005 -0.00024 0.01719 -0.00012 0.02548 -0.00002
RMSE 0.11584 0.11605 0.32065 0.11632 9.49880 0.01096
coverage 0.95071 0.95024 0.94974 0.95006 0.94991 0.95011

300 150 mean bias 0.00009 0.00012 0.03566 0.00009 -0.00368 0.00009
median bias -0.00028 0.00029 0.03259 -0.00042 -0.04291 0.00014
RMSE 0.16430 0.16484 0.45827 0.16560 9.50765 0.02190
coverage 0.95055 0.95009 0.94771 0.94934 0.94410 0.94479

50 25 mean bias 0.00130 0.00142 0.21394 0.00199 0.01578 0.00261
median bias 0.00137 0.00097 0.19848 0.00093 0.04921 0.00244
RMSE 0.41187 0.42149 1.23124 0.43517 10.80612 0.14689
coverage 0.95511 0.95193 0.94771 0.94823 0.94410 0.94479

50 10a mean bias 0.00665 0.00687 2.07118 0.00701 0.42306 0.00687
median bias 0.00233 0.00297 1.86923 0.00450 0.58871 0.00625
RMSE 0.65962 0.67233 7.12208 0.69416 57.51430 0.25053
coverage 0.98131 0.97872 0.95275 0.97418 0.95167 0.95235

26 13b mean bias -0.00299 -0.00279 0.41800 -0.00200 0.09130 0.00789
median bias -0.00130 -0.00008 0.37943 -0.00086 0.10810 0.00847
RMSE 0.59677 0.62824 1.92377 0.67787 12.82265 0.32802
coverage 0.95929 0.95326 0.94861 0.94575 0.94263 0.94247

a 1,032 excluded iterations.
b 4 excluded iterations.

Figure B.5: Shadow plots of the Breslow estimators in theWeibull scenario with HR 1, n = 600,
andm = 300.

111



Figure B.6: Shadow plots of the Breslow estimators in theWeibull scenario with HR 1, n = 300,
andm = 150.

Figure B.7: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1, n = 50,
andm = 25.

Figure B.8: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1, n = 26,
andm = 13 (4 iterations excluded).
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Table B.2: Bias of the estimated log-HRs in the Weibull scenarios with HR 1.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

600 300 mean bias 0.00028 0.00028 0.02759 0.00029 0.02417 0.00000
median bias -0.00024 -0.00011 0.02578 -0.00014 -0.01447 0.00003
RMSE 0.11546 0.11568 0.44059 0.11598 13.56160 0.01084
coverage 0.95043 0.95025 0.94939 0.95013 0.94874 0.94886

300 150 mean bias 0.00053 0.00049 0.04761 0.00049 0.01555 0.00005
median bias 0.00015 0.00035 0.04574 0.00045 -0.02485 0.00011
RMSE 0.16399 0.16461 0.62953 0.16529 13.71267 0.02190
coverage 0.95000 0.94944 0.94886 0.94896 0.94887 0.94856

50 25 mean bias 0.00262 0.00282 0.29790 0.00274 0.05363 0.00234
median bias 0.00139 0.00155 0.27817 0.00285 -0.01638 0.00275
RMSE 0.41109 0.42120 1.68760 0.43426 15.46159 0.14584
coverage 0.95354 0.95114 0.94829 0.94806 0.94451 0.94459

26 13a mean bias -0.00238 -0.00256 0.62494 -0.00235 0.15095 0.00854
median bias -0.00052 0.00042 0.57390 0.00165 0.14026 0.00848
RMSE 0.58901 0.62311 2.68667 0.67014 18.34748 0.32545
coverage 0.96170 0.95446 0.94564 0.94719 0.94168 0.94124

a 4 excluded iterations.

Figure B.9: Shadow plots of the Breslow estimators in the exponential scenario with HR 0.8,
n = 600, andm = 300.
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Figure B.10: Shadow plots of the Breslow estimators in the exponential scenario with HR 0.8,
n = 300, andm = 150.

Figure B.11: Shadow plots of the Breslow estimators in the exponential scenario with HR 0.8,
n = 50, andm = 25.

Figure B.12: Shadow plots of the Breslow estimators in the exponential scenario with HR 0.8,
n = 50, andm = 10 (1,500 iterations excluded).
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Figure B.13: Shadow plots of the Breslow estimators in the exponential scenario with HR 0.8,
n = 26, andm = 13 (8 iterations excluded).

Table B.3: Bias of the estimated log-HRs in the exponential scenarios with HR 0.8.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

600 300 mean bias -0.00020 -0.00041 0.01795 -0.00064 0.02610 -0.00001
median bias 0.00015 -0.00018 0.01608 -0.00044 0.04292 -0.00002
RMSE 0.11617 0.11639 0.31725 0.11665 9.47582 0.01093
coverage 0.95057 0.94997 0.94963 0.94965 0.95017 0.95013

300 150 mean bias -0.00049 -0.00086 0.03487 -0.00135 -0.00800 0.00010
median bias -0.00059 -0.00074 0.03312 -0.00120 -0.02660 0.00013
RMSE 0.16469 0.16526 0.45277 0.16602 9.48315 0.02185
coverage 0.95075 0.95033 0.94898 0.94933 0.94993 0.95001

50 25 mean bias -0.00287 -0.00536 0.20705 -0.00853 -0.00183 0.00278
median bias 0.00053 -0.00165 0.19503 -0.00397 0.00976 0.00275
RMSE 0.41308 0.42282 1.21526 0.43651 10.79102 0.14679
coverage 0.95474 0.95180 0.94821 0.94859 0.94408 0.94381

50 10a mean bias 0.00826 0.00659 1.98319 0.00327 0.37544 0.00680
median bias 0.01074 0.00970 1.80658 0.00469 0.52921 0.00698
RMSE 0.65726 0.66995 6.93843 0.69177 56.92291 0.24801
coverage 0.98213 0.98010 0.95256 0.97625 0.95309 0.95315

26 13b mean bias -0.01234 -0.01818 0.40668 -0.02730 0.06872 0.00825
median bias -0.00500 -0.01112 0.37047 -0.01715 0.11217 0.00759
RMSE 0.60647 0.63856 1.89449 0.68757 12.77146 0.32692
coverage 0.95860 0.95357 0.94772 0.94621 0.94319 0.94267

a 1,500 excluded iterations.
b 8 excluded iterations.
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Figure B.14: Shadow plots of the Breslow estimators in the Weibull scenario with HR 0.8,
n = 600, andm = 300.

Figure B.15: Shadow plots of the Breslow estimators in the Weibull scenario with HR 0.8,
n = 300, andm = 150.

Figure B.16: Shadow plots of the Breslow estimators in the Weibull scenario with HR 0.8,
n = 50, andm = 25.
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Figure B.17: Shadow plots of the Breslow estimators in the Weibull scenario with HR 0.8,
n = 50, andm = 10 (1,479 iterations excluded).

Figure B.18: Shadow plots of the Breslow estimators in the Weibull scenario with HR 0.8,
n = 26, andm = 13 (10 iterations excluded).
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Table B.4: Bias of the estimated log-HRs in the Weibull scenarios with HR 0.8.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

600 300 mean bias -0.00010 -0.00029 0.02771 -0.00052 0.03908 -0.00001
median bias 0.00012 0.00002 0.02800 -0.00023 0.02652 0.00000
RMSE 0.11590 0.11612 0.43619 0.11642 13.54622 0.01083
coverage 0.95110 0.95058 0.94930 0.95020 0.94904 0.94918

300 150 mean bias -0.00012 -0.00059 0.04525 -0.00106 0.00331 0.00007
median bias 0.00033 -0.00019 0.04399 -0.00076 -0.00699 0.00007
RMSE 0.16448 0.16511 0.62319 0.16582 13.69249 0.02187
coverage 0.95079 0.95046 0.94887 0.94943 0.94852 0.94828

50 25 mean bias -0.00085 -0.00347 0.28606 -0.00706 0.03714 0.00240
median bias 0.00224 -0.00019 0.27068 -0.00249 -0.00769 0.00281
RMSE 0.41229 0.42242 1.66060 0.43547 15.38364 0.14519
coverage 0.95425 0.95197 0.94810 0.94909 0.94449 0.94472

50 10a mean bias 0.00458 0.00269 8.62521 -0.00098 0.18233 0.00850
median bias 0.00690 0.00203 7.83206 -0.00135 2.01290 0.00661
RMSE 0.65566 0.66871 29.28074 0.68966 252.89386 0.24643
coverage 0.98415 0.98220 0.95069 0.97793 0.95056 0.95042

26 13b mean bias -0.00934 -0.01632 0.59292 -0.02540 0.08218 0.00916
median bias 0.00031 -0.00475 0.55326 -0.01416 0.10825 0.00863
RMSE 0.58632 0.62084 2.63070 0.66823 18.22146 0.32374
coverage 0.96068 0.95518 0.94594 0.94768 0.94169 0.94164

a 1,479 excluded iterations.
b 10 excluded iterations.

Figure B.19: Shadow plots of the Breslow estimators in the exponential scenario with HR 1.25,
n = 600, andm = 300.
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Figure B.20: Shadow plots of the Breslow estimators in the exponential scenario with HR 1.25,
n = 300, andm = 150.

Figure B.21: Shadow plots of the Breslow estimators in the exponential scenario with HR 1.25,
n = 50, andm = 25.

Figure B.22: Shadow plots of the Breslow estimators in the exponential scenario with HR 1.25,
n = 50, andm = 10 (1,527 iterations excluded).
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Figure B.23: Shadow plots of the Breslow estimators in the exponential scenario with HR 1.25,
n = 26, andm = 13 (10 iterations excluded).

Table B.5: Bias of the estimated log-HRs in the exponential scenarios with HR 1.25.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

600 300 mean bias 0.00020 0.00037 0.01902 0.00061 0.02171 0.00000
median bias -0.00011 0.00000 0.01776 0.00025 0.02054 0.00001
RMSE 0.11606 0.11627 0.32469 0.11654 9.52392 0.01099
coverage 0.95043 0.94998 0.94975 0.94984 0.94955 0.94961

300 150 mean bias 0.00047 0.00088 0.03641 0.00134 0.00260 0.00008
median bias -0.00068 -0.00071 0.03351 -0.00043 -0.01229 0.00010
RMSE 0.16504 0.16558 0.46434 0.16637 9.54886 0.02200
coverage 0.94988 0.94998 0.94977 0.94921 0.94968 0.94994

50 25 mean bias 0.00482 0.00757 0.22011 0.01192 0.02180 0.00258
median bias 0.00145 0.00326 0.20047 0.00696 0.02705 0.00238
RMSE 0.41379 0.42340 1.24904 0.43727 10.84812 0.14739
coverage 0.95424 0.95137 0.94820 0.94778 0.94441 0.94475

50 10a mean bias 0.00232 0.00435 2.15942 0.00831 0.33045 0.00763
median bias 0.00235 0.00552 1.94781 0.00897 0.72940 0.00654
RMSE 0.65883 0.67132 7.32056 0.69386 58.21950 0.25331
coverage 0.98237 0.98070 0.95249 0.97651 0.95152 0.95189

26 13b mean bias 0.00506 0.01083 0.43388 0.02132 0.09288 0.00816
median bias -0.00397 0.00174 0.38380 0.01045 0.10516 0.00972
RMSE 0.61441 0.64598 1.96279 0.69642 12.95524 0.33095
coverage 0.95949 0.95349 0.94867 0.94639 0.94193 0.94202

a 1,527 excluded iterations.
b 10 excluded iterations.
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Figure B.24: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1.25,
n = 600, andm = 300.

Figure B.25: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1.25,
n = 300, andm = 150.

Figure B.26: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1.25,
n = 50, andm = 25.
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Figure B.27: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1.25,
n = 50, andm = 10 (1,505 iterations excluded).

Figure B.28: Shadow plots of the Breslow estimators in the Weibull scenario with HR 1.25,
n = 26, andm = 13 (9 iterations excluded).
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Table B.6: Bias of the estimated log-HRs in the Weibull scenarios with HR 1.25.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

600 300 mean bias 0.00066 0.00087 0.02928 0.00111 0.01256 0.00001
median bias 0.00035 0.00044 0.02791 0.00081 -0.00599 0.00002
RMSE 0.11570 0.11590 0.44663 0.11620 13.59952 0.01087
coverage 0.95087 0.95076 0.94909 0.95057 0.94968 0.94929

300 150 mean bias 0.00103 0.00140 0.05000 0.00188 0.03304 0.00003
median bias 0.00067 0.00104 0.04736 0.00125 -0.00369 0.00006
RMSE 0.16437 0.16497 0.63853 0.16566 13.73754 0.02194
coverage 0.95115 0.95093 0.94960 0.95015 0.94855 0.94859

50 25 mean bias 0.00609 0.00904 0.31736 0.01264 0.08680 0.00222
median bias 0.00386 0.00749 0.29321 0.01077 0.07795 0.00235
RMSE 0.41260 0.42282 1.72339 0.43638 15.59063 0.14689
coverage 0.95420 0.95133 0.94788 0.94844 0.94314 0.94360

50 10a mean bias -0.00127 0.00114 9.94427 0.00442 1.98879 0.00818
median bias -0.00290 0.00032 8.89267 0.00297 3.68433 0.00626
RMSE 0.65148 0.66436 31.32874 0.68721 258.51183 0.25134
coverage 0.98362 0.98158 0.95099 0.97740 0.95084 0.95077

26 13b mean bias 0.00634 0.01270 0.65890 0.02297 0.19613 0.00852
median bias 0.00142 0.00750 0.59814 0.01483 0.21581 0.00772
RMSE 0.58809 0.62278 2.75339 0.67134 18.63140 0.32983
coverage 0.96001 0.95415 0.94573 0.94724 0.94071 0.94067

a 1,505 excluded iterations.
b 9 excluded iterations.

Figure B.29: Shadow plots of the Breslow estimators in the randomly censored scenario with
n = 50 andm = 25.
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Figure B.30: Shadow plots of the Breslow estimators in the randomly censored scenario with
n = 26 andm = 13 (350 iterations excluded).

Table B.7: Bias of the estimated log-HRs in the randomly censored scenarios.

Standard
Model Model 1 Model 2

n m Measure
of bias

ZA ZA Q ZA Q ZN

50 25 mean bias 0.00011 -0.00029 0.00226 -0.00021 -0.07464 0.00103
median bias -0.00088 -0.00128 0.00421 -0.00139 -0.02309 0.00033
RMSE 0.43319 0.45225 1.15243 0.47317 11.36095 0.15712
coverage 0.95185 0.94759 0.94544 0.94272 0.94098 0.94114

50 10a mean bias 0.00134 0.00135 -0.03612 0.00079 -0.00795 -0.00026
median bias 0.00237 0.00445 -0.01255 0.00546 -0.10112 0.00023
RMSE 0.80513 0.84112 6.04802 0.88731 61.25004 0.28904
coverage 0.97681 0.97091 0.95405 0.96482 0.94782 0.94774

26 13b mean bias 0.00138 0.00235 0.00486 0.00334 -0.01111 0.00033
median bias 0.00410 0.00666 0.00400 0.00711 0.00524 0.00005
RMSE 0.78476 0.83879 1.85816 0.90509 14.19590 0.37999
coverage 0.95941 0.95004 0.94555 0.94098 0.93654 0.93654

a 2133 excluded iterations.
b 350 excluded iterations.
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B.2. Resampling-based inference for the ATE using the g-formula

The subsequent table and figures were generated within the scope of the simulation study
presented in Subsection 4.1.2.

Table B.8: Frequency of errors and convergence issues for the simulation study that investigates
the resampling methods on the basis of the g-formula.

mean number of
invalid EBS samples

(out of 1,000)Scenario n β01A

Iterations
with errors

(out of 5,000)

Iterations
with conver-
gence issues
(out of 5,000)

t=1 t=3 t=5 t=7 t=9

No censoring 50 -2 0 16 46.7 120.0 127.3 133.6 140.6
0 0 33 82.3 112.5 117.4 123.1 129.1
2 8 464 85.1 90.3 94.5 97.9 100.7

75 -2 0 0 2.7 6.3 6.6 6.8 7.1
0 0 0 10.0 10.9 11.3 11.9 12.5
2 1 28 84.1 86.5 89.6 92.8 95.9

100 -2 0 0 0.0 0.1 0.1 0.1 0.1
0 0 0 0.2 0.2 0.2 0.2 0.3
2 0 0 22.6 23.1 23.7 24.6 25.5

Light censoring 50 -2 1 100 68.5 169.7 179.0 187.3 196.3
0 5 137 95.8 134.8 140.5 147.5 154.0
2 2 547 69.4 73.3 76.7 79.3 81.3

75 -2 0 0 12.7 26.7 27.7 28.7 30.0
0 0 0 29.7 33.1 34.1 35.5 37.1
2 4 108 92.5 95.4 98.5 101.7 104.4

100 -2 0 0 0.5 1.0 1.0 1.0 1.0
0 0 0 2.2 2.3 2.4 2.5 2.6
2 0 4 48.7 49.6 50.9 52.5 53.9

Heavy censoring 50 -2 10 501 1.1 180.4 191.9 200.7 208.2
0 3 359 112.0 155.5 162.4 171.0 176.6
2 8 580 80.1 83.7 87.4 90.5 92.0

75 -2 0 11 43.3 86.7 89.7 93.5 97.7
0 1 14 62.7 72.1 74.2 77.1 79.2
2 5 287 80.8 83.2 85.9 88.3 89.4

100 -2 0 0 5.8 11.0 11.3 11.7 12.2
0 0 0 14.6 15.4 15.8 16.3 16.8
2 3 40 77.4 78.8 80.9 83.1 84.3

200 2 0 0 0.6 0.6 0.6 0.6 0.6
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mean number of
invalid EBS samples

(out of 1,000)Scenario n β01A

Iterations
with errors

(out of 5,000)

Iterations
with conver-
gence issues
(out of 5,000)

t=1 t=3 t=5 t=7 t=9

Low treatment 50 -2 1 45 97.9 167.4 173.7 182.0 190.7
probability 0 4 138 103.3 143.0 148.2 154.9 161.3

2 9 331 134.6 144.5 149.5 155.2 160.0

75 -2 0 0 12.2 15.6 16.0 16.6 17.4
0 0 0 30.1 33.5 34.4 35.7 37.2
2 0 7 64.8 66.0 67.6 69.6 71.5

100 -2 0 0 0.3 0.4 0.4 0.4 0.4
0 0 0 2.3 2.3 2.4 2.5 2.6
2 0 0 10.0 10.1 10.3 10.6 10.9

High treatment 50 -2 8 501 34.6 133.5 151.8 160.7 167.7
probability 0 4 141 104.4 149.0 156.8 164.3 170.9

2 8 536 66.3 70.3 72.1 72.9 73.3

75 -2 0 12 21.8 71.0 76.8 79.9 83.1
0 0 0 29.5 33.5 34.9 36.4 37.9
2 6 335 73.4 77.3 80.4 82.7 83.9

100 -2 0 0 4.4 13.1 14.0 14.5 14.9
0 0 0 2.3 2.4 2.5 2.6 2.7
2 2 66 80.0 82.9 85.9 88.6 89.9

200 2 0 0 1.3 1.3 1.3 1.4 1.4

Low variance of 50 -2 1 63 40.9 131.5 140.7 147.5 155.6
the covariates 0 1 77 57.3 104.4 108.9 114.3 119.7

2 9 510 69.2 73.6 76.9 79.1 80.3

75 -2 0 0 4.8 14.6 15.3 15.9 16.7
0 0 0 13.5 17.8 18.3 19.1 20.0
2 0 87 85.3 88.2 91.3 94.6 97.3

100 -2 0 0 0.1 0.4 0.5 0.5 0.5
0 0 0 0.8 1.0 1.0 1.0 1.1
2 1 5 45.0 46.0 47.2 48.8 50.1
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mean number of
invalid EBS samples

(out of 1,000)Scenario n β01A

Iterations
with errors

(out of 5,000)

Iterations
with conver-
gence issues
(out of 5,000)

t=1
a t=3

a t=5
a t=7

a t=9
a

High variance of 50 -2 3 475 184.2 235.0 245.2 254.9 263.8
the covariates 0 11 501 190.2 201.8 211.0 220.3 228.2

2 9 688 111.5 117.9 126.0 133.5 139.4

75 -2 0 0 88.2 99.5 102.7 106.5 110.4
0 0 17 93.5 95.9 99.3 103.4 107.0
2 1 183 113.4 116.7 120.8 124.4 127.0

100 -2 0 0 6.9 7.6 7.8 8.0 8.3
0 0 0 15.9 16.1 16.8 17.5 18.2
2 0 6 76.2 77.7 80.1 82.6 84.6

Type II censoring 50 -2 0 0 20.7 26.5 27.6 28.7 29.9
0 0 0 16.8 22.5 23.0 23.3 23.9
2 0 0 38.3 45.3 45.7 46.0 46.4

a For the scenario with type II censoring, we considered t ∈ {2, 4, 6, 8, 10}, t ∈ {1, 2, 3, 4, 5}, and
t ∈ {0.5, 1, 1.5, 2, 2.5} for β01A = −2, 0, 2, respectively.
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Figure B.31: Coverage of the g-formula CIs in the scenario with no censoring and β01A=0.
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Figure B.32: Coverage of the g-formula CIs in the scenario with no censoring and β01A=2.
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Figure B.33: Coverage of the g-formula CIs in the scenario with light censoring and β01A=−2.
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Figure B.34: Coverage of the g-formula CIs in the scenario with light censoring and β01A=0.
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Figure B.35:Coverage of the g-formula CIs in the scenariowith heavy censoring andβ01A=−2.
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Figure B.36: Coverage of the g-formula CIs in the scenario with heavy censoring and β01A=0.
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Figure B.37: Coverage of the g-formula CIs in the scenario with heavy censoring and β01A=2.
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Figure B.38: Coverage of the g-formula CIs in the scenario with low treatment probability and
β01A=−2.

n

t = 1

n

t = 3

n

t = 5

n

t = 7

n

t = 9

Figure B.39: Coverage of the g-formula CIs in the scenario with low treatment probability and
β01A=0.
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Figure B.40: Coverage of the g-formula CIs in the scenario with low treatment probability and
β01A=2.
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Figure B.41: Coverage of the g-formula CIs in the scenario with high treatment probability and
β01A=−2.
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Figure B.42: Coverage of the g-formula CIs in the scenario with high treatment probability and
β01A=2.
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Figure B.43: Coverage of the g-formula CIs in the scenario with low variance of the covariates
and β01A=−2.
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Figure B.44: Coverage of the g-formula CIs in the scenario with low variance of the covariates
and β01A=0.

n

t = 1

n

t = 3

n

t = 5

n

t = 7

n

t = 9

Figure B.45: Coverage of the g-formula CIs in the scenario with low variance of the covariates
and β01A=2.
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Figure B.46: Coverage of the g-formula CIs in the scenario with high variance of the covariates
and β01A=−2.
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Figure B.47: Coverage of the g-formula CIs in the scenario with high variance of the covariates
and β01A=0.
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Figure B.48: Coverage of the g-formula CIs in the scenario with high variance of the covariates
and β01A=2.
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Figure B.49: Coverage of the g-formula CIs in the scenario with type II censoring and
β01A=−2.
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Figure B.50: Coverage of the g-formula CIs in the scenario with type II censoring and β01A=0.
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Figure B.51: Coverage of the g-formula CIs in the scenario with type II censoring and β01A=2.
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Figure B.52: Coverage of the g-formula CBs in the scenario with no censoring and β01A=−2.
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Figure B.53: Coverage of the g-formula CBs in the scenario with no censoring and β01A=0.
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Figure B.54: Coverage of the g-formula CBs in the scenario with no censoring and β01A=2.
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Figure B.55:Coverage of the g-formula CBs in the scenario with light censoring and β01A=−2.
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Figure B.56: Coverage of the g-formula CBs in the scenario with light censoring and β01A=0.

n

Figure B.57: Coverage of the g-formula CBs in the scenario with light censoring and β01A=2.
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Figure B.58:Coverage of the g-formula CBs in the scenario with heavy censoring and β01A=0.
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Figure B.59:Coverage of the g-formula CBs in the scenario with heavy censoring and β01A=2.
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Figure B.60: Coverage of the g-formula CBs in the scenario with low treatment probability and
β01A=−2.
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Figure B.61: Coverage of the g-formula CBs in the scenario with low treatment probability and
β01A=0.
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Figure B.62: Coverage of the g-formula CBs in the scenario with low treatment probability and
β01A=2.
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Figure B.63: Coverage of the g-formula CBs in the scenario with high treatment probability
and β01A=−2.
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Figure B.64: Coverage of the g-formula CBs in the scenario with high treatment probability
and β01A=0.
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Figure B.65: Coverage of the g-formula CBs in the scenario with high treatment probability
and β01A=2.
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Figure B.66: Coverage of the g-formula CBs in the scenario with low variance of the covariates
and β01A=−2.
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Figure B.67: Coverage of the g-formula CBs in the scenario with low variance of the covariates
and β01A=0.
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Figure B.68:Coverage of the g-formula CBs in the scenario with high variance of the covariates
and β01A=−2.
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Figure B.69:Coverage of the g-formula CBs in the scenario with high variance of the covariates
and β01A=0.
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Figure B.70:Coverage of the g-formula CBs in the scenario with high variance of the covariates
and β01A=2.
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Figure B.71: Coverage of the g-formula CBs in the scenario with type II censoring and
β01A=−2.
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Figure B.72:Coverage of the g-formula CBs in the scenario with type II censoring and β01A=0.
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Figure B.73:Coverage of the g-formula CBs in the scenario with type II censoring and β01A=2.
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In the following, we present the results of the tests on the scaled Schoenfeld residuals
that were performed within the scope of the data analysis in Subsection 4.1.3.

Figure B.74: Test of the proportional hazards assumption for the Cox model w.r.t. relapse.
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Figure B.75: Test of the proportional hazards assumption for the Cox model w.r.t. death.
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B.2. Resampling-based inference for the ATE using PS matching

The table and the figures below complement the outcomes of the simulation study de-
scribed in Subsection 4.2.1.

Table B.9: Frequency of errors and convergence issues for the simulation study that investigates
the resampling methods on the basis of PS matching.

mean number of
invalid EBS samples

(out of 1,000)Scenario n β01A

Iterations
with errors

(out of 5,000)

Iterations
with conver-
gence issues
(out of 5,000)

t=1 t=3 t=5 t=7 t=9

No censoring 50 -2 0 174 249.1 517.8 525.3 525.2 506.5
0 0 169 449.1 525.5 525.5 525.0 467.3
2 0 153 525.3 525.7 525.7 516.0 364.1

75 -2 0 0 38.4 64.7 64.8 64.8 64.4
0 0 0 61.4 65.1 65.1 65.1 62.7
2 0 0 65.1 65.1 65.1 64.9 55.1

100 -2 0 0 2.3 3.3 3.3 3.3 3.3
0 0 0 3.2 3.3 3.3 3.3 3.2
2 0 0 3.3 3.3 3.3 3.3 3.0

Light censoring 50 -2 0 164 257.9 520.2 527.0 526.5 467.9
0 0 188 454.3 532.3 532.3 528.5 381.2
2 0 123 527.9 528.3 528.2 489.1 232.6

75 -2 0 2 37.6 63.5 63.7 63.7 61.6
0 0 2 59.5 63.2 63.2 63.1 54.4
2 0 1 64.3 64.3 64.3 62.8 38.5

100 -2 0 0 2.1 3.1 3.1 3.1 3.0
0 0 0 3.1 3.1 3.1 3.1 2.9
2 0 0 3.2 3.2 3.2 3.2 2.4

Heavy censoring 50 -2 0 169 246.6 517.1 526.3 518.6 360.3
0 0 124 453.3 537.4 537.4 504.8 226.3
2 1 56 531.4 531.9 528.9 385.3 95.2

75 -2 0 1 39.0 65.8 66.1 66.0 55.9
0 0 0 60.3 63.9 63.9 62.7 36.6
2 0 1 67.1 67.1 67.1 56.5 17.0

100 -2 0 0 2.2 3.2 3.3 3.3 3.0
0 0 0 2.9 3.0 3.0 3.0 2.2
2 0 0 3.1 3.1 3.1 2.8 1.2
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mean number of
invalid EBS samples

(out of 1,000)Scenario n β01A

Iterations
with errors

(out of 5,000)

Iterations
with conver-
gence issues
(out of 5,000)

t=1 t=3 t=5 t=7 t=9

Low treatment 50 -2 0 1,122 566.1 801.1 801.6 799.3 657.5
probability 0 0 1,067 679.0 801.4 801.4 795.8 588.8

2 0 1,021 788.0 802.2 802.1 790.4 538.6

75 -2 0 85 266.2 314.8 314.8 314.7 291.6
0 0 54 288.1 307.2 307.2 307.1 268.9
2 0 64 307.3 308.3 308.3 307.8 256.0

100 -2 0 1 57.2 62.1 62.1 62.1 60.1
0 0 0 62.1 63.7 63.7 63.7 59.7
2 0 0 64.3 64.3 64.3 64.3 59.1

High treatment 50 -2 3 2,737 269.0 842.9 908.0 911.9 839.4
probability 0 2 2,443 749.7 913.6 913.6 907.6 670.1

2 5 883 884.2 884.5 882.7 688.8 190.6

75 -2 0 635 253.8 592.8 606.6 606.9 594.2
0 0 599 572.5 610.9 610.9 610.7 530.9
2 0 262 597.3 597.3 597.3 528.6 187.8

100 -2 0 93 135.9 277.7 279.8 279.8 278.1
0 0 83 265.0 271.6 271.6 271.6 253.5
2 0 42 270.7 270.7 270.7 254.2 109.7

200 -2 0 0 0.9 1.3 1.3 1.3 1.3
0 0 0 1.3 1.3 1.3 1.3 1.3
2 0 0 1.4 1.4 1.4 1.4 1.0

Low variance of 50 -2 0 30 130.7 338.0 348.1 348.3 330.5
the covariates 0 0 41 250.4 356.6 356.7 356.3 292.3

2 0 28 356.1 357.4 357.4 343.3 192.0

75 -2 0 0 7.7 15.7 15.8 15.8 15.6
0 0 0 13.5 16.2 16.2 16.2 15.1
2 0 0 17.4 17.4 17.4 17.1 12.1

100 -2 0 0 0.1 0.2 0.2 0.2 0.2
0 0 0 0.3 0.3 0.3 0.3 0.3
2 0 0 0.3 0.3 0.3 0.3 0.3
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mean number of
invalid EBS samples

(out of 1,000)Scenario n β01A

Iterations
with errors

(out of 5,000)

Iterations
with conver-
gence issues
(out of 5,000)

t=1
a t=3

a t=5
a t=7

a t=9
a

High variance of 50 -2 0 1,236 699.9 834.6 835.8 812.7 559.0
the covariates 0 0 1,019 830.2 839.0 838.7 778.1 402.8

2 0 663 835.7 835.8 829.9 655.1 221.9

75 -2 0 86 335.7 360.0 360.0 359.0 305.1
0 0 88 353.0 353.4 353.4 347.0 238.4
2 0 61 357.6 357.6 357.4 326.6 156.3

100 -2 0 2 76.6 79.1 79.1 79.0 72.6
0 0 1 80.4 80.4 80.4 80.1 64.2
2 0 5 86.2 86.2 86.2 82.9 47.7

Type II censoring 50 -2 0 116 481.6 528.8 525.2 496.9 256.4
0 0 163 450.6 526.6 520.5 508.6 377.7
2 0 140 448.9 489.2 483.9 464.4 332.5

75 -2 0 1 61.6 63.9 63.9 63.1 40.4
0 0 1 60.4 63.8 63.7 63.5 55.6
2 0 1 59.8 60.9 60.8 60.3 50.8

100 -2 0 0 3.2 3.3 3.3 3.3 2.1
0 0 0 3.3 3.3 3.3 3.3 2.9
2 0 0 3.2 3.2 3.2 3.2 2.7

a For the scenario with type II censoring, we considered t ∈ {2, 4, 6, 8, 10}, t ∈ {1, 2, 3, 4, 5}, and
t ∈ {0.5, 1, 1.5, 2, 2.5} for β01A = −2, 0, 2, respectively.
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Figure B.76: Coverage of the PS-matched CIs in the scenario with no censoring and β01A=−2.
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Figure B.77: Coverage of the PS-matched CIs in the scenario with no censoring and β01A=0.
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Figure B.78: Coverage of the PS-matched CIs in the scenario with no censoring and β01A=2.
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Figure B.79: Coverage of the PS-matched CIs in the scenario with light censoring and β01A=0.
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Figure B.80: Coverage of the PS-matched CIs in the scenario with light censoring and β01A=2.
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Figure B.81: Coverage of the PS-matched CIs in the scenario with heavy censoring and
β01A=−2.
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Figure B.82: Coverage of the PS-matched CIs in the scenario with heavy censoring and
β01A=2.
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Figure B.83: Coverage of the PS-matched CIs in the scenario with low treatment probability
and β01A=−2.
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Figure B.84: Coverage of the PS-matched CIs in the scenario with low treatment probability
and β01A=0.
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Figure B.85: Coverage of the PS-matched CIs in the scenario with low treatment probability
and β01A=2.
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Figure B.86: Coverage of the PS-matched CIs in the scenario with high treatment probability
and β01A=−2.
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Figure B.87: Coverage of the PS-matched CIs in the scenario with high treatment probability
and β01A=0.
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Figure B.88:Coverage of the PS-matched CIs in the scenario with low variance of the covariates
and β01A=−2.
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Figure B.89:Coverage of the PS-matched CIs in the scenario with low variance of the covariates
and β01A=0.
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Figure B.90:Coverage of the PS-matched CIs in the scenario with low variance of the covariates
and β01A=2.
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Figure B.91: Coverage of the PS-matched CIs in the scenario with high variance of the covari-
ates and β01A=−2.
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Figure B.92: Coverage of the PS-matched CIs in the scenario with high variance of the covari-
ates and β01A=0.
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Figure B.93: Coverage of the PS-matched CIs in the scenario with high variance of the covari-
ates and β01A=2.
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Figure B.94: Coverage of the PS-matched CIs in the scenario with type II censoring and
β01A=−2.
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Figure B.95: Coverage of the PS-matched CIs in the scenario with type II censoring and
β01A=0.
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Figure B.96: Coverage of the PS-matched CIs in the scenario with type II censoring and
β01A=2.
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Figure B.97:Coverage of the PS-matched CBs in the scenario with no censoring and β01A=−2.
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Figure B.98: Coverage of the PS-matched CBs in the scenario with no censoring and β01A=0.
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Figure B.99: Coverage of the PS-matched CBs in the scenario with no censoring and β01A=2.
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Figure B.100: Coverage of the PS-matched CBs in the scenario with light censoring and
β01A=0.
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Figure B.101: Coverage of the PS-matched CBs in the scenario with light censoring and
β01A=2.
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Figure B.102: Coverage of the PS-matched CBs in the scenario with heavy censoring and
β01A=−2.
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Figure B.103: Coverage of the PS-matched CBs in the scenario with heavy censoring and
β01A=0.
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Figure B.104: Coverage of the PS-matched CBs in the scenario with heavy censoring and
β01A=2.
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Figure B.105: Coverage of the PS-matched CBs in the scenario with low treatment probability
and β01A=−2.
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Figure B.106: Coverage of the PS-matched CBs in the scenario with low treatment probability
and β01A=0.
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Figure B.107: Coverage of the PS-matched CBs in the scenario with low treatment probability
and β01A=2.
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Figure B.108: Coverage of the PS-matched CBs in the scenario with high treatment probability
and β01A=−2.
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Figure B.109: Coverage of the PS-matched CBs in the scenario with high treatment probability
and β01A=0.
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Figure B.110: Coverage of the PS-matched CBs in the scenario with high treatment probability
and β01A=2.

n



Figure B.111: Coverage of the PS-matched CBs in the scenario with low variance of the covari-
ates and β01A=−2.
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Figure B.112: Coverage of the PS-matched CBs in the scenario with low variance of the covari-
ates and β01A=0.
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Figure B.113: Coverage of the PS-matched CBs in the scenario with low variance of the covari-
ates and β01A=2.
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Figure B.114: Coverage of the PS-matched CBs in the scenario with high variance of the co-
variates and β01A=−2.
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Figure B.115: Coverage of the PS-matched CBs in the scenario with high variance of the co-
variates and β01A=0.
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Figure B.116: Coverage of the PS-matched CBs in the scenario with high variance of the co-
variates and β01A=2.
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Figure B.117: Coverage of the PS-matched CBs in the scenario with type II censoring and
β01A=−2.
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Figure B.118: Coverage of the PS-matched CBs in the scenario with type II censoring and
β01A=0.
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