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Abstract

We study the existence of weak solutions for a model of cell invasion into the extracellular matrix (ECM), 
consisting of a non-linear partial differential equation (PDE) for cell density coupled with an ordinary dif-
ferential equation (ODE) for ECM density. The model includes cross-species density-dependent diffusion 
and proliferation terms, capturing the role of the ECM in supporting cells during invasion and preventing 
growth via volume-filling effects. The occurrence of cross-diffusion terms is a common theme in the sys-
tem of interacting species with excluded-volume interactions. Additionally, ECM degradation by cells is 
included. We present an existence result for weak solutions, exploiting the partial gradient flow structure to 
overcome the non-regularising nature of the ODE. Furthermore, we present simulations that illustrate trav-
elling wave solutions and investigate asymptotic behaviour as the ECM degradation rate tends to infinity.
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(http://creativecommons.org/licenses/by/4.0/).

Keywords: Weak solutions; Existence; Non-linear partial differential equations; Cross-diffusion; Volume exclusion; 
Gradient flow

* Corresponding author.
E-mail addresses: rebecca.crossley@maths.ox.ac.uk (R.M. Crossley), jan-f.pietschmann@uni-a.de

(J.-F. Pietschmann), markus.schmidtchen@tu-dresden.de (M. Schmidtchen).
https://doi.org/10.1016/j.jde.2025.02.023
0022-0396/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2025.02.023&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2025.02.023
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by/4.0/
mailto:rebecca.crossley@maths.ox.ac.uk
mailto:jan-f.pietschmann@uni-a.de
mailto:markus.schmidtchen@tu-dresden.de
https://doi.org/10.1016/j.jde.2025.02.023
http://creativecommons.org/licenses/by/4.0/


R.M. Crossley, J.-F. Pietschmann and M. Schmidtchen Journal of Differential Equations 428 (2025) 721–746 
1. Introduction

The aim of this work is to analyse a model for cell migration into the extracellular matrix 
(ECM) that consists of a system including a non-linear, degenerate parabolic, partial differential 
equation (PDE) for the density of cells, coupled to an ordinary differential equation (ODE) (yet 
for every point in space) for the ECM.

Mathematical models of collective cell migration are often implemented to understand how 
the number of cells within at least one population evolves over time. However, existing models of 
this important biological phenomenon become increasingly complex by considering the impacts 
and influences of various environmental characteristics or additional populations, such as the 
availability of nutrients [20,31,32,39], surrounding oxygen levels [10], or physical structures 
such as the ECM [12,15].

The ECM, in particular, is an intricate, dynamic network of molecules including elastin, colla-
gen and laminin, among others, that varies in structure depending on its location. The molecules 
within the ECM are meticulously organised into a complex meshwork that plays an important 
role in providing structural integrity and repair of tissues, as well as providing structural and bio-
chemical support to cells during migration [33]. An important mechanism of cell-ECM feedback 
is the degradation of ECM elements by surrounding cells through the use of matrix-degrading en-
zymes, such as membrane-bound and diffusive matrix metalloproteinases [45]. Matrix-degrading 
enzymes target specific components of the ECM, such as collagen fibers, to degrade them, which, 
in turn, increases the space available for cells to move into during migration [4,24,36].

There are a variety of mathematical approaches available for studying the dynamics of cells 
and the ECM during collective cell migration that are detailed in [12]. However, the specific 
focus of this work is the following system of differential equations that was derived and non-
dimensionalised in [13] to describe the evolution of a cell density, u, and the ECM, m, respec-
tively, at a location x ∈ � ⊂ Rd , open and bounded, as well as t ∈ (0,∞):

∂u

∂t
= ∇ ·

[
(1 − u − m)∇u + u∇(u + m)

]
+ u(1 − u − m), (1a)

∂m

∂t
= −λmu. (1b)

The system (1) is equipped with initial data assumed to verify

u(x,0) = uin(x), and m(x,0) = min(x),

where uin, min ∈ L2(�) satisfy 0 ≤ uin,min and uin + min ≤ 1. We have chosen to constrain 
the total mass above by one, in line with the non-dimensional carrying capacity of this model. 
Furthermore, we prescribe no-flux boundary conditions for the cell density, i.e.,

[
(1 − u − m)∇u + u∇(u + m)

]
· n = 0 on ∂�,

where n denotes the outward normal vector on the boundary ∂�, as we assume that cells are 
confined to �.

This model follows simplifying assumptions, which are set out below and verified experi-
mentally in [37], that state that the timescale over which ECM degradation occurs is far larger 
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than the timescale over which the matrix-degrading enzymes decay, so we can model that cells 
directly degrade the ECM via their membrane-bound matrix-degrading enzymes only. As such, 
Eq. (1b) contains only one term that describes the non-dimensionalised degradation rate of ECM 
by surrounding cells as λ ∈ R+, which largely impacts the speed and structure of travelling wave 
type solutions observed in this model.

Eq. (1a) is a reaction-diffusion type PDE that relates closely to the Fisher-Kolmogorov-
Petrovsky-Piskunov (Fisher-KPP) equation [19,25], which is well-studied in a variety of con-
texts, including population models in mathematical biology [34]. The first term on the right-hand 
side of Eq. (1a) describes the movement of cells down the gradient of the cell density, where 
movement is prevented by the presence of surrounding cells and ECM. The second term models 
motion of the cells down the gradient of the total density of cells and ECM, u+ m, and takes the 
form of an advective term. Diffusion-advection-reaction differential equations with linear diffu-
sion are well-studied in a variety of contexts, see, for example, [38,41]. It is a result of the volume 
filling assumptions in the underlying individual based model that ensures that the corresponding 
continuum model includes two flux terms that describe motility, such as those previously studied 
in a variety of contexts, which include cross-diffusion [5,9], drift [1,2,30] and non-local inter-
action terms [16]. This is because the volume exclusion processes included prevent cell growth 
and motility in regions of space with higher density of cells and ECM. From a mathematical 
perspective, we are therefore dealing with a cross-diffusion type of model. The final term on the 
right hand side of Eq. (1a) captures cell proliferation, which, due to volume-filling effects, is also 
reduced by the presence of surrounding cells and ECM.

The mathematical analysis of multi-species cross-diffusion models is challenging as, on the 
one hand, due to the solution-dependent mobilities, such systems are often only degenerate 
parabolic, as in the current context, which impedes the usual regularising effects. On the other 
hand, the coupling of several equations often prevents the use of maximum principles to obtain 
L∞-bounds. This is particularly important for systems that involve volume exclusion processes, 
as in this case, since the upper bound on the densities is a central modelling assumption. In the 
wider context of linear diffusion [26], or stationary cross-diffusion [27], variations of the max-
imum principle have been employed in order to obtain sufficient regularising bounds [28,44]. 
However, they either treat stationary equations or require regularity of solutions which, due to 
the fact that (1a) is only degenerate parabolic, is not available in our case.

However, one, by now established, approach to overcome these difficulties is the so-called 
boundedness by entropy methods [6,23] that can be applied if the system is (formally) an 
Otto-Wasserstein gradient flow [22,35]. The basic idea is to transform the system into entropy 
variables, defined as variational derivatives of the entropy functional with respect to the unknown 
densities. Then, in many practically relevant cases, it turns out that the mapping between these 
and the original variables automatically enforces the desired bounds. This technique has, in dif-
ferent variants, been successfully applied in, for example, [8,17,46].

Another issue which is specific to the system of equations studied in this work is the fact that 
Eq. (1b), merely being an ODE, does not contain any diffusive terms and thus, no regularising 
effect for m can be expected. A similar coupling of PDEs and an ODE was previously analysed 
in the context of chemotaxis, see, for example, [11,28,43]. Most importantly in our situation, the 
coupling also implies that we are not dealing with a formal Otto-Wasserstein gradient flow. A 
similar situation, yet for a model of tumour growth, was encountered in [7].

As a consequence, the main difficulty in studying the aforementioned system stems from the 
fact that it cannot be cast into any standard gradient flow framework. Indeed, we first observe that 
the form of the flux inside the divergence in Eq. (1a) is exactly the same as for the volume filling 
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model analysed in [6]. The entropy functional that the authors used in their work, yet without 
self-diffusion for m, reads as

E(u,m) =
∫
� 

u(log(u) − 1) + (1 − ρ)(log(1 − ρ) − 1)dx, (2)

with ρ(x, t) := u(x, t) + m(x, t). This allows us to rewrite Eq. (1a) in the form

∂u

∂t
= ∇ ·

[
u(1 − ρ)∇ δE

δu 

]
+ u(1 − ρ).

The form of the right-hand side of Eq. (1a) dictates an Otto-Wasserstein-type gradient flow, 
which, in turn, implies the functional form of the free energy with respect to u, up to a constant, 
possibly depending on m. However, the reaction term in Eq. (1a) disrupts this gradient flow struc-
ture as the equation is not mass-conserving. Coupled to Eq. (1b) it is not clear in which sense the 
whole system could be interpreted as gradient flow. Since the system does not fall into a remotely 
standard gradient flow framework that is often exploited in existence proofs. In particular, we do 
not expect the entropy (Eq. (2)) to act as a Lyapunov functional. Nevertheless, we can show that 
it grows at most linearly in time. Then, we are able to extract regularity information from its 
dissipation which provides adequate compactness to establish the existence of solutions to the 
system. These estimates are made rigorous by means of a time-discretistion and regularisation 
procedure.

The cornerstone of this analysis is the observation that there is a regularising effect for the 
ECM equation despite it only being an ODE. Albeit not being a gradient flow, from the dissipa-
tion we obtain an estimate of the form

‖∇u‖2
L2(tn−1,tn;L2(�))

− ‖∇m‖2
L2(tn−1,tn;L2(�))

≤ C,

in conjunction with the conditional regularising effect for the ECM density, i.e.,

‖∇m‖2
L∞(tn−1,tn;L2(�))

≤ 2n‖∇m0‖2
L2(�)

+ 2τλ2�t

n−1 ∑
i=0 

2n−i‖∇u‖2
L2(ti ,ti+1;L2(�))

,

on any time interval [tn, tn+1] of length �t > 0, see Lemma 2.8. It requires a fine study to 
combine both estimates in a suitable way that allows extension to the whole time interval [0, T ].

1.1. Statement of the main theorem and structure of the paper

Before presenting the main result of this work, let us introduce our notion of a weak solution.

Definition 1.1 (Weak solution). For given initial data (u0,m0) ∈ L2(�) × H 1(�) with 0 ≤
m0, u0 such that u0 + m0 ≤ 1 a.e. in �, we call (u,m) a weak solution to Eqs. (1), if 
u,m ∈ L2(0, T ;H 1(�)) such that ∂tu ∈ L2(0, T ; (H 1(�))′) and ∂tm ∈ L2(0, T ;L2(�)), and 
if, for any ϕ ∈ H 1(�), there holds
724 
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T∫
0 

∫
� 

∂tu ϕ dxdt +
T∫

0 

∫
� 

[(1 − u − m)∇u + u∇(u + m)] · ∇ϕ dxdt

=
T∫

0 

∫
� 

u(1 − u − m)ϕ dxdt,

and u(·,0) = u0 as well as

∂m

∂t
= −λmu,

for almost every x ∈ � and t ∈ [0, T ], as well as m(·,0) = m0.

Pursuing the strategy outlined above, we are able to prove the following existence result.

Theorem 1.2 (Existence). Given (u0,m0) ∈ L2(�) × H 1(�) such that 0 ≤ m0, u0 and u0 +
m0 ≤ 1 a.e. in �, there exists a weak solution (u,m) ∈ (L2(0, T ;H 1(�)))2 to system (1) in the 
sense of Definition 1.1, which also satisfies the box constraints

0 ≤ u, m and u + m ≤ 1 a.e. in � × (0, T ).

In addition, there exist non-negative constants Cu and Cm, depending on �, T and initial data 
(u0,m0) ∈ L2(�) × H 1(�), only, s.t.

‖∇u‖2
L2(0,T ;L2(�))

≤ Cu, and ‖∇m‖2
L2(0,T ;L2(�))

≤ Cm. (3)

The rest of the paper is organised as follows. Section 2 is devoted to the proof of Theo-
rem 1.2 and subdivided into the construction of the time-discrete, regularised approximation 
(Section 2.1), the rigorous derivation of a-priori estimates (Section 2.2) and finally, the passage 
to the limit to recover a weak solution (Section 2.3).

In Section 3, we then provide numerical examples of the travelling wave solutions that are 
exhibited in the system (1) and investigate the limiting behaviour as λ → ∞.

2. Proof of the main theorem

The first step of our proof consists of constructing a time discrete, regularised (both in the 
equations and the initial datum for the ECM equation) approximation to the system (1), which is, 
however, still non-linear. Therefore, we have to show the existence of iterates for this scheme by 
means of a fixed point argument. It turns out that a regularisation of the initial datum min results 
in solutions satisfying the box constraints strictly. This allows us to obtain a time-discrete, yet 
rigorous, version of the entropy–entropy-dissipation inequality. Thus, using a careful construc-
tion to mitigate the lack of regularity in m, we eventually obtain bounds that are sufficient to pass 
to the limit and obtain the desired weak solution. Throughout our analysis we will use the letter 
C to denote constants that may change from line to line.
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2.1. Time discretisation and regularisation

Let N ∈N , and discretise time such that (0, T ] has sub-intervals of the form

(0, T ] =
N⋃

k=1

(
(k − 1)τ, kτ

]
,

where τ = T
N

. We write the recursive sequence

uk − uk−1

τ
= τ(�wk − wk) + ∇ · (uk(1 − ρk)∇wk

) + uk(1 − ρk), (4a)

mk − mk−1

τ
= −λmkuk, (4b)

where ρk := uk + mk , wk = w(uk,mk) and with regularised initial data

m0 := max(τ,min(min,1 − τ)), and u0 = uin.

Furthermore, we recall that

w(u,m) := δE
δu 

= log(u) − log(1 − ρ), (5)

such that the transformation from (u,m) to the entropy variable w is given by

u = (1 − m)ew

1 + ew
= (1 − m) 

1 + e−w
.

We note that Eq. (4b) can be solved for mk when given mk−1 and uk as

mk = mk−1

1 + λτuk

. (6)

In order to show the existence of weak solutions, we define the set

A :=
{
(u,m) ∈ (L∞(�))2 : 0 ≤ u, m ≤ 1, 0 ≤ ρ = u + m ≤ 1

}
.

Lemma 2.1. Given τ > 0 and (ũ, m̃) ∈A, we set ρ̃ = ũ + m̃. Then, the linear problem

∫
� 

(τ + ũ(1 − ρ̃))∇w · ∇ϕ + τwϕ dx =
∫
� 

[
ũ(1 − ρ̃) − ũ − uk−1

τ

]
ϕ dx, (7)

for all ϕ ∈ H 1(�), has a unique solution w ∈ H 1(�) such that

‖w‖H 1(�) ≤ C, (8)

where the constant C > 0 depends only on τ and uk−1.
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In addition, the operator S1 : A → L2(�), which assigns some given (ũ, m̃) ∈ A to w, being 
the solution to Eq. (7) is continuous and compact.

Proof. As ũ(1 − ρ̃) ≥ 0 and τ > 0, the existence of a unique solution w ∈ H 1(�) is a direct 
consequence of the Lax-Milgram Lemma, cf. [3]. The a priori bound follows by choosing ϕ = w

as a test function and applying a weighted Young inequality to the right-hand side of Eq. (7).
For the continuity of S1, consider a sequence (ũn, m̃n) ∈A such that (ũn, m̃m) → (ũ, m̃) ∈ A

and denote by wn and w the respective solutions to Eq. (7). Subtracting the respective equations 
and choosing ϕ = (w − wn) yields

∫
� 

(τ + ũ(1 − ρ̃)|∇(w − wn)|2 + τ |w − wn|2dx

=
∫
� 

[ũ(1 − ρ̃) − ũn(1 − ρ̃n)]∇wn · ∇(w − wn) − ũ − ũn

τ
(w − wn)dx. (9)

As both (ũn, m̃n) ∈ A and (ũ, m̃) ∈ A, elementary calculations show that the following estimate 
holds:

|ũ(1 − ρ̃) − ũn(1 − ρ̃n)| ≤ 2|ũ − ũn| + |m̃ − m̃n|.

Additionally, we can use that 0 ≤ ũ(1 − ρ̃) ≤ 1 and estimate the left-hand side in Eq. (9) from 
below to obtain

τ‖w − wn‖2
H 1(�)

≤
∫
� 

[ũ(1 − ρ̃) − ũn(1 − ρ̃n)]∇wn · ∇(w − wn) − ũ − ũn

τ
(w − wn)dx

≤ (
2‖ũ − ũn‖L∞(�) + ‖m̃ − m̃n‖L∞(�)

)‖∇wn‖L2(�)‖∇(w − wn)‖L2(�)

+
√|�|

τ
‖ũ − ũn‖L∞(�)‖w − wn‖L2(�)

≤ C′(‖ũ − ũn‖L∞(�) + ‖m̃ − m̃n‖L∞(�)

)‖w − wn‖H 1(�),

where C′ > 0 only depends on τ , � and C > 0 comes from Eq. (8). Thus, as (ũn, m̃n) → (ũ, m̃)

in L∞(�), we conclude that wn → w in H 1(�). Finally, the compactness of S1 then follows 
from the compactness of the embedding H 1(�) ↪→ L2(�). �

Our next goal is to recover a new pair (u,m) from w. To this end, we observe that, by defini-
tion of w, we have

u = (1 − m)
ew

1 + ew
=: aw(1 − m). (10)

Inserting this relation into Eq. (4b) yields

m − mk−1

τ
= −λum = −λawm(1 − m). (11)
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The next result shows that, indeed, this equation is uniquely solvable.

Lemma 2.2. Given mk−1 that satisfies 0 ≤ mk−1 ≤ 1, and for τ sufficiently small but independent 
of mk−1, Eq. (11) has a unique solution m ∈ [0,1].

Additionally, the operator S2 : L2(�) → A, which maps w to (u,m) where u is calculated 
from m and w via Eq. (10), is well-defined and continuous.

Proof. To establish the existence of a unique solution m ∈ [0,1] to Eq. (11), we define the set

B = {z ∈ L∞(�) : 0 ≤ z ≤ 1},

and the mapping

K : B → B, K(z) = mk−1

1 + τλaw(1 − z)
.

As 0 ≤ mk−1 ≤ 1 and (1 − z) ≥ 0 almost everywhere, K is well-defined, continuous and every 
fixed point of K is a solution to Eq. (11). Furthermore, we can estimate

‖K(z1) − K(z2)‖L∞(�) ≤ τλaw‖mk−1‖L∞(�)‖z1 − z2‖L∞(�),

thus, as aw ≤ 1, for τ sufficiently small, yet independent of mk−1, K is a contraction. Apply-
ing Banach’s fixed-point theorem we conclude the existence of a unique fixed point m ∈ [0,1]
which is then a solution to Eq. (11). Finally, the continuity of S2 follows from standard compu-
tations. �

We are now in a position to prove the existence of iterates for Eqs. (4a) and (4b).

Theorem 2.3. For given (uk−1,mk−1) ∈ A with mk−1 ∈ H 1(�) and τ sufficiently small, there 
exists a fixed point (uk,mk) ∈ A. Moreover, (uk,mk) ∈ (H 1(�))2.

Proof. Due to the results of Lemma 2.1 and Lemma 2.2, the operator

S = S2 ◦ S1 : A → A,

is well-defined, continuous and compact. Furthermore, it is readily observed that A is a convex 
subset of (L∞(�))2. Thus, an application of Schauder’s fixed point theorem yields the existence 
of a fixed point (uk,mk) ∈ A associated to wk = S1(uk,mk).

To show that the fixed-point has H 1-regularity, we obtain from Eq. (11) that

∇mk

(
1 
τ

+ αwk
λ(1 − 2mk)

)
= λmk(1 − mk)

(1 + ewk )2 ∇wk + 1 
τ

∇mk−1.

For sufficiently small τ > 0, the parenthesis on the left-hand side is positive, and we find

‖∇mk‖L2(�) ≤ C(‖∇wk‖L2(�) + ‖∇mk−1‖L2(�)), (12)
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where C > 0 only depends on λ, τ > 0 and therefore mk ∈ H 1(�). Furthermore, passing to the 
gradient in Eq. (10), we also obtain the desired H 1-bound for uk , which concludes the proof. �
Theorem 2.4 (Uniform upper and lower bounds on uk, mk). Let (uk,mk) be solutions provided 
by Theorem 2.3 and τ > 0. Then there holds

0 < uk, mk < 1, as well as 0 < ρk < 1,

for all k ∈N>0.

The strict bounds in Theorem 2.4 are necessary in order to rigorously derive the entropy-
dissipation inequality later on.

Proof. Starting from (u0,m0), we construct w1 which solves

∫
� 

(τ + u1(1 − ρ1))∇w1 · ∇ϕ + τw1ϕ dx =
∫
� 

[
u1(1 − ρ1) − u1 − u0

τ

]
ϕ dx. (13)

As the right-hand side is bounded in L∞(�), say, by the constant C̃τ > 0, depending on τ , we 
have that

‖w1‖L∞(�) ≤ Cτ := C̃τ

τ
.

These upper bound bounds follow by using (w1 − Cτ )+ as test functions in Eq. (13). Indeed, in 
the first case we end up with

τ

∫
� 

(w1 − Cτ )
2+dx = −

∫
� 

(τ + u1(1 − ρ1)) |∇(w1 − Cτ )+|2 dx

+
∫
� 

[
u1(1 − ρ1) − u1 − u0

τ

]
(w1 − Cτ )+ dx − τ

∫
� 

Cτ (w1 − Cτ )+dx

≤
∫
� 

(C̃τ − τCτ )(w1 − Cτ )+dx = 0,

as C̃τ = τCτ . The lower bound follows analogously. Note that then

aw1 = ew1

1 + ew1
∈

[
e−Cτ ,

1 
1 + e−Cτ

]
. (14)

In addition, note that m1 is related to w1 via Eq. (11)

m1 − m0

τ
= −λaw1m1(1 − m1).

Thus, on the one hand, we have
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m1 − m0

τ
≤ 0,

i.e. m1 ≤ m0 ≤ 1 − τ . Conversely, we have, as aw ≤ 1, that

m1 − m0

τ
= −λaw1m1(1 − m1) ≥ −λm1,

which implies

m1 ≥ τ

(1 + τλ)
> 0.

Recalling Eq. (10) then yields

u1 = aw1(1 − m1) ∈ (0,1),

owing to the fact that m1 ∈ (0,1) and aw1 ∈ (0,1). For

ρ1 = u1 + m1 = aw1 + m1(1 − aw1),

this implies the bounds

0 < e−Cτ + τ

(1 + τλ)
≤ aw1 + m1(1 − aw1) = ρ1,

as well as

ρ1 = aw1 + m1(1 − aw1) ≤ aw1 + (1 − τ)(1 − aw1)

= 1 − τ(1 − aw1) ≤ 1 − τ

(
1 − 1 

1 + e−Cτ

)
< 1.

Iterating this procedure, we obtain

τ k

(1 + τλ)k
≤ mk ≤ 1 − τ,

as well as

e−Cτ ≤ uk ≤ 1 − τ k

(1 + τλ)k
,

and

e−Cτ + τ k

(1 + τλ)k
≤ ρk ≤ 1 − τ

(
1 − 1 

1 + e−Cτ

)
,

where Cτ → ∞ as τ → 0. �
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Corollary 2.5. The fixed point (uk,mk) ∈ A∩ (H 1(�))2 constructed above is a weak solution to 
Eqs. (4a) and (4b).

Proof. In view of the bounds provided by Theorem 2.4, we can invert Eq. (10) and obtain 
wk = log(uk) − log(1 − ρk), which allows the identification of (uk,mk) as a weak solution of 
Eqs. (4a) and (4b). �
2.2. A priori estimates

Let (uk,mk)
∞
k=0 ⊂ A ∩ (H 1(�))2 be the sequence obtained from the implicit Euler approx-

imation, cf. Eq. (4). This section is dedicated to deriving estimates independent of the time step 
size, τ > 0, that ultimately provide sufficient compactness to obtain weak solutions to the con-
tinuous system, Eq. (1).

Proposition 2.6. Let (uk,mk)
∞
k=0 ⊂ A ∩ (H 1(�))2 as defined in Theorem 2.4. Then, for any 

k ∈N , the following discrete entropy estimate holds

1 
τ

(E(uk,mk) − E(uk−1,mk−1)) + τ

∫
� 

|∇wk|2 + |wk|2 dx

≤ C −
∫
� 

uk(1 − uk − mk)|∇wk|2 dx, (15)

where C > 0 only depends on �. Moreover,

‖∇uk‖2
L2(�)

≤ C + 1 
τ

(E(uk−1,mk−1) − E(uk,mk)) + ‖∇mk‖2
L2(�)

, (16)

with C = C(τ) > 0 independent of k ∈ N .

Proof. Owing to the strict upper and lower bounds provided by Theorem 2.4, the logarithmic 
terms appearing in the derivative of the entropy are well defined. Thus, we can use the joint 
convexity of the energy to obtain

E(uk,mk) − E(uk−1,mk−1) ≤
∫
� 

[
loguk − log(1 − uk − mk)

]
(uk − uk−1)dx

−
∫
� 

log(1 − uk − mk)(mk − mk−1)dx

≤
∫
� 

[
loguk − log(1 − uk − mk)

]
(uk − uk−1)dx,

where the last term was discarded due to its sign. Using the definition of the entropy variable, 
Eq. (5), this results in
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E(uk,mk) − E(uk−1,mk−1) ≤
∫
� 

wk(uk − uk−1)dx.

Due to the H 1(�)-regularity of wk , we may use it as a test functions in Eq. (4) to get

1 
τ

(E(uk,mk) − E(uk−1,mk−1)) ≤ −τ

∫
� 

(
|∇wk|2 + |wk|2

)
dx

−
∫
� 

∇wk · (uk(1 − uk − mk)∇wk)dx

+
∫
� 

wkuk(1 − uk − mk)dx.

Integrating by parts, and using that |�| < ∞ as well as 0 ≤ uk,mk ≤ 1 and the definition of wk , 
the inequality further simplifies to

1 
τ

(E(uk,mk) − E(uk−1,mk−1))

≤ C − τ

∫
� 

|∇wk|2 + |wk|2dx −
∫
� 

uk(1 − uk − mk)|∇wk|2dx,

where C > 0 is independent of k, ℓ, τ . Using the definition of wk , cf. Eq (5), we further estimate

∫
� 

uk(1 − uk − mk)|∇wk|2d

=
∫
� 

(1 − ρk)
|∇uk|2

uk

+ 2∇uk · ∇(uk + mk) + uk

|∇(1 − ρk)|2
1 − ρk

dx

≥
∫
� 

2|∇uk|2 − 2|∇uk||∇mk| dx ≥
∫
� 

|∇uk|2 − |∇mk|2dx.

Inserting this estimate into the entropy inequality above yields

‖∇uk‖2
L2(�)

≤ C + 1 
τ

(E(uk−1,mk−1) − E(uk,mk)) + ‖∇mk‖2
L2(�)

. �
Before proceeding, let us introduce the piecewise constant interpolations associated to the 

iterates of the implicit Euler method. For v ∈ {u,m,w}, we define

vτ (x, t) := vk(x),

whenever t ∈ (tk−1, tk], for all k ≥ 1 and x ∈ �.
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Corollary 2.7 (H 1-estimate for wτ ). Let (uk,mk)
∞
k=0 ⊂ A ∩ (H 1(�))2 and (wk)

∞
k=0 be the as-

sociated entropy variables defined in Eq. (5). Then

τ 1/2‖wτ‖L2(0,T ;H 1(�)) ≤ C,

where wτ denotes the corresponding piecewise constant interpolation and the constant C > 0
only depends on � and T > 0.

Proof. From Eq. (15) we get

τ
(
‖∇wk‖2

L2(�)
+ ‖wk‖2

L(�)

)
≤ C + 1 

τ
(E(uk−1,mk−1) − E(uk,mk)),

which, upon integrating over (tk−1, tk] and summing from k = 1, . . . ,NT , gives

τ
(
‖∇wτ‖2

L2(0,T ;L2(�))
+ ‖wτ‖2

L2(0,T ;L2(�))

)

≤ CT + τ

NT∑
k=1 

1 
τ

(E(uk−1,mk−1) − E(uk,mk)).

Since the sum on the right-hand side is telescopic, the estimate simplifies further to

τ
(
‖∇wτ‖2

L2(0,T ;L2(�))
+ ‖wτ‖2

L2(0,T ;L2(�))

)
≤ CT + E(u0,m0) − E(uNT

,mNT
).

Since 0 ≤ uk,mk ≤ 1 and |�| ≤ C, we obtain the following uniform estimate

τ 1/2‖wτ‖L2(0,T ;H 1(�)) ≤ C,

independent of τ > 0. �
Lemma 2.8 (Conditional estimate for ∇m). Let (uk,mk)

∞
k=0 ⊂ A ∩ (H 1(�))2 be the solution 

to the implicit Euler approximation, Eq. (4). Then, for any n, ℓ ∈ N , we have the conditional 
estimate

‖∇mnℓ‖2
L2(�)

≤ 2n‖∇m0‖2
L2(�)

+ τ 2λ2ℓ

n−1 ∑
k=0 

2n−kφk,

where

φk =
(k+1)ℓ ∑

τ‖∇ui‖2
L2(�)

. (17)

i=kℓ+1
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Proof. Let j ∈ N be fixed. Recalling Eq. (6), we can write, for r = 1, . . . , ℓ, that

mj+r = mj

r∏
i=1 

1 
1 + τλuj+i

.

Taking the gradient of this expression, we find that

∇mj+r = ∇mj

r∏
i=1 

1 
1 + τλuj+i

− mj

r∑
i=1 

⎛
⎝∏

j �=i

1 
1 + τλuj+i

⎞
⎠ τλ∇uj+i

(1 + τλuj+i )2 .

Finally, we pass to the norm and obtain

‖∇mj+r‖L2(�) ≤ ‖∇mj‖L2(�) + τλ

r∑
i=1 

‖∇uj+i‖L2(�), (18)

having used the fact that 0 ≤ uk,mk ≤ 1. Squaring both sides yields

sup 
1≤r≤ℓ−1

‖∇mj+r‖2
L2(�)

≤ 2‖∇mj‖2
L2(�)

+ 2λ2τ 2ℓ

ℓ ∑
i=1 

‖∇uj+i‖2
L2(�)

. (19)

Next, we set j = nℓ, upon which the preceding estimate becomes

sup 
nℓ≤k≤(n+1)ℓ

‖∇mk‖2
L2(�)

≤ 2‖∇mnℓ‖2
L2(�)

+ 2λ2τ 2ℓφn, (20)

where

φn =
(n+1)ℓ ∑
k=nℓ+1

τ‖∇uk‖2
L2(�)

.

If we now consider Eq. (20), we can write

‖∇mnℓ‖2
L2(�)

≤ sup 
(n−1)ℓ≤k≤nℓ

‖∇mk‖2
L2(�)

≤ 2‖∇m(n−1)ℓ‖2
L2(�)

+ 2λ2τ 2ℓφn−1,

and substitute in Eq. (20) iteratively to find

‖∇mnℓ‖2
L2(�)

≤ 2n‖∇m0‖2
L2(�)

+ τ 2λ2ℓ

n−1 ∑
k=0 

2n−kφk. �

Let us note that the definition of the quantity φk already shows that the H 1-control of m
depends on the H 1-control of u, hence the name ‘conditional estimate’. We will use it to derive 
a uniform H 1-bound for u such that, a fortiori, m ∈ H 1, unconditionally.
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Lemma 2.9 (L2-estimate for ∇uτ ). Let (uk,mk)
∞
k=0 ⊂ A ∩ (H 1(�))2 be the solution to the im-

plicit Euler approximation, Eq. (4), and let uτ be the piecewise constant interpolation associated 
to (uk)

∞
k=0. Then

‖∇uh‖2
L2(0,T ;L2(�))

≤ C,

where C > 0 is independent of τ > 0.

Proof. Let us recall Eq. (16) in Proposition 2.6:

‖∇uk‖2
L2(�)

≤ C + 1 
τ

(E(uk−1,mk−1) − E(uk,mk)) + ‖∇mk‖2
L2(�)

.

Summing from k = nℓ + 1 to k = (n + 1)ℓ and multiplying by τ > 0 yields

(n+1)ℓ ∑
k=nℓ+1

τ‖∇uk‖2
L2(�)

≤ Cℓτ +
(n+1)ℓ ∑
k=nℓ+1

(E(uk−1,mk−1) − E(uk,mk)) +
(n+1)ℓ ∑
k=nℓ+1

τ‖∇mk‖2
L2(�)

≤ Cℓτ + (
E(unℓ,mnℓ) − E(u(n+1)ℓ,m(n+1)ℓ)

) +
(n+1)ℓ ∑
k=nℓ+1

τ‖∇mk‖2
L2(�)

≤ C(1 + ℓτ) +
(n+1)ℓ ∑
k=nℓ+1

τ‖∇mk‖2
L2(�)

,

using the fact that the entropy can be bounded since 0 ≤ uk +mk ≤ 1 and the domain is bounded. 
Thus, having passed to the supremum on the right-hand side, we have

(n+1)ℓ ∑
k=nℓ+1

τ‖∇uk‖2
L2(�)

≤ C(1 + ℓτ) + ℓτ sup 
nℓ+1≤k≤(n+1)ℓ

‖∇mk‖2
L2(�)

.

Hence, recalling the definition of φ (cf. Eq. (17)), we find

φn ≤ C(1 + ℓτ) + 2ℓτ
(
‖∇mnℓ‖2

L2(�)
+ τℓλ2φn

)
,

where we also used Eq. (19). Since both sides contain the term φn, we rearrange and get

φn ≤
C(1 + ℓτ) + 2ℓτ‖∇mnℓ‖2

L2(�)

1 − 2τ 2λ2ℓ2

≤ C(1 + ℓτ) 
2 2 2 + 2ℓτ

2 2 2 ‖∇mnℓ‖2
L2(�)
1 − 2τ ℓ λ 1 − 2τ λ ℓ
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≤ C(1 + ℓτ) 
1 − 2τ 2ℓ2λ2 + 2ℓτ

1 − 2τ 2λ2ℓ2

(
2n‖∇m0‖2

L2(�)
+ τ 2λ2ℓ

n−1 ∑
k=0 

2n−kφk

)
,

having used Lemma 2.8. Thus,

φn ≤ C(1 + ℓτ) 
1 − 2τ 2ℓ2λ2 + 2ℓτ

1 − 2τ 2λ2ℓ2 2n‖∇m0‖2
L2(�)

+ 2τ 3λ2ℓ2

1 − 2τ 2λ2ℓ2

n−1 ∑
k=0 

2n−kφk.

Setting �t := ℓτ for ℓ > 1, the estimate becomes

φn ≤ C(1 + �t) 

1 − 2�t2λ2
+ 2�t

1 − 2�t2λ2
2n‖∇m0‖2

L2(�)
+ 2τ�t2λ2

1 − 2�t2λ2

n−1 ∑
k=0 

2n−kφk.

Hence, for any τ > 0, we choose ℓ = ℓ(τ) ∈ N such that �t ≤ 1/(2λ) and (ℓ + 1)τ ≥ 1/(2λ). 
This way, we obtain

φn ≤ C(1 + �t) + τ

n−1 ∑
k=0 

2n−kφk.

Using a discrete version of Gronwall’s lemma, we find that

sup 
0≤n≤N

φn ≤ Ce
∑N

k=1 2N−k ≤ C̄1 < ∞,

where C̄1 > 0. It is crucial to highlight that �t ↛ 0, as τ → 0. Thus

N∑
n=0 

φnℓ ≤ NC̄1 < ∞,

where N := �T/�t� does not go to infinity as τ → 0, thereby providing the desired uniform 
bound. As a result,

‖∇uh‖2
L2(0,T ;L2(�))

=
T∫

0 

‖∇uh‖2
L2(�)

ds

≤
(N+1)l−1∑

n=0 
τ‖∇un‖2

L2(�)

=
N∑

n=0 
τ

(n+1)l−1∑
k=nl

‖∇uk‖2
L2(�)

=
N∑

n=0 
φnl ≤ C < ∞,
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where C > 0 does not depend on τ > 0. �
Corollary 2.10 (L2-estimate for ∇m). Let (uk,mk)

∞
k=0 ⊂ A ∩ (H 1(�))2 be the solution to the 

implicit Euler approximation (Eq. (4)) and let mτ be the piecewise constant interpolation asso-
ciated with (mk)

∞
k=1. Then

‖∇mh‖2
L2(0,T ;L2(�))

≤ C,

where C > 0 is independent of τ > 0.

Proof. Revisiting Eq. (18), we have

‖∇mr‖2
L2(�)

≤ 2‖∇m0‖2
L2(�)

+ 2τ 2λ2r

r∑
i=1 

‖∇ui‖2
L2(�)

≤ C + 2τλ2NT ‖∇uh‖2
L2(0,T ;L2(�))

,

having used the initial bound on ∇m0. Multiplying by τ and summing from r = 0 to NT , we get

τ

NT∑
r=0 

‖∇mr‖2
L2(�)

≤ 2(NT + 1)τ‖∇m0‖2
L2(�)

+ 2λ2NT (NT + 1)τ 2‖∇uh‖2
L2(0,T ;L2(�))

≤ C,

where C > 0 is independent of τ . �
Next, let us address the time regularity of u and m. To this end, we introduce the notation

dτ v := v(x, t + τ) − v(x, t)

τ
,

for v ∈ {u,m}.

Lemma 2.11 (Time regularity for uτ , mτ ). Let (uk,mk)
∞
k=0 ⊂ A ∩ (H 1(�))2 be the solution to 

the implicit Euler approximation (Eq. (4)) and let uτ be the piecewise constant interpolation 
associated with (uk)

∞
k=0. Then, there holds

‖dτuτ‖L2(0,T ;(H 1(�))′) ≤ C,

and

‖dτmτ‖L2(0,T ;L2(�)) ≤ C,

where C > 0 is independent of τ > 0.
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Proof. From Eq. (4a) and employing the notation above, we see

∫
� 

dτuτϕdx = −
∫
� 

{
τ(∇wτ · ∇ϕ + wτϕ)

+ [
(1 − uτ − mτ )∇uτ + uτ∇(uτ + mτ )

] · ∇ϕ

− uτ (1 − uτ − mτ )ϕ
}

dx, (21)

for any ϕ ∈ H 1(�). Passing to the modulus and using Cauchy-Schwartz, we may estimate

|〈dτuτ ,ϕ〉| ≤ τ
(‖∇wτ‖L2(�)‖∇ϕ‖L2(�) + ‖w‖L2(�)‖ϕ‖L2(�)

)
+ ‖∇ϕ‖L2(�)‖((1 − mτ )∇uτ + uτ∇mτ )‖L2(�)

+ ‖ϕ‖L2(�)‖uτ (1 − uτ − mτ )‖L2(�),

whence

|〈dτuτ ,ϕ〉| ≤ C0‖ϕ‖H 1(�)

(‖wτ‖H 1(�) + C1
(‖∇uτ‖L2(�) + ‖∇mτ‖L2(�)

) + C2
)
,

having used the fact that uτ ,mτ ∈ L∞(0, T ;A ∩ (H 1(�))2). Upon dividing by ‖ϕ‖H 1(�) and 
passing to the supremum,

‖dτuτ‖(H 1(�))′ ≤ C0 + C1‖wτ‖H 1(�) + C2
(‖∇uτ‖L2(�) + ‖∇mτ‖L2(�)

)
.

Squaring and integrating over [0, T ] yields

‖dτuτ‖2
L2(0,T ;(H 1(�))′)

≤ C
(

1 + ‖wτ‖2
L2(0,T ;H 1(�))

+
(
‖∇uτ‖2

L2(0,T ;L2(�))
+ ‖∇mτ‖2

L2(0,T ;L2(�))

))
≤ C,

where we used Lemma 2.9 and Corollary 2.10. In particular, note that the constant C > 0 is in-
dependent of τ > 0. The regularity result for dτm follows directly from Eq. (4b) and the uniform 
bounds on uτ ,mτ , which completes the proof. �
2.3. Existence of weak solutions

Having established the a priori estimates, let us now show the existence of convergent subse-
quences whose limits we identify as weak solutions in the sense of Definition 1.1.

The bounds provided by Lemma 2.9 and Corollary 2.10 in conjunction with the Banach-
Alaoglu theorem yield the existence of subsequences and two functions ∇u,∇m ∈ L2(0, T ; 
L2(�)), such that

• ∇uτ ⇀ ∇u in L2(0, T ;L2(�)),
• ∇mτ ⇀ ∇m in L2(0, T ;L2(�)),
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where we did not relabel the subsequences. Moreover, by the uniform bounds of Lemma 2.11, 
Lemma 2.9, and Corollary 2.10, we may invoke [40, Theorem 6] such that

• uτ → u in L2(0, T ;L2(�)),
• mτ → m in L2(0, T ;L2(�)),

again, up to subsequences. Finally, from Lemma 2.11, we have

• dτuτ ⇀ ∂tu in L2(0, T ; (H 1(�))′),
• dτmτ ⇀ ∂tm in L2(0, T ;L2(�)),

up to a subsequence. Indeed, the limits can be identified as follows. If dτuτ → χ , then, for 
ξ(t)φ(x) ∈ C∞

c ((0, T ) ×Rd), we have

T −τ∫
0 

∫
� 

dτuτ ξ(t)φ(x)dxdt =
T −τ∫
0 

∫
� 

uτ (t + τ) − uτ (t)

τ
ξ(t)φ(x)dxdt,

Upon a change of variables, s = t + τ , we find

∫
� 

φ(x)

T −τ∫
0 

uτ (t + τ) − uτ (t)

τ
ξ(t)dtdx

=
∫
� 

φ(x)

T∫
τ

uτ (x, t)

τ
ξ(t − τ)dtdx −

∫
� 

φ(x)

T −τ∫
0 

uτ (x, t)

τ
ξ(t)dtdx

=
∫
� 

φ(x)

T −τ∫
τ

uτ

ξ(t − τ) − ξ(t)

τ
dtdx + 1 

τ

∫
� 

φ(x)

T∫
T −τ

uτ (x, t)ξ(t − τ)dtdx

− 1 
τ

∫
� 

φ(x)

τ∫
0 

uτ (x, t)ξ(t)dtdx

−→ −
∫
� 

φ(x)

T∫
0 

u(x, t)ξ ′(t)dtdx,

i.e., χ = ∂tu in the sense of distributions. Replacing u by m and setting dτmτ ⇀ χ̃ , following 
the above argument, we have

T∫
0 

χ̃(t)ξ(t)dt = −
T∫

0 

m(t)ξ ′(t)dt,

and thus m′ = χ̃ ∈ L2(0, T ;L2(�)).
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Having garnered sufficient compactness and the corresponding convergent subsequences and 
limits, we can now prove the main result.

Proof of Theorem 1.2. Let us revisit Eq. (21), i.e.,

T∫
0 

∫
� 

dτuτϕ dxdt = −τ

T∫
0 

∫
� 

∇w · ∇ϕ + wϕ dxdt

−
T∫

0 

∫
� 

((1 − mτ )∇uτ + uτ∇mτ ) · ∇ϕ dxdt

+
T∫

0 

∫
� 

uτ (1 − uτ − mτ )ϕ dxdt.

First let us note that the term premultiplied by τ vanishes due to Corollary 2.7. Next, using the 
convergences above, we can pass to the limit in the other terms of the equation to get

T∫
0 

∫
� 

∂tuϕ dxdt = −
T∫

0 

∫
� 

((1 − m)∇u + u∇m) · ∇ϕ dxdt

+
T∫

0 

∫
� 

u(1 − u − m)ϕ dxdt,

for any ϕ ∈ C∞
c (Rd × (0, T )) which is dense in L2(0, T ;H 1(�)). Thus, the limit (u,m) is a 

weak solution to Eq. (1a) in the sense of Definition 1.1. Similarly, we can pass to the limit in the 
equation for the ECM, Eq. (1b), in duality with L2(0, T ;L2(�)), i.e., we get

T∫
0 

∫
� 

∂tm ϕ dxdt = −λ

T∫
0 

∫
� 

umϕ dxdt,

for any ϕ ∈ L2(0, T ;L2(�)), having used the same approximation procedure of the test function.
The a priori estimates (3) follow from passing to the limit in the bounds of Lemmas 2.9 and 

2.10, using the weak lower semicontinuity of the norms.
Finally, the compactness is sufficient to conclude that the weak solution satisfies the initial 

data, using in addition that m0 → min pointwise as τ → 0. �
3. A numerical exploration of large ECM degradation rates

In this section, we explore solutions to the system (1) numerically, using simulations subject 
to no-flux boundary conditions and the following initial conditions:
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u(x,0) =
{

1, if |x| < 1,

0, if |x| ≥ 1,
(22)

m(x,0) =
{

0, if |x| < 1,

m0, if |x| ≥ 1.
(23)

As in [13], the system (1) is solved in one dimension on the domain x ∈ [0,L], where L ≥ 200
is chosen sufficiently largely to ensure a full travelling wave type profile had evolved without the 
impact of boundary conditions. In two dimensions, we solve the system (1) numerically on the 
domain x = (x, y) where x, y ∈ [−5,5]. The spatial discretisation used is �x = 0.1, where we 
employ the method of lines to discretise physical space before integrating in time using Python’s 
built-in integrator scipy.intergrate.solve_ivp, which uses an explicit Runga-Kutta 
integration method of order 5 and time step �t = 1. This specification of �t, �x satisfies the 
CFL condition for this system of equations (1), given by

�t ≤ (�x)2

2 max (|1 − u − m|, |u|) .

The discretisation employed at spatial point i is

∂

∂x

[
D

∂a

∂x

]
≈ 1 

2(�x)2

[
(Di−1 + Di)ai−1 − (Di−1 + 2Di + Di+1)ai + (Di + Di+1)ai+1

]
.

When simulating the system of equations (1) on a fixed domain, subject to zero flux boundary 
conditions and initial conditions (22) and (23), we observe solutions in both one and two spatial 
dimensions that we have a travelling wave type profile, whose far-field conditions are determined 
by the steady states of the system of equations (1):

(u, m) = (1, 0), (0, m0).

In the travelling wave type profile, the cell density, u, decreases monotonically from one to zero, 
as the cells diffuse into available space and proliferate up to the carrying capacity behind the 
wave, driving invasion. The ECM density, m, increases monotonically between zero (where it 
is completely degraded by cells in the same spatial position as the ECM) and m0 (where no 
degradation has occurred as no cells are present here yet, ahead of the wave).

One key feature of the profiles in cell and ECM densities is the overlap between the wave 
fronts. For low ECM degradation rates, we observe a non-negligible region of overlap in the cell 
density and ECM profiles. Alternatively, as λ increases, the very low density of cells at the front 
of the non-compactly supported cell density profile (in the exponential tail) has a larger impact 
on the ECM. This is because they are able to degrade the ECM locally at a much higher rate 
and therefore the remaining density of ECM is significantly reduced, resulting in a much smaller 
overlap in the travelling wave type profiles of cell and ECM densities. Indeed, in extremely 
high ECM degradation rates, a gap appears between the cell and ECM density wave fronts, 
typical of those observed in acid-mediated tumour invasion models, such as those by Gatenby 
and Gawlinski and others [20,21,29]. It is also clear from Figs. 1, 2, 3 and 4 that increasing the 
ECM degradation rate impacts the shape of the ECM density travelling wave type profile. As λ
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Fig. 1. On the left, plot of the relationship between the ECM degradation rate, λ, and the numerically estimated travelling 
wave speed, c, (solid lines) of solutions of the system (1) subject to zero flux boundary conditions and initial condi-
tions (22) and (23) for various initial ECM densities, m0. The numerically estimated travelling wave speed is obtained 
by interpolation to find the point X(t) such that u(X(t), t) = 0.1 at all times t ≥ 0. The dashed lines indicate the value 
of the analytically predicted minimum travelling wave speed, 2(1 − m0) [13]. On the right, plots of solutions to system 
(1) subject to zero flux boundary conditions and initial conditions (22) and (23) in one dimension for the cells (blue) and 
for the ECM (red), where m = 0.5. Plots are shown subject to ECM degradation rates λ = 100, 102, 104, 106 at times 
t = 25, 50, 75 and 100, from left to right.

increases, the ECM profile displays a sharper transition between zero and m0 around the wave 
front.

In Figs. 1 and 2, it can be observed that for a constant initial condition for the ECM density, 
the solutions for the cell and ECM density have a constant speed and constant profile. Initially, 
as the cell density transitions from the initial condition to the travelling wave type profile, we 
observe a speed that increases with time. However, once the cell density reaches its constant, 
travelling wave type profile, it propagates through the spatial domain with a constant speed. 
At low values of the ECM degradation rate, λ, the numerically observed travelling wave speed 
matches that predicted by standard travelling wave analysis, via linearisation of the system of 
ODEs associated with Eqs. (1a) and (1b). This analytically predicted minimum travelling wave 
speed, canalytical = 2

√
(1 − m0), is derived in [13], and, importantly, although describes an ex-

plicit dependence on the initial ECM density, it is independent of the ECM degradation rate, λ. 
However, the plot on the left in Fig. 1 demonstrates that the speed of invasion of the cells does, 
in reality, depend on λ, as supported by the plots on the right in Fig. 1 and Fig. 2, which show 
solutions of Eqs. (1a) and (1b) for different values of the ECM degradation rate, λ. From this, it 
is clear that increasing λ increases the speed of invasion of the cells, such that the numerically 
estimated minimum travelling wave speed, cnumerical → 2− as λ → ∞.

The varying discrepancy between the analytically predicted minimum travelling wave 
speed canalytical = 2

√
(1 − m0) and the numerically observed minimum travelling wave speed, 

cnumerical, for increasing λ (which can be observed on the left in Fig. 1) is primarily due to the 
linearisation of the system during travelling wave analysis, which disregards the complexity of 
the non-linear diffusive terms and ignores the impact of parameters, such as λ, which are only 
present in the coupled equation describing ECM evolution over time. Results like these, where 
multi-species systems with cross-dependent diffusion show a discrepancy between the analyti-
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Fig. 2. Plots of solutions to system (1) subject to zero flux boundary conditions and initial conditions (22) and (23) for 
the cells (blue, plotted only on the right half of the plots) and for the ECM (red, plotted only on the left half of the plots), 
where m0 = 0.5. Results are symmetric, hence plotted in this way. Plots are shown subject to ECM degradation rates 
λ = 1, 10 at times t = 0, 2, 4, 6, 8.

Fig. 3. Plots of solutions to system (1) subject to zero flux boundary conditions and initial conditions for the cells (blue, 
plotted only on the right half of the plots) as in Eq. (22) and random initial data for the ECM, smoothed using a Gaussian 
filter with σ = 5 (red, plotted only on the left half of the plots). Results are symmetric, hence plotted in this way. Plots 
are shown subject to ECM degradation rates λ = 1, 10 at times t = 0, 2, 4, 6, 8.

cally predicted and numerically estimated travelling wave speeds are also observed in coupled 
systems of PDEs such as those studied in [14,42] and is discussed in more detail in [18].

If we instead consider a setup where the initial condition for the ECM is inhomogeneous 
across the space ahead of the cells, we observe a less smooth profile in the ECM density. Consider 
Fig. 3, where we simulate the system (1) with a random initial condition for the ECM, which is 
smoothed under a Gaussian filter (using scipy.ndimage.gaussian_filterwith σ = 5). 
By examining the ECM (plotted on the left, in red), we can see that small, stochastic differences 
in the initial ECM density develop into larger regions of disparity in the ECM profile as it is 
degraded by invading cells, such that the degraded front in the ECM density varies azimuthally 
during a two dimensional simulation. In contrast to this, the radial migration of the cell density 
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Fig. 4. Plots of solutions to system (1) subject to zero flux boundary conditions and initial conditions for the cells given 
by Eq. (22), but for the ECM as m(x,0) = 0.5 + 0.25 sin(x/10). Solutions are shown in one dimension for the cells 
(blue) and for the ECM (red) at times t = 25, 50, 75 and 100, from left to right.

(plotted on the right, in blue) smooths out the azimuthal variation in the ECM density profile 
and thus a smooth invading cell population is observed. This is likely due to the higher cell 
densities, and a greater impact can be observed when the ECM degradation rate is larger. In 
fact, the travelling wave type profile observed for the cells when the surrounding ECM density 
is constant (see Fig. 2) or random (see Fig. 3) are almost identical for a given value of the ECM 
degradation rate shown in Fig. 3.

To investigate whether this averaging out among the invading cell density is always observed, 
we returned to one dimension and considered an oscillatory initial condition for the ECM. When 
oscillations are small in amplitude or high in frequency, similar behaviour to the random ECM 
setup in two dimensions was observed - i.e., the cells invaded with a constant speed, constant pro-
file solution, and quickly degraded the ECM. In contrast, when we simulated an initial condition 
for the ECM with a larger amplitude and lower frequency of oscillations, we notice that there 
were constant profile solutions, however the speed of invasion varied through time and space 
(see Fig. 4). As the ECM degradation rate increases, the differences in the speed of the travelling 
wave type profiles decrease, and only marginal changes can be observed over time. However, for 
small ECM degradation rates (as shown on the left in Fig. 4), we observe a large disparity in the 
speed of invasion throughout the spatial domain. As the cells move through regions of low ECM 
density, the speed of invasion increases, and then, in regions of higher ECM density, the speed of 
invasion decreases again. The observed speeds in each region match those shown on the left in 
Fig. 1.

In future work, the discrepancy between the analytically predicted and numerically estimated 
minimum travelling wave speed could be investigated, with the aim to uncover the relationship 
between m0, the ECM density ahead of the invading cells, and λc, the critical value of the ECM 
degradation rate where cnumerical > canalytical when λ > λc. It would also be of interest to formally 
show that solutions to Eqs. (1) converge to solutions of the Fisher-KPP equation, with c = 2, 
when λ → ∞.
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