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The ForDigitStress Dataset: A Multi-Modal Dataset
for Automatic Stress Recognition

Alexander Heimerl , Pooja Prajod , Silvan Mertes , Tobias Baur , Matthias Kraus, Ailin Liu, Helen Risack,
Nicolas Rohleder , Elisabeth André , and Linda Becker

Abstract—We present a multi-modal stress dataset that uses
digital job interviews to induce stress. The dataset provides multi-
modal data of 40 participants including audio, video (motion cap-
turing, facial landmarks, eye tracking), as well as physiological
information (photoplethysmography, electrodermal activity). In
addition to that, the dataset contains time-continuous annotations
for stress and occurred emotions (e.g., shame, anger, anxiety, and
surprise). In order to establish a baseline, five different machine
learning classifiers (Support Vector Machine, K-Nearest Neigh-
bors, Random Forest, Feed-forward Neural Network, and Long-
Short-Term Memory Network) have been trained and evaluated
on the presented dataset for a binary stress classification task. The
best-performing classifier has been a Long-Short-Term Memory
Network, which achieved an accuracy of 91.7% and an F1-score
of 90.2%. The ForDigitStress dataset is freely available to other
researchers.

Index Terms—Affective computing, digital stress, job interviews,
multimodal dataset, stress, stress dataset, stress physiology.

I. INTRODUCTION

S TRESS is the body’s response to any demand or threat [1].
It is a normal physiological reaction to perceived danger

or challenge and can be beneficial in small doses, e.g., stress
can support improving performance or memory functions [2][3].
However, chronic stress can have a negative impact on both
physical and mental health. Chronic stress may lead to a variety
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of mental health problems, including anxiety and depression. It
has also the potential to make existing mental health conditions
worse. Moreover, stress is able to induce physical symptoms
such as headaches, muscle tension, and fatigue [4]. Continuously
high exposure to stress increases the risk of heart disease, weak-
ens the immune system, and may promote unhealthy behaviors
such as overeating, smoking, and drinking alcohol [4].

Among the many sources of stress, work-related stress is
one of the most widespread and often seems inevitable. Work
stress is also associated with health problems (e.g., [5], [6], [7]).
Therefore, there is a need to understand stressful situations at
work and provide coping strategies on how to deal with them in
order to prevent chronic stress. However, besides the fact that
long-term exposure to work related stressors can be associated
with stress, acute situations are equally capable of triggering
perceived and biological stress responses. Job interviews have
been identified as one of the major stressors in a work-related
context for many reasons. They often involve a lot of uncertainty,
pressure, and potential rejection. In research, job interview
scenarios have recently become a popular use case for studying
how to recognize and regulate stress as a result of being a natural
stress-inducing event [8], [9], [10].

As remote job interviews have become common practice in
response to the restrictions created by the SARS-CoV-2 crisis,
such a setting has been used for collecting a novel multi-modal
stress data set in a naturalistic setting. For data collection, we
recorded signals from various sources including audio, video
(motion capturing, facial recognition, eye tracking) and physi-
ological data (photoplethysmography (PPG), electrodermal ac-
tivity (EDA)). We gathered data from 40 participants who took
part in remote interview sessions, resulting in approximately
56 hours of multi-modal data. For data annotation, participants
self-reported stressful situations during the interview as well
as their perceived emotions. In addition, two experienced psy-
chologists annotated the interviews frame-by-frame using equal
stress and emotion labels. Calculating the inter-rater reliability
for the individual labels resulted in substantial to almost perfect
agreement (Cohen’s κ > 0.7 for all labels). In addition to that,
salivary cortisol levels were assessed in order to investigate
whether the participants experienced a biological stress response
during the interviews.

For automatically classifying the participants’ stress levels
during the interview, the collected signal information was used
to produce a rich high-level feature set. The set contains EDA,
heart rate variability (HRV), body key points, facial landmarks
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including action units, acoustic frequency, and spectral features.
Further, a pupil feature set was created based on the latent space
features of an autoencoder that has been trained on close-up
videos of the eye. In addition to that, the pupil diameter was
extracted as well. For reducing the dimensionality of the input
feature vector, PCA (Principal Component Analysis) was ap-
plied. The classification task was formulated as a binary stress
recognition task (stress vs. no stress). We used and compared
the performance of five different machine-learning classifiers -
SVM (Support Vector Machine), KNN (K-Nearest Neighbors),
NN (Feed-forward Neural Network), RFC (Random Forest
Classifier), and LSTM (Long-Short-Term Memory Network).
Evaluation of the classifiers revealed that an LSTM approach
using all modalities as input led to the best recognition of the
participants’ stress levels. An LSTM approach also performed
best for the majority of modalities. Comparing the different
modalities for their impact on the recognition performance,
GEMAPS features had the highest accuracy and F1 -scores.

The proposed dataset makes the following contributions to
the research community. First, we provide data collected in a
realistic stress setting that has been validated by the analysis of
salivary cortisol levels in order to assess whether a biological
stress response was triggered during the interviews. Second,
the dataset was annotated frame-wise using a discrete labeling
approach enabling online stress recognition. Third, we provide
a multi-modal stress dataset containing established as well as
mostly overlooked modalities, e.g., close-up eye features, to
provide a promising non-invasive modality for stress detection.

The structure of this article is as follows: In Section II, we
present background and related work regarding existing stress
data sets. Section III describes the data collection process includ-
ing design principles, the recording system, properties of the data
set, as well as the annotation procedure and feature extraction
methods. The method for automatic stress recognition is also
explained in detail in Section III. The results of the performance
of the different machine-learning classifiers are presented in
Section IV and discussed in Section V. Finally, conclusions are
provided in Section VI, and ethical considerations are presented
in Section VII.

II. BACKGROUND AND RELATED WORK

As of today, multiple stress datasets for the automatic recog-
nition of stress are available. The datasets differ in the modalities
used for stress recognition and the stimuli employed to induce
stress. Those stimuli range from highly controlled lab settings
to realistic real-world scenarios. Table I displays an overview of
some of the existing stress datasets which are described in the
following sections.

A. Controlled Laboratory Environments and Stress Tests

The Trier Social Stress Test (TSST; [20]) and the Stroop
test [21] are standardized methodologies to elicit stress in
clinically validated settings. The Stroop test induces cognitive
stress through incongruent stimuli, while the Trier test involves
interview-style presentations and arithmetic tasks.

The WESAD corpus by Schmidt et al. [19] uses the TSST
as a stimulus and provides physiological data, e.g. blood vol-
ume pulse (BVP), electrocardiogram (ECG) and electrodermal

activity (EDA). Additionally, it features diverse stress-related
annotations, including affective states like neutrality, stress, and
amusement, obtained from a range of self-report questionnaires.

Similarly, the UBFC-Phys dataset introduced by Sabour et
al. [18] used an approach inspired by the TSST to induce stress.
While also providing physiological data like BVP and EDA, that
dataset contains stress states derived from pulse rate variability
and EDA.

For the Multimodal Dataset for Psychological Stress Detec-
tion (MDPSD) corpus provided by Chen et al. [12], stress was
induced using a variety of tests, including the classic Stroop
Color-Word Test, the Rotation Letter Test, the Stroop Number-
Size Test and the Kraepelin Test. Facial videos, PPG and EDA
data are provided. Stress annotations were obtained through
self-assessment where participants had to rate their perceived
stress on a five-point scale, ranging from no stress to high stress.

B. Simulation of Real-World Stressors

To obtain stress-related data in a more realistic context,
dedicated efforts have been invested in creating experimental
setups that replicate natural conditions where people typically
experience stress. These endeavors can be regarded as a balance
between controlled laboratory environments and uncontrolled
naturalistic settings.

Koldjik et al. [17] introduced the SWELL dataset where they
tried to simulate stress-inducing office work by applying time
pressure in combination with typical work interruptions like
emails. Besides various physiological modalities like heart rate
(HR), HRV and EDA, the participants’ facial expressions and
body posture as well as interaction data were recorded. In order
to assess the subjective experience during the study they relied
on various validated questionnaires to gather data about task
load, mental effort, emotional response, and perceived stress.

Nakashima et al. [14] also aimed to simulate work-related
stress. They distinguished between three different states, i.e.,
“relaxed”, “concentrated”, and “stressed”. The different states
were induced by landscape videos for relaxation, Stroop Color-
Word test, and Information Pick-Up test. Different test variations
were used to induce a state of stress or concentration. After each
test, participants filled out the NASA-Task Load Index ques-
tionnaire. During the experiment, they recorded the participants’
posture by using pressure distribution sensors on the chair and
floor. In addition to that, they collected EDA, BVP and HR. Also,
apart from us, they were the only ones considering eye-tracking
data. However, they focused on different features extracted from
the eye-tracker. They collected blinks, fixations, saccades, and
scans. Whereas, we mainly focus on pupillometry features.

C. Real-World Stressors and Multimodal Data

Moreover, endeavors have been undertaken to gather data in
the everyday lives of individuals, often spanning extended du-
rations. These methodologies facilitate a comprehensive under-
standing of stress dynamics within authentic real-world settings.
Nevertheless, they contend with the challenge of handling noisy
data that lacks detailed continuous annotations. Additionally,
uncertainty exists concerning the nature and timing of stressors.
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TABLE I
OVERVIEW OF EXISTING STRESS DATASETS

Healey and Picard [15] presented a dataset for Stress Recog-
nition in Automobile Drivers using highly realistic real-world
stressors instead of rather controlled approaches to induce
stress. Here, they induced stress by letting the subjects perform
open-road drives. Besides recording physiological data, stress

annotations were obtained through self-assessment question-
naires using free scale and forced scale stress ratings.

The Multimodal Stressed Emotion (MuSE) dataset introduced
by Jaiswal et al. [13] also used a real-world stressor, but in
contrast to other datasets, they did not induce stress by simulating
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a specific scenario themselves. They made use of the final exams
period at a university as an external stressor. Therefore, they
recruited 28 college students and recorded them in two sessions,
one during the finals period and one afterwards. During the
recordings, they confronted the participants with various emo-
tional stimuli. Afterwards, the participants self-reported their
perceived stress and emotions. Moreover, additional emotion
annotations have been created by employing Amazon MTurk
workers.

Similar to the MuSE dataset, the Stress in the Work En-
vironmEnT (SWEET) study [16] also relied on naturally oc-
curring external stressors as a stimulus. They investigated the
participants’ perceived stress during their daily lives for five
consecutive days. Throughout those five days, they collected
physiological data with wearables, contextual information (e.g.,
location, incoming messages) provided by a smartphone, and
self-reported stress. The daily self-assessment was done with a
smartphone application that questions the user 12 times a day
about their perceived stress.

The CLAS corpus presented by Markova et al. [11] provides
valence-arousal labels as well as cognitive load annotations to
situations where stress was induced by a math problems test, a
Stroop test, and a logic problems test. Additionally, physiologi-
cal data, such as ECG, PPG and EDA is provided.

Further, datasets exist that are based on non-physiological
feature sets. For example, the Dreaddit corpus presented by
Turcan et al. [22] contains a collection of social media posts that
were annotated regarding stress by Amazon MTurk workers.

D. The Need for the ForDigitStress Dataset

Altogether, a large variety of different stress datasets already
exist and are available to the research community. However, out
of the stress datasets listed in Table I, only four are freely ac-
cessible - WESAD, SWELL, UBFC-Phys, and CLAS. Further-
more, existing datasets show some drawbacks regarding stress
labels and recorded modalities, we discuss these in more detail
below.

Consequently, there remains a demand for additional freely
accessible stress datasets that fill these gaps. With the collection
of the ForDigitStress dataset, we decided to develop a setup
combining the advantages of laboratory and naturalistic condi-
tions. The TSST test inspired the setup, but we allowed for an
interactive scenario where the participant has to engage in a job
interview that replicates a real interview as much as possible.
Information about how to access the ForDigitStress dataset is
provided in Section III-F.

When considering provided stress labels, existing stress
datasets predominantly are labelled through self-report stress
questionnaires or similar assessments. Those approaches come
with the disadvantage of being subjective and, more importantly,
yielding annotations of low temporal resolution, i.e., large time
frames are treated as one and aggregated to a single annotation
(e.g., 10-minutes time windows [19]). Therefore, short-term
deviations in stress levels cannot be modelled with sufficient
precision, leading to problems in certain application domains,
e.g., scenarios that require real-time stress detection.

In contrast to that, the dataset presented in this paper was
annotated by experienced psychologists in a time-continuous
manner. This allows for the development of stress recognition
systems that are more accurate, reactive, and robust than is the
case with existing datasets. In addition to that, we analyzed not
only self-perceived stress but also the participants’ biological
stress response in order to validate whether the study setup has
indeed been eliciting a stress response. We argue that considering
both aspects, namely self-perceived stress and biological stress
response, even though being time-consuming, is important in
order to provide credible stress labels when employing study
setups that have not been already validated. To the best of our
knowledge, this two-fold analysis has not been done in any other
freely available stress dataset.

Even though multi-modal stress datasets exist, they rarely
provide a comprehensive representation of the participants’
behavior and lack a multi-modal assessment of physiological
stress responses. The majority of the datasets mainly focus
on physiological signals, e.g., HRV and EDA. Therefore, they
mostly neglect various aspects of non-verbal behavior, like body
language [23], [24], [25], that also hold valuable information
about perceived stress. In order to reliably assess a person’s
experienced stress in different environments (e.g. office, home,
recreational activities) it is important to acquire a comprehensive
representation of the person’s response to stress. For instance,
focusing exclusively on physiological modalities such as heart
rate or electrodermal activity might yield heightened measure-
ments during physical exercise without necessarily indicating a
correlate of psychological stress. Similar scenarios can be found
when only considering non-verbal behavior. Finally, out of the
presented existing stress datasets only two provided multi-modal
baseline results for the automatic recognition of stress [19][13].

Recent research revealed that models for the automatic recog-
nition of stress showed a significant decrease in prediction per-
formance when tested on other datasets that have not been used
for training [26]. Therefore, additional datasets are needed that
are compatible with already existing ones in terms of available
modalities. Having a collection of compatible datasets enables
researches to train stress models across multiple datasets result-
ing in increased generalizability. Therefore, a special emphasis
when creating the ForDigitStress dataset has been placed on
providing a comprehensive collection of modalities that are
compatible with already existing datasets.

The proposed ForDigitStress dataset contains audio, video,
skeleton data, facial landmarks including action units as well as
physiological information (PPG, EDA). In addition to the raw
signals, we also provide already extracted features for HRV and
EDA as well as established feature sets like GEMAPS [27] and
OpenPose [28]. Furthermore, this dataset contains pupillometry
data, which is a mostly overlooked modality for the recognition
of stress. As prior work suggests [29], [30], [31], there are
correlations between various affective states and pupil dilation.
Also, collecting pupillometry data can be done unobtrusively
by using existing eyetrackers or even laptop webcams [8].
Therefore, we believe that incorporating pupillometry data can
benefit multiple stress-related use cases where eye-tracking is a
reasonable option. The dataset provides already extracted pupil
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Fig. 1. Overview of the study setup including information on the different modalities that have been recorded during the interviews. Participant and interviewer
were seated in different rooms and interacting remotely with each other. A third computer was acting as an observer to unobtrusively monitor the interaction
between the participant and interviewer.

diameter as well as close-up infrared videos of the eye. Based on
the close-up videos we trained an autoencoder and extracted the
latent space features that represent an abstracted version of the
eye. Those features are also made available as part of the dataset.

III. DATASET

A. Design Principles

1) Setting: The main requirement for the study setting has
been to elicit stress and emotional arousal in participants. More-
over, the setting should reflect a familiar real-world scenario.
Therefore, we opted for a remote job interview scenario, a typical
digital stressor. Performing remote job interviews has become a
common procedure in many modern working environments. Job
interviews are by their nature a complex stressful social scenario
where different aspects of human interaction and perception
collide. Previous research has shown that psycho-social stress
also occurs in mock job interviews [32], [33]. Fig. 1 shows a
schematic of the employed study setup. To mimic remote job
interviews, participant and interviewer were interacting via two
laptops while sitting in two separate rooms. The participants
were alone in the room the whole time (except during prepara-
tion). This means that no stress caused by social evaluation of a
present person was generated.

2) Procedure: The study procedure consisted of two parts.
Prior to the day the mock job interview took place the par-
ticipants sent their curriculum vitae (CV) to the experimenter
and filled out an online survey, in which demographic variables
and experiences with job interviews were assessed. This survey
further included questionnaires where participants’ personality
traits, coping styles, perceived stress during the last month, as
well as trait anxiety and trait-depression were assessed, which
are not further considered here, but which are described and
evaluated in [34].

On the day of the experiment, participants were invited to
the laboratory and were told that physiological reactions during
an online job interview would be recorded. Furthermore, they

were asked about their dream job and were equipped with PPG
and EDA sensors and a wearable eye tracker. Then, they had
about 15 minutes to prepare for the interview. During this time,
the interviewer also prepared for the interviews and thought
about questions related to the applicant’s CV and dream job.
Afterwards, the participant and interviewer were seated in two
separate rooms, and the interview started. They interacted with
each other over two connected laptops, similar to an online
meeting. The interviewer was instructed to ask critical questions
to stress the applicant and to induce similarly negative emotions.
The interviews were structured and the same areas were always
queried but with a different focus and related to the specific
job the participant applied for. The content of the interviews
included questions about the strengths and weaknesses of the
applicant, dealing with difficult situations on the job, salary
expectations, willingness to work overtime, and inconsistencies
in the CV. In addition, tasks related to logical thinking were
asked as well as questions about basic knowledge in the areas
of mathematics and language. A typical interview followed this
pattern [34]:

1) Reception
2) Self-introduction of the candidate (e.g. ”How would you

describe yourself?”)
3) Interrupting the introduction (e.g. ”Don’t share informa-

tion with me that I can also find in your CV.”)
4) Intrinsic motivation (e.g. ”Why do you want to work for

this particular company/employer?”)
5) Reason for job change (e.g. ”Why are you seeking a new

job?”)
6) Candidate’s expectations (e.g. ”What do you expect from

this job?”)
7) Self-promotion candidate (e.g. ”What qualifies you for

this role?”)
8) Hypothetical situation (e.g. ”How would you react

if...?”)
9) Applicant’s vision of the future (e.g. ”Where do you see

yourself in 5 years?”)
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10) Spontaneous task (e.g. ”Do you have a pen at hand right
now? Sell me this pen!”)

11) Questions about basic knowledge (e.g. ”Translate the
following sentence...”)

12) Salary and working hours expectations (e.g. ”Are you
prepared to work overtime?”)

13) Outfit (e.g. ”Why are you wearing this outfit today?”)
14) End
The guidelines for the interviews are freely available in the

Open Science Framework (https://osf.io/5bdyf/).
After the job interviews, participants were asked about their

emotions during the job interview. For this, qualitative, semi-
structured interviews were used (see https://osf.io/5bdyf/). Af-
ter reporting the experienced emotions, participants reported
whether they felt stressed at any time during the interviews,
and were instructed to describe as precisely as possible in which
specific situations during the job interviews they felt stressed.
This procedure (rating and assignment to specific situations) was
repeated for all of the reported emotional states (i.e., shame, anx-
iety, pride, anger, annoyed, confused, creative, happy, insecure,
nervous, offended, sad, surprised). These qualitative interviews
lasted about 10 to 20 minutes, depending on the participant.

In order to assess whether the mock job interview did elicit
stress in the participants, we collected self-reports as well as
saliva samples to determine cortisol levels. Salivary cortisol
levels are a measure of the activity of the hypothalamic-pituitary
adrenal (HPA) axis. Increased cortisol levels can be observed
when a person is exposed to stress [35], especially in social-
evaluative situations, and are a typical marker in research on
acute biological stress responses (e.g., [36], [37]). Cortisol levels
were, therefore, considered an adequate measure to investigate
the participant’s biological (i.e., HPA axis) response to the digital
job interview. After a person has been exposed to a stressor,
cortisol levels do not increase instantly. Peak levels are usually
found after 10 to 30 minutes [35] after psycho-social stressors
of short duration (e.g., the TSST, which is similar to a job inter-
view scenario, because both include strong socially-evaluative
components). After this, cortisol levels return to baseline levels.
The samples of participants that have been stressed by the job
interview - in the sense of an activation of the HPA axis -
will show an increase in cortisol levels until they reach a peak
followed by a decrease back to their baseline levels. Therefore,
salivary cortisol was assessed as a measure of biological stress.
For saliva collection, salivettes (Sarstedt, Numbrecht) were used.
Each participant provided six saliva samples at different time
points. Fig. 2 displays an overview of the timing of saliva sample
collection during the study. The first sample was collected at the
beginning of the study and the second at the end of the prepa-
ration phase (i.e., immediately before the actual job interview
started). Those two samples were separated by about 15 minutes
in order to assess the baseline cortisol level before the participant
was exposed to the stressor, i.e., the job interview. The next four
samples were collected immediately after the job interview, 5
minutes, 20 minutes, and 35 minutes after it to cover the cortisol
increase, its expected peak, and its return to baseline. During
each saliva sampling, participants rated their current stress level
on a 10-point Likert scale with the anchors ”not stressed at

Fig. 2. Overview of the timing of saliva sample collection during the different
stages of the study.

all” and ”totally stressed”, which have been used in previous
studies ([38]).

B. Recording System

Various sensors were used to record the participants’ physio-
logical responses. For recording and streaming the participant’s
data, we employed a Microsoft Kinect 2. The Microsoft Kinect
2 supports Full HD video captures as well as optical motion
capturing to extract skeleton and facial data. Moreover, the
built-in microphone was used to record ambient sound data.
In addition to that, the participants were equipped with an
ordinary business USB headset from Trust. Furthermore, the
IOM-biofeedback sensor was used to collect PPG and EDA data.
Finally, participants were wearing a Pupil Labs eyetracker to
record closeup videos of their eyes. All sensors were connected
to a Lenovo Thinkpad P15. The setup for the interviewers only
consisted of audio recorded with the same Trust USB Headset
and video from the built-in Lenovo Thinkpad P15 webcam. A
schematic overview of the recording setup is displayed in Fig. 1.
The participant and interviewer were seated in two different
rooms and were interacting remotely with each other through the
two laptops. In a third room, another computer was set up to act
as an observer. This way the interaction between the participant
and the interviewer could be monitored unobtrusively. In order
to keep the recorded signals in synchrony we implemented a
Social Signal Interpretation Framework (SSI) [39] pipeline. SSI
includes an interface for the development of online recognition
systems from various sensory devices.

C. Collected Data

Data of N= 40 healthy participants (57.5% female, 40% male,
2.5% diverse) was included in the data set. Mean age was 22.7±
3.2 years (min: 18, max: 31). Mean body-mass-index (BMI) was
23.2± 4.1 kg/m2 (min: 17.9, max: 37.7; 1 missing). In total 56
hours and 24 minutes of multi-modal data have been recorded.
An overview of all the recorded files is displayed in Table II.

D. Annotation

Two experienced psychologists annotated the recorded ses-
sions frame by frame based on the participants’ reports and the
content of the interviews. Categories for the annotations were
the categories from the questionnaire, i.e. stress as well as the
reported emotions like shame, anxiety, anger, and pride. In total,
21 hours and 26 minutes of data were annotated. Fig. 3 displays

https://osf.io/5bdyf/
https://osf.io/5bdyf/
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TABLE II
LIST OF RECORDED FILES AVAILABLE FOR DOWNLOAD

Fig. 3. Number of samples per occurred emotion.

the overall label distribution for the occurred emotions. In the
first step, the two psychologists independently annotated the 40
videos with the NOVA tool [40]. During the annotation process,
the job interview videos were examined regarding stress and
different emotions. The first round of annotation was created
based on the observable verbal and non-verbal behavior of the
participants. Each video was carefully watched and as soon as an
emotion-specific behavior appeared or the participant’s behavior
indicated stress, an annotation was created for the corresponding
emotion or stress. For example, stress was concluded if a person
was sitting very restless in their seat. In the second step, the
annotations were supplemented with information from the self-
reports of the interviewees. For every visible or reported feeling
of stress, a discrete label was created for the corresponding
frames. Emotions were annotated accordingly. For example, if a
participant reported the emotion of shame in a certain situation
during the interview, an annotation for the emotion of shame was
created for that sequence. There were no disagreements between
the psychologists’ ratings and the participants’ self-reports, i.e.,
for every situation that was assigned to stress or an emotion
by the participants, a time window could be assigned by the
psychologists and a corresponding annotation could be created.
In the last step, disagreements in the annotations were discussed
by the two psychologists. These only affected the annotations,
which were created based on observable verbal and non-verbal
behavior, as there has been no disagreement for the self-reported
emotions and stress. After a detailed discussion and in the

Fig. 4. Average Cohen’s Kappa calculated for stress and each emotion to map
the interrater agreement between the two psychologists.

case of an agreement between the two psychologists regarding
the person’s stress, both annotations were adjusted to ensure a
standardized representation. The same procedure was also used
for the annotations of the emotions. If both psychologists could
clearly identify the same emotion after the discussion, the anno-
tations were adjusted accordingly. But if, after the discussion,
there were still differences in the perception of the presence of
an emotion or the extent of stress, the original annotations of
the two psychologists were maintained for the corresponding
situations without making any further changes. The annotations
were conducted in multiple sessions. On average, each session
lasted two hours, and if signs of distraction were noticed, a break
was taken, or the annotation continued on the following day. The
videos were viewed multiple times by the two psychologists with
intervals in between.

A screenshot of a loaded recording session from the dataset
is shown in Fig. 5. The screenshot displays a situation during
the interview phase where the participant experienced stress. As
a consequence, changes in the physiological signals as well as
nonverbal behavior could be observed, e.g. pupil dilation, acti-
vation of specific action units (in this case the lip corner puller),
changes in heart rate variability, and electrodermal activity.

In order to measure the quality and reliability of the value-
discrete and time-continuous annotations, we calculated the in-
terrater agreement between the two psychologists using Cohen’s
Kappa (see Fig. 4). The majority of the annotations have shown
a strong to almost perfect agreement following the interpretation
for Cohen’s Kappa.

E. Feature Extraction

The recorded raw data has been used to extract features that are
valuable for stress recognition. The following section gives an
overview of the extracted features as well as additional informa-
tion regarding the extraction process. Moreover, the presented
features are also available for download.
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TABLE III
LIST OF FEATURES EXTRACTED FROM VARIOUS MODALITIES

1) Eda: Features derived from skin conductance (SC) as a
measure for EDA are widely used for stress recognition [15],
[17], [19], [41]. The EDA signal can be decomposed to skin con-
ductance level (SCL) and skin conductance response (SCR) [19],
[42]. SCL or the tonic component is the slow-changing part
of the EDA signal. SCR or the phasic component are the
rapid changes as a response to a specific stimulus. First, we
remove the high-frequency noise by applying a 5 Hz low-pass
filter [19], [42]. We use the filtered signal to calculate statistical
features [19], [41], [43] like mean, standard deviation, dynamic
range, etc.. We compute the SCL and SCR components using
the cvxEDA decomposition algorithm [44]. In addition to the
various statistical features of SCL and SCR signals, we also
compute features derived from the peaks in the SCR signal [15].
We compute a total of 17 features (see Table III) from a 60
seconds long EDA input signal. The 60 seconds time frame was
chosen based on similar research that achieved excellent results
with it [45].

2) PPG: As demonstrated in previous studies [19], [46], the
PPG signal can be used to derive HRV (Heart Rate Variability)
features for predicting stress. We compute 22 PPG-based HRV
features which are listed in Table III. To derive the HRV from
PPG, we detect the Systolic Peaks (P) from the input signal. The

first step is to remove baseline wander and high-frequency noises
from the raw PPG signal. We use a band-pass filter (0.5− 8
Hz) to reduce the noise and enhance the peaks [47]. Next, we
use a peak finding algorithm to detect peaks such that (a) their
amplitudes are above a specified threshold and, (b) consecutive
peaks are sufficiently apart. The amplitude threshold is set to the
mean of the 75 percentile and 90 percentile of the peak heights in
the input signal. In a previous exercise stress study [48] involving
healthy participants of varying ages, the maximum heart rate
recorded was 3 beats per second (180 beats per minute). Hence,
we set the minimum time between two consecutive peaks as
0.333 seconds. We use 60-second long PPG segments to detect
the peaks and compute the HRV signal. We compute various
HRV features [19], [26], [41], [43], [49], [50] from the time
domain, frequency domain, and PoincarÃ©plots.

3) Body Keypoints: Prior studies have established the value
of body language and body behaviour for the recognition of
stress [23] [24] [25]. Therefore, our study setup included a
Microsoft Kinect2 to extract 3D body data. This data provides
information about 25 joints, consisting of position in 3D space,
orientation of the joints in 3D space as well as a confidence
rating in regard to the tracking performance. Even though the
Microsoft Kinect2 has been used in prior studies in the context of



HEIMERL et al.: FORDIGITSTRESS DATASET: A MULTI-MODAL DATASET FOR AUTOMATIC STRESS RECOGNITION 1227

Fig. 5. An instance of a recorded session loaded in NOVA.The top row displays the eyetracking video alongside the video recording of the participant. Below
that several feature streams are displayed: HRV feature stream, EDA, action units, and GEMAPS audio features. At the bottom, two discrete annotation tiers are
shown. The first tier displays situations where the participant experienced stress while the second tier displays the interview phase.

stress recognition [23], [24], [25] we aimed to provide additional
body data in order to enable others to utilize the provided
dataset across multiple datasets. Therefore, we extracted the
OpenPose [28] features from the recorded HD video display-
ing the participant. OpenPose is a widely used state-of-the-art
framework for the detection of human body key points in single
images. It is important to point out that OpenPose solely returns
the body key points in 2D space, therefore, losing some infor-
mation when compared to the Microsoft Kinect2 data. However,
in order to extract the OpenPose features no special hardware is
required and the data of a simple camera is sufficient. Also, due
to the study setup, not all joints could be successfully tracked, as
the participants were sitting and their lower body was concealed
by the table. Therefore, only the features corresponding to the
upper body joints provide reliable information.

4) Action Units: Facial expressions play an important role in
communicating emotions and therefore are frequently used for
the automatic detection of affective states [51][52]. Furthermore,
recent studies have utilized facial action units to successfully
predict human stress [24] [53] [54]. We extracted 17 facial
action units (see Table III) provided by the Microsoft Kinect2. In
addition to that, we also extracted the OpenFace2 [55] features
that consist of facial landmarks, head pose, facial action units,
and eye-gaze information. Similar to OpenPose, those features
can be extracted from any video data.

5) Audio Features: Knapp et al. [56] argue that emotions are
reliably transported by the voice. Indeed it is a well-established
fact that the acoustic characteristics of speech e.g. pitch and
speaking rate are altered by emotions [57]. Moreover, vocal signs
of stress, such as an increase in fundamental frequency [58] or

changes in vocal tremor [59], are mainly induced by negative
emotions [60]. An increase in fundamental frequency during
an episode of experienced stress can also be seen in Fig. 5
(GEMAPS feature stream; 4th row). Multiple studies were able
to show that it is possible to automatically detect stress with
acoustic features [61][60] [62][63]. In order to provide mean-
ingful acoustic features we chose to extract the GEMAPS fea-
tures [27]. One of the main objectives of the GEMAPS feature set
has been to provide access to a comprehensive and standardized
acoustic feature set. It contains frequency and energy-related
features like pitch, jitter, shimmer and loudness, as well as spec-
tral features, e.g., Hammarberg Index and harmonic differences.
We calculated the features over a one-second time window.

6) Pupil Features: Responses of the pupil, like pupil dila-
tion, are closely related to subjective and physiological stress
responses (e.g., the activation of the hypothalamic-pituitary
adrenal (HPA) axis; [64] [65]). Furthermore, a recent study has
shown that pupillometry is a suitable tool to measure arousal
during emotion regulation after an acute stressor [66] [65].
However, this modality has not yet been paid much attention
in established affective computing datasets [67]. Therefore, part
of our study setup has been a wearable eye tracker that provides
close-up video data of the participant’s eye. From those videos,
we automatically extracted the pupil diameter by employing the
extraction pipeline described in [8]. In addition to that, we also
trained an autoencoder on the close-up eye videos in order to
extract the corresponding latent space features. The latent space
features contain an abstract representation of the eye. Fig. 6
displays the original input image of the eye and the reconstructed
output image produced by the autoencoder below. During the
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Fig. 6. Examples of reconstructed images. The top row displays the original
input image, while the bottom row shows the images reconstructed by the
autoencoder.

encoding and decoding process, barely any loss of information
occurred as the input image and corresponding output image are
almost identical. This is a strong indicator that the autoencoder
has learnt meaningful features to accurately translate the image
into and out of the latent space. The resulting feature set consists
of 512 parameters corresponding to the size of the latent space.

F. Availability

The ForDigitStress dataset is freely available for research and
non-commercial use. Access to the dataset can be requested
at https://hcai.eu/fordigitstress. The dataset is organized in ses-
sions with a total size of approximately 360 GB.

G. Automatic Stress Detection

1) Dimensionality Reduction: As seen from Table III, nu-
merous features have been extracted from each modality. The
size of the input dimension can be a concern for some machine
learning techniques, especially when we consider multi-modal
input. Therefore, we use PCA (Principal Component Analysis)
as it has been shown to reduce dimensionality without a drop
in classification performance of machine learning models [68].
We apply PCA for stress models involving individual modalities
as well as multi-modal stress recognition models. The length of
the feature vectors of action units, EDA, HRV, OpenPose, and
GEMAPS was 17, 17, 22, 24, 58. We retain 95% of the compo-
nents using PCA, reducing the length of the feature vectors to
10, 9, 10, 8, 19, respectively. The following approach is applied
for combining features for multi-modal stress recognition. We
first apply PCA to individual modality features and then combine
them (i.e., concatenated the reduced features). The final length
of the feature vector is 56 (sum of the length of feature vectors
of each modality). Similar to Reddy et al. [68], we perform
MinMax normalization between 0 and 1 before applying PCA.

2) Classifiers: Previous works [19], [43], [69], [70] have
demonstrated that many machine learning classifiers such as
SVM (Support Vector Machine), KNN (K-Nearest Neighbors)
and RFC (Random Forest Classifier) can achieve good stress
recognition performance. Recent works [26], [71] have shown
that neural networks perform better than popular machine learn-
ing classifiers in feature-based stress recognition. We train the
following classifiers as a baseline for our dataset.

� KNN This machine-learning technique classifies samples
based on the labels of the nearest neighbouring samples.
The neighbouring samples are determined using the Eu-
clidean distance between them. We use K = 50 neigh-
bouring samples to classify the samples. This parameter
was chosen by extrapolating the threshold value for stable
performance, K = 10, for WESAD dataset [72]. Consid-
ering the stress duration and number of participants, our
dataset contains almost 5 times more data than WESAD,
which is reflected in the chosen K parameter.

� Feed-forward Neural Network This is a Multi-Layer
Perceptron with an input layer, two hidden layers, and a
prediction layer. Since the size of the input varies depend-
ing on the modalities, we have a varying number of nodes
in the hidden layers. We set the number of nodes in the
first hidden layer as half of the input size, rounded up to a
multiple of 2. The number of nodes in the second hidden
layer is half of the first layer. The activation function for
hidden layers is ReLU (rectified linear unit). The prediction
layer has a single node with Sigmoid activation to discern
between stress and no-stress classes. We avoid over-fitting
by using a dropout layer (dropout rate = 0.2) after the
input layer.

� RFC This is an example of an ensemble classifier that
trains a number of decision tree classifiers on subsets of the
training set. This training technique controls over-fitting.
Hence, the RFC achieves better overall performance, even
if the individual decision trees are weak. In our evaluations,
we use an RFC with 100 decision trees (or estimators) and
50 minimum samples for splitting a node.

� SVM This is a popular supervised learning technique that
often achieves good stress recognition performance. Sim-
ilar to previous works [43], [70], we use the Radial basis
function (Rbf) as the kernel function for our SVMs.

� LSTM In order to incorporate temporal context for the
stress classification, we trained an LSTM (Long Short-
Term Memory) classifier. An LSTM is a type of recurrent
neural network that is usually used to process sequential
data and is able to capture temporal relationships. The
LSTM model consists of one LSTM layer with 256 units
and a time step size of 50 samples followed by one hidden
layer with the number of nodes as half of the input size,
rounded up to a multiple of 2. The activation for the LSTM
layer is TanH while the activation function for the hidden
layer is ReLU. The prediction layer has a single node with
a sigmoid activation function to discern between stress and
no-stress classes. We avoid over-fitting by using a dropout
layer (dropout rate = 0.4) after the LSTM layer. The time
step size of 50 samples was identified after an experiment
where we incrementally increased the step size starting
with 25 samples (i.e., one second of data). A time step size
of 50 samples achieved the best results regarding accuracy.

The feed-forward neural networks and LSTMs were imple-
mented using Tensorflow (version 1.15.0). We use the SGD opti-
mizer (learning rate= 0.001 ) and binary cross-entropy loss. We
train them for 100 epochs while employing early stopping with a
patience of 15. All other machine-learning models were trained

https://hcai.eu/fordigitstress
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TABLE IV
EVALUATION OF CLASSIFIERS ON DIFFERENT MODALITIES FOR THE BINARY STRESS RECOGNITION TASK

using Scikit-learn (version 1.0.2). We balanced our training set
by randomly down-sampling the no-stress class depending on
the number of stress samples annotated for each participant.
Further, before training the models all feature vectors have
been normalized between 0 and 1. The training procedure for
the autoencoder features extracted from the eye tracker video
data differs from the other modalities. First, some participants
manipulated the eye tracker by accidentally bumping into it and
changing the alignment of the built-in camera. In some cases, this
resulted in uncaptured eyes. In these cases, it was not possible to
re-align the eye-tracker so as not to disturb the study procedure.
Therefore, the models could only be trained on a subset of the
recorded data. The subset contains 19 sessions for training the
model. For that reason, we report the results separately from
the baseline results. Apart from the reduced training data, the
procedure for training these models was similar to the other
classifiers.

3) Evaluation Metrics: Similar to previous work [19], [26],
we use accuracy and f1-score as the performance metrics to
evaluate our stress models. To assess the generalizability of our
models on data from unseen users, we perform LOSO (leave-
one-subject-out) evaluations.

IV. RESULTS

A. Automatic Stress Detection

We evaluate our dataset on a binary stress recognition task
(stress vs. no stress). The dataset has a sample rate of 25 Hz. We
predicted stress for every sample of the annotated data. Popular
machine learning techniques such as RFC, KNN, SVM, Feed-
forward Neural Networks, and LSTM are trained on features
extracted from facial action units, EDA, HRV, OpenPose, and
GEMAPS. The results of our LOSO evaluation are presented in
Table IV.

Combining modalities yields better stress recognition per-
formance than individual modalities. The LSTM model
achieved the best stress recognition performance (F1 = 90.2%,
Accuracy = 91.7%). A previous study [73] reported similar
findings, where a CNN-LSTM model outperformed simple ma-
chine learning models on a custom stress dataset. Among the
simpler models, feed-forward NN achieved better performance
(F1 = 88.1%, Accuracy = 88.3%). This result is in line with
the observations of related work [26], [71], [74], [75], where a
simple feed-forward network achieved better performance than
other machine learning models (SVM, RFC, etc.) on multimodal
stress datasets (e.g., WESAD, SWELL).

When considering stress recognition using a single modality
for the models that are not considering temporal context, HRV
features yield the best results across classifiers, followed by
facial action units and OpenPose features. The GEMAPS and
EDA features rank the lowest in stress recognition performance,
achieving 15− 20% lower f1-score and accuracy. When em-
ploying LSTM models which incorporate temporal context the
results differ. The best performance for single modality stress
recognition was achieved with the GEMAPS features, whereas
the worst was scored with the OpenPose features. HRV and
action units continued to provide good recognition scores.

As mentioned in Section III-G we also trained classifiers on
the extracted eye autoencoder features. Due to the reduced train-
ing data we report the results separately. The best performance
was achieved by the LSTM model with an f1-score of 68.3 and an
accuracy of 70.2% followed by the neural network model with
an f1-score of 54.8 and an accuracy of 62.0%. The non deep
learning approaches struggled to reach accuracy scores above
chance. The KNN classifier achieved an f1-score of 47.2 and
an accuracy of 48.9%. The SVM model had an f1-score of 45.3
and an accuracy of 47.9%. The worst performance was from the
RFC with an f1-score of 39.1 and an accuracy of 49.5%.

B. Biological Stress

As a manipulation check, i.e. to prove whether our job inter-
view scenario indeed induced stress, biological and perceived
stress were measured at 6 points in time (2 before and 4 after the
job interview). Cortisol levels as a marker for biological stress
significantly changed during the whole session (Fig. 7(a); F(5,
190) = 3.19, p = 0.009). They were highest 5 minutes after the
job interview and then decreased to baseline levels 35 minutes
after the stressor. A similar time course was found for perceived
stress, which was highest immediately after the job interview
and decreased to baseline afterwards (Fig. 7(b); F(5, 190) =
39.82, p < 0.001).

V. DISCUSSION

In order to establish a baseline on our dataset for the automatic
recognition of stress we trained several machine learning models
on different modalities. Overall, we found that a fusion of
the action units, EDA, HRV, OpenPose and GEMAPS features
that have been reduced in dimensionality - by employing PCA
- achieved the best accuracy and f1-scores with 91.7% and
90.2. Throughout our experiments, the LSTM model outper-
formed the other classifiers in most of the modalities except for
the OpenPose features. Here, the simple NN yielded the best
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Fig. 7. Time course of cortisol levels (a) and perceived stress (b) during the
whole session.

performance. This emphasizes the importance of temporal con-
text for the automatic detection of stress. In single-modality
stress recognition, the HRV features achieved good results across
all classifiers. In fact, for the models that don’t consider temporal
context, the HRV features achieved the best results among the
different single modalities. This is in line with existing research
that identified HR and HRV as excellent measures for predicting
stress [76], [77]. Moreover, models trained with action units
achieved similar results, i.e., 83.1% compared to 82.6% for the
HRV features. Another well-established modality to detect stress
is EDA [76]. Models solely trained on EDA features were able to
achieve accuracy scores of up to 94.62 % in a 2-class and up to 75
% on a 4-class pattern recognition task on a modified Trier Social
Stress dataset [78]. Interestingly, in our experiments, the models
trained on the EDA features were the ones having the second-
worst accuracies and f1-scores. One reason for that observa-
tion could be that existing datasets often aggregate larger time
frames to one label whereas we worked with time-continuous
annotations with a high temporal resolution. This could be a
problem when working with EDA as there is a delay between the
sympathetic nervous systems stimulation and the corresponding
EDA response [79]. Therefore, the EDA features could still
represent a non-stressed state due to the delay for situations
identified as stress. This could potentially be mitigated by either
shifting the signal corresponding to the delay or calculating the
EDA features over a longer time window. Further investigations
should be conducted in future work to check whether following
those approaches leads to better classification performance.
Finally, when training the classifiers on the GEMAPS features,
the consideration of temporal context had the biggest influence.

While for the models that do not incorporate temporal context,
the GEMAPS features yielded the worst results, the feature set
achieved the overall best single modality scores when training
an LSTM. The LSTM model trained on GEMAPS achieved an
f1-score of 84.0 and an accuracy of 86.7%.

In general, our experiments showed excellent f1-scores and
accuracies for the automatic recognition of stress but also
revealed quite high standard deviations. This means that the
performance for the single splits substantially differed. After
manual inspection of the f1-scores and accuracies, we found
that only a small subset of the sessions showed substantially
worse results. This was predominantly due to imprecisions in the
feature extraction process, e.g., the OpenPose feature extraction
partially resulted in misaligned head tracking.

In addition to the baseline models, we trained the different
classifiers on a reduced dataset containing the extracted eye
features including pupillometry features. In those experiments
the KNN, RFC, SVM were not able to achieve results above
chance. The simple neural network achieved an accuracy of
62.0%. The best performance was achieved by the LSTM model
with an accuracy of 70.2%. This discrepancy between deep
learning models and conventional models is most likely due
to the complexity of the autoencoder features. The autoencoder
features set consist out of 512 features which is almost 10 times
more than the GEMAPS features which is the second largest fea-
ture set employed. Further, the improvement when incorporating
temporal context by employing a LSTM model indicates that
snapshots of changes in pupil diameter and eye movement, while
providing some information about experienced stress, are not
sufficient enough to automatically predict stress. Still, the results
show that features extracted from close-up eye video data hold
relevant information for the recognition of stress. Considering
that there is only very limited research available [8][14] that
used close-up eye features, including pupillometry features,
to automatically detect stress, this experiment highlights the
usefulness of such features. Features derived from the movement
of the eye as well as changes in pupil size are a promising,
non-invasive modality for the automatic recognition of stress.

In order to validate whether our digital job interviews are a
suitable scenario for inducing stress, we measured biological as
well as perceived stress during the study. Salivary cortisol levels
were used as a marker for biological stress. We found a signif-
icant change in cortisol levels and perceived stress throughout
the study. Peak cortisol levels were observed 5 minutes after
the interview whereas perceived stress was found to be highest
immediately after the interview. The delay of peak cortisol levels
in comparison to perceived stress ratings is due to the fact that
it takes some time for the body to release cortisol. In order to
reach peak cortisol levels it usually takes 10 to 30 minutes [35].
This delay can be observed in Fig. 7. Overall, the results show
that mock digital job interviews are a reliable scenario to induce
stress (biological and perceived) in participants. Furthermore,
it was found that female participants experienced the scenario
as more stressful than male participants. Cortisol peaks were
higher for participants who experienced the situation as a threat
in comparison to participants who experienced it as a challenge
(see [34] for further details).
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Our dataset includes many of the stress response modalities
that are widely used in other stress datasets. So, our dataset holds
promise in the development of more robust and high-performing
stress detection models, especially through merging of datasets.
For example, a recent work [75] showed that the HRV models
trained on our dataset perform equally well on other social
stress datasets (WESAD and VerBIO). Notably, these datasets
differed from our dataset in many factors such as stress intensity,
elicitation method, and sensor brands. Moreover, merging the
data from the three datasets resulted in an improved stress
detection performance. Their findings show the compatibility of
our dataset with existing social stress datasets, thus highlighting
the potential of our dataset towards developing a generalizable
stress detection model.

VI. CONCLUSION

In this paper, we present a comprehensive multi-modal stress
dataset that employs a digital job interview scenario for stress
induction. The dataset provides signals from various sources
including audio, video, body skeleton, facial landmarks, action
units, eye tracking, physiological information (PPG, EDA), as
well as already extracted features like GEMAPS, OpenPose,
pupil dilation, and HRV. In total, 40 participants have been
recorded, resulting in approximately 56 hours of multi-modal
data. Moreover, the dataset contains discrete annotations created
by two experienced psychologists for stress and emotions that
occurred during the interviews. The inter-rater reliability for
the individual stress and emotion labels showed a substantial
to almost perfect agreement (Cohen’s κ > 0.7 for all labels).
Based on the stress annotations, several machine learning mod-
els (SVM, KNN, RFC, NN, LSTM) were trained to predict
stress vs. no-stress. The best single modality performance of
86.7% was achieved by an LSTM trained on the GEMAPS
features. The best stress recognition performance (F1 = 90.2%,
Accuracy = 91.7%) was obtained by training an LSTM on all
modalities.

Moreover, we validated whether the digital mock job in-
terviews are capable of inducing stress by assessing salivary
cortisol levels and perceived stress. The analysis revealed a
significant change in cortisol levels and perceived stress through-
out the study. Therefore, we conclude that digital mock job
interviews are well-suited to induce biological and perceived
stress.

In summary, the dataset presented in this work provides the
research community with a comprehensive basis for further
experiments, studies, and analyses on human stress. Due to
the multi-modality of our dataset, we provide the possibility
for cross-corpus validation for a multitude of existing stress
datasets. Therefore, this dataset contributes to the overall goal
of building more robust and generalizable stress recognition
models.

In future work, we plan to establish an additional baseline
for the automatic detection of emotions that occurred during the
interviews. For this purpose, we plan to extend the dataset by
continuous valence and arousal annotations. Moreover, we aim

to investigate the potential of transformer architectures that have
shown promise for assessing valence and arousal in emotion
recognition tasks [67].

The dataset presents valuable opportunities for advancing the
understanding of stress detection in specific contexts, particu-
larly during job interviews. By analyzing the types of questions
posed by the interviewer, researchers can refine stress prediction
models, enhancing their accuracy [80].

Moreover, integrating stress recgonition models into job
interview training with virtual characters [81], [82] could signifi-
cantly benefit users. Training systems extended by the models of-
fer a realistic simulation of high-pressure situations, enabling in-
dividuals to develop and practice stress management strategies.
Such preparation could be instrumental in helping them project
greater confidence in actual job interviews, thereby potentially
improving their performance in these critical assessments.
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