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Abstract:Without any doubt, credit risk is one of themost important risk types in the classical banking indus-
try. Consequently, banks are required by supervisory audits to allocate economic capital to cover unexpected
future credit losses. Typically, the amount of economical capital is determined with a credit portfolio model,
e.g. using the popular CreditRisk+ framework (1997) or one of its recent generalizations (e.g. [8] or [15]). Re-
lying on speci�c distributional assumptions, the credit loss distribution of the CreditRisk+ class can be de-
termined analytically and in real time. With respect to the current regulatory requirements (see, e.g. [4, p.
9-16] or [2]), banks are also required to quantify how sensitive their models (and the resulting risk �gures) are
if fundamental assumptions are modi�ed. Against this background, we focus on the impact of di�erent de-
pendence structures (between the counterparties of the bank’s portfolio) within a (generalized) CreditRisk+

framework which can be represented in terms of copulas. Concretely, we present some results on the un-
known (implicit) copula of generalized CreditRisk+ models and quantify the e�ect of the choice of the copula
(between economic sectors) on the risk �gures for a hypothetical loan portfolio and a variety of parametric
copulas.
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1 Introduction
Financial institutions are allowed to use their own internal models in order to manage di�erent types of risk,
such asmarket, liquidity, credit or operational risk, on an economic (in contrast to a regulatory) basis. In this
context, banks are requested by national supervisors to quantify the accompanied amount of model risk.

If methods and processes, underlying assumptions, parameters or in�uent data are rather complex, a qualitative and
quantitative validation of these components as well as the useability of the resulting risk �gures is necessary (see [2]).

Regarding credit risk, portfolio models always assume a speci�c dependency structure between economic
sectors and obligors. Mathematically, dependency can be described with the help of copula functions, orig-
inally introduced by [33]. Recently, several authors such as [20], [11], [6] or [24] have addressed the topic of
copulas in credit portfoliomodels. However, they have always concentrated on only one copula class. By con-
trast, we take awide range of copulas into account, analyzewhich �ts best to default data andhow risk �gures
change for several copulas. Because in practical applications the number of counterparties is simply too high
to model their dependencies directly, we focus on the dependency structure between sector variables. In this
regard the article can be seen as an extension of [6], who exchanged the copula of the compound gamma
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model¹ with a Gaussian copula and a t-copula. Our analysis incorporates representatives from the elliptical,
the generalized hyperbolic and the Archimedean copula classes together with two copulas, implicitly de�ned
by the corresponding portfolio model.

The outline of this article is as follows: Section 2 gives a brief introduction to copulas and de�nes some
notation used throughout the article. In the third section we shortly introduce the CreditRisk+model together
with twomodel enhancements covering �exible sector dependencies. Herewe also analyze the implicit copu-
las induced by sector models in order to compare themwith other dependencymodels. In section 4 the credit
portfolio under consideration and the default data used for parameter estimation are described. Afterwards
we analyze the change in risk �gures concerning di�erent copulas. The article concludes with a summary.

2 Copulas
The notion of copulas dates back to [33]. Technically, a copula C is a multivariate distribution function on
the d-dimensional unit hypercube Id with uniform margins. With the help of copulas one can separate the
problem of �nding a suitablemultivariate distribution function into two parts. In a �rst step, one can concen-
trate on the univariatemargins independently from each other. In a second step one analyzes the dependency
structure regardless of the marginal distribution. The justi�cation for this procedure is given by Sklar’s theo-
rem.

Theorem 1. Let F denote a d-dimensional distribution function onRd with univariatemargins Fi. Furthermore,
let Im (Fi) denote the image of Fi. Then, a unique copula function C : ×di=1Im (Fi) → I exists such that

F(x) = C (F1 (x1) , ..., Fd (xd)) ∀x ∈ Rd .

It should be noted that, especially if all Fi are continuous on I, the copula is unique on Id. All information
about the dependency structure are contained in the copula.

In this article we will use Sklar’s theorem in reverse. In order to analyze the impact of the copula on the
risk �gures of the CreditRisk+model, we exchange the copula function and create new multivariate distribu-
tion functions with the same margins as in the original case.

Our analysis includes the following copulas:
– Independence copula de�ned as C(u) :=

∏d
i=1 ui . The copula is the one of d stochastically independent

random variables Ui.
– Elliptical copulas are implicitly given by the class of elliptical distributions, see [7]. Famous representa-

tives are the normal or Gaussian copula

C(u) = ΦΣ

(
Φ−1 (u1) , . . . ,Φ−1 (ud)

)
and the t-copula

C(u) = tΣ,ν
(
t−1ν (u1) , . . . , t−1ν (ud)

)
.

Here,ΦΣ / tΣ,ν denotes themultivariate normal / t- distribution with zeromean, dispersionmatrix Σ (and
ν degrees of freedom). Φ−1 and t−1ν are the corresponding quantile functions.

– Generalized hyperbolic copulas (ghyp) arise implicitly from the corresponding multivariate distribu-
tion �rst studied by [3]. In general, ghyp copulas are not elliptically symmetric. Under certain parameter
restrictions, ghyp copulas belong to the elliptical copula class. Therefore, the class of ghyp copulas also
contains the normal and the t-copula as limiting cases. A detailed parametrization of the ghyp copula is
given in the appendix.

1 The compound gamma model is an extension of the ordinary CreditRisk+model, incorporating sector dependencies, see sec-
tion 3
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– Archimedean copulas (AC) are de�ned by a d-monotone² generator function ψ : [0,∞) → I with ψ(0) =
1 and limx→∞ ψ(x) = 0. In contrast to the former classes, these copulas have an explicit representation.
For dimension d, an AC is de�ned by:

Cψ(u) := ψ
( d∑

i=1

ψ−1(ui)
)
, u ∈ Id . (1)

– Hierarchical Archimedean copulas (HAC) are an extension of the Archimedean class where one can
combine di�erent generator functions. For example, consider a generator function ψθ with parameter
θ ∈ Θ, the ordinary AC is given by

Cψθ (u) = ψθ

(
ψ−1θ (u1) +

(
ψ−1θ ◦ ψθ

)( d∑
i=2

ψ−1θ (ui)
))

= Cψθ

u1, Cψθ (u{2,...d})︸ ︷︷ ︸
(#)

 .

Under suitable conditions³ one can exchange the inner AC denoted by (#) with another AC arising from
a di�erent generator function. This nesting procedure can be repeated until only two variables are left.
The resulting copula is called a fully nested HAC (left panel of �gure 1). Another nesting procedure could
be to exclude not only one variable at each nesting level, but two or more, which again can be grouped
via an AC. The resulting copula is called a partially nested HAC (right panel of �gure 1). The technical
de�nition of a general HAC depends on a rather complex notation. Since, for our purposes, the general
de�nition is not necessary, we refer to [32].
In case of the Frank, Clayton or Gumbel copula, one can alternate the parameter values θ for di�erent
nesting levels. Thus, one can create hierarchical structures with stronger dependencies at the ground
level (e.g. between industry groups of speci�c countries) and weaker dependencies at the top level (e.g.
between countries themselves).
Figure (1) shows two possible trees of a �ve dimensional HAC where the generator function is of the Clay-
ton type, i.e. ψCl

θ (x) := (θx + 1)−1/θ for θ ≥ 0. For a detailed discussion of HAC we refer to [32] and [29] as
well as [23] and [16], where the su�ciency of the nesting condition has been proven and �rst examples
were presented.

fully nested HAC partially nested HAC

Fig. 1. Fully and partially nested HAC with a Clayton generator function.

Please note that the partially nested structure is just a special case of the fully nested one.

2 A function f is d-monotone on D i� (−1)k f (k)(x) ≥ 0, k = 0, ..., d − 2 for all x in the interior of D and (−1)d−2f (d−2) is a
decreasing and convex function on D.
3 The including generator functions ψθ as well as the derivatives of ψ−1θ ◦ ψθ̃, where ψθ̃ denotes a di�erent generator function,
have to be completely monotone. A function f is called completely monotone i� (−1)k f (k)(x) ≥ 0, ∀k ∈ N
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3 The CreditRisk+ model and extensions
In this section, after a short primer on credit risk in general, where we explain the reasons for using credit
portfolio models in practice, the CreditRisk+model is introduced. At the end we discuss the topic of sector
dependencies and present two extensions of the basic model to incorporate correlated sectors.

3.1 A short primer on credit risk in general

In the banking industry, credit portfolio models are used to quantify the risk arising from a portfolio of oblig-
ors within a �xed time horizon (e.g. one year). Thinking of the overall portfolio loss, one distinguishes be-
tween expected and unexpected losses. The former one corresponds to the expectation value of the portfolio
loss (e.g. caused by defaults). Since this component is not a�ected by relationships between counterparties,
it can be calculated separately for each obligor. Typically, the expected loss is incorporated within the credit
pricing process. By contrast, the unexpected loss corresponds to the possible loss exceeding the expected
one.With the help of so called economic capital, �nancial institutionsmeasure the amount of capital needed
to cover unexpected losses. In order to quantify the necessary amount, the so called value at risk approach
is used. For a given level α ∈ [0, 1] the corresponding value at risk (VaRα) is de�ned as the α−quantile of the
portfolio loss distribution. The economic capital is de�ned as

ECα := VaRα − EL,

where EL denotes the expected loss (over one year) of the portfolio.
The major task of credit portfolio models is to calculate the distribution function of the portfolio loss,

such that one can extract the VaRα and other characteristic values we de�ne later.
In general, credit risk consists of two di�erent parts:

– default risk arising from the loss caused by counterparties’ defaults and
– migration risk occurring if the creditworthiness of counterparties decreases.
Please note that within this article we only concentrate on the default risk component. For a more detailed
introduction to credit risk we refer to [24].

3.2 The basic CreditRisk+ model

The CreditRisk+ portfolio model was introduced by the Financial Products division of Credit Suisse in 1997.
A detailed description of the model is given in [35]. It belongs to the class of mixture models. This model
type is characterized by the assumption that defaults are conditionally independent given the state of the
economy or a speci�c sector. As a consequence of certain distributional assumptions the pdf of the portfolio
loss distribution can be calculated analytically. Therefore, it enjoys great popularity in practice.

Consider a portfolio of M counterparties CP1, ..., CPM. Let p̃i ∈ [0, 1] denote the probability of default
(PD) for obligor i. The overall portfolio loss is de�ned by

L̃ =
M∑
i=1

eadi · lgdi · D̃i

with a default indicator D̃i ∼ Bernoulli (p̃i). The variables eadi > 0 and lgdi ∈ [0, 1] represent the expo-
sure at default and the loss given default, respectively. The standard model assumes that eadi and lgdi are
deterministic and independent from each other as well as from D̃i.

In a �rst step, the exposures are discretized with respect to a common loss unit L0 > 0. With the help of
the discretization, themodel becomes numerically tractable. Afterwards, the original potential loss eadi · lgdi
and the PD p̃i are then replaced by

νi := max
{⌈

eadi · lgdi
L0

⌋
, 1
}

and pi :=
eadi · lgdi · p̃i

νi · L0
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respectively. Here dxc denotes the nearest integer to x. Since the original PD p̃i is replaced by pi the discretiza-
tion of the potential loss does not a�ect the expected loss of the portfolio, because:

E
(
L̃
)
=

M∑
i=1

eadi · lgdi · p̃i =
M∑
i=1

νi · L0 · pi = E (L) ,

with L :=
∑M

i=1 νi · L0 ·Di representing the discretized portfolio loss and Di ∼ Bernoulli (pi). In a second step,
the Bernoulli distribution is replaced by a Poisson distribution. This replacement ensures, that the density
function of the overall portfolio loss can be calculated analytically. The intensity of defaults depends on the
modi�ed PD pi and some sector variables Sk ∼ Γ (θk , δk) representing the state of the economy or speci�c
sectors.⁴ Every counterparty is mapped onto one or more of K sectors via sector weights wi,k ∈ [0, 1] for
i = 1, ..,M and k = 1, ..., K. The idiosyncratic risk is represented by

wi,0 := 1 −
K∑
k=1

wi,k ≥ 0.

The default intensity of CPi is de�ned by

λi := pi

(
wi,0 +

K∑
k=1

wi,kSk

)
. (2)

In the basic model, the sector variables Sk are assumed to be independent from each other. Extensions to
correlated sectors will be discussed in the following section. In combination with the sector weights wi,k the
default intensities of two counterparties CPi and CPj sharing at least one sector, ⁵ are correlated with

Cor
(
λi , λj

)
=

∑K
k=1 wi,kwj,kσ

2
k√(∑K

k=1 w2
i,kσ2k

)(∑K
k=1 w2

j,kσ2k
) ,

where σ2k denotes the variance of Sk. In order to ensure an unchanged expected loss, E (Sk) = 1 has to be
assured, which means that δk = 1

θk for all sectors k = 1, ..., K. As a second condition for the parametrization
of the sector distribution one can estimate the variances σ2k either from historical default data or use one out
of several approximation formulas given in [14].

With the help of the probability generating function (pgf) of the Poisson distribution and the indepen-
dence of sector variables and default events, the pgf of the total portfolio loss is given by

GL(t) =
∞∫
0

M∏
i=1

GLi|S(t) ·
K∏
k=1

fSk (s) ds (3)

with GLi|S(t) = 1 + pi (tνi − 1). The pgf can be evaluated with the help of a nested evaluation algorithm. A
detailed derivation of the pgf as well as a numerically stable algorithm to calculate the (discrete) density of L
from its pgf is given in [14].

3.3 Modeling dependent sectors

Modeling dependencies between several counterparties in a credit portfolio is a crucial issue. Typically, credit
portfolios consist of thousands of obligors. Modeling the dependencies directly between counterparties is

4 Throughout this article Γ(a, b) denotes the Gamma distribution with shape parameter a > 0 and scale parameter b > 0. The
mean is given by ab.
5 CPi and CPj share sector k i� wi,kwj,k > 0.
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not manageable because the dimension of the copula or multivariate distribution function is just too high.
Instead, the counterparties are categorized by industry, country and other attributes. Then each group is
mapped onto a sector speci�c variable a�ecting the default probability (PD) of the group members. The de-
pendency between sector variables translates into a dependency between counterparties. Since dependen-
cies between counterparties have amajor impact on the portfolio loss distribution, the way they are modeled
directly in�uences the amount of economic capital which must be provided by �nancial institutions to cover
unexpected losses.

Modeling the dependencies between sectors rather then counterparties reduces the dimension of the
copula dramatically. In our empirical analysis (section 4) we work with a ten dimensional copula. In the
following we introduce two extensions of the basic CreditRisk+model, in order to overcome the assumption
of independent sectors.

3.3.1 The Common-Background-Vector model

Inpractice, economic sectors arenot independent. Therefore, [8] proposed the so called common-background-
vector (CBV) model, which is a generalization of the model from [15]. The main idea is to replace each sector
variable by a linear combination of L independent gamma distributed variables Ŝ` ∼ Γ

(
θ̂`, 1

)
and an

independent sector speci�c variable Sk ∼ Γ (θk , δk). I.e. we de�ne

Sk := Sk +
L∑

`=1

γk,` Ŝ` (4)

with non-negative weights γk,` for k = 1, ..., K and ` = 1, ..., L. The vector Ŝ :=
(
Ŝ1, ..., ŜL

)T
is called

common-background-vector. Ŝ is equal for all sectors k.Howmuch the background factor Ŝl in�uences sector
k is determined by γk,l. De�ning additional counterparty sectorweightswi,K+` :=

∑K
k=1 wi,kγk,` for ` = 1, ..., L

and plugging (4) into (2) we can rewrite the formula for the default intensity as

λi = pi

(
wi,0 +

K∑
k=1

wi,kSk

)

= pi

(
wi,0 +

K∑
k=1

wi,kSk +
L∑

`=1

wi,K+` Ŝ`

)
.

This setting is equal to the basic model with K + L independent sectors. Therefore, the pgf can be expressed
analytically as in case of the basic model.

The variance covariance (VCV) of the original sectors Sk can be derived as

Var
(
Sk
)

= θkδ2k +
L∑

`=1

γ2k,` θ̂` k = 1, ..., K (5)

Cov
(
Si , Sj

)
=

L∑
`=1

γi,`γj,` θ̂` i = ̸ j. (6)

The model parameters γk,`, δk, θk and θ̂` should be chosen such that the theoretical VCV structure given
by equations (5) and (6)meets an empirical one. This canbe achievedby solving ahighdimensional optimiza-
tion problem with 2K + L(1 + K) variables. The dimension of the optimization problem should not be mixed
up with the dimension K of the corresponding copula (equation 7). In order to guarantee that E

(
Sk
)
= 1we

have to restrict the parameter space such that θkδk +
∑L

`=1 γk,` θ̂k = 1 for all sectors k = 1, ..., K.
Themultivariate distribution of the sector variables is determined by a linear combination given in equa-

tion (4). Writing this in a more general way with vectors X ∈ Rd and Y ∈ RK, where each single Xi=1,...,d is
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θ =
(
1
5 ,

1
5

)
, δ = (5, 5) θ =

(
1, 1

5

)
, δ = (1, 5) θ = (1, 1), δ = (1, 1)

Fig. 2. 10,000 realizations of the multivariate distribution (�rst row) and the implicit copula (second row) de�ned by equa-
tion (7).

independently gamma distributed with an individual shape and scale parameter and a matrix A ∈ RK×d, we
have

Y = AX. (7)

The univariate distribution of the single Yk has already been studied by [26]. The copula corresponds to a
multi-factor copula, investigated by [28],with gammadistributed factors. Figure (2) shows 10,000 realizations
of the bivariate distribution (�rst row) and the implicit copula (second row) for the bivariate case with A =(

0.2 0.8
0.8 0.2

)
. The shape and scale parameters for the gamma distributed variables X1 and X2 are given in

the header.
As the plot in the left-hand column shows, the support for the bivariate copula function is not the whole

unit square. Instead we have a concave and a convex zero curve. In the bivariate distribution above, these
curves occur as linear bounds. For illustrative issues we have added the red lines representing them. One can
show that the slope of these lines is given by theminimumand themaximumof the ratios between thematrix
entries in the several columns of A. In particular the following theorem holds.

Theorem 2. Given a vector X of non-negative random variables Xi with arbitrary copula and amatrix A ∈ RK×d

with entries aj,i for some K, d ∈ N>0, then for the vector Y = AX it holds:

min
i=1,...,d

{
ak,i
a`,i

}
≤ Yk

Y` ≤ max
i=1,...,d

{
ak,i
a`,i

}
P − a.s.,

if P (Y` = 0) = 0.

Proof. The proof is given in the appendix.

Because of the nonlinear probability transformation, for the copula the linear bounds of the bivariate dis-
tribution transform into concave and convex curves. One can also observe that the number of realizations
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in the area around the zero curves grows with the variance of the corresponding Xi. In general, this copula
belongs to none of the copula classes presented in section 2. Because of its shape and the bounded support
it is neither elliptical nor generalized hyperbolic. The copula is also not an Archimedean one because those
are unable to form concave zero curves (see [27] Theorem 4.3.2).

For some parameter setting, the scatter plots and especially the zero curves look very similar to those of a
two parameter extreme value copula class named BC2, introduced by [22]. Also the coe�cients of lower and
upper tail dependence (see section 3) of these two copula classes are similar. Since the density and distribu-
tion function of the copula given by (7) cannot be stated explicitly, we leave the question in which cases these
two copula classes coincide as an open one for further research.

In the special case of the CBV model, equation (7) takes the form

S = IK×KS + Γ Ŝ

where Γ ∈ RK×L with entries γk,`. So the �rst columns of matrix A contain the K dimensional identity matrix.
Therefore the lower and upper bounds of Theorem (2) disappear because they are given by 0 and∞.

3.3.2 The Multi Compound Gamma model

Another approach to model correlated sectors within a CreditRisk+ framework goes back to [13]. The basis
of the (multi) compound gamma (MCG) is a mixture approach as in the CreditRisk+model itself. In the stan-
dard model, the default distribution (Poisson) is mixed with a Gamma distribution or a linear combination
of several independent ones. In the MCG model the gamma distribution of the sectors again is mixed with
one or more gamma distributions. In more detail, again L background variables Ŝ` ∼ Γ

(
σ̂−2` , σ̂2`

)
are intro-

duced. The shape parameter θk of the original sector variables is assumed to follow a linear combination of
the background variables with weights αk,` > 0. The scale parameter is �xed. Summarizing this we have:

λi = pi

(
wi,0 +

K∑
k=1

wi,kS*k

)

with

S*k
∣∣∣Ŝ ∼ Γ( L∑

`=1

αk,` Ŝ`, βk

)
and Ŝ` ∼ Γ

(
σ̂−2` , σ̂2`

)
.

Again to ensure that E
(
S*k
)
= 1 we have the additional parameter condition βk =

(∑L
`=1 αk,`

)−1
. The VCV

structure of the MCG model is given by:

Var
(
S*k
)

= βk + β2k
L∑

`=1

α2k,`σ̂2` (8)

Cov
(
S*i , S*j

)
=

L∑
`=1

βiβjαi,`αj,`σ̂2` . (9)

The pgf of the portfolio loss L reads as

GL(t) = exp
(
P0(t) −

L∑
`=1

1
σ̂2`

log
[
1 + σ̂2`

K∑
k=1

log
(
1 − δkPk(t)

)])

with Pk(t) :=
∑M

i=1 wi,kpi (t
νi − 1). Again, the pgf can be calculated with the help of a nested evaluation algo-

rithm.
Having a set of CBV- or MCG-parameters, one can easily switch between the two models with the help of

the following lemmas.
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Lemma 3. For k = 1, ..., K and ` = 1, ..., L let βk, σ̂`and αk,` denote the parameters of aMCGmodel. The iden-
tical VCV structure is generated by a CBV model with �xed parameter θ̂` ≡ θ̂ where 0 < θ̂ <

(∑L
`=1 βkαk,`σ̂`

)
holds for all k = 1, .., K and

θk =
(
1 −

L∑
`=1

√
θ̂`βkαk,`σ̂`

)2

β−1k ,

δk = βk

( L∑
`=1

√
θ̂`βkαk,`σ̂`

)−1
,

γk,` = βkαk,`σ̂` θ̂−1/2` .

Proof. A simple algebraical calculation shows that the equations (5) and (6) with the parameters stated in
the lemma are equivalent with (8) and (9) which proves the lemma.

Lemma 4. Let δk, θk, θ̂`, γk,` denote the parametrization of a CBVmodel. The identical VCV structure is asymp-
totically generated by an MCG setup with K sectors and L̂ = L +1 background sectors and the following param-
eters

βk = δ2kθk , σ̂` ≡ σ̂ = max
k=1,...,K

L∑
`=1

γk,`
√
θ̂`, σ̂L+1 = ϵ,

αk,` =
γk,`
√
θ̂`

βk σ̂
, αk,L+1 =

1 −
∑L

`=1 αk,`βk
βk

.

It holds:
lim
ϵ→0

ΣMCG = ΣCBV.

Proof. Again, simply plugging in the stated parametrization into (8) and (9) and taking the limit leads to the
formulas (5) and (6).

In both models, �nding a suitable parametrization for an empirical VCV structure - especially for a higher
number of sectors - is crucial. Hence, the last two lemmas are very helpful because now one has to �nd
the parametrization for just one model. Furthermore, we do not have to consider any e�ects of unequal
parametrization caused by di�erent algorithms when we switch from one model to another.

4 Empirical analysis

4.1 Portfolio and data

The underlying portfolio consists of 5000 counterparties. For reasons of simplicity, we assume a constant loss
given default (LGD) of one for each counterparty. Sincewe onlywant to concentrate on the relative changes of
the economic capital for di�erent copulas under consideration, this assumption will not restrict our results.
Assuming counterparty speci�c constant LGDs (not necessarily 1) is equal to a scaling of the corresponding
exposure, resulting in a shift / reduction of the value at risk. The same applies to the case of stochastic LGDs.
For those who are interessted in the e�ect of stochastic LGDs, we refer to [14, section 7].

Each counterparty ismapped onto a single sector out of the ten sectors. To keep the analysismanageable,
we do not distinguish between di�erent regions or countries. The distribution of potential losses (PL) and
counterparties (CP) across sectors is shown in table 1.

For parameter estimation a data pool with more than 30,000 corporates around the world is used. Based
on aMertonmodel (see [25]), the data represent the one-year PD of exchange traded corporates between 2003
and 2013. The PDs are estimated monthly over the last ten years and then aggregated on sector level via the
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Table 1. Economic sectors.

# Sector # CP % of PL
1 Basic materials 16 1.7
2 Communication 5 2.5
3 Cyclical consumer goods 4631 19.5
4 Non-cyclical consumer goods 15 1.5
5 Diversi�ed companies 28 3
6 Energy 10 4.3
7 Finance 146 45.9
8 Industry 75 11.1
9 Technology 19 1.8
10 Utilities 55 8.7

median. Finally, in order to take time dependencies into account, we have �tted a univariate auto-regressive
process to every sector time series and use the residuals for the maximum likelihood estimation instead.

4.2 Copulas under consideration

In order to estimate the unknown parameters for the copulas from section 2, we have used the maximum
likelihood approach. For this purpose, we used the R-packages “copula” by [17], “ghyp” from [21] and the
“HAC” package from [30]. The implicit copula of the CBV model was estimated with the help of an optimiza-
tion algorithm, minimizing the L2−distance between the empirical and the theoretical VCV matrix. For the
parameters of the MCG model we used lemma 4. A short overview of the estimation results is given over the
next few pages.

If we exchange the independence copula of the basic CreditRisk+model with some arbitrary one, in gen-
eral themodel can no longer be solved analytically.⁶ Therefore, we simulate the sector variables S1, .., Sk with
a speci�ed copula C, calculate the individual default intensity λi via (2) and restrict the analytical calculation
to the �rst product in (3). Thus we just have to calculate the distribution of the portfolio loss caused by M
independent obligors. Simulating the vector S = (S1, .., Sk)T of sector variables N times and averaging each
single exposure band over all N pdfs gives us a �nal estimation for the overall pdf. This idea has already been
mentioned in [6].

4.2.1 Tail dependence

During the following analysis we will also focus on the index of tail dependence. In contrast to dependency
measures such as the linear correlation coe�cient, Kendall’s τ or Spearman’s ρ, whichmeasure dependency
on an overall level, the index of tail dependencemeasures dependency only in extreme situations. Following
[27], the coe�cients of upper and lower tail dependence are de�ned for a pair (X1, X2) of random variables
by

λU := lim
u↗1

P
[
X2 ≥ F−12 (u) | X1 ≥ F−11 (u)

]
and

λL := lim
u↘0

P
[
X2 ≤ F−12 (u) | X1 ≤ F−11 (u)

]
,

where Fi and F−1i denotes the marginal distributions and the quantile functions, respectively.
In the context of the �nancial crisis, the Gaussian copula was blamed for failing to model economic de-

pendencies correctly because it admits no tail dependencies. This means that, especially during the crisis,
counterparties or economic sectors tend to behave independently from each other rather than dependently.

6 As [10] shows, an analytical solution is also possible in the special case of a multivariate tempered α-stable distribution.
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Therefore, the amount of economic capital required to cover the loss in such situations, estimated with the
help of the Gaussian copula, may be not su�cient. Interestingly, this disadvantage of the Gaussian copula
has already been pointed out by several mathematicians years before the �nancial crisis started (see [34]).

4.2.2 Gaussian vs. Student-t copula

For reasons of clarity, we focus our discussion of the estimation results on just three of the ten sectors, namely
the industrial sector, the �nancial sector and the sector of cyclical consumer goods, which cover around 75%
of the total exposure.

Table 2 shows the estimated entries of the dispersion matrix as well as the index of tail dependence.
Please note that, in contrast to the Student-t copula, the Gaussian copula admits no upper nor lower tail de-
pendence. In the case of the Student-t copula, the coe�cients of upper and lower tail dependence are equal
because of the elliptical symmetry. For the t-copula we estimated 3.786 degrees of freedom. The correspond-
ing copula functions together with the empirical observations are illustrated in �gure 3.

Table 2. Estimated coe�cient of tail dependence (λ̂) and entries of the dispersion matrix (σ̂i,j) for Gaussian (upper triangle
matrix) and t-copula (lower triangle matrix)

industry σ̂7,8 = 0.78 σ̂3,8 = 0.94
λ̂ = 0 λ̂ = 0

σ̂7,8 = 0.78 �nance σ̂3,7 = 0.77
λ̂ = 0.48 λ̂ = 0
σ̂3,8 = 0.93 σ̂3,7 = 0.78 cyclical
λ̂ = 0.69 λ̂ = 0.47 consumer goods

The strongest dependencyoccurs between the industrial sector and the sector of cyclical consumer goods.
Here, we observe the highest σ as well as the highest coe�cient of tail dependence for the t-copula. Further-
more, the copula functions between these two sectors concentratemoremass on themain diagonal compared
to the others.

Table 3 summarizes the log-likelihood values of the Gaussian- and t copula as well as those from the
estimated ghyp copulas, presented in the next section. The log-likelihood of the Gaussian copula is around
634 whereas the t-copula has a value of approximately 728. Based on a likelihood ratio test, we can conclude
that the t-copula �ts the data signi�cantly better than the Gaussian one.

4.2.3 Generalized hyperbolic copulas

The class of generalized hyperbolic copulas contains the class of elliptical copulas if no asymmetries are
taken into account. Therefore, as in the case of the t- and theGaussian copula,wewould expect a considerably
higher log-likelihood than in the former cases. For the asymmetric ghyp copula and theunderlying data setwe
obtain a log-likelihood value of 13566. Again, a likelihood ratio test indicates that the ghyp copula �ts the data
signi�cantly better than the t-copula and, of course, better than the Gaussian copula. Besides this, we also
considered a symmetric ghyp copula, where we restrict γ = (0, ..., 0)T ∈ Rd. In this case, the log-likelihood
is still very much higher compared to the case of the Gaussian and the t-copula, i.e. the log-likelihood equals
8848. Performing likelihood ratio tests leads us to two results. On the one hand, the symmetric ghyp copula
�ts the data signi�cantly better than the Gaussian and the t-copula. On the other hand, the asymmetric ghyp
copula also has a better �t compared to the symmetric one. Hence, we can state that the asymmetry in our
empirical data is signi�cant and therefore should not be neglected.

In the asymmetric case, all components of γ̂ are strictly positive. Therefore, the multivariate distribution
and the copula are skewed towards higher values. Since higher values correspond to higher default rates,
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industry

�nance

cyclical
consumer
goods

Fig. 3. Fitted Gaussian and t-copula together with empirical observations.

this supports the economic intuition of a higher dependency between corporates when economic conditions
become worse. However, as �gure 4 shows, the optical di�erences to the elliptical copulas (lower triangle
matrix) are not as high as expected. Nonetheless, in all three bivariate copulas of the upper triangle matrix of
�gure 4 there is slightly more probability mass concentrated in the upper right corner than in the lower left
one.

4.2.4 (Hierarchical) Archimedean copulas

Another �exible class of copulas is the Archimedean one. Since the ghyp copula has already indicated that a
positive skewed distribution is needed to �t the data, we only consider the Gumbel copula for our analysis. In
fact, after �tting other Archimedean copulas (Clayton and Frank) and the adoption of a goodness of �t test as
discussed by [12], we can clearly reject them. Besides the ordinary Gumbel copula, we also take a hierarchical

Table 3. Rounded log-likelihood values for elliptical and ghyp copulas.

copula log-likelihood
Gaussian 634

t 728
symmetric ghyp 8848
asymmetric ghyp 13566
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cyclical
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Fig. 4. Symmetric (lower triangle matrix) and asymmetric ghyp copula (upper triangle matrix) together with empirical observa-
tions.

construction into account. To estimate the parameters and the nesting structure we used the package “HAC”
by [30]. The package uses a stepwise maximum likelihood approach⁷. Since the estimation of a HAC is not in
the scope of this paper, please refer to thementioned article for further details on the estimation process. The
estimated hierarchical structure is illustrated in �gure 5.

1 basic materials
2 communication
3 cyclical consumer goods
4 non-cyclical consumer goods
5 diversi�ed companies
6 energy
7 �nance
8 industry
9 technology
10 utilities

Fig. 5. Hierarchical Archimedean copula estimated from default data.

7 The function estimate.copula() with method=ML was used.
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The Gumbel copula is positively ordered, which means that a higher parameter value implies a higher
dependency between variables. Therefore, we have the strongest dependency on the lowest level between
cyclical consumer goods and the industrial sector. Indicated by the lowest parameter value, diversi�ed com-
panies have the weakest dependency to all other sectors. The parameter range reaches from θ̂=1.21 to θ̂ =
4.35, which corresponds to values of Kendall’s τ between 0.17 and 0.77. Calculating the empirical values of
Kendall’s τ by means of the default data gives us a similar interval.

If we consider just an ordinary Gumbel copula instead of a hierarchical one, we obtain θ̂ = 1.836. Since
all of the bivariate copulas of a multivariate AC are identical,⁸ choosing the copula parameter is always a
tradeo� between stronger and weaker dependencies. The “average” value for θ̂ corresponds to τ = 0.46.

Again, �gure 6 shows the bivariate copulas for sectors 3, 7 and 8 of the ordinarymultivariate Archimedean
(upper trianglematrix) and thehierarchicalArchimedean copula (lower trianglematrix). In the ordinary case,
all the bivariate copulas coincide. In case of the industrial and the �nancial sector or the �nancial sector and
theoneof cyclical consumer goods, theordinary and theHACarequite close

(
θ̂HAC = 1.96 vs. θ̂ord. = 1.836

)
.

But in theupper right and lower left case (industry vs. cycl. consumer goods) the choice of a common θ is ama-
jor disadvantage, because the dependency measured by the HAC (τ = 0.77) and the observations

(
τ̂ = 0.76

)
are higher than the ordinary Gumbel copula suggests (τ = 0.46).

Because of the speci�c generator function, the copula function is not as symmetric as the Gaussian or
the t-copula. Comparing the Gumbel copula to a symmetric Archimedean one (Frank) and one with inverted
asymmetry (Clayton) bymeans of goodness of �t tests shows that the Gumbel copula is the most suitable one
for our data. The coe�cients for implied upper tail dependency are summarized in table 4. Comparing these
values to those of table 2 we can state that the HAC in all three cases generates a higher upper tail dependence
than the t-copula does. The coe�cient of lower tail dependency of the ordinary and the hierarchical copula
is zero, by de�nition.

Table 4. Coe�cients of upper tail dependency of ordinary Gumbel copula (upper triangle matrix) and HAC (lower triangle ma-
trix).

industry λ̂U = 0.54 λ̂U = 0.54
λ̂U = 0.58 �nance λ̂U = 0.54

λ̂U = 0.83 λ̂U = 0.58
cycl. consumer

goods

4.2.5 The CBV and MCG copula

In a �nal step we also analyze the implicit copulas of the CBV and the MCG model for the given data. Since
we do not have an analytical representation of the copula densities, we have estimated them based on 106

simulated values for each pair of variables. For the CBV model we chose �ve background variables. For the
calibration of the MCG model, we used lemma 4 with ϵ = 10−6. In the upper triangle matrix of �gure 7 we
plotted the bivariate copulas of the CBV model and in the lower triangle matrix those of the MCG model.

Please note that, in contrast to the former copulas, the parametrization of the CBV and the MCG model
was executed on the basis of the empirical VCV structure rather than the likelihood of the observations. In
general, the copulas of the twomodels are fairly similar. The copulas of theMCGmodel show a slightly higher
concentration of probability mass around the ridge of the density function (black curve) whereas the implicit
copula of the CBVmodel is wider. What di�erentiates both copulas from their competitors (e.g. Gaussian or t-
copula) is the large amount of asymmetry. As in the case of the Gumbel copula,mutual higher realizations are
more likely than mutual lower ones. However, the magnitude of this skewness is much greater. In addition,

8 For every Archimedean copula it holds: Cψ(ui , uj,1, ..., 1) = ψ
(
ψ−1(ui) + ψ−1(uj) + 0 + ... + 0

)
= Cψ(ui , uj)
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Fig. 6. Estimated bivariate (hierarchical) Archimedean Gumbel copulas (upper triangle matrix: ordinary Gumbel copula, lower
triangle matrix: hierarchical Archimedean Gumbel copula).

the copulas of both models are not symmetric with respect to the main diagonal. Since the estimation was
done on the basis of theVCV structure,which in general does not cause asymmetry, this is quite an interesting
observation.

Because of the signi�cant asymmetries, we decided to numerically estimate the coe�cients of lower and
upper tail dependence with the help of methods discussed by [5] and [9]. The results, based on 107 simula-
tions, are stated in table 5. We used three di�erent estimators for upper and lower tail dependence. However,
the results are fairly equal. So we state only one value for lower and one for upper tail dependency.

Irrespective of the model (CBV or MCG) the estimated upper tail dependence in all cases is considerably
higher than the lower tail dependence⁹. Whereas for the MCG model λL is clearly positive, the copula of the
CBVmodel seems to be lower tail independent. Besides the signi�cant di�erence between λL and λU , the level
of the upper tail dependence of all pictured copulas is also remarkably high.

9 Please note, that Proposition 3 in [28] cannot be applied to the the factor copula of the CBV model because the gamma distri-
bution has no positive tail index.
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Table 5. Estimator for coe�cients of upper and lower tail dependence for CBV (upper triangle matrix) and MCG model (lower
triangle matrix).

industry λ̂U = 0.91 λ̂U = 0.96
λ̂L = 0.01 λ̂L = 0.05

λ̂U = 0.86 �nance λ̂U = 0.93
λ̂L = 0.11 λ̂L = 0.02
λ̂U = 0.93 λ̂U = 0.9 cycl. consumer
λ̂L = 0.38 λ̂L = 0.13 goods

industry

�nance

cyclical
consumer
goods

Fig. 7. Estimated bivariate copulas of the CBV (upper triangle matrix) and the MCG model (lower triangle matrix) together with
empirical observations.

4.3 Impact on risk �gures

After analyzing the estimation results, now we discuss the impact of the several dependency structures and,
in a �rst step, also of the marginal sector distributions on the risk �gures within a CreditRisk+framework. As
already mentioned in section 3, banks use internal models and the concept of economic capital to allocate
equity capital necessary to cover unexpected losses. Against this background, the variations in risk �gures
can be interpreted as the model risk arising from the choice of a speci�c dependency structure.

Besides the economic capital, we also state the values for expected shortfall. The expected shortfall on
level α, denoted by ESα, is de�ned as the conditional expectation value of the portfolio loss, once the cor-
responding value at risk VaRα is exceeded. It is an alternative risk measure to VaR ful�lling the property of
subadditivity, i.e. for two portfolios A and B it holds: ESα(A) + ESα(B) ≥ ESα(A + B), see [1].
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4.3.1 Marginal sector distributions

Originally, the distribution of each single sector of the CreditRisk+ model was assumed to be gamma. In order
to handle correlated sectors, the distribution changed by construction to a compound gamma distribution
(MCG) or a linear combination of independent gamma distributions (CBV), which in general is not gamma
anymore. Hence, before analyzing the impact of the copula, we have to quantify the e�ect caused by a change
from the model speci�c margins to gamma distributed ones.

Fig. 8. Densities of sector variable 3 in the CBV (green), the MCG (blue), and the original (red) CreditRisk+ model. For other
sectors plots are very similar.

Exemplarily, �gure 8 shows the pdf of sector variable 3 in the CBV (green), and the MCG model (blue) as
well as the pdf of an ordinary gamma distributed random variable (red) with equal mean and variance. The
marginal sector distributions of the CBV and theMCGmodel are more heavily tailed than an ordinary gamma
distribution.Hence,we could expect a remarkable decrease in risk �gureswhenwe switch themarginal sector
distribution back to an ordinary gamma distribution. The e�ect will be stronger for the CBV than for the MCG
model.

Table 6. Impact of marginal sector distribution on risk �gures.

Copula Margins EL SD EC90 EC99 EC99,9 ES90 ES99
CBV comb. Γ 4344 3402 4256 12496 21686 12148 20777
CBV Γ 4346 3400 4544 11364 18224 11857 18366

ratio 1 1 0.937 1.100 1.190 1.024 1.131
MCG comp. Γ 4336 3404 4434 11884 19844 11985 19301
MCG Γ 4356 3413 4564 11374 18204 11881 18377

ratio 0.995 0.997 0.972 1.045 1.090 1.009 1.05

Table 6 summarizes di�erent risk �gures,¹⁰ describing the portfolio loss distribution of the CBV and the
MCGmodelwithdi�erentmarginal sector distributions. In bothmodels, the loss distributions of theCBV/MCG
models are more heavily tailed compared to the models with gamma distributed sectors. On a 90% loss level

10 ECα and ESα denote the economic capital and the expected shortfall (or conditional value at risk) respectively.
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alone, the values for economic capital are lower in the case of the combined Γ distribution than in the case of
an ordinary Γ distribution. The markups for higher quantiles are in the range of 4.5% to 19% depending on
the model and quantile level. Naturally, the impact is stronger for higher quantiles. The original CBV model
also accounts for higher risk numbers compared to the original MCG model. This is consistent with former
studies (e.g. [8]) and the observation of more heavily tailed sector distributions from �gure 8.

4.3.2 Copulas

Finally we analyze how the loss distribution and hence the risk �gures change under copula assumptions.
The results are summarized in table 7. In order to facilitate comparison, we state the values in percent of the
corresponding CBV value. The right tail area of the loss distributions is illustrated in �gure 9.

At �rstwenote that all alternative copulas (independence, Gaussian, t-, ghyp, AC, andHAC) imply a lower
risk than the copulas of the CBV and the MCG model. The pdfs of the portfolio loss of the CBV and the MCG
model are fairly equal, as �gure 9 shows. The risk �gures of the model with independent sectors show that
25% of the portfolio loss standard deviation and nearly one third of the required economic capital (99.9%
level) are due to sector dependencies. The risk reduction e�ect grows with the considered risk level.

Since the Gaussian copula is elliptically symmetric and admits no tail dependence, it produces the sec-
ond lowest risk. In the tail area above the 99% loss quantile, the pdf is strictly dominated by all others. On
average the values for economic capital are 5% to 9% lower compared to the CBV model with gamma dis-
tributed margins. Using a symmetric ghyp copula instead of a Gaussian one, the results are similar. Switch-
ing to a t-copula, the positive tail dependence causes an increase in risk of approximately 2% on the highest
level. The asymmetric ghyp, Gumbel and hierarchical Archimedean copula imply the highest risk among the
alternative copulas under consideration. In contrast to the Gaussian and t-copula, they generate an asymmet-
ric dependency structure. Since the realization of multiple high default rates, in those cases, is more likely
than the realization of multiple lower ones, high losses are also more likely. The resulting loss distribution
is more heavily tailed than those of the elliptical models. Since the pdfs of the asymmetric ghyp, Gumbel
and HAC model are very close, we have plotted just the density of the model with an asymmetric ghyp cop-
ula. Although having no tail dependency, the risk arising from this copula is fairly equal to that arising from
the Archimedean copulas, which admits a positive upper tail dependence. Therefore, we can conclude that,
the risk arising from an asymmetric dependency structure is higher than the risk implied by a copula with
positive tail dependence for this data set.

The highest risk is observed for the copulas underlying the MCG and the CBV model. This is reasonable
because they have the highest upper tail dependence and, in the case of the CBV copula, no lower tail depen-
dence. Furthermore, the probability mass of these copulas is more concentrated around the main diagonal
as �gure 7 shows.

Table 7. Risk �gures for di�erent copulas.

copula margins EL SD EC90 EC99 EC99,9 ES90 ES99,9
CBV Γ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCG Γ 1.002 1.004 1.004 1.001 0.999 100.2 0.998

independence Γ 1,001 0,750 0,739 0,704 0,688 0,820 0,763
Gaussian Γ 1.000 0.947 0.947 0.925 0.918 0.958 0.939
sym. ghyp Γ 0.999 0.943 0.937 0.927 0.933 0.955 0.953

t Γ 1.000 0.949 0.943 0.934 0.941 0.960 0.960
asym. ghyp Γ 1.000 0.953 0.942 0.949 0.960 0.966 0.974
Gumbel Γ 0.999 0.939 0.924 0.944 0.962 0.959 0.975
HAC Γ 1.000 0.945 0.934 0.948 0.957 0.963 0.967
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Fig. 9. Pdf (right tail) of portfolio loss distribution for several copulas.

5 Conclusions
In a credit portfolio model such as CreditRisk+, the choice of a particular copula noticeably a�ects the risk
�gures. Of course, using a Gaussian copula implies the lowest risk. Switching to a skewed copula with or
without positive tail dependence increases the risk. Here the impact of an asymmetric dependency structure
is stronger than the impact of a positive tail dependence. However, the implied copulas of the CBV and the
MCGmodel account for the highest risk. Therefore, from a copula point of view, the MCG and the CBV model
are rather conservativewithin the framework of CreditRisk+.With thehelp of likelihood ratio tests,we showed
that for our data, the magnitude of asymmetry is signi�cant. Di�erent estimators suggest that these copulas
admit a high upper tail dependence, while the lower one is considerably smaller. The di�erence between the
copulas of the CBV and the MCG model is negligible.

Aside from the copula, the marginal distributions of the sector variables also considerably a�ect the risk
�gures. For the CreditRisk+ model, this e�ect is even stronger than the e�ect of the copula. Hence, the di�er-
ence between the CBV and the MCG model mainly arises from the marginal sector distribution.

Sincemodeling the dependency directly on counterparty level is notmanageable, an interesting question
is what the resulting copula on counterparty level would be after the translation of the sector copula via the
link function. But this is a more general topic which we leave open for further research.

A Proof of Theorem 2
Theorem. Let X be a vector of real random variables Xi with arbitrary copula and P (Xi ≥ 0) = 1 for all i =
1, ..., d. Furthermore let aj,i denote the elements of a matrix A ∈ RK×d for some K, d ∈ N>0. Then the ratio of
any two components of the vector Y = AX is bounded below and above. If P (Y` = 0) = 0 it holds:

min
i=1,...,d

{
ak,i
a`,i

}
≤ Yk

Y` ≤ max
i=1,...,d

{
ak,i
a`,i

}
P − a.s.
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Proof. Without loss of generality we set k = 1 and ` = 2. At �rst we concentrate on the bivariate case of X, so
d = 2. For two realizations (x1, x2) of (X1, X2) set q = a1,1x1+a1,2x2

a2,1x1+a2,2x2 . Taking derivatives yields:

∂q
∂x1

= x2 (a1,1a2,2 − a2,1a1,2)
(a2,1x1 + a2,2x2)2

and ∂q
∂x2

= − x1 (a1,1a2,2 − a2,1a1,2)
(a2,1x1 + a2,2x2)2

.

Now we can distinguish between three cases according to the sign of (a1,1a2,2 − a2,1a1,2).
– (a1,1a2,2 − a2,1a1,2) > 0 :

q is increasing with x1 for all x2 > 0 and decreasing with x2 for all x1 > 0. Therefore we get:
a1,2
a2,2

= q (0, x2) < q (x1, x2) < q (x1, 0) =
a1,1
a2,1

.

– (a1,1a2,2 − a2,1a1,2) < 0 :
We have the opposite monotonicity of q compared to case 1. Therefore we get:

a1,1
a2,1

= q (x1, 0) < q (x1, x2) < q (0, x2) =
a1,2
a2,2

– (a1,1a2,2 − a2,1a1,2) = 0 :
q is constant with q (x1, x2) = a1,1

a2,1 =
a1,2
a2,2 .

Analogously, for arbitrary d ∈ N>0 we have:

∂q(x)
∂xi

=
∑

k= ̸i xk
(
a1,ia2,k − a2,ia1,k

)(∑d
k=1 a2,kxk

)2 .

So for every xi the ratio q (x) is strictly monotone. The direction depends on the values of xk, k ≠ i. The set of
the possible bounds is given by

{q (0, ..., 0, xi , 0, ..., 0)}i=1,..,d =
{
a1,i
a2,i

}
i=1,..,d

.

The min and max of this set are the lower and upper bound stated in the theorem.

B Generalized hyperbolic distributions
The family of generalized hyperbolic (ghyp) distributions was originally introduced by [3]. A real valued d-
dimensional random variable X follows a ghyp distribution i� it admits the following stochastic representa-
tion

X d= µ +Wγ +
√
WAY

with µ, γ ∈ Rd, A ∈ Rd×d, Y ∼ N (0, Id) and W ∼ GIG (λ, χ, ψ), where N denotes the multivariate normal
distribution and GIG the generalized inverse Gaussian distribution with parameters:

λ ∈ R, χ > 0, ψ > 0
or λ > 0, χ = 0, ψ > 0 (Γ distribution)
or λ < 0, χ > 0, ψ = 0 (inv. Γ − distribution).

The ghyp family contains a lot of special cases e.g. normal, (skewed) t, variance gammaor the normalized
inverse Gaussian distribution. For more information on this topic as well as the GIG distribution we refer to
[31]. The ghyp family also possesses several di�erent representations. For other parametrizations and ways
of switching between them, we refer to [21]. These authors also created the R-package “ghyp”.

Finally, the ghyp copula is given via the multivariate distribution F and the quantile functions of the
margins Fi, i.e.

C(u) = F
(
F−11 (u1) , ..., F−1d (ud)

)
.
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