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Abstract

Faculty of Applied Computer Science

Institute of Computer Science

Doctor of Engineering (Dr.-Ing.)

Modelling affective states for transportation systems.

by Vincent Karas

This thesis focuses on deep learning for automatic estimation of emotional states.
Computational emotion recognition, which is part of the young and rapidly grow-
ing discipline of affective computing, has been applied to a large variety of fields in
recent years, including education, customer services, and digital health and wellbe-
ing. It has the potential to elevate human-machine interaction, by enabling systems
to sense a user’s emotions and adjust responses accordingly, for a more natural and
intuitive experience. This is especially relevant given the increasing number and
complexity of automated systems that we interact with in our daily lives. How-
ever, challenges still remain for deploying such technology "in the wild" i. e., under
realistic conditions. The nature of emotions is yet not fully understood, and their
expression and perception is nuanced, diverse, and strongly dependent on context
e. g., cultural setting. Deep-learning based models require large amounts of data for
training, but in the absence of an objective emotional ground truth, gathering an-
notations from humans is a labour-intensive and costly process. Furthermore, data
collected in a natural setting is noisy, with varying environmental conditions and
recording quality. Accessing multiple complementary signals e. g., vision and au-
dio can help in this situation. Thus, the following thesis examines the multi-modal
prediction of emotional states in the wild, from clues in the face and voice. Emo-
tions are modelled as value-continuous variables, in particular valence and arousal.
Their fluctuation across time is captured through sequence-based processing. To
summarise the thesis, background of emotions theory and signal processing is pre-
sented first, followed by methods used for training the models. Experiments on
multiple datasets are conducted and discussed, and recommendations for future re-
search given. In terms of core contributions, this work examines different sets of
features based on fine-tuned CNNs and Transformers, and their multi-modal fusion
on challenging, noisy datasets. It analyses in detail the problem of emotion recogni-
tion on non-verbal vocal bursts such as laughter or crying, which are less commonly
studied than speech. It addresses the issue of cross-cultural emotion recognition via
domain adaptation on a multi-cultural dataset, and demonstrates that unlabelled
data can be leveraged to boost recognition performance.
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Chapter 1

Introduction

What if a machine could understand you at least as well as a human observer?

We live in an age of ubiquitous sensors that are constantly generating data, and ad-
vances in computational power that let us leverage that data. Smartphones are just
one example of a multi-sensor computing platform that we interact with in our daily
lives, and they offer a multitude of applications. In the future, the number of highly
sophisticated systems we use can only be expected to increase. While this develop-
ment provides exciting new opportunities, challenges are also to be expected due to
the growing number and complexity of features. Users might get overwhelmed or
stressed by an overabundance of choices, or get frustrated when an intransparent
system is not behaving as expected.

In these situations, an effortless and natural interaction is desirable. This interaction
need not be explicit, in some cases, it might even be beneficial for a system to act
discreetly and proactively, anticipate the needs of the users, reduce their cognitive
load, generate a customised user experience, create a more pleasant environment or
otherwise work towards their wellbeing.

For all of this to work, the machine needs to have some form of understanding of the
person or persons it is faced with. There is an intuitive approach to solving this prob-
lem: Enable the machine to perceive cues that humans rely on for communicating
meaning to each other.

Among the key factors in human interaction are emotions. We are quite skilled at
detecting signs, from face and body posture to tone of voice and choice of words,
and forming from them an impression of how someone is feeling. While this process
happens automatically for us, it is quite challenging to replicate in silico, and to apply
to an actual technical solution. However, as outlined above, the potential benefits of
e.g. an empathetic voice assistant are enormous. A recent review on the topic can be
found in Raamkumar and Y. Yang, 2023.

Thus, this thesis deals with the question of how machines can be provided with
emotional intelligence. It focuses on the detection of emotions and related cognitive
states.

The following sections serve as an overview to the thesis by explaining in more
detail the motivation of the topic, stating the research questions and summing up
the contributions of this work.



2 Chapter 1. Introduction

1.1 Motivation

The main motivation of this thesis stems from the unsolved question of how to de-
sign a system that can accurately detect states related to health and wellbeing, in
particular emotions, in humans. The detection method should be unobtrusive and
based on readily available sensors.

Such a system, as explained above, has the potential to lift human-machine inter-
action (HMI) to a new level. HMI is already moving away from pushing buttons
towards more intuitive forms of communication, like gesture and voice commands,
and facial recognition for authentication (Braun, Weber, and Alt, 2021; Tan et al.,
2022). Likewise, machines now respond to commands in a more natural way, e. g.,
by assistants like Alexa or Siri synthesising voices to respond.

These advances in natural user interaction have been made possible by two fac-
tors: The availability of large amounts of data, and the increase in processing power,
especially in the form of dedicated parallel processing units like GPUs and TPUs.
Together, they make deep learning techniques viable, which allow machines to ex-
tract hidden meaning from data through multilayered neural networks. Deep learn-
ing has revolutionised many fields, with algorithms achieving near-human or even
super-human performance on a wide range of tasks.

However, while deep learning has been used in recent years to advance digital
health and automatic emotion recognition, those are not solved problems. For one,
both health and wellbeing are inherently sensitive, since they rely on humans as
subjects of analysis and reveal personal attributes about them. This raises issues of
privacy in regards to the acquisition of the data and where it is processed, as well as
who has access to the results. There is also the question of explainability. Deep neu-
ral networks are generally black boxes to human observers, which makes validating
that they do what their designers intended difficult. These models may fail on edge
cases or incorporate biases in the data into their decision-making.

Another complicating factor is that emotions and other cognitive states are hard
to quantify and highly context dependent, requiring knowledge of psychological
models during the data acquisition and annotation process. High-quality data can
be expected to be scarce due to the cost of collecting it. This impacts model design
since state of the art deep learning models rely on large datasets for training. When
it comes to deploying a model into an actual use case, it is required to work well in a
realistic setting, not just in a lab environment. The type of data encountered in such
a setting provides an additional challenge, both in terms of noisy input signals and
due to the fact that people in uncontrolled environments can be expected to show
more nuanced and subtle behaviour.

There are many possible applications for systems that can automatically detect health
and wellbeing. The research for this thesis was conducted in cooperation with the
BMW Group. As vehicles become more sophisticated, autonomous, and connected,
attention shifts from the exterior to the interior. Here, the focus is historically on the
driver, with applications like driver monitoring for attentiveness, stress and fatigue
detection (Koesdwiady et al., 2017; J. Wang, Chai, et al., 2022). These are primarily
motivated by driving safety. However, there is a growing trend towards information
and entertainment ("infotainment") integration in the car, which places more focus
on the passengers (Murali, Kaboli, and Dahiya, 2022). Thus, in-cabin sensing has to
expand its scope towards them. This can be done through cameras that monitor the
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entire cabin, and microphone arrays capable of identifying speakers. In addition,
pressure or capacitance sensors can be integrated into the seats, or smart wearables
like Apple Watches can be wirelessly coupled to the car.

Vehicle manufacturers are following the trend towards more intuitive interaction
methods (Breitschaft, Pastukhov, and Carbon, 2021; Tan et al., 2022). Gesture control
and speech control are established features in premium cars, e. g., the Mercedes EQS
and the 7 series BMW. The same sensors can be used to sense passenger states. The
car interior can then adapt itself to enhance the wellbeing of its occupants, through
different lighting, UI themes, sounds, and even scents. Vehicles are also commonly
used by the same persons over extended periods of time. Thus, an intelligent sys-
tem may even learn preferences of its users and anticipate their intent for seamless
interaction and a comfortable and engaging experience.

However, the vehicle interior is also a challenging environment. Lighting condi-
tions can change widely and rapidly, e. g., when driving under trees or into a tunnel.
Depending on camera placement and head movements, only parts of faces may be
visible. Audio may be noisy, or not present at all, when a solitary driver is travel-
ling in silence. The car may be driven anywhere in the world, with passengers of
any culture of ethnicity, speaking different languages. Onboard computing power is
limited due to cost factors, and options to shift processing into the backend may be
limited or impossibly depending on the use case, due to link latency, bandwidth re-
strictions or data protection regulations. It is therefore important to develop systems
that can operate reliably and efficiently with noisy and diverse data.

1.2 Research Questions

This thesis seeks answers to four main research questions:

RQ–1: How can continuous emotion be recognised on multi-modal data in the
wild? In particular, which features, fusion strategies and temporal mod-
elling schemes are beneficial?

RQ–2: How can emotions be recognised in a cross-cultural setting?

RQ–3: How can data with missing or incomplete labels be used to boost emotion
recognition performance?

RQ–4: How can emotions be recognised when commonly used cues like facial ex-
pressions or speech are unavailable? Specifically, what methods can recog-
nise affect from non-verbal vocalisations?

Research question RQ–1 is motivated by the challenges of emotion recognition on
realistic data, as well as the complexity of emotions themselves. As described in
section 1.1, data collected in the real world can be expected to be noisy and diverse,
hence it is beneficial to rely on multi-modal cues for complementary information
(Poria, Cambria, et al., 2017). In this thesis, the focus will be on the visual and audio
modalities, as they are readily available via ubiquitous cameras and microphones
and allow for contactless, unobtrusive measurement. Furthermore, emotions are
not fixed quantities, but dynamic concepts. They vary across time, hence this thesis
will treat emotion recognition primarily as a sequence-to-sequence prediction prob-
lem. Emotions are also not treated as distinct categories that are mutually exclusive.
Instead, this thesis focuses on modelling emotions as continuous signals that vary in
intensity.
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RQ–2 is motivated by the assumption that emotional displays and experiences vary
by cultural setting, hence a model trained to recognise emotion on one culture will
suffer a loss of performance on others. This thesis studies how emotion prediction
models can adapt to data from different cultures.

Research question RQ–3 is motivated by the relationship between data and labels.
While collecting rich and diverse data in large quantities is possible, e. g., from user-
generated content online or from a fleet of vehicles, annotating that data in terms
of emotional content would be prohibitively time-consuming and expensive. High-
quality emotion labels require multiple human reviewers to examine the data (Kos-
saifi et al., 2019). Hence, it is desirable to develop models that can use not only the
comparatively small amount of samples that will be annotated in terms of emotions,
but also the much larger quantity that contains emotional displays or context infor-
mation, without added labels. This leads to a representation learning problem for
features that are discriminative of the emotion recognition task (Bengio, Courville,
and Vincent, 2013).

Research question RQ–4 is motivated by the idea of analysing the audio modality
as a rich source of emotional clues beyond speech. Affect may be expressed in the
form of bursts of laughter, crying, grunts, etc. These non-verbal vocalisations may
occur isolated or embedded into speech, their analysis forms a subset of the field
of Computational Paralinguistics (CP) (Batliner, Hantke, and B. W. Schuller, 2020). For
this thesis, multi-task recognition of the type and emotional content of isolated vocal
bursts will be investigated.

1.3 Contribution

This work makes several main contributions:

C–1: A set of experiments aimed at discovering computationally efficient models
to predict continuous emotions on a challenging, noisy in-the-wild emotion
dataset is presented and the method’s advantages and disadvantages discussed.

C–2: A Transformer-based approach for predicting emotions on a multi-cultural
dataset of short non-verbal vocalisations is presented, and the results of the
multi-task experiments are analysed.

C–3: An analysis on cross-cultural continuous emotion prediction on a multi-modal
dataset of dyadic conversation videos is presented. Methods for leveraging
additional unlabelled in- and out-of-domain data via semi-supervised adver-
sarial learning are contrasted with a supervised baseline.

Contribution C–1 is targeted at RQ–1. It uses various uni-modal and multi-modal
model architectures with different feature choices for predicting sequences of value-
continuous affect. Its findings and parts of the resulting models are re-used in C–3.

Contribution C–2 mainly addresses RQ–4. Unlike the other contributions, it is based
on a uni-modal (audio-only) dataset. Emotions are still modelled as value-continuous
as in C–1, but here a much richer set of annotations is available, which are lever-
aged for multi-task learning. The dataset also includes four distinct cultures with
specific annotations, hence this analysis also contributes to RQ–2. Furthermore, by
leveraging a large model that was pre-trained in an unsupervised manner on tasks
unrelated to emotion recognition, it also makes some contribution to RQ–3.
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Contribution C–3 addresses RQ–1 by performing continuous emotion prediction on
a multi-modal dataset. Its main focus however is on RQ–2, analysing the impact of
cross-cultural domain shift on model performance. It also addresses RQ–3, by using
data from cultures that do not have emotion labels, and by restricting the amount of
labels available to the models for the cultures that are annotated.

The rest of this thesis is structured as follows:

In chapter 2, emotion theory that forms the background of this work is established,
the field of affective computing that this thesis belongs to is introduced, and an
overview on the state of the art in research and industry is given.

Chapter 3 describes the methods used in this thesis in terms of dataset properties,
model architectures, training schemes and evaluation.

For each of the contributions, the corresponding experiments and results are pre-
sented in chapter 4.

In chapter 5, those experimental results are then discussed in turn and interpreted
regarding the research questions of the thesis.

Opportunities for future work and an outlook on applications focused on next-
generation vehicles is given in chapter 6.

Finally, chapter 7 concludes this work.
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Chapter 2

Background and Theory

This chapter provides an overview on the theoretical foundations of the thesis. It
examines psychological concepts of emotions, the theories behind them and their
competing viewpoints. Then, it introduces the field of Affective Computing which
combines elements of psychology and computer science. Current trends and chal-
lenges are summarised, and key aspects regarding data collection and processing
are discussed. This is followed by an overview of the state of the art.

2.1 Emotion Models and Theories

In order to recognise and quantify emotions in a computational framework, it is
first necessary to have a theory on what constitutes an emotion. However, despite
extensive research into the topic, the nature of emotions remains a matter of open
debate among psychologists. This section presents a number of influential concepts
and theories.

2.1.1 Categorical Emotion Models

One of the most straightforward approaches to modelling emotions is to divide them
into categories, with each category representing an identifiable emotion. This raises
the question which emotional experiences should count as a category. A popular
suggestion has been the proposal that there are a small number of fundamental emo-
tional states. These are frequently referred to as "basic emotions" or the "common
view of emotions" (Barrett, 2016).

There are several theoretical approaches to what makes an emotion a basic one. A
popular line of argumentation is that emotions are biological in origin, and that each
basic emotion is linked to a distinctive physiological display, explained to be evo-
lutionary vestiges of behaviour once advantageous for survival. From this point of
view, basic emotions are hardwired into the body and possess a unique signature
from which they can be recognised.

In particular, early research in this direction focused on facial expressions. Tomkins,
1962 spoke of "affect programs" and considered the face as the primary location of
affect display. Ekman and Friesen, 1971 investigated facial expressions that are dis-
played and recognised across different cultures, and identified six categories of basic
emotions that have become known as the "Big 6", namely, happiness, sadness, fear,
anger, disgust and surprise.

Which emotions are basic and how many of them there are remains undecided. Ek-
man and Cordaro, 2011 attempts to define the concept of basic by listing 13 criteria,
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and proposes several additional emotions that may fulfil (most) of them, includ-
ing positive emotions like wonder and excitement and negative emotions like guilt
and shame. Izard, 2011 names interest, enjoyment/happiness/contentment, sad-
ness, anger, disgust and fear as "first-order emotions", while being ambivalent on
contempt. A first-order emotion is defined as requiring no higher cognitive func-
tions and having a specific feeling component that is fixed by evolutionary legacy
and cannot be learned. Levenson, 2011 considers enjoyment, anger, disgust, fear,
surprise, sadness as basic emotions. An even more diverse picture appears when
other theorists are included, as summarised in Ortony, 2021. The discrepancies be-
tween the lists of basic emotions proposed by different theorists, or even by the
same theorist over the course of their career, point to a wider problem: There is still
no unified concept of what constitutes an emotion, and how emotions differ from
other cognitive states. In this light, Ortony, 2021 suggests that the attempts to clas-
sify emotions into basic and non-basic may be meaningless, and more fundamental
issues should be addressed.

There have been extensive criticisms and defences on the subject of basic emotion
theory. While some of these arguments concern the definition of being basic and
which emotions do or do not qualify for it, the underlying assumptions of emotion
categories and the methodologies used for justifying them have also been criticised.

The idea of the universality of basic emotions has been questioned due to the vague-
ness of the emotion concept and the language that describes it. Each language lex-
icalises a different set of emotions, so some feelings may not be translatable cross-
culturally. One logical approach to choose candidates for basic emotions would be
to start with salient concepts whose words appear frequently in the respective cul-
ture. Previous studies have usually selected candidates from a list of English words,
with the assumption that these words represent universal concepts. However, this
modelling approach risks incorporating biases of the researchers (Ortony, 2021).

2.1.2 Dimensional Affect Models

An alternative to thinking about emotional states in terms of categories is to model
them in terms of affective dimensions, i.e. as a continuously varying vector in a
space spanned by one or multiple axes. Each axis represents a constituent prop-
erty of the affect. Two broadly identifiable dimensions are pleasure and activation,
which describe the subjective wellbeing and mobilisation of energy in the experi-
ence, respectively (Russell and Barrett, 1999). These dimensions appear under var-
ious names in the literature, often as combinations of opposing terms denoting the
ends of the axis, e.g. pleasure-pain and activation-deactivation. In this thesis, pleasure
will be called valence and activation will be referred to as arousal.

If two dimensions are used, the resulting model is a circular space. Russell, 1980
introduced a circumplex of affect, in which affective experiences fall into different
parts of the circle and the neutral state is at the center.

It has been argued that the circumplex model reflects the core affect, which is an ever-
present affective state tied to the underlying neurophysiological state. Core affect is
unspecific, not directed at any particular target. It captures non-emotional states like
sleepiness, but it may miss differences between emotions, e.g. negative feelings like
fear and anger that share similar core affect (Russell and Barrett, 1999).
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In order to extend this model and better differentiate between emotions, additional
affect dimensions have been proposed, such as dominance (Russell and Mehrabian,
1977). These dimensions add contextual information related to the causes, conse-
quences and cognitive appraisal of emotions (Russell and Barrett, 1999).

2.1.3 Hybrid Models

It is also possible to model emotions as a hybrid form between categorical and di-
mensional variation.
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FIGURE 2.1: Plutchik’s Wheel of emotions, illustrated as unwrapped cone surface. 8 pri-
mary emotions (joy, sadness, anger, fear, disgust, acceptance, anticipation and surprise)
are arranged in opposing pairs and vary in intensity, increasing towards the centre (the

base of the cone).

Plutchik and Kellerman, 1980 proposed a model that is frequently referred to as
"Wheel of Emotions". It is based on 8 primary emotions, which are arranged as 4
pairs of polar opposites: joy-sadness, acceptance-disgust, surprise-anticipation, and
fear-anger. Each primary emotion may vary in intensity, e.g joy going from serenity
to ecstasy. In addition, Plutchik modelled secondary and tertiary emotions, such as
love and guilt, to arise from combinations of the primary emotions. Plutchik’s model
is usually depicted as a 3D cone or as unwrapped cone surface flattened in 2D. The
two-dimensional version is illustrated in fig. 2.1.
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2.1.4 Semantic modelling of emotions

In order to overcome the limitations of previous approaches in modelling emotions,
statistical methods have been proposed. The goal is to discover insights into the
semantic space used to describe emotional experiences, and where those experiences
fall within it. A. S. Cowen and Keltner, 2017 showed 2185 videos chosen to evoke
34 common emotional categories to test subjects and analysed their self-reported
responses, which included both categorical ratings and free discussions. They found
evidence of 27 variants of emotional experiences. While categorical labels were more
useful in capturing the self-reported states than affective dimensions, the discovered
categories were fuzzy, linked to each other by smooth variations in the gradients of
affective dimensions.

Although the connection between the internal, subjective emotional state and the
self-reported state may depend on additional factors, the computational approach
provides interesting evidence that the emotional landscape is more complex than
previously thought. A. S. Cowen and Keltner, 2017 note that the smooth gradients
between categories cast doubt onto the assumption of prototypical emotion finger-
prints proposed by basic emotion theory. However, this finding is more in agree-
ment with the final theory that will be introduced here, the theory of constructed
emotions.

2.1.5 Theory of constructed emotions

The theory of constructed emotions (Barrett, 2016) attempts to explain emotions
based on recent developments in neuroscience. These include neuron degeneracy i. e.,
the finding that varying neuron populations contribute to a task, and the predictive
coding hypothesis, where the brain creates simulations of external and internal sen-
sations in order to efficiently allocate resources. The theory argues that emotional
experiences are constructed from concepts, which are representations learned by the
brain as it matches simulated and actual sensory input.

This framework has some interesting implications, both for understanding percep-
tion and for analysing emotions. Barrett et al., 2019 criticise traditional psychological
concepts of basic emotion categories associated with specific brain regions and body
cues as reductive and rooted in experiments that replicated biases. Instead, they
argue that emotions are diverse and nuanced.

The emotion theories outlined above lead to the following premises for this thesis:

Emotions are highly complex and still not fully understood, they are diverse and
context-dependent and should be modelled as continuous variables. Furthermore,
models should be based on data that is collected in the wild and preferably multi-
modal.

The remainder of the thesis will show how theory is translated into computational
practice.

2.2 Affective Computing

This section introduces the reader to the field of Affective Computing, which forms
the technical background of this thesis. It touches upon the origins of this relatively
new discipline, and presents applications, ongoing trends and challenges.
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2.2.1 History

Affective computing is an evolving interdisciplinary field that combines elements of
computer science, psychology, but also physiology and paralinguistics, among oth-
ers. The term was coined in 1995 by Rosalind Picard, who defined it as "computing
that relates to, arises from, and deliberately influences emotion" (R. W. Picard, 2010).
In the two and a half decades since its inception, the field has developed rapidly,
from initial scepticism towards being a mainstay in computer science conferences
and having its own IEEE journal. It has been an early adopter of popular machine
learning algorithms such as recurrent neural networks, and has now matured to a
point where numerous companies are developing affective solutions for mainstream
use (B. W. Schuller, 2018; B. W. Schuller, R. Picard, et al., 2021). Several application
scenarios for this technology will be presented in the next subsection.

2.2.2 Applications

Affective Computing has a wide range of applications. It has the potential to trans-
form HMI, as the machine becomes capable of reacting more adequately to the hu-
man’s current emotional state. It could then either mirror the feelings it detects,
which would be desirable for a cheerful and engaging conversation with a voice as-
sistant, or, in the case of negative emotions, modify its behaviour to guide a person
towards a more positive state.

Aside from improving the user experience in HMI, affective computing also has po-
tential for beneficial use in a healthcare and wellbeing setting, by observing people
and detecting the onset of depression or early signs of burnout, or assisting in the
diagnosis of autism in children (B. W. Schuller, R. Picard, et al., 2021).

Affective computing can also be applied in a business analytics setting, helping com-
panies improve their business models. For instance, it can be used in call centres to
rate the emotional state of a caller and offer them better service. It could also be used
to monitor conference calls and provide feedback to the parties afterwards. Further-
more, it can be applied to product reviews of customers or professional reviewers,
allowing a manufacturer to gather valuable data on the emotional impact of their
design choices and identify issues.

From an automotive perspective, affective computing can be applied in numerous
ways both inside and outside the vehicle. Driver monitoring is already used to de-
tect sleepiness and distraction from eye movements, and it can be extended towards
negative states like stress and aggression (Zepf et al., 2020). Mitigating negative
feelings in the driver helps prevent road rage and increases driving safety (Jeon,
2015). In addition, vehicles are moving towards a more natural, intuitive interac-
tion with their passengers. Voice-based control of functions like making calls and
entering destinations into a navigation system are already common. Future emotion
aware vehicle assistants that have a holistic understanding of the passengers’ states
and the vehicle cabin could adjust the user experience to improve wellbeing (Vögel
et al., 2018). This could be achieved by dynamically changing display UIs, mood-
dependent interior lighting, the voice of the assistant sounding more empathetic,
and adjustment of the conversation flow to avoid stress and irritation (Karas, D. M.
Schuller, and B. W. Schuller, 2024).
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2.2.3 Challenges

Despite strong recent advances, challenges remain in the field of affective comput-
ing. This subsection gives an overview of the major issues.

One significant challenge lies in developing systems for use "in the wild", i. e., sys-
tems that generalise well to a wide range of scenarios that can occur in a real-life
application. As discussed in section 2.1, naturalistic emotional displays can be nu-
anced and varied, making an accurate estimation of the underlying emotional state
difficult. The context in which these emotions occur can also vary significantly. In
addition, the signals captured by sensors in real life may be of lower quality, noisy, or
even missing occasionally, compared to recordings from a controlled environment.
All these factors make it difficult to design and validate affective systems that can
transition from a lab into nature.

A major factor in driving affective computing forward has been the adoption of deep
learning methods (B. W. Schuller, 2018), as this has enabled the development of more
powerful models. However, deep learning comes with its own set of issues. The
first is the need to collect large amounts of data for training, as the model will need
to see enough samples to capture the underlying distribution. If training and test
data distributions differ, performance may decrease (Pan and Q. Yang, 2010). A
related issue of large datasets is the rising cost of annotation, especially if the label
is hard to obtain, as is the case with emotions. Furthermore, the larger models used
for deep learning may require significant computational resources for both training
and inference. Constraints of the end user hardware may require optimisation or
choosing models with a smaller footprint.

Furthermore, deep learning presents issues in terms of interpretability and trans-
parency. Algorithms based on deep networks are usually inscrutable "black boxes"
whose decisions cannot be understood by humans. This is particularly worrisome
for systems that observe human physiology or behaviour, as is the case with affective
computing. Thus, there is a drive towards explainable AI (XAI), see section 6.1.4.

On a related note, affective computing also raises issues of privacy, given that it uses
personal data. It is essential to protect the data of people analysed by this technology,
and prevent it from being shared with other parties without their consent. This can
be done by either keeping the algorithms running on a local device and not sharing
data with a backend server, or by anonymising data, see section 6.1.1, section 6.1.2.

However, the personal nature of affective computing also raises the opportunity for
adaptive, personalised systems that learn the preferences of a user, by running for
extended periods of time on a device that the user regularly interacts with, e.g. a
smartphone or a car. Given that emotions are inherently subjective, this type of lon-
gitudinal learning may help improve the performance of affective computing signif-
icantly.

2.3 Signal Modalities

This section introduces commonly used signal modalities in Affective Computing.
Of these, audio, visual and text account for the majority in the literature (Poria, Cam-
bria, et al., 2017). Audio and visual features form the backbone for the experiments
conducted in this thesis. Textual and physiological signals are out of scope, but are
also presented here for completeness.
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FIGURE 2.2: Example visualisation of a short clip of human speech as spectrogram, with
power converted to decibel and linear frequency scaling.

2.3.1 Audio

Audio analysis for the purpose of affective computing primarily focuses on the voice
as carrier of emotional meaning, although some works also attempt to infer emo-
tional states from music or other sound sources.

The choice of appropriate features to extract from raw audio is an ongoing research
topic in the field of Speech Emotion Recognition (SER). Features should be robust
against noise and language or cultural differences (B. W. Schuller, 2018). A num-
ber of popular features is described here.

The Mel Spectrogram is obtained from the audio signal by first computing the power
spectrogram (see fig. 2.2) and then multiplying it with a Mel-frequency filter bank. In
order to obtain the power spectrum, a Short-Term Fourier transform (STFT) is applied
to the audio signal and the amplitude of the complex result is squared. In addition,
the power may be converted to decibels and lower levels cut off to reduce noise.
While the STFT is linearly scaled, the Mel scale is based on human hearing capa-
bility, which is more sensitive to changes in pitch at lower frequencies. A Mel filter
bank is commonly computed as a series of overlapping triangular band-pass filters
spaced linearly across the desired frequency range. As the frequency increases, fil-
ters become lower and wider.

Mel-frequency cepstral coefficients (MFCCs) are a set of short-term descriptors that en-
code the vocal timbre (Eyben, Scherer, et al., 2016). They are obtained from the
logarithmic Mel spectrogram by applying a discrete cosine transform. MFCCs and
other low-level descriptors form the extended Geneva Minimalistic Acoustic Param-
eter Set (EGEMAPS), a standardised set of 88 parameters selected by Eyben, Scherer,
et al., 2016. The much larger Computational Paralinguistics Challenge (COMPARE)
feature set, named after the long-running challenge of the same name (B. W. Schuller,
Batliner, et al., 2021), contains 6373 features. These handcrafted feature sets can be
extracted with the OPENSMILE toolkit 1. In SER, low-level features like MFCCs are

1https://www.audeering.com/research/opensmile/
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frequently used, which are then processed with encoder networks such as 1D-CNNs
(Chatterjee et al., 2021).

There is a trend towards deep feature extraction from audio. The AUDEEP toolkit 2

(Freitag et al., 2018) uses spectrograms as input for recurrent autoencoders, whole
latent representations are then used as features. DEEPSPECTRUM 3 (Amiriparian,
Gerczuk, et al., 2017) instead treats spectrograms as a computer vision problem by
processing them with pre-trained 2D-CNNs. This approach has been proven effec-
tive across a range of audio analysis tasks (Amiriparian, Hübner, et al., 2022).

While hand-crafted features and pre-trained models feature extractors have their
merits, some works have instead opted for learning directly from the audio using
end-to-end learning. Shallow 1D-CNNs followed by LSTM layers are a popular
architecture for end-to-end continuous emotion recognition (Trigeorgis et al., 2016),
(Tzirakis, J. Zhang, and B. W. Schuller, 2018), and end-to-end emotion classification
(Rizos et al., 2020). Shallow 2D-CNNs are also shown to be useful for learning local
features on spectrograms (J. Zhao, Mao, and L. Chen, 2019).

Unsupervised learning has also been employed for SER, e. g., through fuzzy clus-
tering (Rovetta et al., 2020). More recently, the Transformer models popular in NLP
have been applied to audio analysis with architectures like WAV2VEC2 (Baevski et
al., 2020), including for SER (Wagner et al., 2023).

In terms of dimensional emotion recognition, the voice has been shown in the liter-
ature to be particularly effective in determining the arousal dimension, with lower
performance for valence (Srinivasan and Martinez, 2018).

2.3.2 Visual

In the visual domain, analysis of affect is mostly based on the face, although some
works also investigate body posture (K. Wang et al., 2018).

Facial Action Units (FAUs) are descriptors of facial muscle activity defined in the Fa-
cial Action Coding System (FACS) pioneered by Ekman and Friesen, 1978 and revised
in 2002 by Ekman, Friesen, and Hager, 2002. The underlying idea is that any facial
configuration can be described by a combination of muscle contractions stretching
the skin above them, and a trained human can then annotate images accordingly.

The trend towards deep learning is also present in the vision domain, with many
works extracting features via 2D-CNNs, including popular computer vision archi-
tectures e. g., ResNet (He et al., 2016), Inception (Szegedy et al., 2017) or squeeze-
and-excitation networks (SENets) (Hu et al., 2020). In order to compensate for the
relatively small dataset sizes in affective computing, transfer learning is used, with
the CNNs usually being pre-trained for facial recognition on datasets like VGGFace2
(Cao et al., 2018). Recently, vision Transformers (Dosovitskiy et al., 2020) have also
received attention (Roka and Rawat, 2023; Panlima and Sukvichai, 2023).

Information extracted from the face has been shown to be particularly useful for
predicting the valence dimension (Poria, Cambria, et al., 2017; Ringeval, B. Schuller,
Valstar, Cummins, Cowie, and Pantic, 2019).

2https://github.com/auDeep/auDeep
3https://github.com/DeepSpectrum/DeepSpectrum
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2.3.3 Text

Linguistic features capture semantic and syntactic content of language and are ob-
tained from tokenised text. Natural language processing (NLP) mainly relies on
deep embeddings generated by Transformer style models. In particular, Bilingual
Encoder Representations from Transformers (BERT ) (Devlin et al., 2019) caused ma-
jor breakthroughs in NLP. It is based on unsupervised pre-training with two tasks,
namely, prediction of masked tokens (Cloze task) and of the next sentence. The re-
sulting network can be fine-tuned towards the desired downstream task. Recent
advances in AI have been driven by large language models (LLMs) e. g., ChatGPT.

For dimensional emotion recognition, text is particularly effective at determining the
valence dimension (Wagner et al., 2023).

2.3.4 Physiological

Physiological signals are particularly interesting for applications in healthcare and
wellbeing, such as stress detection from elevated blood pressure. The need for easy,
low-cost sensing has inspired research into contact-less methods. For instance, to
record cardiac activity, the passing of the blood volume pulse (BVP) across the body
can be measured visually. Photoplethysmography (PPG) aims to detect changes in
the reflective properties of tissue due to the BVP. Visible, green wavelengths (500-
600 nm) are particularly useful for this method, due to a combination of skin pene-
tration depth and the optical characteristics of haemoglobin (Allen, 2007). Similarly,
blood oxygen saturation (SpO2) can be measured by RGB cameras due different light
absorption of oxygenated and deoxygenated blood (McDuff, 2023). Breathing rate
is another physiological signal that can be captured without contact by detecting
micro-motions via camera or radar.

However, since specialised sensors are required to capture many physiological sig-
nals with high accuracy, data is more difficult to collect compared to audio and
video. Several commonly used sensing methods are briefly described below.

Muscular Activity

The cardiac cycle can reveal a considerable amount of information, e. g., stress level
(Lanatà et al., 2015) or underlying medical conditions. A common measurement
method is Electrocardiography (ECG), which measures the electrical activity of the
heart muscle via electrodes on the skin. The ECG results in a series of characteristic
peaks, from which the heart rate (HR) can be derived. Changes in heart rate over time
can be expressed as heart rate variability (HRV). Similar to the ECG, the excitation of
other muscles in the body can be measured via Electromyography (EMG). Signals are
obtained with skin-mounted electrodes or needles (for greater accuracy). EMG has
been used to estimate the driver state (Paredes, Ordonez, et al., 2018; Lv et al., 2021).

Central Nervous System Activity

Electrical activity inside the brain can be measured via Electroencephalography (EEG),
which places multiple electrodes around the subject’s head. The electrodes can
be wet for improved conductivity, but dry electrode headsets have been proposed
for greater comfort while still providing sufficient signal quality (Hinrichs et al.,
2020). EEG is a popular signal in research on intelligent vehicles, used for estimat-
ing drowsiness (Zhu et al., 2021), attention (Guo et al., 2018), stress (Kim et al., 2022),
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personal preferences (Ling et al., 2021) and emotions (C. Park, Shahrdar, and No-
joumian, 2018).

Electrodermal Activity

Through electrodes that measure changes in skin conductance, the Galvanic Skin Re-
sponse (GSR) can be determined. GSR is a popular signal in affective computing for
estimating stress (Stappen, Meßner, et al., 2021).

2.4 Multi-modal Fusion

Next, popular schemes to combine the signals described above will be introduced.
Multi-modal fusion has been shown to be useful for improving the predictive power
of a model, and unsurprisingly, there is a trend in affective computing towards mul-
timodality (Poria, Cambria, et al., 2017).

2.4.1 Early Fusion

Early fusion, also commonly referred to as feature level fusion, combines the features
extracted from various signal modalities into a feature vector and trains the model
on it. It is advantageous in that correlations between modalities can be used at an
early stage, which can improve task performance, but disadvantageous in that all
features have to be present in a synchronised format (Poria, Cambria, et al., 2017).
In addition, concatenation of features may lead to very high-dimensional vectors,
causing curse of dimensionality issues in training (H. Chen, Jiang, and Sahli, 2020).

2.4.2 Late Fusion

In late or decision-level fusion, each feature is used to train a separate classifier, and
their decisions are then combined into the final score, e. g., by majority voting, weighted
sum or weighted product. Advantages of late fusion are simple implementation, the
ability to optimise each modality separately, and robustness against missing sig-
nals. However, there are also disadvantages. Learning different classifiers for each
modality may become time-consuming (Poria, Cambria, et al., 2017), even more so
if multiple feature sets are extracted from a modality. In addition, late fusion only
combines the multi-modal information at the decision stage, thus is cannot exploit
cross-modal correlations directly like early fusion does.

2.4.3 Hybrid Fusion

Hybrid fusion attempts to combine the advantages of both feature-level and decision-
level fusion. It achieves this by concatenating features at the input level to make use
of cross-correlations and also combining the scores of individual classifiers at the
decision stage. Model-level fusion is a term referring to fusion techniques that make
use of correlations between modalities, where information is exchanged at multiple
levels within the model (Poria, Cambria, et al., 2017; Han et al., 2021). This defi-
nition covers a wide range of algorithms, such probabilistic combination through
Bayesian inference and Hidden Markov Models (HMMs), explicitly modelling the
correlations as in tensor fusion (Zadeh et al., 2017) and cross-modal attention mod-
ules (Tsai et al., 2019).
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Now that the signal modalities and methods to combine them have been established,
the next section will cover the topic of datasets.

2.5 Datasets

High-quality datasets are the prerequisite for model development. The popularity
of deep learning has driven the demand for increasingly large corpora. This section
introduces strategies for data collection and annotation in affective computing, while
listing some datasets as examples.

2.5.1 Data Collection

Data collection refers to the process of gathering recordings of subjects, either under
controlled conditions in a laboratory or under varying conditions in the wild. This
data needs to contain the desired emotional behaviour. Various solutions have been
proposed, which can be grouped into acted, induced and spontaneous displays of
emotion (Kossaifi et al., 2019).

Acted

A straightforward approach to recording emotions is to instruct subjects to act, i. e.,
to perform a script with different emotions or varying intensities of the same emo-
tion. An example of an acted dataset in a lab setting is IEMOCAP (Busso et al., 2008).
It contains utterances annotated with arousal, valence and categorical emotions.

Acted data can also be collected from movies or TV shows, e. g., the MELD dataset
(Poria, Hazarika, et al., 2018) based on Friends. MELD is composed of dialogue clips
from the show, annotated with categorical emotions.

Yet another option is to let the actors record themselves in the wild for increased
data diversity, as in the HUME-VB dataset (Baird, Tzirakis, Gidel, et al., 2022), which
contains audio bursts annotated with continuous emotions.

A disadvantage of the acted approach is that emotions expressed in real life situa-
tions may be more subtle and context-dependent, see 2.1. Thus, it has been argued
that an acted emotion will always be missing something, and a realistic database
should capture genuine emotional behaviour (Martin et al., 2006). This leads to the
idea of induced datasets.

Induced

Induced datasets will usually include some form of elicitation protocol to get the
subjects into the desired emotional state. Elicitation can either be done through an
external stimulus like a piece of music or a short film, or by asking the study par-
ticipant to recollect an emotional experience from their past. Once the subjects are
thus primed for emotional display, the recording begins. In addition, subjects can be
given specific tasks that are designed to elicit emotional responses. Another option is
to have an emotional stimulus happen during the recording through a conversation
agent or unforeseen events, such as UI malfunctions or bugs.

Examples of induced datasets are enterface (Martin et al., 2006), which used short
stories for elicitation, and SEMAINE (McKeown et al., 2012), which relied on conver-
sational agents controlled by a Wizard of Oz. enterface used categorical annotation
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for 6 emotions, while SEMAINE is annotated continuously in 5 affect dimensions
(valence, activation, power, expectation and intensity).

Spontaneous

Spontaneous human interactions can be considered the most desirable type of data
to record for affective computing, since they can be expected to include rich displays
of naturalistic emotions (Kossaifi et al., 2019). However, by its nature this type of
data is challenging to acquire in the wild.

Examples of spontaneous datasets include SEWA (Kossaifi et al., 2019) and RECOLA
(Ringeval, Sonderegger, et al., 2013), both of which contain free conversations on
subjects designed to elicit emotion (advertisements and survival in a hostile envi-
ronment, respectively). Both are continuously annotated with arousal and valence.

An alternative approach to setting up spontaneous interactions as part of a study
is to gather data online. Scraping videos from platforms like YouTube is a viable
strategy to gather large datasets, given the proliferation of user-generated content.
However, it faces the issue that motivated acted or induced collection, i. e., the need
to ensure that the data contains emotional behaviour. A possible mitigation strategy
is to filter content based on tags. Spontaneous emotional displays may be found
in reaction videos, while reviews will contain sentiment, even if they are mostly
scripted. An example of a web dataset containing spontaneous reactions and vlogs is
Aff-Wild (Kollias, Tzirakis, Nicolaou, et al., 2019) and its successor Aff-Wild2 (Kollias
and Zafeiriou, 2019). It is annotated with both categorical and continuous emotions.
MuSe-Car (Stappen, Baird, et al., 2021) is a dataset of car reviews taken from YouTube
and annotated continuously with sentiment and trustworthiness scores.

For this thesis, datasets that are collected in the wild are highly relevant. Regard-
ing the method of emotion production, spontaneous datasets are preferred. Value-
continuous emotion labels are required, and time-continuous annotation is preferred.
The following datasets are chosen for experimentation:

• SEWA

• RECOLA

• Aff-Wild2

• Hume-VB

The chosen datasets and their properties will be presented in greater detail in chap-
ter 3. The following section gives an overview of techniques used for deriving the
emotion labels of an affective database.

2.5.2 Annotation

Annotation is the process of assigning a set of labels to the data for training models
and validating their performance. This section describes the challenges of annotat-
ing data with affective labels, as well as common methods and tools for addressing
those issues. The focus is on continuous annotation of audiovisual data, but most
aspects described here can be transferred to other modalities.

Data with a temporal component such as audio, video or physiological traces can
be annotated either in a time-continuous manner, assigning a label at fixed intervals,
e. g., on a frame-by-frame level, or on a clip level, summing up short segments with a
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single label. The labels can also be discrete, or value-continuous e. g., in terms of va-
lence and arousal. Time-continuous annotation has the advantage of capturing the
evolution of feelings, while value-continuous annotation can describe mixed emo-
tional states. Thus, continuous annotation is capable of delivering a rich perspective
on the affective content of the data.

However, given the subjective and internal nature of emotions, there is no fully ob-
jective ground truth (Barrett et al., 2019). Instead, a popular substitute is to define a
gold standard based on emotions perceived by human raters (B. W. Schuller, 2018).

Since human perception is also subjective, it is common practice to have multiple
raters annotate the data independently and then find the gold standard as a con-
sensus between the raters. Having access to more raters can improve quality but
comes at increased cost. Furthermore, combining the ratings presents several issues.
First, the raters’ reaction times may vary. Second, raters have subjective emotional
scales, and will therefore vary in terms of absolute values, even if they agree in rel-
ative changes (Metallinou and Narayanan, 2013). Cultural biases also impact the
labelling process. Ideally, annotators should have the same cultural background as
the subjects they are rating, as this will help them to perceive subtle changes in emo-
tion (Kossaifi et al., 2019). Third, there may be inconsistencies between ratings.

Thus, creating high-quality and fine-grained annotations for large datasets is com-
plicated and requires a sophisticated process. Specialised protocols and equipment
have been developed for this purpose. For instance, Stappen, Baird, et al., 2021
defined three roles: An administrator who coordinates and assigns tasks, an audi-
tor who checks that protocol is being followed and checks the results delivered by
annotators, and the annotators who examine the data. Annotators receive training
before working on the dataset.

The task of annotating sequential data over time imposes a higher mental workload
on the rater compared to assigning a single value (Metallinou and Narayanan, 2013).
Therefore, tools are needed that allow the rater to easily review the data and enter
their estimation. Over the years, a number of such tools have been developed, in-
cluding Gtrace (Cowie et al., 2013), CARMA (Girard, 2014) and DARMA (Girard and
C. Wright, 2018). The UI of those tools includes a replay function for the data and a
way to continuously record a stimulus from the rater. Joysticks have become a pop-
ular sensing solution since they provide an economic handling with proprioceptive
feedback and automatic centring when no input is applied (Sharma et al., 2020). In
order to further reduce mental workload on the raters, they are often instructed to
focus on a single affect dimension, e. g., arousal. This 1D approach has the drawback
of costing additional time due to multiple viewings required. In addition, reporting
multiple dimensions simultaneously may provide a more complete picture. 2D ac-
quisitions have recently become more popular (Sharma et al., 2020).

While most tools are designed for desktop use, solutions for in-the-wild annotation
on end devices are also being developed. This would have the advantage of allowing
a potentially large number of raters to easily record their emotional experience of
content anywhere. The disadvantage is that the uncontrolled context may bleed into
the ratings. One example of such a solution is T. Zhang et al., 2020, who developed a
mobile interface for viewing videos and annotating valence and arousal by touching
a transparent overlay.

Once the raters’ annotations have been collected, they need to be combined. Since a
simple averaging of the traces would be ineffective for the reasons outlined above, a
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number of more sophisticated methods have been developed. Time shifts between
reviewers can be addressed with e. g., Dynamic Time Warping (DTW) or Probabilis-
tic Canonical Correlation Analysis (PCCA). The agreement between raters is well
captured by correlation metrics such as CCC, Pearson’s correlation coefficient and
Cronberg’s α. Thus, the final labels can be derived from evaluations which show a
sufficient amount of inter-rater consistency (Metallinou and Narayanan, 2013). Al-
gorithms like DTW, PCCA or Canonical Time Warping (CTW) can be used to derive
a subspace that maximises correlation between the raters (Kossaifi et al., 2019), im-
proving the gold standard.

Annotating the large databases required for state of the art deep learning with emo-
tion labels from multiple trained human annotators incurs considerable expenses.
Thus, there have been attempts to develop methods that reduce costs. One option
is to use crowd-sourcing, however, this may negatively impact the quality of the la-
bels (Mollahosseini, Hasani, and Mahoor, 2019). Additional quality controls through
trustability scores in combination with active learning can help with reaching a con-
sensus between the raters (Hantke et al., 2018). The vast amount of available unla-
belled data has also motivated research into semi-automatic annotation techniques
(Canales et al., 2022). Part of the data is annotated regularly, and a model is devel-
oped to estimate the emotional content of the rest. Those estimations can then be
reviewed and corrected by humans, potentially saving time while maintaining high
quality.

2.6 State of the Art

Having introduced the field of affective computing in section 2.2, signal processing
in section 2.3 fusion in section 2.4, and datasets in section 2.5, the purpose of this sec-
tion is to conclude the chapter by giving the reader an overview of machine learning
competitions relevant in the context of this thesis, as well as industrial applications
of affective computing.

2.6.1 Competitions

In this sub-section, a number machine learning competitions in the field of emotion
recognition are listed. The selection is based on the importance the competitions had
in the context of the thesis, by virtue of dealing with continuous emotion recognition
and using relevant datasets.

AVEC

The 9th Audio/Visual Emotion Challenge and Workshop (AVEC 2019) “State-of-
Mind, Detecting Depression with AI, and Cross-cultural Affect Recognition” fo-
cused on detecting valence, arousal and liking in its Cross-Cultural Emotion Sub-
challenge (CES) (Ringeval, B. Schuller, Valstar, Cummins, Cowie, Tavabi, et al., 2019).
It was based on a subset of the SEWA database. Baselines were computed with
hand-crafted (FAU, EGEMAPS), bags-of-words, and deep (DEEPSPECTRUM, VGG-
16, ResNet-50) features used to train a recurrent network, and then combined in a
late fusion approach. CCC was used as the metric.

7 teams participated in AVEC 2019. The winning paper, (J. Zhao, Li, et al., 2019),
used an unsupervised adversarial domain adaptation approach, to account for cul-
tural differences. The runner up, (H. Chen, Y. Deng, Cheng, et al., 2019), used a
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combination of pre-trained 2D CNN and a 1D CNN to extract spatial-temporal fea-
tures from audiovisual data.

AVEC is considered highly relevant due to dealing with emotion recognition across
several cultures, on a subset of a dataset that contains spontaneous emotion interac-
tions in the wild.

ABAW

The Affective Behavior Analysis in the Wild (ABAW) Competition was first intro-
duced in 2020 as part of FG’20 (Kollias, Schulc, et al., 2020). It is based on the Aff-
Wild2 dataset. The organisers presented three sub-challenges: valence-arousal es-
timation, basic expression classification, and action unit prediction. The evaluation
metrics were CCC, weighted average of F1 and accuracy, and unweighted average
F1 score per AU, respectively. Baselines were based on PatchGAN (for dimensional
affect) and MobileNetV2 (for expression and AUs). The winning team of the valence-
arousal challenge D. Deng, Z. Chen, and Shi, 2020 used a student-teacher approach,
which allowed training on partially labelled videos.

In the ABAW2 challenge (Kollias and Zafeiriou, 2021), held in conjunction with
ICCV’21, the Aff-Wild2 dataset was re-used, with additional annotations. VGG-
FACE was used as the backbone for the baselines. 40 teams competed for the Valence-
Arousal (VA) challenge, 55 for the Basic Expression (EXPR) Challenge, and 51 for the
AU challenge. The winning team of the VA challenge D. Deng, Wu, and Shi, 2021
used a multitask learning approach that leveraged uncertainty estimation on an en-
semble of models.

The ABAW3 Challenge (Kollias and Zafeiriou, 2021) held with CVPR’22, added
more videos to the dataset and expanded the AU sub-challenge from 8 to 12 AUs.
It also introduced a fourth sub-challenge aimed at multi-task prediction on a static
subset of Aff-Wild2. The evaluation metric was the sum of the metrics used in the
three individual tasks. The organiser baselines employed ResNet50 (for valence-
arousal) and VGG16 pre-trained on VGGFace (for the other tasks). The winner of
the valence-arousal sub-challenge Meng et al., 2022 used a multi-modal ensemble
approach with temporal encoding.

The fourth ABAW competition (Kollias, 2023) was held with ECCV’22 and contained
a multi-task learning challenge on Aff-Wild2.

The fifth ABAW challange (Kollias, Tzirakis, Baird, et al., 2023), held with CVPR’23,
repeated the affect, expression and AU sub-challenges and introduced at fourth,
Emotion Reaction Intensity Estimation, on the HUME-REACTION dataset. The metric
for this new task was the average Pearson correlation coefficient across 7 emotional
intensities.

The sixth ABAW competition (Kollias, Tzirakis, A. Cowen, et al., 2024) returned to
CVPR’24 with the affect, expression and AU sub-challenges, as well as new chal-
lenges on compound emotion and emotional mimicry.

The relevance of ABAW for this thesis is due to its focus on the large and challenging
Aff-Wild2 dataset.
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ExVo

The ICML Expressive Vocalizations (ExVo) Workshop & Competition (Baird, Tzi-
rakis, Gidel, et al., 2022), held in 2022, dealt with the recognition, generation and
personalisation of vocal bursts, the first challenge of its kind to address this topic.
Vocal bursts can convey a wide range of emotions, e. g., gasps, growls or groans
may indicate surprise, anger, or sadness. The challenge was based on the HUME-
VB dataset. It offered three sub-challenges, which were: EXVO-MULTITASK, for the
joint recognition of emotional intensities and speaker demographics (age and na-
tive country); EXVO-GENERATE , for the generation of bursts coloured in each of
the 10 different emotions; and EXVO-FEWSHOT , for leveraging the speaker identity
to recognise emotions from a small number of samples. The baseline for EXVO-
MULTITASK was a fully connected network processing acoustic features generated
with OPENSMILE , OPENXBOW , and DEEPSPECTRUM . The metric for the sub-
challenge was a harmonic mean of MAE for age, UAR for native country, and aver-
age CCC for emotions. In EXVO-GENERATE , MSG-GAN (Karnewar and O. Wang,
2020) generated baseline spectrograms for each emotion class, and Fréchet Inception
Distance (FID) served as metric. Finally, END2YOU was used to train an end-to-end
1DCNN-LSTM for EXVO-FEWSHOT , and mean CCC of the emotions was the met-
ric.

The relevance of ExVo in the context of this thesis was mainly as a stepping stone
towards the next competition, A-VB.

A-VB

The 2022 ACII Affective Vocal Burst Workshop & Competition (A-VB) (Baird, Tzi-
rakis, Brooks, et al., 2022) introduced the first iteration of the A-VB challenge, which
is based on the large-scale, in-the-wild Hume-VB dataset. Similar to EXVO, the data
is again comprised of vocal bursts. Participants were invited to any or all of 4 sub-
challenges, including: A-VB-HIGH , a multi-label regression task to predict the in-
tensities of 10 emotions; A-VB-TWO , to predict the affect dimensions valence and
arousal; A-VB-CULTURE , requiring the prediction of culture-specific emotions; and
finally, A-VB-TYPE , to classify the vocal bursts into one of 8 types, e. g., laughter.
The metric for A-VB-TYPE was UAR, for all other tasks it was the mean CCC of
the respective emotions. Baselines were provided following two approaches: In the
feature-based approach, COMPARE and EGEMAPS features were extracted with
OPENSMILE and processed with a 3 layer fully connected network. The end-to-end
approach used END2YOU to train a shallow 1DCNN-LSTM network on raw audio.

A-VB is highly relevant for this thesis since it deals with a vocal burst dataset anno-
tated with multiple continuous emotions.

2.6.2 Industrial Applications of Affective Computing

Affective computing has matured greatly since the field’s inception, and is now close
to being applicable at scale (B. W. Schuller, R. Picard, et al., 2021). It is therefore un-
surprising that many companies are developing commercial solutions. Due to the
specialised nature of the problem, many of these companies, e. g., Affectiva, Noldus
and iMotions act as suppliers, licensing or selling their products to academia or
OEMs. They collect their own, non-public datasets and develop algorithms on them,
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which are either provided directly to the customer, e. g., as part of the software run-
ning on an automotive ECU, or integrated into a platform that the client can ac-
cess. The latter is particularly useful for data analytics, e. g., in call centres gauging
customer satisfaction, marketing agencies planning advertisement campaigns, game
developers wanting to improve user experience, or behavioural researchers design-
ing and evaluating studies.

Visual

Given the proliferation of computer vision and facial recognition, there are numer-
ous products for facial expression analysis. Frequently, the affective analysis is one
component of a platform solution that also detects additional features, e. g., age and
gender, from the face. A selection of companies and their products is given below.

Noldus4 is a behavioural analytics company. Its FaceReader software claims robust
face detection and classification of the 6 basic emotions, as well as neutral state and
contempt. It also provides estimates for valence and arousal, head pose and action
units, age and gender.

RealEyes5 develops computer vision based solutions for measuring attention and
engagement with media content. Its emotion algorithm makes use of facial action
units and detects happiness, surprise, disgust, confusion, fear, empathy, and con-
tempt, as well as engagement, negativity and valence.

Kairos6 offers a computer vision platform with APIs for facial recognition and facial
analysis, including emotion recognition.

Affectiva7 is an affective computing company that spun out of the MIT media lab
where the field originated, see section 2.2. It provides solutions for automotive and
media analytics, as well as social and behavioural research. Affectiva was acquired
by the Swedish Smart Eye group in 2021.

Audio

Audio based affective computing products have applications ranging from customer
and business analytics, through empathetic voice assistants, to psychological and
medical research.

Amazon has integrated different emotions and speaking styles into its Alexa voice
assistant8. This is intended to make conversation more natural. Available emotions
include excitement and disappointment, which can be displayed at different inten-
sities.

Audeering9 is an audio AI company that focuses on voice analytics. Its products can
detect a variety of speaker states and traits, including emotions, sentiment (via text),
age and gender. Additionally, health monitoring is possible by detecting the impact
of physiological effects of diseases, e. g., Covid-19, on the vocal tract. While some
services are offered as a web API, others focus on efficient real-time processing on

4https://www.noldus.com/
5https://www.realeyesit.com/
6https://www.kairos.com/
7https://www.affectiva.com/
8https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2019/11/new-alexa-

emotions-and-speaking-styles
9https://www.audeering.com/
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FIGURE 2.3: Illustration of interior sensing and interaction technologies in a vehicle,
adapted from Karas, D. M. Schuller, and B. W. Schuller, 2024. a) Display screens, b)
Microphone and speaker arrays, c) seat pressure sensors, d) Head Up Display and AR

glasses, e) Haptic control surface, f) interior camera or radar system.

embedded devices, which is important for resource-constrained environments and
privacy, especially for health-related use cases.

Physiological

iMotions 10 is another subsidiary of Smart Eye, which now integrates Affectiva’s
systems in their platform. The platform aggregates signals from various biosensors,
such as eye trackers and physiological sensing equipment. It is marketed as a study
design tool for researchers as well as a business analytics solution.

Automotive Applications

Modern vehicles include a large number of sensors directed at the environment as
well as at the interior. Interior sensing is motivated by stricter driving safety re-
quirements, such as driver monitoring for sleepiness and distraction (Koesdwiady
et al., 2017; J. Wang, Warnecke, et al., 2020). Regulators are also moving towards
requirements for e. g., advanced occupant crash protection and child presence de-
tection (Euro NCAP, 2017; McStay and Urquhart, 2022), which necessitates more
holistic in-cabin sensing. At the same time, comfort and entertainment functions are
also becoming more ubiquitous, shifting the focus from driver analytics to all occu-
pants (Tan et al., 2022). This trend is expected continue as driving becomes more
autonomous (Vögel et al., 2018) and the distinction between driver and passenger
gradually disappears.

Affective computing in the car is already being deployed in concept studies, as well
as in series production vehicles. Technical solutions mainly rely on the visual and
audio modalities, via in-cabin camera systems and microphone arrays. Physiological

10https://imotions.com/platform/



2.6. State of the Art 25

signals from wearables are also used to enhance wellness functions. An illustration
of interior sensing and interaction technologies is given in fig. 2.3. Some examples of
use cases from concept cars and production vehicles are listed below (Karas, D. M.
Schuller, and B. W. Schuller, 2024).

Audi has introduced the concept car Elaine (Audi, 2017), which includes a voice-
controlled personal assistant. Elaine can detect the driver’s vital parameters and
activate revitalising functions to alleviate stress and fatigue.

Toyota has presented the LQ, which contains an emotional AI assistant named Yui
(Toyota, 2019). Yui is supposed to engage in empathetic conversations and offer
assistance to stressed drivers. It can adjust various aspects of the interior, including
illumination, music, air flow, and fragrance.

KIA has introduced Real-Time Emotion Adaptive Driving (R.E.A.D) at CES 2018, a sys-
tem based on facial expression and ECG signals to adapt their concept car’s interior
to the passengers’ emotions (KIA, 2019).

Electric vehicle startup NIO11 has integrated an emotional assistant named NOMI
into their vehicles. NOMI takes the form of a small sphere on the dashboard, which
can display emoji-like expressions and turn towards individual passengers to signal
attention. It reacts to voice commands and can access an interior camera (Nio, 2020).

Mercedes Benz 12 cars include a personalised user interface named MBUX that re-
sponds to touch, voice and gesture commands (Mercedes-Benz, 2022b). For addi-
tional comfort, Mercedes offer a solution called ENERGIZING. ENERGIZING is a
collection of programs that combine features designed to improve passenger wellbe-
ing (Mercedes-Benz, 2022a). These include climate control and scented air, relaxing
music, seat position adjustment and massages. There is also an interactive coach-
ing system that can analyse the driver state through driving behaviour, as well as
accessing vital parameters through wearables connected to the car.

BMW 13 includes a voice assistant named IPA in their vehicles, which can control
various interior functions. One of them is the Caring Car mode, a comfort function
designed to increase the driver’s wellbeing. Caring car adjusts the audio settings,
climate control and interior lighting. There are two options aimed at relaxing or
revitalising. Thus, Caring Car can be considered a type of mood regulation.

BMW has also integrated a roof-mounted camera into their 2021 electric flagship,
the iX. The fish-eye camera can see all occupants and enables a number of interior
sensing capabilities. This includes the Happy Snapshot use case, which can detect
smiling and take a selfie (BMW, 2021).

With this chapter having established the background of the topic and the state of the
art, the next chapter will focus on the methodology used for this thesis.

11https://www.nio.com/
12https://www.mercedes-benz.de/
13https://www.bmwgroup.com/
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Chapter 3

Methodology

In this chapter, the methodology used for the experiments in chapter 4 is established.
Aspects of the methodology include:

1. Criteria for dataset selection

2. Feature Extraction Methods

3. Losses and Metrics

4. Model architecture

3.1 Datasets

Given that the focus of this thesis is on detecting affective and affect-related states in
a realistic setting, datasets are chosen with a preference for naturalistic, in-the-wild
data.

For the purpose of continuous valence and arousal recognition, the following datasets
are chosen:

• Aff-Wild2

• SEWA

• RECOLA

• Hume-VB

Aff-Wild2 (Kollias and Zafeiriou, 2019) is chosen for being a large in-the-wild database
of videos containing spontaneous emotional displays. Thus, it is well suited for RQ–
1. It offers highly challenging data due to being sourced from YouTube, which causes
large variations in camera setup and recording quality. The topics of the videos are
also quite diverse, from public talks to vlogs and reaction videos. Aff-Wild2 encom-
passes 558 videos with more than 2.7M frames, and 458 subjects. Usually there is
a single person per video, although some may include multiple subjects. The data
is annotated with time-continuous labels on a frame-by-frame basis, at an average
frame rate of 30 fps. The labels include valence, arousal, expression in terms of the
six basic emotions and neutral, as well as 12 AUs.

An overview of the subset from Aff-Wild2 annotated for valence-arousal and pre-
sented in the 3rd ABAW challenge is given in table 3.1. The number of videos ex-
ceeds that in the total dataset since some videos were segmented into multiple clips.
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TABLE 3.1: Partitioning, numbers of subjects, and duration of the subset of the Aff-Wild2
dataset used for valence-arousal prediction.

Partition Subjects Videos Duration

Training - 341 15:40:44
Validation - 71 02:53:51
Test - 152 07:05:51

Σ 455 (277M/178F) 564 25:40:27

Usually only one subject appears per video, although some may contain several per-
sons. The total number of subjects in this set is 455, and the number of frames is ap-
proximately 2.8M (Kollias, Tzirakis, Baird, et al., 2023). The distribution of subjects
across the partitions is not stated by the challenge organisers.

TABLE 3.2: Partitioning, cultures, number of subjects, and duration of the conversations
included in the SEWA dataset. The partitioning of AVEC’19 CES, which is a subset of
SEWA containing 200 labelled German, Hungarian and Chinese videos is used. German
and Hungarian are present in all partitions, while Chinese is only part of the blind test
set. The remaining 194 English, Serbian and Greek videos are unlabelled and are used

for self-supervised training.

Partition Culture Subjects Duration

Training
DE 34 1:33:27
HU 34 1:08:41
EN 66 02:33:21
SR 72 02:35:45
GR 56 02:41:38

Development
DE 14 37:52
HU 14 28:50

Test
DE 16 46:47
HU 18 36:18
CN 70 3:18:14

Σ 394 16:19:25

SEWA (Kossaifi et al., 2019) is chosen for containing spontaneous emotion displays
in the wild, and for being a multi-cultural database, covering the cross-cultural as-
pects of RQ–1. It is composed of dyadic conversations between subjects of 6 different
nationalities. Subjects are shown a number of advertisement videos and then discuss
freely via a video-chat system that records their faces and voices. A subset of SEWA
is the Audiovisual Emotion Challenge (AVEC) 2019 dataset, which consists of 200 Ger-
man, Hungarian and Chinese videos that are annotated continuously with arousal,
valence and liking at 10Ḣz. More information on the composition of the dataset is
listed in table 3.2. The rest of SEWA contains more conversations of English, Serbian
and Greek subjects. Thus, three more cultures are available for analysis, which is rel-
evant for RQ–2. However, while the videos contain spontaneous emotion displays,
they have not been labelled and can not be used for evaluation. Instead, they will be
used for unsupervised training, which also contributes to RQ–3.

The RECOLA corpus (Ringeval, Sonderegger, et al., 2013) is a multi-modal French
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language database containing dyadic conversations between Swiss students. Its de-
sign is a combination of task-based elicitation to set social context with spontaneous
interactions. Participants were asked to discuss strategies to survive in a hostile en-
vironment. Audiovisual data was captured, as well as EDA and ECG signals. The
database includes 27 videos and is continuously annotated with arousal and valence
at 25Ḣz. The experimental setup of RECOLA is similar to SEWA, but it has fewer
subjects and a smaller amount of total runtime. Hence, this thesis focuses on SEWA,
and RECOLA is used indirectly for preliminary experiments and pre-training of fea-
ture extractors.

TABLE 3.3: Overview on the HUME-VB dataset in terms of partitions, cultures, speak-
ers, samples and audio durations, adapted from Baird, Tzirakis, Brooks, et al., 2022. Test

set statistics are unknown since the data is used in a ML competition.

Partition Culture Subjects Samples Duration

Training

USA 206 7142 03:48:54
China 79 5120 03:35:30
South Africa 244 5090 03:07:55
Venezuela 42 2638 01:46:46
Σ 571 19900 12:19:06

Validation

USA 206 7020 03:58:21
China 76 4999 03:21:29
South Africa 244 4804 03:01:54
Venezuela 42 2573 01:44:00
Σ 571 19396 12:05:45

Test

USA - - -
China - - -
South Africa - - -
Venezuela - - -
Σ 563 19815 12:22:12

Σ - 1702 59201 36:47:04

The HUME-VB dataset is chosen in order to address RQ–4. It contains vocal bursts,
i. e., short, non-verbal vocalisations such as laughter or crying. Subjects were given
an example clip and instructed to record themselves mimicking the sound, display-
ing emotions that would be perceived as similar to the original. The bursts were then
ranked in terms of their emotional intensities in 10 categories (Awe, Awkwardness,
Amusement, Distress, Excitement, Fear, Horror, Sadness, Surprise, Triumph) by an
average of 85.2 raters. The dataset contains 59201 recordings from 1702 speakers,
for a total of more than 36 hours of audio. Four cultures are present in the data:
US American, Chinese, Venezuelan, South African. Information on the dataset is
summarised in table 3.3.

HUME-VB has multiple properties that make it well suited for study in this thesis.
As it was recorded by the subjects on their own devices during their daily lives,
it can be considered in-the-wild data. While it does not contain spontaneous dis-
plays of emotions, the mimicked vocal bursts are assumed to still be fairly realistic.
Furthermore, the dataset contains rich annotations on each sample, including con-
tinuous affect in terms of valence and arousal. It also offers the intensities of each
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of the 10 annotated emotions, leading to an interesting multi-class regression prob-
lem, reflecting the theories introduced in section 2.1 that treat emotions as smoothly
varying concepts. The dataset is reasonably large, and fairly unique in its focus on
non-verbal affective vocalisations. An added bonus for this thesis is that it includes
data from four distinctive cultures and explicitly provides annotations for each of
them.

3.2 Features

This section motivates the choices of signal modalities and features used for experi-
mentation.

Regarding the modalities, the focus of this thesis is on audiovisual data. There are
multiple reasons for this:

• The modalities naturally co-occur in video material, which is available in large
quantities in diverse settings, allowing for the study of affect in the wild.

• The face and the voice contain information which is key to understanding hu-
man interaction, as evidenced by the fact that humans rely heavily on them.

• There are established datasets and a significant body of work related to video
analysis, which allows for comparisons of methods and results.

Handcrafted descriptors such as AUs and EGEMAPS have been proven to be ef-
fective for affective computing. Therefore, they are frequently used as inputs into
neural networks, either directly or as functionals across several seconds (Ringeval,
B. Schuller, Valstar, Cummins, Cowie, Tavabi, et al., 2019).

However, given the advances in deep learning outlined in section 2.3, the focus of
this work is on using neural networks as feature extractors. This will allow the mod-
els built on top to leverage representations which may contain information not easily
accessible from hand-crafted descriptors. Pre-trained networks can also be used to
transfer knowledge from much larger datasets, helping to overcome the bottleneck
of data scarcity in affective computing.

The choice of modality which is used as input to the model leads to different archi-
tectures, which are described in the following subsections. The feature extraction
architectures are sketched in fig. 3.1.

3.2.1 Audio

For the audio modality, two different solutions are used. They have in common
that they directly process the audio signal, segmented into short overlapping clips,
instead of relying on Mel-spectrograms or MFCCs as intermediate features. Thus
the deep model is free to learn relevant information directly from the raw data.

In the first approach, 1D CNNs are used to extract embeddings. Compared to the
two-dimensional spectrogram and CNN-based approach, this has the advantage of
a lower parameter count (on the order of 105 as opposed to 106 − 107). In addition,
as shown in previous work, even networks with a small number of layers perform
well as feature extractors (Tzirakis, Trigeorgis, et al., 2017; Schmitt, Cummins, and
B. Schuller, 2019; J. Zhao, Mao, and L. Chen, 2019). Thus, it is possible to train these
models end-to-end with relatively low computational cost, and extract their weights
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Visual Features
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Image 2D CNN

Audio Transformer

Cropped Faces
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FIGURE 3.1: Schematic of feature extraction networks. Top: Visual 2D-CNN processing
face crop images. Middle: Audio 1D-CNN processing raw audio waveforms. Bottom:
Audio Transformer, consisting of a CNN and multi-head attention based encoder layers,

processing raw audio waveforms.

for later use as feature extractors. In this work, this task will be accomplished pri-
marily using the END2YOU toolkit Tzirakis, 2020.

The second approach makes use of the much larger WAV2VEC2 model (Baevski et
al., 2020), which is an audio Transformer with approximately 80M parameters in its
base variant. This choice is motivated by the strong performances Transformer-style
architectures have recently delivered in many fields (Devlin et al., 2019; Dosovitskiy
et al., 2020; Wagner et al., 2023). WAV2VEC2 consists of a 1D CNN which creates em-
beddings from the audio, followed by a stack of encoder layers. The inner workings
of those layers will be explained in section 3.4.2.

3.2.2 Visual

As discussed in section 2.3 state of the art in computer vision is based on CNNs
and Transformers, which are pre-trained on very large datasets to recognise different
classes of objects or distinguish people’s identities with high accuracy. These models
typically have dozens of layers and millions of parameters, which allows them to
learn versatile features. They are commonly adapted to new classification tasks by
replacing their final layer and training this layer with the new data while the rest of
the network remains frozen. Alternatively, the top layer can be removed to yield a
high-dimensional feature extractor.

Given the effectiveness of this feature extraction method, pre-trained CNNs will be
used as the first stage of visual models. In order to keep the number of trainable pa-
rameters manageable, typically only the last layers of the networks will be trainable,
or the entire CNN network (without its classification output layer) will be frozen
and used as a static feature extractor.

The visual representations returned by the CNN’s last hidden layer will need to be
processed with a suitable architecture for the downstream task. This will usually
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involve some modelling of sequential data, in the form of an architecture that can
process multiple images. 3D-CNNs are theoretically suitable for this task, however,
the full 3-dimensional convolution is computationally expensive, and previous work
suggests that a 2D+1 approach may be more helpful (Kuhnke, Rumberg, and Oster-
mann, 2020). Hence, this thesis will not rely on 3D-CNNs, but on a combination of
2D-CNNs with a suitable temporal architecture, such as a recurrent neural network
(RNN).

The choice of the data and task for pre-training affects the usefulness of the derived
representations for the task of emotion recognition. Since this work is focused on
detecting emotions from the face, CNNs pre-trained on facial analysis will be used.

3.3 Losses and Metrics

A key part of successfully training a model is choosing the appropriate objective
function, or loss function. During training, the optimiser will adjust the model weights
in an attempt to minimise the loss. More complex architectures may have multiple
outputs, with losses on each of them needing to be balanced (Multi-task Learning
(MTL).

At the evaluation step after following training, as well as at regular intervals in be-
tween, the model’s performance is checked by metrics, which map the labels and
predictions to a score, usually between 0 and 1.

This section will introduce common metrics and losses, as well as methods to bal-
ance the latter in multi-task settings.

3.3.1 Metrics

Most of the research in this thesis is concerned with regression problems, i. e., pre-
dicting targets with continuous value ranges such as the arousal and valence di-
mensions. The only classification problem addressed herein is predicting the type
of vocal bursts in the HUME-VB dataset. The choice of classification metric will be
introduced first, before moving on to the regression metric.

Classification

The accuracy is defined as the percentage of samples that were classified correctly:

acc =
1
N ∑ y = ŷ (3.1)

For binary classification, the recall is the rate of true positives to the sum of true
positives and false negatives, given by:

recall =
tp

tp + fn
=

∑ y = 1|ŷ = 1
∑ y = 1|ŷ = 1 + ∑ y = 0|ŷ = 1

(3.2)

The precision is the rate of true positives to the sum of true positives and false posi-
tives:
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precision =
tp

tp + fp
=

∑ y = 1|ŷ = 1
∑ y = 1|ŷ = 1 + ∑ y = 1|ŷ = 0

(3.3)

In the multi-class classification setting, precision and recall can be computed in a
class-wise, one-vs-all manner. However, the classes may be unbalanced, e. g., the
neutral class is over-represented. In this case, if a weighted average of the scores
of each class were to be taken, the performance of the majority classes may conceal
poor classification of the minority classes. Thus, the unweighted average recall (UAR)
has been proposed to gauge multi-class systems.

Due to the advantages of UAR for gauging unbalanced datasets, it is chosen as the
classification metric for this thesis. This matches with the choice of the organisers of
the A-VB competition for judging the vocal burst classification sub-challenge.

Regression

For regression, a popular metric is the mean square error (MSE), which is defined by:

MSE =
1
N ∑ (y − ŷ)2 (3.4)

The MSE and the similar mean absolute error (MAE) measure the average deviation
of each sample from the true value. An alternative, which has become increasingly
popular for works on dimensional emotion recognition, are metrics that measure
the correlation between two sequences of values. The Pearson correlation coefficient is
defined as:

ρ(X, Y) =
σXY

σXσY
=

∑(xi − µX)(yi − µy)√
∑ (xi − µx)

2
√

∑
(
yi − µy

)2

where: µX =
∑ xi

N
, µY =

∑ yi

N

(3.5)

The Pearson correlation coefficient measures only the linear relationship between
the variables, without considering scale and bias (Pandit and B. Schuller, 2020). The
Concordance Correlation Coefficient (CCC) proposed by Lin, 1989 thus modifies the
Pearson coefficient ρ with a factor Cb as follows:

ρc(X, Y) = ρ ∗ Cb = ρ ∗ 2(
v + 1

v + u2
)

where: v =
σX

σX
, u =

(µX − µY)√
σXσY

ρc =
2σXY

σ2
X + σ2

Y + (µX − µY)
2

(3.6)

In eq. (3.6), v acts as a scale penalty, while u acts as a shift penalty.
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Thus, a CCC of 0.0 means there is no correlation between two variables, while 1.0
means they correlate perfectly. CCC has been widely adopted in the field of affective
computing for measuring the performance of continuous emotion recognition mod-
els, including in the aforementioned competitions AVEC 2019 (Ringeval, B. Schuller,
Valstar, Cummins, Cowie, Tavabi, et al., 2019), ABAW (Kollias and Zafeiriou, 2021;
Kollias, Tzirakis, Baird, et al., 2023) and A-VB (Baird, Tzirakis, Brooks, et al., 2022).

Given its prominent role in the literature for the type of problem addressed in this
thesis, CCC is chosen as the primary metric.

3.3.2 Loss functions

Next, the loss functions used for optimising the neural networks will be described.

Lccc = 1 − CCC (3.7)

The main loss function for optimising the continuous emotion prediction task is
the CCC loss in eq. (3.7), obtained by subtracting the CCC of predictions and tar-
gets from 1.0. This loss is chosen as it has been proven effective for sequential data
(Ringeval, B. Schuller, Valstar, Cummins, Cowie, and Pantic, 2019). Using MSE as
the loss function instead may lead to issues in training when combined with CCC as
metric. This due to the relationship between the two, for a detailed discussion see
Pandit and B. Schuller, 2020. However, MSE may be used as a supplementary loss
term along with the main CCC loss for smoother convergence, making it easier to
estimate when to stop training to prevent overfitting.

This thesis tackles multi-regression problems, as the goal is to predict multiple con-
tinuous variables (usually valence and arousal, or the emotional intensities in the
HUME-VB dataset). Thus, a multi-task approach is chosen to optimise them jointly.
This has been shown to be effective due to the dependencies between the affect di-
mensions (Eyben, Wöllmer, and B. Schuller, 2012). However, multi-task learning
raises the question of how to balance the individual tasks. The simplest way is to
take the mean across task losses, as in eq. (3.8).

L =
Larousal + Lvalence

2
(3.8)

This loss treats each task identically, irrespective of their difficulty or importance. Al-
ternatively, the training can be adjusted to emphasise a particular task, e. g., arousal
prediction, by weighing the loss towards it, as in eq. (3.9). The weights are scaled
to sum up to 1. Training multiple models with different weighted losses allows for
selective optimisation of each task.

L = warousalLarousal + wvalenceLvalence (3.9)

The previously shown loss functions have the disadvantage that their weights are
static, i. e., fixed during training. They need to be chosen well for balancing the
training process across the tasks, which gets harder the more tasks there are. Static
weights may lead to sub-optimal results due to the model essentially focusing on the
easier tasks. To combat this, researchers have introduced adaptive weight schemes.
For instance, Dynamic Weight Averaging scales loss weights over time based on how
the loss changed in previous steps (Liu, Johns, and Davison, 2019). The weighting
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function contains a temperature softmax, with the temperature T smoothing the
weight distribution and K scaling the weights to sum up to 1.0.

Ldwa = ∑
K

λk(t)Lk = ∑
K
K

exp
(
Lk(t−1)
Lk(t−2)/T

)
∑K exp

(
Lk(t−1)
Lk(t−2)/T

)Lk (3.10)

The Revised Restrained Uncertainty Weighting (RRUW) proposed by Song et al., 2022
balances tasks via trainable parameters αk. Constraints are imposed, in order to
prevent the training from collapsing into trivial solutions e. g., setting loss weights
to 0. Logarithmic terms ensure that very small values of αk have a considerable
impact on the loss. In addition, a positive value φ is defined and the sum of weights
is driven towards it. The complete loss function is given in eq. (3.11)

Lrruw (w, α) =∑
K

1
α2

k
Lk(w) + ∑

K
log
(
1 + log α2

k
)
+

|φ − ∑
K
(| log αk|) |,

(3.11)

By combining DWA and RRUW, the Dynamic Restrained Uncertainty Weighting (DRUW)
(Song et al., 2022) is derived. It contains both dynamic and uncertainty terms, as in
eq. (3.12).

Ldruw (w, α) =∑
K

(
1
α2

k
+ λk(t)

)
Lk(w) + ∑

K
log
(
1 + log α2

k
)
+

|φ − ∑
K
(| log αk|) |,

(3.12)

In the experiments in the following chapter, both static and dynamic weighing of
multiple CCC losses for arousal and valence prediction, as well as for the prediction
of other continuous emotion tasks, will be used. Dynamic weights are expected to
deliver performance gains compared to the static counterparts.

Another strategy to assist the training of the model is to supplement the regres-
sion loss with a classification loss. Humans do not perceive emotions in terms of a
vector of continuous values, but categorise them. Thus, a model may benefit from
multi-task learning, where one task is to predict values of valence and arousal, and
another is to predict a categorical label. Such multi-task models have been used on
corpora where both affect dimensions and basic emotions are annotated. If there are
no categorical annotations available, the value-continuous labels may be discretised
(Toisoul et al., 2021).

In this work, a discretisation scheme of the 2-dimensional valence-arousal space is
proposed based on a polar coordinate transformation as in eq. (3.13). This transfor-
mation maps a pair of valence-arousal labels (yv, ya) to a segment of the 2D affect
plane. The number of bins can be chosen freely with the radii and angle limits of the
segments.
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r =
√

y2
a + y2

v

θ = tan−1
(

ya

yv

) (3.13)

When a classification task needs to be solved, this thesis will employ the categorical
cross-entropy as the loss function.

The train loss has to be computed batch-wise for performance reasons. However,
doing the same for the validation step may not give an accurate picture of model
performance. A validation loss computed batch-wise can be less stable, leading
to issues with algorithms that rely on tracking it during training. Following the
methodology of the AVEC challenges, (Ringeval, B. Schuller, Valstar, Cowie, et al.,
2018; Ringeval, B. Schuller, Valstar, Cummins, Cowie, Tavabi, et al., 2019), instead
the predictions and labels are concatenated across the entire validation set before the
CCC is computed.

3.4 Models

This section describes the methodology for model architectures used in this thesis.
On an overarching level, there are four aspects to the design, which have some over-
lap. These are knowledge transfer, temporal modelling, cross-modal interactions
and multi-modal fusion, and cross-cultural recognition.

3.4.1 Transfer Learning

The first aspect, as described in section 3.2, is on the topic of transfer learning, i. e.,
transferring existing knowledge from a related problem or dataset into the model
(Weiss, Khoshgoftaar, and D. Wang, 2016). It is motivated by the trends of the field
of deep learning in general and the data scarcity issues related to affective computing
in particular. For the purpose of this thesis, the transfer is accomplished in one of two
ways. The first, used with the CNN models, is to re-use pre-trained models that have
been trained on an identical or sufficiently similar task on a different dataset. This
includes audio CNNs trained for emotion recognition, and vision CNNs trained for
facial recognition. The second approach is to use models trained on large amounts
of unlabelled data like WAV2VEC2, which has let them obtain general knowledge.

The models can be used in a frozen configuration during training, in which case
they become simple extractors for the features listed above, or they can be tuned by
making their layers trainable. Fine-tuning the weights helps mitigate domain dis-
crepancies and optimises the model for its new task. However, it comes at increased
computational expense due to the additional backward pass.

3.4.2 Temporal Modelling

It can be assumed that in most cases, the model will benefit from capturing tem-
poral dynamics in the data. This is because emotions are not static but transient
states that fluctuate. Therefore, the inputs to the model will consist of sequences of
feature vectors corresponding to consecutive time steps. The model can then either
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incorporate a sequence-to-sequence (seq-2-seq) prediction component, or aggregate the
representations from the time steps into one clip-level prediction.

For the temporal component, the simplest solution may be a RNN with LSTM or
GRU cells. This can form a baseline model component. Alternatively, 1D-CNNs
may be used, as demonstrated in Schmitt, Cummins, and B. Schuller, 2019.

Another, more complex solution is proposed based on the aforementioned Trans-
former. The Transformer, introduced by Vaswani et al., 2017, is a seq-2-seq model
that uses attention instead of convolutions and recurrent layers. It consists of an
encoder, which performs self-attention on the input tokens, and a decoder, which
combines the encoded embeddings with the output tokens. The model predicts in
an autoregressive manner, i. e., one token at a time.

At the heart of the Transformer is Multi-Head Attention (MHA), which lets the
model discover relationships between the elements of a sequence. The basic ver-
sion of the Transformer used scaled dot-product attention, which is defined as in
eq. (3.14).

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V. (3.14)

MHA parallelises the attention process onto multiple sub-networks called heads, by
mapping the query, key, and value inputs into different sub-spaces. The results from
the heads are then recombined and projected into the output dimension. It is defined
as:

MHA(Q, K, V) = Concat (head1, ..., headn)WO,

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
.

(3.15)

A Transformer layer is obtained by combining MHA with a (fully connected) feed-
forward network, residual connections and layer normalisation. In the encoder, the
queries, keys and values for a given layer are identical, which is called Self-Attention
(SA).

P(k, 2i) = sin
(

k
n2i/d

)
P(k, 2i + 1) = cos

(
k

n2i/d

) (3.16)

Unlike recurrent cells e. g., LSTM, the attention layer processes the elements of a
sequence in parallel and has no inherent concept of sequence order. Therefore,
Vaswani et al., 2017 propose adding position encodings to the input. eq. (3.16) shows
the popular sinusoid encoding. Here k is the index of a feature vector (token) in the
input sequence, d is the dimensionality of the features, i is the dimension index run-
ning from 0 to d/2 and n is an adjustable parameter. In the next chapter, n = 5000
will be used based on preliminary experiments.

The self-attention block is chosen as a suitable seq-2-seq component for experimen-
tation. It is illustrated in fig. 3.2.
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FIGURE 3.2: Self-attention block from the Transformer architecture. A sequence of em-
beddings (to which position encoding may be added) is passed as inputs to queries Q
and key-value pairs K, V. Multi-head attention is performed, followed by a feed-forward

network with layer normalisation and addition.

Furthermore, combining Transformer encoders and recurrence can be a viable solu-
tion. J. Huang et al., 2020 adapted an audiovisual transformer for continuous emo-
tion recognition on the AVEC 2017 dataset, processing the features with self attention
encoders before applying a cross-modal block. Adding a single LSTM layer on top
of the network was found to benefit performance.

3.4.3 Cross-modal interaction and multi-modal fusion

The third aspect is the focus on cross-modal interactions as a way to build richer
representations in a multimodal setting.

Multi-modal fusion can be expected to deliver superior results to uni-modal ap-
proaches, assuming that the modalities contain complementary information (Poria,
Cambria, et al., 2017). If some modalities are missing for extended periods of time,
or are strongly affected by noise, fusion may not give significant benefits. In those
cases, a uni-modal system may be preferable, especially if computational resources
are limited.

For the purpose of this thesis, most experiments will be conducted with multiple
modalities. The exception are ablation experiments for quantifying the effectiveness
of fusion, and all experiments conducted for RQ–4, as the vocal burst dataset con-
tains only audio data.

The benefits of early, decision and hybrid level fusion have been introduced in sec-
tion 2.4. All of them have been used successfully by previous works (W. Wei, Jia,
and Feng, 2017; Ghaleb et al., 2017; H. Chen, Y. Deng, Cheng, et al., 2019; Hamieh
et al., 2021).

In the context of this thesis, early and hybrid approaches are preferred to late fu-
sion. This is motivated by a focus on cross-modal interactions. As discussed in sec-
tion 2.4, early and hybrid fusion can fuse information at the feature level, which late
fusion can not. The trade-off is that late fusion is more flexible, allowing to combine
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decisions of classifiers without the need to have all modalities available simultane-
ously on the same computational platform. It is also potentially more light-weight
by avoiding large feature embeddings.

Early fusion may be implemented with a simple tensor concatenation operation.
The combined tensors are then passed into an arbitrary networks described in sec-
tion 3.4.2 for extracting higher-dimensional representations.

Model-based fusion can help model cross-modal interactions more explicitly than
early fusion. Tsai et al., 2019 proposed MulT, a type of transformer which fuses au-
dio, visual and textual information. It does so by combining modalities pairwise
in cross-modal blocks, with one modality attending to the other similar to a trans-
former decoder. Thus, for 3 modalities there are 6 interactions. The resulting embed-
dings are then concatenated per query modality and fed into transformer encoders,
before being combined for the final prediction. Cross-modal fusion was shown to
be able to capture relations between two sequences of data, even if those sequences
are not perfectly aligned. Therefore, the multi-modal experiments for this thesis will
also make use of it.

Zβ
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FIGURE 3.3: Cross-modal attention fusion block. Two different sequences of embed-
dings (with optional position encodings) serve as queries Q and key-value pairs K, V,
respectively. Multi-head attention is performed, followed by a feed-forward network.

The placement of the layer normalisation may vary by implementation.

The cross-modal fusion block is illustrated in fig. 3.3. It is a modification to the
standard self-attention block, which computes attention between the tokens of one
sequence. The CMA block can process two input sequences zα and zβ, which may be
of different lengths but should have the same feature dimensionality for the block’s
internal matrix multiplications. The block attends one sequence to the other, β −→ α,
by using zα as queries and zβ as key-value pair inputs to multi-head attention. This
is then followed by the usual feed-forward network. When multiple cross-modal
blocks are stacked, the queries become the output of the previous block zi−1

α , but the
key-values re-use the original z0

β.

In a hybrid fusion approach, the audio and visual modalities may thus be used as
either input to the cross-modal attention encoder. It is also possible to run mul-
tiple encoders in parallel, with different modalities attending to each other, or to



40 Chapter 3. Methodology

𝑓kllk𝑋 𝑓1 𝑥 𝑦1

𝑓kllk𝑋 𝑓2 𝑥 𝑦2

𝑓kllk𝑋 𝑓𝑛 𝑥 𝑦𝑛

µ 𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒

FIGURE 3.4: Ensemble strategy for combining n emotion regression models. Each model
is trained independently as a function mapping data X to labels y. Then the predictions

are fused by computing the average for each sample.

stack cross-modal and self-attention blocks, see Tsai et al., 2019, J. Huang et al., 2020.
A further iteration of transformer based fusion for continuous emotion recognition
is TEMMA, introduced by H. Chen, Jiang, and Sahli, 2020. It consists of a 1D-
CNN temporal embedding network, an attention module which models temporal
dependencies through self attention and inter-modality dependencies by construct-
ing multi-modal queries, keys and values, and an inference network that concate-
nates the feature embeddings and predicts valence and arousal with fully connected
layers. TEMMA was applied to the AVEC 2016 and AVEC 2019 datasets.

Finally, while late fusion is not directly used in this thesis, due to the desire to cap-
ture lower-level interactions between the modalities, some of its benefits can still
be accessed. This is accomplished in the form of model ensembles, i. e., the predic-
tions of multiple trained models are combined before the final performance metric
is computed. This can be thought of as a late fusion where all models have access to
the same features. Ensemble strategies have been shown to be effective across many
tasks, including on emotion estimation in the wild (Meng et al., 2022). They work
by pooling the knowledge of multiple models.

To perform an ensemble step, a combination method is needed. The rule used in this
thesis is chosen to be simple to implement while being effective: Classifier models
are combined via majority voting, while regression models are combined by com-
puting the mean of their predictions. This is illustrated in fig. 3.4.

3.4.4 Cross-cultural adaptation

This subsection presents methods needed for investigating RQ–2, i. e., how to im-
prove the performance of emotion recognition models when presented with affec-
tive displays of people from cultures other than those the model was trained on.

In general machine learning terms, this constitutes a Domain Adaptation problem. A
domain D is defined as a combination of a feature space X and a marginal proba-
bility distribution P(X) from which the samples are drawn, whereas a task T is a
combination of a label space Y and an objective function f (Pan and Q. Yang, 2010).
In this case, the source domain Dsrc and the target domain Dtgt differ by distribu-
tion, while the feature spaces are identical Xsrc = Xtgt. The tasks are also identical
i. e., continuous affect prediction. The purpose of domain adaptation strategies is to
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FIGURE 3.5: Visualisation of domain adaptation. a) Representations with separate dis-
tributions in source and target domains. b) Alignment into a common, domain-invariant

representation

mitigate the shift between source and target domains. Numerous methods for cor-
recting distribution differences exist, e. g., using autoencoders or training classifiers
with pseudolabels. See for instance Weiss, Khoshgoftaar, and D. Wang, 2016 for a
discussion of domain adaptation in the context of transfer learning (in which the
problem presented here would fit into Homogeneous Transfer Learning).

The approach used in this thesis will focus on mapping the representations of source
and target domains into a common latent space in an unsupervised manner, i. e.,
without having access to the emotion labels of the target domain. Instead, the data
is implicitly labelled by the domain it belongs to. Emotion labels are only needed on
the source domain for training the affect task. The adaptation process is illustrated
in fig. 3.5.

The domain adaptation task and the emotion prediction task will be learned simul-
taneously. In order to accomplish this, the models for supervised multimodal affect
prediction described above will need to be extended. For this thesis, the modifica-
tion takes the form of a Domain Adversarial Neural Network (DANN).

The DANN, originally proposed by Ajakan et al., 2014, is designed to mitigate the
general domain shift problem that occurs when training and test data come from
different domains. To achieve this purpose, the model is guided to learn an internal
representation of the data which contains relevant information for the task, but is
invariant to the domain.

Ganin et al., 2016 showed that the DANN can be implemented with three compo-
nents: A feature encoder, a classifier and a domain discriminator. These can then be
trained using regular stochastic gradient descent. However, if this model were sim-
ply trained with a multi-task objective, it would learn to discriminate between the
domains. In order to make the model agnostic of the domain information instead,
it is important to add a Gradient Reversal Layer, which flips the sign of the gradient
flowing from the domain discriminator in the backward pass. Thus, the discrim-
inator still attempts to learn the difference between the domains, but the updates
received by the feature encoder act towards obscuring the domain information in-
stead. The classifier learns to predict the desired task on this invariant representation
returned by the encoder.
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As shown by several existing works, this approach can be transferred to cross-cultural
emotion recognition, by treating the culture as the domain to be obscured. Liang et
al., 2019 performed utterance-level classification of English and Chinese cultures. J.
Zhao, Li, et al., 2019 used a DANN based on a LSTM for the winning entry into the
AVEC2019 CES sub-challenge. The approach was further developed by H. Chen, Y.
Deng, and Jiang, 2021, who added frame- and sequence level attention to the domain
discriminator.

Thus, this thesis employs the DANN framework, considering one culture as the
source domain Dsrc (xi, yi) and another as the target domain Dtgt (xi).

The three components of the network are denoted as follows: The feature encoder F
with parameters θF yields embeddings z, the emotion regressor E with parameters
θE returns time-continuous predictions of arousal and valence ŷa, ŷc, and the culture
discriminator C with parameters θC gives a culture prediction ĉ.

z = F (x; θF)

(ŷa, ŷc) = E (z; θE)

ĉ = C (z; θC)

(3.17)

F can process features x of shape [B, L, D] from any combination of feature extrac-
tion networks in a seq-2-seq model. It encodes the features into a latent state of
shape [B, L, demb]. For E, a simple fully connected network with 2 layers is chosen. It
contains dropout regularisation and returns a sequence of arousal and valence label
predictions y of shape [B, L, 2].

Based on previous works, a novel attention-based culture discriminator is proposed.
Unlike J. Zhao, Li, et al., 2019, it does not use average pooling across the time steps
to predict the culture. The work of H. Chen, Y. Deng, and Jiang, 2021 uses two
losses in the discriminator, one for frame-level predictions, and one for sequence-
level prediction with attention weights constructed from the former. Instead, herein
a discriminator based on multi-head attention is used. The approach is inspired by
Y. Zhao et al., 2021, who used a combination of LSTM with MHA for depression
detection from speech.

The embedding for the final time step returned by the seq-2-seq model is used as the
query Q, and the whole sequence serves as the key-value pairs < K, V >. Thus, the
output is reduced to a single token which carries the attention-weighted contribu-
tions of all the time steps.

An example of the proposed DANN architecture, using a multi-layer RNN for en-
coding the representations and processing an early fusion of audiovisual features as
described in section 3.2, is visualised in fig. 3.6. Now, the training method for this
architecture will be presented.

Lculture =
1
N

N

∑
n=1

c log (ĉ) + (1 − c) log (1 − ĉ) . (3.18)

The loss function for the culture discriminator is the binary cross-entropy loss, where
the label c is defined as 0 for the source culture and 1 for the target culture. Thus, the
culture loss becomes as in eq. (3.18).
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FIGURE 3.6: Domain Adversarial Neural Network (DANN) architecture used for cross-
cultural emotion recognition. It receives input from feature extraction networks for au-
dio and visual data. The DANN itself has 3 components: The feature encoder F, the
emotion regressor E and the domain (culture) classifier c. A gradient reversal layer be-

tween F and C forces the representations z to become domain-agnostic.

Lemotion = wa (1 − CCCa) + wv (1 − CCCv) . (3.19)

For the emotion regressor, the loss function is based on a weighted sum of arousal
and valence CCC eq. (3.19), as described in section 3.3. Finally, the loss of the encoder
F is the weighted contribution of emotion and culture losses, with hyperparameters
λE and λC.

Lencoder = λELemotion − λCLculture. (3.20)

In this approach, the regressor only has access to labelled samples from the source
domain during training. It would, however, be easy to incorporate samples from
the target domain if they are available. The culture discriminator is trained with the
self-labelled samples from the source and target domains, although it could also be
restricted to a single culture (H. Chen, Y. Deng, and Jiang, 2021).

Training adversarial networks is challenging due to the competing aspects of the
loss. In the original paper on Generative Adversarial Networks (GANs) by Good-
fellow et al., 2014, it was shown that the min-max game between the generator and
discriminator parts theoretically leads to a stable end point where the discriminator
is in a state of maximum confusion. However, in practice, training is often unstable,
leading to sub-optimal results and issues like mode collapse, where the model fails to
learn the data distribution and produces only one result (Athanasiadis, Hortal, and
Asteriadis, 2019). For the cross-cultural DANN, this means that the contributions
of the two objectives need to be balanced carefully. In the early stages, the culture
prediction is expected to be quite inaccurate, thus, the backpropagated signal may
confuse the network and lead to unstable training.
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FIGURE 3.7: Visualisation of the domain adaptation rate λ̃C as a function of training
progress p, for different values of hyperparameter γ

. The adaptation rate serves as scaling factor to the feature encoder updates and
rises from 0 to 1 during training. Increasing values of γ causes a faster rise.

Several modifications are made to the training process for the experiments in C-3 to
address this issue.

First, in order to reduce the impact of initial instability, a dynamic weighting of λc
is used, based on Ganin et al., 2016. This increases the impact of domain adaptation
over the course of the training p, from 0.0 to 1.0, with swiftness γ, as in eq. (3.21).

λ̃C =

(
2

1 + exp(−pγ)
− 1
)

λC. (3.21)

Larger values of γ lead to a faster rise of the domain adaptation weight, as illustrated
in fig. 3.7.

Second, the network components are not optimised jointly but in different stages
during each epoch, following J. Zhao, Li, et al., 2019, H. Chen, Y. Deng, and Jiang,
2021. C is trained for SC iterations, then E is trained for SE iterations. In the first
stage, the encoder F is updated with the adversarial information flowing back from
C, in the second stage, it receives updates from both E and C.

3.4.5 Chaining outputs for multi-task learning

For multi-label datasets, e. g., the HUME-VB dataset, the different tasks can be ad-
dressed by training individual classifiers or with multi-task learning on shared back-
bones. A modification of the regular multi-task network with parallel classification
or regression heads is the chaining or stacking of outputs. Here, the model is struc-
tured such that the result of one task serves as input to one or more others. Thus, in
a simple directed chain, the jth prediction is described by eq. (3.22).
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ŷj = f
(

x, ŷ1, ..., ŷj−1
)

(3.22)

Classifier chains have shown promising results across a wide range of datasets and
applications (Read et al., 2021). By adding predictions to the feature space, they can
exploit inter-dependencies between labels. An example of such an approach used
on continuous emotion recognition is Xin, Takamichi, and Saruwatari, 2022. An in-
herent issue of stacking predictors atop one another is that the number of possible
combinations grows exponentially with the number of labels. The performance of
the model depends on the order and interconnections, but a complete search is of-
ten computationally infeasible. One possible method is to train a regular multi-task
classifier as baseline and chain the tasks in the order of their performance, starting
with the strongest, but this may not be optimal (Read et al., 2021). While various
other methods have been proposed, their comparison is not the focus of this thesis.
Thus, when chaining or stacking is employed herein, greedy ordering by perfor-
mance and/or heuristics based on assumptions on the label relations are used.

To summarise the methodology before continuing with the experimental part: In
this thesis, deep features extracted directly from audio or images via CNNs or Trans-
formers are used. They are combined via early or hybrid attention fusion, and pro-
cessed via sequence-based models that make use of either recurrent neural networks
or transformer encoders. The models are optimised in a multi-task learning manner,
i. e., each affect dimension is predicted as its own task, with dynamic loss weigh-
ing to balance the tasks during training. The losses for continuous emotion predic-
tion are primarily CCC based, and CCC is used as evaluation metric. Cross-cultural
emotion recognition is solved via domain adaptation, using an adversarial network
component that forces the internal representations to be invariant between cultures.
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Chapter 4

Experiments and Results

Herein, the experiments conducted following the methodology of chapter 3 are de-
scribed. Experiments are grouped into sections following different areas of research.
A discussion of the experiments is given in the following chapter.

4.1 Multi-modal and Cross-Modal Emotion Recognition

This section describes experiments in valence and arousal prediction on the Aff-
Wild2 Dataset, for contribution C–1, see section 1.3. The goal is to answer RQ–1 by
comparing the impact of several key design choices on time- and value-continuous
emotion recognition:

1. The complexity of the CNN backbones used as feature extractors

2. Using frozen pre-trained networks or end-to-end optimisation.

3. Using recurrence or self-attention for sequence modelling.

4. Using multi-modal versus uni-modal models and early versus hybrid fusion.

4.1.1 Dataset Preprocessing

Since Aff-Wild2’s subjects are recorded in very noisy and diverse settings, prepro-
cessing is applied to the data. For the visual modality, the face extraction method
provided by the dataset’s creators is used. This detects and crops out the faces in
every frame, as well as aligning their orientation. Finally, the cropped and aligned
faces are scaled to a size of 112x112 pixels. The audio is extracted via ffmpeg1 and
converted to 16 kHz mono, 16bit PCM encoding. From the audio feed, overlapping
clips of 0.5s length, centred at the frame timestamps, are extracted.

t =
N
30

∗ T (4.1)

As the Aff-Wild2 video frame rate is 30fps, consecutive frames will be very simi-
lar to each other, not containing much new information for the model. In order to
cover a larger temporal context while avoiding high computational costs from long
sequences, a dilated sampling method is used, i. e., creating a sequence of length T
by picking 1 in every N frames. This gives a context according to eq. (4.1).

1https://git.ffmpeg.org/ffmpeg.git
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xi xi+1 xi+2

FIGURE 4.1: Dilated sampling example on frames of the Aff-Wild2 dataset. Every N-th
frame is taken, so the sequence covers more context of the video.

The sampling strategy is only applied to the training set, while for the validation and
test set, sequences from consecutive frames are used. In order to avoid discarding
(N − 1)/N frames from the training data, an interleaved sampling method is also
used. Dilated sampling is illustrated in fig. 4.1.

For data augmentation, the images are manipulated with random affine transfor-
mations, including rotation and translation. Saturation, brightness and contrast are
modified with a jitter value of 0.2 to further challenge the model. The audio clips are
augmented with Gaussian noise.

4.1.2 Models

The sequences of faces and audio clips are processed with deep models consisting of
CNN feature extractors, followed by fusion and sequence processing modules, and
finally prediction heads.

For the visual features, 2D CNNs are used. Two architectures, pre-trained on facial
recognition tasks, are used. FaceNet (Schroff, Kalenichenko, and Philbin, 2015) is
based on InceptionResNetv1 and trained on VGGFace2. It has 27M parameters and
returns 512-dimensional embeddings. It is referred to simply as Inception below Mo-
bileFaceNet (S. Chen et al., 2018) is based on the residual bottlenecks of MobileNetv2
and trained on MS-Celeb-1M. It is designed as a lightweight architecture for embed-
ded processing. Herein, a version of MobileFaceNet with 0.99M parameters produc-
ing 512-dimensional embeddings is used.

In the audio modality, a 1D-CNN network is deployed, based on an architecture
proposed by J. Zhao, Mao, and L. Chen, 2019. It contains 4 local feature learning
blocks composed of 1D convolutions and maxpooling, yielding a very lightweight
(88K parameters) model. The model is pre-trained as a CNN-LSTM on RECOLA
using the END2YOU toolkit, before discarding the recurrent layers and adding a final
pooling layer to produce 128-dimensional embeddings. It will be referred to as 1D-
AudioNet here.

When multi-modal input is used, two different fusion strategies are used, as de-
scribed in section 2.4. The first is a simple concatenation step for early fusion. In the
second, modalities are combined via CMA blocks, as shown in fig. 3.3. Two comple-
mentary blocks, each attending one modality to the other, are used in parallel, and
the end results are concatenated. This setup is inspired by (Tsai et al., 2019).

Fully connected or 1D convolutional layers help reduce the dimensionality of the
features before they are passed to the sequence modules. The sequential modelling
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FIGURE 4.2: Overview of the model variants used for predicting valence and arousal on
ABAW. a) Feature extractors, b) temporal components.

is done with three different blocks, as described in section 3.4.2: The first uses multi-
layer RNNs with LSTM cells in both uni- and bidirectional configurations. The sec-
ond employs self-attention stacks based on the Transformer encoder. The third uses
the cross-modal blocks described above. Attention models include additional sinu-
soidal position embeddings, to help the model encode the sequence order. Feature
extractors and temporal blocks are visualised in fig. 4.2.

4.1.3 Training

The models are implemented with PyTorch2 and trained on Nvidia RTX3090 and
A40 GPUs. The loss function is composed of a weighted sum of three terms. These
include CCC loss, MSE loss, and a cross-entropy loss based on discretisations of the
valence-arousal plane as described in section 3.3. AdamW is chosen as the optimiser.
Cosine annealing with warm restarts is used as the learning rate scheduler, with its
restart period set to 200 steps.

Data is batched with 64 samples each, and a sequence length of 16 frames.

An extensive hyperparameter optimisation is performed to find the best model con-
figurations. The search space is listed in In order to speed up the process and avoid
wasting computational resources, the Ray Tune framework3 is used to run trials
across multiple GPUs. The ASHA scheduler is employed to discover promising con-
figurations, while those that do not perform well are stopped early.

4.1.4 Results

In this section, the results of the model training are presented. First, a set of ex-
periments with frozen feature extractor CNNs is described. Second, another set of
experiments that was run with end-to-end learning is summarised.

The results are discussed in section 5.1.
2https://pytorch.org/
3https://docs.ray.io/en/latest/tune/index.html
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TABLE 4.1: Search space of the hyperparameters used for training. Since the potential
number of combinations is quite large, trial scheduling with early stopping is used via

the Ray Tune framework.

Hyperparameter Value Range

General parameters
nlayers [1, 5]
dmodel 64, 128, 256
activation GELU, SELU
dropout [0.1, 0.6]
learning rate [10−5, 10−2]
weight decay [10−3, 10−1]
λmse [0.0, 1.0]
λce [0.0, 1.0]

Attention Models
d f eed f orward 64, 128, 256
nheads 2, 4, 8

Cross-Modal Attention
nV−→A

layers [1,5]
nA−→V

layers [1,5]
Recurrent Models

context unidirectional, bidirectional
nlayers [1,5]
dhidden 64, 128, 256

Experiments with frozen feature extraction networks.

Three sets of experiments are conducted: audio-only, visual-only, and audiovisual
(abbreviated as AV). Experiments with a visual component use the large Inception
net and the smaller MobileFaceNet.

The validation set results of the best-performing models with frozen CNNs are shown
in table 4.2.

The best scores were obtained by the multi-modal models. For valence, the top CCC
score was 0.393, achieved by the model using cross-modal fusion and Inception as
visual feature extractor. The top arousal CCC was obtained using early fusion of
MobileFaceNet and 1D-AudioNet features, followed by self-attention. Finally, the
best averaged score by a single model was from early fusion of Inception and 1D-
AudioNet followed by RNN, with CCC = 0.413.

The audio-only models performed much worse on valence, with top scores of 0.094
for the recurrent models and 0.076 for the attention-based architecture.

On arousal, the audio models performed better, the RNN model achieved CCC =
0.233, while the self-attention architecture achieved CCC = 0.317.

The uni-modal vision models achieved top CCC scores of 0.285 and 0.357 on valence
and arousal using MobileFaceNet and RNN, as well as 0.324 and 0.414 using Mobile-
FaceNet and self-attention respectively. The results from models based on Inception
features were slightly lower than those with MobileFaceNet on valence (0.277 with
RNNs, 0.318 with attention).
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TABLE 4.2: Validation set results (CCC ↑) on the Aff-wild2 corpus from the 2022 ABAW
challenge, adapted from (Karas, Tellamekala, et al., 2022). Shown are the scores of mod-
els using frozen feature extraction CNNs, with uni-modal (RNN and self-attention) and
multi-modal (early fusion and cross-modal attention) architectures. Also shown is the

baseline model from ABAW3 (Kollias, Tzirakis, Baird, et al., 2023)

Method Visual CNN Audio CNN Valence Arousal Avg.
CCC CCC CCC

Baseline (ABAW3) ResNet50 - .310 .170 .24
Recurrent Models (RNNs)

Audio-RNN - 1D-AudioNet .094 .233 .163
Visual-RNN Inception - .277 .188 .233
Visual-RNN MobileFaceNet - .285 .357 .321
AV-RNN Inception 1D-AudioNet .339 .486 .413
AV-RNN MobileFaceNet 1D-AudioNet .319 .436 .378

Self-Attention (SA) Models
Audio-SA - 1D-AudioNet .076 .317 .197
Visual-SA Inception - .318 .203 .261
Visual-SA MobileFaceNet - .324 .414 .369
AV-SA Inception 1D-AudioNet .344 .404 .374
AV-SA MobileFaceNet 1D-AudioNet .248 .529 .389

Cross-Modal Attention (CMA) Models
AV-CMA Inception 1D-AudioNet .393 .363 .378
AV-CMA MobileFaceNet 1D-AudioNet .324 .460 .392

Inception performed much worse than MobileFaceNet on arousal (CCC = 0.188
with recurrence, CCC = 0.203 with attention).

Experiments using end-to-end training

Following the experiments with frozen feature extractors, the CNN layers were un-
locked, allowing the fine-tuning on the Aff-Wild2 data. Based on the results of the
ablation experiments above, it was decided to abandon Inception due to its worse
performance compared to MobileFaceNet. This also had the advantage of saving
computational resources and allowed for faster iteration.

The results of the best-performing models trained end-to-end with different sequence-
to-sequence architectures are listed in table 4.3. The best valence score of CCC =

TABLE 4.3: Validation results in CCC ↑, evaluated on the validation set of Aff-Wild2 in
ABAW 2022 and adapted from Karas, Tellamekala, et al., 2022. Reported results are for
the best multi-modal models trained end-to-end with MobileFaceNet as visual encoder
and 1D CNN pretrained on RECOLA as audio encoder, and using RNN, self-attention

and cross-modal attention for sequence modelling.

.

Method Valence Arousal Avg.

E2E-AV-RNN .361 .551 .456

E2E-AV-SA .380 .520 .450

E2E-AV-CMA .388 .492 .440
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0.388 was obtained using cross-modal attention fusion. The best score for arousal,
as well as the highest overall score for a model, were delivered by the early fusion
with RNN model, with 0.551 and 0.456, respectively.

TABLE 4.4: Hyperparameter configurations for the best performing models on the vali-
dation set of the Aff-Wild2 dataset, obtained using randomly sampled grid search with
ASHA scheduler. Models are trained end-to-end with recurrent neural network, self-
attention, and cross-modal attention networks, respectively. Search results adapted from

Karas, Tellamekala, et al., 2022.

Hyper-Parameter E2E Models
AV-RNN AV-SA AV-CMA

nlayers 1 3 4
dmodel 64 64 256
activation SELU GELU GELU
dropout 0.5 0.5 0.6
learning rate 0.0002 0.002 0.0001
weight decay 0.023 0.008 0.06
λmse 0.84 0.78 0.18
λce 0.88 0.27 0.76
d f eed f orward - 256 256
nheads - 8 4
nV−→A

layers - - 3

nA−→V
layers - - 1

Context aggregation uni - -
dhidden 64 - -

As the best-performing end-to-end models were obtained from extensive hyperpa-
rameter tuning, their configurations are listed in table 4.4.

Test set results

The test set labels of Aff-Wild2 are hidden due to the data being used in a compe-
tition setting. Therefore, extensive evaluations were not possible. Instead, test set
results were obtained by entering the third ABAW challenge (Kollias, 2022). Due to
the limited number of submissions, only the best-performing models were chosen,
which were all multi-modal and trained end-to-end. An ensemble of those models
was also constructed. The results are listed in table 4.5.

The recurrent, self-attention and cross-modal attention models achieved averaged
CCC scores of 0.378, 0.386 and 0.343, respectively. The best overall test set perfor-
mance with the approach presented here was achieved with an ensemble of the three
best end-to-end models. Top CCC scores for valence and arousal were 0.418 and
0.407 respectively, leading to an aggregate score of 0.413.
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TABLE 4.5: Test results in CCC↑, evaluated on the test set of the Aff-wild2 corpus from
the ABAW2022 challenge. Reported here are the results from Karas, Tellamekala, et al.,
2022, based on the three best-performing models on the validation set, as well as their

ensemble obtained by averaging the models’ predictions.

Model Valence Arousal Avg.
CCC CCC CCC

E2E-AV-RNN .376 .380 .378
E2E-AV-SA .396 .376 .386
E2E-AV-CMA .327 .359 .343
E2E-AV-Ensemble .418 .407 .413

4.2 Cross-Cultural Audiovisual Emotion Recognition

This section describes experiments for continuous arousal and valence prediction on
the SEWA dataset. Data from multiple cultures is used to study how domain transfer
between them affects the models’ performance. Various architectures and training
procedures are employed, including ones aiming for domain adaptation to improve
generalisation to new cultures. Together with the discussion in section 5.3, these
experiments form contribution C–3, aimed at research questions RQ–2 and RQ–3.

4.2.1 Dataset preprocessing

Videos from all six cultures present in SEWA (German, Hungarian, Chinese, English,
Serbian, Greek) are preprocessed. For German, Hungarian, and Chinese, the parti-
tioning and annotations of the AVEC2019 corpus are re-used. For English, Serbian,
and Greek, no such annotations were available. Those cultures are used exclusively
as unlabelled training data for domain adaptation.

Audio is extracted from the video clips and converted to 16kHz mono using ffm-
peg. Since SEWA consists of dyadic conversations, the timestamps corresponding to
speaker and interlocutor turns are also extracted (for the AVEC2019 videos they are
already provided with the annotations). The faces of the subjects are extracted from
the videos using OpenFace toolkit4 (Baltrusaitis et al., 2018), the crops are similarity
aligned and stored as jpg files with resolution 112x112. From the raw data features
are generated using two pre-trained transformer models. Audio is processed with a
model based on WAV2VEC2 and fine-tuned on MSP-Podcast 5, yielding sequences of
1024 dimensional vectors. The faces are passed through a vision transformer (ViT-
Base) fine-tuned on the FER-2013 dataset for facial emotion recognition, and the CLS
token embeddings are used as 768 dimensional features.

4.2.2 Models

All models used herein are designed with early fusion and a sequence-to-sequence
encoder for prediction of arousal and valence.

The group of models trained for domain adaptation is DANN based, see fig. 3.6.
They consist of feature extraction networks for end-to-end training (unless pre-extracted

4https://github.com/TadasBaltrusaitis/OpenFace
5https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
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features a used), a feature encoder that can be based on RNNs or multi-head atten-
tion and returns an embedded sequence, an emotion regressor to predict arousal and
valence and a culture domain classifier connected through a gradient reversal layer.

4.2.3 Training

All models were trained on a mixture of RTX 3090 and A40 GPUs using PyTorch
framework. Due to the comparatively small size of the datasets and using com-
pact models (and pre-extracting features for the much larger transformers), training
proceeded quickly, with an epoch typically lasting less than 3 minutes, and models
taking approximately 35 epochs to train.

TABLE 4.6: Hyperparameter search space for preliminary experiments on cross-cultural
affect recognition on the SEWA dataset

Hyperparameter Value Range
random seed [1-5]
batch size [4-16]
sequence length [10-150]

Model architecture
activation [GELU, SELU]
RNN cell [GRU, LSTM]
RNN direction [uni, bi]
dembedding [32-256]
d f eed f orward [32-512]
nlayers [1-4]

Optimisation
optimiser [Adam, AdamW, SGD]
weight decay [10−5-10−3]
learning rate [10−4-10−3]
loss weighting [mean, dwa, rruw, druw]
learning rate schedule [cosine annealing, linear, none]

Preliminary experiments were conducted to find favourable hyperparameter config-
urations. Randomly sampled grid searches were performed, with parameters drawn
from the search space described in table 4.6.

Based on the preliminary experiments, AdamW was chosen as the optimiser, with a
weight decay of 1e − 4. The learning rate was set to 1e − 4.

Each model was trained with early stopping set to abort the training run if the val-
idation performance (measured by the average CCC of arousal and valence on the
validation set) did not improve by at least 0.01 for 8 epochs. At the end of training,
whether by early stopping or by reaching the maximum number of epochs, the best
model checkpoint was restored prior to evaluation. The batch size in all experiments
was chosen as 8, and the sequence length was set to 100 (equivalent to 10s).

As expected, bidirectional RNNs were found to be superior to unidirectional ones.
The results of LSTMS and GRUs in initial experiments were similar, thus GRU was
chosen over LSTM due to it being more computationally efficient with its lower pa-
rameter count. The hidden size was set to 128, which results in 256-dimensional
embeddings. For the depth of the seq-2-seq model, having 2-3 layers in the encoder
was found to be optimal in combination with CNN-based features.
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Interestingly, early experiments also showed that the activation function had con-
siderable influence on the results. Networks trained with Gaussion Exponential Linear
Unit (GELU) would consistently outperform their counterparts with Scaled Exponen-
tial Linear Unit (SELU) by a small margin (usually up to 0.03 CCC). Therefore, further
experiments were restricted to using GELU activations.

While the audio transformer features are known to deliver strong results for valence-
arousal prediction, the features extracted from ViT showed less promising perfor-
mance in preliminary experiments when used on the SEWA data. Hence, another
fine-tuning was implemented, this time on a subset of the Aff-Wild2 dataset. A re-
gression head was added to the ViT base model and trained to predict valence and
arousal. The learning rate for the transformer was set to 5e − 5. AdamW was used
as the optimiser, and a learning rate schedule of cosine annealing with warmup and
multiple restarts was set. CCC loss i. e., 1 − CCC was chosen as the objective func-
tion, and Dynamic Weight Averaging or Dynamic Restrained Uncertainty Weighing
were used to balance the training for valence and arousal prediction. Experiments
with these features also failed to show an improvement over the MobileFaceNet ac-
tivations, thus the following analysis focused on the 2D-CNN features.

Each model configuration was trained 5 times with varying random seeds to account
for the effect of different weights initialisation. Afterwards, the predictions of the
runs were averaged in an emsemble and the CCC computed again.

Baseline training process

In order to have a comparison for the adversarial models, a baseline set of exper-
iments is needed. Thus, a group of models is trained fully supervised on a single
source culture, and evaluated on the validation and test cultures. These baseline
models are simply combinations of feature extractor CNNS and recurrent or multi-
head attention based sequence-to-sequence models (effectively they are an ablation
of the DANN models, with the gradient reversal layer and culture classifier head
removed).

DANN training process

For the DANN models, the training procedure described in section 3.4.4 is used. In
terms of training speed, λE is set to 1.0, and λC varies from 1.0− 2.0, while the impact
of culture classification on the feature encoder is set by an adjustable parameter of
the gradient reversal layer, according to eq. (3.21). The parameter γ controlling the
speed of the ramp-up is set to 8.0.

Two datasets are constructed. The emotion dataset DE is used for training the affect
recognition task, analogous to the baseline models. It contains all labelled training
samples from the source culture. The culture dataset DC is used for the adversarial
domain adaptation task. It contains all training samples from the source and target
cultures with the binary domain label d.

A training epoch consists of a loop which draws SC batches from the culture dataset
DC and updates the classifier C and feature encoder F, followed by drawing SE
batches from the emotion dataset and updating the emotion regression network E
and feature encoder F. This interleaved training is designed to stabilise training,
based on the findings of the related works (J. Zhao, Li, et al., 2019; H. Chen, Y. Deng,
and Jiang, 2021). The epoch ends when the culture dataset has been iterated once.
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If the emotion dataset, which is by definition smaller, runs out of samples during
the epoch, its iterator can be restarted. This guarantees that the model receives the
same ratio of updates for the two tasks, irrespective of the size of the training sets
for different cultures.

An optional warmup method is also implemented, which if enabled restricts training
to the culture task for the first few epochs. While the warmup is running, since the
emotion task is not yet being optimised, early stopping is of course disabled.

4.2.4 Results

Here the results of the cross-cultural affect recognition experiments are described.
First, the results of the baseline experiments is are presented. Then the results of
DANNs trained on various culture combinations are shown in relation to the corre-
sponding baselines.

Each set of experiments produces a large number of results (a total of 10 arousal and
valence CCC scores on the validation and test set cultures). These are presented in
the following order:

• validation results before test results

• arousal CCC before valence CCC

• German before Hungarian before Chinese results

Experiments that only differ in their source culture are grouped together, with German-
trained models being described before Hungarian-trained ones.

Multi-modal baseline results

The results for audiovisual models trained on the German and Hungarian data re-
spectively is shown in table 4.7. The best achieved CCC scores for models using
early fusion of CNN features followed by either GRUs or Transformer encoder with
GRU for sequence modelling are depicted.

Beginning with the models trained on German data, the best scores are 0.767 and
0.55 for arousal, as well as 0.714 and 0.536 for valence, on German and Hungarian
validation set, respectively. On the test set, consisting of German, Hungarian, and
Chinese data, the baseline models achieve top arousal scores of 0.621, 0.516, 0.391
and top valence scores of 0.642, 0.443, 0.452 respectively.

The models trained on Hungarian data achieve validation scores of 0.556 and 0.437
for arousal, and 0.531 and 0.488 for valence, on German and Hungarian respectively.
On the test set, top arousal scores are 0.493, 0.521, and 0.477, while top valence scores
are 0.48, 0.518 and 0.34, on German, Hungarian and Chinese data respectively.

Uni-modal ablation results

In order to gauge the impact that multi-modal fusion has on the baseline models’
performance, an ablation study is performed. First, the audio information is re-
moved, forcing the model to learn arousal and valence from face only. The results
are depicted in table 4.8.

The vision models trained on German data with MobileFaceNet CNN features achieve
top arousal CCC scores of 0.684 and 0.54 on German and Hungarian data, as well
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TABLE 4.7: Validation and test set results of audio-visual baseline models trained on
German and Hungarian cultures of the SEWA dataset as source domains, respectively.
Shown are the CCC scores for arousal and valence, obtained by the best performing
aggregated model runs using CNN feature extractors and either RNN or self-attention

transformer stack and RNN as seq-2-seq encoder.

Source Features Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE MFN + 1D-CNN RNN .767 .55 .6196 .516 .391
DE MFN + 1D-CNN SA + RNN .741 .534 .621 .507 .345
DE MFN + WAV2VEC2 RNN 0.699 0.522 0.641 0.572 0.352
HU MFN + 1D-CNN RNN .556 .421 .493 .521 .477
HU MFN + 1D-CNN SA + RNN .544 .437 .47 .498 .411
HU MFN + WAV2VEC2 RNN .633 .476 .552 .559 .411

Valence
DE MFN + 1D-CNN RNN .689 .376 .576 .423 .46
DE MFN + 1D-CNN SA + RNN .714 .526 .642 .443 .452
DE MFN + WAV2VEC2 RNN .74 .381 .712 .462 0.457
HU MFN + 1D-CNN RNN .531 .454 .477 .431 .256
HU MFN + 1D-CNN SA + RNN .5 .488 .48 .518 .34
HU MFN + WAV2VEC2 RNN .675 .436 .648 .541 .38

TABLE 4.8: Validation and test set results of visual baseline models trained on German
and Hungarian cultures of the SEWA dataset as source domains. Shown are the CCC
scores for arousal and valence, obtained by the best performing aggregated model runs
using CNN as feature extractors and either RNN or self-attention transformer stack and

RNN as seq-2-seq encoder.

Source Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE CNN + RNN .684 .54 .577 .496 .379
DE CNN + SA + RNN .672 .484 .584 .502 .454
HU CNN + RNN .575 .46 .52 .506 .495
HU CNN + SA + RNN .583 .5 .521 .508 .517

Valence
DE CNN + RNN .699 .441 .654 .435 .429
DE CNN + SA + RNN .697 .41 .649 .443 .418
HU CNN + RNN .639 .434 .619 .522 .334
HU CNN + SA + RNN .581 .442 .586 .529 .328

as 0.584, 0.502 and 0.454 on German, Hungarian and Chinese test sets respectively.
For valence, the top scores are 0.699 and 0.441 on German and Hungarian. The test
scores are 0.654, 0.443 and 0.429 CCC.

The vision models trained with Hungarian data achieve top arousal CCC scores of
0.583 and 0.5 on the validation data, and 0.521, 0.508 and 0.517 on the test data. The



58 Chapter 4. Experiments and Results

best valence results are CCC scores of 0.639 and 0.442 for validation and 0.619, 0.529
and 0.334 on test.

TABLE 4.9: Validation and test set results of audio baseline models trained on the Ger-
man culture of the SEWA dataset as source domain. Shown are the CCC scores for
arousal and valence, obtained by the best performing aggregated model runs using ei-
ther a pre-trained 1D-CNN or a transformer as feature extractors and either RNN or

self-attention transformer stack and RNN as seq-2-seq encoder.

Source Feature Encoder Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE 1D-CNN RNN .441 .27 .359 .25 .121
DE 1D-CNN SA + RNN .288 .155 .19 .14 .06
DE WAV2VEC2 RNN .58 .394 .519 .45 .243
DE WAV2VEC2 SA + RNN .61 .395 .527 .454 .325
HU WAV2VEC2 RNN .4 .41 .43 .428 .139
HU WAV2VEC2 SA + RNN .35 .407 .423 .418 .145

Valence
DE CNN RNN .383 .0 .332 .15 .21
DE CNN SA + RNN .237 .0 .178 .02 .164
DE WAV2VEC2 RNN .58 .329 .563 .34 .332
DE WAV2VEC2 SA + RNN .617 .24 .581 .348 .405
HU WAV2VEC2 RNN .397 .17 .383 .357 .181
HU WAV2VEC2 SA + RNN .328 .148 .355 .403 .141

Second, the models are denied the visual domain, and forced to learn only from the
subjects’ voices. The results are listed in table 4.9.

The models trained only on German audio data with the 1D CNN feature extractor
achieve top arousal scores of 0.441 and 0.27 on the German and Hungarian valida-
tion sets, respectively. The tests scores are 0.359, 0.25 and 0.121 on German, Hungar-
ian and Chinese videos respectively. For valence, the top validation scores are 0.383
and 0.0 CCC, and the top test scores are 0.332, 0.15 and 0.21 CCC, in the culture order
above.

When WAV2VEC2 is used as feature extractor instead, a considerable improvement
in performance becomes apparent.

The best models trained on German data achieve validation scores of CCC = 0.61
and CCC = 0.617 on German as well as 0.395 and 0.329 on Hungarian for arousal
and valence, respectively. On the test set, this set of models achieves top arousal and
valence scores of CCC = 0.527 and CCC = 0.581 on German, 0.454 and 0.348 on
Hungarian, and 0.325 and 0.405 for Chinese, respectively.

Models trained on Hungarian yield arousal scores of 0.4 and 0.41 on German and
Hungarian validation data, as well as CCCs of 0.43, 0.428 and 0.145 on the test sets,
respectively. For valence, the top scores are 0.397 and 0.17 on German and Hungar-
ian validation, and 0.383, 0.403 and 0.181 on the German, Hungarian, and Chinese
test sets.
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Reducing the labels available for training

In order to answer RQ–3, experiments need to be conducted with different amounts
of labelled vs unlabelled data available to the models. Besides adding more target
domain data, one simple way to achieve this is to restrict the amount of source do-
main data.

TABLE 4.10: Validation and test set results of the multi-modal baseline models, trained
respectively on German and Hungarian cultures of the SEWA dataset. Shown are the
aggregated results of arousal and valence CCC, from the best-performing models, when

the amount of training data is decreased to 75%, 50% and 25%.

Source Labels Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE 0.75 CNN + RNN .729 .53 .615 .473 .337
DE 0.50 CNN + RNN .719 .497 .621 .465 .376
DE 0.25 CNN + RNN .717 .519 .619 .474 .438
DE 0.75 CNN + SA + RNN .716 .52 .597 .472 .501
DE 0.50 CNN + SA + RNN .717 .495 .601 .486 .449
DE 0.25 CNN + SA + RNN .687 .482 .556 .416 .44
HU 0.75 CNN + RNN .642 .45 .539 .531 .527
HU 0.50 CNN + RNN .618 .431 .528 .534 .443
HU 0.25 CNN RNN .597 .388 .469 .529 .47
HU 0.50 CNN + SA + RNN .482 .321 .412 .474 .48
HU 0.25 CNN + SA + RNN .418 .283 .297 .386 .47

Valence
DE 0.75 CNN + RNN .735 .371 .654 .386 .493
DE 0.50 CNN + RNN .714 .4 .671 .387 .44
DE 0.25 CNN + RNN .692 .4 .66 .371 .439
DE 0.75 CNN + SA + RNN .719 .441 .662 .401 .483
DE 0.50 CNN + SA + RNN .709 .372 .632 .361 .47
DE 0.25 CNN + SA + RNN .66 .346 .569 .306 .439
HU 0.75 CNN + RNN .613 0.414 0.603 0.499 0.285
HU 0.50 CNN + RNN .623 .419 .612 .498 .296
HU 0.25 CNN + RNN .608 .336 .576 .484 .3
HU 0.50 CNN + SA + RNN .437 .368 .404 .374 .198
HU 0.25 CNN + SA + RNN .38 .299 .371 .323 .2

Therefore, in order to gauge the impact the amount of labelled data available has
on the model performance, the source training datasets were successively reduced
to 75%, 50%, 25% of the original data. Sampling was performed randomly across
the dataset, but the random seed was fixed to maintain comparability between the
different training runs. For the audio-visual models using CNN feature extractors,
the results are depicted in table 4.10.

These results will be used below, for comparison with DANNs trained on an identi-
cal amount of source labels.
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Domain Adversarial Neural Network results

The results obtained with the domain adversarial neural networks are now pre-
sented. The experiments are organised by the combinations of labelled source cul-
ture (German or Hungarian) and unlabelled target culture (German, Hungarian, En-
glish, Serbian and Greek). For reference, the results of the baseline model sharing the
same source culture will be repeated in the following tables. In order to maintain a
fair comparison, the same feature extractors and splits of labelled data are used.

TABLE 4.11: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with German as source domain. CNN feature extractors are
used and the full labelled data of the source culture is processed. Top scores for arousal
and valence are shown, obtained by aggregating the best performing model runs. The
feature encoder of the DANNs consists of either GRUs or self-attention transformer stack

followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE - 1.00 CNN-BASE 767 .55 .627 .516 .471
DE HU 1.00 CNN-DANN .758 .526 .651 .546 .422
DE EN 1.00 CNN-DANN .76 .53 .651 .532 .415
DE SR 1.00 CNN-DANN .75 .534 .659 .539 .395
DE GR 1.00 CNN-DANN .762 .526 .66 .532 .411

Valence
DE - 1.00 CNN-BASE .714 .526 .642 .443 .46
DE HU 1.00 CNN-DANN .756 .414 .688 .443 .452
DE EN 1.00 CNN-DANN .769 .389 .672 .434 .5
DE SR 1.00 CNN-DANN .741 .395 .679 .454 .484
DE GR 1.00 CNN-DANN .767 . 384 .675 .455 .475

Average Arousal-Valence
DE - 1.00 CNN-BASE .741 .538 .635 .479 .466
DE HU 1.00 CNN-DANN .757 .47 .67 .495 .437
DE EN 1.00 CNN-DANN .765 .46 .662 .483 .458
DE SR 1.00 CNN-DANN .746 .465 .669 .497 .44
DE GR 1.00 CNN-DANN .765 .455 .668 .494 .443

The top results of DANNs trained with the full set of German videos are summarised
in table 4.11. For arousal, the top scores of DANNs are 0.76 CCC and 0.534 CCC on
German and Hungarian respectively, which is below the baseline score. On the test
set, the top DANN arousal score for German is 0.66 and the top score for Hungarian
is 0.546, both surpassing the baseline. On Chinese, the top score is 0.422, which is
below the baseline score of 0.471.

For valence, the best DANN achieves a top CC of 0.767 on German, surpassing the
baseline. With Hungarian however, the top result is 0.414, which is worse than the
baseline of 0.526. On the test set, the top scores are 0.688, 0.455 and 0.484 for German,
Hungarian and Chinese respectively, ass surpassing the baseline.

Finally, looking at the average of arousal and valence scores per culture, the top score
for German validation is 0.765 CCC, and the top score for Hungarian is 0.47 CCC,
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which is above and below the baseline, respectively. On the test set, the top scores on
German, Hungarian and Chinese are 0.669, 0.495 and 0.458 CCC respectively, with
only Chinese falling below the baseline result of 0.466.

TABLE 4.12: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with German as source domain. CNN feature extractors are
used and the full labelled data of the source culture is processed. Top scores for arousal
and valence are shown, obtained by aggregating the best performing model runs. The
feature encoder of the DANNs consists of either GRUs or self-attention transformer stack

followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
HU - 1.00 CNN-BASE .556 .437 .493 .521 .512
HU DE 1.00 CNN-DANN .644 .512 .585 .547 .561
HU EN 1.00 CNN-DANN .623 .464 .566 .554 .469
HU SR 1.00 CNN-DANN .654 .447 .594 .563 .461
HU GR 1.00 CNN-DANN .646 .464 .595 .553 .55

Valence
HU - 1.00 CNN-BASE .531 .488 .48 .518 .34
HU DE 1.00 CNN-DANN .616 .452 .589 .542 .358
HU EN 1.00 CNN-DANN .609 .338 .554 .534 .354
HU SR 1.00 CNN-DANN .636 .446 .63 .537 .33
HU GR 1.00 CNN-DANN .612 .422 .638 .542 .327

Average Arousal-Valence
HU - 1.00 CNN-BASE .544 .463 .486 .52 .426
HU DE 1.00 CNN-DANN .63 .482 .587 .545 .456
HU EN 1.00 CNN-DANN .616 .542 .56 .544 .412
HU SR 1.00 CNN-DANN .645 .447 .612 .55 .396
HU GR 1.00 CNN-DANN .634 .443 .617 .548 .439

In table 4.12, the results of DANNs trained with the full Hungarian data as source
culture and using CNN feature extractors are summarised.

For arousal the top validation scores are 0.654 CCC and 0.512 CCC for German and
Hungarian respectively, both improving on the baseline. On the test set, the top
scores are 0.595, 0.563 and 0.561 on German, Hungarian and Chinese, all surpassing
the baseline.

Regarding valence, the top validation score for German is 0.636, and 0.452 for Hun-
garian, which is above and below the baseline, respectively. On the test set, the
DANNs achieve top CCC scores of 0.638, 0.542, and 0.358, all surpassing the base-
line.

Looking at the average of the arousal and valence results, the DANNs achieve top
validation scores of 0.645 and 0.542 on German and Hungarian respectively, both
surpassing the baseline. The top scores on the test set are 0.617, 0.55 and 0.456, for
German, Hungarian, and Chinese, again all surpassing the baseline.
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TABLE 4.13: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with German as source domain. CNN feature extractors are
used and 75% of the labelled samples in the source domain are processed. Top scores
for arousal and valence are shown, obtained by aggregating the best performing model
runs. The feature encoder of the DANNs consists of either GRUs or self-attention trans-

former stack followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE - 0.75 CNN-BASE .729 .53 .615 .473 .501
DE HU 0.75 CNN-DANN .733 .53 .621 .53 .44
DE EN 0.75 CNN-DANN .754 .523 .625 .53 .475
DE SR 0.75 CNN-DANN .732 .52 .616 .518 .513
DE GR 0.75 CNN-DANN .742 .527 .622 .52 .493

Valence
DE - 0.75 CNN-BASE .735 .441 .662 .401 .493
DE HU 0.75 CNN-DANN .715 .384 .669 .43 .387
DE EN 0.75 CNN-DANN .751 .391 .662 .42 .468
DE SR 0.75 CNN-DANN .748 .396 .677 .424 .442
DE GR 0.75 CNN-DANN .76 .383 .655 .421 .476

Average Arousal-Valence
DE - 0.75 CNN-BASE .732 .486 .639 .437 .497
DE HU 0.75 CNN-DANN .724 .457 .645 .48 .414
DE EN 0.75 CNN-DANN .753 .457 .644 .475 .472
DE SR 0.75 CNN-DANN .74 .458 .647 .471 .478
DE GR 0.75 CNN-DANN .751 .455 .639 .471 .485

Now, the amount of source labels available to the DANN training process is reduced
to 75%, using a sampling method identical to that in the baseline experiments. The
results when using German as source culture are summarised in table 4.13.

For arousal, the top score of DANNs is 0.754 for German, and 0.53 for Hungarian on
the validation data, which is above and on par with the baseline, respectively. The
top test set results for arousal are 0.625, 0.53 and 0.513, all surpassing the baseline
result for German, Hungarian, and Chinese respectively.

For valence, top validation scores of 0.76 and 0.396 are achieved on German and
Hungarian, which is above and below than the baseline, respectively. The top test
results are 0.677, 0.43 and 0.476, surpassing the baseline except on Chinese.

Looking at the average scores of valence and arousal gives top test set results of
CCC 0.647 on German and 0.48 on Hungarian, which surpass baseline, and 0.485 on
Chinese, which falls below.

In the next set of experiments, the same reduction to 75% of emotion labels is re-
peated with Hungarian as source culture. The results are shown in table 4.14.

Again beginning with arousal, the top validation scores are 0.656 and 0.466 on Ger-
man and Hungarian respectively, both surpassing the baseline. On the test set, the
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TABLE 4.14: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with Hungarian as source domain. CNN feature extractors
are used and 75% of the labelled samples in the source domain are processed. Top scores
for arousal and valence are shown, obtained by aggregating the best performing model
runs. The feature encoder of the DANNs consists of either GRUs or self-attention trans-

former stack followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
HU - 0.75 CNN-BASE .642 .45 .539 .531 .527
HU DE 0.75 CNN-DANN .631 .456 .577 .554 .517
HU EN 0.75 CNN-DANN .644 .449 .531 .56 .433
HU SR 0.75 CNN-DANN .656 .403 .553 .561 .519
HU GR 0.75 CNN-DANN .656 .466 .556 .558 .473

Valence
HU - 0.75 CNN-BASE .613 .438 .603 .499 .285
HU DE 0.75 CNN-DANN .607 .438 .607 .546 .337
HU EN 0.75 CNN-DANN .593 .387 .601 .523 .348
HU SR 0.75 CNN-DANN .604 .371 .568 .525 .342
HU GR 0.75 CNN-DANN .604 .386 .623 .54 .309

Average Arousal-Valence
HU - 0.75 CNN-BASE .628 .444 .571 .515 .406
HU DE 0.75 CNN-DANN .619 .447 .592 .55 .427
HU EN 0.75 CNN-DANN .619 .418 .592 .55 .427
HU SR 0.75 CNN-DANN .63 .387 .561 .543 .431
HU GR 0.75 CNN-DANN .63 .426 .59 .549 .391

top results are 0.577, 0.561 on German and Hungarian, above the baseline, while the
top score for Chinese is CCC = 0.519, below the baseline.

Continuing with valence, the DANNs achieve top validation scores of 0.607 and
0.438, which is slightly below and on par with the German and Hungarian baselines,
respectively. On the test set, the top scores in order are 0.623, 0.546 and 0.348, all
surpassing the baselines.

Finally, looking at the averaged scoring of arousal and valence, the top validation
scores are 0.63 and 0.447 CCC, narrowly surpassing the baseline. On the test set, top
scores of 0.592 on German, 0.55 on Hungarian, and 0.431 on Chinese are achieved,
all surpassing the respective baselines.

Once the labels are further reduced to 50% of the data, the results in table 4.15 are
achieved with German as the source culture.

For arousal this yields top scores of CCC = 0.741 and CCC = 0.508 on German and
Hungarian, and on the test set CCCs of 0.649, 0.545 and 0.436 are scored on German,
Hungarian and Chinese respectively. Both the German and Hungarian test scores
surpass the baseline, while performance on Chinese falls below.

On valence, the top validation scores are CCC = 0.738 and 0.392 respectively. The
top test scores are 0.672, 0.425 and 0.471 respectively. Of the test cultures, only the
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TABLE 4.15: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with German as source domain. CNN feature extractors are
used and 50% of the labelled samples in the source domain are processed. Top scores
for arousal and valence are shown, obtained by aggregating the best performing model
runs. The feature encoder of the DANNs consists of either GRUs or self-attention trans-

former stack followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE - 0.50 CNN-BASE .719 .516 .621 .486 .449
DE HU 0.50 CNN-DANN .741 .497 .649 .545 .419
DE EN 0.50 CNN-DANN .727 .493 .627 .531 .436
DE SR 0.50 CNN-DANN .727 .481 .596 .502 .413
DE GR 0.50 CNN-DANN .735 .508 .62 .51 .347

Valence
DE - 0.50 CNN-BASE .714 .4 .671 .387 .47
DE HU 0.50 CNN-DANN .733 .384 .672 .425 .416
DE EN 0.50 CNN-DANN .738 .392 .635 .399 .47
DE SR 0.50 CNN-DANN .715 .382 .621 .371 .471
DE GR 0.50 CNN-DANN .734 .376 .613 .397 .432

Average Arousal-Valence
DE - 0.50 CNN-BASE .717 .458 .646 .437 .46
DE HU 0.50 CNN-DANN .737 .441 .661 .485 .418
DE EN 0.50 CNN-DANN .733 .443 .631 .465 .453
DE SR 0.50 CNN-DANN .721 .432 .609 .437 .442
DE GR 0.50 CNN-DANN .735 .442 .617 .454 .39

scores of German and Chinese are on par with the baseline, while Hungarian is
considerably better.

Looking at the averaged arousal-valence scores shows top validation values of 0.737
for German and 0.443 for Hungarian, above and below baseline respectively. For the
test sets, the results in order are 0.661, 0.485, 0.453. Only German and Hungarian
surpass the baseline here.

Repeating the 50% reduction, this time with Hungarian as the source culture, leads
to the results summarised in table 4.16.

Beginning once more with arousal, the top German and Hungarian validation scores
are CCC = 0.659 and CCC = 0.454 respectively, both above the supervised baseline.
On the test set, the top German, Hungarian and Chinese CCC scores are 0.597, 0.561
and 0.502, all surpassing the baseline.

For valence, the top validation scores are 0.618 and 0.393, neither surpassing the
corresponding baseline. On the test set, German achieves 0.609, Hungarian achieves
0.553 and Chinese gives 0.378, with only Hungarian surpassing the baseline.

Averaging the two affect dimensions gives top validation scores of 0.637 and 0.414
for German and Hungarian respectively. This represents an improvement over base-
line on German. On the test set, the top scores are 0.601, 0.545 and 0.445 for German,
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TABLE 4.16: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with Hungarian as source domain. CNN feature extractors
are used and 50% of the labelled samples in the source domain are processed. Top scores
for arousal and valence are shown, obtained by aggregating the best performing model
runs. The feature encoder of the DANNs consists of either GRUs or self-attention trans-

former stack followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
HU - 0.50 CNN-BASE .618 .431 .528 .534 .498
HU DE 0.50 CNN-DANN .656 .45 .554 .546 .502
HU EN 0.50 CNN-DANN .636 .424 .575 .545 .425
HU SR 0.50 CNN-DANN .59 .397 .597 .561 .445
HU GR 0.50 CNN-DANN .659 .454 .593 .537 .487

Valence
HU - 0.50 CNN-BASE .623 .419 .612 .534 .48
HU DE 0.50 CNN-DANN .618 .378 .604 .524 .313
HU EN 0.50 CNN-DANN .618 .375 .589 .547 .378
HU SR 0.50 CNN-DANN .61 .393 .586 .529 .333
HU GR 0.50 CNN-DANN .605 .365 .609 .553 .334

Average Arousal-Valence
HU - 0.50 CNN-BASE .621 .425 .57 .516 .489
HU DE 0.50 CNN-DANN .637 .414 .579 .535 .408
HU EN 0.50 CNN-DANN .627 .4 .582 .546 .402
HU SR 0.50 CNN-DANN .6 .395 .592 .545 .445
HU GR 0.50 CNN-DANN .632 .41 .601 .545 .411

Hungarian and Chinese, the first two outperforming the baseline while the latter
falls below.

Access to the labels is then restricted even further in the last set of experiments on
label reduction. Making just 25% of training annotations available to the DANN
results in the scores from table 4.17 when German is used as the source culture.

Beginning again with the results for arousal, the top validation scores are CCC =
0.723 and CCC = 0.509 for German and Hungarian, respectively, the latter falling
below the supervised baseline. On the test set, both German and Hungarian surpass
the baseline with CCC scores of 0.648 and 0.505 respectively, while Chinese falls
below with 0.413.

Moving on to valence, the top validation scores are 0.721 for German and 0.408 for
Hungarian, both rising above the baseline. On the test set, the top scores of the
DANNs are 0.677 for German, 0.397 for Hungarian and 0.471 for Chinese, all sur-
passing the baseline.

Finally, for the averaged arousal-valence scores, the top validation results are 0.722
and 0.457 for German and Hungarian respectively, with only German surpassing the
baseline. On test, the scores are 0.663, 0.449 and 0.442, all above the baseline.
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TABLE 4.17: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with German as source domain. CNN feature extractors are
used and 25% of the labelled samples in the source domain are processed. Top scores
for arousal and valence are shown, obtained by aggregating the best performing model
runs. The feature encoder of the DANNs consists of either GRUs or self-attention trans-

former stack followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
DE - 0.25 CNN-BASE .717 .519 .619 .474 .44
DE HU 0.25 CNN-DANN .723 .485 .648 .5 .406
DE EN 0.25 CNN-DANN .69 .509 .602 .505 .346
DE SR 0.25 CNN-DANN .711 .503 .596 .502 .413
DE GR 0.25 CNN-DANN .702 .506 .633 .502 .392

Valence
DE - 0.25 CNN-BASE .692 .4 .66 .374 .439
DE HU 0.25 CNN-DANN .721 .396 .677 .397 .398
DE EN 0.25 CNN-DANN .692 .402 .619 .389 .445
DE SR 0.25 CNN-DANN .715 .4 .621 .371 .471
DE GR 0.25 CNN-DANN .708 .408 .616 .392 .37

Average Arousal-Valence
DE - 0.25 CNN-BASE .705 .46 .64 .424 .44
DE HU 0.25 CNN-DANN .722 .441 .663 .449 .402
DE EN 0.25 CNN-DANN .691 .456 .611 .447 .396
DE SR 0.25 CNN-DANN .713 .452 .609 .437 .442
DE GR 0.25 CNN-DANN .705 .457 .625 .447 .381

The previous experiment is repeated using Hungarian as the source culture instead,
and restricting again to 25% of training labels. The findings are reported in table 4.18,
and the best performing models manifest the following scores:

On arousal, evaluating the German and Hungarian validation data gives 0.631 and
0.459 respectively, both surpassing the baseline. On test, the best results are 0.55 on
German, 0.569 on Hungarian, and 0.541 on Chinese, all representing an improve-
ment on the baseline.

Continuing with valence, here the top validation scores are 0.636 and 0.426 on Ger-
man and Hungarian respectively, again surpassing the baseline. For the test data,
the respective scores on German, Hungarian and Chinese are 0.649, 0.522 and 0.381,
all surpassing the baseline.

Looking at the averages of arousal and valence per model, the DANNs achieve 0.636
and 0.432 on the validation culture splits, both surpassing the baseline. Likewise, the
top test scores of 0.6, 0.546 and 0.454 for German, Hungarian and Chinese are all well
above those of the supervised model.
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TABLE 4.18: Validation and test set results of the best DANN models trained on the cul-
tures of the SEWA dataset, with Hungarian as source domain. CNN feature extractors
are used and 25% of the labelled samples in the source domain are processed. Top scores
for arousal and valence are shown, obtained by aggregating the best performing model
runs. The feature encoder of the DANNs consists of either GRUs or self-attention trans-

former stack followed by GRUs.

Source Target Split Model Validation Test
CCC CCC

DE HU DE HU CN

Arousal
HU - 0.25 CNN-BASE .597 .388 .469 .529 .47
HU DE 0.25 CNN-DANN .631 .459 .55 .534 .532
HU EN 0.25 CNN-DANN .627 .426 .547 .534 .512
HU SR 0.25 CNN-DANN .616 .385 .499 .549 .541
HU GR 0.25 CNN-DANN .616 .428 .513 .569 .443

Valence
HU - 0.25 CNN-BASE .608 .336 .576 .484 .3
HU DE 0.25 CNN-DANN .636 .405 .649 .487 .339
HU EN 0.25 CNN-DANN .612 .426 .606 .487 .381
HU SR 0.25 CNN-DANN .614 .345 .59 .501 .367
HU GR 0.25 CNN-DANN .607 .353 .612 .522 .362

Average Arousal-Valence
HU - 0.25 CNN-BASE .603 .362 .523 .507 .385
HU DE 0.25 CNN-DANN .636 .432 .6 .511 .436
HU EN 0.25 CNN-DANN .62 .426 .577 .511 .447
HU SR 0.25 CNN-DANN .615 .365 .545 .525 .454
HU GR 0.25 CNN-DANN .612 .391 .563 .546 .403

4.3 Vocal Burst Affect Detection

This section describes the experiments on the Hume-VB dataset for multi-task pre-
diction of continuous emotion annotations and vocal burst type. The task definitions
are identical with those of the four tracks of the A-VB competition (A-VB-TYPE ,
A-VB-TWO , A-VB-HIGH and A-VB-CULTURE ), see section 2.6.1. Various archi-
tectures built on top of the audio Transformer WAV2VEC2 are investigated, as well
as dynamic loss balancing functions introduced in section 3.3.1. Together with the
discussion in section 5.2, these results form contribution C–2, which is focused on
answering research question RQ–4, i. e., emotion recognition from non-verbal vocal-
isations.

4.3.1 Dataset Preprocessing

All audio clips are cut to 2.5s length, shorter recordings are zero-padded at the end.
No additional preprocessing is performed and the audio is processed directly in the
models.
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4.3.2 Models

The approach for these experiments uses a large model pre-trained via self-supervised
learning to extract representations from the vocal bursts. In this case, WAV2VEC2
(Baevski et al., 2020) is chosen, specifically, the wav2vec2-base architecture 6. It has
approximately 78M parameters and consists of two sub-networks: A CNN which
returns features of dimension 512 and 12 transformer layers which produce embed-
dings of dimension 768. There are many fine-tuned variants of this model, but in this
work, only the base variant without tuning on a speech corpus, e. g., Librispeech, is
used. The motivation for this choice is the particular case of the Hume-VB dataset
not having any verbal content, so a transformer fine-tuned towards speech is not
assumed to provide a significant benefit over the base variant.
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FIGURE 4.3: Multi-task models used for analysing vocal bursts: a) basic MTL model, b)
classifier chain model, c) branching attention model.

On top of the WAV2VEC2 backbone, three model variants are constructed. They are
illustrated in fig. 4.3 and described below.

Basic Multi-Task model

This basic model consists of four parallel fully connected networks which take the
last transformer layer embedding as input and each predict one of the tasks. The
prediction heads have identical size and are designed to have a low parameter count,
consisting only of one hidden layer and one output layer.

Chain model

In this model, the basic architecture is extended by chaining prediction heads, as
described in section 3.4.5. The WAV2VEC2 embeddings of the final transformer layer
are used as input to the first task, and for each following task the embeddings are
concatenated with the predictions of the previous tasks. In order to avoid confus-
ing the model with inaccurate information during training, the ground truth labels
instead of the predicted values are used as inputs to the network.

6https://huggingface.co/facebook/wav2vec2-base
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The order of the tasks in the chain can be freely chosen. It is also possible to use a hy-
brid approach where some tasks are predicted in parallel, while others are chained.
An initial assumption for the ordering is that easier tasks can be placed at the front,
where they provide input to more complex tasks downstream. The type of a vocal
burst may be easiest to recognise (A-VB-TYPE ), followed by two-dimensional affec-
tive state (A-VB-TWO ), then multiple emotional states (A-VB-HIGH ), and finally
cultural aspects of emotion (A-VB-CULTURE ).

Branching Multi-Head Attention Model

In contrast to the previous architectures, this model uses multiple hidden states of
WAV2VEC2 as task-specific inputs. The rationale behind this approach is that useful
information may be contained at different depths for each task. Thus, inspired by
multi-task attention network (Liu, Johns, and Davison, 2019), MHA blocks are used
to combine features from selected layers of WAV2VEC2. The features serve as queries,
while the output of each block forms the key-value pairs for the next one.

4.3.3 Training

The models are implemented in PyTorch and trained on Nvidia RTX3090 and A40
GPUs. Each training run is repeated multiple times (N = 3) with different seeds
for the random weight initialisations, as these can have a significant impact on the
outcome.

TABLE 4.19: Hyperparameter search space used in the vocal burst analysis experi-
ments on the HUME-VB dataset. Various optimisation strategies including different loss
weights are applied. For the task chaining architecture, different task orders (standard
order or based on descending performance) and levels of chaining/parallelisation are
used. In the branching attention architecture, both multi-head attention parameters and

selections of hidden layers to branch out from are varied.

Hyperparameter Value Range

random seed [1-3]
Task heads

dhidden [32, 64, 128, 256]
activation [GELU, SELU]

Optimisation
weight decay [10−4-10−3]
lrTrans f ormer [10−5-10−4]
lrdownstream [10−4-10−3]
loss balancing [mean, dwa, rruw, druw]

Chain Models
task order [(TYPE,LOW,HIGH,CULTURE), (LOW,HIGH,CULTURE,TYPE)]
internal task structure [sequential, parallel]
internal task order [default, performance desc.]
chain structure [sequential, partly parallel]

Branching Attention Models
dembedding [32, 64, 128]
nheads [4, 8]
branching layer depth [1-12]
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For data augmentation, the equivalent of SpecAugment (D. S. Park et al., 2019) i. e.,
setting randomly selected slices of data to 0, is used on the CNN embeddings of
wav2vec2 before they are passed to the transformer. This masking is applied to both
the temporal and feature dimensions, and the default values of the Huggingface
implementation (masking probability p = 0.05, mask length 10) are chosen.

All models are trained end-to-end for 30 epochs, with a learning rate scheduler set
to halve the rate if the validation set performance fails to improve for 5 epochs. The
choice of optimiser is AdamW, with weight decay set between 10−4 and 10−3. The
initial learning rate is chosen in the interval 10−5–10−4 for the pre-trained feature ex-
traction network, and between 10−4–10−3 for the randomly initialised downstream
task prediction networks. The batch size is fixed to 8 based on GPU VRAM lim-
itations. For the task prediction networks, hidden layer size is varied from 32 to
256, and GELU and SELU are chosen as activation functions. An overview on the
hyperparameter search space is given in table 4.19.

4.3.4 Results

Here the results of the experiments on vocal burst data are presented. Since the test
set is hidden, the focus is on the validation set.

TABLE 4.20: Validation set results on the four tasks for the basic MTL architecture
with different transformer backbones: WAV2VEC2-BASE, WAV2VEC2-LARGE, WAV2VEC2-

LARGE pruned and fine-tuned on MSP-Podcast, and HUBERT-BASE.

Backbone model A-VB-TYPE A-VB-TWO A-VB-HIGH A-VB-CULTURE

UAR CCC CCC CCC

wav2vec2-base .5547 0.7026 0.7271 0.6025
wav2vec2-large 0.5363 0.7018 0.7271 0.5969
wav2vec2-large-ft 0.5217 0.6898 0.7179 0.584
hubert-base 0.5492 0.6971 0.7231 0.5913

In order to examine whether WAV2VEC2-BASE is a suitable choice as feature extrac-
tor, experiments are conducted with the basic MTL architecture, using various trans-
former based models. These include WAV2VEC2-LARGE 7, WAV2VEC2-LARGE fine-
tuned on MSP-Podcast and pruned to 12 layers 8 and HUBERT-BASE 9. For each set
of experiments, the transformer and the downstream prediction heads are trained
end-to-end. Following hyperparameter optimisation and combining the predictions
of N = 3 randomly initialised runs, the best results per type of model on each of
the four tasks are selected. A comparison of the performances of the basic MTL ar-
chitecture with different transformer backbones is shown in table 4.20. Given the
similarity of the results, using the larger or fine-tuned models is not considered ben-
eficial and WAV2VEC2-BASE is kept as the backbone for all experiments.

Next, for each downstream multi-task classifier/regressor architecture, the results
for each task presented in detail.

7https://huggingface.co/facebook/wav2vec2-large
8https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
9https://huggingface.co/facebook/hubert-base-ls960
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Basic Multi-Task Model

Results for the A-VB-TYPE task are shown in fig. 4.4. The best achieved values of
recall per class are 0.8372 for Laugh, 0.4357 for Grunt, 0.4976 for Cry, 0.5131 for Pant,
0.7584 for Gasp, 0.3956 for Groan, 0.566 for Scream, and 0.5298 for Other, respec-
tively.
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FIGURE 4.4: Validation set results of the best performing basic multi-task models on the
A-VB-TYPE task. Shown are recall scores per class and loss balancing strategy.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Valence Arousal

C
C

C

Basic MTL Model - VA Task

Mean DWA RRUW DRUW

(A) Two-dimensional affect

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

C
C

C

Basic MTL Model - Emotion Task

Mean DWA RRUW DRUW

(B) 10 emotions

FIGURE 4.5: Validation set results of best performing base architecture models for A-
VB-TWO and A-VB-HIGH tasks. Shown are CCC scores for: a) arousal-valence, b) 10

continuous-valued emotions.

In fig. 4.5a, the results of the A-VB-TWO task are shown, with maximum CCC val-
ues of 0.7677 and 0.6393 for valence and arousal, respectively.

fig. 4.5b depicts the CCC values of the 10 annotated emotions in the A-VB-HIGH

task. The best results are 0.8066 for Amusement, 0.6867 for Excitement, 0.8 for
Amusement, 0.5935 for Awkwardness, 0.7675 for Fear, 0.7406 for Horror, 0.6837 for
Distress, 0.6785 for Triumph, 0.7062 for Sadness, and 0.8131 for Surprise.

Finally, for the A-VB-CULTURE task, the results of the basic multi-task models are
depicted in fig. 4.6. For each culture and annotated emotion, the best CCC value is
also given in table 4.21.

The top CCC score for Awe is 0.7495, for Excitement it is 0.6668. Amusement and
Awkwardness achieve 0.8246 and 0.5654, respectively. Fear, Horror, and Distress
are recognised at 0.6867, 0.7343 and 0.6508. Triumph, Sadness and Surprise are pre-
dicted with CCCs of 0.6767, 0.6855, and 0.7502. With the exception of Horror, all top
scores come from the United States culture. The best average score across all cultures
and emotions, achieved with DWA loss, is CCC = 0.6025.
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FIGURE 4.6: Validation set results of the best performing basic multi-task models on the
A-VB-CULTURE task. Shown are CCC scores for the 10 annotated emotions per culture:

a) Chinese, b) United States, c) South Africa, and d) Venezuela.

TABLE 4.21: Validation set results on the A-VB dataset per culture and annotated emo-
tion in the A-VB-CULTURE task for the best performing basic multi-task models.

Culture Awe Excitement Amusement Awkwardness Fear
CCC CCC CCC CCC CCC

China .2428 .5963 .4649 .3731 .6078
South Africa .5987 .6473 .7304 .4746 .6664
United States .7495 .6668 .8246 .5654 .6867
Venezuela .6897 .3804 .7201 .4498 .5627

Horror Distress Triumph Sadness Surprise
CCC CCC CCC CCC CCC

China .7343 .6481 .5529 .6602 .6913
South Africa .5967 .553 .585 .6081 .7058
United States .6526 .6508 .6767 .6855 .7502
Venezuela .5774 .4119 .4911 .6312 .598

Classifier chain models

In the classifier chain approach, there are many options for assembling the chain.
Thus, various models with unique structures were evaluated. These included dif-
ferent orders of the tasks, as well as choosing which predictions to chain or run in
parallel. Chains can be created at the top level of the four A-VB tasks, as seen in
fig. 4.3, but also inside the task heads.

Regarding task-level chain order, preliminary experiments showed low performance
in the A-VB-TYPE task if it was at the end of the chain, thus the task order type −→
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TABLE 4.22: Configurations of classifier chain models used for multi-task learning on
the A-VB dataset. Within a given task, the predictions can themselves be chained or
predicted in parallel. Chains can be set in standard order provided by the annotation
files, or ordered by descending validation set performance of the basic MTL model. The
tasks are predicted in sequence, but the A-VB-CULTURE head may be set in parallel to

the A-VB-HIGH head to reduce overall chain length (rightmost column).

Config Task Fork Culture
A-VB-TWO A-VB-HIGH A-VB-CULTURE

Chain Order Chain Order Chain Order

A % - % - % - %

B ! perf % - % - !

C ! perf % - ! perf !

D ! perf ! perf % - %

E ! perf ! perf ! perf !

F ! - ! - ! - !

low −→ high −→ culture was chosen. In order to shorten the length of the classi-
fier chain, if the A-VB-CULTURE task was chained internally, it contained 4 parallel
chains of length 10, one per culture. In addition, the A-VB-CULTURE task was placed
in parallel to the A-VB-HIGH task in some configurations.

For ordering the predictions heads when chaining internally within a task, e. g., emo-
tions for A-VB-HIGH , two options are used: standard order of annotations in the
dataset, and descending order by performance, based on the results of the basic MTL
model shown above. Chaining the A-VB-TYPE task internally showed worse results
in initial experiments and was thus avoided.

In total, six different configurations were used for experimentation, labelled A–F.
Configuration A is the least complex, with inter-task chaining and parallel predic-
tion of the affect dimensions or emotions within the respective tasks. The others
include variations of intra-task chaining and ordering as described above. Detailed
configuration settings are listed in table 4.22.

Validation set results of the various classifier chain configurations, in terms of UAR
for A-VB-TYPE and averaged CCC as well as averaged ρ for the other tasks, are
given in table 4.23. On A-VB-TYPE , the top result is UAR = 0.5687 (model D).
For A-VB-TWO , the best CCC score is 0.7071 (model F). The best average score on
the 10 emotions task A-VB-HIGH is CCC = 0.7299 (model B). Finally, the A-VB-
CULTURE task achieves CCC = 0.6072 (model E). Regarding impact of loss balancing
methods, the methods that take into account the loss development in preceding steps
(DWA and DRUW) achieve the best results. They outperform RRUW, which in turn
performs better than uniform weighing.

For each of the four tasks, validation set results of the top models presented above
are now shown in more detail, beginning with A-VB-TYPE .

The results for the best performing classifier chain models on A-VB-TYPE are given
in fig. 4.7. The maximum class recalls are 0.845 for Laugh, 0.4644 for Grunt, 0.5513
for Cry, 0.5083 for Pant, 0.7725 for Gasp, 0.4546 for Groan, 0.6409 for Scream, and
0.5779 for Other, respectively.
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TABLE 4.23: Comparison of multiple classifier chain arrangements in terms of validation
set performance (CCC and Pearson correlation coefficient) on the A-VB dataset.

Config A-VB-TYPE A-VB-TWO A-VB-HIGH A-VB-CULTURE

UAR CCC ρ CCC ρ CCC ρ

Uniform Weighting
A .5483 .6948 .6979 .7103 .718 .5619 .5844
B .553 .6913 .6974 .7103 .7181 .5624 .585
C .517 .6912 .6932 .713 .7227 .5747 .5922
D .5533 .6982 .6991 .6047 .6703 .0781 .1444
E .5534 .6928 .6952 .592 .671 .5714 .586
F .5301 .6915 .6933 .713 .722 .5756 .5926

Dynamic Weight Average
A .5686 .7068 .7064 .7276 .7383 .5922 .6162
B .5612 .7048 .7054 .7299 .7387 .5934 .6157
C .5411 .7037 .7054 .725 .7377 .6006 .6174
D .562 .7001 .7046 .6363 .6943 .1278 .2147
E .557 .7 .7009 .6454 .7041 .607 .6177
F .5492 .7063 .7071 .7241 .737 .6018 .6161

Restrained Revised Uncertainty Weighting
A .551 .6981 .6989 .7168 .7237 .5713 .5935
B .556 .6968 .6968 .7122 .7186 .5637 .5873
C .5309 .6949 .6961 .7194 .7271 .5807 .5988
D .5396 .6875 .691 .5809 .6717 .0776 .1433
E .5588 .6963 .698 .5902 .679 .5819 .5961
F .5376 .6952 .6976 .7142 .7233 .5788 .5962

Dynamic Restrained Uncertainty Weighting
A .5603 .7061 .7084 .7291 .7372 .5391 .6155
B .5649 .7043 .7075 .7285 .7365 .5933 .6174
C .5446 .702 .7028 .7259 .7367 .6015 .6155
D .5687 .6976 .7025 .6178 .6963 .1148 .1936
E .5638 .7019 .7033 .6468 .7034 .6072 .6188
F .5542 .7071 .7077 .7262 .7373 .6066 .6158
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FIGURE 4.7: Validation set performance of the best performing classifier chain models
on the A-VB-TYPE task. Shown are recall scores per class and loss balancing strategy.

Results for valence-arousal prediction and for the 10 annotated emotions on the val-
idation set are given in fig. 4.8a and fig. 4.8b, respectively. For the A-VB-TWO task,
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FIGURE 4.8: Validation set performance of the best classifier chain models on the A-VB-
TWO and A-VB-HIGH tasks.

the best valence and arousal scores were 0.7686 and 0.6476 CCC, respectively. In
the A-VB-HIGH task, the best achieved CCC values were 0.8157 for Awe, 0.6934 for
Excitement, 0.7975 for Amusement, 0.5932 for Awkwardness, 0.7687 for Fear, 0.7432
for Horror, 0.6861 for Distress, 0.692 for Triumph, 0.7056 for Sadness, and 0.8161 for
Surprise.
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FIGURE 4.9: Validation set performance of the best classifier chain models on the A-VB-
CULTURE task. Shown are CCC scores for the 10 annotated emotions per culture: a)

Chinese, b) United States, c) South Africa, and d) Venezuela.

For each of the four cultures in the A-VB-CULTURE task, the validation set results
are shown in fig. 4.9. In addition, the highest CCC scores per culture and emotion
are summarised in table 4.24. The top score for Awe is CCC = 0.7528, for Excite-
ment and Amusement it is 0.6701 and 0.819, respectively. Awkwardness achieved
CCC = 0.5742. For Fear, Horror and Distress, the top results are CCC = 0.6897,
CCC = 0.7282 and CCC = 0.654, respectively. Triumph, Sadness, and Surprise
achieve CCC scores of 0.6528, 0.6897, and 0.7503, respectively. Just like the basic
MTL model results in table 4.21, the top scores per emotion mostly originate from
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TABLE 4.24: Comparison of the best performing classifier chain models on the A-VB-
CULTURE task. Shown are CCC scores on the validation set for the best performing

models per culture and annotated emotion.

Culture Awe Excitement Amusement Awkwardness Fear
CCC CCC CCC CCC CCC

China .2583 .6003 .4416 .3987 .605
United States .7528 .6701 .819 .5742 .6897
South Africa .5887 .6542 .7293 .5013 .6711
Venezuela .6938 .4184 .7192 .4769 .5618

Culture Horror Distress Triumph Sadness Surprise
CCC CCC CCC CCC CCC

China .7282 .6473 .5657 .6604 .697
United States .6654 .654 .6528 .6897 .7503
South Africa .603 .596 .595 .6087 .7093
Venezuela .5895 .424 .526 .6416 .5964

the United States culture, which considerably outperforms the others. The exception
to this is again Horror, which is best recognised on Chinese data by a considerable
margin (0.0618 over the next best result, 0.1377 over the lowest).

Branching attention architecture

TABLE 4.25: Comparison of validation set performances (CCC and Pearson correlation
coefficient) for branching models with varying selections of feature embeddings from
the Transformer backbone: A (last 4 layers), B (even-numbered layers), C (first 4 layers)

Config A-VB-TYPE A-VB-TWO A-VB-HIGH A-VB-CULTURE

UAR CCC ρ CCC ρ CCC ρ

Uniform Weighting
A .5571 .6934 .6981 .7114 .7172 .5791 .5898
B .5593 .687 .6925 .7035 .7055 .5695 .5796
C .4766 .6609 .6645 .6764 .6833 .5468 .5618

Dynamic Weight Average
A .5479 .6966 .7008 .7214 .7272 .5931 .6043
B .5372 .688 .6914 .7128 .7186 .582 .5913
C .5126 .6719 .6732 .6861 .6909 .5587 .5704

Restrained Revised Uncertainty Weighting
A .5476 .6955 .6997 .7123 .7203 .5698 .583
B .5583 .6915 .693 .7046 .7118 .5678 .5804
C .5017 .665 .6676 .6829 .6882 .55536 .5854

Dynamic Restrained Uncertainty Weighting
A .5513 .6951 .6998 .7204 .727 .5917 .601
B .5437 .6891 .6933 .7128 .7194 .581 .5915
C .5163 .6741 .6756 .6882 .6939 .5606 .5728

For the branching architecture, the main design choice is selecting the branching
points, i. e., the hidden layers in the Transformer backbone whose activations serve
as inputs into the MHA branches. The base version of WAV2VEC2 has 12 Transformer
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encoder layers. In preliminary experiments, various models using different combi-
nations of layer depths are constructed. Three of them are presented here: Top-4
layers (A), highest evenly numbered layers (B) and bottom-4 layers (C). Validation
set results for the best performing models organised by loss balancing method are
given in table 4.25.

The top result for A-VB-TYPE is UAR = 0.5583 (model B). For A-VB-TWO , the
top score is CCC = 0.6966, for A-VB-HIGH it is CCC = 0.7214, and for A-VB-
CULTURE it is CCC = 0.5931. All top scores for the emotion tasks are achieved
by model A, using DWA balancing. With the exception of A-VB-TYPE , training
with dynamic task balancing again outperforms uniform loss weights. Comparing
the three model configurations, model C performs consistently below the other two
variants.
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FIGURE 4.10: Validation set performance of the best performing branching attention
models on the A-VB-TYPE task. Shown are recall scores per class and loss balancing

strategy.

The validation set results for branching models on the A-VB-TYPE task are given in
fig. 4.10. Best recalls per class are 0.8813 for Laugh, 0.5308 for Grunt, 0.5104 for Cry,
0.5226 for Pant, 0.7492 for Gasp, 0.3661 for Groan, 0.6579 for Scream, and 0.5901 for
Other.
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FIGURE 4.11: Validation set performance of the best branching models for A-VB-
TWO and A-VB-HIGH tasks. Shown are CCC scores for: a) valence-arousal, b) 10 contin-

uous emotions

For the A-VB-TWO task, the validation set results are shown in fig. 4.11a, with best
CCC results of 0.7622 and 0.6378 for valence and arousal respectively. The A-VB-
HIGH task results are shown in fig. 4.11b. There, the best CCC scores are 0.8072
for Awe, 0.6839 for Excitement, 0.7921 for Amusement, 0.5931 for Awkwardness,
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0.7543 for Fear, 0.7355 for Horror, 0.6881 for Distress, 0.6725 for Triumph, 0.7029 for
Sadness, 0.805 for Surprise.
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FIGURE 4.12: Validation set results of the best performing branching models on the A-
VB-CULTURE task. Shown are CCC scores for the 10 annotated emotions per culture: a)

Chinese, b) United States, c) South Africa, and d) Venezuela.

TABLE 4.26: Comparison of the best performing branching models on the A-VB-
CULTURE task. Shown are CCC scores on the validation set for the best performing

models per culture and annotated emotion.

Culture Awe Excitement Amusement Awkwardness Fear
CCC CCC CCC CCC CCC

China .2379 .5914 .4597 .3558 .604
United States .745 .658 .8204 .5704 .6828
South Africa .5887 .6471 .7274 .4665 .6623
Venezuela .6869 .7153 .4391 .5547 .5764

Culture Horror Distress Triumph Sadness Surprise
CCC CCC CCC CCC CCC

China .7259 .6367 .5313 .6573 .6901
United States .6482 .6501 .6629 .683 .7495
South Africa .5949 .5445 .5588 .6051 .7021
Venezuela .5764 .3954 .4804 .633 .5892

In addition, the validation set results on the A-VB-CULTURE task are given in fig. 4.12.
The best CCC scores per culture and annotated emotion are summarised in table 4.26.

The top score for Awe was CCC = 0.745, for Excitement and Amusement is was
0.7153 and 0.8204 respectively. Awkwardness scored CCC = 0.5704. Fear, Horror,
and Distress yielded 0.6828, 0.7259 and 0.6501 respectively. Triumph, Sadness and
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Surprise achieved CCC = 0.6629, CCC = 0.683 and CCC = 0.7495. The top re-
sult for Horror was again predicted on Chinese, while the top score for Excitement
was found on Venezuelan (+0.0777 and +0.0652 over the next best results from the
United States predictions, respectively). For the remaining 8 emotions, the best re-
sults were obtained on United States culture, just like for the other two architectures.

Test set results

After presenting detailed results for each of the three architectures, an overview of
the performance on the validation set is now given. Results in terms of the evalua-
tion metrics used in each of the four sub-challenges of the ACII’22 A-VB competition
(see section 2.6) are shown in table 4.27. The numbers represent aggregated results
of N = 3 runs, for the best models of each architecture and for each loss weighing
method. Also shown for comparison are the baseline results achieved with end-to-
end trained CNN-LSTM via END2YOU by the competition organisers (Baird, Tzi-
rakis, Brooks, et al., 2022).

TABLE 4.27: Validation set results in terms of UAR for A-VB-TYPE , mean CCC, and
mean ρ for A-VB-TWO , A-VB-HIGH and A-VB-CULTURE , respectively. Shown are the
best performing models for each task per architecture and loss weighing strategy, as well
as the baseline score achieved by the organisers of the A-VB challenge with END2YOU .

Model A-VB-TYPE A-VB-TWO A-VB-HIGH A-VB-CULTURE

UAR CCC ρ CCC ρ CCC ρ

END2YOU .4166 .4988 - .5638 - .4401 -
Uniform Weighting

BASIC MTL .5443 .6964 .6992 .7205 .7265 .5892 .5999
CHAIN .5534 .6948 .6979 .7103 .7180 .5619 .5844
BRANCH .5593 .6934 .6981 .7114 .7172 .5791 .5898

Dynamic Weight Average
BASIC MTL .5446 .7026 .7034 .7271 .7347 .6025 .6128
CHAIN .5686 .7068 .7074 .7276 .7383 6070 .6177
BRANCH .5479 .6966 .7008 .7214 .7272 .5931 6043

Restrained Revised Uncertainty Weighting
BASIC MTL .5547 .6992 .7000 .7213 .7267 .5892 .5991
CHAIN .5588 .6993 .6989 .7186 .7237 .5819 .5961
BRANCH .5583 .6955 .6997 .7123 .7203 .5850 .5974

Dynamic Restrained Uncertainty Weighting
BASIC MTL .5447 .6950 .7002 .7243 .7341 .6006 .6130
CHAIN .5638 .7019 .7033 .7291 .7372 .6072 .6188
BRANCH .5513 .6951 .6998 .7204 .7270 .5917 .6010

The validation set results are as follows: On the vocal burst classification task A-
VB-TYPE the achievement was UAR = 0.5686. A-VB-TWO CCC = 0.7068, A-VB-
HIGH CCC = 0.7276, A-VB-CULTURE CCC = 0.6072.

The test set results are shown in table 4.28. Results are based on test set predic-
tions submitted to the organisers of the ACII’22 A-VB competition, and were first
presented in a paper for the associated workshop (Karas, Triantafyllopoulos, et al.,
2022). Since the number of submissions was limited, only the scores for the best
models per architecture and task are listed. In addition, the predictions of those
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models were combined into an ensemble, which was also submitted for evalua-
tion. Again the END2YOU baseline is listed for comparison. The best results are
UAR = 0.5618 for A-VB-TYPE , CCC = 0.7066 for A-VB-TWO , CCC = 0.7363 for
A-VB-HIGH , and CCC = 0.6195 for A-VB-CULTURE , respectively.

TABLE 4.28: Test set results on the Hume-VB dataset of the best performing models
per each architecture per task, as well as an ensemble created by combining predictions
of those models by majority voting and averaging for classification and regression re-
spectively. The END2YOU baseline results from the ACII’22 A-VB competition (Baird,

Tzirakis, Brooks, et al., 2022) are shown for comparison.

Model A-VB-TYPE A-VB-TWO A-VB-HIGH A-VB-CULTURE

UAR CCC CCC CCC

END2YOU .4172 .5084 .5686 .4401
BASIC MTL .5377 .6938 .7209 .6020
CHAIN .5618 .6942 .7261 .6002
BRANCH .5418 .6888 .7148 .5945
ENSEMBLE .5560 .7066 .7363 .6195
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Chapter 5

Discussion

In this chapter, the experiments of the previous chapter are discussed. The analy-
sis is split into sections corresponding to the respective experimentation on multi-
modal and cross-modal valence-arousal recognition on the Aff-Wild2 corpus, the
cross-cultural valence-arousal prediction on SEWA and the multi-task learning on
vocal burst audio data from the A-VB dataset.

5.1 Multi-Modal and Cross-Modal Emotion Recognition

This section interprets the experiments from section 4.1 on various sequence-to-
sequence architecture processing CNN features for predicting affect on the videos
of the Aff-Wild2 dataset in its ABAW’22 iteration.

5.1.1 Comparison between small and large feature extraction networks

Comparing the larger Inception-based network and the smaller MobileFaceNet di-
rectly showed the smaller CNN outperforming its larger counterpart. While the gain
was small for valence, it was considerable for arousal (0.414 vs 0.203) when using the
self-attention architecture.

This result is remarkable given that both networks are trained on facial recogni-
tion tasks and their layers were frozen in this experiment. The features from Mo-
bileFaceNet appear to transfer better to the emotion recognition task, especially for
arousal. One might expect that the larger model would be able to generalise better.
Instead, a CNN with less than 1M parameters was able to outperform a network 27
times its size. This result shows the optimisation potential of deep neural networks,
and is encouraging for the development of computationally efficient affective solu-
tions that can run on end user devices with limited resources. The ability to run
locally is important for real-time applications, and may be mandatory due to the
sensitive nature of the processed video data (see section 2.3 and section 6.1.1).

Owing to this strong performance, a MobileFaceNet fine-tuned on Aff-Wild2 was
re-used in the experiments on SEWA described in section 4.2.

5.1.2 Comparison between frozen feature extraction networks and end-
to-end learning

Comparing the results from table 4.2 and table 4.3 indicates that the end-to-end
learning approach outperforms the frozen extractor approach on arousal predic-
tion (top scores of 0.551 vs. 0.529 CCC), while the valence scores are similar and
marginally better for the frozen network (0.393 vs. 0.388 CCC).
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TABLE 5.1: Size of the best-performing models on the Aff-wild2 corpus validation set,
adapted from Karas, Tellamekala, et al., 2022. Shown are the total number of parame-
ters for the audiovisual models, grouped by seq-2-seq architecture (RNN, self-attention,
cross-modal attention). For clarity, the number of parameters in the sequence models

and the full number of parameters including CNNs are reported separately.

Method Visual Encoder Psequence Ptotal

Recurrent Models (RNNs)
AV-RNN Inception 109 K 28.8 M
AV-RNN MobileFaceNet 4.4 M 5.4 M
E2E-AV-RNN MobileFaceNet 76 K 1.1 M

Self-Attention (SA) Models
AV-SA Inception 765 K 28.1 M
AV-SA MobileFaceNet 482 K 1.51 M
E2E-AV-SA MobileFaceNet 193 K 1.2 M

Cross-Modal Attention (CMA) Models
AV-CMA Inception 134 K 28.1 M
AV-CMA MobileFaceNet 2.1 M 3.1 M
E2E-AV-CMA MobileFaceNet 2.4 M 3.4 M

The lack of improvement on overall valence prediction is due to the strong results of
the CMA model with Inception-based features in the frozen experiments. In a direct
comparison of the models using MobileFaceNet as the visual CNN however, a rise
on valence prediction performance is apparent: 0.319 −→ 0.361 for RNN, 0.248 −→
0.380 for self-attention, and 0.324 −→ 0.388 for cross-modal attention.

Notably, the RNN-based models benefited greatly from the end-to-end learning.
When using frozen networks, the InceptionResNetv1 features outperformed the Mo-
bileFaceNet features (0.413 vs. 0.378), with a far smaller RNN model on top (109K vs
4.4M), see table 5.1. This is interpreted as a difficulty to adequately model valence
and arousal with the features provided by the smaller MobileFaceNet (Karas, Tel-
lamekala, et al., 2022). However, once the CNN layers are unlocked, the performance
is boosted, and the hyperparameter optimisation found an even more compact RNN
model at only 76k parameters, a reduction by 30.27% in the seq-2-seq model.

The self-attention models showed a similar trend when going from frozen CNN to
end-to-end learning. The average CCC score increased from 0.378 to 0.450 (+0.072),
while the parameter count in the transformer encoder stack decreased from 482K
to 193K. This result represents a considerable reduction of 59.95% in the seq-2-seq
component.

The exception to end-to-end optimisation leading to smaller networks was CMA.
The best E2E-CMA model gained 300K parameters compared to its counterpart
trained with frozen feature extractors, an increase by 14.7% in its cross-modal fusion
module. Nevertheless, the end-to-end learning was effective in increasing validation
performance, from 0.392 to 0.440 CCC.

From these results, the conclusion is drawn that end-to-end learning is an effective
strategy to boost affect recognition on in-the-wild data, at the cost of additional com-
putational resources for training the feature CNN parameters. In the experiments
performed herein, using the compact MobileFaceNet and 1D audio CNN helped
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reduce this cost. Additionally, training end-to-end led to the discovery of more com-
pact seq-2-seq models, which saves computing power and memory in deployment.

5.1.3 Comparison between recurrence and attention-based sequence mod-
elling

When comparing the different sequence modelling architectures in terms of recog-
nition performance, the SA networks using early fusion followed by a transformer
encoder and the CMA networks using cross-modal attention layers based on Tsai
et al., 2019 delivered comparable results on the validation set, while on the test set,
SA performed better (0.386 CCC vs 0.343 average CCC score). At the same time, as
shown in table 5.1, the best SA model is much smaller than the best CMA model.
The additional complexity introduced by the CMA architecture appears to not be
beneficial in this case.

Another somewhat counter-intuitive result is the strong performance of the RNN
models compared to the attention-based models. Given that Transformers have
displaced recurrent models as state-of-the-art solution in many sequence modelling
problems, most notably in NLP, one might also expect a clearly observable advan-
tage on continuous emotion recognition. In this case, the experiments did not show
the Transformer models consistently outperforming the RNNs.

An implementation error in the attention-based models is highly unlikely, since the
code makes use of pre-defined PyTorch layers and extensive checks were performed.
Another possibility is that the transformers have greater potential than the RNNs,
but the training process happened to not discover those optimal configurations. This
cannot be ruled out, despite the large number of automated trials sampled via Ray.
For now, it can be concluded that with the approach used herein, RNNs show similar
capability to model valence and arousal on the Aff-Wild2 data as attention models.
This may change in future experiments when different feature sets or training strate-
gies are used.

5.1.4 Comparison of uni-modal and multi-modal performance

Comparing the models using both audio and visual data with the ablation experi-
ments that only have access to a single modality shows that the multi-modal mod-
els consistently outperform their uni-modal counterparts in terms of averaged CCC
score. This matches the assumption that the two modalities contain complementary
information which helps the model predict the affective state.

Notably, when comparing the results of audio and visual experiments with frozen
CNN features in table 4.2, models using the MobileFaceNet features outperform the
1D Audio CNN on both valence and arousal prediction, by a wide margin. For
instance, the visual self-attention model yields 0.529 CCC on arousal, while its coun-
terpart only achieves 0.317. This result is counter-intuitive under the assumption
that arousal is better predicted from audio, via the voice. However, an explanation
is found in the characteristics of the Aff-Wild2 dataset. The data, being collected
"in the wild" from diverse YouTube videos, is quite noisy. In the visual modal-
ity, while image quality varies greatly, the faces of the subjects are usually visible
(some occlusions occur, e. g., from gestures). In the audio modality, there may be
disturbances from other sound sources, as well as prolonged periods of silence that
provide no information to the model. In particular, a challenging case for purely
audio-based models encountered in the dataset is reaction-style content, in which
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FIGURE 5.1: Histograms of the valence and arousal annotations on the training and
validation sets of the Aff-wild2 dataset.

the subject watches a different video while being silent most of the time. Possible
steps to address these issues are extensive preprocessing to separate the subjects’
voices from background noise, and removing extended silent sections, training only
with data that contains useful information. Another promising strategy is the use of
a more complex feature extractor, such as an audio Transformer. As demonstrated
by the results in section 4.3, models like WAV2VEC2 are well suited for handling
noisy audio data.

5.1.5 Performance discrepancy between validation and test sets

Another remarkable result is the change in model performance between validation
and test sets. While all architectures achieved averaged CCC scores above 0.4 on val-
idation, none did so on test (with the exception of the final ensemble). Comparison of
table 4.3 and table 4.5 shows that the drop in overall score is due to arousal decreas-
ing considerably, while valence increased for RNN and SA models. The exception is
the CMA model, which also suffered a loss in valence prediction performance (0.327
vs. 0.388 CCC).

With the test labels hidden, the exact cause of this effect cannot be determined. Pos-
sibly, the statistical properties of the dataset lead to arousal being easier to predict on
the validation set than on the test set. Histograms of the training and validation la-
bels are shown in fig. 5.1. During training, the hyperparameter optimisation process
will prefer configurations well suited to predicting the distribution of the valida-
tion set. The validation set contains mostly samples with positive arousal, peaking
around 0.1. The test data may show a wider distribution with more instances having
high or low arousal scores.

5.1.6 Comparison with the field and limitations of the approach

In this final subsection, the results obtained on Aff-Wild2 are compared to other
works in the literature addressing valence-arousal estimation on that dataset.

As stated in section 4.1, once the best-performing models were identified, test set
predictions of those models and and of an ensemble combining them were entered
into the third ABAW competition. The submission code can be found on Github 1,

1https://github.com/VincentKaras/abaw3_rnn_attn
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and the corresponding paper is Karas, Tellamekala, et al., 2022.

A total of 33 teams participated in that challenge, and 16 submitted test set predic-
tions. The results presented herein achieved fifth place.

The winner of the ABAW’22 challenge was Meng et al., 2022, who achieved valence
CCC of 0.606 and arousal CCC of 0.596 on the test set. Their approach was similar
to the one used herein, using early fusion followed by either LSTM or transformer
encoder, as well as strided sampling of the dataset.

There is a considerable performance gap between the results of the two papers, de-
spite the fundamental similarity of the models. A possible reason for this are the
feature choices. Meng et al., 2022 used the activations of a DenseNet and an Incep-
tionResNet100, each pre-trained on multiple facial emotion datasets including FER+
and AffectNet (Mollahosseini, Hasani, and Mahoor, 2019) as visual features. FAUs
were also extracted. In the audio modality, EGEMAPS, COMPARE, VGGish (Hershey
et al., 2017) and WAV2VEC2 were used. It seems that the combination of these hand-
crafted and deep features allowed the model to discover more useful information.

The other likely reason for the performance gap lies in Meng et al., 2022 choosing a
larger sequence length of 100, giving their models more temporal context. In hind-
sight, the sequence length was set too low for the experiments described herein.
Originally this choice was made to conserve memory in the parallelised search tri-
als.

In the fifth ABAW challenge (Kollias, Tzirakis, Baird, et al., 2023), the same team
won again, this time achieving CCC scores of 0.619 on valence and 0.6634 on arousal.
Once again, a similar feature set was combined via early fusion, and processed with
Transformers or RNNs, as well as a combination thereof. An ensemble strategy was
also employed to further boost performance.

The conclusion from this is that the approach used in this thesis for predicting con-
tinuous emotions is sound in principle, but further optimisation is needed. Once this
is performed, competitive results on Aff-Wild2 are expected to be reached. Another
clear advantage is that the approach is easily transferable to other datasets.

Nevertheless, the findings of the analysis still stand: Smaller feature extractors can
be competitive with larger models, end-to-end learning is beneficial as is forming
model ensembles, and recurrent encoders are still competitive with attention-based
ones. These conclusions were used in the experiments for contributions C–2 and
C–3, see section 4.3 and section 4.2 respectively.

5.2 Vocal Burst Emotion Recognition

In this section, the results of the vocal burst type classification, two-dimensional
affect, emotions and culture specific emotions prediction experiments performed on
the A-VB dataset in section 4.3 are discussed. Together they form contribution C–2
and are primarily used for answering research question RQ–4, and to a lesser extent
RQ1–3.
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5.2.1 Feature embedding analysis

In order to better comprehend how the Transformer-based models solve the four
tasks, features extracted by the WAV2VEC2 backbone are visualised using t-distributed
stochastic neighbour embedding (t-SNE).

For the basic MTL and classifier chain architectures, the activations of the last layer
are extracted. For the branching model architecture, the same is done to each layer
that serves as a branching point and input to the multi-head attention stack. The
derived feature representations are then averaged over time, so that each sample is
represented by a single vector of size 768.

The scikit-learn toolkit 2 is used to compute the t-SNE embeddings from the features.
Following the recommendations of the algorithm’s authors, the high dimensional
features are first reduced to N = 50 by principal component analysis (PCA).

Due to the test set labels of Hume-VB being hidden, this analysis is restricted to the
training and validation partitions.
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FIGURE 5.2: t-SNE visualisation of the features extracted by the best performing basic
MTL model. Data points are coloured for each of the 8 annotated classes of the A-VB-

TYPE task.

For the visualisation of the A-VB TYPE task, each type of vocal burst is represented
as a distinct colour, leading to a scatter plot with 8 classes. The t-SNE embeddings
of the basic MTL model are depicted in fig. 5.2. For comparison, t-SNE plots of the
best performing classifier chain and branch architectures are shown in fig. 5.3 and
fig. 5.4, respectively.

The plots show distinctive regions of uniform colour, indicate that the fine-tuned
WAV2VEC2 model has learned to cluster at least some of the classes. In particular,
Laugh (magenta), Cry (orange), Gasp (green), and Scream (indigo) are grouped in
fairly well separated regions. Notably, this group consists of the largest classes in
both the training and validation sets. By contrast, the data points for Grunt (red),
Pant (yellow), Other (cyan), and Groan (blue) appear more dispersed. It is also worth
mentioning that the separations between the various regions appear more distinct

2https://scikit-learn.org/stable/index.html
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FIGURE 5.3: t-SNE visualisation of the features extracted by the best performing clas-
sifier chain model. Data points are coloured for each of the 8 annotated classes of the

A-VB-TYPE task.
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FIGURE 5.4: t-SNE visualisation of the features extracted by the best performing branch-
ing attention model. Data points are coloured for each of the 8 annotated classes of the

A-VB-TYPE task.

for the basic MTL and classifier chain models than they do for the branching model,
with the exception of the Cry cluster.

In the cases of the A-VB LOW, A-VB HIGH and A-VB CULTURE tasks, since the
annotations are continuous, an additional sorting step is needed to assign distinctive
colours to the samples.

For A-VB LOW, based on the quadrants of the arousal-valence circumplex (see sec-
tion 2.1), the two affect dimensions are each discretised into two value ranges. For
valence, these are [0, 0.5[ and [0.5, 1.0] , for arousal they are [0, 0.75[ and [0.75, 1.0]
respectively. The ranges for arousal are chosen asymmetrically since annotations be-
low 0.5 practically do not occur, see fig. 5.11. This results in 4 categories. The results
for the basic MTL model are depicted in fig. 5.5.
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(A) Training Set
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(B) Validation Set
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FIGURE 5.5: t-SNE visualisation of of the features extracted by the best performing basic
MTL model on the A-VB-TWO task. Samples are coloured based on 4 clusters (high
valence – high arousal, high valence – low arousal, low valence – high arousal and low

valence – low arousal.

In this case, some similarities with the corresponding plots of the A-VB-TYPE task
are visible. For instance, the cluster for laughter is assigned high valence–high
arousal, and the cluster for screaming is assigned low valence–high arousal. Besides
this, there are large regions where the classes intermingle. Changing the discretisa-
tion to 9 clusters increased the effect, making the plots look quite noisy. The con-
clusion from this is that while some general trends are visible, valence and arousal
vary considerably locally. The plots for the other architectures are omitted here, as
they provide no additional information, and the focus is instead placed on the two
remaining tasks.
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FIGURE 5.6: t-SNE visualisation of features extracted by the best performing basic MTL
model for the 10 annotated emotions in the A-VB-HIGH task. Samples are assigned to

a category by their dominant (highest-rated) emotion.

Following Baird, Tzirakis, Brooks, et al., 2022, for A-VB HIGH and A-VB CULTURE,
the dominant i. e., highest rated emotion is chosen to assign the samples to a colour,
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FIGURE 5.7: t-SNE visualisation of features extracted by the best performing classifier
chain model for the 10 annotated emotions in the A-VB-HIGH task. Samples are as-

signed to a category by their dominant (highest-rated) emotion.
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FIGURE 5.8: t-SNE visualisation of features extracted by the best performing branching
attention model for the 10 annotated emotions in the A-VB-HIGH task. Samples are

assigned to a category by their dominant (highest-rated) emotion.

which results in scatter plots with 10 classes (in the A-VB-CULTURE task, different
cultures are visualised in separate sub-plots).

The results for the A-VB-HIGH task are depicted in fig. 5.6 for the basic MTL model,
fig. 5.7 for the classifier chain model, and fig. 5.8 for the branching attention model,
respectively. It can be observed that the model clusters the samples into regions
corresponding to specific dominant emotions, e. g., the purple, red and blue clusters
in fig. 5.6 corresponding to awe, amusement, and sadness, respectively. Also, it is
visible that regions of emotions blend into each other, see for instance the locations
of fear (peach), horror (yellow) and distress (green) in fig. 5.6. This smooth variation
can be explained from the gradual transition of one dominant emotion to the next.
It matches the findings of A. S. Cowen and Keltner, 2017, see section 2.1.

Comparing the plots by architecture, clusters derived by the basic and chain models
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appear tighter and better separated, while those for the branching model are more
dispersed. Awkwardness (orange) and triumph (cyan) are hardly observable in any
of the plots. An explanation for this is that samples where these subtle emotions
dominate are underrepresented in the data (they account for 3.782% and 0.515% of
the training set, respectively).
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FIGURE 5.9: t-SNE visualisation of the training data set for the best performing basic
MTL model on the A-VB-CULTURE task. Samples are coloured by their dominant emo-

tion in the annotations of the respective culture.

Visualisations for the emotions of the four cultures in the A-VB-CULTURE task are
given in fig. 5.9 and fig. 5.10, for the training and validation sets respectively. De-
picted are the features learned by the basic MTL model. Notably, there are some
clearly visible similarities and differences between the cultures.

In terms of similarities, samples that are dominantly sadness (blue) appear in a dis-
tinct region on the top right side across all cultures. The plots for the United States
and South Africa appear quite similar in their clustering of the emotions, see the re-
gions for amusement (red), surprise (indigo), and the grouping of negative emotions
from distress (green) to fear (peach) and horror (yellow).

By comparison, the embeddings for Venezuela appear less uniformly clustered, and
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FIGURE 5.10: t-SNE visualisation of the validation data set for the best performing basic
MTL model on the A-VB-CULTURE task. Samples are coloured by their dominant emo-

tion in the annotations of the respective culture.

more samples are assigned to awe (purple) at the expense of surprise. For the Chi-
nese culture, many samples that are amusement dominant in other cultures are as-
signed to excitement (magenta), and the two clusters intermingle. In addition, for
many samples that are rated dominantly as fear by other cultures, horror is rated as
the strongest emotional attribute in Chinese.

These results indicate that while there are general similarities in how members of
different cultures perceive affect in non-verbal vocalisations, nuanced differences
exist regarding the emotional concepts. This reinforces the need to study emotion
recognition in cross-cultural settings, see RQ–2, and also validates the approach of
modelling emotions as continuous quantities that vary smoothly.

5.2.2 Recognising affect in vocal bursts

In this subsection, the performances of the models on each of the four tasks as dis-
cussed, along with observed general trends and limitations of the chosen transformer-
based approach.
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Vocal Burst Classification

For the A-VB-TYPE vocal burst classification task, when the 8 individual class re-
calls are examined, the models show that some classes are recognised considerably
better than others, see fig. 4.4, fig. 4.7, fig. 4.10 for the basic, chain, and branching
models respectively. Laughter achieves the best results with recall above 0.8, with
gasping being the runner-up at around 0.7, depending on architecture and loss bal-
ancing. Screaming and the "Other" categories achieve a recall of approximately 0.6,
while the remaining classes perform considerably worse, rarely exceeding a score of
0.5. The Groan class shows the worst performance, with recalls around 0.4.

This behaviour remains fairly consistent across model runs, as well as different clas-
sifier architectures and loss balancing strategies. These results indicate that the
model performance is impacted by the imbalance in the dataset, as the two best-
performing classes account for more than 50% of the training data. This is supported
by the t-SNE analysis, which demonstrated that the model has focused on clustering
the data points of the majority classes.
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(B) Validation set

FIGURE 5.11: Histograms of the valence and arousal annotations of the training and
validation sets for the A-VB-TWO task.

Valence-Arousal Estimation

In the A-VB-TWO dimensional affect recognition task, the models show a consid-
erable difference between valence and arousal prediction, with the validation CCC
for valence usually exceeding 0.75 while arousal remains below 0.65. This trend is
observed in all model architectures and loss weighing methods used for the exper-
iments (fig. 4.5a, fig. 4.11a, fig. 4.8a), and remains consistent across multiple runs
with different random initialisations of the downstream model layers.

Following the reasoning above for the A-VB-TYPE task, the discrepancy could be
due to dataset properties. Given that A-VB-TWO is a regression problem, histograms
for the valence and arousal annotations are computed. They are shown in fig. 5.11
for training and validation sets respectively. The distribution for valence is clearly
wider than that for arousal (σ = 0.193 vs σ = 0.093 on the training set). For both
affect dimensions, the distributions closely resemble each other for training and val-
idation sets. In case of arousal, the mean and standard deviations are µ = 0.755,
σ = 0.093 and µ = 0.752, σ = 0.092 on training and validation data respectively.
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Thus the lower performance on arousal cannot be explained as a consequence of the
dataset structure.

Given that audio-based models have traditionally performed better on arousal pre-
diction, the results are somewhat unexpected. However, it has already been demon-
strated that transformers, including WAV2VEC2, can achieve strong performance on
valence in SER (Wagner et al., 2023). While the model demonstrates its capability
of predicting valence, the vocal burst data is considerably different from the speech
corpora the transformer backbone was trained on, which may negatively impact
arousal.

The suspected root cause of the issue is that arousal is simply harder to predict from
vocal bursts. Baird, Tzirakis, Brooks, et al., 2022 arrive at this conclusion based on
the short duration of the samples compared to the longer utterances commonly used
in SER, and on the diversity of the recording environments. Despite the relative loss
of performance on arousal, the chosen approach is still clearly effective.

Emotion Estimation

For the A-VB-HIGH task of predicting the intensities of 10 emotions, differences be-
tween the classes are apparent, see fig. 4.5b,fig. 4.8b, fig. 4.11b for the three model ar-
chitectures. The best results are achieved for awe, amusement and surprise, around
CCC = 0.8. Fear and horror also perform relatively well, at approximately 0.76
and 0.74 respectively for the basic MTL (vanilla) model architecture. They are fol-
lowed by excitement, distress, triumph and sadness, approaching but not exceeding
CCC = 0.7. Finally, the worst performance is awkwardness, at slightly lower than
CCC = 0.6. This pattern is also seen with the other model architectures, and repro-
duces across runs.

A possible explanation for this behaviour is that some of the more subtle emotions,
like awkwardness and triumph, are simply harder to detect from vocal bursts com-
pared to e. g., horror and surprise. This fits with the models being more capable of
predicting valence than arousal, as evidenced by the results on the A-VB-TWO task.
However, it does not explain why awe and amusement outperform excitement by
around 0.1 CCC. Another, explanation is found in predominantly awkward or tri-
umphant samples being underrepresented in the dataset, as seen in the t-SNE anal-
ysis above. This will negatively impact the model’s success at predicting those emo-
tions.

Cultural Emotion Estimation

For the 4-country A-VB-CULTURE task, the results in terms of averaged CCC fall
considerably below those of the A-VB-HIGH task on both the validation and test
partitions, cf. table 4.27, table 4.28.

Given that the labels of this task represent the culture-specific gold standards of the
respective cultures that contributed to the dataset (Baird, Tzirakis, Brooks, et al.,
2022), one might assume that the models have difficulty predicting the three out-
of-culture annotations on the samples. However, examining the CCC scores of on
a per-culture basis shows that the performance is not uniformly worse compared to
the A-VB-HIGH task.

Instead, comparison of CCC scores achieved by the basic MTL models in fig. 4.5b
and fig. 4.6 shows that for the United States, results are quite similar to A-VB-HIGH .
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On the contrary, South African, Venezuelan, and Chinese show worse performances,
leading to the overall lower average scores. The same pattern can be seen in the re-
sults of the classifier chains and branching models, cf. fig. 4.8b, fig. 4.9, and fig. 4.11b,
fig. 4.12, respectively.

TABLE 5.2: Pearson correlation coefficients between the culture specific emotion scores
from A-VB-CULTURE and the emotion scores from A-VB-HIGH , calculated for the best
performing models of each of the three architectures (basic MTL, classifier chain, branch-

ing attention).

Model China United States South Africa Venezuela
ρ ρ ρ ρ

VANILLA .027 .8719 .8013 .7461
CHAIN -.0422 .8932 .7381 .7147
BRANCH .0495 .8789 .7810 .7521

Pearson correlation scores between the 10 emotions’ results on the A-VB-HIGH task
and the 4 groups of scores on the A-VB-CULTURE task are given in table 5.2. These
are calculated on the top validation set results for each of the three architectures.
It can be seen that the United States scores show the highest per-model correlation
with the 10 emotions task. For South Africa and Venezuela correlations are lower,
and China does not correlate at all.

A possible explanation for these inter-cultural performance discrepancies, with the
US performing best, could be that the transformer model was pre-trained on an
English-language dataset (LibriSpeech). However, the same deficit in prediction per-
formance is also reported in Baird, Tzirakis, Brooks, et al., 2022, who used EGEMAPS,
COMPARE, and randomly initialised CNN-LSTMs from the END2YOU toolkit i. e.,
models which had no language-specific pre-training.

Given that the number of speakers in the training and validation sets from the USA
and South Africa (206 and 244), both of which have English as an official language,
is much greater than those of China and Venezuela (79 and 42, 76 and 42 on training
and validation sets respectively), it is more likely that the main cause is the imbal-
ance of the dataset, see table 3.3.

Another hypothesis to explain these results can be based on cultural distinctions
of how emotions themselves are perceived and expressed. It is worth noting that
the 10 labelled emotions are all taken from the English language. Thus the anno-
tations from native English speakers may be easier to model, whereas cultural dif-
ferences make Venezuelan and Chinese emotions harder. This point has been ar-
gued in the A-VB challenge baseline paper by Baird, Tzirakis, Brooks, et al., 2022.
It may also explain why some individual emotions are still recognised well in the
worse-performing cultures, e. g., CCC for Horror in Chinese outperforming the re-
sults for the United States. Due to culture-specific differences in how these emotions
are experienced, the annotations are impacted, and the model may have an easier or
harder time to learn them, see the t-SNE analysis for A-VB-CULTURE above.

Comparison of configurations for the branching and classifier chain architectures

Regarding the branching model architecture accessing multiple layers’ embeddings
of the transformer backbone, the experiments summarised in table 4.25 showed no
statistically significant difference between model runs A (last 4 layers) and B (even
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numbered layers). One sided t-tests with α = 0.05 result in p-values of 0.129, 0.178,
0.26, and 0.148, for the average CCC scores on the four tasks, respectively. However,
model C (first 4 layers), showed significantly worse performance than model A, with
one-sided p-values of 6.4 ∗ 10−8, 1.7 ∗ 10−4, 1.6 ∗ 10−6 and 5.3 ∗ 10−6 respectively.
From this, it can be concluded that the higher layer embeddings of the transformer
model are better suited for predicting the vocal burst types and emotions. In addi-
tion, it provides an explanation for why the basic MTL architecture, which uses only
the final layer’s hidden states, performs comparable to or above the more complex
branching architecture.

For the various classifier chain models, in order to compare their performances on
the validation sets (cf. table 4.23), the simplest variant A (chaining the task-specific
heads, no internal chaining) is measured against the variants B-F.

Model B, which also does not use task-internal chaining and predicts A-VB-HIGH

and A-VB-CULTURE in parallel instead of sequentially, did not show statistically
significant differences at α = 0.05.

Model C, which uses internal chaining in the A-VB-CULTURE task and predicts that
task in parallel to A-VB-CULTURE showed no statistically significant differences in
the affect tasks, however, the A-VB-TYPE task was significantly worse (p = 0.002 at
α = 0.05).

Model D, which chains the A-VB-HIGH task internally, showed statistically signif-
icant (α = 0.05) worse performance compared to model A on both that task and
A-VB-CULTURE (p = 5.6 ∗ 10−13 and p = 1.7 ∗ 10−34, respectively). Notably, per-
formance on the latter task did not exceed CCC scores of 0.12 on the validation set,
compared to the approximately 0.6 normally achieved.

Model E, which predicted the A-VB-HIGH and A-VB-CULTURE tasks in parallel
but internally chained both of them, performed significantly worse on A-VB-HIGH

at p = 4.5 ∗ 10−13 and α = 0.05.

Finally, model F, which was structured like model E but did not order the emotions
in the chains by descending order of performance on the basic MTL model, showed
no statistically significant difference to model A (α = 0.05).

From these results, it can be concluded that more elaborate attempts at chaining the
predictions were not beneficial or even harmful to model performance. Chains that
are too long apparently lead to degradation on the following tasks, as evidenced by
the failure of model D to predict A-VB-CULTURE Ḣowever, it is noteworthy that a
chain of no less than 40 emotions produced no worse results on A-VB-CULTURE for
model F than the prediction in a single layer with 40 outputs did for model A.

General performance and limitations of the approach

The analysis presented above was focused on the validation set, since the test labels
of Hume-VB are hidden. In order to better gauge the effectiveness of the proposed
approach, and to compare with the rest of the field, the best-performing models and
an ensemble thereof were submitted to the organisers of the ACII’22 A-VB competi-
tion and workshop, see table 4.28.

Methods based on deep audio feature extraction, including fine-tuning WAV2VEC2
or related models, featured prominently in the workshop proceedings3.

3https://arxiv.org/html/2210.15754/
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TABLE 5.3: Results of the ACII’22 A-VB Competition. Shown for each of the four tasks
are the results of two baselines (using handcrafted COMPARE features and CNN-RNN
trained end-to-end with END2YOU ) provided by the organisers (Baird, Tzirakis, Brooks,
et al., 2022), the scores of the winners and runner-ups, and the results of the approach
presented in this thesis, first published in Karas, Triantafyllopoulos, et al., 2022. The

latter were outside the official rankings due to affiliation with the organisers.

Team A-VB-TYPE A-VB-TWO A-VB-HIGH A-VB-CULTURE

UAR CCC CCC CCC

COMPARE .3839 .5214 .4986 .3887
END2YOU .4172 .5686 .5084 .4401
Winner .5856 .7295 .6854 .6017
Runner-Up .519 .7237 .629 .5495

Ours .5618 .7363 .7066 .6195

The leaderboards of the best-performing submissions on each of the four tasks can
be found on the competition’s website (Hume AI, 2022). The results are summarised
in table 5.3. They show that the baseline was surpassed by a wide margin. The
submission based on the approach presented here was excluded from the official
rankings due to affiliation with the competition organisers. It performed very well,
beating the winning teams on the A-VB-TWO , A-VB-HIGH and A-VB-CULTURE ,
and only falling below on the A-VB-TYPE task (0.5618 vs 0.5856).

These results show the method for vocal burst analysis used herein to be highly
effective. A fine-tuned WAV2VEC2 provides powerful features for distinguishing
both vocal burst types and emotions, while being originally trained on substantially
different dataset containing English speech. Using different downstream architec-
tures like chained prediction heads, and combining them into an ensemble strat-
egy, further benefits the overall emotion recognition capabilities of the models. Fur-
thermore, using advanced loss balancing strategies, including uncertainty measures
and dynamic weighting during training, was helpful in obtaining additional perfor-
mance.

The limitations of the approach used for C–2 include its ability to predict under-
represented types of vocal bursts. As noted above, A-VB-TYPE was the only task
where it failed to outperform the A-VB competition winners (although it still beat
the runner-up). It was also here that an ensemble failed to yield any benefits, see ta-
ble 4.28. If additional steps like oversampling the dataset or deliberate optimisation
towards minority classes were taken, performance could likely be improved.

Another limitation is the performance on culture-specific emotions. As noted above,
Chinese emotions and Venezuelan emotions are challenging to predict, in addition
to the cultures being underrepresented in the dataset. While the overall results on
A-VB-CULTURE are still strong, additional measures could be taken to boost culture-
specific performances. Domain adaptation for cross-cultural emotion recognition
will be discussed in the following section.
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5.3 Cross-Cultural Emotion Recognition

In this section, the set of experiments on the SEWA dataset from section 4.2 will
be discussed. First, the supervised baseline results are analysed. Next, the semi-
supervised DANN results are interpreted.

5.3.1 Supervised baseline

The multi-modal baselines trained on the complete source culture data are first dis-
cussed, followed by the ablation to uni-modal computation, and the effects of re-
stricting the multi-modal models to training on fractions of the source data.

Audiovisual CNN baseline models

The experiments using CNN feature extractors and GRU or self attention with GRU
as seq-2-seq encoder show several important results. A shown in table 4.7, models
trained on German data tend to achieve higher validation set scores on both German
and Hungarian than their counterparts trained on Hungarian videos. This holds
for both arousal and valence, with the exception of the German-trained CNN-GRU
model, which achieved only a top valence score of 0.376 on Hungarian, while the
Hungarian models obtained a top score of 0.488.

On the test set, German trained models achieve the highest arousal (0.641 ) and va-
lence (0.642) CCC scores on German data, as expected. Performance drops when
predicting arousal on Hungarian data (0.516), and even more considerably on Chi-
nese (0.391). On valence there is also a drop, to 0.443 CCC on Hungarian and 0.46
CCC on Chinese respectively. This demonstrates the effects of domain shift, the
model has issues to recognise affective displays from cultures other than the one it
was trained on (the source domain).

The Hungarian-trained models show lower performance on their own culture for the
validation set compared to German, which is a counter-intuitive result. On the test
set however, the models are strongest on their own culture, with 0.521 on arousal and
0.541 on valence respectively. Performances outside the source domain are strong for
arousal (0.493 for German and 0.477 for Chinese). However, on valence, the Chinese
predictions are much worse, obtaining only 0.34 CCC.

Based on these findings, the interpretation is that the German data allows the models
to learn more effective representations, generalising better to unseen videos than
models trained with Hungarian. Another possible cause is found in table 3.2. While
German and Hungarian contain identical numbers of subjects in the training and
validation partitions, German contains more video footage on both, approximately
35% and 30% more respectively.

Ablation study: uni-modal training

Performing an ablation from multi-modal to uni-modal models shows several ex-
pected and some unexpected effects. First, it becomes clear that the MobileFaceNet
features used in the visual modality are quite powerful, as the visual-only model
still shows strong performance, see table 4.8. This matches the results in section 4.1.
On the validation set, the German-trained model drops to 0.684 and 0.54 CCC on
arousal for German and Hungarian respectively. A drop in arousal is expected, as
the audio modality is assumed to provide helpful information here. On the test sets,
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for arousal the performance on German and Hungarian also drops, to 0.584 and
0.502 respectively. Interestingly, the arousal score for Chinese shows an increase for
the models using self-attention with GRU, while dropping for the pure GRU model.
For valence prediction, the German-trained models also exhibit a reduction in per-
formance, to 0.699 and 0.441 respectively. On the test set, there is a slight increase
for German (0.654), no change for Hungarian (0.443) and a drop for Chinese (0.429)
CCC, respectively. The German-trained models behave mostly as expected under
ablation, however the Hungarian models present a different picture. On arousal,
the top validation scores actually increase, to 0.583 and 0.5 for German and Hungar-
ian respectively. For valence, the German score increases to 0.639 and the Hungar-
ian score drops to 0.442. On the test set, German performance increases on arousal
(to 0.521) and even more strongly on valence (0.619). On the Hungarian test data,
arousal performance drops, while valence improves, though no by a wide margin.
Finally, Chinese improves on arousal prediction to 0.517 CCC and remains at similar
performance on valence (0.334 CCC).

One might expect that the removal of information provided by the audio modal-
ity will have a harmful impact, in particular on arousal prediction across the test
cultures. Performance increasing on the Chinese videos when audio is removed is
likely due to a statistical effect, and further optimisation searches are expected to
yield a multi-modal model that is strictly better than its visual-only counterpart in
all respects.

Going the opposite route and ablating the visual features also shows that the cur-
rent approach performs less well when restricted to the audio modality. Training
on audio only with the features extracted by the light-weight 1D-CNN shows a con-
siderable drop in performance. As evidenced in table 4.9, for models trained on
German data the validation scores of arousal and valence on the same culture reach
CCC = 0.441 and CCC = 0.383, respectively. On Hungarian validation data, a top
arousal score of 0.27 CCC is reached, while on valence, the model fails to predict en-
tirely (CCC = 0.0). Evaluating on the test set, the German culture yields arousal and
valence scores of 0.359 and 0.332 CCC, where the multi-modal model achieved over
0.6. As expected, the performance outside the source domain decreases further, with
Hungarian not achieving a score above 0.25 and Chinese not reaching CCC = 0.2 on
arousal, and only marginally surpassing that result for valence.

In order to make a fair comparison between audio and visual modalities, the nature
of the dataset needs to be taken into account. As SEWA consists of dyadic conver-
sations, but the labels refer only to the speaker, the visual model will have speaker
information always available via the face (some occasional detection failures in the
data notwithstanding), while the audio model will only have the interlocutor voice
over extended periods of time, while the speaker is being silent.

Nevertheless, it becomes clear that the 1D-CNN audio features are not the optimal
choice, at least not in a uni-modal setting, when comparing models trained on them
to the results obtained with the fine-tuned WAV2VEC2 audio transformer. As shown
in table 4.9, models trained with these features surpass their 1D-CNN based coun-
terparts by a wide margin. The German-trained models express strong performance
in-domain (validation scores of 0.61 and 0.617 as well as test scores of 0.527 and 0.581
CCC on arousal and valence respectively). While the performance drops on Hun-
garian and Chinese test sets, the models still show some ability to generalise out
of domain. Meanwhile, the Hungarian-trained models generalise reasonably well
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on German and Hungarian test sets. Performance on Chinese is reduced for both
arousal and valence.

In order to maintain fairness in the following discussion, only models that make use
of the same feature extractors will be compared.

Effect of limited source label availability on the baseline

When the amount of labelled data available for training decreases, the ability of the
models to generalise is expected to be negatively impacted. This degradation of per-
formance can be seen for the baseline models in table 4.10, where the validation set
CCC scores tend to decrease with the amount of available data, irrespective of the
culture the model is trained on. For instance, when examining the German valida-
tion CCC of arousal, the best models trained with German as source culture achieve
0.767 using the complete data, 0.729 at 75%, 0.719 at 50% and 0.717 at 25%. However,
it is worth mentioning a peculiarity in the results, regarding the extent of the perfor-
mance drop across cultures and partitions. Going back to the above example, when
looking at the German test data, the results do not seem to change: The top CCC
scores are 0.621 at 100%, 0.615 at 75%, 0.621 at 50% and 0.619 at 25%. While the val-
idation performance suffered, the ability of the models to generalise appears to not
be impacted, at least not in-domain. For the other test set cultures, a performance
drop is visible.

In some cases, the top scores actually increase when the amount of labelled data de-
creases. As the increases are mostly minor, this is interpreted as a statistical effect
of the optimisation process. If even more training runs were performed, the mod-
els trained on more data are expected to consistently outperform those trained on
smaller subsets.

5.3.2 Domain Adversarial Neural Networks

Next, the results of the DANN experiments are interpreted and compared to those
of the baseline, beginning with models trained with CNN feature extractors and full
sets of training labels.

TABLE 5.4: Pearson correlation coefficients ρ across validation and test set results of
DANNs trained with various combinations of cultures. Correlations are high, indicating

models learn similar patterns irrespective of target culture.

Source Culture Target Culture Reference Culture ρ

DE EN HU .991
DE SR HU .994
DE GR HU .995

HU EN DE .889
HU SR DE .939
HU GR DE .979

In this analysis, the results of various DANNs trained with different target cultures
e. g., English and Serbian but identical source cultures are jointly compared with the
baseline. This is justified by the fact that the training yielded highly similar results
in terms of variation across the validation and test set cultures, even when values in
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absolute terms differed. Pearson correlation scores illustrating this are depicted in
table 5.4.

CNN-GRU based DANNs

Looking at the CRNN-based DANN results from table 4.11 shows some interesting
effects. When using German as the source culture, the top validation performance
in-domain remains comparable or slightly below baseline for arousal, while increas-
ing considerably for valence (0.714 −→ 0.769. Out-of domain (Hungarian), the valida-
tion performance drops, considerably so for valence. One might expect the opposite
effect, but this may be explained with the observation that achieving good results
on the Hungarian data is difficult especially on valence, at least using the approach
chosen herein.

The test set, however, presents a different picture. Here, gains in performance are
visible, both for German 0.627 −→ 0.66 and 0.642 −→ 0.688 on arousal and valence
respectively, and Hungarian 0.516 −→ 0.546, 0.443 −→ 0.454. On Chinese, the arousal
performance drops (0.471 −→ 0.422), while valence improves (0.46 −→ 0.5).

Looking at the maximum scores from the tables may not show the complete picture,
as the results on Chinese in particular have shown to be prone to strong swings in
the experiments. Thus, additionally t-tests for statistical significance on the test sets
are performed. All tests use α = 0.05. The maximum results will still be referenced
as indicators.

For the German-trained DANNs, the improvements on German arousal and valence
are significant with p < 0.05 (p = 0.026 and p = 0.003 respectively). The same holds
for Hungarian (p = 0.04 and 0.037). On Chinese, there is no significant difference
for arousal. The top baseline score of 0.471 turned out to be unusual, with the mean
result being 0.394. For valence, the improvement is statistically significant with p <
0.05 (p = 0.018).

Analysing the DANNs trained with Hungarian as the source culture, there are again
validation set improvements for German arousal (0.556 −→ 0.654) and valence (0.531 −→
0.636), Hungarian arousal improves to 0.512 from 0.437, Hungarian valence does
not. On the test set, beginning again with German, the top scores show considerable
improvement for arousal (0.493 to 0.595), which is also significant, p = 0.01. For
valence, the increase is from 0.48 to 0.638 is significant, with p = 0.002. Continuing
with the performance on the Hungarian source culture itself, the arousal increases
from 0.521 to 0.563, a significant change with p = 0.016. With Hungarian valence,
there is an increase from 0.518 to 0.542, which is significant, p = 0.011. Finally, on
Chinese, the top arousal score jumps from 0.512 to 0.561, but this difference is not
significant (p = 0.16). On valence, the increase from 0.34 to 0.358 is significant.

These results indicate that the DANN training is effective at learning representa-
tions of emotional content that are domain-invariant, the domains being the cultural
backgrounds of the subjects. These representations allow for improved generalisa-
tion when the model is confronted with test data from a culture that was not present
in the labelled training set, boosting affect recognition results on those cultures. Fur-
thermore, the approach is shown to also improve generalisation within the source
domain itself, as both German- and Hungarian-trained DANNs achieved better re-
sults in terms of CCC scores on German and Hungarian test data, respectively. A
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possible explanation for this is that by removing domain-specific information from
the representations, the model is able to focus more on the emotion task itself.

The exception here is the performance on the Chinese data. There was no improve-
ment for arousal, and while valence improved, the results were still below those of
the other cultures. This indicates that Chinese emotional displays are challenging
for the model, and that further optimisation of the approach is required. A possible
explanation for the lower results on the Chinese test set is that is is quite dissimilar
from all other data in SEWA, being the only non-European culture, thus the domain
shift that needs to be overcome is greater.

Training DANNs with restricted label data

Now, the experiments on training DANNs while limiting the emotion labels are
analysed, in descending order of available label share. First, the DANNs trained
on German are examined.

When the amount of labels is reduced to 75%, the validation set results behave sim-
ilarly to the DANN trained on the full set, in that German increases (0.729 to 0.754
for arousal, 0.735 to 0.76 for valence, while Hungarian stays the same for arousal
(CCC = 0.53) and drops on valence (to .396). The test set shows an improvement
on German for arousal (0.615 to 0.621 and valence (0.662 to 0.669, both significant
at p < 0.05. For Hungarian, the improvements on arousal (0.473 to 0.53) and va-
lence (0.401 to 0.43) are both significant, p = 0.000 and p = 0.001, respectively. For
Chinese, there is an increase in arousal score (0.501 to 0.513), and a drop for valence
(0.497 to 0.485), but neither of those are significant at p < 0.05.

Once the labels are further reduced to 50%, the DANNs exhibit identical behaviour
in terms of trends on validation set performance as above. For brevity, the details
of the changes are omitted, referring back to the experiments chapter and table 4.15.
Instead, the effects on the test results and their significance will be examined here.
For German test data, neither arousal or valence results are significantly different
from the baseline, p = 0.13 and p = 0.457, respectively. In case of the Hungarian
culture, the improvement on arousal (CCC = 0.545) is significant, p = 0.006, while
there is no such change on valence, p = 0.10. For Chinese, neither arousal nor
valence show significant improvement (p = 0.331, p = 0.485).

When the labels were reduced even further, to 25% leading to the results in table 4.17,
the test scores on German (CCC = 0.648 for arousal, CCC = 0.667 for valence)
are again both not statistically better than those of the baseline at p < 0.05. On
the Hungarian dataset, however, the performance increases, to CCC = 0.505 and
CCC = 0.499 respectively, are both significant (p = 0.001 for arousal, p = 0.026 for
valence). Finally, for Chinese, while the performance increases, to 0.471 on arousal
and 0.442 on valence, there are again no significant differences atp < 0.05.

It is somewhat unexpected that the DANNs trained with full and 75% of the German
labels significantly outperform the baseline both German and Hungarian test data,
but their counterparts using 50% and 25% of labels do not. A likely explanation
is that the supervised baseline training finds powerful models more easily, while
the adversarial training process of the DANNs requires further experimentation to
achieve optimal results. It is worth highlighting that the DANNs trained on 25% of
German labels managed to outperform their corresponding baseline out-of-domain
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on Hungarian, so the approach is shown to still be effective even with very small
amounts of labelled data.

In order to examine the impact of the source culture choice, the DANNs trained
on Hungarian source data with subsets of the labels are discussed. Again, in the
interest of brevity and readability, not every effect on the results is repeated from
the experiments chapter, and the reader is referred back to the respective tables.
Instead, the focus is on the statistical significance of the changes per culture and
their interpretation.

Using 75% of the Hungarian labels, see table 4.14, the performance on the test set for
German arousal increases significantly with p < 0.05 (mean CCCs 0.523 and 0.554
for baseline and DANN respectively). On valence there is no significant difference
(average CCCs 0.601 and 0.6.) In-domain, i. e., on the Hungarian test set, the im-
provements are significant at p < 0.05 for both arousal (average CCC = 0.525 to
CCC = 0.558) and valence (average CCC 0.488 to 0.533). The Chinese test set shows
no improvement at p < 0.05 on arousal (average performance is 0.489 for baseline,
0.489 for DANN), but there is a significant gain for valence (CCC 0.286 to 0.334,
p = 0.001).

By reducing the labels to 50%, leading to the results in table 4.16, again a significant
(p = 0.001) gain on German test set is achieved against the baseline (CCC = 0.518
to CCC = 0.58). For valence, the improvement from 0.583 to 0.597 is not significant
at p < 0.05. Once more, the DANN outperforms the baseline in-domain, and the
improvements are both significant at p < 0.05 for arousal (0.512 to 0.547) and valence
(0.495 to 0.538). The trend from the models trained on more data also repeats on the
Chinese culture, with the improvement on arousal from 0.448 to 0.465 not being
significant at p < 0.05, while the gain on valence CCC is, from 0.291 to 0.34.

In the final reduction step to 25% of the labels, the DANNs presented in table 4.18
achieve statistically significant improvements at p < 0.05 for both German arousal
(µ = 0.46 to µ = 0.527) and valence (µ = 0.512 to 0.547). Performance on Hungarian
also improves significantly at p < 0.05 for both arousal (0.512 to 0.547) and valence
(0.48 to 0.499). On Chinese test data, the change in arousal from 0.463 to 0.507 is
again not significant at p < 0.05, but the improvement on valence is (0.307 to 0.362)

The results of the Hungarian-trained DANNs with reduced label shares are consis-
tent with the previous analysis on the full in that the source domain benefits for both
arousal and valence prediction, and that German arousal and Chinese valence both
see improvements.

Based on these experiments, the conclusion is that the DANN approach remains ef-
fective even as the relation of labelled samples to unlabelled samples in the source
culture is greatly decreased. In some cases the DANNs even surpass baselines trained
with more labelled samples. These results are promising for the development of af-
fective computing solutions on larger datasets, where a complete annotation would
not be feasible, see section 2.5.2.

Performance comparison and limitations of the approach

There are several limitations in the approach presented here, which offer room for
improvement. First, while the baselines with WAV2VEC2 audio features clearly out-
performed the ones using 1D-CNN, the advantage is less prominent with DANNs,
suggesting that further hyper-parameter searches will lead to even better models.
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Second, the DANNs are not easy to train, requiring specific adjustments of the losses
and train loop to converge, see section 3.4.4.

The analysis presented here focused on recurrent encoders, and could be extended
to attention-based models, including hybrid cross-modal fusion, as in section 4.1.
Furthermore, the approach was tested only on SEWA, as it was the most suitable
dataset available. It could be applied to other, larger corpora, or be extended to a
combination of datasets, which would introduce additional domain shift.

From the results on the Chinese culture, it is expected that more optimisation will
lead to even better performance. Comparing with related work, the models obtained
here outperform the Transformer-based TEMMA (H. Chen, Jiang, and Sahli, 2020) on
the Chinese culture for both arousal, with 0.561 vs 0.470, and valence (0.5 vs 0.459),
respectively. TAADA (H. Chen, Y. Deng, and Jiang, 2021), which is also DANN-
based, outperformed the models of this thesis on arousal (0.576), while falling below
on valence (0.472). Notably, those other models were trained on the full set of labels
from both German and Hungarian cultures simultaneously, while the DANNs in
this thesis were trained on either German or Hungarian. Based on these results, it
is concluded that the method used in this thesis is competitive and effective with
limited access to labels.

5.4 Final considerations

Following the discussions of the individual contributions above, this section con-
cludes the chapter by summarising lessons learned and relating the work done in
this thesis back to the research questions defined in section 1.2.

Several general observations were made when training models for this thesis: It was
found that individual model runs are highly dependent on the initialisations of the
weights. Re-running multiple times with different random seeds helped mitigate
this. Furthermore, combining the best-performing models into ensembles boosted
performance, and is therefore highly recommended. Training models with multi-
task learning and applying dynamic balancing between the task losses is also benefi-
cial. Finally, there is considerable potential for hyper-parameter optimisation. Given
the large number of possible parameter combinations, running automated searches
with early stopping criteria for underperforming trials is recommended e. g., with
toolkits like Ray.

Regarding research question RQ–1 i. e., methods for continuous emotion recognition
in the wild, it has been established that deep feature extractors learning from raw
data are effective. In particular, the light-weight CNN MobileFaceNet performed
very well for detecting both arousal and valence. For fusion strategies, both early
and hybrid fusion were successfully applied. Both recurrent and Transformer-based
sequence models were used, and it was shown that the former are still competitive
compared to their more recent attention counterparts. Finally, end-to-end learning
was shown to be effective for emotion recognition both to boost performance, and
to develop more light-weight models, which is relevant for applications with con-
strained resources.

On research question RQ–2 i. e., cross-cultural emotion recognition, it was shown
that adversarial domain adaptation is an effective tool to help the models learn rep-
resentations which generalise well on unseen cultures. The method was also found
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to boost emotion recognition performance on the source domain. Various combina-
tions of five source and target cultures were experimented with, and the approach
was effective on all of them. Thus, adding self-supervised domain adaptation can
be considered a promising strategy for cross-cultural affect recognition on diverse
in-the-wild data.

Research question RQ–3 i. e., using unlabelled data for emotion recognition was ad-
dressed alongside the domain adaptation discussed above. It was found that data
containing emotional displays, even when it had no annotations, could still be lever-
aged to improve recognition performance. By adding a self-supervised culture task,
the models were able to learn implicit information that helped them generalise. This
approach worked even when the unlabelled samples greatly outnumbered the la-
belled ones. Furthermore, it was also demonstrated that audio Transformers pre-
trained without any emotion labels are effective at predicting affect.

On research question RQ–4 i. e., recognising affect from non-verbal vocalisations, it
was found that multi-task learning with models based on fine-tuned audio Trans-
formers is highly effective. The approach works even though the pre-training of the
backbone model happened on a quite dissimilar dataset of English speech. It is also
robust in challenging, diverse audio conditions. These findings are relevant for de-
veloping models that can recognise affect in the absence of speech, which can often
be missing in real-life situations.
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Chapter 6

Outlook and Future Work

In this chapter, an outlook on possible future research and applications is given,
based on the findings of the previous chapters and ongoing trends in the field of
affective computing and the industry.

For industrial applications the focus is placed on the automotive industry, due to
the research for this thesis having been conducted in cooperation with the BMW
Group. An outlook towards future generations of vehicles that integrate features for
estimating and regulating affect is given in section 6.2.

6.1 Challenges and research opportunities

Although affective computing has matured considerably, see e. g., the progress in
SER (B. W. Schuller, 2018), major challenges remain in order for the technology to
become widely deployed and accepted in real life conditions. In this thesis, aspects
of recognising emotions in the wild were investigated, focusing on sequence-based
modelling of continuous affective states from audiovisual data. Beyond this many
opportunities for further work exist, both on the technical level of data acquisition
and emotion recognition, as well as in terms of applications and the ethical implica-
tions of wide-scale deployment of such systems. Several of those open questions are
listed here, and research paths for addressing them are suggested.

6.1.1 Privacy

Privacy is a major concern, given that affective computing is becoming increasingly
pervasive, and that it can be used to analyse the mental and physiological states
of individuals. This may have far-reaching consequences if the technology is mis-
handled and data or the inferences derived from it leak.

The data, whether it is generated by cameras, microphones, or any number of wear-
able sensors, is inherently tied to a person. It cannot be easily anonymised, as e. g.,
blocking out the face region in videos would also remove salient information that
the affective computing solution relies upon, making it, if not inoperable, far less
effective.

One way to address privacy concerns is to run all computation locally on the user’s
hardware, and not to employ persistent storage. For instance, an mood estimator
employed in a vehicle assistant could be a compact network running on an ECU,
working on video frames that only exist transiently in a buffer. Implementing this
kind of system, however, requires extensive optimisation to fulfil computational
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resource constraints. Compressing deep neural networks down for edge comput-
ing, while maintaining their performance, is a highly topical research field. Popu-
lar methods include pruning parameters of the network, as well as quantisation of
the remaining weights. Another very interesting strategy are knowledge distillation
methods, e. g., learning a smaller network from a larger one in a teacher-student
approach (Gou et al., 2021).

In case a transfer of data to a backend server cannot be avoided, one approach to
preserve privacy while maintaining the salience of the data is to obscure the iden-
tity of persons by replacing them with generated content. For instance, DeepPri-
vacy (Hukkelås, Mester, and Lindseth, 2019) is a GAN-based approach that can
anonymise faces. For emotion estimation, the user’s face or body could be changed
to a different appearance while maintaining the facial expression or pose. The new
virtual identity may also be used in privacy-preserving in-cabin monitoring for au-
tonomous vehicles (Gomez-Donoso et al., 2022). Conversely, in situations where a
person knows or suspects their affective or cognitive state is being analysed, and
that a negative assessment may have undesirable consequences, they may wish to
deploy software that can obscure e. g., signs of stress or anxiety. This, however, is
only viable in remote interactions where the person has control over the device that
records and transmits their data. On the other hand, in online conversations, the
other party may be interested in knowing whether the interlocutor is genuine, and
deploy software trained to detect such "spoofing".

6.1.2 Distributed Learning

There are many reasons to keep data and computation on the end user devices, in-
cluding latency, security, and privacy, see section 6.1.1. At the same time, it is de-
sirable to have those devices share knowledge, so that they can learn from the data
their peers have collected and processed.

Federated Learning is a distributed machine learning paradigm that aims to address
this challenge. Its basic premise is to have multiple clients perform training locally
and communicate with a server, which aggregates their information to learn a joint
model with improved performance, and pushes weight updates back to the clients.

While this approach avoids clients having to share their data over the network, ad-
versaries may still be able to exploit the transmitted information, e. g., by model
weights leaking aspects of the underlying data. Privacy-preserving federated learn-
ing is an active area of research, with a trade-off existing between protection level
and convergence performance that needs to be considered in system design (K. Wei
et al., 2020). Federated learning has been shown to be effective in SER (Latif et al.,
2020), and has great potential for improving the user experience in future connected
vehicles, where manufacturers could push out OTA updates based on customer in-
teractions learned from fleets of cars.

6.1.3 Beyond Supervised Learning

An ongoing challenge in affective computing and deep learning in general, which
has also inspired RQ-2 of this thesis, is overcoming the bottleneck of labels and train
networks on large quantities of unlabelled data. Self-supervised training on pre-
text tasks which let the model implicitly learn about the data has driven the major
advancements in NLP, Computer Vision and audio analysis via Transformer-style
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architectures in recent years. Commonly these large models are then fine-tuned to a
downstream task (Macary et al., 2021), an approach that was also used in this thesis.

Alternatively, self-supervised training of novel multi-modal, cross-modal or cross-
corpus models can lead to powerful features. An example is Shukla, Petridis, and
Pantic, 2021, who used reconstruction of face based on speech as a cross modal pre-
text task. In addition, swapping part of the audio was used as uni-modal pretext
task. The combination of both approaches in a multi-task setting yielded improved
performance. The approach was tested on several datasets including RECOLA,
SEWA and IEMOCAP and shown to outperform existing self-supervised methods as
well as fully supervised training. Choosing suitable pre-text tasks for affect remains
an open research question.

6.1.4 Trust, Fairness and Explainability

One major issue for the widespread adoption of highly automated systems, e. g., au-
tonomous vehicles, is a lack of trust. This may lead to potential users being insecure
or apprehensive around the technology, and deciding not to engage with it. If there
is sufficient concern, it may cause regulators to restrict or outright ban those systems
until their trustworthiness has been sufficiently established.

Anthropomorphising technology is beneficial for user trust, e. g., when an AV pos-
sesses features like a name, gender and voice (Waytz, Heafner, and Epley, 2014).
However, this approach should try to avoid the "uncanny valley" effect, where an
artificial agent that appears almost but not quite human is perceived as unsettling.

Affective computing can help promote trust in automated systems by making their
HMI more natural. Being responsive to the users’ mood and in turn displaying
emotional behaviour can encourage engagement. At the same time, the degree of
responsiveness and the way emotions are integrated in the UI needs to be carefully
designed and calibrated to the users’ preferences to avoid upsetting them, e. g., a
speech assistant exacerbating negative feelings through inappropriate comments.
Beyond correctly estimating users’ emotions, studying how to apply that informa-
tion in an engaging and context-sensitive manner is a promising research path.

Another important factor that impacts both safety and user satisfaction is fairness
of the machine learning models that enable the application. For instance, an emo-
tional or cognitive state estimation component that is deployed globally should give
reliable performance results across a wide range of people, not just a specific demo-
graphic. While collecting extensive and diverse training data can help mitigate this
issue, biases may still creep into the model, e. g., via unaccounted skews in the data
distribution or via properties of the algorithm itself. The results can range from an-
noying, e. g., for entertainment apps not working as expected, to dangerous, e. g., a
medical system for mental health analysis misdiagnosing a patient. Therefore, it is
important to consider potential harms of biases an automated system and develop
methods to analyse and mitigate them. Fairness in machine learning is an active
field of research. A recent survey with a taxonomy of approaches and open research
directions can be found in Mehrabi et al., 2021.

Furthermore, adoption of systems based on machine learning may be hindered by
a lack of interpretability. While deep learning has lead to considerable performance
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improvements across many domains, state of the art models are so large that the re-
lation between their inputs and outputs is no longer interpretable by humans (con-
sider e. g., GPT-3, a LLM with 175 billion parameters), effectively turning them into
black boxes. There is an inherent trade-off between model transparency and per-
formance, and users may tolerate some opacity if the application works well or
the stakes of its decisions are low (Adadi and Berrada, 2018). Nevertheless, inter-
pretability is key to building trust with a technology and managing it effectively. It
can be useful when decisions of the model need to be justified, e. g., an autonomous
vehicle explaining its actions to avoid passengers experiencing frustration or fear
from an unexpected manoeuvre (Wiegand et al., 2020). Interpretability can also con-
tribute to improving the model by uncovering biases or performance issues. Fur-
thermore, besides model errors, vulnerabilities against deliberate attacks can also be
studied. The need to develop powerful models while still maintaining the ability
to understand their results has given rise to the field of XAI (Barredo Arrieta et al.,
2020). XAI encompasses a wide number of approaches, which can be model-specific
or model-agnostic. Explanations can be obtained by choosing a model that is intrin-
sically interpretable by being small or of low complexity, or by adding a post-hoc
analysis to a large and complex black box model. For instance, the model’s internal
representations can be visualised, consider e. g., the attention maps of Transformers.
Taxonomies of XAI, along with open challenges in the field, can be found in Adadi
and Berrada, 2018; Barredo Arrieta et al., 2020. For affective computing and medical
AI, XAI is a highly relevant and topical research direction.

6.2 Outlook: The emotionally intelligent vehicle

As described in chapter 2, there is a trend in the automotive industry towards inte-
grating sensors into the vehicle cabin for monitoring the occupants. These sensors
enable two types of functions: Safety functions and comfort functions. The former
are primarily driver-focused, due to the driver’s responsibility for operating the ve-
hicle, and include camera-based driver monitoring for attentiveness and fatigue (J.
Wang, Chai, et al., 2022). Safety functions that extend to the passenger seats include
e. g., seat belt reminders, intelligent (de)activation of airbag systems, and child or pet
presence detection, based on pressure sensors, cameras, or radars. Comfort func-
tions are more geared towards the passengers, allowing them to relax or distract
themselves with other activities during the drive. They are controlled mainly by
touch-sensitive screens replacing physical buttons (Breitschaft, Pastukhov, and Car-
bon, 2021), as well as by gesture and speech commands (Murali, Kaboli, and Dahiya,
2022).

In this section, an outlook is given for a future generation of vehicles, in which affec-
tive computing based on an in-cabin sensing system enables various use cases.

6.2.1 Driving Experience

The vehicle of the future will be capable of semi-autonomous, and later fully au-
tonomous, driving. Affect recognition has important applications here for governing
the driving behaviour in autonomous mode.

A car may adjust its driving style, to regulate or promote certain emotions in its
passengers. For instance, a sporty and dynamic style may appeal to passengers
who are energetic and excited for the drive, while a smooth, cruising style can help
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foster relaxation and relieve anxiety (Ling et al., 2021). Personalised and mood-
based driving style adaptation is a promising tool for building trust into autonomous
vehicles (Sini et al., 2021; Alsaid et al., 2023).

Similarly, an autonomous car might also attempt to gauge the affect of other traf-
fic participants, particularly pedestrians, and interact with them in a reassuring
way. Some current-generation vehicles already include signalling capabilities be-
yond standard turn indicators and horns, in the form of matrix LED displays. A
future vehicle could recognise the emotions of pedestrians, infer their expectations
based on the context e. g., doubts whether the vehicle will yield, and signal its intent.
A survey with recommendations for such interactions can be found in Y. Wang, Hes-
panhol, and Tomitsch, 2021.

Another way in which affective computing may be used to shape the driving ex-
perience is by customising the route based on the emotions of the passengers. The
vehicle may suggest a scenic route, and then observe during the drive whether the
user enjoys it. This implicit feedback may be used for future recommendations,
including for new routes experienced positively by other people (H. Huang et al.,
2014).

In order to improve acceptance, the affect-based recommendation could be com-
bined with contextual knowledge, such as whether the user is travelling under a
time constraint e. g., going to work, or in a more leisurely manner e. g., on a fam-
ily vacation. In the former case, a fast and stress-minimising travel route is likely
preferred, while for the latter, more emphasis can be placed on aesthetic sights and
longer drives. Emotion-based route adjustment is an interesting topic with potential
for greatly enhancing user satisfaction, but remains relatively understudied (Karas,
D. M. Schuller, and B. W. Schuller, 2024).

6.2.2 Infotainment

As driving becomes more autonomous and the interior more connected, new forms
of information and entertainment, commonly referred to as infotainment are enabled.
These include the ability to stream movies, play games or make video calls on large
high-resolution screens. When driving is highly automated, some users may also
want to use their car as a mobile office space, to productively use the time of their
office commute.

Infotainment use cases can be enhanced by affective computing. For instance, the
emotions of the user can serve as input to a music recommendation system that
selects tracks matching the current mood (Ayata, Yaslan, and Kamasak, 2018), and
the same concept can be applied to recommending movies or TV shows. The vehicle
could also adjust its interior lighting and UI to match or regulate the user mood.

The growing number and complexity of customer functions motivates the inclusion
of a vehicle assistant. This assistant could be personalised and responsive to the
user’s emotions (Braun, Weber, and Alt, 2021). For instance, it could detect that the
user enjoys engaging with it and be more proactive, or it could detect that the user
is sad or angry and be more restrained in order to not aggravate them further. Dis-
playing emotions in reactions to queries, e. g., by changing its voice, could make the
assistant appear more human-like and encourage interaction. Having an assistant
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that users enjoy engaging with, and which knows when and how to present infor-
mation, will also help with building trust into the autonomous driving capabilities
of the vehicle (Lee et al., 2019; Alpers et al., 2020).

6.2.3 Health and Wellbeing

Another important application of affective computing in the vehicle is for improv-
ing functions that seek to promote customer wellbeing. Here the car could sense
the passengers’ mood and adjust its interior accordingly, e. g., changing the lighting
to be more subdued. For relaxation or refreshment programs, affect recognition in
combination with physiological sensing would be helpful. Options for placing sen-
sors in the cabin to unobtrusively measure biosignals were investigated by J. Wang,
Warnecke, et al., 2020. Besides vehicle-mounted sensors, linking wearable devices
to the car is a promising solution.

Various intervention strategies for passengers who are feeling unwell have been pro-
posed, including guided breathing exercises with voice-controlled or haptic stimuli
(Paredes, Zhou, et al., 2018), or calming VR simulations of ocean dives (Paredes,
Balters, et al., 2018). Mood sensing would be very useful in these features, both for
choosing when to suggest them proactively, and for judging their effectiveness.
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Conclusion

Automatic affect recognition holds the potential to elevate human-machine interac-
tion by enabling systems that respond to the user’s feelings, leading to a more natu-
ral and engaging user experience. However, the technology is not yet fully mature,
despite considerable recent advances in deep learning, due to the complex nature of
emotions and difficulties associated with recognising them in widely varying situa-
tions.

Inspired by this problem, this thesis addressed the topic of estimating continuous
emotional states based on audiovisual recordings that are collected in-the-wild i. e.,
in noisy, real-life conditions. Four main research questions were investigated:

RQ–1, which was concerned with choosing suitable features, multi-modal fusion
and temporal modelling schemes for recognising value-continuous emotions in-the-
wild.

RQ–2, which based on cultural differences of emotional displays and experiences
asked how to teach models to recognise emotions in people from cultures other than
the ones they were explicitly trained on.

RQ–3, which being motivated by the high cost of emotion annotations contrasted
by the availability of large amounts of data containing natural emotional behaviour,
concerned itself with finding ways to enhance model performance by using unla-
belled or partially labelled data.

RQ–4, which from a desire to develop models that could interpret more than the
commonly analysed cues in the face and speech, focused on detecting affect from
less frequently studied non-verbal vocalisations e. g., laughter, groans and cries, with
occur naturally in emotional displays.

An overview of theories of emotion was given, including both traditional views
of universal categories and modern frameworks of diverse, context-dependent and
smoothly varying concepts. An introduction of the young and rapidly evolving field
of affective computing was given. Commonly used signal modalities and the fea-
tures extracted from them were explained, and industrial applications of affective
computing were presented. For those applications, the focus was placed on the au-
tomotive sector, where various manufacturers have presented empathetic intelligent
assistants within concept cars, and features related to emotion recognition are being
integrated into production vehicles.

The background introduction is followed by the main part of the thesis, containing
methodology, experiments description and discussion. Three core contributions are
made here:
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C–1 focuses on multi-modal sequence-to-sequence prediction of arousal and valence
on Aff-Wild2, a challenging, noisy web-sourced dataset. Various feature extrac-
tors and fusion methods, as well as recurrent and attention based sequence mod-
els, are compared. The effectiveness of end-to-end learning for boosting recognition
performance while reducing the number of parameters is demonstrated. A set of
lightweight, computationally efficient networks with CNN-based features is devel-
oped, which is promising for applications that need to run in resource-constrained or
low-latency settings e. g., on smartphones or inside vehicles. An ensemble of these
models achieved 5th place in the third Affective Behaviour in the Wild (ABAW) com-
petition.

In C–2, a dataset of short vocal bursts recorded under realistic conditions, span-
ning four cultures, is used to analyse non-verbal expression of affect. Eight vocal
burst categories, arousal and valence, 10 continuously annotated emotions and 40
culture-specific emotions are predicted by models trained with multi-task learning.
An audio Transformer pre-trained on English speech is fine-tuned and used as the
backbone of multiple architectures with varying degrees of complexity, including
parallel or chained task output heads. The resulting models are analysed in detail,
and shown to be highly effective. Combination into an ensemble further boosted
performance. The models achieved state of the art results on all four tasks, surpass-
ing the winners of the ACII’22 A-VB competition on all three continuous emotion
recognition tracks.

For C–3, dyadic conversations between members of six cultures in the SEWA dataset
are used to analyse spontaneous displays of emotion in a cross-cultural context.
Arousal and valence are predicted in a sequence-to-sequence model based on deep
feature extraction from audiovisual data. Domain adaptation via adversarial train-
ing on the cultural background is used to improve performance on both the source
and unseen target cultures. The target data is completely unlabelled, and the effec-
tiveness of the approach when restricting the amount of labelled source samples by
up to 75% is demonstrated. The results are competitive with the state of the art.

Furthermore, suggestions for future work are given. Here, an emphasis is placed on
going beyond the challenge of further improving recognition performance in-the-
wild. Instead, as the widespread deployment of emotion analysis software raises
ethical questions, proposals are made for research into privacy protections, includ-
ing emotion-preserving video data anonymisation with generative models and edge
computing with privacy-preserving federated learning. Research into fairness and
explainability of is also recommended, to find hidden biases in deep models and
make their decision processes less inscrutable. Taking these steps will be beneficial
for establishing trust and promoting acceptance of affective technology.

Finally, an application for an affect recognition and elicitation system is illustrated in
the form of a future generation of intelligent vehicle that responds to the feelings of
its occupants. Extrapolating from current research, various use cases are presented.
These include emotionally responsive autonomous driving behaviour and route se-
lection, mood-based content recommendation systems, an intelligent personal as-
sistant capable of empathetic conversation, and programs for improving wellbeing
that can be offered proactively and derive implicit feedback based on the emotional
state.
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