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Abstract
Conic optimization problems are usually understood to be problems over some cone of
symmetric matrices like the semidefinite or the copositive matrix cone. In this note, we
investigate the changes that have to be made when moving from symmetric to nonsymmetric
matrices. We introduce the proper definitions and study the dual of a cone of nonsymmetric
matrices. Next, we attempt to generalize the well known concept of cp-rank to nonsymmetric
matrices. Finally, we derive some new results on symmetric and nonsymmetric copositive-
plus matrices.

Keywords Conic optimization · Nonsymmetric copositive and completely positive
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1 Introduction

The cone of symmetric copositive matrices and its dual cone of symmetric completely pos-
itive matrices have proved extremely useful in combinatorial optimization and nonconvex
quadratic programming. Tamás Terlaky was one of the pioneers of this field: in [20], he and
his co-authors studied nonconvex quadratic problems and proposed a relaxation using copos-
itive matrices which strengthened the well known semidefinite Shor relaxation. Two years
later, Terlaky was the co-author of another paper [4] which for the first time established that a
combinatorial problem (namely, the maximum clique problem) can equivalently be rewritten
as a linear optimization problem over the cone of copositive matrices. This result was based
on earlier results byMotzkin and Straus [19] and byBomze [3], with a regularization ensuring
full one-to-one correspondence of local solutions to a continuous quadratic problem on one
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side, and maximal cliques on the other side, a maximum clique being encoded uniquely by
a global solution to the quadratic problem (the formulation in [3] avoids spurious solutions
which could occur with the formulation in [19]; see also [17] for a more recent account, in
particular Fig.1 on p.1166 there for a counterexample). Returning to Terlaky’s contributions,
the paper [4] also introduced the notion “copositive optimization” and introduced a field
which has been highly active ever since. See [11] for a recent survey.

Copositive optimization, like semidefinite optimization, is a subclass of conic optimiza-
tion, where one generally aims to minimize a linear or nonlinear function subject to the
constraint that the matrix variable is in some closed convex cone K of symmetric matrices.
Its dual problem involves the dual cone K∗. In case K is the copositive cone, its dual is the
cone of completely positive matrices. Both cones have been studied intensively not only in
the optimization community, but also in the linear algebra community. For a good overview
on those more structural properties of these cones, we refer to [21].

A common feature is that so far, researchers have only studied symmetric copositive
and completely positive matrices. To the best of our knowledge, nobody has attempted to
generalize known results to the nonsymmetric case. In this note, we make a first attempt in
this direction: we investigate the changes that are necessary when moving from symmetric to
nonsymmetric matrices.We introduce the notion of nonsymmetric copositive and completely
positive matrices and study the relations between both situations. Note that nonsymmetric
matrices play a prominent role in linear complementarity problems, in particularwhen applied
to quadratic optimization, cf. [9].

Next, we are interested in the so called cp-rank of a symmetric completely positive matrix
which in a sense describes the size of a minimal factorization of such a matrix (for a precise
definition, see below). We attempt to generalize the cp-rank to the nonsymmetric case and
propose three possible variants.

Finally, we study a subset of the cone of copositive matrices, namely so-called copositive-
plus matrices. These, again, play an important role for linear complementarity problems,
see [9]. We revisit this class and show several new results both for the symmetric and for the
nonsymmetric case.

Notation Denote by N the set of positive integers. For α ∈ R, we put (α)+ := max{α, 0}.
We write

Δn :=
{
x ∈ R

n+ : e�x = 1
}

and e = [1, . . . , 1]� ∈ R
n .

Denote by σ(x) := {i : xi > 0} the support of an x ∈ Δn and by In := Diag(e) the
n × n-identity matrix, with columns ei (i = 1, . . . , n). The inner product on R

n×n is the
Frobenius product: 〈A, B〉 := tr(A�B). Moreover,

Sn := {S ∈ R
n×n : S� = S} denotes the space of symmetric matrices and

Wn := {W ∈ R
n×n : W� = −W} the space of skew-symmetric matrices.

The following relations between Sn and Wn should be well known:

Lemma 1.1 We have Wn = S⊥
n with dim Sn = 1

2n(n + 1) and dimWn = 1
2 (n − 1)n.

Hence R
n×n = Sn ⊕ Wn, and the corresponding unique decomposition of X ∈ R

n×n is
X = 1

2 (X + X�) + 1
2 (X − X�).

Proof Let S ∈ Sn andW ∈ Wn . Then

〈W, S〉 = tr(W�S) = −tr(WS) = −tr(S�W�)

= −tr(SW�) = −tr(W�S) = −〈W, S〉,
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so 〈S,W〉 = 0. The other assertions are trivial. 	

We will also study the following subcones of Sn :

Nn := Sn ∩ R
n×n+ = {N ∈ Sn : Ni j ≥ 0 for all i, j}, the cone of entrywise

nonnegative matrices,

S+
n := {S ∈ Sn : x�Sx ≥ 0 for all x ∈ R

n}, the positive-semidefinite cone,

COPn := {S ∈ Sn : x�Sx ≥ 0 for all x ∈ R
n+}, the copositive cone,

CPn := {S ∈ Sn : S = F�F for some F ∈ R
p×n
+ }, the completely positive cone.

In the definition of CPn , p ∈ N is an upper bound for the so-called cp-rank of a matrix
in CPn , see [22, 23]. We may choose p ≤ pn := (n+1

2

) − 4, where pn is an asymptotically
tight upper bound, cf. [6].

We will often omit the index n for notational convenience. Also, we will call any matrix
Q ∈ COP \ (S+ + N ) exceptional.

2 Duality Results

Let K ⊆ S ⊆ R
n×n , and denote by K∗ the dual of K when S is considered as the underlying

space, i.e.,
K∗ := {X ∈ S : 〈X, K〉 ≥ 0 for all K ∈ K}.

It is well known that

N ∗ = N , (S+)∗ = S+, COP∗ = CP, CP∗ = COP.

Note that this definition only makes sense for subcones of S. However, for K ⊆ R
n×n we

define K∗ to be the dual of K when Rn×n is considered as the underlying space, i.e.,

K∗ := {X ∈ R
n×n : 〈X, K〉 ≥ 0 for all K ∈ K}.

It is easy to see that the dual of a linear subspace is its orthogonal complement, and
therefore

S∗ = W and W∗ = S. (1)

We are interested in the relation between the dualsK∗ andK∗ of a coneK ⊆ S of symmetric
matrices. This is clarified in the next theorem.

Theorem 2.1 For K ⊆ S ⊆ R
n×n, we have K∗ = K∗ + W .

Proof Let X ∈ K∗. Writing X = S + W with S ∈ S and W ∈ W , we get using Lemma 1.1
that for all K ∈ K,

0 ≤ 〈X, K〉 = 〈S, K〉 + 〈W, K〉 = 〈S, K〉,
so S ∈ K∗ and one inclusion is proved. To show the reverse inclusion, take S ∈ K∗ and
W ∈ W . Then X := S + W is in K∗, since, again by Lemma 1.1, we have that 〈X, K〉 =
〈S, K〉 + 〈W, K〉 = 〈S, K〉 ≥ 0 for all K ∈ K. 	


For a matrix X ∈ R
n×n , we write

X := 1
2 (X + X�) ∈ Sn .
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For K ⊆ S ⊂ R
n×n , we define its desymmetrized version as follows:

K := {X ∈ R
n×n : X ∈ K}.

This definition includes the setS+ of nonsymmetric positive-semidefinitematrices and the
set COP of nonsymmetric copositive matrices, because both definitions are based on signs
of quadratic forms where symmetry does not play a role. For K ∈ {N , CP} the situation is
different, as shown by the following lemma.

Lemma 2.2 For K ⊆ S ⊂ R
n×n, we have:

(a) K = K + W ,
(b) If K is closed and n > 1, then K is a closed, non-pointed cone.

Proof (a) Take X ∈ K and decompose X = X + 1
2 (X − X�) ∈ K + W . This proves one

inclusion. To see the reverse one, take X = K + W ∈ K + W . Then X + X� = 2K ∈ K, so
X ∈ K.
(b) If O ∈ K, then obviously O ∈ K, so K is closed, and not pointed since {O} �= W ⊆
K ∩ (−K) by virtue of (a) and O ∈ K. 	

Remark 2.3 The above situation is a special case of the following constellation: consider a
self-adjoint, surjective linear map L : E → S, where E is a Euclidean space and S is a linear
subspace of E. For any closed cone K ⊆ S, define the set K := L−1(K), which is again a
closed cone. Now, ifW = S⊥, then most of the above duality results carry over by the same
arguments as for the special case E = R

n×n , L(X) = X and the Frobenius inner product.

It iswell known that a coneC ⊂ R
n×n is pointed if andonly if its dualC∗ is full dimensional.

More precisely, it is not difficult to show that codim C∗ = dim(C ∩ (−C)). In view of this,
the next result is unsurprising:

Theorem 2.4 For K ⊆ S ⊂ R
n×n, we have K∗ = K∗ and K∗ = K∗.

Proof By Lemma 2.2(a), Theorem 2.1 and (1), we have

K∗ = (K + W)∗ = K∗ ∩ W∗ = (K∗ + W) ∩ S = K∗.

The second assertion is a standard duality argument, but also comes easily from
Theorem 2.1 and Lemma 2.2(a):

K∗ = K∗ + W = K∗.

Hence the result. 	

As a consequence, we immediately get the following.

Corollary 2.5 We have:

(a) N ∗ = N and N ∗ = N ,

(b) (S+)∗ = S+ and S+∗ = S+,

(c) CP∗ = COP and COP∗ = CP ,

(d) COP∗ = CP and CP∗ = COP .
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Let us now look atminimumdistance projectionswith respect to the norm ‖A‖ := √〈A,A〉
of amatrixA ∈ R

n×n onto a closed convex set C ⊂ R
n×n . It is well known that this projection

ΠC is given by the unique Y ∈ C satisfying

‖X − Y‖ ≤ ‖X − Z‖ for all Z ∈ C.

In other words,
ΠCX := argmin{‖X − Z‖ : Z ∈ C}.

It is well known that Y := ΠCX is characterized by the Stampacchia variational inequality

〈X − Y, Z − Y〉 ≤ 0 for all Z ∈ C. (2)

Specializing C to closed convex cones K ⊆ S, we can characterize Y further:

Theorem 2.6 Let K ⊆ Sn be a closed convex cone, and let X ∈ R
n×n be an arbitrary square

matrix. Then
Y := ΠKX = X̄ + C (3)

for some C ∈ K∗ supporting K at Y, i.e.

〈C, Y〉 = 0 ≤ 〈C, Z〉 for all Z ∈ K (4)

(by slight abuse of terminology, we use “supporting” also if C = O).
Conversely, if for some C ∈ K∗, we have C ⊥ Y = X̄ + C ∈ K, then Y = ΠKX.

Proof Consider (2) for a cone K:

〈X − Y, Z〉 ≤ 〈X − Y, Y〉 for all Z ∈ K.

From this, it easily follows that 〈X − Y, Z〉 ≤ 0 for allZ ∈ K, and henceweget byTheorem2.1
that

Y − X ∈ K∗ = K∗ + Wn .

So Y = X + C + W with C ∈ K∗ ⊆ Sn and W� = −W ∈ R
n×n . But Y� ∈ K ⊆ Sn by

construction. We conclude that

2Y = Y + Y� = 2C + X + X� + O

or Y = X̄ + C. Defining X̂ := 1
2 (X − X�) ∈ Wn and using (2), we see that

〈̂X − C, Z − X̄ − C〉 = 〈X − Y, Z − Y〉 ≤ 0 for all Z ∈ K.

But since Z − X̄ − C ∈ Sn , Lemma 1.1 implies that

〈̂X, Z − X̄ − C〉 = 0.

So we conclude that
〈C, Z − Y〉 ≥ 0 for all Z ∈ K. (5)

In particular for Z = O ∈ K (since K is closed), we get

0 ≤ 〈C, Y〉 ≤ 0,

where the left inequality follows from duality and the right one from (5). Hence C ⊥ Y and
therefore (4) is established. The converse follows because (4) is the same as (2) which implies
Y = ΠKX, as mentioned before for general closed convex C. 	
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Anotherway of expressing (3) isΠK◦ΠS = ΠK = ΠS ◦ΠK, whichwould simply follow
by the observation that S is a linear subspace of Rn×n and Pythagoras’ theorem. However,
we will need the variational formulation (4) to reduce a bilevel optimization problem to a
single-level one at the end of Section 3.

Corollary 2.7 Let K ⊆ Sn be a closed convex cone. If X ∈ K, then ΠKX = X̄.

Proof If X̄ ∈ K, then C = O and Y = X̄ satisfy the conditions in Theorem 2.6. 	

Corollary 2.8 Let X ∈ R

n×n. We have the following projection formulae:

(a) ΠSX = X̄ := 1
2 (X + X�),

(b) ΠNX = X̄+ := [(X̄i j )+]i, j , the entrywise truncation of X̄ to R+,
(c) ΠS+X = TD+T�, where X̄ = TDT� is the spectral decomposition of X̄ with orthonormal

T ∈ R
n×n and D = Diag(λ1, . . . , λn) the diagonal matrix containing the eigenvalues of

X̄.

Proof This follows fromTheorem2.6 byverifying that thematrixC resulting from formula (3)
fulfills C ∈ K∗ and C ⊥ Y = X̄ + C ∈ K for the given cones K. Observe that S∗ = {O} in
case (a), and use the self-duality for the cones N and S+ in cases (b) and (c). 	


3 A Nonsymmetric CP-Rank

A well-known concept in Nonnegative Matrix Factorization (NMF, cf. [13]) is that of the
nonnegative rank of a (possibly rectangular) nonnegative matrix A ∈ R

m×n+ :

rank+(A) := min{r ∈ N : A = LR, L ∈ R
m×r+ , R ∈ R

r×n+ }.
Obviously, we have

rank(A) = rank(A�) ≤ rank+(A) = rank+(A�) ≤ min{m, n},
with strictness possible for the leftmost inequality if min(m, n) ≥ 4 (cf. [24]), or for the
pathological case A = O ∈ R

m×n of any size.
Returning to the case of square matrices X ∈ R

n×n+ , first recall the definition of the usual
(symmetric) cp-rank for C ∈ CPn ⊂ Sn :

cpr(C) := inf{r ∈ N : C = F�F, F ∈ R
r×n+ }.

We have rank+(C) ≤ cpr(C), and a significant difference is possible as cpr may increase
quadratically with the order of C while rank+ is bounded above by the order. Note that for
C ∈ Nn \ CPn , we have rank+(C) ≤ n < +∞ = cpr(C), extending the definition of cpr(C)

consistently with usual default regulations for infima.
Now we consider a seemingly new variant of this concept for the nonsymmetric case.

This is motivated by the fact that all previously discussed matrix parameters, rank X and
rank+X, are defined for nonsymmetric square matrices X as well. Imitating the low-rank
NMF approach, we assign a nonsymmetric cp-rank to these X ∈ R

n×n+ as follows:
For any r ∈ N, define

δr (X) := min{‖X − Y‖ : Y ∈ Sn, cpr(Y) ≤ r} ≥ 0,

and observe that δr (X) is non-increasing with r for any X ∈ R
n×n . The minimum exists since

it is attained in a closed set inside a ball of radius, say, 2‖X‖ + 1.
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Now either use, as in determining the cluster number, an elbow criterion on the sequence
{δr (X) : r ∈ N} to determine an analogue or even, more boldly, ask for exact stabilization
via the definition

cpr(X) := min{r ∈ N : δr (X) = δs(X) for all s ≥ r}.

Theorem 3.1 Let Y := ΠCPX be the minimal distance projection of X onto the closed convex
cone CP . Then cpr(X) = cpr(Y).

Proof For r := cpr(Y) ∈ N we have

δr−1(X) > δs(X) for all s ≥ r ,

since equality above would conflict with minimality of r = cpr(Y) and the uniqueness of
ΠCPX = Y. Hence cpr(X) = cpr(Y) = r with δr (X) = ‖X − Y‖. 	


Let us look at ΠCPX in the case that X ∈ CP:

Corollary 3.2 Let X ∈ CP \S. Then ΠCPX = ΠSX = 1
2 (X+X�) = X̄, and for r := cpr(X̄) ∈

N we have

δr−1(X) > δs(X) = ‖X − ΠCPX‖ = 1
2‖X − X�‖ > 0 for all s ≥ r .

Hence cpr(X) = cpr(X̄) for all X ∈ CP .

Proof Apply Corollary 2.7 to K = CP and use Theorem 3.1. For any s ≥ r = cpr(X̄), we
conclude that δs(X) = δr (X) < δr−1(X) and hence cpr(X) = r = cpr(X̄). 	


Example 3.3 Consider

X =
[
1 2
0 1

]
∈ CP2.

We have rank+(X) = rank(X) = 2, but cpr(X) = cpr(X̄) = cpr(ee�) = 1 with δ1(X) = √
2.

Example 3.4 Consider

X =
[
2 1
0 2

]
∈ CP2.

We have δ1(X) =
√
11
2 ≈ 1.66. Here rank+(X) = rank(X) = 2 and cpr(X) = cpr(X̄) =

rank(X̄) = 2 with δ2(X) = 1√
2

≈ 0.71.

Example 3.5 For

X =
[
0 3

−1 1

]
∈ R

2×2 \ (CP2 ∪ R
2×2+ )

we have X̄ =
[
0 1
1 1

]
∈ N2 \ CP2 with ‖X − ΠSX‖ = √

8. Now let t := 1+√
5

2 > 1 be the

larger root of the Golden Section/Fibonacci polynomial t2 − t − 1 and define

Y := t

2 + t

[
1 t
t t2

]
and C := 1

2 + t

[
t −1

−1 t − 1

]
.
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It is easy to verify that Y ∈ CP2 and C ∈ S+
2 ⊂ COP2 = CP∗

2, as well as C ⊥ Y.
Furthermore, we have Y = X̄ + C, and hence by Theorem 2.6 we get

ΠCPX = Y = 1

2
√
5

[
2 1 + √

5
1 + √

5 3 + √
5

]
,

with cpr(X) = cprY = 1 and (note that ΠCPX �= ee� = X̄ + e1e�
1 ∈ CP2)

‖X − ee�‖2 = 9 > δ21(X) = 9 − t

5(t + 1)
= 3 − √

5

5
> 8 = ‖X − X̄‖2.

The calculation of cpr(X) according to its definition amounts to solving a bilevel mini-
mization problem, namely

cpr(X) = min{r : Y = F�F , F ∈ R
r×n+ , ‖Y − X̄‖ = min{‖Z − X̄‖ : Z ∈ CPn}},

which is hard by structure even we ignore the hardness of the conic constraints {Y, Z} ⊂ CPn

due to the general hardness of bilevel optimization and the non-convex quadratic constraint
F�F = Y. The above problem has the integer variable r ∈ N plus many continuous variables,
namely all entries in Y and F. By minimality of r , no row f�i of F can be zero.

Instead, we can always add zero rows to F until we reach the upper bound p = pn :=(n+1
2

) − 4 on cpr(Y) over Y ∈ CPn , and then minimize the number of non-zero rows of F to
achieve minimality of r . Since all fi ∈ R

n+, we have fi �= o if and only if e�fi > 0, so this
count exactly amounts to the zero (pseudo-)norm

‖Fe‖0 := |{i ∈ {1, . . . , p} : e�
i Fe > 0}|.

The zero norm ‖·‖0 is discontinuous and therefore not directly tractable in a minimization
problem. However, as shown by several authors [5, 7, 10, 12, 27], there is a continuous QCQP
reformulation for the minimization of a zero norm which blends well into the framework of
copositive optimization:

Theorem 3.6 Let X ∈ R
n×n, let p = pn = (n+1

2

) − 4, and denote e ∈ R
n and ē ∈ R

p. Then

cpr(X) = p − max
u,F,C

{
ē�u : u�Fe = 0, F�F = C + X̄, 〈C,C + X̄〉 = 0,

u ∈ [0, 1]p, F ∈ R
p×n
+ , C ∈ COPn

}
,

a conic QCQP over the copositive cone with O(n3) continuous variables and O(n2) con-
straints.

Proof As in [5, 7], we argue that the minimal zero norm over a feasible set F ⊆ R
p
+ is given

by the solution to a complementarity-constrained problem over the same set F :

min{‖v‖0 : v ∈ F} = min{ē�(ē − u) : u�v = 0, u ∈ [0, 1]p, v ∈ F}.
Indeed, optimality in the above problem forces all ui to be binary, and then ē�(ē − u)

counts the non-zero entries of v. If v = Fe for some F ∈ R
p×n
+ , then ‖v‖0 counts the non-zero

rows of F, and its minimal value equals cpr(Y) if F ranges over all these matrices subject to
the quadratic constraints F�F = Y, which we write as Y = C + X̄. The claim now follows
from the variational characterization of ΠCPX in Theorem 2.6 and from Theorem 3.1. 	
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4 Copositive-plus Results

Recall that a (possibly nonsymmetric) square matrix Q ∈ R
n×n is said to be copositive-

plus, if Q ∈ COPn and if x�Qx = 0 with x ∈ R
n+ implies Qx = o. In other words, Q is

copositive-plus if min{x�Qx : x ∈ Δn} ≥ 0 and the set of zeroes

Z(Q) := {x ∈ Δn : x�Qx = 0}
can be expressed as Z(Q) = Δn ∩ KerQ. If Z(Q) = ∅, then Q ∈ COPn is called strictly
copositive. Otherwise, if Q is copositive-plus, then Z(Q) is a polytope and hence a convex
set. This implies that any finite, non-singleton Z(Q) certifies that Q is not copositive-plus.
An example for this is Q = ee� − In with Z(Q) = {ei : i ∈ {1, . . . , n}}.
Remark 4.1 An alternative definition of a copositive-plus matrix can be found in the very
informative survey [8] whereQ ∈ COPn is defined to be copositive-plus if x ∈ Z(Q) implies
(Q + Q�)x = o, or

Z(Q) = Δn ∩ Ker(Q).

This definition obviously differs from ours (which seems to be widely accepted in the com-
munity now), and will not be used in the sequel. However, the attentive reader will notice that
some of our results below actually are related to this variant. To avoid confusion, wewill stick
to the first definition, so Z(Q) = Δn ∩ KerQ and not Z(Q) = Δn ∩ Ker(Q). This approach
seems more transparent, even if it may require a few slightly lengthier formulations.

Theorem 4.2 If Q ∈ R
n×n generates a quadratic form taking no negative values over a

neighborhood U ⊂ H of Δn relative to the supporting hyperplane H := e⊥ + 1
n e = {x ∈

R
n : e�x = 1}, then Q + Q� is copositive-plus.

Proof By homogeneity it is immediate that Q and Q + Q� are copositive (over Rn+). Now
suppose that x�Qx = 0 for some x ∈ Δn and consider q := (Q+Q�)x as well as a step size
t > 0 so small that e�(x − tq) ∈ [ 12 , 2]. Then

yt := 1

e�(x − tq)
(x − tq) ∈ U

if t is small enough, because yt → x as t ↘ 0. By assumption, we get y�
t Qyt ≥ 0 and hence

0 ≤ [e�(x − tq)]2y�
t Qyt

≤ 4[x�Qx − tq�(Qx + Q�x) + t2q�Qq]
= 4t[−‖q‖2 + tq�Qq],

which for small enough t > 0 implies that ‖q‖ ≤ 0, so (Q + Q�)x = q = o and hence
Q + Q� is copositive-plus. 	


We now consider a specific family of neighborhoods of Δn relative to H .

Theorem 4.3 Let δ ∈ (0, 1) and define

Uδ := conv

{
(1 + δ)ei − δ

n
e : i = 1, . . . , n

}
,

as well as the cone Γδ := R+Uδ . If, for any δ > 0, the matrix Q is Γδ-copositive, i.e., if

x�Qx ≥ 0 for all x ∈ Γδ,

then Q + Q� is copositive-plus.
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Proof Any Euclidean ε-neighborhood U of Δn relative to H satisfies U ⊆ Uδ for ε = δ
n .

Indeed, if y ∈ H with ‖y − x‖ ≤ ε for some x ∈ Δn , then

yi − 0 ≥ yi − xi ≥ −‖y − x‖ ≥ −ε

implies yi ≥ −ε and yi + δ
n ≥ 0 whenever ε ≤ δ

n . We conclude that

y =
∑

i

yiei =
∑

i

yi + δ
n

1 + δ

[
(1 + δ)ei − δ

n e
] ∈ Uδ.

Thus the family {Uδ : δ > 0} constitutes a neighborhood base ofΔn relative to H . The claim
now follows from Theorem 4.2. 	


Using barycentric coordinates it is easy to see thatΓδ-copositivity ofQ can be equivalently
formulated as classical Rn+-copositivity of

Qδ := F�
δ QFδ with Fδ := (1 + δ) In − δ

n
ee�. (6)

Corollary 4.4 Any Q ∈ COPn with Qe = o is copositive-plus.

Proof Observe from (6) that Qe = o implies Qδ = (1 + δ)2Q ∈ COPn , so that Q is Γδ-
copositive for all δ > 0. The result follows by Theorem 4.3. 	

Remark 4.5 An alternative proof of Corollary 4.4 would employ the observation that for
Q ∈ COPn , any x ∈ Z(Q) satisfies the first-order condition Qx ∈ R

n+ necessary [16, 25] for
minimality of x�Qx over Δn , hence 0 ≤ e�Qx = (Qe)�x = o�x = 0, implying Qx = o.
But we get even more in a direct way: we have σ(e) = {1, . . . , n} so that Qmust be positive-
semidefinite by the second-order necessary optimality condition (this time for x = e), and
therefore copositive-plus. Anyhow, Proposition 4.9 below would also yield Q ∈ S+

n from the
assumptions.

On the other hand, if all row sums of Q are positive, i.e., if

(Qe)i ≥ α > 0 for all i, (7)

then Γδ-copositivity conflicts with extremality in the cone COP:

Proposition 4.6 Suppose that the matrix Q ∈ Sn satisfies (7) and is Γδ-copositive for some
δ > 0. Then Q is strictly copositive and thus cannot generate an extremal ray of COPn.

Proof For Qδ as defined in (6), we calculate

Qδ = (1 + δ)2Q − δ
n [e(Qe)� + (Qe)e�] + δ2

n2
(e�Qe)ee� = (1 + δ)2Q − δ

n C,

where
C = ee�Q + Qee� − δ

n (e�Qe)ee� ∈ Sn .

For any x ∈ Δn we have by (7) that

x�Cx = 2(Qe)�x − δ
n (e�Qe) ≥ 2α − δ

n (e�Qe) > 0

for any δ with 0 < δ < 2nα
e�Qe , and therefore C is strictly copositive. Obviously, the same

holds for Q = (1 + δ)−2[Qδ + δ
n C]. 	


The converse holds without any assumptions like (7):
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Theorem 4.7 If Q is strictly copositive, then there exists a δ > 0 such that Q is Γδ-copositive.

Proof If Q is strictly copositive, then the value

min{x�Qx : x ∈ Δn}
is strictly positive. By standard continuity and compactness arguments, the sameholds true for
a small enough neighborhoodU ofΔn relative to H . The result follows from the observations
proving Theorem 4.3 and the definition Γδ = R+Uδ . 	


Any positive-semidefinite matrix Q generating a quadratic form which is zero at some
point in Δn (also Q = O) is an example of the fact that the converse of Theorem 4.7 does not
hold. Moreover, it is evident that strict copositivity of a nonsymmetric matrix Q by default
implies that both Q and Q� are copositive-plus.

However, this is not guaranteed by Γδ-copositivity of a nonsymmetric Q, i.e., the non-
symmetric counterpart of Theorem 4.3 is not true. To see this, consider the matrix

Q =
[
1 −2
0 1

]
.

SinceQ+Q� ∈ S+
2 , it follows thatQ isΓδ-copositive, and of courseQ+Q� is copositive-

plus. On the other hand, Q itself is not copositive-plus since for x� = [1, 1], we have
x�Qx = 0, but Qx �= o.

The converse of Theorem 4.3 is true on the subcone S+ + N ⊆ COP:

Theorem 4.8 If Q ∈ S+
n + Nn is copositive-plus, then for all sufficiently small δ > 0, the

(possibly nonsymmetric) matrix Q is Γδ-copositive.

Proof Suppose Q + Q� = S + N with S ∈ S+
n and N ∈ Nn . Obviously, S is copositive-plus,

so Q + Q� is copositive-plus if and only if N is so. But then a zero on the diagonal forces
the whole column of N to zero: if 0 = e�

i Nei = Nii , then Nei = o, cf. [26]. Hence we may
decompose

N =
[
R O
O� O

]
,

where R ∈ Nk has a strictly positive diagonal and therefore is strictly copositive (k = 0 is
possible but then N = O and nothing remains to be shown). Decomposing x� = [u�|v�]
with u ∈ R

k , we arrive at

2x�Qx = x�Sx + u�Ru ≥ u�Ru > 0 if u is close enough to Δk,

arguing by equicontinuity as above, which establishes Γδ-copositivity of Q, as claimed. 	

It is an open question whether there are exceptional copositive-plus matrices. The sim-

plest candidate would be the Horn matrix [21], denoted by H ∈ COP5. However, H is
not copositive-plus, as x� = [2, 1, 0, 0, 1] gives Hx = [0, 0, 2, 2, 0] and x�Hx = 0. The
following result is more general:

Proposition 4.9 Let Q ∈ COPn be copositive-plus and let Z(Q) = KerQ ∩ Δn. If
⋃

{σ(x) : x ∈ Z(Q)} = {1, . . . , n}, (8)

then Q ∈ S+
n and thus is Γδ-copositive for all δ > 0.
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Proof If (8) holds, then Z(Q) �= ∅, so Z(Q) is a convex set, and thus the assumptions imply
existence of x̄ ∈ Z(Q) with mini x̄i > 0 in the relative interior of Δn . Now consider any
y ∈ (KerQ)⊥ = Q(Rn). For sufficiently small |t | > 0, we have x̄ + ty ∈ R

n+ and thus, by
copositivity of Q,

0 ≤ (x̄ + ty)�Q(x̄ + ty) = t2y�Qy.

For any x ∈ R
n , consider now the unique decomposition x = u + y with u ∈ KerQ and

y ⊥ KerQ. We obtain from y�Qy ≥ 0 that

x�Qx = u�Qu + 2y�Qu + y�Qy = y�Qy ≥ 0,

which establishes Q ∈ S+
n . 	


Remark 4.10 Let us discuss exceptional copositive-plus matrices on the boundary of the
copositive cone which have a zero x ∈ Z(Q). Proposition 4.9 implies σ(x) �= {1, . . . , n}.
Without loss of generality, assume σ(x) = {1, . . . , k} for some k < n. As is well known [15],
in this case Q and x can be decomposed as

Q =
[
A B
B� C

]
and x =

[
y
o

]

with y ∈ Δk , A ∈ S+
k and Ay = o. But Q is copositive-plus, so Qx = o, which implies

B�y = o. However, the first-order KKT condition necessary for optimality of x in the
problem min{z�Qz : z ∈ Δn} read Ay = o and B�y ≥ o, so equality in the latter system
signifies a massive departure from strict complementarity.

So, on the boundary of the copositive cone outside S+ + N , copositive-plusness implies
a sort of degeneracy. Moreover, extremal rays of this cone, if exceptional, can neither be
copositive-plus:

Corollary 4.11 No exceptional extreme copositive matrix Q ∈ Sn can be copositive-plus.

Proof [2, Corollary 3.6] shows that any extreme copositive matrix Q satisfies (8). If Q were
copositive-plus, Proposition 4.9 would yield Q ∈ S+

n , in contradiction to exceptionality. 	

Corollary 4.12 Any exceptional matrix Q ∈ COP5 which is not strictly copositive and has
more than one zero in Z(Q) cannot be copositive-plus.

Proof If Z(Q) is nonconvex (e.g., finite and not a singleton), then Q cannot be copositive-
plus. We will show this for exceptional matrices of order 5. Indeed, Q must be a convex
combination of extreme matrices where at least one of which, say R ∈ COP5, is exceptional.
But then Z(Q) ⊆ Z(R), and the set Z(R) is known to be finite [14, Theorem 2.3] for all
exceptional extremal R ∈ COP5 \ H, where H ∈ COP5 denotes the Horn matrix and

H = {P�DHDP : P a permutation matrix,D ∈ int S+
5 diagonal}

is its orbit. While Z(H) is infinite, it is easily shown that Hx �= o for all x ∈ Z(H). Now
either all exceptional matrices occurring in the convex combination yielding Q are in H,
whence also Qx �= o for some (or actually all) x ∈ Z(Q), or there is an exceptional extremal
R ∈ COP5 \ H as above in this convex combination, with finite Z(R). Hence the result. 	


As usual, we call Q ∈ COPn irreducible w.r.t. S+
n , if for all P ∈ S+

n \ {O} we have
Q − P /∈ COPn . Nontrivial matrices of this kind again cannot be copositive-plus:
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Corollary 4.13 Suppose that Q ∈ COPn \ {O} is S+
n -irreducible. Then Q cannot be coposi-

tive-plus.

Proof From [15, Theorem 4.5] we know that span Z(Q) = R
n , which implies (8). So if Q

were copositive-plus, we would infer via Proposition 4.9 that also Q ∈ S+
n , which in view of

irreducibility of Q �= O is a contradiction. Hence the result. 	

Let us recapitulate our findings in search of a (symmetric) copositive-plus matrix violating

the converse of Theorem 4.3 (so far, we have found no such matrix):

Corollary 4.14 Suppose that Q ∈ COPn is copositive-plus, but that for no δ > 0, Q is
Γδ-copositive. Then n ≥ 5 and

(a) Z(Q) �= ∅,
(b) Q must be exceptional, but cannot be extreme in COPn,
(c) Q must be S+

n -reducible: Q = P + R for some P ∈ S+
n \ {O}, some R ∈ COPn,

(d) if n ∈ {5, 6}, then Z(Q) = {x} must be a singleton at the relative boundary of Δn, i.e.,
σ(x) �= {1, . . . , n}.

Proof For (a), see alsoRemark 4.10.Only the last statement (d) needs a proof. But this follows
as in the proof ofCorollary 4.11 from the recent complete enumeration of exceptional extreme
rays of COP6 (and the supports of their zeroes) in [1]. 	

Remark 4.15 Note that there are also exceptional extreme rays in COP6 of the formH padded
with an additional row and column of zeroes, for which the same argument as in the case
n = 5 discussed in the proof of Corollary 4.12 applies. These matrices are the smallest
known copositive ones which cannot lie in any of the smaller Parrilo conesK(r)

6 , r ∈ {0}∪N,

whereas H itself lies already in K(1)
5 [18, Example 2]. We conclude that copositive-plusness

and (in-)approximability are apparently unrelated. For general n, the sequence of Parrilo
cones (K(r)

n )∞r=0 increases and approximates COPn as r ↗ ∞ in the sense that the closure

of
⋃∞

r=0 K(r)
n coincides with COPn . They are based upon the sum-of-squares approximation

hiearchy as follows: as usual, denote by R[x] the vector space of all polynomials in x ∈ R
n .

Those of them which can be written as the sum of squares of other polynomials si (x) form
a cone denoted by Σ :

Σ :=
{

q ∈ R[x] : q =
∑

i

s2i , si ∈ R[x]
}

.

Next, for a vector x = [xi ] ∈ R
n define the vector x[2] := [x2i ] ∈ R

n , and for r ∈ {0} ∪N

and M ∈ Sn , define the polynomial

qr ,M(x) := (x�x)r (x[2])�M(x[2]), x ∈ R
n .

Finally, define the matrix cone

K(r)
n := {M ∈ Sn : qr ,M ∈ Σ}.

Since qr+1,M(x) = (x�x) qr ,M(x) = ∑
i (x

�x)[si (x)]2 = ∑
i, j [x j si (x)]2, we have K(r)

n ⊂
K(r+1)

n , and by writing y = x[2] ∈ R
n+ and the definitions, we see that K(r)

n ⊂ COPn for all
r .
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