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The ForDigitStress Dataset: A Multi-Modal
Dataset for Automatic Stress Recognition
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Abstract—We present a multi-modal stress dataset that uses digital job interviews to induce stress. The dataset provides multi-modal
data of 40 participants including audio, video (motion capturing, facial landmarks, eye tracking) as well as physiological information
(photoplethysmography, electrodermal activity). In addition to that, the dataset contains time-continuous annotations for stress and
occurred emotions (e.g., shame, anger, anxiety, and surprise). In order to establish a baseline, five different machine learning
classifiers (Support Vector Machine, K-Nearest Neighbors, Random Forest, Feed-forward Neural Network, and Long-Short-Term
Memory Network) have been trained and evaluated on the presented dataset for a binary stress classification task. The
best-performing classifier has been a Long-Short-Term Memory Network, which achieved an accuracy of 91.7% and an F1-score of
90.2%. The ForDigitStress dataset is freely available to other researchers.

Index Terms—Stress, stress dataset, multimodal dataset, digital stress, stress physiology, job interviews, affective computing
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1 INTRODUCTION

Stress is the body’s response to any demand or threat [1].
It is a normal physiological reaction to perceived danger or
challenge and can be beneficial in small doses, e.g., stress
can support improving performance or memory functions
[2] [3]. However, chronic stress can have a negative impact
on both physical and mental health. Chronic stress may lead
to a variety of mental health problems, including anxiety
and depression. It has also the potential to make existing
mental health conditions worse. Moreover, stress is able
to induce physical symptoms such as headaches, muscle
tension, and fatigue [4]. Continuously high exposure to
stress increases the risk of heart disease, weakens the im-
mune system, and may promote unhealthy behaviors such
as overeating, smoking, and drinking alcohol [4].

Among the many sources of stress, work-related stress
is one of the most widespread and often seems inevitable.
Work stress is also associated with health problems (e.g., [5],
[6], [7]). Therefore, there is a need to understand stressful
situations at work and provide coping strategies on how to
deal with them in order to prevent chronic stress. However,
besides the fact that long-term exposure to work related
stressors can be associated with stress, acute situations are
equally capable of triggering perceived and biological stress
responses. Job interviews have been identified as one of
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the major stressors in a work-related context for many
reasons. They often involve a lot of uncertainty, pressure,
and potential rejection. In research, job interview scenarios
have recently become a popular use case for studying how
to recognize and regulate stress as a result of being a natural
stress-inducing event [8], [9], [10].

As remote job interviews have become common practice
in response to the restrictions created by the SARS-CoV-2
crisis, such a setting has been used for collecting a novel
multi-modal stress data set in a naturalistic setting. For
data collection, we recorded signals from various sources
including audio, video (motion capturing, facial recognition,
eye tracking) and physiological data (photoplethysmogra-
phy (PPG), electrodermal activity (EDA)). We gathered data
from 40 participants who took part in remote interview
sessions, resulting in approximately 56 hours of multi-
modal data. For data annotation, participants self-reported
stressful situations during the interview as well as their per-
ceived emotions. In addition, two experienced psychologists
annotated the interviews frame-by-frame using equal stress
and emotion labels. Calculating the inter-rater reliability for
the individual labels resulted in substantial to almost perfect
agreement (Cohen’s κ > 0.7 for all labels). In addition to
that, salivary cortisol levels were assessed in order to in-
vestigate whether the participants experienced a biological
stress response during the interviews.

For automatically classifying the participants’ stress lev-
els during the interview, the collected signal information
was used to produce a rich high-level feature set. The set
contains EDA, heart rate variability (HRV), body key points,
facial landmarks including action units, acoustic frequency,
and spectral features. Further, a pupil feature set was created
based on the latent space features of an autoencoder that has
been trained on close-up videos of the eye. In addition to
that, the pupil diameter was extracted as well. For reducing
the dimensionality of the input feature vector, PCA (Prin-
cipal Component Analysis) was applied. The classification
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task was formulated as a binary stress recognition task
(stress vs. no stress). We used and compared the perfor-
mance of five different machine-learning classifiers - SVM
(Support Vector Machine), KNN (K-Nearest Neighbors),
NN (Feed-forward Neural Network), RFC (Random Forest
Classifier), and LSTM (Long-Short-Term Memory Network).
Evaluation of the classifiers revealed that an LSTM approach
using all modalities as input led to the best recognition
of the participants’ stress levels. An LSTM approach also
performed best for the majority of modalities. Comparing
the different modalities for their impact on the recognition
performance, GEMAPS features had the highest accuracy
and F1-scores.

The proposed dataset makes the following contributions
to the research community. First, we provide data collected
in a realistic stress setting that has been validated by the
analysis of salivary cortisol levels in order to assess whether
a biological stress response was triggered during the in-
terviews. Second, the dataset was annotated frame-wise
using a discrete labeling approach enabling online stress
recognition. Third, we provide a multi-modal stress dataset
containing established as well as mostly overlooked modal-
ities, e.g., close-up eye features, to provide a promising non-
invasive modality for stress detection.

The structure of this article is as follows: In Section 2,
we present background and related work regarding exist-
ing stress data sets. Section 3 describes the data collection
process including design principles, the recording system,
properties of the data set, as well as the annotation pro-
cedure and feature extraction methods. The method for
automatic stress recognition is also explained in detail in
Section 3. The results of the performance of the different
machine-learning classifiers are presented in Section 4 and
discussed in Section 5. Finally, conclusions are provided in
Section 6, and ethical considerations are presented in Section
7.

2 BACKGROUND AND RELATED WORK

As of today, multiple stress datasets for the automatic
recognition of stress are available. The datasets differ in
the modalities used for stress recognition and the stimuli
employed to induce stress. Those stimuli range from highly
controlled lab settings to realistic real-world scenarios. Ta-
ble 1 displays an overview of some of the existing stress
datasets which are described in the following sections.

2.1 Controlled Laboratory Environments and Stress
Tests
The Trier Social Stress Test (TSST; [20]) and the Stroop test [21]
are standardized methodologies to elicit stress in clinically
validated settings. The Stroop test induces cognitive stress
through incongruent stimuli, while the Trier test involves
interview-style presentations and arithmetic tasks.

The WESAD corpus by Schmidt et al. [19] uses the
TSST as a stimulus and provides physiological data, e.g.
blood volume pulse (BVP), electrocardiogram (ECG) and
electrodermal activity (EDA). Additionally, it features di-
verse stress-related annotations, including affective states
like neutrality, stress, and amusement, obtained from a
range of self-report questionnaires.

Similarly, the UBFC-Phys dataset introduced by Sabour
et al. [18] used an approach inspired by the TSST to induce
stress. While also providing physiological data like BVP and
EDA, that dataset contains stress states derived from pulse
rate variability and EDA.

For the Multimodal Dataset for Psychological Stress Detec-
tion (MDPSD) corpus provided by Chen et al. [12], stress
was induced using a variety of tests, including the classic
Stroop Color-Word Test, the Rotation Letter Test, the Stroop
Number-Size Test and the Kraepelin Test. Facial videos,
PPG and EDA data are provided. Stress annotations were
obtained through self-assessment where participants had to
rate their perceived stress on a five-point scale, ranging from
no stress to high stress.

2.2 Simulation of Real-World Stressors
To obtain stress-related data in a more realistic context,
dedicated efforts have been invested in creating experimen-
tal setups that replicate natural conditions where people
typically experience stress. These endeavors can be regarded
as a balance between controlled laboratory environments
and uncontrolled naturalistic settings.

Koldjik et al. [17] introduced the SWELL dataset where
they tried to simulate stress-inducing office work by apply-
ing time pressure in combination with typical work inter-
ruptions like emails. Besides various physiological modal-
ities like heart rate (HR), HRV and EDA, the participants’
facial expressions and body posture as well as interaction
data were recorded. In order to assess the subjective ex-
perience during the study they relied on various validated
questionnaires to gather data about task load, mental effort,
emotional response, and perceived stress.

Nakashima et al. [14] also aimed to simulate work-
related stress. They distinguished between three different
states, i.e., ”relaxed”, ”concentrated”, and ”stressed”. The
different states were induced by landscape videos for re-
laxation, Stroop Color-Word test, and Information Pick-Up
test. Different test variations were used to induce a state
of stress or concentration. After each test, participants filled
out the NASA-Task Load Index questionnaire. During the
experiment, they recorded the participants’ posture by using
pressure distribution sensors on the chair and floor. In
addition to that, they collected EDA, BVP and HR. Also,
apart from us, they were the only ones considering eye-
tracking data. However, they focused on different features
extracted from the eye-tracker. They collected blinks, fixa-
tions, saccades, and scans. Whereas, we mainly focus on
pupillometry features.

2.3 Real-World Stressors and Multimodal Data
Moreover, endeavors have been undertaken to gather data
in the everyday lives of individuals, often spanning ex-
tended durations. These methodologies facilitate a compre-
hensive understanding of stress dynamics within authentic
real-world settings. Nevertheless, they contend with the
challenge of handling noisy data that lacks detailed continu-
ous annotations. Additionally, uncertainty exists concerning
the nature and timing of stressors.

Healey and Picard [15] presented a dataset for Stress
Recognition in Automobile Drivers using highly realistic real-
world stressors instead of rather controlled approaches to
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Name Number of
Participants

Duration per
Participant

Stress Stimulus Modality Annotation

CLAS [11] 62 30min Math problems test,
Stroop test, Logic
problems test

ECG, PPG, EDA, Three-
axis Acceleration

Cognitive load, Valence-
Arousal

MDPSD [12] 120 <4min Stroop Color-Word Test,
Rotation Letter Test,
Stroop Number-Size
Test, Kraepelin Test

Facial videos, PPG, EDA Stress self-assessment

MuSE [13] 28 45min Final exams period HR, EDA, Breathing
Rate, Skin Temperature,
Audio, Video, Thermal
Recordings of the Face

Perceived Stress
Scale, Self-Assessment
Manikins (SAM), Big-5
personality scores

Stress Recognition in
Daily Work [14]

10 30min Stroop Color-Word Test,
Information Pick Up
Test

Pressure Distribution
Sensors, EDA, BVP, HR,
Eye Tracking

NASA-Task Load Index

Stress Recognition in
Automobile Drivers [15]

24 >50min Open road driving ECG, electromyogram
(EMG), EDA, Breathing
Rate

Free scale stress rating,
forced scale stress rating

SWEET study [16] 1002 continuous
monitoring
for 5
consecutive
days

Daily life ECG, EDA, Skin Tem-
perature, Three-axis Ac-
celeration

Perceived Stress
Scale, Pittsburgh
Sleep Quality Index,
Depression Anxiety
Stress Scales, RAND-
36 self-reported
stress through
ecological momentary
assessments, Leuven
Postprandial Distress
Scale, SAM

SWELL [17] 25 3h Office work with time
pressure and email in-
terruptions

HR, HRV, EDA, Facial
Expressions, Body Pos-
ture, Computer Interac-
tion

NASA-Task Load In-
dex, Rating Scale Mental
Effort, SAM, perceived
stress on visual analog
scale

UBFC-Phys [18] 56 9min Based on TSST (speech
task, arithmetic task)

BVP, EDA, Video cognitive anxiety,
somatic anxiety, self-
confidence

WESAD [19] 15 2h TSST BVP, ECG, EDA, EMG,
Respiration, Body Tem-
perature, Three-axis Ac-
celeration

Three different affective
states (neutral, stress,
amusement), Positive
and Negative Affect
Schedule, State-Trait
Anxiety Inventory,
SAM, Short Stress
State Questionnaire,
assessment of Stressed,
Frustrated, Happy and
Sad

ForDigitStress 40 60min Digital job interview HR, HRV EDA, BVP,
audio, video, body
key points, facial
landmarks, action units,
OpenPose, GEMAPS,
Pupillometry features

Time-continuous stress
annotations, time-
continuous emotion
annotations, Coping
Inventory for Stressful
Situations, State-Trait
Anxiety-Depression
Inventory, Big-5
personality scores,
Perceived Stress Scale

TABLE 1
Overview of existing stress datasets
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induce stress. Here, they induced stress by letting the sub-
jects perform open-road drives. Besides recording physio-
logical data, stress annotations were obtained through self-
assessment questionnaires using free scale and forced scale
stress ratings.

The Multimodal Stressed Emotion (MuSE) dataset intro-
duced by Jaiswal et al. [13] also used a real-world stressor,
but in contrast to other datasets, they did not induce stress
by simulating a specific scenario themselves. They made
use of the final exams period at a university as an external
stressor. Therefore, they recruited 28 college students and
recorded them in two sessions, one during the finals period
and one afterwards. During the recordings, they confronted
the participants with various emotional stimuli. Afterwards,
the participants self-reported their perceived stress and
emotions. Moreover, additional emotion annotations have
been created by employing Amazon MTurk workers.

Similar to the MuSE dataset, the Stress in the Work
EnvironmEnT (SWEET) study [16] also relied on naturally
occurring external stressors as a stimulus. They investi-
gated the participants’ perceived stress during their daily
lives for five consecutive days. Throughout those five days,
they collected physiological data with wearables, contextual
information (e.g., location, incoming messages) provided
by a smartphone, and self-reported stress. The daily self-
assessment was done with a smartphone application that
questions the user 12 times a day about their perceived
stress.

The CLAS corpus presented by Markova et al. [11]
provides valence-arousal labels as well as cognitive load
annotations to situations where stress was induced by a
math problems test, a Stroop test, and a logic problems
test. Additionally, physiological data, such as ECG, PPG and
EDA is provided.

Further, datasets exist that are based on non-
physiological feature sets. For example, the Dreaddit corpus
presented by Turcan et al. [22] contains a collection of
social media posts that were annotated regarding stress by
Amazon MTurk workers.

2.4 The Need for the ForDigitStress Dataset
Altogether, a large variety of different stress datasets already
exist and are available to the research community. However,
out of the stress datasets listed in Table 1, only four are freely
accessible - WESAD, SWELL, UBFC-Phys, and CLAS. Fur-
thermore, existing datasets show some drawbacks regarding
stress labels and recorded modalities, we discuss these in
more detail below.

Consequently, there remains a demand for additional
freely accessible stress datasets that fill these gaps. With
the collection of the ForDigitStress dataset, we decided to
develop a setup combining the advantages of laboratory and
naturalistic conditions. The TSST test inspired the setup, but
we allowed for an interactive scenario where the participant
has to engage in a job interview that replicates a real inter-
view as much as possible. Information about how to access
the ForDigitStress dataset is provided in subsection 3.6.

When considering provided stress labels, existing stress
datasets predominantly are labelled through self-report
stress questionnaires or similar assessments. Those ap-
proaches come with the disadvantage of being subjective

and, more importantly, yielding annotations of low tem-
poral resolution, i.e., large time frames are treated as one
and aggregated to a single annotation (e.g., 10-minutes time
windows [19]). Therefore, short-term deviations in stress
levels cannot be modelled with sufficient precision, leading
to problems in certain application domains, e.g., scenarios
that require real-time stress detection.

In contrast to that, the dataset presented in this paper
was annotated by experienced psychologists in a time-
continuous manner. This allows for the development of
stress recognition systems that are more accurate, reactive,
and robust than is the case with existing datasets. In addi-
tion to that, we analyzed not only self-perceived stress but
also the participants’ biological stress response in order to
validate whether the study setup has indeed been eliciting
a stress response. We argue that considering both aspects,
namely self-perceived stress and biological stress response,
even though being time-consuming, is important in order to
provide credible stress labels when employing study setups
that have not been already validated. To the best of our
knowledge, this two-fold analysis has not been done in any
other freely available stress dataset.

Even though multi-modal stress datasets exist, they
rarely provide a comprehensive representation of the par-
ticipants’ behavior and lack a multi-modal assessment of
physiological stress responses. The majority of the datasets
mainly focus on physiological signals, e.g., HRV and EDA.
Therefore, they mostly neglect various aspects of non-verbal
behavior, like body language [23], [24], [25], that also hold
valuable information about perceived stress. In order to
reliably assess a person’s experienced stress in different
environments (e.g. office, home, recreational activities) it
is important to acquire a comprehensive representation
of the person’s response to stress. For instance, focusing
exclusively on physiological modalities such as heart rate
or electrodermal activity might yield heightened measure-
ments during physical exercise without necessarily indi-
cating a correlate of psychological stress. Similar scenarios
can be found when only considering non-verbal behavior.
Finally, out of the presented existing stress datasets only
two provided multi-modal baseline results for the automatic
recognition of stress [19] [13].

Recent research revealed that models for the automatic
recognition of stress showed a significant decrease in pre-
diction performance when tested on other datasets that
have not been used for training [26]. Therefore, additional
datasets are needed that are compatible with already exist-
ing ones in terms of available modalities. Having a collec-
tion of compatible datasets enables researches to train stress
models across multiple datasets resulting in increased gen-
eralizability. Therefore, a special emphasis when creating
the ForDigitStress dataset has been placed on providing a
comprehensive collection of modalities that are compatible
with already existing datasets.

The proposed ForDigitStress dataset contains audio,
video, skeleton data, facial landmarks including action units
as well as physiological information (PPG, EDA). In addi-
tion to the raw signals, we also provide already extracted
features for HRV and EDA as well as established feature
sets like GEMAPS [27] and OpenPose [28]. Furthermore,
this dataset contains pupillometry data, which is a mostly
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overlooked modality for the recognition of stress. As prior
work suggests [29], [30], [31], there are correlations between
various affective states and pupil dilation. Also, collecting
pupillometry data can be done unobtrusively by using
existing eyetrackers or even laptop webcams [8]. Therefore,
we believe that incorporating pupillometry data can benefit
multiple stress-related use cases where eye-tracking is a
reasonable option. The dataset provides already extracted
pupil diameter as well as close-up infrared videos of the eye.
Based on the close-up videos we trained an autoencoder
and extracted the latent space features that represent an
abstracted version of the eye. Those features are also made
available as part of the dataset.

3 DATASET

3.1 Design Principles

3.1.1 Setting
The main requirement for the study setting has been to
elicit stress and emotional arousal in participants. Moreover,
the setting should reflect a familiar real-world scenario.
Therefore, we opted for a remote job interview scenario,
a typical digital stressor. Performing remote job interviews
has become a common procedure in many modern working
environments. Job interviews are by their nature a complex
stressful social scenario where different aspects of human
interaction and perception collide. Previous research has
shown that psycho-social stress also occurs in mock job
interviews [32], [33]. Figure 1 shows a schematic of the
employed study setup. To mimic remote job interviews,
participant and interviewer were interacting via two laptops
while sitting in two separate rooms. The participants were
alone in the room the whole time (except during prepara-
tion). This means that no stress caused by social evaluation
of a present person was generated.

3.1.2 Procedure
The study procedure consisted of two parts. Prior to the
day the mock job interview took place the participants
sent their curriculum vitae (CV) to the experimenter and
filled out an online survey, in which demographic variables
and experiences with job interviews were assessed. This
survey further included questionnaires where participants’
personality traits, coping styles, perceived stress during the
last month, as well as trait anxiety and trait-depression were
assessed, which are not further considered here, but which
are described and evaluated in [34].

On the day of the experiment, participants were
invited to the laboratory and were told that physiological
reactions during an online job interview would be recorded.
Furthermore, they were asked about their dream job and
were equipped with PPG and EDA sensors and a wearable
eye tracker. Then, they had about 15 minutes to prepare
for the interview. During this time, the interviewer also
prepared for the interviews and thought about questions
related to the applicant’s CV and dream job. Afterwards,
the participant and interviewer were seated in two separate
rooms, and the interview started. They interacted with
each other over two connected laptops, similar to an online
meeting. The interviewer was instructed to ask critical

questions to stress the applicant and to induce similarly
negative emotions. The interviews were structured and the
same areas were always queried but with a different focus
and related to the specific job the participant applied for.
The content of the interviews included questions about
the strengths and weaknesses of the applicant, dealing
with difficult situations on the job, salary expectations,
willingness to work overtime, and inconsistencies in the
CV. In addition, tasks related to logical thinking were asked
as well as questions about basic knowledge in the areas of
mathematics and language. A typical interview followed
this pattern [34]:

1) Reception
2) Self-introduction of the candidate (e.g. ”How would you

describe yourself?”)
3) Interrupting the introduction (e.g. ”Don’t share informa-

tion with me that I can also find in your CV.”)
4) Intrinsic motivation (e.g. ”Why do you want to work for

this particular company/employer?”)
5) Reason for job change (e.g. ”Why are you seeking a new

job?”)
6) Candidate’s expectations (e.g. ”What do you expect from

this job?”)
7) Self-promotion candidate (e.g. ”What qualifies you for

this role?”)
8) Hypothetical situation (e.g. ”How would you react

if...?”)
9) Applicant’s vision of the future (e.g. ”Where do you see

yourself in 5 years?”)
10) Spontaneous task (e.g. ”Do you have a pen at hand right

now? Sell me this pen!”)
11) Questions about basic knowledge (e.g. ”Translate the

following sentence...”)
12) Salary and working hours expectations (e.g. ”Are you

prepared to work overtime?”)
13) Outfit (e.g. ”Why are you wearing this outfit today?”)
14) End

The guidelines for the interviews are freely available in
the Open Science Framework (https://osf.io/5bdyf/).

After the job interviews, participants were asked about
their emotions during the job interview. For this, quali-
tative, semi-structured interviews were used (see https://
osf.io/5bdyf/). After reporting the experienced emotions,
participants reported whether they felt stressed at any time
during the interviews, and were instructed to describe as
precisely as possible in which specific situations during the
job interviews they felt stressed. This procedure (rating and
assignment to specific situations) was repeated for all of the
reported emotional states (i.e., shame, anxiety, pride, anger,
annoyed, confused, creative, happy, insecure, nervous, of-
fended, sad, surprised). These qualitative interviews lasted
about 10 to 20 minutes, depending on the participant.

In order to assess whether the mock job interview did
elicit stress in the participants, we collected self-reports as
well as saliva samples to determine cortisol levels. Sali-
vary cortisol levels are a measure of the activity of the
hypothalamic-pituitary adrenal (HPA) axis. Increased corti-
sol levels can be observed when a person is exposed to stress
[35], especially in social-evaluative situations, and are a typ-
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Fig. 1. Overview of the study setup including information on the different modalities that have been recorded during the interviews. Participant and
interviewer were seated in different rooms and interacting remotely with each other. A third computer was acting as an observer to unobtrusively
monitor the interaction between the participant and interviewer.

ical marker in research on acute biological stress responses
(e.g., [36], [37]). Cortisol levels were, therefore, considered
an adequate measure to investigate the participant’s biolog-
ical (i.e., HPA axis) response to the digital job interview.
After a person has been exposed to a stressor, cortisol levels
do not increase instantly. Peak levels are usually found
after 10 to 30 minutes [35] after psycho-social stressors of
short duration (e.g., the TSST, which is similar to a job
interview scenario, because both include strong socially-
evaluative components). After this, cortisol levels return to
baseline levels. The samples of participants that have been
stressed by the job interview - in the sense of an activation
of the HPA axis - will show an increase in cortisol levels
until they reach a peak followed by a decrease back to their
baseline levels. Therefore, salivary cortisol was assessed as a
measure of biological stress. For saliva collection, salivettes
(Sarstedt, Numbrecht) were used. Each participant provided
six saliva samples at different time points. Figure 2 displays
an overview of the timing of saliva sample collection during
the study. The first sample was collected at the beginning of
the study and the second at the end of the preparation phase
(i.e., immediately before the actual job interview started).
Those two samples were separated by about 15 minutes in
order to assess the baseline cortisol level before the partici-
pant was exposed to the stressor, i.e., the job interview. The
next four samples were collected immediately after the job
interview, 5 minutes, 20 minutes, and 35 minutes after it to
cover the cortisol increase, its expected peak, and its return
to baseline. During each saliva sampling, participants rated
their current stress level on a 10-point Likert scale with the
anchors ”not stressed at all” and ”totally stressed”, which
have been used in previous studies ( [38]).

3.2 Recording System
Various sensors were used to record the participants’ phys-
iological responses. For recording and streaming the par-
ticipant’s data, we employed a Microsoft Kinect 2. The
Microsoft Kinect 2 supports Full HD video captures as well
as optical motion capturing to extract skeleton and facial

Fig. 2. Overview of the timing of saliva sample collection during the
different stages of the study.

data. Moreover, the built-in microphone was used to record
ambient sound data. In addition to that, the participants
were equipped with an ordinary business USB headset from
Trust. Furthermore, the IOM-biofeedback sensor was used
to collect PPG and EDA data. Finally, participants were
wearing a Pupil Labs eyetracker to record closeup videos of
their eyes. All sensors were connected to a Lenovo Thinkpad
P15. The setup for the interviewers only consisted of audio
recorded with the same Trust USB Headset and video from
the built-in Lenovo Thinkpad P15 webcam. A schematic
overview of the recording setup is displayed in Figure 1.
The participant and interviewer were seated in two differ-
ent rooms and were interacting remotely with each other
through the two laptops. In a third room, another computer
was set up to act as an observer. This way the interaction
between the participant and the interviewer could be mon-
itored unobtrusively. In order to keep the recorded signals
in synchrony we implemented a Social Signal Interpretation
Framework (SSI) [39] pipeline. SSI includes an interface for
the development of online recognition systems from various
sensory devices.

3.3 Collected Data

Data of N = 40 healthy participants (57.5% female, 40%
male, 2.5% diverse) was included in the data set. Mean age
was 22.7 ± 3.2 years (min: 18, max: 31). Mean body-mass-
index (BMI) was 23.2 ± 4.1 kg/m2 (min: 17.9, max: 37.7; 1
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Sensor Filename Signal
IOM bvp.csv PPG

sc.csv EDA
Kinect video.mp4 HD Video

skel.csv Skeleton Data
face.csv Facial Points
head.csv Head Position
au.csv Action Units
kinect.wav Audio (room)

Headset close.wav Audio (close-talk)
Eyetracker eye.mp4 Video (close up eye)

TABLE 2
List of recorded files available for download

missing). In total 56 hours and 24 minutes of multi-modal
data have been recorded. An overview of all the recorded
files is displayed in Table 2.

3.4 Annotation

Two experienced psychologists annotated the recorded ses-
sions frame by frame based on the participants’ reports
and the content of the interviews. Categories for the an-
notations were the categories from the questionnaire, i.e.
stress as well as the reported emotions like shame, anxiety,
anger, and pride. In total, 21 hours and 26 minutes of
data were annotated. Figure 3 displays the overall label
distribution for the occurred emotions. In the first step, the
two psychologists independently annotated the 40 videos
with the NOVA tool [40]. During the annotation process,
the job interview videos were examined regarding stress
and different emotions. The first round of annotation was
created based on the observable verbal and non-verbal be-
havior of the participants. Each video was carefully watched
and as soon as an emotion-specific behavior appeared or
the participant’s behavior indicated stress, an annotation
was created for the corresponding emotion or stress. For
example, stress was concluded if a person was sitting very
restless in their seat. In the second step, the annotations
were supplemented with information from the self-reports
of the interviewees. For every visible or reported feeling of
stress, a discrete label was created for the corresponding
frames. Emotions were annotated accordingly. For example,
if a participant reported the emotion of shame in a certain
situation during the interview, an annotation for the emo-
tion of shame was created for that sequence. There were
no disagreements between the psychologists’ ratings and
the participants’ self-reports, i.e., for every situation that
was assigned to stress or an emotion by the participants, a
time window could be assigned by the psychologists and a
corresponding annotation could be created. In the last step,
disagreements in the annotations were discussed by the two
psychologists. These only affected the annotations, which
were created based on observable verbal and non-verbal
behavior, as there has been no disagreement for the self-
reported emotions and stress. After a detailed discussion
and in the case of an agreement between the two psy-
chologists regarding the person’s stress, both annotations
were adjusted to ensure a standardized representation. The
same procedure was also used for the annotations of the
emotions. If both psychologists could clearly identify the
same emotion after the discussion, the annotations were

adjusted accordingly. But if, after the discussion, there were
still differences in the perception of the presence of an emo-
tion or the extent of stress, the original annotations of the
two psychologists were maintained for the corresponding
situations without making any further changes. The annota-
tions were conducted in multiple sessions. On average, each
session lasted two hours, and if signs of distraction were
noticed, a break was taken, or the annotation continued on
the following day. The videos were viewed multiple times
by the two psychologists with intervals in between.

Fig. 3. Number of samples per occurred emotion.

A screenshot of a loaded recording session from the
dataset is shown in Figure 5. The screenshot displays a
situation during the interview phase where the participant
experienced stress. As a consequence, changes in the phys-
iological signals as well as nonverbal behavior could be
observed, e.g. pupil dilation, activation of specific action
units (in this case the lip corner puller), changes in heart
rate variability, and electrodermal activity.

In order to measure the quality and reliability of the
value-discrete and time-continuous annotations, we calcu-
lated the interrater agreement between the two psychol-
ogists using Cohen’s Kappa (see Figure 4). The majority
of the annotations have shown a strong to almost perfect
agreement following the interpretation for Cohen’s Kappa.

3.5 Feature Extraction
The recorded raw data has been used to extract features that
are valuable for stress recognition. The following section
gives an overview of the extracted features as well as addi-
tional information regarding the extraction process. More-
over, the presented features are also available for download.

3.5.1 EDA
Features derived from skin conductance (SC) as a measure
for EDA are widely used for stress recognition [15], [17],
[19], [41]. The EDA signal can be decomposed to skin
conductance level (SCL) and skin conductance response
(SCR) [19], [42]. SCL or the tonic component is the slow-
changing part of the EDA signal. SCR or the phasic compo-
nent are the rapid changes as a response to a specific stimu-
lus. First, we remove the high-frequency noise by applying
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TABLE 3
List of features extracted from various modalities

Modality Features Description
Action
Units

Jaw Intensities of action units JawDrop (AU26), JawSlide (AD30)

Lips Intensities of action units LipPucker (AU18), LipStretcher Right/Left (AU20),
LipCornerPuller Right/Left (AU12), LipCornerDepressor Right/Left (AU15),
LowerLipDepressor Right/Left AU(16),

Cheeks Intensities of action units CheekPuff Right/Left (AU13)
Eyes Intensities of action units EyeClosed Right/Left (AU43), EyebrowLowerer

Right/left (AU4)
EDA MeanEDA, StdEDA, MinEDA,

MaxEDA, RangeEDA
Mean, Standard deviation, Min, Max, Dynamic Range of EDA signal

SlopeEDA, MeanDeriv, StdDeriv Slope of EDA signal, Mean and Standard deviation of 1st derivative of EDA
signal

MeanSCR, StdSCR, MeanSCL, StdSCL Mean and Standard deviation of SCR and SCL components
CorrSCL Correlation of SCL with time
PeaksSCR, AmplitudeSCR, Dura-
tionSCR, AreaSCR

Number of peaks, Sum of peak amplitudes, sum of peak durations and sum of
area under the peaks of the SCR signal

PPG HR Number of peaks in 1 minute
MeanNN, MedianNN, MadNN Mean, Median, Median absolute deviation of HRV
StdNN, CVNN, IQRNN Standard deviation, Coefficient of Variation, Inter-Quartile Range of HRV
RMSSD, StdSD Root Mean Square and Standard deviation of successive differences of P-P

intervals
pNN50, pNN20 Percentage of successive differences of P-P intervals > 50 ms and > 20 ms
TINN, HTI Triangular Interpolation of HRV histogram, HRV Triangular Index
LF, HF, LF/HF Low Frequency (0.04 Hz − 0.15 Hz) and High Frequency (0.15 Hz − 0.4 Hz)

power
LFn, HFn Normalized low and high-frequency power, LF/total power, HF/total power
SD1, SD2, SD1/SD2 Spread of HRV points on Poincaré plot along identity line and perpendicular to

it
S Area of the ellipse formed by HRV points in the Poincaré plot

Audio GEMAPS Pitch, Jitter, Formant 1-3 frequency and relative energy, Formant 1 bandwidth,
Shimmer, Loudness, Harmonics-to-noise ratio(HNR), Alpha Ratio, Hammarberg
Index, Spectral Slope, Harmonic difference H1-H2, Harmonic difference H1-A3

Body
Key-
points

Kinect x, y, z position and rotation of head, forehead, nose, left/right ear, chin, neck,
torso waist, left/right shoulder, left/right elbow, left/right wrist, left/right
hand, hip left/right, left/right knee, left/right ankle, left/right foot

OpenPose x, y position of the nose, left/right eye, left/right ear, neck, left/right shoul-
der, left/right elbow, left/right wrist, hip left/middle/right, left/right knee,
left/right ankle, left/right big toe, left/right small toe, left/right heel

Eye Pupil features pupil diameter, latent space features extracted from an autoencoder trained on
the close-up videos of the eye
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Fig. 4. Average Cohen’s Kappa calculated for stress and each emotion
to map the interrater agreement between the two psychologists.

a 5 Hz low-pass filter [19], [42]. We use the filtered signal
to calculate statistical features [19], [41], [43] like mean,
standard deviation, dynamic range, etc.. We compute the
SCL and SCR components using the cvxEDA decomposition
algorithm [44]. In addition to the various statistical features
of SCL and SCR signals, we also compute features derived
from the peaks in the SCR signal [15]. We compute a total
of 17 features (see Table 3) from a 60 seconds long EDA
input signal. The 60 seconds time frame was chosen based
on similar research that achieved excellent results with it
[45].

3.5.2 PPG

As demonstrated in previous studies [19], [46], the PPG
signal can be used to derive HRV (Heart Rate Variability)
features for predicting stress. We compute 22 PPG-based
HRV features which are listed in Table 3. To derive the
HRV from PPG, we detect the Systolic Peaks (P) from the
input signal. The first step is to remove baseline wander
and high-frequency noises from the raw PPG signal. We
use a band-pass filter (0.5 − 8 Hz) to reduce the noise
and enhance the peaks [47]. Next, we use a peak finding
algorithm to detect peaks such that (a) their amplitudes
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Fig. 5. An instance of a recorded session loaded in NOVA.The top row displays the eyetracking video alongside the video recording of the
participant. Below that several feature streams are displayed: HRV feature stream, EDA, action units, and GEMAPS audio features. At the bottom,
two discrete annotation tiers are shown. The first tier displays situations where the participant experienced stress while the second tier displays the
interview phase.

are above a specified threshold and, (b) consecutive peaks
are sufficiently apart. The amplitude threshold is set to the
mean of the 75 percentile and 90 percentile of the peak
heights in the input signal. In a previous exercise stress
study [48] involving healthy participants of varying ages,
the maximum heart rate recorded was 3 beats per second
(180 beats per minute). Hence, we set the minimum time
between two consecutive peaks as 0.333 seconds. We use 60-
second long PPG segments to detect the peaks and compute
the HRV signal. We compute various HRV features [19],
[26], [41], [43], [49], [50] from the time domain, frequency
domain, and Poincaré plots.

3.5.3 Body keypoints

Prior studies have established the value of body language
and body behaviour for the recognition of stress [23]
[24] [25]. Therefore, our study setup included a Microsoft
Kinect2 to extract 3D body data. This data provides infor-
mation about 25 joints, consisting of position in 3D space,
orientation of the joints in 3D space as well as a confidence
rating in regard to the tracking performance. Even though
the Microsoft Kinect2 has been used in prior studies in the
context of stress recognition [23], [24], [25] we aimed to pro-
vide additional body data in order to enable others to utilize
the provided dataset across multiple datasets. Therefore, we
extracted the OpenPose [28] features from the recorded HD
video displaying the participant. OpenPose is a widely used
state-of-the-art framework for the detection of human body
key points in single images. It is important to point out that
OpenPose solely returns the body key points in 2D space,
therefore, losing some information when compared to the
Microsoft Kinect2 data. However, in order to extract the

OpenPose features no special hardware is required and the
data of a simple camera is sufficient. Also, due to the study
setup, not all joints could be successfully tracked, as the par-
ticipants were sitting and their lower body was concealed by
the table. Therefore, only the features corresponding to the
upper body joints provide reliable information.

3.5.4 Action units
Facial expressions play an important role in communicating
emotions and therefore are frequently used for the auto-
matic detection of affective states [51] [52]. Furthermore,
recent studies have utilized facial action units to successfully
predict human stress [24] [53] [54]. We extracted 17 facial
action units (see Table 3) provided by the Microsoft Kinect2.
In addition to that, we also extracted the OpenFace2 [55]
features that consist of facial landmarks, head pose, facial ac-
tion units, and eye-gaze information. Similar to OpenPose,
those features can be extracted from any video data.

3.5.5 Audio features
Knapp et al. [56] argue that emotions are reliably trans-
ported by the voice. Indeed it is a well-established fact
that the acoustic characteristics of speech e.g. pitch and
speaking rate are altered by emotions [57]. Moreover, vocal
signs of stress, such as an increase in fundamental frequency
[58] or changes in vocal tremor [59], are mainly induced
by negative emotions [60]. An increase in fundamental
frequency during an episode of experienced stress can also
be seen in Figure 5 (GEMAPS feature stream; 4th row).
Multiple studies were able to show that it is possible to
automatically detect stress with acoustic features [61] [60]
[62] [63]. In order to provide meaningful acoustic features
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we chose to extract the GEMAPS features [27]. One of the
main objectives of the GEMAPS feature set has been to pro-
vide access to a comprehensive and standardized acoustic
feature set. It contains frequency and energy-related features
like pitch, jitter, shimmer and loudness, as well as spectral
features, e.g., Hammarberg Index and harmonic differences.
We calculated the features over a one-second time window.

3.5.6 Pupil features

Responses of the pupil, like pupil dilation, are closely re-
lated to subjective and physiological stress responses (e.g.,
the activation of the hypothalamic-pituitary adrenal (HPA)
axis; [64] [65]). Furthermore, a recent study has shown that
pupillometry is a suitable tool to measure arousal during
emotion regulation after an acute stressor [66] [65]. How-
ever, this modality has not yet been paid much attention
in established affective computing datasets [67]. Therefore,
part of our study setup has been a wearable eye tracker that
provides close-up video data of the participant’s eye. From
those videos, we automatically extracted the pupil diameter
by employing the extraction pipeline described in [8]. In
addition to that, we also trained an autoencoder on the
close-up eye videos in order to extract the corresponding
latent space features. The latent space features contain an
abstract representation of the eye. Figure 6 displays the
original input image of the eye and the reconstructed output
image produced by the autoencoder below. During the en-
coding and decoding process, barely any loss of information
occurred as the input image and corresponding output
image are almost identical. This is a strong indicator that
the autoencoder has learnt meaningful features to accurately
translate the image into and out of the latent space. The re-
sulting feature set consists of 512 parameters corresponding
to the size of the latent space.

Fig. 6. Examples of reconstructed images. The top row displays the orig-
inal input image, while the bottom row shows the images reconstructed
by the autoencoder.

3.6 Availability

The ForDigitStress dataset is freely available for research
and non-commercial use. Access to the dataset can be
requested at https://hcai.eu/fordigitstress. The dataset is
organized in sessions with a total size of approximately 360
GB.

3.7 Automatic Stress Detection
3.7.1 Dimensionality Reduction
As seen from Table 3, numerous features have been ex-
tracted from each modality. The size of the input dimension
can be a concern for some machine learning techniques,
especially when we consider multi-modal input. Therefore,
we use PCA (Principal Component Analysis) as it has been
shown to reduce dimensionality without a drop in classi-
fication performance of machine learning models [68]. We
apply PCA for stress models involving individual modali-
ties as well as multi-modal stress recognition models. The
length of the feature vectors of action units, EDA, HRV,
OpenPose, and GEMAPS was 17, 17, 22, 24, 58. We retain
95% of the components using PCA, reducing the length
of the feature vectors to 10, 9, 10, 8, 19, respectively. The
following approach is applied for combining features for
multi-modal stress recognition. We first apply PCA to in-
dividual modality features and then combine them (i.e.,
concatenated the reduced features). The final length of the
feature vector is 56 (sum of the length of feature vectors
of each modality). Similar to Reddy et al. [68], we perform
MinMax normalization between 0 and 1 before applying
PCA.

3.7.2 Classifiers
Previous works [19], [43], [69], [70] have demonstrated that
many machine learning classifiers such as SVM (Support
Vector Machine), KNN (K-Nearest Neighbors) and RFC
(Random Forest Classifier) can achieve good stress recog-
nition performance. Recent works [26], [71] have shown
that neural networks perform better than popular machine
learning classifiers in feature-based stress recognition. We
train the following classifiers as a baseline for our dataset.

• KNN This machine-learning technique classifies
samples based on the labels of the nearest neighbour-
ing samples. The neighbouring samples are deter-
mined using the Euclidean distance between them.
We use K = 50 neighbouring samples to classify
the samples. This parameter was chosen by extrap-
olating the threshold value for stable performance,
K = 10, for WESAD dataset [72]. Considering
the stress duration and number of participants, our
dataset contains almost 5 times more data than WE-
SAD, which is reflected in the chosen K parameter.

• Feed-forward Neural Network This is a Multi-Layer
Perceptron with an input layer, two hidden layers,
and a prediction layer. Since the size of the input
varies depending on the modalities, we have a vary-
ing number of nodes in the hidden layers. We set the
number of nodes in the first hidden layer as half of
the input size, rounded up to a multiple of 2. The
number of nodes in the second hidden layer is half
of the first layer. The activation function for hidden
layers is ReLU (rectified linear unit). The prediction
layer has a single node with Sigmoid activation
to discern between stress and no-stress classes. We
avoid over-fitting by using a dropout layer (dropout
rate = 0.2) after the input layer.

• RFC This is an example of an ensemble classifier that
trains a number of decision tree classifiers on subsets
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of the training set. This training technique controls
over-fitting. Hence, the RFC achieves better overall
performance, even if the individual decision trees
are weak. In our evaluations, we use an RFC with
100 decision trees (or estimators) and 50 minimum
samples for splitting a node.

• SVM This is a popular supervised learning tech-
nique that often achieves good stress recognition
performance. Similar to previous works [43], [70],
we use the Radial basis function (Rbf) as the kernel
function for our SVMs.

• LSTM In order to incorporate temporal context for
the stress classification, we trained an LSTM (Long
Short-Term Memory) classifier. An LSTM is a type
of recurrent neural network that is usually used
to process sequential data and is able to capture
temporal relationships. The LSTM model consists
of one LSTM layer with 256 units and a time step
size of 50 samples followed by one hidden layer
with the number of nodes as half of the input size,
rounded up to a multiple of 2. The activation for the
LSTM layer is TanH while the activation function
for the hidden layer is ReLU. The prediction layer
has a single node with a sigmoid activation function
to discern between stress and no-stress classes. We
avoid over-fitting by using a dropout layer (dropout
rate = 0.4) after the LSTM layer. The time step size of
50 samples was identified after an experiment where
we incrementally increased the step size starting with
25 samples (i.e., one second of data). A time step
size of 50 samples achieved the best results regarding
accuracy.

The feed-forward neural networks and LSTMs were
implemented using Tensorflow (version 1.15.0). We use the
SGD optimizer (learning rate = 0.001) and binary cross-
entropy loss. We train them for 100 epochs while employing
early stopping with a patience of 15. All other machine-
learning models were trained using Scikit-learn (version
1.0.2). We balanced our training set by randomly down-
sampling the no-stress class depending on the number
of stress samples annotated for each participant. Further,
before training the models all feature vectors have been
normalized between 0 and 1. The training procedure for
the autoencoder features extracted from the eye tracker
video data differs from the other modalities. First, some
participants manipulated the eye tracker by accidentally
bumping into it and changing the alignment of the built-in
camera. In some cases, this resulted in uncaptured eyes. In
these cases, it was not possible to re-align the eye-tracker so
as not to disturb the study procedure. Therefore, the models
could only be trained on a subset of the recorded data. The
subset contains 19 sessions for training the model. For that
reason, we report the results separately from the baseline
results. Apart from the reduced training data, the procedure
for training these models was similar to the other classifiers.

3.7.3 Evaluation Metrics

Similar to previous work [19], [26], we use accuracy and
f1-score as the performance metrics to evaluate our stress
models. To assess the generalizability of our models on data

from unseen users, we perform LOSO (leave-one-subject-
out) evaluations.

4 RESULTS

4.1 Automatic Stress Detection

We evaluate our dataset on a binary stress recognition task
(stress vs. no stress). The dataset has a sample rate of 25
Hz. We predicted stress for every sample of the annotated
data. Popular machine learning techniques such as RFC,
KNN, SVM, Feed-forward Neural Networks, and LSTM are
trained on features extracted from facial action units, EDA,
HRV, OpenPose, and GEMAPS. The results of our LOSO
evaluation are presented in Table 4.

Combining modalities yields better stress recognition
performance than individual modalities. The LSTM model
achieved the best stress recognition performance (F1 =
90.2%, Accuracy = 91.7%). A previous study [73] reported
similar findings, where a CNN-LSTM model outperformed
simple machine learning models on a custom stress dataset.
Among the simpler models, feed-forward NN achieved bet-
ter performance (F1 = 88.1%, Accuracy = 88.3%). This re-
sult is in line with the observations of related work [26], [71],
[74], [75], where a simple feed-forward network achieved
better performance than other machine learning models
(SVM, RFC, etc.) on multimodal stress datasets (e.g., WE-
SAD, SWELL).

When considering stress recognition using a single
modality for the models that are not considering temporal
context, HRV features yield the best results across classifiers,
followed by facial action units and OpenPose features. The
GEMAPS and EDA features rank the lowest in stress recog-
nition performance, achieving 15− 20% lower f1-score and
accuracy. When employing LSTM models which incorporate
temporal context the results differ. The best performance
for single modality stress recognition was achieved with
the GEMAPS features, whereas the worst was scored with
the OpenPose features. HRV and action units continued to
provide good recognition scores.

As mentioned in subsection 3.7 we also trained clas-
sifiers on the extracted eye autoencoder features. Due to
the reduced training data we report the results separately.
The best performance was achieved by the LSTM model
with an f1-score of 68.3 and an accuracy of 70.2% followed
by the neural network model with an f1-score of 54.8 and
an accuracy of 62.0%. The non deep learning approaches
struggled to reach accuracy scores above chance. The KNN
classifier achieved an f1-score of 47.2 and an accuracy of
48.9%. The SVM model had an f1-score of 45.3 and an
accuracy of 47.9%. The worst performance was from the
RFC with an f1-score of 39.1 and an accuracy of 49.5%.

4.2 Biological Stress

As a manipulation check, i.e. to prove whether our job
interview scenario indeed induced stress, biological and
perceived stress were measured at 6 points in time (2 before
and 4 after the job interview). Cortisol levels as a marker
for biological stress significantly changed during the whole
session (Figure 7A; F(5, 190) = 3.19, p = 0.009). They were
highest 5 minutes after the job interview and then decreased
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TABLE 4
Evaluation of classifiers on different modalities for the binary stress recognition task. Presented are mean F1-scores and accuracies. The standard

deviations are displayed in brackets.

RFC KNN SVM Simple NN LSTM
Features F1 (SD) Acc (SD) F1 (SD) Acc (SD) F1 (SD) Acc (SD) F1 (SD) Acc (SD) F1 (SD) Acc (SD)

AU 71.4 (17.5) 73.6 (14.8) 70.7 (16.3) 73.1 (13.8) 75.6 (14.5) 77.2 (12.0) 76.5 (14.7) 78.0 (12.2) 80.1 (19.8) 83.1 (15.7)
EDA 54.2 (16.3) 57.1 (14.6) 54.6 (10.4) 55.2 (10.3) 57.6 (20.8) 58.9 (20.3) 60.2 (22.1) 61.3 (21.5) 72.5 (21.6) 75.9 (16.9)
HRV 74.5 (18.5) 75.9 (17.2) 72.6 (14.6) 73.2 (14.0) 76.1 (22.1) 77.7 (20.5) 78.4 (21.3) 79.7 (19.9) 81.0 (22.2) 82.6 (19.5)

OpenPose 59.4 (19.7) 63.6 (16.3) 67.0 (19.7) 69.5 (17.0) 69.8 (20.4) 73.4 (16.0) 76.4 (22.3) 79.5 (17.2) 68.4 (30.0) 73.0 (25.6)
GEMAPS 52.1 (7.0) 55.9 (4.4) 55.1 (7.9) 56.9 (6.5) 57.3 (9.0) 58.9 (7.7) 58.7 (9.1) 60.3 (7.6) 84.0 (23.9) 86.7 (23.9)

All 81.3 (15.4) 82.0 (14.2) 74.7 (14.9) 75.5 (13.8) 83.8 (17.4) 84.5 (16.5) 88.1 (14.1) 88.3 (13.4) 90.2 (18.4) 91.7 (14.5)

to baseline levels 35 minutes after the stressor. A similar
time course was found for perceived stress, which was
highest immediately after the job interview and decreased to
baseline afterwards (Figure 7B; F(5, 190) = 39.82, p < 0.001).

Fig. 7. Time course of cortisol levels (A) and perceived stress (B) during
the whole session.

5 DISCUSSION

In order to establish a baseline on our dataset for the
automatic recognition of stress we trained several machine
learning models on different modalities. Overall, we found
that a fusion of the action units, EDA, HRV, OpenPose and
GEMAPS features that have been reduced in dimensionality
- by employing PCA - achieved the best accuracy and f1-
scores with 91.7% and 90.2. Throughout our experiments,
the LSTM model outperformed the other classifiers in most
of the modalities except for the OpenPose features. Here,
the simple NN yielded the best performance. This empha-
sizes the importance of temporal context for the automatic
detection of stress. In single-modality stress recognition, the

HRV features achieved good results across all classifiers. In
fact, for the models that don’t consider temporal context, the
HRV features achieved the best results among the different
single modalities. This is in line with existing research that
identified HR and HRV as excellent measures for predicting
stress [76], [77]. Moreover, models trained with action units
achieved similar results, i.e., 83.1% compared to 82.6% for
the HRV features. Another well-established modality to
detect stress is EDA [76]. Models solely trained on EDA fea-
tures were able to achieve accuracy scores of up to 94.62 % in
a 2-class and up to 75 % on a 4-class pattern recognition task
on a modified Trier Social Stress dataset [78]. Interestingly,
in our experiments, the models trained on the EDA features
were the ones having the second-worst accuracies and f1-
scores. One reason for that observation could be that exist-
ing datasets often aggregate larger time frames to one label
whereas we worked with time-continuous annotations with
a high temporal resolution. This could be a problem when
working with EDA as there is a delay between the sympa-
thetic nervous systems stimulation and the corresponding
EDA response [79]. Therefore, the EDA features could still
represent a non-stressed state due to the delay for situations
identified as stress. This could potentially be mitigated by
either shifting the signal corresponding to the delay or
calculating the EDA features over a longer time window.
Further investigations should be conducted in future work
to check whether following those approaches leads to better
classification performance. Finally, when training the classi-
fiers on the GEMAPS features, the consideration of temporal
context had the biggest influence. While for the models that
do not incorporate temporal context, the GEMAPS features
yielded the worst results, the feature set achieved the overall
best single modality scores when training an LSTM. The
LSTM model trained on GEMAPS achieved an f1-score of
84.0 and an accuracy of 86.7%.

In general, our experiments showed excellent f1-scores
and accuracies for the automatic recognition of stress but
also revealed quite high standard deviations. This means
that the performance for the single splits substantially dif-
fered. After manual inspection of the f1-scores and accu-
racies, we found that only a small subset of the sessions
showed substantially worse results. This was predomi-
nantly due to imprecisions in the feature extraction process,
e.g., the OpenPose feature extraction partially resulted in
misaligned head tracking.

In addition to the baseline models, we trained the
different classifiers on a reduced dataset containing the
extracted eye features including pupillometry features. In
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those experiments the KNN, RFC, SVM were not able to
achieve results above chance. The simple neural network
achieved an accuracy of 62.0%. The best performance was
achieved by the LSTM model with an accuracy of 70.2%.
This discrepancy between deep learning models and con-
ventional models is most likely due to the complexity of the
autoencoder features. The autoencoder features set consist
out of 512 features which is almost 10 times more than the
GEMAPS features which is the second largest feature set
employed. Further, the improvement when incorporating
temporal context by employing a LSTM model indicates that
snapshots of changes in pupil diameter and eye movement,
while providing some information about experienced stress,
are not sufficient enough to automatically predict stress.
Still, the results show that features extracted from close-up
eye video data hold relevant information for the recognition
of stress. Considering that there is only very limited research
available [8] [14] that used close-up eye features, including
pupillometry features, to automatically detect stress, this ex-
periment highlights the usefulness of such features. Features
derived from the movement of the eye as well as changes
in pupil size are a promising, non-invasive modality for the
automatic recognition of stress.

In order to validate whether our digital job interviews
are a suitable scenario for inducing stress, we measured
biological as well as perceived stress during the study.
Salivary cortisol levels were used as a marker for biological
stress. We found a significant change in cortisol levels and
perceived stress throughout the study. Peak cortisol levels
were observed 5 minutes after the interview whereas per-
ceived stress was found to be highest immediately after the
interview. The delay of peak cortisol levels in comparison
to perceived stress ratings is due to the fact that it takes
some time for the body to release cortisol. In order to reach
peak cortisol levels it usually takes 10 to 30 minutes [35].
This delay can be observed in Figure 7. Overall, the results
show that mock digital job interviews are a reliable scenario
to induce stress (biological and perceived) in participants.
Furthermore, it was found that female participants experi-
enced the scenario as more stressful than male participants.
Cortisol peaks were higher for participants who experienced
the situation as a threat in comparison to participants who
experienced it as a challenge (see [34] for further details).

Our dataset includes many of the stress response modal-
ities that are widely used in other stress datasets. So,
our dataset holds promise in the development of more
robust and high-performing stress detection models, espe-
cially through merging of datasets. For example, a recent
work [75] showed that the HRV models trained on our
dataset perform equally well on other social stress datasets
(WESAD and VerBIO). Notably, these datasets differed from
our dataset in many factors such as stress intensity, elici-
tation method, and sensor brands. Moreover, merging the
data from the three datasets resulted in an improved stress
detection performance. Their findings show the compatibil-
ity of our dataset with existing social stress datasets, thus
highlighting the potential of our dataset towards developing
a generalizable stress detection model.

6 CONCLUSION

In this paper, we present a comprehensive multi-modal
stress dataset that employs a digital job interview scenario
for stress induction. The dataset provides signals from var-
ious sources including audio, video, body skeleton, facial
landmarks, action units, eye tracking, physiological infor-
mation (PPG, EDA), as well as already extracted features
like GEMAPS, OpenPose, pupil dilation, and HRV. In total,
40 participants have been recorded, resulting in approxi-
mately 56 hours of multi-modal data. Moreover, the dataset
contains discrete annotations created by two experienced
psychologists for stress and emotions that occurred during
the interviews. The inter-rater reliability for the individual
stress and emotion labels showed a substantial to almost
perfect agreement (Cohen’s κ > 0.7 for all labels). Based
on the stress annotations, several machine learning models
(SVM, KNN, RFC, NN, LSTM) were trained to predict stress
vs. no-stress. The best single modality performance of 86.7%
was achieved by an LSTM trained on the GEMAPS features.
The best stress recognition performance (F1 = 90.2%,
Accuracy = 91.7% ) was obtained by training an LSTM
on all modalities.

Moreover, we validated whether the digital mock job in-
terviews are capable of inducing stress by assessing salivary
cortisol levels and perceived stress. The analysis revealed
a significant change in cortisol levels and perceived stress
throughout the study. Therefore, we conclude that digital
mock job interviews are well-suited to induce biological and
perceived stress.

In summary, the dataset presented in this work provides
the research community with a comprehensive basis for
further experiments, studies, and analyses on human stress.
Due to the multi-modality of our dataset, we provide the
possibility for cross-corpus validation for a multitude of
existing stress datasets. Therefore, this dataset contributes to
the overall goal of building more robust and generalizable
stress recognition models.

In future work, we plan to establish an additional base-
line for the automatic detection of emotions that occurred
during the interviews. For this purpose, we plan to extend
the dataset by continuous valence and arousal annotations.
Moreover, we aim to investigate the potential of transformer
architectures that have shown promise for assessing valence
and arousal in emotion recognition tasks [67].

The dataset presents valuable opportunities for advanc-
ing the understanding of stress detection in specific contexts,
particularly during job interviews. By analyzing the types of
questions posed by the interviewer, researchers can refine
stress prediction models, enhancing their accuracy [80].

Moreover, integrating stress recgonition models into job
interview training with virtual characters [81], [82] could
significantly benefit users. Training systems extended by
the models offer a realistic simulation of high-pressure
situations, enabling individuals to develop and practice
stress management strategies. Such preparation could be
instrumental in helping them project greater confidence in
actual job interviews, thereby potentially improving their
performance in these critical assessments.
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