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Abstract: Technology has shown to be beneficial for initiating cognitive engagement. In the
present study, cognitive engagement was conceptualized by the ICAP framework, propos-
ing four levels of cognitive engagement (interactive, constructive, active, passive), which
can be determined from observable student activities. To initiate cognitive engagement,
teachers require diagnostic skills. With this study, we aimed to foster those skills. We
designed and validated a simulation with N = 213 pre-service teachers to investigate the
validity of the simulation. Moreover, we evaluated the difficulty of diagnosing the levels of
cognitive engagement within planning and implementing lessons. We used linear regres-
sions for the validation and confusion matrices for insights into the diagnostic process. The
study results show a varying difficulty of diagnosing levels of cognitive engagement due
to (a) challenges in inferring the involved cognitive processes and (b) different phases of
teaching. Levels of cognitive engagement that require inferential processes to identify them
are more difficult to diagnose. This highlights the importance of adding scaffolds to our
simulation to help pre-service teachers understand the processes of generating knowledge
and co-generating knowledge. More importantly, the study reveals shortcomings of the
ICAP framework and presents first suggestions for its further development.

Keywords: cognitive engagement; simulation; technology-related diagnostic skills; diffi-
culty of diagnosing levels of cognitive engagement

1. Introduction
It has become increasingly common to use technology in lessons to support learning

at school. However, the use of technology only improves the quality of a lesson if it is
implemented in an effective way (Quast et al., 2021; Wekerle et al., 2022). One way to
achieve such an improved lesson quality is by planning and implementing technology in
a cognitively engaging way (Sailer et al., 2024; Stegmann, 2020; Wekerle et al., 2024). For
this, teachers require skills to combine pedagogical knowledge (PK) with technological
knowledge (TK; Koehler et al., 2013; Willermark, 2018). If teachers integrate knowledge
about cognitive engagement (PK) and knowledge about the appropriate tools for their
pedagogical goals (TK), they develop technological pedagogical knowledge (TPK).

Teachers use their TPK in different phases of teaching, e.g., when planning and when
implementing a lesson (DCB, 2017; Ertmer & Ottenbreit-Leftwich, 2010). Ideally, when
planning a lesson, teachers diagnose the levels of cognitive engagement within their lesson
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plans and check the alignment of the task and learning goal. When implementing a lesson,
teachers diagnose their students’ current cognitive engagement. Novices may struggle
with planning and implementing cognitively engaging technology-supported lessons.
To scaffold the acquisition of the respective skills, novices could start with identifying
the cognitive engagement in existing lesson plans (Belland et al., 2017; Quintana et al.,
2004). This approach may support novices in learning how to plan cognitively engaging
technology-supported lessons. To train the implementation of such lessons, instead of
diagnosing actual students’ cognitive engagement, novices can train on representations of
students’ learning activities (e.g., generated students’ screen-videos or products).

In the present study, the skills to diagnose cognitive engagement in technology-
supported lesson plans (i.e., a lesson plan that includes digital tools or media) and in
students’ technology-related activities are conceptualized as technology-related diagnostic
skills. Even though diagnostic skills are an important part of teachers’ professional knowl-
edge, they are underrepresented in pre-service teacher training (Kramer et al., 2021). As
a result, in-service teachers are often not well prepared for making these diagnostic de-
cisions in the actual professional setting (Heitzmann et al., 2019; Oser, 2001). Therefore,
it may be helpful to start acquiring technology-related diagnostic skills as soon as in the
first phase of teacher training (Kramer et al., 2021). Here, simulations may be a useful
tool (Chernikova et al., 2020). Simulations approximate practice (Grossman et al., 2009)
while, at the same time, reducing the complexity of real professional settings (Heitzmann
et al., 2019). In our study, we therefore aimed at fostering technology-related diagnostic
skills in a simulation-based environment. While there is evidence that simulations support
the acquisition of complex skills (Chernikova et al., 2020) and that cognitive engagement
enhances technology-related learning (Sailer et al., 2024), there is a research gap regarding
which types of diagnostic decisions are particularly difficult to make. With this study, we
want to examine the difficulty of diagnostic decisions in detail in order to find out how to
efficiently and effectively design a simulation that aims at enhancing technology-related
diagnostic skills regarding cognitive engagement.

1.1. Technology-Related Diagnostic Skills as Part of Technology-Related Teaching Skills

When teachers make diagnostic decisions, they usually base them on what they ob-
serve in and outside of their classroom (Schrader, 2013). A diagnosis involves classifying
the forms and causes of phenomena such as cognitive engagement. These forms and
causes are often latent or hidden rather than directly observable, requiring identification
through visible cues (e.g., a student creating a complex mind map) and inferences based on
professional knowledge. A diagnosis typically acts as a decision point that guides actions
and interventions that are aimed at addressing and improving the identified problem
(Heitzmann et al., 2019). Thus, diagnosing is based on inferring and categorizing observed
phenomena, such as cognitive engagement. To facilitate access to information about such
hidden phenomena, teachers can harness technology in various ways. In this case, technol-
ogy supports teachers in terms of generating knowledge about their students. Technology
can also support students. If implemented in an effective and efficient way, technology has
the potential to foster students’ learning processes, especially when cognitively engaging
them (Sailer et al., 2024). To guarantee such a beneficial and efficient technology use, it is
vital for teachers to be able to diagnose aspects like students’ current levels of cognitive
engagement and, if necessary, to readjust the task so that students are engaged at the
desired level (DCB, 2017). The necessary diagnostic skills for this process require teachers
to combine their pedagogical knowledge (PK, i.e., knowing how to cognitively engage
students) and technological knowledge (TK; Koehler et al., 2013). Within the present study,
we call these diagnostic activities technology-related diagnostic skills. With this term, we
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refer to the activity of diagnosing the cognitive engagement of learning goals, tasks, and
student activities—all within a simulation. The term technology-related refers to a certain
use of technology in terms of a digital tool or digital medium within the planning and
implementing process of a lesson. However, the technology use itself is not diagnosed
or analyzed. We define diagnostic skills as the ability to apply knowledge within a pro-
fessional context. Thus, diagnostic skills require conceptual knowledge (i.e., theoretical
knowledge like frameworks), as well as action-oriented knowledge (i.e., teachers putting
theoretical knowledge into practice; Kopp et al., 2008). When planning and implementing
cognitively engaging technology-supported lessons, teachers apply their action-oriented
knowledge.

Planning and implementing lessons represent the first two phases of the teaching
process, which are followed by the phases of evaluating and sharing lessons (DCB, 2017;
Ertmer & Ottenbreit-Leftwich, 2010). We assume that each phase requires specific diagnostic
skills. The first phase of teaching—planning a lesson—includes defining learning goals
and tasks. Ideally, when designing cognitively engaging lesson plans, teachers reflect on
the potential cognitive engagement that is required to reach a specific learning goal. Based
on this learning goal, teachers create tasks that have the potential to initiate the level of
cognitive engagement that is aimed at by the learning goal. Thus, putting thought into the
level of cognitive engagement that matches the learning goal allows teachers to select an
appropriate level of cognitive engagement for the respective tasks (Chi & Boucher, 2023).
When planning lessons, teachers may also consider implementing technology (Jiménez
Sierra et al., 2023). Used in a cognitively engaging way, technology is beneficial for the
learning process (Sailer et al., 2024). This requires teachers to design technology-supported
lessons that align with students’ needs, thereby enhancing effective learning processes
(Steffens, 2006; Wekerle et al., 2022). For learning goals and tasks, it is only possible to
predict the cognitive engagement that may be achieved in the classroom later on. Therefore,
for learning goals and tasks, only the potential cognitive engagement can be diagnosed. In
contrast, in the implementation phase, the actual cognitive engagement can be diagnosed
through observing students and analyzing their products. The implementation phase
focuses on assessing students’ activities and diagnosing whether the activities are carried
out at the desired level of cognitive engagement. In this phase, the teachers monitor
their students to assess different aspects of their students’ behavior, skills, and cognitive
processes (DCB, 2017).

We argue that the diagnostic skills that are needed for the planning and the imple-
mentation phase differ from each other. For the planning phase, teachers’ diagnostic skills
focus on estimating which level of cognitive engagement can be achieved by a certain
learning goal and on matching it to a task. For the implementation phase, diagnostic skills
in terms of observing students’ activities and determining their current level of cognitive
engagement are required. In the following, we will elaborate on how we conceptualize
(levels of) cognitive engagement.

1.2. Cognitive Engagement

Several studies show that cognitive engagement is an important aspect of effective
and efficient teaching and learning (Kunter & Voss, 2011; Sailer et al., 2024; Stegmann, 2020).
More broadly, cognitive engagement describes the use of cognitive strategies (Chi et al.,
2018). In this paper, we conceptualize it using the ICAP framework, which works with
the acronym for four levels of cognitive engagement: interactive, constructive, active, and
passive (Chi & Wylie, 2014). We decided to use the ICAP framework, as it is evidence-
based (Chi et al., 2018) and offers teachers a heuristic to differentiate the complex concept of
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cognitive engagement. Moreover, studies found that the student activities that are proposed
by the framework are beneficial for the learning process (Sailer et al., 2024; Stegmann, 2020).

According to this framework, students’ learning activities can be categorized into
four levels. Each level entails different cognitive processes regarding knowledge change
(Wekerle et al., 2024). When carrying out a learning activity, students can be cognitively
engaged on one of those four levels of engagement (i.e., passive, active, constructive,
interactive). In the following, we will describe the knowledge change process and give
examples of students’ activities for each level of cognitive engagement.

The knowledge change process for the passive level is storing information. According
to Chi and Wylie (2014), this information can later be recalled in a similar context. The
passive level of cognitive engagement entails student activities in which students merely
attend to the instructional material and absorb the information from that material. Students
are, however, not overtly active, e.g., they do not take notes while listening, reading, or
watching the instructional material. Typical student activities for the passive level are
watching an explainer video, listening to a podcast or a lecture, and reading a text.

The active level of cognitive engagement, additionally to storing information, entails
integrating information. Chi et al. (2018) describe that the student activities include a certain
motoric action. However, not every motoric action can be determined as active engagement
but only those in which students pay attention to the activity, e.g., by manipulating the
instructional material. Typical active student activities are taking notes while listening to a
lecture, manipulating a text by highlighting words or paragraphs, or pausing/rewinding
a video.

Constructive student activities imply that the students generate knowledge that goes
beyond the instructional material that is presented by the teacher (Chi & Wylie, 2014). Thus,
constructive cognitive engagement goes beyond merely manipulating the instructional
material; instead, students infer new output or create new products. Typical constructive
activities are reflecting, creating concept maps, (self-)explaining, and taking notes or cre-
ating summaries that include their own thoughts (i.e., not just copying the text but using
their own words).

Chi et al. (2018) explain that the interactive level of cognitive engagement entails the
knowledge change processes described for the constructive level plus an interaction with a
learning partner. This interaction has specific characteristics. Both partners are required to
be constructively engaged, the amount of turn-taking needs to be sufficient, and the knowl-
edge that is generated through the exchange could not have been constructed by either of
the learning partners alone but emerges from the interaction. Typical student activities for
the interactive level are discussions and debates or dealing with comprehension questions.

According to the framework, the levels of cognitive engagement can be determined
from observing student activities. However, this may be harder for the active, constructive,
and interactive level. For example, merely observing is not sufficient in order be sure
whether the student activity is carried out on an active or constructive level. Teachers
require additional information like the students’ learning material and products. Critics also
question whether the passive level oversimplifies deep learning processes, which can take
place even when students are not actively doing something (Thurn et al., 2023). However,
the ICAP framework is a heuristic to approximate the concept of cognitive engagement, and
its assumptions are based on likelihoods (i.e., the likelihood that students are cognitively
engaged on a passive level is higher if they are inactive; Chi & Boucher, 2023).

To simplify the process of determining whether students are engaged on an active,
constructive, or interactive level, teachers may consider using technology. Technology
stores the students’ output and products and can therefore make the students’ level of
cognitive engagement visible (Henrie et al., 2015). For example, if the student activity is a
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group project, aiming at interactive engagement, the teacher can suggest that the students
put their contributions down in a shared document or Etherpad (i.e., a digital notebook for
collaboration). This may enable teachers to determine the students’ activity more precisely.

Implementing technology has shown to be effective if these technology-supported
activities are cognitively engaging (Sailer et al., 2024; Stegmann, 2020): the higher the
level of cognitive engagement is, the better the effects are for the learning process (Sailer
et al., 2024). Especially when teaching complex skills or contents, it is beneficial to design
the (technology-supported) student activities constructively and interactively. However,
the ICAP framework does not propose that every student activity be constructive and
interactive; instead, the appropriate level of cognitive engagement depends on the learning
goal (Chi & Boucher, 2023).

The heuristic of the ICAP framework seems straightforward. However, Chi et al. (2018)
found that teachers struggle with certain levels of cognitive engagement. Differentiating
the active and constructive level was found to be one challenge. Additionally, teachers
struggled with designing a truly interactive learning activity. This hints towards different
challenges when determining the levels of cognitive engagement and, therefore, towards a
variation in difficulty for the levels. Based on the presented findings and the theoretical
assumptions of the framework, we assume that it is easier to determine the passive level
than the other three levels. It is only at the passive level that students’ overt behavior
is sufficient to diagnose the level of cognitive engagement accurately. In contrast, for
the active, constructive, and interactive levels, learning output, products, or materials
need to be considered, too. Thus, determining these levels requires an inferential process:
the level of cognitive engagement is inferred from (a) observing the student activity and
(b) analyzing additional materials. However, whether the inferential process makes these
levels more difficult to determine and which other factors (e.g., the teaching phase) influence
the degree of difficulty of determining the levels of cognitive engagement have not yet
been systematically researched. Consequently, evidence regarding which characteristics
make levels of cognitive engagement difficult needs to be generated. This evidence has the
potential to inform us about the levels of cognitive engagement for which teachers need
additional training and technology support.

1.3. Simulation-Based Learning Environments

Diagnosing levels of cognitive engagement is very complex. Fortunately, simulation-
based learning has shown to be effective for acquiring complex skills (Cook, 2014) such
as technology-related diagnostic skills. Simulations can reduce the complexity of a real
teaching practice while at the same time offering a platform for practicing on authentic
material (Chernikova et al., 2020). A gradual approximation of practice can be achieved by
dividing practice situations into subelements and then adding more elements to increase
the complexity (Grossman et al., 2009). Integrating simulations into the predominantly the-
oretical teacher education programs may be beneficial, as simulations allow for the gradual
movement from theory into the practical situation (Chernikova et al., 2020; Heitzmann
et al., 2019; Machts et al., 2024). The reduced complexity is one characteristic of simulations
with only a segment of reality being depicted (Chernikova et al., 2020). Another key charac-
teristic of simulations, suggested by Heitzmann et al. (2019), is the students’ opportunity to
interact with the simulation. To make sure that a simulation actually fosters the skills that
it is supposed to enhance, it needs to be validated (i.e., ensuring that the simulation in the
form of an assessment tool measures the skills that it is supposed to). For this, researchers
gather evidence that supports a convincing case for the interpretation of the outcome data
(M. Kane et al., 1999). In the present study, the assumption that participants with more
prior knowledge perform better in the simulation (i.e., diagnose more accurately) than
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participants with lower prior knowledge is the validation criterion (Kane, 2006; Weise et al.,
2020). Once simulations have successfully been validated, data from the validation study
can be used to gain insights into participants’ patterns within the simulation. Based on
these insights, the simulation can then be turned into a learning environment.

2. The Present Study on Diagnosing Cognitive Engagement Within
a Simulation

Since planning and implementing technology-supported lessons in a cognitively en-
gaging way supports students’ learning processes (Sailer et al., 2024), teachers need relevant
skills to achieve this. To foster these, we created the simulation Digivate. With this study, we
aim at validating Digivate and at gaining a deeper understanding of the ICAP framework.
We validate the simulation Digivate by investigating whether higher prior knowledge is
predictive of higher performance within the simulation (RQ1). We also address the lack
of systematic research concerning the difficulty of diagnosing different levels of cogni-
tive engagement (i.e., with and without inferential processes) within the planning and
implementation phase (RQ2). To generate the respective evidence, we investigate which
characteristics of the levels of cognitive engagement lead to challenges in the diagnostic
process. Therefore, we investigate the differences in the levels of cognitive engagement
(RQ2). We assume that this evidence provides us with insights into efficient ways to support
acquiring technology-supported diagnostic skills regarding cognitive engagement.

RQ1. To what extent does pre-service teachers’ prior knowledge predict their technology-
related diagnostic skills regarding cognitive engagement within a simulation?

H1. We hypothesize that higher prior knowledge is predictive of higher performance in technology-
related diagnostic skills (i.e., a positive relation between prior conceptual knowledge and performance
in the simulation).

RQ2. To what extent does the difficulty of diagnosing levels of cognitive engagement
depend on differences in the levels of cognitive engagement (inferring vs. no inferring)
within the phases of teaching (i.e., planning phase, implementation phase)?

H2a. We hypothesize that levels of cognitive engagement with no need of inferring (passive) are
easier to distinguish than levels that require inferring (active, constructive, interactive; Chi et al.,
2018).

H2b. We hypothesize that the difficulty of diagnosing the levels of cognitive engagement is different
in the planning and the implementation phase (Ertmer & Ottenbreit-Leftwich, 2010).

3. Materials and Methods
3.1. Sample and Design of the Present Study

We conducted an observational study with a correlational design as a computer-based
online simulation. As there was no intervention integrated, all participants took part
under the same conditions. However, the cases presented in this study were allocated
to the participants in a randomized sequence. Data were collected between August 2022
and February 2023. The target group consisted of pre-service teachers, who we recruited
mostly through advertising in courses at university. Participants were also given the
opportunity to receive monetary compensation for completing the online study. Our
sample was non-representative. The total sample included N = 274 pre-service teachers. We
excluded participants who did not complete the whole study and reached a final sample of
n = 213 pre-service teachers. In this final sample, 76% of the participants stated that they
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were female, 22% male, 1% diverse, and 1% did not specify their gender. On average, the
participants reported a teaching experience of almost five months (M = 4.69; SD = 6.27).
While there are certain obligations regarding internships in the participants’ study programs
in the federal state of Bavaria, the number of lessons that are actually taught varies for every
individual, with high flexibility as to how the teaching experience is gained. Therefore, we
cannot make a statement as to where the reported teaching experience originates from. In
total, 45.5% of the participants stated that they were unfamiliar with the ICAP framework,
and 84% reported to never have used the ICAP framework before.

3.2. Learning Environment and Learner Task

For our study, we developed the simulation-based learning environment Digivate,
which we designed as a point-and-click adventure. The setting of the simulation is a
secondary school. At this school, teacher trainees complete their apprenticeship to become
teachers. The school is currently dedicating one week to the topic of sustainability. The
fictive seminar teacher, Klara Sinn, introduces the teacher trainees to this setting. She
explains that they will first look at existing lesson plans and analyze the potential level of
cognitive engagement of learning goals and tasks (planning phase) and then visit a class
(implementation phase). In the classroom, the teacher trainees (i.e., study participants) will
assess the students’ level of cognitive engagement while the students are working on their
tasks. Before diagnosing the levels of cognitive engagement, participants are offered to
watch an introductory video on the ICAP framework. Watching the video was voluntary,
as we know the ICAP framework to be part of one course within the teacher education
program. With our participants studying in various semesters, we assumed differences
in prior knowledge regarding the framework. To avoid redundancy, we decided on a
voluntary input but urged participants to watch the video if they had not taken part in
said course.

The simulation is divided into two main parts: the planning phase (see Figure 1) and
the implementation phase (see Figure 2). In both phases, participants work on cases. Cases
in the simulation consist of either diagnosing one lesson plan or one student activity. Cases
in both the planning and the implementation phase were randomly picked and allocated to
the participants out of a total of 15 cases. In the planning phase, a case consists of a lesson
plan (i.e., learning goal, task, social grouping, and media) for which the potential level of
cognitive engagement of the learning goal and the task are to be diagnosed (see Figure 1). A
case in the implementation phase is designed as follows: First, a picture of the classroom with
students sitting at desks is shown. One of the students has a colored square around their
head. Clicking on this square directs the participant to the screen-video depicting what this
student is currently doing on their screen (see Figure 2). The product that results from the
activity in the video is shown on the next slide. Based on this input, participants choose at
which level of cognitive engagement the student is currently engaged. In the sidebar, the
screen-video, the learning product, the corresponding lesson plan with its desired levels
of cognitive engagement for the learning goals, and the ICAP framework slides can be
accessed for further support.
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After completing the first case of the planning phase, the participants were assessed
on their prior knowledge on cognitive engagement. They were not provided with any
elements for assistance during the test. Having completed the test, the participants worked
on the remaining six cases of the planning phase. After completing all cases of the planning
phase, the participants found themselves back with the seminar teacher, who showed
them the solution to all the lesson plans. In the next step, the seminar teacher informed
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the participants that they would now see how the lesson plans were implemented in a
classroom. For this implementation phase, the participants found themselves in a simulated
classroom with a teacher and students (see Figure 2). The teacher introduced the teacher
trainees to the class and then showed their students their next task. The study participants
were instructed to walk around and determine the students’ level of cognitive engagement.
In total, participants worked on six cases in the implementation phase.

3.3. Measures Within the Present Study

We assessed prior knowledge with a single-choice test on conceptual knowledge on
cognitive engagement. Within the simulation, we determined technology-related diagnostic
skills by assessing the diagnostic accuracy.

(1) Prior Knowledge

We assessed the prior knowledge with eight single-choice items on domain-specific
(Süß & Kretzschmar, 2018) conceptual knowledge of cognitive engagement that we designed
ourselves. The test shows acceptable reliability (McDonald’s Omega ω = .69; Stadler et al.,
2021). Each item offered four possible answers. The test included items like “In which of
the four learning activities according to the ICAP framework, no product is produced?”.

(2) Technology-Related Diagnostic Skills (Diagnostic Accuracy)

To measure technology-related diagnostic skills, we assessed the participants’ perfor-
mance in the simulation. The performance was measured by diagnostic accuracy (i.e., the
sum of correctly identified levels of cognitive engagement in single-choice items; Braun
et al., 2017; Hege et al., 2018). Items included the following tasks: “Please assess which
ICAP level is necessary for achieving the learning goal.”; “Please assess which ICAP level
is necessary for achieving the learning task.”; and “Based on the ICAP framework, please
assess, on which ICAP level the student is learning right now”. For each single-choice item,
participants could achieve zero or one points. Thus, a maximum of two points per case
could be gained in the planning phase and a maximum of one point in the implementation
phase. In contrast to the conceptual knowledge that was assessed by the single-choice test
(i.e., prior knowledge), we assessed the technology-related diagnostic skills through partici-
pants applying their knowledge (i.e., action-oriented knowledge) on cognitive engagement
(Kopp et al., 2008). Thus, participants did not only need to know the levels of cognitive
engagement and their characteristics but had to apply and transfer this knowledge in order
to diagnose the simulated cases.

(3) Levels of Cognitive Engagement

The levels of cognitive engagement were represented by the levels of the ICAP frame-
work (passive, active, constructive, interactive). The accurate levels of cognitive engage-
ment for each learning goal, task, and student activity were validated in an expert workshop.
We differentiated between levels of cognitive engagement that require inferential processes
(active, constructive, interactive) and levels of cognitive engagement that do not require
inferring (passive). We also differentiated between the levels of cognitive engagement in
the planning phase and the levels of cognitive engagement in the implementation phase.

(4) Difficulty of Diagnosing Levels of Cognitive Engagement

We operationalized the difficulty of diagnosing cognitive engagement with sensitivity
and specificity. Sensitivity and specificity can be calculated with the help of confusion
matrices. Confusion matrices compare the accurate answer (predicted level) with the
selected answer of participants (actual level). Sensitivity and specificity indicate which
levels of cognitive engagement are more challenging to determine. Sensitivity is the
proportion of true positive values to all other answers for this predicted level. Sensitivity
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describes how effectively a test correctly identifies the correct answer. Specificity is the
proportion of true negative values to the sum of true negative and false positive values.
Specificity describes how effectively a test identifies the inaccurate answers as inaccurate.

3.4. Statistical Analyses to Address the Research Questions of the Present Study

To address RQ1, we conducted linear regression analyses, investigating whether
higher prior knowledge is predictive of higher technology-related skills.

To address RQ2, we used confusion matrices to measure the difficulty of diagnos-
ing cognitive engagement. Confusion matrices are matrices comparing predicted values
(columns) with the actual values (rows). If participants correctly chose (actual level) the
accurate level of cognitive engagement (predicted level), this was a true positive value
(TP). If they chose an inaccurate level of cognitive engagement (actual level), this was
a false negative value (FN). All levels of cognitive engagement that were correctly not
chosen were true negative values (TNs). False positive values encompassed the wrongly
selected predicted levels of cognitive engagement. For example, if active was the predicted
level, if a participant chose active (actual value) although the predicted level was passive,
constructive, or interactive, this level was called a false positive (FP).

We used chi-square tests to determine whether the confusion between levels of cog-
nitive engagement was significant. For testing whether there were significant differences
between sensitivities and specificities, we used confidence intervals (Wilson method). If
there was no overlap of the intervals, there was a significant difference between the values.

4. Results
4.1. Prior Knowledge and Performance (RQ1)

The descriptive results (see Table 1) show that the participants have moderate to
good prior knowledge and that their diagnostic accuracy (i.e., their performance in the
simulation) was also moderate to good.

Table 1. Descriptive results for prior knowledge and diagnostic accuracy.

Variables N M SD Min Max

Prior Knowledge 213 5.27 2.04 0 8
Diagnostic Accuracy 213 10.05 3.25 3 16

Linear regressions show that participants with higher prior knowledge diagnosed
more accurately, with prior knowledge accounting for 21% of the variance in diagnostic
accuracy (R2 = .21). The standardized regression coefficient for prior knowledge of β = .45
(S.E. = .10; p < .001) indicates a moderately strong and statistically significant positive
effect on the performance in the simulation. These findings support the validity claim with
respect to RQ1.

4.2. Varying Difficulty Depending on the Levels of Cognitive Engagement and Phases of
Teaching (RQ2)

To address RQ2, we created confusion matrices for the simulation over both phases
(planning and implementation phase) and separate confusion matrices for the planning
phase and the implementation phase.

Table 2 depicts the confusion matrix for the simulation overall, comparing the pre-
dicted (accurate) levels with the actual (selected by participants) levels. We will now
describe each level of cognitive engagement within the confusion matrix.
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Table 2. Confusion matrices for both phases of teaching: predicted vs. selected levels of cognitive
engagement.

Predicted

P A C I

Actual

P 224 (63%) 172 (15%) 93 (7%) 6 (1%)
A 65 (18%) 541 (48%) 316 (24%) 73 (7%)
C 39 (11%) 253 (22%) 693 (52%) 140 (14%)
I 28 (8%) 159 (14%) 240 (18%) 790 (78%)

The passive level was twice as often confused with active as with interactive. Active
was mostly confused with constructive, followed by passive and, to a lesser extent, in-
teractive. The constructive level was diagnosed accurately in more than half of the cases.
The constructive level was most frequently confused with the active level, followed by
the interactive and, lastly, the passive level. In the majority of cases, the interactive level
was accurately determined, with its true positives standing out in contrast to the other
levels of cognitive engagement. The interactive level was sometimes confused with the
constructive level.

To sum up, Table 2 shows that active and constructive are confused with each other
more frequently than any other levels are confused with each other. The 4 × 4 chi-
square tests confirm a significant association between the active and constructive levels
(χ2 (1) = 240.05, p < .001) and a significant association between the constructive and inter-
active levels (χ2 (1) = 658.41, p < .001). This indicates that levels of cognitive engagement
that need to be inferred (active, constructive, interactive) are more difficult to distinguish
from each other than the directly observable passive level.

Taking a look at sensitivity and specificity, the interactive level shows the highest
sensitivity (see Table 3), meaning that it is very likely that the accurate level of cognitive
engagement (interactive) is selected by the study participants. The second highest sen-
sitivity can be found for passive, followed by constructive and active. Thus, for active,
the likelihood that the accurate level (active) is selected correctly is relatively low. The
confidence intervals (Wilson method) show that only for active (.45–.51) and constructive
(.49–.54) there is no significant difference in sensitivity, as their confidence intervals overlap.
This indicates that these two levels (active and constructive) are especially and similarly
hard to diagnose, which partly supports our hypothesis: levels of cognitive engagement
that need to be inferred are more difficult to determine. However, interactive also needs to
be inferred but shows a high sensitivity.

Table 3. Sensitivity and specificity for the simulation over both phases of teaching.

Sensitivity Specificity

Passive 63% 92%
Active 48% 83%
Constructive 52% 83%
Interactive 78% 85%

Sensitivity describes how likely it is that participants correctly select the accurate level
of cognitive engagement. However, not only does sensitivity provide us with information
about the different difficulties of determining different levels of cognitive engagement,
but so does specificity. Specificity is high for all four levels (see Table 3), indicating that
it is highly likely that a level is determined as inaccurate when it is in fact inaccurate. A
significant difference in specificity (Wilson method) can be found between passive (.91–.93)
and the other three levels: active (.82–.85), constructive (.81–.84), and interactive (.84–.86).
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To test hypothesis H2b, which predicts that the planning and implementation phases
differ in difficulty when diagnosing levels of cognitive engagement, we looked at separate
confusion matrices for the planning and the implementation phase (see Tables 4–6). We
created two confusion matrices for the planning phase: one for the learning goals (see
Table 4) and one for the tasks (see Table 5).

Table 4. Confusion matrix for the planning phase (learning goals): predicted vs. selected levels of
cognitive engagement.

Predicted

P A C I

Actual

P NA 88 (21%) 85 (14%) 1 (0%)
A NA 180 (44%) 172 (29%) 25 (9%)
C NA 109 (26%) 260 (44%) 47 (17%)
I NA 35 (8%) 73 (12%) 203 (74%)

Table 5. Confusion matrix for the planning phase (tasks): predicted vs. selected levels of cognitive
engagement.

Predicted

P A C I

Actual

P 153 (59%) 50 (11%) 5 (1%) 0 (0%)
A 46 (18%) 274 (58%) 110 (23%) 20 (7%)
C 33 (13%) 81 (17%) 289 (60%) 42 (15%)
I 27 (10%) 66 (14%) 79 (16%) 214 (78%)

Within the planning phase, participants started by diagnosing the level of cognitive
engagement of the learning goal. None of the lesson plans included learning goals that
were aimed at a passive level of cognitive engagement. As Table 4 shows, active was most
frequently confused with constructive, followed by passive and interactive. The constructive
level was mostly confused with the active level. Interactive was confused most frequently
with constructive, followed by active and passive.

Table 5 depicts the confusion matrix for tasks (i.e., comparing the predicted levels of
cognitive engagement of tasks to the selected levels by participants). The passive level of
cognitive engagement was mostly determined accurately. The active level was slightly more
often confused with constructive than with interactive and passive. The constructive level
was mostly confused with the active level. Interactive was mostly accurately diagnosed and
sometimes confused with the constructive level.

To summarize, Tables 4 and 5 demonstrate that for the planning phase (learning
goals and tasks), the constructive and active levels, which are both levels that need to be
inferred, are most frequently confused with each other. This result was confirmed in 4 × 4
chi-square tests (learning goals: χ2 (1) = 34.09; p < .001; tasks: χ2 (1) = 183.05; p < .001),
which partly supports H2a, as the active and constructive levels need to be inferred, but so
does interactive, which is not confused as often in the planning phase.

Looking at the sensitivity for the planning phase (see Table 7), we found different
results for learning goals and tasks. Learning goals showed a rather low sensitivity for
active and constructive but a higher one for interactive. This indicates that participants
struggled with correctly diagnosing the accurate levels of learning goals, in particular the
active and constructive levels. In contrast to learning goals, tasks overall showed a higher
sensitivity. The sensitivity for tasks was highest for interactive, followed by constructive,
passive, and active. To evaluate whether the sensitivities significantly differed, we used
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the Wilson method to generate confidence intervals. In the planning phase (learning
goals and tasks), the confidence intervals for the sensitivities only showed significant
differences in sensitivity between interactive (.68–.78; .72–.82) and the other three levels of
cognitive engagement: passive (NA1; .53–.65), active (.39–.49; .54–.63), and constructive
(.40–.48; .55–.64). The confidence intervals for passive, active, and constructive overlapped,
indicating no significant difference in their sensitivity within the planning phase. This
suggests that the interactive level differs significantly in its difficulty compared to the other
levels. Since interactive showed the highest sensitivity for learning goals and tasks, we can
assume that it is significantly easier to determine an interactive level, which contradicts our
assumption that all levels of cognitive engagement that need inferring are more difficult
to determine.

For learning goals, the specificity of the interactive level was the highest, followed by
passive, active and constructive. This indicates that it was likely that participants did, in
fact, identify (select) the interactive level as inaccurate. The confidence intervals (Wilson
method) for learning goals showed no significant difference in specificity between active
(.74–.80) and constructive (.74–.80) and for passive (.84–.88) and interactive (.87–.91), as
the confidence intervals overlapped. The confidence interval of interactive (.87–.91) did
not overlap. For tasks, passive showed the highest specificity, followed by interactive,
constructive, and active. For tasks, only the confidence interval for passive (.94–.97) did
not overlap with the other levels (active: .80–.85; constructive: .82–.87; interactive: .84–.88),
indicating a significant difference in specificity between passive and the other levels. This
supports H2a, as this result proposes a lower difficulty for the passive level, a level that
does not require inferential processes.

To sum up, the sensitivities of active and constructive are below the sensitivity values
of the interactive level (see Table 7), and the significant results in chi-square tests indicate
that within the planning phase, the active and constructive levels of cognitive engagement
are most difficult to differentiate. This partly supports our H2a, as the active and construc-
tive levels require inferential processes and are more difficult to determine. However, the
results indicate that interactive, also a level that needs inferring, is rather easy to determine
within the planning phase.

Table 6. Confusion matrix for the implementation phase: predicted vs. selected levels of cognitive
engagement.

Predicted

P A C I

Actual

P 71 (73%) 34 (14%) 3 (1%) 5 (1%)
A 19 (20%) 87 (36%) 34 (13%) 28 (6%)
C 6 (6%) 63 (26%) 144 (54%) 51 (11%)
I 1 (1%) 58 (24%) 88 (3%) 373 (82%)

In a third step, we looked at the confusion matrix for the implementation phase (see
Table 6), depicting the accurate (predicted) and selected (actual) levels of cognitive engage-
ment for student activities. The passive level was usually accurately diagnosed. Active
was most often confused with constructive, closely followed by interactive, but only a few
times with passive. Constructive was mostly confused with interactive and less so with
active. The interactive level for tasks was rarely confused with other levels. In contrast to
the planning phase, in the implementation phase, the most frequently confused levels of
cognitive engagement were constructive and interactive. This was confirmed by a 4 × 4
chi-square test (χ2 (1) = 177.36, p < .001). The sensitivities in the implementation phase were
highest for the passive and interactive levels (see Table 7), indicating that these levels of
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cognitive engagement were easier to diagnose accurately than the active and constructive
levels. The confidence intervals (Wilson method) overlapped for the sensitivity of passive
(.64–.81) and interactive (.78–.85). This indicates significant differences in difficulty for
diagnosing the easier levels of passive and interactive compared to the more difficult levels
of active (.30–.42) and constructive (.48–.59). Regarding specificity, that of passive was the
highest; interactive showed the lowest specificity. In student activities, the differences in
specificity were significant between all levels of cognitive engagement, as there was no
overlap in their confidence intervals. The low specificity of interactive in contrast to its
high sensitivity indicates that it is easy to determine the interactive level when students act
interactively, but it is difficult to recognize that students are not engaged on an interactive
level. This can also be observed in the confusion matrix for the implementation phase
(see Table 6) when looking at the column for constructive. Constructive was confused
with interactive 88 times, which means that student activities that represented cognitive
engagement on a constructive level were inaccurately diagnosed as interactive 88 times.
Cognitive engagement on a constructive level involves generating knowledge on one’s
own, while cognitive engagement on an interactive level involves generating knowledge
with others. Thus, the low specificity of the interactive level and the frequent confusing
of constructive with interactive might lead to the conclusion that participants diagnosed
an interactive level because more than one person was involved in the activity although
no knowledge was co-generated. The findings concerning the interactive level in the im-
plementation phase suggest that there is another difference in difficulty between the two
phases of teaching.

Table 7. Sensitivity and specificity for planning and implementation phase.

Planning Phase Implementation Phase

Learning Goal Task Student Activity

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Passive NA 86% 59% 96% 73% 96%
Active 44% 77% 58% 83% 36% 90%
Constructive 44% 77% 60% 84% 54% 85%
Interactive 74% 89% 78% 86% 82% 76%

5. Discussion
5.1. Summary of the Results

With the present study, we aimed at gaining insights regarding ways to support pre-
service teachers in acquiring technology-related diagnostic skills. For this, we validated
the simulation Digivate (RQ1). Moreover, we systematically investigated the difficulty
of levels of cognitive engagement that require inferential processes and those that do not
require them within two phases of teaching (i.e., the planning phase and implementation
phase; RQ2).

With respect to RQ1, we found that prior knowledge is predictive of performance in
technology-related diagnostic skills. This result is in support of H1 and, therefore, our
validity claim. With respect to RQ2 (i.e., investigating the difficulty of assessing the different
levels of cognitive engagement), we found that active and constructive levels of cognitive
engagement, as well as constructive and interactive levels, are difficult to distinguish from
each other and therefore are difficult to determine. This supports H2a, which posits that
levels of cognitive engagement that do not need to be inferred are easier to determine than
those that need to be inferred. Moreover, H2b (i.e., different diagnostic difficulties in the
phases of teaching) is also supported, as the confusion of active and constructive occurred
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in the planning and the confusion of constructive and interactive in the implementation
phase. Another indication is that for learning goals (planning phase), it was not only
difficult to determine the accurate active and constructive level of cognitive engagement
as being accurate. For learning goals, it was also difficult to identify inaccurate active and
constructive levels as being inaccurate.

5.2. Practical and Theoretical Implications of the Results

From the results, we can derive implications (a) for supporting the acquisition of
technology-related diagnostic skills and (b) for the design of teacher education programs
at universities. For (a), based on finding the simulation to be valid and further findings
about its specific difficulties for participants, we can draw conclusions towards the way
in which the acquisition of technology-related diagnostic skills could be supported more
effectively and, thus, how we could redesign our simulation and turn it into a learning
environment. Our findings concerning the frequent confusion of the active and constructive
levels align with what Chi et al. (2018) found: instead of inspecting the content of students’
products, teachers took the product itself as an indicator of knowledge generation and
therefore diagnosed a constructive level. Whether knowledge was generated is, however,
the main difference between active and constructive. It is important to know that pre-
service teachers struggle with diagnosing knowledge generation to be able to support
their understanding of the knowledge generation process. This lack of understanding
could, for example, be tackled by incorporating elaborate feedback on their diagnostic
decisions. In the implementation phase, participants tended to diagnose that students
were interactively engaged when they were in fact constructively engaged. This finding
shows that it was difficult for participants to recognize an inaccurate interactive level as
being inaccurate but not to determine an accurate interactive level correctly as accurate.
Cognitive engagement on an interactive level implies that knowledge is co-generated
through students combining their contributions. However, it may be difficult to decide
in a conversation if every student generates knowledge on their own (constructive) or
through co-construction (interactive). Determining whether knowledge is generated alone
or together might be easier in lesson plans. Lesson plans include learning goals and tasks,
and both usually describe the intended activity in detail. In contrast, screen-videos of
students’ activities may only depict this important aspect of the interactive level implicitly.
For example, in the implementation phase, several students may talk to each other about
the design of a sustainable forest, and new knowledge is generated. However, if each
student comes up with their own combination of trees, the knowledge is not generated
in the process, but each student generates knowledge independently and shares it with
the other students. Participants working on the simulation in the present study seemed
to overgeneralize the obvious feature of more than one person being involved in the
implementation phase, as they frequently confused the constructive and interactive levels.
Simulations offer valuable features to confront this overgeneralization of the more-than-one-
person-being-involved characteristic as they bear the possibility to manipulate details of
simulated cases. For example, one simulated case could represent an activity that involves
several people. While this can be kept constant, the way in which they interact can be
repeatedly manipulated. This way, accurately distinguishing constructive from interactive
levels of cognitive engagement can be explicitly trained, as well as facilitated. This way,
covert cognitive processes such as knowledge (co-)generation can be made salient within
a simulation. This enables pre-service teachers to practice inferring these processes and
increases the likelihood of being able to apply these inferential skills when finally standing
in a classroom.
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When analyzing differences between the difficulty in diagnosing levels of cognitive
engagement between the planning and the implementation phase (RQ2), we found different
results for the two components (i.e., learning goals and tasks) of the planning phase. For
learning goals, it was more difficult to determine the accurate level of cognitive engagement
as accurate (i.e., low sensitivity) than it was for tasks. In the implementation phase, similarly
to tasks in the planning phase, it was easier to determine accurate levels as accurate (i.e.,
high sensitivity) compared to determining learning goals. This hints towards challenges
when combining learning goals and the ICAP framework. The ICAP framework assumes
that the level of cognitive engagement can be determined either from merely observing a
student’s overt behavior or from additionally taking learning products into account. The
screen-videos in the implementation phase align closely with the descriptions of the levels
of cognitive engagement that were proposed by Chi et al. (2018), and so do tasks to a certain
extent. Tasks describe the activity in detail and report on the products that are supposed
to emerge. In contrast, learning goals describe an indicator that a certain skill has been
acquired. Therefore, the inferential process necessary to determine a learning goal seems
more demanding, as neither an activity nor a product can be directly observed or assumed.
One idea to reduce this high level of difficulty might be to suggest certain verbs that are
typically used for learning goals and categorize them according to the levels of cognitive
engagement, similarly to the directive verbs that Chi and Boucher (2023) proposed. Another
aspect that might cause challenges with learning goals but also overall is the simplicity of
the ICAP framework. With its clearly separated four levels, the ICAP framework works
with categories and leaves little room for a more fine-grained differentiation. This would
be possible if the levels were seen as dimensions instead of categories (Wekerle et al., 2024).
Some learning goals, tasks, or student activities may be more centered within the dimension
of one level than others. Possibly, typical learning goals, tasks, or student activities which
are in the center of a certain level may be easier to diagnose than those that are close to the
border of other levels. Thus, a suggestion to advance the ICAP framework would be to
add more fine-grained levels of cognitive engagement (Wekerle et al., 2024).

In contrast to learning goals, the screen-videos representing students’ activities de-
picted the levels of cognitive engagement more directly, as technology was used to make
cognitive engagement visible to the teacher (i.e., study participant). For example, they
may have observed a group of students working on a task using Etherpad (a collabora-
tive synchronous writing tool), generating knowledge during this process. Through this
observation, the advantage of the tool Etherpad for fostering cognitive engagement and,
therefore, for the learning process becomes visible to the participants. The study partici-
pants would not be able to identify the level of cognitive engagement as easily without
the Etherpad, making the cognitive processes visible. In contrast to complex analog group
work, technology can depict relevant aspects like turn-taking or the contributing author in a
shared document. To be able to diagnose the cognitive engagement of students based on the
screen-videos, participants need to combine their PK (diagnosing cognitive engagement)
and TK (observing students who are using technology). In the simulation, we showed how
technology can be used to support cognitive engagement among students (Wekerle et al.,
2024) and how teachers can use technology to diagnose their students’ level of cognitive
engagement. This way, we aimed to foster the study participants’ TPK and, therefore, to
foster their technology-related teaching skills.

For (b), implications towards the design of teacher education programs at university,
we suggest that more focus and awareness should be put towards how high-level cognitive
engagement can be achieved. For example, it seems to be a challenge for pre-service
teachers to understand what a knowledge generation process is. Therefore, we should offer
more practice opportunities to pre-service teachers, enabling them to move beyond teaching
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at the active and passive levels (Sailer et al., 2024). There is also a need for sensitizing
pre-service teachers towards the challenges of designing group work. By referring to
the interactive level, clear criteria of what makes these types of exchanges beneficial for
learning (i.e., every student is constructively engaged, sufficient amount of turn-taking)
can be presented and applied (Chi & Wylie, 2014). However, it is also an opportunity to
show that not every student is supposed to reach the interactive level all the time when
collaborating. To acquire those skills, methods that are close to professional practice, like
simulations, have significant potential (Chernikova et al., 2020). Teaching methods like
simulations may also reduce the amount of passive learning activities in teacher education
and support formative assessment (Black & Wiliam, 2009).

5.3. Limitations Within the Present Study

We assessed the prior knowledge using a pre-test on conceptual knowledge of cog-
nitive engagement (i.e., the ICAP framework). The merely moderate reliability of this
test may suggest considering our results with caution. However, we argue that cognitive
engagement is a latent construct. As items of latent constructs are supposed to depict
various aspects of the construct, a moderate reliability is justified (Stadler et al., 2021).

Another limitation is that, so far, we only included pre-service teachers as participants.
Future studies may include even more heterogeneous groups of participants (e.g., in-service
teachers vs. pre-service teachers) to validate the scope of participants who are likely to
benefit from learning by using the simulation.

As during our study, COVID-19 restrictions were still in place, we were not able to
conduct a laboratory study but merely a standardized online study. This reduced the
possibilities for controlling for additional variables. Although the statistics indicate that our
data are sufficient to be used to address the research questions, the study may be replicated
under more controlled conditions. This way, we can ensure the quality of the data more
proficiently, since we assume that participants are less likely to be interrupted or pause
when working on the simulation in laboratory conditions.

Moreover, although interaction of the study participants with the simulation is a key
characteristic of simulations (Heitzmann et al., 2019), for the validation, the interaction
possibilities of the simulation were significantly restricted. Participants were guided
through the simulation on a predetermined pathway without the possibility to repeat and
practice or further explore. This decision resulted from our validation criterion, as we
wanted to investigate whether prior knowledge is predictive of the performance in the
simulation. In a future study, it would be interesting to explore whether comparable results
occur with more degrees of freedom for the participants to interact and choose different
paths within the simulation.

The present study contributed to advancing the ICAP framework. The proposed
changes, however, indicate limitations in the framework. First, the ICAP framework is
very focused on the implementation phase of teaching, making it challenging to evaluate
learning goals based on its proposed levels of cognitive engagement. In addition, each
level of cognitive engagement is rather wide (Wekerle et al., 2024). More fine-grained
levels may reduce the diagnostic difficulty, make learning goals more feasible within the
ICAP framework, and reduce the proposed hierarchy of the levels. Lastly, although the
framework suggests that levels of cognitive engagement can be determined based on the
observable student activities, this is challenging when it comes to the active, constructive,
and interactive levels. These levels involve covert cognitive processes requiring inferring.
To practice this, simulation-based learning seems to be an effective and efficient extension
to teacher education programs.
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6. Conclusions
We conclude that the simulation is sufficiently valid to be used as a learning envi-

ronment for pre-service teachers in higher education. We also conclude that models of
cognitive engagement in technology-supported lessons (e.g., the ICAP framework; Chi
& Wylie, 2014) are, in principle, relevant and helpful for supporting pre-service teachers
in learning to plan and implement technology-supported instruction for their classroom.
However, these models need to be revised as well.

Findings like challenges regarding the process of (co-)generating knowledge, diagnos-
ing learning goals, or the lack of fine-grained levels (Wekerle et al., 2024) provide insights
regarding the design of an updated, adaptive version of the simulation (Plass & Pawar,
2020). Regarding the difficulty of inferring levels of cognitive engagement, scaffolds could
support pre-service teachers (Belland et al., 2017). This could be achieved by making the
covert learning processes more salient (Machts et al., 2024). For example, the knowledge
generation can be made more visible by highlighting important aspects in the screen-videos
or by adding written descriptions that make the processes more explicit. To practice the
skills of accurately diagnosing the interactive level, similar cases, each involving more than
one student, that systematically discriminate the level of cognitive engagement between
constructive and interactive can be used. Additionally, support for diagnosing learn-
ing goals is needed. An updated simulation may also include more degrees of freedom
(Heitzmann et al., 2019) and possibilities for self-regulated learning (Bannert, 2009). Such
an updated version of Digivate can be implemented in teacher education as a formative
assessment. This training opportunity may foster pre-service teachers’ skills and awareness
regarding the benefits that come with cognitively engaging their students, which will
hopefully result in them planning and carrying out lessons beyond the passive and active
levels of cognitive engagement.

However, not only pre-service teachers benefit from such a learning environment, but
also in-service teachers. Thus, implementing the learning environment is important in all
three phases of teacher education (i.e., in the first phase at university, in the second phase
during practical teacher training, and for in-service teacher trainings).
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