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Abstract— Physiological studies have confirmed that there are
differences in facial activities between depressed and healthy
individuals. Therefore, while protecting the privacy of subjects,
substantial efforts are made to predict the depression severity
of individuals by analyzing Facial Keypoints Representation
Sequences (FKRS) and Action Units Representation Sequences
(AURS). However, those works has struggled to examine the
spatial distribution and temporal changes of Facial Keypoints
(FKs) and Action Units (AUs) simultaneously, which is limited
in extracting the facial dynamics characterizing depressive cues.
Besides, those works don’t realize the complementarity of effec-
tive information extracted from FKRS and AURS, which reduces
the prediction accuracy. To this end, we intend to use the recently
proposed Multi-Layer Perceptrons with gating (gMLP) archi-
tecture to process FKRS and AURS for predicting depression
levels. However, the channel projection in the gMLP disrupts the
spatial distribution of FKs and AUs, leading to input and output
sequences not having the same spatiotemporal attributes. This
discrepancy hinders the additivity of residual connections in a
physical sense. Therefore, we construct a novel MLP architecture
named DepressionMLP. In this model, we propose the Dual
Gating (DG) and Mutual Guidance (MG) modules. The DG
module embeds cross-location and cross-frame gating results into
the input sequence to maintain the physical properties of data to
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make up for the shortcomings of gMLP. The MG module takes
the global information of FKRS (AURS) as a guidance mask to
filter the AURS (FKRS) to achieve the interaction between FKRS
and AURS. Experimental results on several benchmark datasets
show the effectiveness of our method.

Index Terms— Depression level prediction, facial keypoints,
action units, dual gating module, mutual guidance module.

I. INTRODUCTION

DEPRESSION can cause being troubled by negative emo-
tions for a long time and affect one’s physical and mental

health. What is more serious is that patients with depression
potentially tend to engage in self-mutilation and suicide due to
the loss of interest in life [1]. Nowadays, due to the increase
of uncertainties in society, people frequently have to bear
more stress and thus have a higher chance of suffering from
depression. The diagnosis of depression regularly requires the
joint consultation of experienced doctors, which not only tires
doctors but also delays the cure of patients. Facing the current
situation, it is of practical value to use machine learning
techniques to achieve automatic depression level prediction.

According to physiological studies [2], [3], the facial activ-
ities of depressed individuals differ from those of healthy
individuals. That is to say, facial changes can be used as a
biomarker to analyze the depression severity of an individ-
ual. Thus, many researchers [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15] have proposed various methods
to capture depression cues from facial images or videos
to automatically estimate the Beck Depression Inventory-II
(BDI-II) scores [16], as shown in Table I. The works [4],
[5] combine hand-crafted patterns with the Three Orthog-
onal Plane (TOP) framework [17] to obtain the histogram
features, but those features are insensitive to salient informa-
tion associated with depression [18]. Moreover, the process
of extracting hand-crafted patterns is closely linked to the
designer’s experience, usually resulting in the loss of some
valid information. To this end, some deep neural network
models have been proposed to examine facial images [6], [7],
[9], [10], [15] or videos [8], [11], [12], [13], [14] of individuals
for extracting high-level representations of depression cues.
However, collecting and processing the subjects’ facial images
and videos carries the hidden danger of privacy leakage.
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TABLE I
THE BDI-II SCORE AND CORRESPONDING DEPRESSION DEGREES

Hence, some methods [19], [20], [21], [22], [23], [24], [25]
utilize Facial Keypoint Representation Sequence (FKRS) and
Action Units Representation Sequence (AURS) to predict the
depression levels. However, both the Convolutional Neural
Networks (CNN) used in [19], [20], [21], [22], and [24] and
the Long Short Term Mermory (LSTM) used in [23] and [25]
are difficult to simultaneously examine the spatial distribution
and temporal changes of Facial Keypoints (FKs) and Action
Units (AUs). Besides, those methods [19], [20], [21], [22],
[23], [24], [25] don’t explore the interaction between FKRS
and AURS, which makes the effective information extracted
from FKRS and AURS unable to complement each other and
reduces the prediction accuracy.

Recently, the Multi-Layer Perceptrons (MLPs) with gating
(gMLP) [26], a pure multi-layer perceptron architecture with
less parameters, is designed and can be as good as Vision
Transformer [27] in modeling sequences. However, when a
sequence A is input into the channel projection in the gMLP,
the resulting sequence B cannot have the same spatial structure
as A. In this way, the residual connection of A and B, although
numerically addable, are not guaranteed to be rational in a
physical sense. Thus, the gMLP is not conducive to examining
the spatial distribution differences of FKs and AUs among
individuals with different depression levels.

To alleviate the above issues, we construct a novel
MLP-based architecture termed as DepressionMLP to predict
the BDI-II score using FKRS and AURS. In our model,
we propose two novel modules namely Dual Gating (DG) and
Mutual Guidance (MG) modules. The DG module embeds
cross-location and cross-frame gating results into the input
sequence through attention weighting to ensure that the input
and output sequences have the same spatiotemporal attributes.
Therefore, our DG module can compensate for the shortcom-
ings of gMLP. Moreover, the MG module uses the global
information of FKRS (AURS) as a guidance mask to filter
AURS (FKRS) to achieve the interaction between two type
of sequences and improve the perception of depression cues.
It should be noted that although convolutional layers are
used in our model, Conv1D and Conv2D with kernel size
1 are equivalent to right multiplication block matrices and
matrix multiplication operations along channel dimensions,
respectively. Therefore, our DepressionMLP still is an MLP
architecture. In this way, we can follow the steps below to
predict the depression severity of an individual:

Firstly, in the process of subjects completing interactive
tasks, we use the OpenFace tooklit to record coordinates
of FKs and AUs. The long-term FKRS and AURS can be
obtained. Then, the long-term FKRS and AURS are divided
into fixed-length short-term FKRS and AURS, which are fed
into the constructed DepressionMLP architecture to predict the

BDI-II scores. Finally, we take the average of BDI-II scores
obtained from those short-term sequences as the prediction
result corresponding to the subject. Experimental results on
several publicly available depression databases demonstrate
the effectiveness of our method.

Our main contribution can be summarized as follows:
(1) Our constructed DepressionMLP architecture enables

end-to-end depression level prediction using FKRS and AURS.
In addition, our DepressionMLP can obtain the prediction
accuracy comparable to that of methods using facial images
or videos.

(2) The proposed DG module compensates for the issues of
gMLP’s inability to maintain the spatiotemporal attributes of
sequences and ensure the additivity of residual connections in
the physical sense. Therefore, the DG module is more helpful
in capturing facial dynamic patterns reflecting depression
levels from FKRS and AURS.

(3) The proposed MG module can realize the interaction
between two types of sequences in the form of mutual filtering.
Therefore, the MG module is able to make the effective
information extracted from FKRS and AURS complementary,
and improve the model’s perception of depression cues.

II. RELATED WORKS

In this paper, we propose a novel MLP architecture namely
DepressionMLP to predict an individual’s depression level.
Therefore, in this section, we briefly review prior works on
this subject.

A. Multi-Layer Perceptrons for Sequence Modeling

In recent years, some researchers [26], [28] questioned
whether the convolution operation and attention mechanism
are necessary conditions for visual tasks to achieve good
experimental performance. Therefore, they used MLPs to build
some simpler architectures to confirm their consideration.
Tolstikhin et al. [28] proposed two types of MLP layers: one is
the channel-mixing layer to independently process each token
to achieve communication between channels, and the other is
the token-mixing layer to independently process each chan-
nel to achieve communication between tokens. Furthermore,
Liu et al. [26] proposed a network architecture of MLP with
gating mechanism, which spat the input sequence into two
independent parts along the channel dimension and realizes
cross-token interaction through linear projection and gating
function. However, Wang et al. [29] believed that the above
MLP-based models all use static parameters to fuse tokens
and are difficult to adapt to the content of the tokens to be
fused. Hence, they presented a network architecture named
DynaMixer, which generated a mixing matrix dependent on
the input token sequence through two linear mappings and
pumped it into the MLP-Mixer framework. Unlike the above
works dealing with token sequences, Tang et al. [30] used
MLPs along the row axis and column axis of the input tensor
and obtained a sparse MLP model through parameter sharing.

From those above works, we can observe that MLP-based
network architectures are effective for modeling sequence data.
In other words, it is feasible to utilize MLPs to process FKRS
and AURS to predict the depression level of an individual.
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Fig. 1. The pipline of our DepressionMLP architecture for automatic depression level estimation. The OpenFace tooklit is used to extract the FKs and
AUs. The FKRS (AURS) refers to the Facial Keypoints (Action Units) Representation Sequence. “RX” (“RY”) and “RAU” are obtained through dividing the
long-term FKRS about X (Y) coordinate and the long-term AURS, respectively. “DG” and “MG” are short for Dual Gating and Mutual Guidance modules.
“FCL” means to the Fully Connected Layer. The loss function is Root Mean Square Error (RMSE), as shown in Eq. (21).

B. Depression Level Prediction via Facial Features

In the past decade, many works [31], [32], [33] based on
deep neural networks have been proposed and achieved good
experimental performance. Thus, some researchers used net-
work models to investigate the facial dynamics of individuals
with different depression levels. Zhou et al. [7] constructed
a DepressNet to select facial regions related to depression to
predict BDI-II scores. Similarly, He et al. [34] presented a
Deep Local Global Attention Convolutional Neural Network
to highlight the facial regions related to depression. The
authors in [12] proposed a Selective Element and Two Orders
Vectorization (SE-TOV) network. In this network, the SE
block was constructed to select useful elements from tensors
generated with receptive fields of different sizes. Moreover,
the TOV block was constructed to calculate first-order and
second-order statistics of tensors for the purpose of ten-
sor vectorization. Considering the spatiotemporal structure
of facial changes, Melo et al. [35] constructed a Decom-
posed Multiscale Spatiotemporal Network (DMSN) to extract
multi-scale representation of depression cues from spatial and
temporal perspectives. Also to examine the spatiotemporal
differences in the facial changes of individuals with different
depression levels, Niu et al. [36] proposed a spatiotemporal
attention mechanism to highlight discriminative frames related
to depression for improving the prediction accuracy.

To protect the privacy of individuals, some methods based
on FKs and AUs have been proposed. Syed et al. [22] used
the coordinates of FKs to calculate the speed and acceleration
of head movement, mouth opening, and eyelid movement.
Next, they estimated an individual’s depression level with
the partial least squares method. Similarly, Yang et al. [19]
calculated the range and speed of the displacements of FKs in
the horizontal and vertical directions along the temporal axis to
generate the histogram feature, which was fed into the CNN to
predict an individual’s depression level. Different from them,
the authors in [20] adopted 3DCNN to encode FKRS and
attention mechanism to weight the encoding results in spatial
and temporal dimensions to capture facial dynamic patterns
reflecting depression levels. Song et al. [24] used the Fourier

Transform to convert AUs, head pose and gaze directions
into spectral representations, which were input into CNN to
estimate the depression severity of a subject. Furthermore,
in the work of [21], Song et al. demonstrated how to use a fixed
frequency set to obtain the spectral representation with the
same size for any video. Again using multiple facial features,
Ray et al. [23] used the LSTM to train regressors for predicting
depression scores based on pose, gaze and AUs provided
by the dataset, respectively. Moreover, Muzammel et al. [25]
explored the impact of different fusion strategies of AUs and
speech modalities on predicting individual depression levels.

As mentioned above, previous works make it difficult to
examine both the spatial distribution and temporal changes of
FKs or AUs of individuals with different depression levels.
Besides, the depression-related information extracted from
FKRS and AURS cannot be enhanced due to the lack of
interaction between the two sequences.

III. OUR PROPOSED DEPRESSIONMLP ARCHITECTURE
FOR DEPRESSION LEVEL PREDICTION

In this paper, we construct a DepressionMLP architecture
to predict the depression level using FKRS and AURS. In our
method, the long-term FKRS and AURS are divided into
short-term FKRS and AURS segments. Then, the Depression-
MLP is used to estimate the BDI-II scores of those segments.
Finally, the average of those BDI-II scores is taken as the
assessment of an individual’s depression level. Fig. 1 gives the
complete process. As shown, “DG” and “MG” are the main
two modules, which are presented in the following sections.

A. Short-Term Representation Sequences Generation

As mentioned before, we estimate an individual’s depression
severity using our constructed DepressionMLP model, which
is an MLP architecture. Hence, it is necessary to generate
the input token sequences. It is assumed that the OpenFace
tooklit extracts FKs and AUs from all frames when the
subject completes all interactive tasks. In this way, we can
obtain the long-term FKRS about X coordinate, the long-term
FKRS about Y coordinate and the long-term AURS. Next,
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we divide these long-term representation sequences into fixed-
length short-term representation sequences, which are denoted
as “R̂X”, “R̂Y” and “R̂AU” as shown in Eq. (1).

R̂X =

 x11 x12 · · · x1N
...

...
...

xM1 xM2 · · · xM N

 ∈ RM×N

R̂Y =

 y11 y12 · · · y1N
...

...
...

yM1 yM2 · · · yM N

 ∈ RM×N

R̂AU =

 a11 a12 · · · a1P
...

...
...

aM1 aM2 · · · aM P

 ∈ RM×P

, (1)

where M is the number of frames for short-term representation
sequences. N = 68 and P = 35 are the number of FKs and
AUs, respectively.

To make the values in R̂X and R̂Y within the range of [0, 1],
we use Eq. (2) to normalize them. The corresponding results
are denoted as RX

∈ RM×N and RY
∈ RM×N . Due to the

splitting operation in the DG module, the number of rows and
columns in R̂AU must be even. So, we use Eq. (3) to interpolate
R̂AU to obtain RAU

∈ RM×N .{
RX

= R̂X/ (max (Ir , Ic)) ∈ RM×N

RY
= R̂Y/ (max (Ir , Ic)) ∈ RM×N , (2)

where Ir , Ic are the number of rows and columns of the frame,
respectively. max(·, ·) refers to taking the maximum value of
both. “/” refers to dividing a matrix by a constant.

RAU [
:, j

]
=


(

R̂AU
[
:,

j + 1
2

])
, j is an odd(

R̂AU
[
:,

j
2

]
+ R̂AU

[
:,

j
2 + 1

])
2

, j is an even,

(3)

where RAU [
:, j

]
refers to the j-th column of RAU and j =

1, · · · , N .
From the above process, it is easy to observe that “RX”,

“RY” and “RAU” are essentially temporal. Meanwhile, those
sequences also reflect facial changes, which is beneficial for
predicting depression levels.

B. Dual Gating Module for Capturing Depression Cues

To extract depression cues from FKRS and AURS, we pro-
pose a DG module to compensate for the limitation of gMLP.
Thus, in this section, we present the architecture of gMLP
and analyze its shortcomings in modeling temporal sequences.
Then, a detailed description of DG module is provided.

1) MLPs Layer With Gating: As a pure MLP architecture,
the gMLP is composed of several identical blocks. For sim-
plicity, we still refer to each block as gMLP. The purpose of
gMLP is to use the cross-token interaction to gate the cross-
channel interaction. Actually, the gMLP uses Eq. (4) to achieve
channel projection of the input sequence X ∈ RL×C , where L
and C denote the length of the sequence and the number of

channels, respectively. The result is denoted as Z. Then, along
the channel dimension, Z is spit into two parts (Z1, Z2) with
the same number of channels. Eq. (5) is adopted to obtain the
gating result Ẑ. Finally, the output G of gMLP is gained via
channel projection and residual connection as in Eq. (6).

Z = γ (NC(X) ⊗ W1) ∈ RL×D, (4)

where W1 ∈ RC×D is a learnable parameter matrix. NC(·)

refers to the normalization operation along the channel
dimension of the sequence. γ (·) is the nonlinear activation
function GELU [37]. “⊗” represents the matrix multiplication
operation.

Ẑ = Z1 ⊙ (W2 ⊗ Z2) ∈ RL×(D/2), (5)

where W2 ∈ RL×L is a learnable parameter matrix. “⊙” refers
to element-wise multiplication.

G = X ⊕ (Ẑ ⊗ W3) ∈ RL×C , (6)

where W3 ∈ R(D/2)×C is a learnable parameter matrix. “⊕”
is an element-wise addition operation.

From the above description, it can be seen that the gMLP
aggregates different channels through matrix right multipli-
cation during the channel projection process as in Eq. (4).
However, for the RX, RY and RAU, this operation makes the
number of columns in the processed sequence not necessarily
equal to the number of FKs or AUs. In other words, Eq. (4)
cannot make the processed sequence have the same spatial
structure as RX, RY and RAU. Therefore, the gMLP is limited
in capturing the differences in facial changes among individ-
uals with different depression levels.

2) The Dual Gating Module: To alleviate those issues in the
gMLP, we propose the DG module to embed cross-location
and cross-frame gating results into the RX, RY and RAU

in the form of weights to ensure that the output sequences
can maintain the same spatiotemporal attributes as the input
sequences. Fig. 2 displays the flow of DG module. As shown,
the DG module contains two parts: cross-location gating
embedding and cross-frame gating embedding. Since RX, RY

and RAU have the same size, we use R ∈ RM×N instead of
RX, RY and RAU for brevity of description.

For the cross-location gating embedding, we use Eq. (7)
to summarize the spatial structure of R. The corresponding
result is recorded as RL. It is necessary to point out that
the Conv1D layer in Fig. 2 and Eq. (7) is equivalent to
right multiplying a parameter matrix for R. In this way, each
column of RL can be regarded as the aggregation result of
all columns of R. In other words, each column of RL has the
same physical meaning. Thus, similar to the gMLP, RL can
be split into two parts RL

1 ∈ RM×
N
2 and RL

2 ∈ RM×
N
2 of the

same size along the column axis. Immediately afterwards, the
Eq. (8) is used to capture information about the cross-frame
interaction. The result is recorded as MF

2 . And we use Eq. (9)
to implement gating operation. The corresponding result is
denoted as GF→L. To preserve the spatiotemporal attribute of
the sequence, we use the attention mechanism to embed GF→L

into R and obtain RF→L as in Eq. (10).

RL
= δ(C1(R)) ∈ RM×N , (7)
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Fig. 2. The flow of DG module. “∥”, “⊤” and “⊎” are split, matrix transpose and concatenation operations, respectively. “⊙” and “⊕” refer to element-wise
multiplication and element-wise addition, respectively. For simplicity, “R” represents “RX”, “RY” or “RAU”. “Q” is the output result of “R” processed by
the DG module. Thus, “Q” can be “QX”, “QY” or “QAU”.

where C1(·) is a Conv1D layer and δ(·) is the ReLU activation
function.

MF
2 = σ(C1((RL

2 )
⊤
)) ∈ R

N
2 ×M , (8)

where RL
2 ∈ RM×

N
2 is obtained by splitting RL into two parts

of the same size i.e., RL
1 ∈ RM×

N
2 and RL

2 ∈ RM×
N
2 . σ(·) is

the Sigmoid activation function.

GF→L
= (MF

2)
⊤

⊙ RL
1 ∈ RM×

N
2 . (9)

RF→L
= Softmax(C1(GF→L)) ⊙ R ∈ RM×N . (10)

For the cross-frame gating embedding, we use Eq. (11)
instead of Eq. (7) to summarize the temporal changes of R.
The corresponding result is denoted as RF. Therefore, in the
same way as RL, each column of RF has the same physical
meaning. In this way, we split RF into the same two parts
RF

1 ∈ RN×
M
2 and RF

2 ∈ RN×
M
2 . Moreover, we replace the RL

2
in Eq. (8) with RF

2 to obtain the cross-location interaction
denoted as ML

2 . Therefore, we can implement the gating
operation as in Eq. (12). Similarly, in order to maintain the
spatiotemporal attributes of the sequence, we use (GL→F)

⊤

instead of GF→L in Eq. (10) to embed GL→F into R and denote
the result as RL→F. Finally, Eq. (13) is used to combine RF→L

and RL→F and obtain the output Q ∈ RM×N of DG module
by residual connection.

RF
= δ(C1(R⊤)) ∈ RN×M . (11)

GL→F
= (ML

2 )
⊤

⊙ RF
1 ∈ RN×

M
2 . (12)

Q = δ(C2(Concat(RF→L, RL→F))) ⊕ R ∈ RM×N ,

(13)

where C2(·) is Conv2D layer and Concat(·, ·) refers to the
concatenation operation along the channel axis.

From the above description, we can easily see that on
the one hand, the DG module utilizes the interaction among
frames (location) to implement the gating operation on cross-
location (cross-frame) aggregation results to select information
related to depression. On the other hand, the DG module

adopts the attention mechanism to ensure that the input and
output sequences have the same spatiotemporal attributes.
In this way, our proposed DG module not only enhances
the discriminative ability of depression cue representation, but
also guarantees the additivity of residual connections, thus
compensating for the limitations of gMLP.

C. The Mutual Guidance Module for Sequence Interaction

As mentioned above, we select the information associated
with depression in RX, RY and RAU using the DG module
and obtain the QX, QY and QAU. However, FKRS and AURS
are two types of sequences to characterize facial dynamics.
Therefore, it is necessary to take advantages of (QX, QY)

and QAU to enhance the model’s representation ability for
depression cues. To this end, we propose the MG module to
take the global information of (QX, QY) or QAU as a guidance
mask to filter QAU or (QX, QY) to achieve the interaction of
effective information extracted from FKRS and AURS. Fig. 3
gives the flow of MG module.

For the FKRS’s guidance to AURS, the Eq. (14) summarizes
the temporal changes for each facial keypoint in QX and QY.
The results are denoted as qX and qY. Moreover, as shown
in Eq. (15), we integrate qX and qY, the result is denoted as
qXY. After that, Eq. (16) is used to implement the FKRS’s
guidance to each facial action unit. Note that the term of
σ(C1(qXY)) ∈ RM×N in Eq. (16) is the guidance mask in
the guidance process of the FKRS to AURS.{

qX
= δ(C1((QX)

⊤
)) ∈ RN×1

qY
= δ(C1((QY)

⊤
)) ∈ RN×1.

(14)

qXY
= δ(WXY

⊗ Concat(qX, qY)) ∈ RM×1, (15)

where WXY
∈ RM×2N is a learnable parameter matrix i.e.,

a fully connected layer. Concat(·, ·) refers to the concatena-
tion operation along the row axis.

DP→U
= σ(C1(qXY)) ⊙ QAU

∈ RM×N . (16)
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Fig. 3. The flow of MG module. “QX”, “QY” and “QAU” are obtained by inputting “RX”, “RY” and “RAU” to the DM module. “⊤” and “⊎” are matrix
transpose and concatenation operations, respectively. “⊙” refers to element-wise multiplication. The red (orange) arrow indicates the guidance process of the
FKRS (AURS) to AURS (FKRS).

For the AURS’s guidance to FKRS, we use Eq. (17) to
summarize each facial action unit and obtain qAU. Immediately
after, Eq. (18) is adopted to implement the AURS’s guidance to
FKRS. The corresponding results are referred to as DU→X and
DU→Y. Note that the term of σ(C1(qAU)) ∈ RM×N in Eq. (18)
is the guidance mask in the guidance process of AURS
to FKRS.

qAU
= δ(WAU

⊗ δ(C1((QAU)
⊤
))) ∈ RM×1, (17)

where WAU
∈ RM×N is a learnable parameter matrix i.e.,

a fully connected layer.{
DU→X

= σ(C1(qAU)) ⊙ QX
∈ RM×N

DU→Y
= σ(C1(qAU)) ⊙ QY

∈ RM×N .
(18)

After completing the mutual guidance between FKRS and
AURS, we use Eq. (19) to calculate the estimated BDI-II score
for each facial keypoint and action unit. The corresponding
results are regarded as sX, sY and sAU. Moreover, Eq. (20) is
used to integrate these results to obtain the predicted value for
the BDI-II score.

sX
= δ(C1((DU→X)

⊤
)) ∈ RN×1

sY
= δ(C1((DU→Y)

⊤
)) ∈ RN×1

sAU
= δ(C1((DP→U)

⊤
)) ∈ RN×1.

(19)

s = δ(W ⊗ Concat(sX, sY, sAU)) ∈ R, (20)

where W ∈ R1×3N is a learnable parameter matrix i.e., a fully
connected layer. Concat(·, ·) refers to the concatenation
operation along the row axis.

From the above process, on the one hand, the MG module
achieves the interaction among two types of facial representa-
tion sequences through Eqs. (16) and (18). On the other hand,
it utilizes (QX and QY) or QAU to generate the guidance mask
to filter irrelevant parts in QAU or (QX and QY) while retaining
the discriminative information, which can reflect the facial
dynamic differences of individuals with different depression
levels. In addition, during the BDI-II score estimation stage,
we calculate and integrate the result of each facial keypoint
and action unit, which can comprehensively examine the role

of each facial component in the depression level estimation
task.

The relationship between Cross-Attention and MG module:
The Cross-Attention (CA) mechanism is a widely used method
for fusing two sequences (set as S1 and S2). The core of CA is
to aggregate S1 using the similarity results of S1 and S2. Thus,
the result of CA no longer have the same temporal attribute
as S1. Unlike this, our proposed MG module uses the global
information of S1 to generate a guidance mask for filtering S2
element by element. Therefore, the output of MG module has
the same temporal attribute as the input sequence, which is
more conductive to capturing discriminative facial dynamics.

IV. EXPERIMENTS

In this section, we briefly describe several databases used
in our experiments and present the details of our model. Then,
some ablation experiments are performed to show the feasibil-
ity of proposed modules. Finally, we illustrate the effectiveness
of our method by comparing it with previous works.

A. Databases and Metrics

In 2013 and 2014, Valstar et al. initiated a sub-track using
audio and video modalities to predict individual depression
levels in the Audio/Video Emotion Challenge (AVEC) com-
petition and released the corresponding databases.

The AVEC 2013 depression database collects audio and
video modal signals generated by participants during the
completion of human-computer interaction tasks. Specifically,
participants are required to sit in front of a computer and
perform 14 different tasks based on on-screen prompts. All
participants are native German speakers and between the
ages of 18 and 63. In the AVEC 2013 databases, there are
150 video recordings from 82 participants. The duration of
these 150 samples ranges from 20 minutes to 50 minutes.
And these 150 recordings are equally divided by the publisher
into training, development and test sets. It should be noted
that each participant is required to fill out the BDI-II scale
before conducting human-computer interaction tasks, and the
scale score is considered as the label for the corresponding
participant.
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The AVEC 2014 depression database is taken over from the
AVEC 2013 competition. Thus, they have the same acquisition
settings and participant age distribution. However, there are
only two tasks included in the AVEC 2014 database. In each
task, 150 videos are collected with durations ranging from
6 seconds to 4 minutes 8 seconds. And these 150 videos are
equally divided by the publisher into training, development
and test sets. Note that, in our experiments, we combine
the training, development, and test sets of those two tasks,
respectively. Hence, there are 100 video recordings in the
training, development, and test sets. While, we still refer to
the merged database as AVEC 2014.

To measure the accuracy of depression level estimation,
researchers often adopt the RMSE and MAE metrics. The
RMSE and MAE are calculated as shown in Eq. (21) and
Eq. (22), respectively. In addition, we also employ R2 and
Symmetric Mean Absolute Percentage Error (SMAPE) metrics
in the ablation experiments. The calculation formulas for them
are given in Eqs. (23) and (24).

RMSE =

√√√√ 1
K

K∑
k=1

(yk − ŷk)
2, (21)

where K is the number of samples. yk and ŷk are the true and
estimated BDI-II scores of the k-th sample, respectively.

MAE =
1
K

K∑
k=1

|yk − ŷk |. (22)

R2
= 1 −

∑K
k=1 (yk − ŷk)

2∑K
k=1 (yk − y)2

, (23)

where y is the mean of true values of the K samples.

SMAPE =
100%

K

K∑
k=1

|yk − ŷk |

(|yk | + |ŷk |)/2
. (24)

In addition, to demonstrate the robustness of our method,
we also conduct experiments on the Distress Analysis Inter-
view Corpus/Wizard of Oz (DAIC-WOZ) dataset [38]. Unlike
the AVEC 2013 and AVEC 2014 datasets, the DAIC-WOZ
does not provide the original videos and only provides 68 FKs
and 20 AUs for privacy reasons. The DAIC-WOZ dataset is the
part of the Distress Analysis Interview Corpus(DAIC), which
supports the diagnosis of psychological states such as anxiety,
depression and post-traumatic stress disorder through designed
clinical interviews. During the interview, the facial movements
of the subjects are recorded. For the DAIC-WOZ dataset,
it contains 189 participants, which answer the questions of
an animated virtual interviewer name Ellie. The label of each
participant is the PHQ-8 score. For the PHQ-8 score, 0-4 is
none, 5-9 is mild, 10-14 is moderate, 15-19 is moderate
to severe and 20-24 is severe. It should be noted that the
experiments on DAIC-WOZ is to demonstrate the robustness
of our method to different depression scale scores. Therefore,
we only present the comparative results in Part D.

B. Experimental Settings

1) Data Preprocessing: Some researchers [39], [40] have
found that the best prediction accuracy is gained when

Fig. 4. The impact of different M values in Eq. (1) on the prediction accuracy
of depression level on the AVEC 2013 (a) and AVEC 2014 (b) development
sets.

TABLE II
NETWORK LAYER PARAMETER SETTINGS FOR OUR PROPOSED MODULES

the frame rate is reduced from 30fps to 6fps. Hence, the
frame rate is adjusted to 6fps for the AVEC 2013 and
AVEC 2014 databases, and the resolution of all frames in
a video segment has been rescaled to 480 × 480. Moreover,
we employ the OpenFace toolkit [43] to extract the 68 FKs
and 35 AUs of the face. To determine the value of M in
Eq. (1), we perform experiments on the development sets
of AVEC 2013 and AVEC 2014. The corresponding results
are shown in Fig. 4. Therefore, we take the value of M to
be 18, which corresponds to 18 consecutive video frames
in a short-term video segment. In this way, according to
Eqs. (1)-(3), a short-term video segment with 18 frames can
be encoded as three token sequences, namely RX

∈ R18×68,
RY

∈ R18×68 and RAU
∈ R18×68. It should be pointed out

that the label of a short-term video segment is the same as the
label of the corresponding long-term video. And the coverage
rate between two adjacent video segments is 50%.

2) The Architecture of the DepressionMLP Model: In this
paper, as shown in Fig. 1, the DepressionMLP architecture is
constructed to estimate the depression level of an individual
with FKs and AUs. In this model, we propose DG and MG
modules, which are shown in Fig. 2 and Fig. 3, respectively.
The corresponding network layer parameter settings are pre-
sented in Table II.

3) Model Training: As pointed in [41], the data scheduling
is important for model training. In the AVEC 2013 and
AVEC 2014 datasets, the distribution of subjects’ labels
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TABLE III
EXPERIMENTAL PERFORMANCE USING DIFFERENT MODELS AND INPUTS ON AVEC 2013 AND AVEC 2014 DEVELOPMENT SETS. “CLG”

AND “CFG” REFER TO CROSS-LOCATION GATING EMBEDDING AND CROSS-FRAME GATING EMBEDDING, RESPECTIVELY

Fig. 5. Data storage form for AVEC 2013 and AVEC 2014 training sets.

(i.e. BDI-II scores) is uneven. Meanwhile, to eliminate the
influence of subject identity on predicting depression levels,
we store the training data in the manner shown in Fig. 5. In this
way, we take 4 segments from the file of each subject (e.g.,
subject_203_1) under each score (e.g., BDI_II_Socre_03) to
form an epoch (the next epoch is similar) and set the batchsize
to 8 to train our model. For our model, the loss function is
RMSE as shown in Eq. (21). We use the Keras deep learning
framework and adopt the Adam [42] optimizer with default
momentum values (0.9,0.999) for (β1 and β2). And the weight
decay and initial learning rate are set to 0.0001 and 0.0002,
respectively.

4) Model Validation and Testing: We use development sets
and test sets to complete the validation and testing of the
model. In both phases, the development and test sets are
preprocessed as described in Section IV B 1). Then, the
average of the predicted scores of all video segments is used
as the estimate of the corresponding subject’s BDI-II score.

C. Analysis of Ablation Experiments

As described in Section III, our constructed DepressionMLP
model mainly contains the DG and MG modules. Hence,
in this section, we perform some ablation experiments on the
development databases of AVEC 2013 and AVEC 2014 to
clarify the effectiveness of these two modules.

1) The Role of DG Module: We propose the DG module to
capture depression cues contained in FKRS and AURS through
cross-location and cross-frame gating embedding processes.

Thus, some experiments are conducted to demonstrate the
effectiveness of DG module in estimating BDI-II scores. The
corresponding results are shown in Table III.

From Table III, we can observe that the experimental per-
formance of “CLG+Linear” is better that of “gMLP+Linear”.
This is because the gMLP module cannot ensure the temporal
attribute of input sequences and the additivity of residual
connection. In contrast, the cross-location gating process
adopts the attention mechanism to embed the gating result
into the input sequence, which not only guarantees the ratio-
nality of data attributes and calculations, but also highlights
the information related to depression. This reason can also
be used to explain the comparison of “gMLP+Linear” and
“CFG+Linear”.

Moreover, it is not difficult to find from the compar-
ison between “CLG+Linear” and “CFG+Linear” that the
cross-frame gating process is more helpful in capturing facial
dynamic differences among individuals with different depres-
sion levels than the cross-location gating process. The reason
is that the cross-frame gating process examines the temporal
changes of each FK, which can reflects the impact of depres-
sion disorder on individual facial activity. The cross-location
gating process focuses on examining the spatial distribution
of FKs, so it is limited in extracting facial dynamic features.
Moreover, this fact indicates that it is beneficial to jointly
explore the temporal changes and spatial distribution of FKs
for capturing depression cues.

In addition, from the Table III, we can find that inputting
RAU can obtain better prediction accuracy than (RX, RY). This
result can be explained that AUs can characterize changes
in facial muscle movement, which helps reveal the impact
of depression disorder on individual facial activities. FKs
describe the geometric structure of the face, but some diffi-
culties arise in extracting depression cues due to the spatial
distribution of individual facial organs [43]. Moreover, one
can find that joint examination of FKs and AUs can improve
the experimental performance of depression level prediction.
This fact indicates that facial geometry and muscle movements
are both beneficial for capturing depressive cues from facial
activities. Therefore, in the following experiments, the inputs
of models involved are RX, RY and RAU.
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Fig. 6. Visualization of results using two models with gMLP and DG modules for RAU of individuals with different depression levels.
“320_3_05_None_gMLP” and “320_3_05_None_DG” refer to inputting RAU of 320_3 subject with the BDI-II score of 5 (None depression) into the
gMLP+Linear and DG+Linear models for depression level estimation, respectively. The red box displays the discriminative parts.

TABLE IV
EXPERIMENTAL PERFORMANCE USING DIFFERENT MODELS AND INPUTS ON AVEC 2013 AND AVEC 2014 DEVELOPMENT SETS. “GPU” REFERS TO

FKRS’S GUIDANCE ON AURS AS SHOWN BY THE RED ARROW IN FIG. 3 AND “GUP” REFERS TO AURS’S GUIDANCE ON FKRS AS SHOWN BY
THE ORANGE ARROW IN FIG. 3. “CA” IS SHORT FOR CROSS-ATTENTION. “DG+MG+LINEAR” IS OUR CONSTRUCTED DEPRESSIONNET

Furthermore, to illustrate the discriminative ability of DG
module, we show the visualization results of RAU being
processed by the models with gMLP and DG modules in
Fig. 6. From this figure, it is easy to observe that our proposed
DG module is more capable of perceiving differences in RAU

of individuals with different depression levels compared to
gMLP. This reason lies in the fact that the gMLP module
performs residual addition on two sequences with different
physical attributes, which reduces the model’s discriminative
ability. On the contrary, our DG module gates the input
sequences from a spatiotemporal perspective to obtain effec-
tive global information and utilizes attention mechanisms to
highlight content related to depression, while also ensuring the
feasibility of operations between sequences.

2) The Role of MG Module: In order to take the advantages
of FKRS and AURS, we propose the MG module to achieve
interaction between different sequences. Therefore, in this
section, we conduct various experiments to elucidate the
effectiveness and necessity of MG module in improving the
prediction accuracy of depression levels. The corresponding
experimental results are given in Table IV.

From the experimental results in Table IV, we can observe
that “DG+CA+Linear” has the lowest prediction accuracy.
This reason is that CA is unable to maintain temporal attributes
of the sequence during the process of aggregation, resulting in
the loss of facial dynamic differences in individuals with dif-
ferent depression levels. Besides, all three guidance processes
can bring improvements in prediction accuracy. Furthermore,
one can find that the guidance of RAU on (RX, RY) is more

conducive to capturing differences in facial dynamics among
individuals with different depression levels. The explanation
for this result is that facial muscles are more able to reflect
the impact of depression on subjects than FKs [44]. While,
it is not difficult to find that our MG module enhances the
ability to characterize depression cues by integrating facial
muscle changes (RAU) and spatial changes of facial keypoints
(RX, RY).

To further illustrate the effectiveness of MG module,
we present the visualization results of different guidance
processes in Fig. 7. From them, it is easy to see that the
distinguish ability of the representation sequence has been
further improved after the guidance process. Meanwhile, from
Fig. 7 (e)-(h), it can be observed that the facial dynamic
differences of individuals with different depression levels are
more reflected in the FKs between the 40th and 50th points.
In other words, dynamic changes in the corners of the eyes and
mouth are more beneficial for predicting individual depression
levels. Besides, from Fig. 7 (m)-(p), one can discover that
AUs related to eyes and mouth are more helpful in predicting
individual depression levels. This result is consistent with the
conclusions of physiological studies [45], [46].

3) Significance Analysis of DG and MG Modules: From the
results in Tables III and IV, it can be seen that our proposed
DG and MG modules do indeed improve the prediction
accuracy of depression levels. In this subsection, we use the
Friedman test to examine whether the accuracy gain brought
by those two modules are significant. The corresponding
results are shown in Table V.
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Fig. 7. Visualization of results using different guidance for RX and RAU. “331_1_05_None_DG_RX” and “320_3_05_None_DG+MG_RX” refers to
inputting RX of 320_3 subject with the BDI-II score of 5 (None depression) into the DG+Linear model and the DG+MG+Linear model for extracting
processing result of RX and the guidance result of RAU on RX, respectively. The red box displays the discriminative parts.

Fig. 8. The QQ plots for different models on the development set of AVEC 2013. The inputs of all models are RX, RY and RAU. “DG+MG+Linear” is
our constructed DepressionNet.

As shown in Table V, if the test parameter α in the Friedman
test is set to 0.1, there is a significant difference in those
eight models w.r.t the four metrics at a 90% confidence
level. In other words, in a statistical sense, our proposed DG
and MG modules are significant in improving the prediction
accuracy of BDI-II scores. It is worth pointing that the
p-values of RMSE, MAE, and R2 are the same, as the ranking
of prediction accuracy on AVEC 2013 and AVEC 2014 is

consistent among different algorithms. Moreover, we have
drawn the QQ plots of different models on the develop-
ment set of AVEC 2013 in Fig. 8 to visually demonstrate
the regression effects of different models. By comparing
Fig. 8(a) and Fig. 8(d), as well as Fig. 8(e) and Fig. 8(h),
it is not difficult to find that our proposed DG and MG
modules can make the predicted BDI-II scores closer to the
groundtruth.
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Fig. 9. ROC curves of two categories for different models on the development set of AVEC 2013. “DG+MG+Linear” is our constructed DepressionNet.

TABLE V
THE p-VALUE OF THE FRIEDMAN TEST FOR 8 MODELS WITH RESPECT

TO 4 METRICS. “CA” IS SHORT FOR CROSS-ATTENTION.
“DG+MG+LINEAR” IS OUR CONSTRUCTED DEPRESSIONNET

TABLE VI
PARAMETER SIZE AND COMPUTATIONAL COMPLEXITY OF DIFFERENT

MODELS. “CA” IS SHORT FOR CROSS-ATTENTION. “DG+MG+

LINEAR” IS OUR CONSTRUCTED DEPRESSIONNET

4) Model Complexity Analysis: In this subsection,
we examine the parameter size and computation complexity
of different models. The corresponding results are given in
Table VI. From a parameter perspective, we can observe
that our model requires the most parameters. The main
reason for this result is that the DG module needs to extract
cross-location and cross-frame gating results, while the MG
module needs to generate the guidance masks for two types
of sequences. Other models either do not need to obtain
mixing gating results or only obtain the mixing result of a
certain dimension. And those models do not need to generate
guidance masks for different sequences. It is necessary
to note that although our model has the largest number
of parameters, we have ∼32 thousand short-term training
samples obtained by segmenting long-term videos. Therefore,
our model parameter size matches the number of training
samples.

From a computational perspective, our model has the
most FLOPs. This is because the DG module embeds
cross-location and cross-frame gating results into the input

sequence via attention mechanism to maintain the temporal
attributes of the sequence. Besides, the MG module also
implements guidance filtering operation between two types
of sequences. Other models have less computational com-
plexity as they do not require these operations. Furthermore,
by comparing Tables V and VI, we can observe that although
“DG+MG+Linear” involves the most parameter and com-
putational complexity, it has achieved significant accuracy
improvement in a statistical sense. This fact suggests that
“DG+MG+Linear” does not suffer from overfitting and is
effective for improving experimental performance in depres-
sion level prediction tasks.

5) Identification of Depression Severity Categories: As
shown in Table I, the BDI-II score can classify subject’s
depression level into several categories. Therefore, in this
subsection, we examine the recognition effects of different
models on depression level categories. In our experiments,
we conduct two categories and four categories experiments.
In the experiment of two categories, “Mild”, “Moderate” and
“Severe” are merged into the one group termed as class 1,
while “None” is treated as the other group termed as class 0.
In the experiment of four categories, “None” (class 0), “Mild”
(class 1), “Moderate” (class 2) and “Severe” (class 3) are each
in one group. Table VII present the experimental results.

As shown in Table VII, “DG+MG+Linear” (namely
DepressionNet) gains good performance in both two and four
classification scenarios. Besides, one can observe that the
accuracy of category four is lower than that of category two.
This is because, in the AVEC 2013 and AVEC 2014 datasets,
the number of samples for “Two categories” is comparable,
while the number of samples for “Four categories” is very
uneven. Furthermore, we also present the ROC curves for
two categories and four categories in Fig. 9 and Fig. 10,
respectively. From those figures, we can see that MG module
has a better effect than DG module in improving the classi-
fication accuracy of depression levels. This fact indicates that
there is indeed a complementary relationship between FKRS
and AURS.

D. Comparisons With the Previous Works

In this section, we compare our method with current state-
of-the-art works on the AVEC 2013 and AVEC 2014 test
sets. The comparison of metric results for different methods
is shown in Tables VIII and IX.
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Fig. 10. ROC curves of four categories for different models on the development set of AVEC 2013. “DG+MG+Linear” is our constructed DepressionNet.

TABLE VII
CLASSIFICATION ACCURACY OF DEPRESSION LEVELS USING DIFFERENT MODELS ON THE DEVELOPMENT SETS OF AVEC 2013

AND AVEC 2014. “CA” IS SHORT FOR CROSS-ATTENTION. “DG+MG+LINEAR” IS OUR CONSTRUCTED DEPRESSIONNET

In general, it is difficult to match the experimental per-
formance of methods [4], [5], [47], [48], [49], [50] using
hand-crafted features with those using neural networks [10],
[12], [13], [35], [51], [52]. This is mainly because those
hand-crafted features rely on the experience of designers
and do not easily capture differences in facial dynamics
among individuals with different depression levels. Moreover,
the better prediction accuracy can be obtained by examin-
ing facial videos [20], [35], [51], [52] compared to facial
images [7], [10]. This fact shows that depression cues are
more reflected in facial dynamics. It can be observed that
our model are not beyond those methods of [12], [13], and
[20]. This is because the FKs and AUs used in our method
cannot capture the facial texture changes of individuals with
different depression levels, but our method can better pro-
tect personal privacy than them [12], [13], [20]. While, our
method is superior to the methods [20], [21], [50] using FKs
and AUs.

Furthermore, in Fig. 11, we present a comparison between
the true and predicted values obtained using our Depression-
MLP on the AVEC 2013 and AVEC 2014 test sets. From
Fig. 11, we can see that our method performs well in predicting
smaller BDI-II scores, but performs poorly in predicting larger
BDI-II scores. The reason for this result is that the number
of subjects with smaller BDI-II scores is greater than the
number of subjects with larger BDI-II scores, which prevents

Fig. 11. Comparison of predicted and true values on the test sets of AVEC
2013 (a) and AVEC 2014 (b). The horizontal and vertical axes represent the
subject ID and BDI-II scores, respectively. The red solid dots and green solid
dots represent the predicted and true scores, respectively. The blue vertical
line represents the corresponding difference.

the model from adequately capturing the facial dynamics
characteristic of subjects with severe depression levels.

Besides, we calculate the mean RMSE (8.73 for AVEC
2013, 8.47 for AVEC 2014) and mean MAE (6.83 for
AVEC 2013, 6.72 for AVEC 2014) for all methods in
Tables VIII and IX, and find that the prediction results on
the AVEC 2014 test set are better than those on the AVEC
2013 test set. This is because the AVEC 2014 dataset only
contains videos of subjects completing a single task (“North-
wind” or “FreeForm”), whereas the AVEC 2013 dataset places
the videos collected when subjects complete all of the tasks
together. Furthermore, under the same task, environmental
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TABLE VIII
COMPARISON OF EXPERIMENTAL PERFORMANCE OF DEPRESSION

LEVEL PREDICTION TASKS USING DIFFERENT
METHODS ON THE AVEC 2013 TEST SET

TABLE IX
COMPARISON OF EXPERIMENTAL PERFORMANCE OF DEPRESSION

LEVEL ESTIMATION TASKS USING DIFFERENT
METHODS ON THE AVEC 2014 TEST SET

variables are more easily controlled and the models are more
likely to capture differences in facial dynamics among indi-
viduals with different depression levels.

To demonstrate the robustness of our method to different
depression scale scores, we also conduct experiments on the
DAIC-WOZ dataset. The corresponding results are shown

TABLE X
COMPARISON OF EXPERIMENTAL PERFORMANCE OF DEPRESSION

LEVEL ESTIMATION TASKS USING DIFFERENT
METHODS ON THE DAIC-WOZ TEST SET

in Table X. By comparing with other current works, we can
find that our DepressionMLP model still achieves good pre-
diction accuracy. This fact suggests that the performance of
our method is stable in capturing facial dynamic differences
among individuals with different depression levels, even when
subjects are labeled using different depression scale scores.

V. CONCLUSION

Physiological studies have shown that depression can cause
patients to exhibit facial movements that are different from
those of healthy individuals. Therefore, we construct a Depres-
sionMLP architecture to predict the depression level using
FKRS and AURS for protecting individual privacy. In our
model, the DG module is proposed to embed cross-frame and
cross-location gating results into the input sequence through
the attention mechanism, thus maintaining the spatiotempo-
ral attributes of sequences and ensuring the additivity of
residual connections in a physical sense. Moreover, our pro-
posed MG module can achieve the interaction among various
sequences through mutual guidance processes and enhance
the model’s discriminative ability. The experimental results
on the AVEC 2013, AVEC 2014 and DAIC-WOZ depression
databases demonstrate the effectiveness of our approach. In the
future, we will construct a dataset with clear interaction task
boundaries and examine the movement patterns of FKs and
AUs for depressed and healthy individuals under different
interaction tasks.
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