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High-order numerical methods for conservation laws are highly sought after due to their potential 
efficiency. However, it is challenging to ensure their robustness, particularly for under-resolved 
flows. Baseline high-order methods often incorporate stabilization techniques that must be applied 
judiciously—sufficient to ensure simulation stability but restrained enough to prevent excessive 
dissipation and loss of resolution. Recent studies have demonstrated that combining upwind 
summation-by-parts (USBP) operators with flux vector splitting can increase the robustness of 
finite difference (FD) schemes without introducing excessive artificial dissipation. This work 
investigates whether the same approach can be applied to nodal discontinuous Galerkin (DG) 
methods. To this end, we demonstrate the existence of USBP operators on arbitrary grid points and 
provide a straightforward procedure for their construction. Our discussion encompasses a broad 
class of USBP operators, not limited to equidistant grid points, and enables the development of 
novel USBP operators on Legendre–Gauss–Lobatto (LGL) points that are well-suited for nodal 
DG methods. We then examine the robustness properties of the resulting DG-USBP methods 
for challenging examples of the compressible Euler equations, such as the Kelvin–Helmholtz 
instability. Similar to high-order FD-USBP schemes, we find that combining flux vector splitting 
techniques with DG-USBP operators does not lead to excessive artificial dissipation. Furthermore, 
we find that combining lower-order DG-USBP operators on three LGL points with flux vector 
splitting indeed increases the robustness of nodal DG methods. However, we also observe that 
higher-order USBP operators offer less improvement in robustness for DG methods compared to 
FD schemes. We provide evidence that this can be attributed to USBP methods adding dissipation 
only to unresolved modes, as FD schemes typically have more unresolved modes than nodal DG 
methods.

* Corresponding author at: Department of Mathematics, Linköping University, Sweden.

E-mail addresses: jan.glaubitz@liu.se (J. Glaubitz), hendrik.ranocha@uni-mainz.de (H. Ranocha), andrew.ross.winters@liu.se (A.R. Winters), 
michael.schlottke-lakemper@uni-a.de (M. Schlottke-Lakemper), mail@philippoeffner.de (P. Öffner), ggassner@uni-koeln.de (G. Gassner).

https://doi.org/10.1016/j.jcp.2025.113841
Received 14 June 2024; Received in revised form 7 February 2025; Accepted 10 February 2025 

Journal of Computational Physics 529 (2025) 113841 

Available online 15 February 2025 
0021-9991/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://orcid.org/0000-0002-3434-5563
http://orcid.org/0000-0002-3456-2277
http://orcid.org/0000-0002-5902-1522
http://orcid.org/0000-0002-3195-2536
http://orcid.org/0000-0002-1367-1917
http://orcid.org/0000-0002-1752-1158
https://github.com/trixi-framework/paper-2024-generalized-upwind-sbp
https://github.com/trixi-framework/paper-2024-generalized-upwind-sbp
https://github.com/trixi-framework/paper-2024-generalized-upwind-sbp
mailto:jan.glaubitz@liu.se
mailto:hendrik.ranocha@uni-mainz.de
mailto:andrew.ross.winters@liu.se
mailto:michael.schlottke-lakemper@uni-a.de
mailto:mail@philippoeffner.de
mailto:ggassner@uni-koeln.de
https://doi.org/10.1016/j.jcp.2025.113841
https://doi.org/10.1016/j.jcp.2025.113841
http://creativecommons.org/licenses/by/4.0/


J. Glaubitz, H. Ranocha, A.R. Winters et al. 

1. Introduction

The simulation of many phenomena in science and engineering relies on efficient and robust methods for numerically solving 
hyperbolic conservation laws. Entropy-based methods have become increasingly favored for developing robust high-order methods 
applicable to various applications. Initially introduced for second-order methods in the seminal work [102,103], these schemes have 
since evolved significantly. Expanding on these foundational studies, [52,27] introduced high-order extensions tailored to periodic 
domains. Further advancements were made in [26], where the authors developed the flux differencing approach to entropy stability. 
This approach, based on SBP operators and two-point numerical fluxes, naturally extends to high-order operators based on complex 
geometries.

SBP operators are instrumental in ensuring a discrete analog of integration by parts, thereby facilitating the extension of properties 
of numerical fluxes to high-order methods. SBP operators were initially developed in the 1970s, specifically for FD methods [50,51,93]. 
More contemporary overviews and references are provided in [101,20,12]. While the corpus of literature on SBP-based methods is 
too extensive to enumerate fully, notable implementations span a range of schemes, including spectral element [8], DG [28,30,11], 
continuous Galerkin [1,2], finite volume (FV) [68,69], flux reconstruction (FR) [85,72,15,14,65], and radial basis function (RBF) 
[35] methods.

Several studies have established that flux differencing schemes, particularly DG spectral element methods (DGSEMs), are ef-
fective for under-resolved flows, such as the Taylor–Green vortex, when constructed to ensure entropy stability and positivity 
preservation. These properties are critical, especially in real applications involving strong shocks and high Reynolds numbers. See 
[30,96,46,61,60,91,75,57,71,110,66] and references therein. Furthermore, see [3,18,88,89] for additional applications of the DGSEM 
approach to multicomponent and multiphase flows. Entropy-stable high-order methods, like those studied in [61,75,110,66], pos-
sessed enhanced robustness for under-resolved flows without any built-in positivity preservation considerations. However, works such 
as [29,83] have demonstrated linear stability issues for high-order entropy-stable methods. Despite their non-linear stability, these 
schemes exhibit shortcomings in seemingly straightforward test cases, such as Euler equations with constant velocity and pressure—
reducing them to a simple linear advection for the density. In contrast, central schemes without entropy properties perform well in this 
case but are prone to failure in more challenging simulations of under-resolved flows. Some resulting challenges in numerical simula-
tions can be mitigated using shock-capturing or invariant domain-preserving techniques. For example, issues such as non-negativity 
and spurious entropy growth can be effectively addressed by implementing positivity-preserving methods [112,78] and artificial 
viscosity approaches [77,84], respectively. However, it is crucial to apply these stabilization techniques judiciously—sufficient to 
ensure simulation stability but restrained enough to prevent excessive dissipation and loss of resolution.

In this work, we are concerned with developing robust and efficient baseline schemes by employing USBP operators within a nodal 
DG framework—without focusing on positivity preservation, however. Introduced in [62] for FD methods, USBP operators emerged 
as a particular class of dual-pair SBP operators [23]. Henceforth, we refer to these operators as FD-USBP operators. These FD-USBP 
operators have been extended to staggered grids in [63] and applied in the context of the shallow water equations and residual-based 
artificial viscosity methods in [58,98], respectively. Furthermore, for instance, [74] demonstrated that DG discretizations of linear 
advection-diffusion equations can be analyzed using the framework of global USBP operators. For nonlinear conservation laws, USBP 
operators are combined with flux vector splitting techniques [104, Chapter 8]. Flux vector splitting techniques were extensively 
developed and applied throughout the previous century [97,105,7,41,56,16] yet eventually fell out of favor. This shift occurred as 
these methods were superseded by alternative approaches, primarily due to the considerable numerical dissipation they introduced 
[106]. Yet, previous studies [87,24] have demonstrated that combining high-order USBP operators with flux vector splittings can 
increase the robustness of FD schemes for under-resolved simulations without introducing excessive artificial dissipation.

Our contribution

In this work, we investigate whether combining USBP operators with flux vector splittings can be applied to nodal DG methods 
with similar success. To this end, we first demonstrate the existence of USBP operators on arbitrary grid points and provide a straight-
forward procedure for their construction. While previous works have developed diagonal-norm FD-USBP operators, our discussion 
encompasses a broader class of USBP operators. Importantly, the proposed construction procedure applies to arbitrary grid points, 
not limited to equidistant spacing. This generalization enables the development of novel USBP operators on LGL points that are 
well-suited for nodal DG methods. In contrast to, for instance, [74], we not only use a global upwind formulation of DG methods but 
also develop local USBP operators for nodal DG-type methods. These operators achieve a given order of accuracy with fewer degrees 
of freedom (nodes) than existing FD-USBP operators [62,63]. We then examine the robustness properties of the resulting DG-USBP 
methods for challenging examples of the compressible Euler equations, such as Kelvin-Helmholtz instabilities. Similar to high-order 
FD-USBP schemes, we find that combining flux vector splitting techniques with DG-USBP operators does not lead to excessive artifi-
cial dissipation. Furthermore, we demonstrate local linear/energy stability for the DG-USBP semi-discretizations in a setting where 
existing high-order entropy-stable flux differencing DGSEM produce unstable semi-discretizations. At the same time, we observe that 
USBP operators offer less improvement in robustness for high-order DG methods than for FD schemes for multi-dimensional systems. 
Specifically, we note in our numerical simulations that the increase in robustness becomes less significant as more LGL points are 
used per element and coordinate direction. We suspect that this reduced improvement can be attributed to USBP methods adding 
dissipation only to unresolved modes, and FD schemes typically have a larger number of unresolved modes than nodal DG methods. 
Still, DG-USBP methods can serve as a viable alternative approach, as it may be more straightforward to apply in complex problems 
where a robust flux splitting, such as Lax-Friedrichs, is readily available while conducting an entropy analysis proves too cumbersome.
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Outline

In Section 2, we present all necessary background on SBP and USBP operators. Section 3 is devoted to delineating the conditions 
for the existence of USBP operators. Section 4 outlines a systematic approach for constructing USBP operators. In Section 5, we use 
the previously developed DG-USBP operators to formulate DG-USBP baseline schemes. Section 6 is reserved for various numerical 
experiments. Finally, Section 7 offers concluding remarks and explores potential avenues for future research.

2. Preliminaries on SBP and USBP operators

We start by revisiting SBP and USBP operators. For simplicity, we focus on one-dimensional operators on a compact interval.

2.1. Notation

Consider Ω = [𝑥min, 𝑥max] as the computational spatial domain for solving a given time-dependent partial differential equation 
(PDE). Our focus is on SBP operators, which apply to a generic element Ωref = [𝑥𝐿,𝑥𝑅]. In pseudo-spectral or global FD schemes, 
Ωref = Ω. However, in DG and multi-block FD methods, Ω is divided into multiple smaller non-overlapping elements Ω𝑗 which 
collectively cover Ω (i.e., 

⋃
𝑗 Ω𝑗 = Ω). In this case, any Ω𝑗 can serve as Ωref. Let 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 represent a vector of grid points 

on the reference element Ωref , where 𝑥𝐿 ≤ 𝑥1 <⋯ < 𝑥𝑁 ≤ 𝑥𝑅. For a continuously differentiable function 𝑓 on Ωref , we denote

𝐟 = [𝑓 (𝑥1),… , 𝑓 (𝑥𝑁 )]𝑇 , 𝐟 ′ = [𝑓 ′(𝑥1),… , 𝑓 ′(𝑥𝑁 )]𝑇 , (2.1)

as the nodal values and first derivative of 𝑓 at the grid points 𝐱. Additionally, 𝑑 denotes the space of polynomials of degree up to 𝑑.

2.2. SBP operators

We are now positioned to define SBP operators. See the reviews [101,20,12] and references therein for more details.

Definition 2.1 (SBP operators). The operator 𝐷 = 𝑃−1(𝑄+𝐵∕2) approximating 𝜕𝑥 is a degree 𝑑 SBP operator on Ωref = [𝑥𝐿,𝑥𝑅] if

(i) 𝐷𝐟 = 𝐟 ′ for all 𝑓 ∈ 𝑑 ;
(ii) 𝑃 is a symmetric and positive definite (SPD) matrix;

(iii) The boundary matrix 𝐵 satisfies 𝐟𝑇 𝐵𝐠 = 𝑓𝑔|||𝑥𝑅𝑥𝐿 for all 𝑓, 𝑔 ∈ 𝑑 ;

(iv) 𝑄+𝑄𝑇 = 0 (𝑄 is anti-symmetric).

Relation (i) ensures that 𝐷 accurately approximates the continuous derivative operator 𝜕𝑥 by requiring 𝐷 to be exact for poly-
nomials up to degree 𝑑. Condition (ii) guarantees that 𝑃 induces a proper discrete inner product and norm, which are given by ⟨𝐟 ,𝐠⟩ = 𝐟𝑇 𝑃𝐠 and ‖𝐟‖2

𝑃
= 𝐟𝑇 𝑃 𝐟 , respectively. Relation (iv) encodes the SBP property, which allows us to mimic integration-by-parts 

(IBP) on a discrete level. Recall that IBP reads

𝑥𝑅

∫
𝑥𝐿

𝑓 (𝜕𝑥𝑔) d𝑥+

𝑥𝑅

∫
𝑥𝐿

(𝜕𝑥𝑓 )𝑔 d𝑥 = 𝑓𝑔|||𝑥𝑅𝑥𝐿 . (2.2)

The discrete version of (2.2), which follows from (iv) in Definition 2.1, is

𝐟𝑇 𝑃𝐷𝐠+ 𝐟𝑇𝐷𝑇 𝑃 𝑇 𝐠 = 𝐟𝑇 𝐵𝐠. (2.3)

Finally, relation (iii) in Definition 2.1 ensures that the right-hand side of (2.3) accurately approximates the one of (2.2) by requiring 
the boundary operator 𝐵 to be exact for polynomials up to degree 𝑑 as well.

2.3. USBP operators

Next, we introduce USBP operators, which originate from the FD setting [62] and are a subclass of dual-pair SBP operators [23].

Definition 2.2 (USBP operators). The operators 𝐷+ = 𝑃−1(𝑄+ +𝐵∕2) and 𝐷− = 𝑃−1(𝑄− +𝐵∕2) approximating 𝜕𝑥 are degree 𝑑 USBP 
operators on Ωref = [𝑥𝐿,𝑥𝑅] if

(i) 𝐷+𝐟 =𝐷−𝐟 = 𝐟 ′ for all 𝑓 ∈ 𝑑 ;
(ii) The norm matrix 𝑃 is an SPD matrix;

(iii) The boundary matrix 𝐵 satisfies 𝐟𝑇 𝐵𝐠= 𝑓𝑔|||𝑥𝑅𝑥𝐿 for all 𝑓, 𝑔 ∈ 𝜏 with 𝜏 ≥ 𝑑;

(iv) 𝑄+ +𝑄𝑇
− = 0;
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(v) 𝑄+ +𝑄𝑇
+ = 𝑆 , where the dissipation matrix 𝑆 is symmetric and negative semi-definite.

The motivation for conditions (i), (ii), and (iii) in Definition 2.2 is the same as in Definition 2.1 of SBP operators. However, the 
discrete version of IBP (2.2) that follows from (iv) in Definition 2.2 is

𝐟𝑇 𝑃𝐷+𝐠+ 𝐟𝑇𝐷𝑇
−𝑃

𝑇 𝐠 = 𝐟𝑇 𝐵𝐠. (2.4)

At the same time, (v) introduces accurate artificial dissipation into the USBP discretization. This can be seen as follows (also see 
[62,55,53]): Using (iv) and (v), we observe that

𝐷+ =𝐷− + 𝑃−1𝑆, (2.5)

and it follows that 𝐷+𝐟 =𝐷−𝐟 if and only if 𝑆𝐟 = 𝟎. This means that 𝑆 adds artificial dissipation that acts only on unresolved modes, 
𝐟 ∈ℝ𝑁 for which 𝑓 ∉ 𝑑 . The artificial dissipation included in USBP operators only acting on unresolved modes distinguishes them 
from combining SBP operators with traditional artificial dissipation terms based on second (or higher-order even) derivatives [64,84]. 
Lemma 2.3 connects SBP and USBP operators.

Lemma 2.3 (USBP operators induce SBP operators). If 𝐷± = 𝑃−1(𝑄± +𝐵∕2) are degree 𝑑 USBP operators, then

𝐷 ∶= (𝐷+ +𝐷−)∕2 = 𝑃−1(𝑄+𝐵∕2) with 𝑄 = (𝑄+ +𝑄−)∕2 (2.6)

is a degree 𝑑 SBP operator. Moreover, 𝐷+ −𝐷− = 𝑃−1𝑆 .

Proof. Lemma 2.3 was demonstrated in [62] and we thus omit its proof. □

We will need Lemma 2.3 to prove Theorem 3.1 below, which characterizes the existence of USBP operators.

3. Characterizing the existence of USBP operators

We now characterize the existence of USBP operators as in Definition 2.2 for arbitrary grid points. We subsequently leverage this 
analysis in Section 4 to construct novel USBP operators.

Theorem 3.1. Let 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 be a grid on Ωref = [𝑥𝐿,𝑥𝑅] and let 𝑆 be a symmetric and negative semi-definite dissipation matrix.

(a) If there exists a degree 𝑑 SBP operator 𝐷 = 𝑃−1(𝑄 + 𝐵∕2) and 𝑆 satisfies 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 , then 𝐷± = 𝑃−1(𝑄± + 𝐵∕2) with 
𝑄± =𝑄±𝑆∕2 are degree 𝑑 USBP operators with 𝑄+ +𝑄𝑇

+ = 𝑆 .

(b) If there exist degree 𝑑 USBP operators 𝐷± = 𝑃−1(𝑄± +𝐵∕2) with 𝑄+ +𝑄𝑇
+ = 𝑆 , then 𝐷 = (𝐷+ +𝐷−)∕2 is a degree 𝑑 SBP operator 

and 𝑆 satisfies 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 .

In a nutshell, Theorem 3.1 tells us that there exist degree 𝑑 USBP operators 𝐷± on a given grid if and only if there exists a degree 
𝑑 SBP operator 𝐷 on the same grid and a dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 . The proof of Theorem 3.1 is provided in 
Appendix A.

While the dissipation matrix 𝑆 should not add dissipation to resolved modes, i.e., 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 , it should do so for 
unresolved modes. The latter means that

𝐟𝑇 𝑆𝐟 < 0 ∀𝑓 ∉ 𝑑 . (3.1)

We follow up with Lemma 3.2, which shows that a desired dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 and 𝐟𝑇 𝑆𝐟 < 0 otherwise always 
exists.

Lemma 3.2. Let 𝑑 ∈ℕ, 𝐱 be a grid with 𝑁 ≥ 𝑑 +1 distinct points. There always exists a symmetric and negative semi-definite matrix 𝑆 with 
𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 and 𝐟𝑇 𝑆𝐟 < 0 otherwise. Moreover, 𝑆 = 0 if 𝑁 = 𝑑 + 1 and 𝑆 ≠ 0 if 𝑁 > 𝑑 + 1.

Proof. If 𝑁 = 𝑑 + 1, then any vector 𝐟 ∈ ℝ𝑁 corresponds to the nodal values of a function 𝑓 ∈ 𝑑 on the grid 𝐱. There are no 
unresolved modes in this case, and 𝑆 = 0 is the desired matrix.

Now assume that 𝑁 > 𝑑 + 1. Since the matrix 𝑆 is real and symmetric, it can be decomposed as

𝑆 = 𝑉 Λ𝑉 −1, (3.2)

where Λ = diag(𝜆1,… , 𝜆𝑁 ) contains the eigenvalues of 𝑆 and the columns of 𝑉 = [𝐯𝟏,… ,𝐯𝐍] are linearly independent eigenvectors 
of 𝑆 ; see [39, Theorem 8.1.1]. Let {𝑓𝑘}𝑑+1𝑘=1 be a basis of 𝑑 , e.g., monomials or Legendre polynomials up to degree 𝑑. Then, 𝑆𝐟 = 𝟎
if 𝑓 ∈ 𝑑 is equivalent to 𝑆𝐟𝐤 = 𝟎 for 𝑘 = 1,… , 𝑑 + 1. At the same time, the latter condition means that 𝐟𝟏 ,… , 𝐟𝐝+𝟏 are eigenvectors 
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of 𝑆 with the corresponding eigenvalue being zero. For simplicity, we position these as the first 𝑑 + 1 eigenvalues and eigenvectors 
in (3.2), i.e.,

𝜆𝑘 = 0, 𝐯𝐤 = 𝐟𝐤, 𝑘 = 1,… , 𝑑 + 1. (3.3)

Then, by construction, the matrix 𝑆 in (3.2) is symmetric and satisfies 𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 . Furthermore, since 𝑁 > 𝑑 + 1, we still have 
𝑁 − 𝑑 − 1 > 0 free eigenvalues that we can use to ensure that 𝐟𝑇 𝑆𝐟 < 0 if 𝑓 ∉ 𝑑 . To this end, the remaining eigenvalues must be 
negative, i.e., 𝜆𝑑+2,… , 𝜆𝑁 < 0. Finally, we can set 𝐯𝐝+𝟐,… ,𝐯𝐍 as arbitrary vectors that are linearly independent among themselves 
and to the first 𝑑 + 1 eigenvectors. Then, the resulting matrix 𝑆 in (3.2) is symmetric and negative semi-definite while satisfying 
𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 . It remains to show that 𝐟𝑇 𝑆𝐟 < 0 if 𝑓 ∉ 𝑑 . To this end, suppose that 𝑓 ∉ 𝑑 . In this case, the corresponding vector 
of nodal values 𝐟 can be expressed as 𝐟 = 𝛾1𝐯𝟏 +⋯+ 𝛾𝑁𝐯𝐍 with 𝛾𝑘 ≠ 0 for at least one 𝑘 > 𝑑 + 1. (At least one of the last 𝑁 − 𝑑 − 1
eigenvectors contributes to representing 𝐟 .) Then, we see that

𝐟𝑇 𝑆𝐟 =
𝑑+1∑
𝑘=1 

=0 
⏞ ⏞ ⏞

𝜆𝑘 𝛾2𝑘𝐯𝐤
𝑇 𝐯𝐤

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0 

+
𝑁∑

𝑘=𝑑+2

<0 
⏞ ⏞ ⏞

𝜆𝑘 𝛾2𝑘𝐯𝐤
𝑇 𝐯𝐤

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<0 

< 0, (3.4)

which completes the proof. □

Many modern collocation-type DG methods are based on interpolatory (𝑁 = 𝑑 + 1) SBP operators. See [28,30,46,60,12,75,110] 
and references therein. However, Lemma 3.2 indicates that there cannot be interpolatory USBP operators with a non-trivial dissipation 
matrix 𝑆 . Conversely, Lemma 3.2 also suggests that if 𝑁 > 𝑑 + 1 (even with just an oversampling of one point), the construction of 
such USBP operators becomes viable.

4. Constructing USBP operators

We now provide a simple procedure to construct degree 𝑑 USBP operators 𝐷± = 𝑃−1(𝑄± +𝐵∕2). While previous works, such as 
[62], have developed diagonal-norm FD-USBP operators, our method encompasses a broader class of USBP operators. Importantly, 
it applies to arbitrary grid points, not limited to equidistant spacing. This allows us to derive novel USBP operators on LGL points 
suited for nodal DG methods.

4.1. Proposed procedure

The idea behind our construction procedure is to start from a degree 𝑑 SBP operator 𝐷 = 𝑃−1(𝑄+𝐵∕2) and a dissipation matrix 
𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 and 𝐟𝑇 𝑆𝐟 < 0 otherwise. Then part (a) of Theorem 3.1 implies that 𝐷± = 𝑃−1(𝑄± +𝐵∕2) with 𝑄± =𝑄±𝑆∕2
are degree 𝑑 USBP operators. This observation motivates the following simple construction procedure:

(P1) Construct a degree 𝑑 SBP operator 𝐷 = 𝑃−1(𝑄+𝐵∕2) on the grid 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 with 𝑁 > 𝑑 + 1.
(P2) Find a dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 and 𝐟𝑇 𝑆𝐟 < 0 otherwise.
(P3) Choose 𝑄± =𝑄 ± 𝑆∕2 and get degree 𝑑 USBP operators 𝐷± = 𝑃−1(𝑄± +𝐵∕2) with 𝑄+ +𝑄𝑇

+ = 𝑆 on the grid 𝐱.

In (P3), equivalently, we get degree 𝑑 USBP operators as 𝐷± =𝐷±𝑃−1𝑆 . Note that we choose 𝑁 > 𝑑 +1 in (P2) because Lemma 3.2
states that we can find a dissipation matrix 𝑆 ≠ 0 if and only if 𝑁 > 𝑑 + 1.

The first step in our construction procedure, (P1), is to find a degree 𝑑 SBP operator on a grid 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 with 𝑁 > 𝑑 + 1. 
Several works have discussed the construction of SBP operators. See [44,54,34,36] or the reviews [101,20] and references therein. 
Therefore, we omit such a discussion and focus instead on the construction of 𝑆 in step (P2), which is addressed in Subsection 4.2, 
along with a robust implementation strategy in Subsection 4.3. Furthermore, we exemplify the above procedure in Subsection 4.4.

4.2. Constructing a dissipation matrix

The second step of our construction procedure, (P2), is to find a dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 and 𝐟𝑇 𝑆𝐟 < 0
otherwise. To this end, we can follow the proof of Lemma 3.2. Let us briefly recall the most important steps and comment on their 
implementation for completeness. Since 𝑆 is real and symmetric, we can decompose it as

𝑆 = 𝑉 Λ𝑉 −1, (4.1)

where Λ = diag(𝜆1,… , 𝜆𝑁 ) contains the eigenvalues of 𝑆 and the columns of 𝑉 = [𝐯𝟏,… ,𝐯𝐍] are linearly independent eigenvectors 
of 𝑆 . (See [39, Theorem 8.1.1].) Let {𝑓𝑘}𝑑+1𝑘=1 be a basis of 𝑑 . We can ensure 𝑆𝐟 = 𝟎 if 𝑓 ∈ 𝑑 (the dissipation matrix does not act 
on resolved modes) by using the nodal value vectors of the basis functions as the first 𝑑 + 1 eigenvectors with the corresponding 
eigenvalues being zero, i.e.,

𝐯𝐤 = 𝐟𝐤, 𝜆𝑘 = 0, 𝑘 = 1,… , 𝑑 + 1. (4.2)
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These are linearly independent since 𝑑 is a Chebyshev system. Now suppose that 𝑁 > 𝑑 + 1. Then, we still have 𝑁 − 𝑑 − 1 > 0 free 
eigenvalues and eigenvectors. These have to be chosen such that (i) the eigenvectors 𝐯𝐝+𝟐 ,… ,𝐯𝐍 are linearly independent among 
themselves and to the first 𝑑 + 1 eigenvectors and (ii) one has 𝐟𝑇 𝑆𝐟 < 0 if 𝑓 ∉ 𝑑 . We can ensure these properties by choosing the 
eigenvalues 𝜆𝑑+2,… , 𝜆𝑁 as arbitrary negative numbers, e.g., 𝜆𝑑+2,… , 𝜆𝑁 = −1, and 𝐯𝐝+𝟐,… ,𝐯𝐍 as the corresponding eigenvectors 
satisfying 𝑆𝐯𝐣 = 𝜆𝑗𝐯𝐣 for 𝑗 = 𝑑 + 2,… ,𝑁 . Then, 𝑆 is a desired dissipation matrix, and we can formally find it by computing the 
matrix product on the right-hand side of (4.1). That said, computing the matrix product in (4.1) is generally not recommended since 
it involves matrix inversion. We discuss an approach to bypass this problem in Subsection 4.3.

4.3. Robust implementation using discrete orthogonal polynomials

We present a simple and robust method for computing the dissipation matrix 𝑆 in (4.1) using discrete orthogonal polynomials 
(DOPs), see [31]. Suppose we are given a grid 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 . A basis {𝑓𝑘}𝑁𝑘=1 of 𝑁 consists of DOPs if the 𝑓𝑘 ’s are orthogonal 
with respect to the discrete inner product [𝑓, 𝑔]𝐱 =

∑𝑁
𝑛=1 𝑓 (𝑥𝑛)𝑔(𝑥𝑛), i.e.,

𝑁∑
𝑛=1 

𝑓𝑗 (𝑥𝑛)𝑓𝑘(𝑥𝑛) = 𝛿𝑗,𝑘, 𝑗, 𝑘 = 1,… ,𝑁, (4.3)

where ‖𝑓𝑘‖2𝐱 = [𝑓𝑘,𝑓𝑘]𝐱 is the induced norm. Note that (4.3) is equivalent to 
⟨
𝐟𝐣, 𝐟𝐤
⟩
= 𝛿𝑗,𝑘, where ⟨𝐟 ,𝐠⟩ = 𝐟𝑇 𝐠 and ‖𝐟‖2 = 𝐟𝑇 𝐟 are 

the usual Euclidean inner product and norm for 𝐟 ,𝐠 ∈ ℝ𝑁 , respectively. Hence, if we choose 𝐯𝐤 = 𝐟𝐤 for the eigenvectors in (4.1), 
where {𝑓𝑘}𝑁𝑘=1 is a DOP basis of 𝑁 , then 𝑉 = [𝐯𝟏,… ,𝐯𝐍] is orthogonal (𝑉 −1 = 𝑉 𝑇 ) and (4.1) becomes

𝑆 = 𝑉 Λ𝑉 𝑇 . (4.4)

The advantage of (4.4) over (4.1) is that we no longer need to invert 𝑉 . To summarize the above discussion, we can efficiently and 
robustly construct a dissipation matrix 𝑆 as follows:

(S1) Find a DOP basis {𝑓𝑘}𝑁𝑘=1 of 𝑁 with respect to the grid 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 .
(S2) Choose the columns of 𝑉 as the vectors of nodal values of the DOP basis, i.e., 𝐯𝐤 = 𝐟𝐤 for 𝑘 = 1,… ,𝑁 .
(S3) Set the first 𝑑 + 1 diagonal entries of Λ in (4.4) to zero, i.e., 𝜆𝑘 = 0 for 𝑘 = 1,… , 𝑑 + 1.1

(S4) Choose the remaining eigenvalues 𝜆𝑑+2,… , 𝜆𝑁 < 0 and compute 𝑆 using (4.4).

A few remarks are in order.

Remark 4.1. Since the dissipation matrix 𝑆 is symmetric, the eigenvectors corresponding to different eigenvalues are automatically 
orthogonal. However, in our case, we encounter multiple linear independent eigenvectors associated with the same eigenvalue (for 
instance, 𝜆 = 0). Consequently, these are not guaranteed to be orthogonal; therefore, we rely on the additional orthogonalization step 
described above.

Remark 4.2 (Finding DOP bases). The existing literature offers explicit formulas of DOPs for different point distributions 𝐱, including 
Chebyshev–Gauss–Lobatto [25] and equidistant points [109]. Suppose an explicit formula is not readily available. In that case, we 
can start from a basis of Legendre polynomials, orthogonal with respect to the continuous 𝐿2-inner product, and transform them into 
a DOP basis using the modified Gram–Schmidt process. See [31,37] and references therein.

4.4. An example: USBP operators on LGL points

We exemplify the construction of USBP operators for a degree one (𝑑 = 1) diagonal-norm USBP operator for three (𝑁 = 3) 
LGL points on Ωref = [−1,1]. This case allows us to represent exactly all involved matrices below. Additional diagonal-norm USBP 
operators on up to six LGL nodes are provided in Appendix B. Moreover, Appendix C exemplifies the construction of USBP operators 
for Gauss–Legendre nodes (that do not include the boundary points) and a dense-norm USBP operator on equidistant points.

Let us first address (P1): To compute a degree one diagonal-norm SBP operator on three LGL points, we have two options: The first 
option is to determine a diagonal-norm SBP operator with exactly degree one, i.e., the operator is exact for linear functions but not 
necessarily for quadratic ones. We can find such an operator following the procedure described in [44,54,34]. Note that this operator 
is not unique but comes with one degree of freedom that can be used to optimize the SBP operator based on different criteria, such as 
the truncation error and spectral properties [99,101,20]. The second option is to determine a degree two diagonal-norm SBP operator. 
This operator is unique and readily available by evaluating the derivatives of the corresponding Lagrange basis functions at the LGL 
grid points [28,8,9,11,15,65]. We follow the second option since it is computationally more convenient. The associated grid points, 
quadrature weights (diagonal entries of 𝑃 ), and SBP operator on Ωref = [−1,1] are

1 We assume that the first 𝑑 + 1 DOPs form a basis of 𝑑 . This ensures that the dissipation operator 𝑆 does not act on the resolved modes corresponding to 
polynomials of degree up to 𝑑.
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𝐱 =
⎡⎢⎢⎣
−1
0
1

⎤⎥⎥⎦ , 𝐩 = 1
3

⎡⎢⎢⎣
1
4
1

⎤⎥⎥⎦ , 𝐷 = 1
2

⎡⎢⎢⎣
−3 4 −1
−1 0 1
1 −4 3

⎤⎥⎥⎦ . (4.5)

The boundary matrix is 𝐵 = diag(−1,0,1) since the boundary points are included in the grid.
We next address (P2), finding a dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 1 and 𝐟𝑇 𝑆𝐟 < 0 otherwise. To this end, we follow 

Subsection 4.3 and robustly construct 𝑆 using a DOP basis on the three LGL grid points. We get these by starting from the first three 
Legendre polynomials, spanning 3, and then applying the Gram–Schmidt procedure. The Vandermonde matrix of this DOP basis is

𝑉 = 1 √
6

⎡⎢⎢⎢⎣
√
2 −
√
3 1√

2 0 −2√
2
√
3 1

⎤⎥⎥⎥⎦ . (4.6)

Consequently, we get the dissipation matrix as 𝑆 = 𝑉 Λ𝑉 𝑇 with Λ = diag(𝜆1, 𝜆2, 𝜆3). To ensure that the desired USBP operator has 
degree one (𝑑 = 1), we choose the first two eigenvalues as zero, i.e., 𝜆1 = 𝜆2 = 0. Furthermore, we choose 𝜆3 = −1, which introduces 
artificial dissipation to the highest, unresolved, mode.2 The resulting dissipation matrix is

𝑆 = 1
6

⎡⎢⎢⎣
−1 2 −1
2 −4 2
−1 2 −1

⎤⎥⎥⎦ . (4.7)

Finally, (P3), we get degree one diagonal-norm USBP operators as 𝐷± =𝐷 ± 𝑃−1𝑆∕2, yielding

𝐷+ = 1
8

⎡⎢⎢⎣
−14 20 −6
−3 −2 5
2 −12 10

⎤⎥⎥⎦ , 𝐷− = 1
8

⎡⎢⎢⎣
−10 12 −2
−5 2 3
6 −20 14

⎤⎥⎥⎦ . (4.8)

The norm and boundary matrix of the degree one USBP operators are the same as those of the degree two SBP operator.

5. Application of USBP operators to nodal DG methods

We are now positioned to combine the above-developed DG-USBP operators with flux vector splitting approaches to construct 
new DG-USBP baseline schemes for nonlinear conservation laws.

5.1. The flux vector splitting approach

We briefly review the classical flux vector splitting approach. See [97,105,7,41,56,16] as well as [104, Chapter 8] and references 
therein for more details. Consider the generic one-dimensional hyperbolic conservation law

𝜕𝑡𝑢+ 𝜕𝑥𝑓 (𝑢) = 0, 𝑥 ∈Ω= (𝑥min, 𝑥max), (5.1)

with conserved variable 𝑢 = 𝑢(𝑡, 𝑥) and flux 𝑓 = 𝑓 (𝑢). Henceforth, we assume that (5.1) is equipped with appropriate initial and 
boundary conditions. In flux vector splitting approaches, the flux 𝑓 is split into two parts,

𝑓 (𝑢) = 𝑓−(𝑢) + 𝑓+(𝑢), (5.2)

where the eigenvalues 𝜆±𝑖 (𝑢) of the Jacobian ∇𝑢𝑓±(𝑢) satisfy 𝜆−𝑖 (𝑢) ≤ 0 and 𝜆+𝑖 (𝑢) ≥ 0 for all 𝑖, respectively. Applying (5.2) to (5.1), 
we get

𝜕𝑡𝑢+ 𝜕𝑥𝑓−(𝑢) + 𝜕𝑥𝑓+(𝑢) = 0, 𝑥 ∈Ω= [𝑥min, 𝑥max]. (5.3)

We can now semi-discretize (5.3) using ‘global’ USBP operators 𝐷± on Ω= [𝑥min, 𝑥max], resulting in

d 
d𝑡
𝐮+𝐷+𝐟− +𝐷−𝐟+ = 0, (5.4)

where 𝐮 and 𝐟± are the nodal values of the numerical solution and the two flux components at the global grid points. Note that we 
have ignored boundary conditions for the moment.

Remark 5.1. The mismatch between the indices ± of the upwind operators and the fluxes is intentional. This choice is made to 
maintain backward compatibility, preserving the established conventions of both flux vector splitting methods and upwind SBP 
operators for historical consistency.

2 Note that 𝜆3 = −1 is an arbitrary choice. Any negative value yields an admissible dissipation matrix. We investigate the influence of the choice of 𝜆3 in more detail 
in Section 6.
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5.2. Application to nodal collocated DG methods

In DG-type methods, the computational domain Ω = [𝑥min, 𝑥max] is partitioned into 𝐽 disjoint elements Ω𝑗 with 
⋃𝐽

𝑗=1 Ω𝑗 = Ω. 
Each element Ω𝑗 is mapped diffeomorphically onto a reference element, say Ωref = [−1,1], in which all computations are carried out. 
This has the advantage of only computing USBP operators 𝐷± once for the reference element rather than for each element separately. 
Applying this DG-type approach to (5.3), we get the DG-USBP semi-discretization

d 
d𝑡
𝐮𝑗 +𝐷+𝐟 𝑗− +𝐷−𝐟

𝑗
+ = 𝟎, 𝑗 = 1,… , 𝐽 , (5.5)

where 𝐮𝑗 and 𝐟 𝑗± are the nodal values of the numerical solution and the two flux vector splitting components on the 𝑗th element. We 
allow for the numerical solution to be discontinuous at element interfaces. Hence, at each element interface, we have two values. We 
distinguish between values from inside Ω𝑗 , e.g., 𝑢𝑗

𝐿
and 𝑢𝑗

𝑅
, and values from the neighboring elements, Ω𝑗−1 and Ω𝑗+1, e.g., 𝑢𝑗−1

𝑅
and 

𝑢𝑗+1
𝐿

. Thereby, the subindices “L” and “R” denote that the value of the numerical solution at the left and right element boundary is 
taken, respectively. From conservation and stability (upwinding) considerations—and to allow for information to be shared between 
neighboring elements—we introduce a weak coupling between elements in (5.5) using simultaneous approximation terms (SATs), 
resulting in the semi-discretization

d 
d𝑡
𝐮𝑗 +𝐷+𝐟 𝑗− +𝐷−𝐟

𝑗
+ = 𝐒𝐀𝐓𝑗 , 𝑗 = 1,… , 𝐽 . (5.6)

Please see [101,20,8,21,12,60] and references therein for details on SATs. Here, the SAT in the 𝑗-th element is

𝐒𝐀𝐓𝑗 = −𝑃−1𝐞𝑅
[
𝑓 num(𝑢𝑗

𝑅
, 𝑢𝑗+1

𝐿
) − 𝑓𝑗

𝑅

]
+ 𝑃−1𝐞𝐿

[
𝑓 num(𝑢𝑗−1

𝑅
, 𝑢𝑗

𝐿
) − 𝑓𝑗

𝐿

]
, (5.7)

where 𝑢𝑗
𝐿∕𝑅 = 𝐞𝑇

𝐿∕𝑅𝐮
𝑗 and 𝑓𝑗

𝐿∕𝑅 = 𝐞𝑇
𝐿∕𝑅𝐟

𝑗 abbreviate the values of the numerical solution and the corresponding values of the flux 
at the left/right boundary of the element Ω𝑗 . For simplicity, we suppose that the grid includes the boundary points, i.e., 𝑥1 = −1
and 𝑥𝑁 = 1 in the reference element. Otherwise, one has to incorporate certain projection operators, which introduce additional 
technical details that we omit here. If the boundary points are included, 𝐞𝐿 = [1,0,… ,0]𝑇 and 𝐞𝑅 = [0,… ,0,1]𝑇 , 𝑢𝑗

𝐿∕𝑅 = 𝑢𝑗1∕𝑁 , and 

𝑓𝑗
𝐿∕𝑅 = 𝑓𝑗

1∕𝑁 . Furthermore, 𝑓 num(𝑢𝑗
𝑅
, 𝑢𝑗+1

𝐿
) and 𝑓 num(𝑢𝑗−1

𝑅
, 𝑢𝑗

𝐿
) are two-point numerical flux functions at the right and left boundary 

of the element Ω𝑗 , respectively. There are many existing numerical fluxes that we can use. Alternatively, as described in [87], we 
can use the flux vector splitting to design numerical fluxes. In this approach, we use the same splitting for 𝑓 and 𝑓 num, yielding

𝑓 num(𝑢𝑗
𝑅
, 𝑢𝑗+1

𝐿
) − 𝑓𝑗

𝑅
=
[
𝑓+(𝑢

𝑗
𝑅
) + 𝑓−(𝑢

𝑗+1
𝐿

)
]
−
[
𝑓+(𝑢

𝑗
𝑅
) + 𝑓−(𝑢

𝑗
𝑅
)
]
= 𝑓−(𝑢

𝑗+1
𝐿

) − 𝑓−(𝑢
𝑗
𝑅
),

𝑓 num(𝑢𝑗−1
𝑅

, 𝑢𝑗
𝐿
) − 𝑓𝑗

𝐿
=
[
𝑓+(𝑢

𝑗−1
𝑅

) + 𝑓−(𝑢
𝑗
𝐿
)
]
−
[
𝑓+(𝑢

𝑗
𝐿
) + 𝑓−(𝑢

𝑗
𝐿
)
]
= 𝑓+(𝑢

𝑗−1
𝑅

) − 𝑓+(𝑢
𝑗
𝐿
).

(5.8)

Substituting (5.8) into the USBP-SAT semi-discretization (5.6) results in

d 
d𝑡
𝐮𝑗 +𝐷+𝐟 𝑗− +𝐷−𝐟

𝑗
+ = −𝑃−1𝐞𝑅

[
𝑓−(𝑢

𝑗+1
𝐿

) − 𝑓−(𝑢
𝑗
𝑅
)
]
+ 𝑃−1𝐞𝐿

[
𝑓+(𝑢

𝑗−1
𝑅

) − 𝑓+(𝑢
𝑗
𝐿
)
]

(5.9)

for 𝑗 = 1,… ,𝑁 . In our implementation, we opted for the scheme given by (5.9). This choice has the advantage of preventing the need 
to resolve a Riemann problem in terms of numerical fluxes, which streamlines the implementation and improves efficiency. Finally, 
one evolves the numerical solution in time by solving the semi-discrete equation (5.9) with an appropriate ODE solver.

6. Numerical tests

We now examine the robustness properties of the DG-USBP method described in Section 5 based on the new DG-USBP operators 
we constructed in Section 4. Specifically, we focus on diagonal-norm USBP operators on LGL nodes, which are predominantly used 
in spectral element methods since they enable splitting techniques [67,30,73] and the extension to variable coefficients including 
curvilinear coordinates [10,100,70,76]. In many cases, we compare the DG-USBP method with an entropy-stable flux differencing 
DGSEM on the same LGL points. For brevity, we will henceforth refer to the entropy-stable flux-differencing DGSEM simply as 
“DGSEM.” The numerical experiments are conducted using the Julia programming language [6]. We employ Runge-Kutta methods 
from the OrdinaryDiffEq.jl package for time integration [79]. Spatial discretization is handled using the Trixi.jl framework [86] in 
combination with the SummationByPartsOperators.jl package [81]. Visualization of the results is achieved through Plots.jl [13] and 
ParaView [4]. All source code required to reproduce the numerical experiments is available online in the reproducibility repository 
[38].

6.1. Convergence for the linear advection equation

We initiate our study with a convergence analysis of the proposed USBP operators for the one-dimensional scalar linear advection 
equation
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Table 1
Convergence results using DG-USBP discretizations of the linear advection equation with Lax–Friedrichs splitting and 𝐽
elements. We use degree one (first row), two (second row), and three (third row) USBP operators on three, fours, and five 
LGL nodes per element, respectively, with different values for the artificial dissipation parameters 𝜆3, 𝜆4 , and 𝜆5 .

𝜆3 = −10−3

𝐽 𝐿2 error EOC 
2 7.41e-01 
4 1.22e-01 2.61 
8 1.06e-02 3.53 
16 9.75e-04 3.44 
32 1.07e-04 3.18 
64 1.29e-05 3.06 
128 1.60e-06 3.01 

𝜆3 = −10−2

𝐽 𝐿2 error EOC 
2 7.38e-01 
4 1.21e-01 2.61 
8 1.05e-02 3.52 
16 9.74e-04 3.43 
32 1.08e-04 3.17 
64 1.34e-05 3.01 
128 1.86e-06 2.85 

𝜆3 = −10−1

𝐽 𝐿2 error EOC 
2 7.47e-01 
4 2.09e-01 1.83 
8 3.37e-02 2.63 
16 5.32e-03 2.66 
32 1.02e-03 2.38 
64 2.31e-04 2.14 
128 5.61e-05 2.04 

𝜆3 = −1

𝐽 𝐿2 error EOC 
2 8.14e-01 
4 3.52e-01 1.21 
8 6.61e-02 2.41 
16 1.08e-02 2.61 
32 2.09e-03 2.37 
64 4.75e-04 2.14 
128 1.15e-04 2.04 

𝜆4 = −10−3

𝐽 𝐿2 error EOC 
2 1.06e-01 
4 4.66e-03 4.51 
8 2.73e-04 4.09 
16 1.70e-05 4.00 
32 1.07e-06 4.00 
64 6.66e-08 4.00 
128 4.18e-09 4.00 

𝜆4 = −10−2

𝐽 𝐿2 error EOC 
2 1.06e-01 
4 4.64e-03 4.51 
8 2.72e-04 4.09 
16 1.70e-05 4.00 
32 1.08e-06 3.98 
64 7.16e-08 3.92 
128 5.34e-09 3.74 

𝜆4 = −10−1

𝐽 𝐿2 error EOC 
2 1.02e-01 
4 4.63e-03 4.46 
8 2.92e-04 3.99 
16 2.30e-05 3.67 
32 2.27e-06 3.34 
64 2.62e-07 3.12 
128 3.21e-08 3.03 

𝜆4 = −1

𝐽 𝐿2 error EOC 
2 1.02e-01 
4 4.63e-03 4.46 
8 2.92e-04 3.99 
16 2.30e-05 3.67 
32 2.27e-06 3.34 
64 2.62e-07 3.12 
128 3.21e-08 3.03 

𝜆5 = −10−3

𝐽 𝐿2 error EOC 
2 6.01e-03 
4 3.04e-04 4.31 
8 9.75e-06 4.96 
16 3.07e-07 4.99 
32 9.62e-09 5.00 
64 3.01e-10 5.00 
128 9.47e-12 4.99 

𝜆5 = −10−2

𝐽 𝐿2 error EOC 
2 6.11e-03 
4 3.03e-04 4.34 
8 9.72e-06 4.96 
16 3.08e-07 4.98 
32 9.88e-09 4.96 
64 3.36e-10 4.88 
128 1.34e-11 4.65 

𝜆5 = −10−1

𝐽 𝐿2 error EOC 
2 7.17e-03 
4 3.05e-04 4.56 
8 1.10e-05 4.79 
16 4.71e-07 4.54 
32 2.48e-08 4.25 
64 1.47e-09 4.08 
128 9.05e-11 4.02 

𝜆5 = −1

𝐽 𝐿2 error EOC 
2 1.62e-02 
4 6.42e-04 4.66 
8 3.89e-05 4.05 
16 2.42e-06 4.01 
32 1.51e-07 4.00 
64 9.43e-09 4.00 
128 5.89e-10 4.00 

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥𝑢(𝑡, 𝑥) = 0, 𝑡 ∈ (0,5), 𝑥 ∈ (−1,1),

𝑢(0, 𝑥) = sin(𝜋𝑥), 𝑥 ∈ [−1,1],
(6.1)

equipped with periodic boundary conditions. The analysis utilizes the classical Lax–Friedrichs flux vector splitting with 𝜆max = 1, i.e., 
𝑓−(𝑢) = 0 and 𝑓+(𝑢) = 𝑢. For time integration, we employ the nine-stage, fourth-order accurate Runge–Kutta (RK) method of [82] 
with error-based step size control and a tolerance of 10−12 to integrate the semi-discretizations in time. We measure the discrete 𝐿2

error using the quadrature rule associated with the norm matrix 𝑃 .
Table 1 presents the findings of our convergence study, detailing the discrete 𝐿2 error using the quadrature rule associated with 

the norm matrix 𝑃 and the resulting experimental orders of convergence (EOC) for degree one (𝑑 = 1), degree two (𝑑 = 2), and 
three (𝑑 = 3) USBP operators on three (𝑁 = 3), four (𝑁 = 4), and five (𝑁 = 5) LGL nodes, respectively. These USBP operators 
are characterized by a non-trivial dissipation matrix 𝑆 = 𝑉 Λ𝑉 𝑇 , where 𝑉 denotes an orthogonal Vandermonde matrix, and Λ =
diag(𝜆1,… , 𝜆𝑁 ) encapsulates the dissipation parameters, which regulate the dissipation added to unresolved modes. In the instance 
of the degree one (𝑑 = 1) USBP operator on three (𝑁 = 3) LGL nodes, the parameters 𝜆1 and 𝜆2 are set to zero, ensuring that the 
operator is exact for polynomials up to degree one. Conversely, 𝜆3 ≤ 0 introduces artificial dissipation to unresolved modes. The 
impact of different 𝜆3 values on the accuracy and convergence behavior of the USBP scheme is delineated in the top row of Table 1. 
Setting 𝜆3 to zero recovers the central degree three SBP operator on three LGL points, yielding fourth-order convergence. A gradual 
decrease in 𝜆3 results in a reduction of the EOC from three to two. Moreover, as we will show, lower values of 𝜆3 diminish the 
scheme’s accuracy but enhance its robustness. Regarding the degree two (𝑑 = 2) USBP operator on four (𝑁 = 4) LGL nodes, the 
parameters 𝜆1 through 𝜆3 are zeroed, rendering the operator exact for polynomials up to degree two. This time, the parameter 𝜆4 ≤ 0
adds artificial dissipation to unresolved modes. The second row of Table 1 examines the effects of varying 𝜆4 on the USBP scheme’s 
accuracy and convergence. Decreasing 𝜆4 reduces the EOC from four to three due to adding artificial dissipation to the scheme. For 
the degree three (𝑑 = 3) USBP operator on five (𝑁 = 5) LGL nodes, the parameters 𝜆1 through 𝜆4 are zeroed, rendering the operator 
exact for polynomials up to degree three. The third row of Table 1 reports the effects of varying 𝜆5 on the USBP scheme’s accuracy 
and convergence. Decreasing 𝜆5 reduces the EOC from five to four.

Discussion of the results

The above findings indicate that combining flux vector splitting techniques with DG-USBP operators does not lead to excessive 
artificial dissipation, similar to high-order FD-USBP schemes.
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Table 2
Convergence results using the DGSEM and DG-USBP discretizations of the Euler equations for different numbers of elements 
𝐽 . For the DGSEM, we use polynomial degrees two (first row), three (second row), and four (third row) with the HLL surface 
flux, and the volume fluxes of Shima et al. and Ranocha. For the DG-USBP method, we use degree one (first row), two 
(second row), and three (third row) USBP operators with the van Leer–Hänel splitting and different values for the artificial 
dissipation parameters 𝜆3 , 𝜆4 , and 𝜆5 . For both methods, we use three (first row), four (second row), and five (third row) 
LGL nodes per element, respectively.

DGSEM, Ranocha flux 
𝐽 𝐿2 error EOC 
2 2.58e-02 
4 4.00e-03 2.69 
8 3.75e-04 3.42 
16 6.05e-05 2.63 
32 8.62e-06 2.81 
64 1.14e-06 2.92 
128 1.43e-07 3.00 

DGSEM, Shima flux 
𝐽 𝐿2 error EOC 
2 2.51e-02
4 4.06e-03 2.63 
8 3.98e-04 3.35 
16 5.42e-05 2.88 
32 7.13e-06 2.93 
64 8.47e-07 3.07 
128 1.03e-07 3.04 

𝜆3 = −10−3

𝐽 𝐿2 error EOC 
2 3.74e-02 
4 5.89e-03 2.66 
8 6.38e-04 3.21 
16 6.90e-05 3.21 
32 8.24e-06 3.07 
64 1.07e-06 2.95 
128 1.51e-07 2.82 

𝜆3 = −1

𝐽 𝐿2 error EOC 
2 3.38e-02 
4 9.10e-03 1.89 
8 1.64e-03 2.48 
16 3.31e-04 2.31 
32 7.68e-05 2.11 
64 1.88e-05 2.03 
128 4.68e-06 2.01 

DGSEM, Ranocha flux 
𝐽 𝐿2 error EOC 
2 3.71e-03
4 2.06e-04 4.17 
8 2.79e-05 2.89 
16 3.32e-06 3.07 
32 2.67e-07 3.64 
64 1.36e-08 4.29 
128 7.51e-10 4.18 

DGSEM, Shima flux 
𝐽 𝐿2 error EOC 
2 3.83e-03 
4 2.47e-04 3.95 
8 1.98e-05 3.64 
16 1.75e-06 3.50 
32 8.62e-08 4.34 
64 4.56e-09 4.24 
128 2.75e-10 4.05 

𝜆4 = −10−3

𝐽 𝐿2 error EOC 
2 7.13e-03 
4 3.53e-04 4.33 
8 3.33e-05 3.41 
16 4.49e-06 2.89 
32 2.12e-07 4.41 
64 9.04e-09 4.55 
128 5.17e-10 4.13 

𝜆4 = −1

𝐽 𝐿2 error EOC 
2 4.88e-03 
4 5.94e-04 3.04 
8 6.81e-05 3.12 
16 8.75e-06 2.96 
32 1.17e-06 2.91 
64 1.48e-07 2.98 
128 1.85e-08 3.00 

DGSEM, Ranocha flux 
𝐽 𝐿2 error EOC 
2 3.32e-04
4 1.87e-05 4.15 
8 1.73e-06 3.43 
16 1.46e-07 3.57 
32 6.16e-09 4.57 
64 1.25e-10 5.62 
128 3.51e-12 5.16 

DGSEM, Shima flux 
𝐽 𝐿2 error EOC 
2 6.26e-04 
4 1.80e-05 5.12 
8 7.43e-07 4.60 
16 3.61e-08 4.36 
32 8.69e-10 5.38 
64 2.12e-11 5.36 
128 9.15e-13 4.53 

𝜆5 = −10−3

𝐽 𝐿2 error EOC 
2 7.79e-04 
4 2.98e-05 4.71 
8 1.26e-06 4.57 
16 5.31e-08 4.56 
32 9.82e-10 5.76 
64 3.34e-11 4.88 
128 1.41e-12 4.57 

𝜆5 = −1

𝐽 𝐿2 error EOC 
2 1.21e-03 
4 6.48e-05 4.22 
8 4.81e-06 3.75 
16 4.15e-07 3.53 
32 1.70e-08 4.61 
64 9.50e-10 4.16 
128 5.73e-11 4.05 

6.2. Convergence for the compressible Euler equations

We continue our study with a convergence analysis for the one-dimensional compressible Euler equations

𝜕𝑡

⎛⎜⎜⎝
𝜌
𝜌𝑣
𝜌𝑒

⎞⎟⎟⎠+ 𝜕𝑥

⎛⎜⎜⎝
𝜌𝑣

𝜌𝑣2 + 𝑝
(𝜌𝑒+ 𝑝)𝑣

⎞⎟⎟⎠ = 0 (6.2)

of an ideal gas with density 𝜌, velocity 𝑣, total energy density 𝜌𝑒, and pressure 𝑝 = (𝛾 − 1)
(
𝜌𝑒− 𝜌𝑣2∕2

)
, where the ratio of specific 

heat is chosen as 𝛾 = 1.4. We add a source term to manufacture the solution

𝜌(𝑡, 𝑥) = ℎ(𝑡, 𝑥), 𝑣(𝑡, 𝑥) = 1, 𝜌𝑒(𝑡, 𝑥) = ℎ(𝑡, 𝑥)2, (6.3)

with ℎ(𝑡, 𝑥) = 2+ 0.1 sin
(
𝜋(𝑥− 𝑡)

)
for 𝑡 ∈ [0,2] and 𝑥 ∈ [0,2]. The time-integration is done as in Subsection 6.1, here with a tolerance 

of 10−13.
Table 2 summarizes the results of our convergence study for the van Leer–Hänel flux vector splitting [105,41,56]. We obtained 

similar results for the Steger–Warming flux vector splitting [97], which are not reported here but can be reproduced using the openly 
available code repository [38]. We use degree one (first row), two (second row), and three (third row) USBP operators on three, four, 
and five LGL nodes per element, respectively, with different values for the artificial dissipation parameters 𝜆3 , 𝜆4, and 𝜆5. Similar to 
the convergence test for the linear advection equation in Subsection 6.1, we observe that the EOC reduces by one as the respective 
dissipation parameter 𝜆𝑁 is gradually decreased from −10−3 to −1 for each operator. Furthermore, we compare the performance of 
the DG-USBP method with a DGSEM employing the HLL surface flux [42] in combination with the volume fluxes of Shima et al. [94] 
and Ranocha [80]. To allow for a fair comparison, we use polynomial degrees two (first row), three (second row), and four (third 
row) on the same three (first row), four (second row), and five (third row) LGL nodes per element as the DG-USBP method. That is, 
we use the same set of points for both the DGSEM and the DG-USBP schemes.

Discussion of the results

Based on the above results, we observe that the accuracies of the DGSEM and DG-USBP approaches are comparable, particularly 
for small values of the parameter 𝜆, although the DGSEM consistently yields more accurate results. We suspect that the reduction in 
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Fig. 1. Spectra of the DG-USBP and the DGSEM semi-discretizations with 𝐽 = 16 elements. We use degree two (𝑑 = 2, Fig. 1a) and three (𝑑 = 3, Fig. 1b) DG-USBP 
operators on four (𝑁 = 4) and five (𝑁 = 5) LGL nodes, respectively, with different parameters 𝜆4 and 𝜆5 . For the DGSEM method, we use traditional degree three and 
four DG-SBP operators on the same LGL nodes as the respective DG-USBP operators.

accuracy for the DG-USBP method is due to the additional artificial dissipation introduced. Therefore, while combining flux vector 
splitting techniques with DG-USBP operators does not necessarily lead to excessive artificial dissipation, the accuracy of the DG-USBP 
method remains lower than that of the DGSEM considered here.

6.3. Spectral analysis

Next, we compare the spectra of the DG-USBP to the DGSEM and FD-USBP semi-discretization for the linear advection equation
(6.1) with periodic boundary conditions. Fig. 1 illustrates the spectra of the DG-USBP semi-discretization for degree two (𝑑 = 2) 
and three (𝑑 = 3) DG-USBP operators on four (𝑁 = 4) and five (𝑁 = 5) LGL nodes, respectively, with 𝐽 = 16 elements and different 
parameters 𝜆4 and 𝜆5. For 𝜆4 and 𝜆5 close to zero, the DG-USBP spectra are comparable to the DGSEM method (labeled “DG-SBP”) 
on the same LGL points. At the same time, for smaller 𝜆4 and 𝜆5, the spectra suggest that the DG-USBP method is stiffer than the 
DGSEM method.

Discussion of the results

We find that the DG-USBP method is stiffer than the DGSEM method on the same LGL points in all cases. This could be explained 
by the DG-USBP method having more artificial dissipation than the DGSEM method. A drawback of increasing stiffness when using 
DG-USBP operators is that explicit time-stepping may require smaller time steps, which can impact the method’s overall performance.

6.4. Local linear/energy stability

We now demonstrate the local linear/energy stability properties of the proposed DG-USBP operators for the inviscid Burgers’ 
equation

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥
[
𝑢(𝑡, 𝑥)2∕2

]
= 0, 𝑥 ∈ (−1,1), (6.4)

with periodic boundary conditions. To this end, we linearize (6.4) locally around a baseflow �̃�(𝑥), so that 𝑢(𝑡, 𝑥) = �̃�(𝑥)+𝑣(𝑡, 𝑥), which 
yields

𝜕𝑡𝑣(𝑡, 𝑥) + 𝜕𝑥 [�̃�(𝑥)𝑣(𝑡, 𝑥)] = 0, 𝑥 ∈ (−1,1). (6.5)

Observe that (6.5) is a linear advection equation with a spatially varying coefficient �̃�(𝑥) that is solved for the perturbation component 
𝑣(𝑡, 𝑥). Notably, when the baseflow �̃�(𝑥) is positive across [−1,1], the operator 𝑣↦ 𝜕𝑥 [�̃�𝑣] becomes skew-symmetric for a weighted 
𝐿2 inner product. As a result, this operator exhibits a purely imaginary spectrum [59,29]. A semi-discretization should replicate this 
behavior, ensuring a linearization around a positive baseflow yields eigenvalues with non-positive real parts. However, it was observed 
in [29] that existing entropy-stable high-order flux differencing DGSEM semi-discretizations can produce a linearized discrete operator 
that has eigenvalues with a significant positive real part. Now consider the full-upwind DG-USBP semi-discretization,

d 
d𝑡
𝐮𝑗 +𝐷−𝐟 𝑗 = 𝐒𝐀𝐓𝑗 , 𝑗 = 1,… , 𝐽 , (6.6)

where 𝐽 is the number of elements and 𝐟 𝑗 = 1
2𝐮

𝑗 ⊙ 𝐮𝑗 with ⊙ denoting the usual element-wise Hadamard product. Our numerical 
investigations demonstrate that the full-upwind DG-USBP semi-discretization, as per (6.6), results in a linearized discrete operator 
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Table 3
The maximum real parts of the spectrum of the DG-USBP method for the Burgers equation using a full-upwind semi-discretization. We use degree 
one (𝑑 = 1), two (𝑑 = 2), and three (𝑑 = 3) USBP operators on three (𝑁 = 3), four (𝑁 = 4), and five (𝑁 = 5) LGL nodes per element, respectively, 
varying numbers of elements 𝐽 , and different values for the artificial dissipation parameter 𝜆3, 𝜆4 , and 𝜆5 .

Degree one operator 
𝐽\𝜆3 0 −10−2 −1

2 -1.5e-18 1.2e-16 9.9e-17 
4 -2.7e-16 -6.2e-16 2.9e-17 
8 4.3e-16 -4.0e-16 6.5e-16 
16 -9.9e-16 2.3e-16 -3.6e-15 
32 7.1e-18 8.8e-15 1.1e-14 

Degree two operator 
𝐽\𝜆4 0 −10−2 −1

2 6.7e-16 4.9e-17 -3.3e-16 
4 -4.9e-16 6.0e-16 5.5e-17 
8 -5.8e-16 2.2e-15 -4.1e-17 
16 3.3e-17 -1.1e-15 -3.5e-16 
32 1.0e-14 -4.3e-14 3.9e-15 

Degree three operator 
𝐽\𝜆5 0 −10−2 −1

2 5.8e-16 -8.4e-16 7.8e-17 
4 1.5e-17 -5.3e-16 4.7e-16 
8 1.0e-15 3.6e-16 -1.8e-16 
16 -7.0e-16 -7.4e-15 -1.7e-15 
32 2.0e-15 -3.5e-16 -3.2e-15 

whose eigenvalues have non-positive real parts, by the analysis of [87]. To stress the method, we consider a completely under-
resolved case by computing the Jacobian at a random non-negative state using automatic differentiation via ForwardDiff.jl [90]. 
Table 3 reports the maximum real parts of the spectrum of the DG-USBP method for the linearized Burgers equation (6.5). This is 
done using degree one (𝑑 = 1), two (𝑑 = 2), and three (𝑑 = 3) DG-USBP operators on three (𝑁 = 3), four (𝑁 = 4), and five (𝑁 = 5) 
LGL nodes per element, respectively, varying the number of elements 𝐽 , and different values for the artificial dissipation parameters 
𝜆3, 𝜆4, and 𝜆5. In all cases, the maximum real part of the eigenvalues is around the machine precision level, aligning with our desired 
outcome.

Discussion fo the results

We find that DG-USBP methods yield local linear/energy stability. This finding contrasts the behavior observed for existing 
entropy-stable high-order flux differencing DGSEM semi-discretizations in the same setting. Parallel findings were obtained in [87] 
for traditional FD-USBP operators, complemented by a theoretical analysis.

6.5. Curvilinear meshes and free-stream preservation

One particular strength of DG-type methods is their geometric flexibility and ability to create high-order approximations on 
curvilinear, unstructured meshes. This geometric flexibility is retained with the DG-USBP operators developed in the present work, 
which we subsequently demonstrate in a two-dimensional setting.

The curvilinear DG-USBP semi-discretization

We start by describing conservation laws in curvilinear coordinates and their DG-USBP semi-discretization. See Kopriva [47] for a 
complete discussion on curvilinear coordinates and transformations. Recall that a conservation law in two dimensions is of the form

𝜕𝑡𝑢+ 𝜕𝑥𝑓1(𝑢) + 𝜕𝑦𝑓2(𝑢) = 0, 𝑡 ∈ (0, 𝑇 ), (𝑥, 𝑦) ∈ Ω ⊂ℝ2, (6.7)

with fluxes 𝑓1, 𝑓2, and conserved variable 𝑢 = 𝑢(𝑡, 𝑥, 𝑦). Suppose the domain Ω has been subdivided into 𝐽 non-overlapping quadri-
lateral elements, Ω𝑗 , 𝑗 = 1,… , 𝐽 . For ease of notation, we subsequently consider the conservation law (6.7) on an individual element 
Ω𝑗 and suppress the index 𝑗. The element Ω𝑗 in the physical coordinates (𝑥, 𝑦) is transformed into a reference element Ωref = [−1,1]2
in the computational coordinates (𝜉, 𝜂) via the coordinate transformation

𝑥 =𝑋(𝜉, 𝜂), 𝑦 = 𝑌 (𝜉, 𝜂). (6.8)

Under this transformation, the conservation law in the physical coordinates (6.7) becomes a conservation law in the reference coor-
dinates:

𝐽𝜕𝑡𝑢+ 𝜕𝜉𝑓1(𝑢) + 𝜕𝜂𝑓2(𝑢) = 0, 𝑡 ∈ (0, 𝑇 ), (𝜉, 𝜂) ∈ Ωref , (6.9)

with 𝑢 = 𝑢(𝑡, 𝜉, 𝜂). The contravariant fluxes are 𝑓1 = 𝑌𝜂𝑓1 −𝑋𝜂𝑓2 and 𝑓2 = −𝑌𝜉𝑓1 +𝑋𝜉𝑓2, while the Jacobian is 𝐽 = 𝑋𝜉𝑌𝜂 −𝑋𝜂𝑌𝜉 . 
The partial derivatives 𝑋𝜉 , 𝑋𝜂 , 𝑌𝜉 , and 𝑌𝜂 , are called the metric terms. The metric terms in DG approximations are typically created 
from a transfinite interpolation with linear blending [47,40]. The curvilinear DG-USBP semi-discretization of (6.9) has the form

𝐽𝜕𝑡𝐮+𝐷−𝐟 +1 +𝐷+𝐟 −1 + 𝐟 +2 𝐷𝑇
− + 𝐟 −2 𝐷𝑇

+ = 𝐒𝐀𝐓
𝑗
. (6.10)

Note that multiplication from the left with 𝐷± approximates the derivative in the 𝜉-direction and multiplication from the right with 
𝐷𝑇

± approximates the derivative in the 𝜂-direction. Furthermore, we use a generic statement of the 𝐒𝐀𝐓 in the normal direction on 
an interface in element 𝑗

𝐒𝐀𝐓
𝑗
= −𝑃−1𝐞𝑅

(
𝑓 num(𝐮𝑗

𝑅
,𝐮𝑗+1

𝐿
; �̂�) − 𝐟 𝑗

𝑅

)
+ 𝑃−1𝐞𝐿

(
𝑓 num(𝐮𝑗−1

𝑅
,𝐮𝑗

𝐿
; �̂�) − 𝐟 𝑗

𝐿

)
, (6.11)

where �̂� is the normal direction on a particular element. The tilde notation indicates that the physical fluxes are computed in the 
contravariant direction.
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Fig. 2. Meshes of 550 non-overlapping quadrilaterals with linear and quartic boundary polynomial order for the FSP test. Observe—see the lower right corner—that 
the boundary is approximated more accurately for the higher (quartic) boundary polynomial.

Free-stream preservation

Notably, the metric terms satisfy the two metric identities

𝜕𝜉𝑌𝜂 − 𝜕𝜂𝑌𝜉 = 0, 𝜕𝜉𝑋𝜂 − 𝜕𝜂𝑋𝜉 = 0, (6.12)

which are essential to ensure free-stream preservation (FSP); see [108,107,47]. That is, given a constant flux in space, its divergence 
vanishes, and the constant solution of (6.7) does not change in time. As demonstrated in [87], the ability of existing FD-USBP methods 
to remain FSP on curvilinear meshes is delicate. There is a subtle relationship between the boundary closure accuracy of an FD-SBP 
operator, the dependency of flux vector splitting on the metric terms, and the polynomial degree of curved boundaries. The boundary 
closure of an FD-SBP operator relates to the highest polynomial degree the operator can differentiate exactly. For instance, a 4-2 
FD-SBP operator is fourth-order accurate in the interior with second-order boundary closures and can differentiate up to quadratic 
polynomials exactly. In the following discussion, we use the term boundary closure in the DG context to refer to the highest polynomial 
degree a discrete derivative operator can differentiate exactly.

The curvilinear flux vector splittings 𝐟±1 and 𝐟±2 in (6.10) implicitly depend on the metric terms [5,87]. The polynomial dependency 
of the curvilinear flux vector splitting on the metric terms must “agree” with the boundary order closure of a USBP operator. Precisely, 
suppose the polynomial dependency of a mapped flux vector splitting on the metric terms has order 𝑚. In that case, the USBP operator 
must have a boundary closure that can differentiate polynomials up to degree 𝑚𝑁geo exactly, where 𝑁geo is the polynomial order of 
the curved boundaries. For example, the Lax–Friedrichs splitting is linear in the metric terms while the van Leer-Hänel splitting is 
quadratic in the metric terms. This means that 𝑚 = 1 for the Lax–Friedrichs splitting and the curvilinear approximation remains FSP 
regardless of the boundary closure order. In contrast, the van Leer-Hänel splitting has 𝑚 = 2 (quadratic dependency on the metric 
terms), which restricts the possible values of 𝑁geo combined with the boundary closure of the SBP operator.

Remark 6.1. To create DG-USBP operators for polynomials of degree 𝑑, we sacrifice one degree of accuracy on the boundary closure 
to construct the internal dissipation matrix 𝑆 , i.e., we use 𝑁 = 𝑑 + 2 LGL points. A “classic” DG-SBP operator with 𝑁 = 4 LGL points 
has a boundary closure of the order 𝑑 = 3 and can differentiate up to cubic polynomials exactly. In contrast, a DG-USBP operator for 
𝑁 = 4 LGL points will be endowed with a boundary closure of degree 𝑑 = 2 and can only differentiate up to quadratic polynomials 
exactly.

Computational results

We now numerically investigate how the type of flux vector splitting in curvilinear coordinates combined with the DG-USBP 
operator influences the FSP property. To this end, we consider an unstructured curvilinear mesh with varying 𝑁geo values and 
present the errors for an FSP problem for different flux vector splittings and operator orders. Specifically, we consider a domain with 
curvilinear outer and inner boundaries of different geometric polynomial degrees, generated in Julia with HOHQMesh.jl [48]. The 
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Table 4
FSP error for the Lax–Friedrichs splitting. The splitting depends linearly on the metric terms and satisfies the FSP property for all approximation and 
mesh orders.

interior order 2 3 4 5 6 7 8 9 
bi-linear mesh 2.92 × 10−14 9.96 × 10−15 1.06 × 10−14 2.08 × 10−14 1.83 × 10−14 3.76 × 10−14 4.12 × 10−14 5.96 × 10−14
quadratic mesh 1.19 × 10−14 1.12 × 10−14 5.53 × 10−14 1.93 × 10−14 1.81 × 10−14 4.12 × 10−14 3.89 × 10−14 2.84 × 10−14
cubic mesh 5.52 × 10−14 1.45 × 10−14 7.49 × 10−15 1.92 × 10−14 2.05 × 10−14 6.67 × 10−14 4.56 × 10−14 5.67 × 10−14
quartic mesh 2.29 × 10−15 8.95 × 10−15 6.03 × 10−15 2.00 × 10−14 2.16 × 10−14 5.83 × 10−14 2.37 × 10−14 4.81 × 10−14

Table 5
FSP error for the van Leer–Hänel splitting. The splitting depends quadratically on the metric terms and satisfies the FSP property if the boundary 
closure accuracy of the DG-USBP operator is not smaller than 2𝑁geo.

interior order 2 3 4 5 6 7 8 9 
bi-linear mesh 1.21 × 10−5 4.44 × 10−15 6.49 × 10−15 1.20 × 10−14 1.40 × 10−14 3.85 × 10−14 5.31 × 10−13 9.56 × 10−13
quadratic mesh 1.38 × 10−5 1.43 × 10−6 1.81 × 10−7 1.11 × 10−14 1.51 × 10−14 1.15 × 10−14 2.22 × 10−13 7.56 × 10−13
cubic mesh 1.37 × 10−5 1.56 × 10−6 2.28 × 10−7 2.40 × 10−8 2.42 × 10−9 3.09 × 10−14 3.75 × 10−13 9.19 × 10−13
quartic mesh 1.38 × 10−5 1.57 × 10−6 3.93 × 10−7 4.21 × 10−8 1.05 × 10−8 9.93 × 10−10 2.21 × 10−10 9.87 × 10−13

domain is illustrated in Fig. 2 for linear and quartic boundaries. The curvilinear domain is a heavily warped annulus-type domain 
with the outer and inner curved boundaries given by

outer =

{
𝑥(𝑡) = 4cos(2𝜋𝑡) − 0.6cos3(8𝜋𝑡)
𝑦(𝑡) = 4 sin(2𝜋𝑡) − 0.5 sin(10𝜋𝑡)

inner =

{
𝑥(𝑡) = 1.5cos(2𝜋𝑡) − 0.2cos2(8𝜋𝑡)
𝑦(𝑡) = 1.5 sin(2𝜋𝑡) − 0.2 sin(11𝜋𝑡)

(6.13)

with the parameter 𝑡 ∈ [0,1]. The domain is divided into 550 non-overlapping quadrilateral elements. The domain boundaries are 
highly nonlinear, and we compute results on four versions of the approximate mesh boundaries: bi-linear boundary elements (𝑁geo =
1), quadratic boundary elements (𝑁geo = 2), cubic boundary elements (𝑁geo = 3), and quartic boundary elements (𝑁geo = 4). Fig. 2
shows the bilinear and quartic boundary meshes to compare the resolution of the curved boundary elements as 𝑁geo increases. 
Furthermore, we consider the two-dimensional compressible Euler equations on the curvilinear domain illustrated in Fig. 2 with a 
constant solution state given in the conservative variables as

𝑢∞ =
⎛⎜⎜⎜⎝

𝜌∞
(𝜌𝑣1)∞
(𝜌𝑣2)∞
(𝜌𝑒)∞

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
1.0
0.1
−0.2
10.0

⎞⎟⎟⎟⎠ , (6.14)

where the compressible Euler fluxes are all constant, and their divergence vanishes. Importantly, this is not necessarily the case for 
the numerical solution. To demonstrate this, we examine the FSP property for the Lax–Friedrichs and van Leer-Hänel splittings for 
different values of 𝑁geo and varying orders of the proposed DG-USBP operators. See Tables 4 and 5, respectively. In all cases, the 
final time of all the FSP tests is 10 and we impose Dirichlet boundary conditions via the background solution state (6.14).

Discussion of the results

In accordance with [87], the Lax–Friedrichs splitting, depending linearly on the metric terms, satisfies the FSP property for all 
considered orders. In contrast, the van Leer–Hänel splitting, depending quadratically on the metric terms, only satisfies the FSP 
property if the boundary closure of the DG-USBP operator can exactly differentiate polynomials up to order 𝑚𝑁geo = 2𝑁geo. Finally, 
our results in Table 5 imply that more complex flux vector splittings require higher boundary closure accuracy to ensure the boundary 
is sufficiently accurate.

6.6. Isentropic vortex

Next, we investigate the long-term stability of the DG-USBP method. To this end, we follow [96] and consider the classical 
isentropic vortex test case of [95] for the two-dimensional Euler equations with initial conditions

𝑇 = 𝑇0 −
(𝛾 − 1)𝜖2

8𝛾𝜋2 exp
(
1 − 𝑟2

)
,

𝜌 = 𝜌0(𝑇 ∕𝑇0)1∕(𝛾−1),

𝑣 = 𝑣0 +
𝜀 
2𝜋

exp
(
(1 − 𝑟2)∕2

)
(−𝑥2, 𝑥1)𝑇 .

(6.15)
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Fig. 3. Density error for the isentropic vortex test case of the DG-USBP and DGSEM method for 𝐽 = 256 elements. We use degree one (𝑑 = 1, blue dashed line), two 
(𝑑 = 2, orange dotted line), and three (𝑑 = 3, green dash-dotted line) tensor-product DG-USBP operators on 𝑁 = 3,4,5 LGL nodes per coordinate direction and element. 
For the DGSEM method, we use traditional degree two, three, and four DG-SBP operators on the same LGL nodes as the DG-USBP operators.

Here, 𝜖 = 10 is the vortex strength, 𝑟 is the distance from the origin, 𝑇 = 𝑝∕𝜌 the temperature, 𝜌0 = 1 the background density, 
𝑣0 = (1,1)𝑇 the background velocity, 𝑝0 = 10 the background pressure, 𝛾 = 1.4, and 𝑇0 = 𝑝0∕𝜌0 the background temperature. The 
domain [−5,5]2 is equipped with periodic boundary conditions. We use the same time integration method and approach to compute 
the discrete 𝐿2 error of the density as in Subsection 6.2.

Fig. 3 illustrates the discrete 𝐿2-error of the density for long-time simulations for the DG-USBP method with Steger–Warming 
splitting and the DGSEM using the volume flux of Ranocha. We use three (𝑁 = 3, blue straight line), four (𝑁 = 4, orange dashed 
line), and five (𝑁 = 5, green dotted line) LGL nodes per coordinate direction and element. As before, the DG-USBP and DGSEM 
methods use the same points. Fig. 3 report these results for 𝐽 = 256 elements and 𝜆𝑁 = −10−3. The remaining parameters are zero to 
preserve exactness for polynomials up to degree 𝑑 =𝑁 − 2. We observe that both the DG-USBP and DGSEM methods remain stable 
and can run the simulations successfully for a long time. Notably, the two methods perform roughly the same for three LGL nodes. 
For four and five LGL nodes, however, we observe the DGSEM method to initially produce smaller density errors than the DG-USBP 
method. In all cases, the two methods perform roughly the same towards the end of the simulation, indicating a comparable long-time 
behavior.

Discussion of the results

The above results indicate that USBP operators offer less improvement in robustness for DG methods compared to FD schemes.

6.7. Kelvin–Helmholtz instability

The above results for the isentropic vortex test (see Subsection 6.6) indicated that USBP operators offer less improvement in 
robustness for DG methods compared to FD schemes. To further investigate this hypothesis, we consider the Kelvin–Helmholtz in-
stability setup for the two-dimensional compressible Euler equations of an ideal fluid as in [92]. The corresponding initial condition 
is

𝜌 = 1
2
+ 3

4
𝐵(𝑥, 𝑦), 𝑝 = 1, 𝑣1 =

1
2
(
𝐵(𝑥, 𝑦) − 1

)
, 𝑣2 =

1 
10

sin(2𝜋𝑥), (6.16)

where 𝐵(𝑥, 𝑦) = tanh(15𝑦+7.5)− tanh(15𝑦−7.5) is a smoothed approximation to a discontinuous step function. The domain is [−1,1]2
with time interval [0,15]. We perform time integration of the semi-discretizations using the third-order, four-stage SSP method detailed 
in [49]. This is coupled with the embedded method proposed in [17] and an error-based step size controller as in [82]. The adaptive 
time step controller tolerances are set to 10−6. Here, we compare the DG-USBP method outlined in this paper with the DGSEM, which 
employs various volume fluxes and a local Lax–Friedrichs (Rusanov) surface flux.

Table 6 presents the final simulation times for various numerical experiments of the Kelvin–Helmholtz instability. Final times 
below 15 signify that the simulation terminated prematurely. For the tensor-product DG-USBP and DGSEM methods, we use the same 
three (𝑁 = 3), four (𝑁 = 4), and five (𝑁 = 5) LGL nodes per coordinate direction and element. To preserve exactness for polynomials 
up to degree 𝑑 =𝑁−2, we have chosen the other dissipation parameters as zero, i.e., 𝜆1 =⋯ = 𝜆𝑁−1 = 0, and test different parameters 
𝜆𝑁 . A notable observation is that reducing the parameters 𝜆𝑁 in the DG-USBP method often leads to an extension in the final time 
of the corresponding simulations. This trend suggests an enhancement in the method’s robustness, although the difference decreases 
with an increased number of elements. Specifically, for three LGL points (𝑁 = 3) and sufficiently small 𝜆3, we observe the DG-USBP 
method to finish the simulation in all cases, while the DGSEM crashed for most of them. At the same time, we observe that the 
DG-USBP method offers less improvement in robustness as the number of LGL points (𝑁) increases. For instance, the DGSEM with 
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Table 6
Final times for the numerical simulations of the Kelvin–Helmholtz instability with 𝐽 elements. Final times less than 15 indicate that the simulation crashed. 
We use the same three (𝑁 = 3), four (𝑁 = 4), and five (𝑁 = 5) LGL nodes per coordinate direction and element for the tensor-product DG-USBP and DGSEM 
method. We compare different parameters 𝜆𝑁 , splittings, and numerical fluxes. The highest final times for each combination of 𝐽 and 𝑁 are highlighted in 
bold.

𝑁 = 3

𝐽 16 64 256 1024

DG-USBP, van Leer–Hänel splitting 
𝜆3 final times 
−10−3 15.00 4.93 1.89 2.00 
−10−2 15.00 15.00 1.84 4.41 
−10−1 15.00 15.00 15.00 15.00

DG-USBP, Steger–Warming splitting 
𝜆3 final times 
−10−3 15.00 4.85 1.96 1.85 
−10−2 15.00 15.00 1.88 4.30 
−10−1 15.00 15.00 15.00 15.00

DGSEM 
flux final times 
Shima 15.00 2.92 3.25 3.03 
Ranocha 15.00 4.68 4.81 4.12 

𝑁 = 4

𝐽 16 64 256 1024

DG-USBP, van Leer–Hänel splitting 
𝜆4 final times 
−10−3 4.57 10.73 1.60 1.85 
−10−2 4.58 10.55 1.61 1.80 
−10−1 15.00 15.00 4.82 3.48 
DG-USBP, Steger–Warming splitting 
𝜆4 final times 
−10−3 4.64 1.68 1.61 1.73 
−10−2 4.62 1.78 1.62 1.81 
−10−1 15.00 1.91 4.78 3.49 
DGSEM 
flux final times 
Shima 2.73 1.38 2.82 2.88 
Ranocha 4.46 1.53 3.77 3.66

𝑁 = 5

𝐽 16 64 256 1024

DG-USBP, van Leer–Hänel splitting 
𝜆5 final times 
−10−3 1.38 2.91 1.48 3.62 
−10−2 1.39 2.92 1.51 3.62 
−10−1 1.52 6.23 3.69 3.61 
DG-USBP, Steger–Warming splitting 
𝜆5 final times 
−10−3 1.27 2.59 1.51 3.62 
−10−2 1.29 2.88 1.52 3.64 
−10−1 1.47 5.65 3.67 3.60 
DGSEM 
flux final times 
Shima 1.81 3.05 3.29 3.36 
Ranocha 2.47 4.04 4.44 4.27

the Ranocha flux yields the longest run times in almost all cases for 𝑁 = 5. Once more, this highlights that USBP operators offer less 
improvement in robustness for high-order DG methods than for FD schemes.

Discussion of the results

We observe in Table 6 that combining lower-order DG-USBP with flux vector splittings can increase the robustness of nodal 
DG methods. Specifically, for three LGL points (𝑁 = 3) and sufficiently small 𝜆3, we observe the DG-USBP method to finish the 
simulation in all cases, while the DGSEM crashed for most of them. At the same time, we observe that the DG-USBP method offers 
less improvement in robustness as the number of LGL points (𝑁) increases. For instance, the DGSEM with the Ranocha flux yields the 
longest run times in almost all cases for 𝑁 = 5. Once more, this highlights that USBP operators offer less improvement in robustness 
for high-order DG methods than for FD schemes. This reduced improvement could be attributed to USBP methods adding dissipation 
only to unresolved modes. After all, FD schemes typically have more unresolved modes than nodal DG methods.

Density profiles at crash time

Fig. 4 compares the density profiles from simulations of the Kelvin–Helmholtz instability captured at the crash time. These simula-
tions were conducted on 𝐽 = 1024 elements using the DG-USBP method and the DGSEM. For both the DG-USBP method and DGSEM, 
we used four (𝑁 = 4) LGL nodes per coordinate direction and element. That is, all simulations were performed with the same number 
of DOFs, ensuring a consistent comparison base. Furthermore, we used 𝜆4 = −10−1 for the DG-USBP method and the volume fluxes 
of Shima et al. and Ranocha for the DGSEM. In Fig. 4, the white spots indicate locations where non-positive values are observed 
for pressure (in the case of DG-USBP) or density (for DGSEM). Notably, these problematic nodes consistently occur at the interfaces 
between elements. Interestingly, the same was reported for non-periodic FD-USBP operators in [87], suggesting a general trend. We 
also observed this phenomenon for other simulations with different numbers of elements and nodes per element.

6.8. The inviscid Taylor–Green vortex

Recall that previous works [62,63,58,98,87,24] have demonstrated that combining high-order USBP operators with flux vector 
splittings can enhance the robustness of FD schemes without introducing excessive artificial dissipation. In this work, we have in-
vestigated whether combining USBP operators with flux vector splittings can be applied to nodal DG methods with similar success. 
However, the numerical tests presented above demonstrated both advantages and disadvantages for DG-USBP schemes compared to 
existing high-order DGSEM methods. On the one hand, we observed that DG-USBP methods do not necessarily introduce excessive 
artificial dissipation (Subsections 6.1 and 6.2), yield local linear/energy stability in a setting where existing high-order entropy-
stable flux differencing DGSEM produce unstable semi-discretizations (Subsection 6.4), and extend to curvilinear while ensuring FSP 
(Subsection 6.5). On the other hand, we found that DG-USBP schemes are often less accurate than existing high-order DGSEM (Sub-
sections 6.2 and 6.6), generally yield stiffer semi-discretizations (Subsection 6.3), and do not always offer improvements in robustness 
(Subsection 6.7)—which contrasts with observations for FD schemes. Specifically, in simulating the Kelvin–Helmholtz instability in 
Subsection 6.7, we observed that USBP operators improve robustness for lower-order operators with three LGL points. Still, this im-
provement vanishes when higher-order operators with four and five LGL points are used. Recall that USBP operators add artificial 
dissipation only to the unresolved modes. We thus suspect that the reduced improvement can be explained by the ratio 1∕(𝑁 − 1)
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Fig. 4. Density profile for the DG-USBP method and DGSEM on 𝐽 = 1024 elements when the Kelvin–Helmholtz instability simulations crashed. Both methods use six 
LGL nodes per coordinate direction and element. Hence, all simulations use the same number of DOFs. Furthermore, the DG-USBP methods use 𝜆5 = −10−1 . The white 
spots mark points where the pressure (DG-USBP) or the density (DGSEM) is non-positive.

between the number of unresolved modes,3 which is 1, and the number of resolved modes, which is 𝑁 − 1, decreasing as more LGL 
nodes are used.

To shed additional light on these observations, we investigate the kinetic energy dissipation properties of the DG-USBP method, 
following the approach of [30]. To this end, we consider the inviscid Taylor–Green vortex test case for the three-dimensional com-
pressible Euler equations of an ideal gas. The corresponding initial condition is

𝜌 = 1, 𝑝 = 𝜌 
Ma2𝛾

+ 𝜌
cos(2𝑥1) cos(2𝑥3) + 2cos(2𝑥2) + 2cos(2𝑥1) + cos(2𝑥2) cos(2𝑥3)

16 
,

𝑣1 = sin(𝑥1) cos(𝑥2) cos(𝑥3), 𝑣2 = −cos(𝑥1) sin(𝑥2) cos(𝑥3), 𝑣3 = 0,
(6.17)

with Mach number Ma = 0.1. The domain is [−𝜋,𝜋]3 with periodic boundary conditions and the time interval is [0,20]. Time inte-
gration is performed as in Subsection 6.7.

3 The DG-USBP operators considered here add artificial dissipation only to the highest mode.
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Fig. 5. Discrete kinetic energy and dissipation rate for the inviscid Taylor–Green vortex. We compare the results of a DG-USBP method with the DGSEM. Both methods 
use 𝐽 = 4096 elements with three (𝑁 = 3, top row) and four (𝑁 = 4, bottom row) LGL points per element and coordinate direction. The DGSEM uses the entropy-
conservative volume flux of Ranocha and the local Lax-Friedrichs (Rusanov) surface flux. The DG-USBP method uses the Steger–Warming splitting and 𝜆𝑁 = −10−1 .

Fig. 5 depicts the discrete kinetic energies and their dissipation rates of a DG-USBP method with a DGSEM. Both methods use 
𝐽 = 4096 elements with three (𝑁 = 3, Figs. 5a and 5b) and four (𝑁 = 4, Figs. 5c and 5d) LGL points per element and coordinate 
direction. The DGSEM uses the entropy-conservative volume flux of Ranocha and the local Lax-Friedrichs (Rusanov) surface flux. The 
DG-USBP method uses the Steger–Warming splitting and 𝜆𝑁 = −10−1. The discrete version of the total kinetic energy is computed as

𝐸kin(𝑡) = ∫
1
2
𝜌(𝑡, 𝑥)𝑣(𝑡, 𝑥)2d𝑥 (6.18)

using the quadrature rule associated with the SBP norm matrix 𝑃 at every tenth accepted time step. Central finite differences are 
then employed to calculate the discrete kinetic energy dissipation rate, −Δ𝐸kin∕Δ𝑡, approximating −d𝐸kin∕d𝑡. Notably, in the case of 
three LGL points (𝑁 = 3, Figs. 5a and 5b), we observe the DG-USBP method often has a higher dissipation rate than the DGSEM and 
consequently to have smaller kinetic energies. This implies that the DG-USBP method introduces more artificial dissipation, which 
also explains the improved robustness we have observed in Subsection 6.7 when using three LGL points. At the same time, for four 
LGL points (𝑁 = 4, Figs. 5c and 5d), we find the kinetic energy of the DG-USBP method to be larger than that of the DGSEM towards 
the end of the simulation. This implies that now the DG-USBP method introduces less artificial dissipation, which explains the reduced 
robustness we have observed in Subsection 6.7 when using four LGL points.

Discussion of the results

The above results indicate that the DG-USBP method introduces more artificial dissipation than DGSEM for three LGL points and 
less for four LGL points. This also explains the varying improvements in robustness we have observed in Subsection 6.7. Moreover, 
the above findings provide additional evidence that combining USBP operators with flux vector splittings generally improves the 
robustness of nodal DG methods less than high-order FD schemes. The above results indicate that this reduced improvement in 
robustness can be explained by the decreasing ratio 1∕(𝑁 −1) between the number of unresolved modes, which is 1, and the number 
of resolved modes, which is 𝑁 − 1, decreasing as more LGL nodes are used.

Journal of Computational Physics 529 (2025) 113841 

18 



J. Glaubitz, H. Ranocha, A.R. Winters et al. 

7. Concluding remarks

Previous studies, such as [87,24], have demonstrated that combining high-order USBP operators with flux vector splittings can 
increase the robustness of FD schemes for under-resolved simulations without introducing excessive artificial dissipation. Here, we 
investigated whether combining USBP operators with flux vector splittings can be applied to nodal DG methods with similar success. 
We began by demonstrating the existence of USBP operators on arbitrary grid points and providing a straightforward procedure 
for their construction. While previous works focused on diagonal-norm FD-USBP operators, our discussion encompassed a broader 
class of USBP operators. Importantly, the proposed construction procedure is applied to arbitrary grid points and is not limited to 
equidistant spacing. This generalization enabled us to develop novel USBP operators on LGL points, which are well-suited for nodal DG 
methods. We then examined the robustness properties of the resulting DG-USBP methods for challenging examples of the compressible 
Euler equations, such as Kelvin-Helmholtz instabilities. Similar to high-order FD-USBP schemes, we found that combining flux vector 
splitting techniques with DG-USBP operators does not lead to excessive artificial dissipation. Furthermore, we demonstrated local 
linear/energy stability for the DG-USBP semi-discretizations in a setting where existing high-order entropy-stable flux differencing 
DGSEM produce unstable semi-discretizations. However, we also observed that the improvement in robustness offered by USBP 
operators is less significant for high-order DG methods compared to FD schemes. Specifically, the increase in robustness diminished 
as more LGL points were used per element and coordinate direction. We suspected this reduced improvement could be attributed to 
USBP methods adding dissipation only to unresolved modes. After all, FD schemes typically have more unresolved modes than nodal 
DG methods. Still, the DG-USBP approach presents an alternative to entropy stable flux differencing DGSEM. It is potentially more 
convenient for tackling complex problems where a reliable flux splitting method, like the Lax–Friedrichs one, is readily available 
while conducting an entropy analysis becomes particularly challenging.

While the current iteration of DG-USBP methods has limitations, there is room for improvement. Future endeavors could explore 
the potential of optimally selecting these operators’ dissipation parameters in a manner similar to [22,111,45]. In this study, we 
focused on establishing the general theory, providing a construction methodology, and demonstrating the practical application of 
USBP operators in DG methods rather than fine-tuning the operators. Additionally, although not explicitly demonstrated here, the 
established general theory and construction framework for USBP operators extend to multi-dimensional SBP operators [68,43] and 
FSBP operators for general function spaces [34,32,33]. These avenues will form the core of future research efforts, as said methods 
typically use oversampling and, therefore, have more unresolved modes that can be dissipated using USBP operators. Thus, we expect 
USBP operators may offer greater improvements in such cases, similar to what was observed for FD schemes in [87,24].

CRediT authorship contribution statement

Jan Glaubitz: Conceptualization, Software, Writing – original draft, Writing – review & editing. Hendrik Ranocha: Writing – 
review & editing, Software, Conceptualization. Andrew R. Winters: Writing – review & editing, Writing – original draft, Software, 
Conceptualization. Michael Schlottke-Lakemper: Writing – review & editing, Writing – original draft, Software, Conceptualization.
Philipp Öffner: Writing – review & editing, Conceptualization. Gregor Gassner: Writing – review & editing, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

JG was supported by the US DOD (ONR MURI) grant #N00014-20-1-2595. HR was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation, project numbers 513301895 and 528753982 as well as within the DFG priority program 
SPP 2410 with project number 526031774) and the Daimler und Benz Stiftung (Daimler and Benz foundation, project number 32-
10/22). ARW was funded through Vetenskapsrådet, Sweden grant agreement 2020-03642 VR. MSL received funding through the DFG 
research unit FOR 5409 “Structure-Preserving Numerical Methods for Bulk- and Interface Coupling of Heterogeneous Models (SNu-
BIC)” (project number 463312734), as well as through a DFG individual grant (project number 528753982). PÖ was supported by 
the DFG within the priority research program SPP 2410, project OE 661/5-1 (525866748) and under the personal grant 520756621 
(OE 661/4-1). GG acknowledges funding through the Klaus-Tschira Stiftung via the project “HiFiLab” and received funding through 
the DFG research unit FOR 5409 “SNUBIC” and through the BMBF funded project “ADAPTEX”. Some of the computations were en-
abled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS), partially funded by the 
Swedish Research Council through grant agreement no. 2022-06725.

Appendix A. Proof of Theorem 3.1

Henceforth, let 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 be a grid on the computational domain [𝑥𝐿,𝑥𝑅] and 𝑑 be the space of polynomials up to degree 
𝑑 with 𝑑 + 1 ≤𝑁 . We first demonstrate part (b) of Theorem 3.1.

Lemma A.1 (Part (b) of Theorem   3.1). Let 𝐷± = 𝑃−1(𝑄± +𝐵∕2) be degree 𝑑 USBP operators with 𝑄+ +𝑄𝑇
+ = 𝑆 . Then, 𝐷 = (𝐷+ +𝐷−)∕2

is a degree 𝑑 SBP operator and 𝑆 satisfies 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 .
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Proof. The first assertion, 𝐷 = (𝐷+ + 𝐷−)∕2 being a degree 𝑑 SBP operator, follows immediately from Lemma 2.3. The second 
assertion, 𝑆 satisfying 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 , has implicitly already been noted in [62,55,53]. For completeness, we briefly revisit the 
argument. The relation (2.5) between 𝐷− and 𝐷+ implies

𝐷+𝐟 −𝐷−𝐟 = 𝑃−1𝑆𝐟 . (A.1)

Furthermore, for 𝑓 ∈ 𝑑 , (i) in Definition 2.2 yields 𝐷+𝐟 − 𝐷−𝐟 = 𝟎. In this case, (A.1) becomes 𝑃−1𝑆𝐟 = 𝟎, which shows the 
assertion. □

It remains to prove statement (a) of Theorem 3.1.

Lemma A.2 (Part (a) of Theorem   3.1). Let 𝐷 = 𝑃−1(𝑄 + 𝐵∕2) be a degree 𝑑 USBP operator and let 𝑆 be a symmetric and negative 
semi-definite matrix with 𝑆𝐟 = 𝟎 for all 𝑓 ∈ 𝑑 . Then, 𝐷± = 𝑃−1(𝑄± + 𝐵∕2) with 𝑄± = 𝑄 ± 𝑆∕2 are degree 𝑑 USBP operators with 
𝑄+ +𝑄𝑇

+ = 𝑆 .

Proof. We must show that 𝐷± = 𝑃−1(𝑄± +𝐵∕2) satisfy (i), (iv), and (v) in Definition 2.2. We first demonstrate (i) in Definition 2.2. 
Let 𝑓 ∈ 𝑑 . Since 𝐷± = 𝑃−1(𝑄± +𝐵∕2) and 𝑆𝐟 = 𝟎, we have

𝐷+𝐟 =𝐷𝐟 + 𝑃−1𝑆𝐟∕2 = 𝐟 ′,

𝐷−𝐟 =𝐷𝐟 − 𝑃−1𝑆𝐟∕2 = 𝐟 ′,
(A.2)

which shows that the exactness conditions (i) in Definition 2.2 are satisfied. Next, (iv) in Definition 2.2 results from

𝑄+ +𝑄𝑇
− = (𝑄+𝑆∕2) + (𝑄− 𝑆∕2)𝑇 = 0, (A.3)

where the last equation follows from 𝑆 being symmetric and 𝑄 being anti-symmetric (see condition (iv) in Definition 2.1). Finally, 
condition (v) in Definition 2.2 holds since

𝑄+ +𝑄𝑇
+ = (𝑄+𝑆∕2) + (𝑄+ 𝑆∕2)𝑇 = 𝑆, (A.4)

where the last equation follows from 𝑆 being symmetric and 𝑄 being anti-symmetric. This completes the proof. □

Theorem 3.1 follows from combining Lemmas A.1 and A.2.

Appendix B. Diagonal-norm USBP operators on LGL nodes

Below, the DG-USBP operators on four (𝑁 = 4), five (𝑁 = 5), and six (𝑁 = 6) LGL nodes on Ωref = [−1,1] are presented. The 
operators are defined by the LGL nodes 𝐱 = [𝑥1,… , 𝑥𝑁 ]𝑇 , the weights 𝐩 = [𝑝1,… , 𝑝𝑁 ]𝑇 associated with the diagonal norm matrix 
𝑃 = diag(𝐩), the central degree 𝑁 − 1 SBP operator 𝐷, and the symmetric negative semi-definite dissipation matrix 𝑆 . Recall that 
we get the USBP operators as 𝐷± = 𝐷 ± 𝑃−1𝑆∕2. Furthermore, the dissipation matrix 𝑆 can be decomposed as 𝑆 = 𝑉 Λ𝑉 𝑇 with 
Λ= diag(𝜆1,… , 𝜆𝑁 ) and 𝑉 being the Vandermonde matrix of a basis of DOPs up to degree 𝑁 − 1.

B.1. DG-USBP operators on four LGL nodes

The four (𝑁 = 4) LGL nodes and associate weights on Ωref = [−1,1] are 𝑥1 = −1, 𝑥2 = −1∕
√
5, 𝑥3 = −𝑥2, 𝑥4 = −𝑥2 and 𝑝1 = 1∕6, 

𝑝2 = 5∕6, 𝑝3 = 𝑝2, 𝑝4 = 𝑝1. The central SBP operator 𝐷 = [𝐷𝑛,𝑚]𝑁𝑛,𝑚=1 has the entries

𝐷1,1 = −3.000000000000000000, 𝐷1,2 = 4.045084971874736368, 𝐷1,3 = −1.545084971874737478,

𝐷1,4 = 0.500000000000000000, 𝐷2,1 = −0.809016994374947229, 𝐷2,2 = −0.000000000000000333,

𝐷2,3 = 1.118033988749894903, 𝐷2,4 = −0.309016994374947451, 𝐷3,1 = 0.309016994374947451,

𝐷3,2 = −1.118033988749894903, 𝐷3,3 = 0.000000000000000222, 𝐷3,4 = 0.809016994374947340,

𝐷4,1 = −0.500000000000000000, 𝐷4,2 = 1.545084971874737256, 𝐷4,3 = −4.045084971874737256,

𝐷4,4 = 3.000000000000000000.

The Vandermonde matrix 𝑉 = [𝑉𝑛,𝑚]𝑁𝑛,𝑚=1 of a basis of DOPs up to degree 𝑁 − 1 is given by

𝑉1,1 = 0.500000000000000000, 𝑉1,2 = −0.645497224367902800, 𝑉1,3 = 0.499999999999999889,

𝑉1,4 = −0.288675134594812921, 𝑉2,1 = 0.500000000000000000, 𝑉2,2 = −0.288675134594812866,

𝑉2,3 = −0.500000000000000000, 𝑉2,4 = 0.645497224367902800, 𝑉3,1 = 0.500000000000000000,
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𝑉3,2 = 0.288675134594812866, 𝑉3,3 = −0.500000000000000000, 𝑉3,4 = −0.645497224367902800,

𝑉4,1 = 0.500000000000000000, 𝑉4,2 = 0.645497224367902800, 𝑉4,3 = 0.499999999999999889,

𝑉4,4 = 0.288675134594812921.

Finally, once 𝜆1,… , 𝜆𝑁 have been fixed, we get the dissipation matrix as 𝑆 = 𝑉 Λ𝑉 𝑇 and the DG-USBP operators as 𝐷± =𝐷±𝑃−1𝑆∕2.

B.2. DG-USBP operators on five LGL nodes

The five (𝑁 = 5) LGL nodes and associate weights on Ωref = [−1,1] are 𝑥1 = −1, 𝑥2 = −
√
3∕7, 𝑥3 = 0, 𝑥4 = −𝑥2, 𝑥5 = −𝑥1 and 

𝑝1 = 1∕10, 𝑝2 = 49∕90, 𝑝3 = 32∕45, 𝑝4 = 𝑝2, 𝑝5 = 𝑝1. The central SBP operator 𝐷 = [𝐷𝑛,𝑚]𝑁𝑛,𝑚=1 has the entries

𝐷1,1 = −5.000000000000000000, 𝐷1,2 = 6.756502488724240862, 𝐷1,3 = −2.666666666666667407,

𝐷1,4 = 1.410164177942426988, 𝐷1,5 = −0.500000000000000000, 𝐷2,1 = −1.240990253030982648,

𝐷2,2 = −0.000000000000000444, 𝐷2,3 = 1.745743121887939342, 𝐷2,4 = −0.763762615825973379,

𝐷2,5 = 0.259009746969017129, 𝐷3,1 = 0.374999999999999889, 𝐷3,2 = −1.336584577695453246,

𝐷3,3 = 0.000000000000000000, 𝐷3,4 = 1.336584577695453024, 𝐷3,5 = −0.374999999999999833,

𝐷4,1 = −0.259009746969017129, 𝐷4,2 = 0.763762615825973268, 𝐷4,3 = −1.745743121887939342,

𝐷4,4 = 0.000000000000000444, 𝐷4,5 = 1.240990253030982648, 𝐷5,1 = 0.500000000000000111,

𝐷5,2 = −1.410164177942426766, 𝐷5,3 = 2.666666666666667407, 𝐷5,4 = −6.756502488724240862,

𝐷5,5 = 5.000000000000000000,

The Vandermonde matrix 𝑉 = [𝑉𝑛,𝑚]𝑁𝑛,𝑚=1 of a basis of DOPs up to degree 𝑁 − 1 is given by

𝑉1,1 = 0.447213595499957928, 𝑉1,2 = −0.591607978309961591, 𝑉1,3 = 0.500000000000000000,

𝑉1,4 = −0.387298334620741758, 𝑉1,5 = 0.223606797749978908, 𝑉2,1 = 0.447213595499957928,

𝑉2,2 = −0.387298334620741702, 𝑉2,3 = −0.166666666666666685, 𝑉2,4 = 0.591607978309961591,

𝑉2,5 = −0.521749194749950962, 𝑉3,1 = 0.447213595499957928, 𝑉3,2 = 0.000000000000000000,

𝑉3,3 = −0.666666666666666741, 𝑉3,4 = 0.000000000000000000, 𝑉3,5 = 0.596284793999943941,

𝑉4,1 = 0.447213595499957928, 𝑉4,2 = 0.387298334620741702, 𝑉4,3 = −0.166666666666666685,

𝑉4,4 = −0.591607978309961591, 𝑉4,5 = −0.521749194749950962, 𝑉5,1 = 0.447213595499957928,

𝑉5,2 = 0.591607978309961591, 𝑉5,3 = 0.500000000000000000, 𝑉5,4 = 0.387298334620741758,

𝑉5,5 = 0.223606797749978908.

Finally, once 𝜆1,… , 𝜆𝑁 have been fixed, we get the dissipation matrix as 𝑆 = 𝑉 Λ𝑉 𝑇 and the DG-USBP operators as 𝐷± =𝐷±𝑃−1𝑆∕2.

B.3. DG-USBP operators on six LGL nodes

The six (𝑁 = 6) LGL nodes and associate weights on Ωref = [−1,1] are 𝑥1 = −1, 𝑥2 = −
√

(7 + 2
√
7)∕21, 𝑥3 = −

√
(7 − 2

√
7)∕21, 

𝑥4 = −𝑥3, 𝑥5 = −𝑥2, 𝑥6 = −𝑥1 and 𝑝1 = 1∕15, 𝑝2 = (14 −
√
7)∕30, 𝑝3 = (14 +

√
7)∕30, 𝑝4 = 𝑝3, 𝑝5 = 𝑝2, 𝑝6 = 𝑝1. The central SBP 

operator 𝐷 = [𝐷𝑛,𝑚]𝑁𝑛,𝑚=1 has the entries

𝐷1,1 = −7.500000000000000000, 𝐷1,2 = 10.141415936319667424, 𝐷1,3 = −4.036187270305348740,

𝐷1,4 = 2.244684648176165975, 𝐷1,5 = −1.349913314190487768, 𝐷1,6 = 0.500000000000000111,

𝐷2,1 = −1.786364948339095315, 𝐷2,2 = 0.000000000000001110, 𝐷2,3 = 2.523426777429455203,

𝐷2,4 = −1.152828158535929015, 𝐷2,5 = 0.653547507429800167, 𝐷2,6 = −0.237781177984231401,

𝐷3,1 = 0.484951047853569239, 𝐷3,2 = −1.721256952830232834, 𝐷3,3 = 0.000000000000000222,

𝐷3,4 = 1.752961966367866165, 𝐷3,5 = −0.786356672223240794, 𝐷3,6 = 0.269700610832039001,

𝐷4,1 = −0.269700610832039001, 𝐷4,2 = 0.786356672223240682, 𝐷4,3 = −1.752961966367865942,

𝐷4,4 = 0.000000000000000222, 𝐷4,5 = 1.721256952830233278, 𝐷4,6 = −0.484951047853569350,
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𝐷5,1 = 0.237781177984231346, 𝐷5,2 = −0.653547507429800167, 𝐷5,3 = 1.152828158535929237,

𝐷5,4 = −2.523426777429455203, 𝐷5,5 = −0.000000000000000888, 𝐷5,6 = 1.786364948339095537,

𝐷6,1 = −0.500000000000000000, 𝐷6,2 = 1.349913314190487768, 𝐷6,3 = −2.244684648176165531,

𝐷6,4 = 4.036187270305348740, 𝐷6,5 = −10.141415936319669200, 𝐷6,6 = 7.500000000000000888.

The Vandermonde matrix 𝑉 = [𝑉𝑛,𝑚]𝑁𝑛,𝑚=1 of a basis of DOPs up to degree 𝑁 − 1 is given by

𝑉1,1 = 0.408248290463863073, 𝑉1,2 = −0.547722557505166074, 𝑉1,3 = 0.483045891539647831,

𝑉1,4 = −0.408248290463863017, 𝑉1,5 = 0.316227766016837830, 𝑉1,6 = −0.182574185835055497,

𝑉2,1 = 0.408248290463863073, 𝑉2,2 = −0.419038058655589740, 𝑉2,3 = 0.032338332982759031,

𝑉2,4 = 0.367654222400928044, 𝑉2,5 = −0.576443896275456780, 𝑉2,6 = 0.435014342463467985,

𝑉3,1 = 0.408248290463863073, 𝑉3,2 = −0.156227735687855862, 𝑉3,3 = −0.515384224522407175,

𝑉3,4 = 0.445155822251155409, 𝑉3,5 = 0.260216130258618783, 𝑉3,6 = −0.526715472069829382,

𝑉4,1 = 0.408248290463863073, 𝑉4,2 = 0.156227735687855862, 𝑉4,3 = −0.515384224522407175,

𝑉4,4 = −0.445155822251155409, 𝑉4,5 = 0.260216130258618783, 𝑉4,6 = 0.526715472069829382,

𝑉5,1 = 0.408248290463863073, 𝑉5,2 = 0.419038058655589740, 𝑉5,3 = 0.032338332982759031,

𝑉5,4 = −0.367654222400928044, 𝑉5,5 = −0.576443896275456780, 𝑉5,6 = −0.435014342463467985,

𝑉6,1 = 0.408248290463863073, 𝑉6,2 = 0.547722557505166074, 𝑉6,3 = 0.483045891539647831,

𝑉6,4 = 0.408248290463863017, 𝑉6,5 = 0.316227766016837830, 𝑉6,6 = 0.182574185835055497.

Finally, once 𝜆1,… , 𝜆𝑁 have been fixed, we get the dissipation matrix as 𝑆 = 𝑉 Λ𝑉 𝑇 and the DG-USBP operators as 𝐷± =𝐷±𝑃−1𝑆∕2.

Appendix C. More examples of USBP operators

We exemplify the construction of USBP operators on the reference element Ωref = [−1,1]. Henceforth, we round all reported numbers 
to the second decimal place for ease of presentation.

C.1. USBP operators on Gauss–Legendre points

We demonstrate the construction of a degree two (𝑑 = 2) diagonal-norm USBP operator on four (𝑁 = 4) Gauss–Legendre points 
in Ωref = [−1,1]. Notably, the Gauss–Legendre points do not include the boundary points.

Let us first address (P1). We start from a degree three diagonal-norm SBP operator, obtained by evaluating the derivatives of the 
corresponding Lagrange basis functions at the Gauss–Legendre grid points. The associated points and quadrature weights (diagonal 
entries of 𝑃 ) are 𝐱 ≈ 1

5 [−43,−17,17,43] and 𝐩 ≈ 1 
20 [7,13,13,7], respectively. Moreover, the SBP and boundary operator are

𝐷 ≈ 1 
100

⎡⎢⎢⎢⎣
333 486 −211 58
−76 −38 147 −33
33 −147 38 76
−58 211 −486 333

⎤⎥⎥⎥⎦ , 𝐵 ≈ 1 
100

⎡⎢⎢⎢⎣
−153 81 −40 11
0 0 0 0
0 0 0 0

−11 40 −81 153

⎤⎥⎥⎥⎦ . (C.1)

Note that the first and last row of 𝐵 corresponds to the function values of the Lagrange basis functions at the left and right boundary 
point, 𝑥𝐿 = −1 and 𝑥𝑅 = 1, respectively.

We next address (P2), finding a dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 2 and 𝐟𝑇 𝑆𝐟 < 0 otherwise. We follow Subsection 4.3
and robustly construct 𝑆 using a DOP basis on the four Gauss–Legendre grid points. The resulting Vandermonde matrix of this DOP 
basis is

𝑉 ≈
⎡⎢⎢⎢⎣
1∕2 −33∕50 1∕2 −13∕50
1∕2 −13∕50 −1∕2 33∕50
1∕2 13∕50 −1∕2 −33∕50
1∕2 33∕50 1∕2 13∕50

⎤⎥⎥⎥⎦ . (C.2)

Consequently, we get the dissipation matrix as 𝑆 = 𝑉 Λ𝑉 𝑇 with Λ= diag(𝜆1, 𝜆2, 𝜆3, 𝜆4). We choose the first three eigenvalues as zero 
to ensure that the USBP operator has degree two. Furthermore, we choose 𝜆4 = −1, which introduces artificial dissipation to the 
highest, unresolved, mode.4 The resulting dissipation matrix is

4 Note that 𝜆4 = −1 is an arbitrary choice. Any negative value yields an admissible dissipation matrix.
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𝑆 ≈ 1 
100

⎡⎢⎢⎢⎣
−7 17 −17 7
17 −43 43 −17
−17 43 −43 17
7 −17 17 −7

⎤⎥⎥⎥⎦ . (C.3)

Finally, we get degree two diagonal-norm USBP operators on [−1,1] as 𝐷± =𝐷 ± 𝑃−1𝑆∕2, which yields

𝐷+ ≈ 1 
100

⎡⎢⎢⎢⎣
−343 511 −235 68
−63 −72 180 −46
20 −114 5 89
−48 186 −461 81

⎤⎥⎥⎥⎦ ,

𝐷− ≈ 1 
100

⎡⎢⎢⎢⎣
−324 461 −186 48
−89 −5 114 −20
46 −180 72 63
−68 235 −511 343

⎤⎥⎥⎥⎦ .
(C.4)

The norm and boundary matrix of the degree two USBP operators are the same as those of the degree three SBP operator.

C.2. Dense-norm USBP operators on equidistant points

We exemplify our construction procedure for USBP operators using a dense-norm (the norm matrix 𝑃 is non-diagonal) SBP operator 
of degree three (𝑑 = 3) on four (𝑁 = 4) equidistant points on [0,1]. The degree three dense-norm SBP operator we start from was 
derived in [19, Section 4.2] and has the following norm and derivative matrices:

𝑃 ≈ 1
8

⎡⎢⎢⎢⎣
2 1 0 0
1 10 −2 0
0 −2 10 1
0 0 1 2

⎤⎥⎥⎥⎦ , 𝐷 ≈ 1
6

⎡⎢⎢⎢⎣
−11 18 −9 2
−2 −3 6 −1
1 −6 3 2
−2 9 −18 11

⎤⎥⎥⎥⎦ . (C.5)

Let us address (P2), finding a dissipation matrix 𝑆 with 𝑆𝐟 = 𝟎 if 𝑓 ∈ 2 and 𝐟𝑇 𝑆𝐟 < 0 otherwise. Once more, we follow subsec-
tion 4.3 and robustly construct 𝑆 using a DOP basis on the four equidistant grid points. The resulting Vandermonde matrix of this 
DOP basis is

𝑉 ≈
⎡⎢⎢⎢⎣
1∕2 −67∕100 1∕2 −22∕100
1∕2 −22∕100 −1∕2 67∕100
1∕2 22∕100 −1∕2 −67∕100
1∕2 67∕100 1∕2 22∕100

⎤⎥⎥⎥⎦ . (C.6)

Consequently, we get the dissipation matrix as 𝑆 = 𝑉 Λ𝑉 𝑇 with Λ= diag(𝜆1, 𝜆2, 𝜆3, 𝜆4). We choose the first three eigenvalues as zero 
to get USBP operators with degree two (𝑑 = 2). Furthermore, we choose 𝜆4 = −1, which introduces artificial dissipation to the highest, 
unresolved mode. The resulting dissipation matrix is

𝑆 ≈ 1 
20

⎡⎢⎢⎢⎣
−1 3 −3 1
3 −9 9 −3
−3 9 −9 3
1 −3 3 −1

⎤⎥⎥⎥⎦ . (C.7)

Finally, we get degree two dense-norm USBP operators on four equidistant points on [0,1] as 𝐷± =𝐷 ± 𝑃−1𝑆∕2, which yields

𝐷+ ≈ 1 
100

⎡⎢⎢⎢⎣
−189 317 −167 39
−30 −59 109 −20
14 −91 41 36
−28 133 −283 178

⎤⎥⎥⎥⎦ ,

𝐷− ≈ 1 
100

⎡⎢⎢⎢⎣
−178 283 −133 28
−36 −41 91 −14
20 −109 59 30
−39 167 −317 189

⎤⎥⎥⎥⎦ .
(C.8)

The norm and boundary matrix of the degree two USBP operators are the same as those of the degree three SBP operator.

Data availability

The code we use is openly available at https://github.com/trixi-framework/paper-2024-generalized-upwind-sbp.
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