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Metric Entropy of Nonautonomous Dynamical
Systems

Abstract
We introduce the notion of metric entropy for a nonau-
tonomous dynamical system given by a sequence (Xn, µn)
of probability spaces and a sequence of measurable maps
fn : Xn → Xn+1 with fnµn = µn+1. This notion generalizes
the classical concept of metric entropy established by Kol-
mogorov and Sinai, and is related via a variational inequal-
ity to the topological entropy of nonautonomous systems as
defined by Kolyada, Misiurewicz, and Snoha. Moreover, it
shares several properties with the classical notion of metric
entropy. In particular, invariance with respect to appropriately
defined isomorphisms, a power rule, and a Rokhlin-type in-
equality are proved.
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1. IntroductionIn the theory of dynamical systems, entropy is an invariant which measures the exponential complexity of the orbitstructure of a system. Undoubtedly, the most important notions of entropy are metric entropy for measure-theoreticdynamical systems, sometimes also named Kolmogorov-Sinai entropy by its inventors, and topological entropy fortopological systems (cf. Kolmogorov [12], Sinai [25], and Adler et al. [1]). There exists a huge variety of modificationsand generalizations of these two basic notions. However, most of these only apply to systems which are governedby time-invariant dynamical laws, so-called autonomous dynamical systems. In the literature, one basically findstwo exceptions. In the theory of random dynamical systems, which are nonautonomous dynamical systems describedby measurable skew-products, both notions of entropy, metric and topological, have been defined and extensivelystudied (see, e.g., [3, 7, 17, 18, 27]). In particular, the classical variational principle, which relates the two notions ofentropy to each other, has been adapted to their random versions by Bogenschütz [3]. The second exception is thequantity introduced in Kolyada and Snoha [13], the topological entropy of a nonautonomous system given as a discrete-time deterministic process on a compact topological space. The theory founded in [13] has been further developed in[5, 9, 10, 14, 20, 22, 26, 28, 29] by several authors. In some of these articles, the definition of entropy has been extended,in particular to continuous-time systems, to systems with noncompact state space, systems with time-dependent statespace, and to local processes. Besides that, there have been other independent approaches (see, e.g., [21, 24]), whichessentially lead to the same notion. Both of the nonautonomous versions of entropy, random and deterministic, areintimately related to each other but nevertheless, one cannot draw direct conclusions from the well-developed randomtheory to the deterministic one except for generic statements (saying that something holds for almost every deterministicsystem in a large class of such systems parametrized by a random parameter).
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The reason why the deterministic nonautonomous theory of entropy is still quite poor-developed in particular lies in thefact that the notion of metric entropy (together with a variational principle) has not yet successfully been establishedin that theory. To the best of my knowledge, the only approach in this direction can be found in Zhu et al. [28]. Thiswork shows that one of the obstacles in establishing a reasonable notion of metric entropy which allows for a variationalprinciple lies in the proof of the power rule which relates the entropies of the time-t-maps (the powers of the system)to that of the time-one-map. The aim of this paper is to introduce the notion of metric entropy for nonautonomousmeasure-theoretic dynamical systems together with a formalism which allows for a power rule and at least the easierpart of the variational principle.We briefly describe the contents of the paper. In Section 2, we recall the notion of topological entropy for a nonau-tonomous dynamical system as defined in [14] by Kolyada, Misiurewicz, and Snoha. This notion generalizes the one in[13] by replacing the state space X (a compact metric space) by a whole sequence Xn of such spaces. The process is thengiven by a sequence of continuous maps fn : Xn → Xn+1. As in the classical theory, three equivalent characterizationsof entropy are available, via open covers, via spanning sets, or via separated sets. However, one crucial point here isthat in the open cover definition, sequences of open covers for the spaces Xn with Lebesgue numbers bounded awayfrom zero have to be considered. In order to prove the power rule for this entropy, the additional assumption that thesequence fn be uniformly equicontinuous is necessary.In Section 3, the metric entropy is defined. Here the system is given by a sequence fn : Xn → Xn+1 of measurable mapsbetween probability spaces (Xn, µn) such that the sequence µn of measures is preserved in the sense that fnµn = µn+1.The metric entropy with respect to a sequence of finite measurable partitions of the spaces Xn can be defined in theusual way (with the obvious modifications), and has similar properties as in the autonomous case. Similarly as in thetopological situation (the definition of entropy via sequences of covers), one does not get a reasonable quantity byconsidering all sequences of partitions. One problem is that information about the initial state can be generated merelydue to the fact that the partitions in such a sequence become finer very rapidly. Hence, we have to restrict the classof admissible sequences of partitions, which is done in an axiomatic way by requiring some of the properties that aresatisfied in the topological setting by the class of all sequences of open covers with Lebesgue numbers bounded awayfrom zero. This leads to the notion of an admissible class which enjoys some nice and natural properties. For instance,in the case of an autonomous measure-preserving system, one can consider the smallest admissible class which containsall constant sequences of partitions, which leads to the classical notion of metric entropy. Several properties of theclassical metric entropy carry over to its nonautonomous generalization. In particular, we can establish an analogue ofthe Rokhlin inequality, invariance under appropriately defined isomorphisms, and a power rule.In Section 4, we prove for equicontinuous systems the inequality between metric and topological entropy which es-tablishes one part of the variational principle. We adapt the arguments of Misiurewicz’s elegant proof from [19] bydefining an appropriate admissible class of sequences of partitions which is designed in such a way that Misiurewicz’sarguments can be applied to its members. This class depends on the given invariant sequence of measures. In general,it might be very small, so that our variational inequality would not give any meaningful information. For this reason, weestablish different stability conditions for invariant sequences of measures which guarantee that the associated Misi-urewicz class contains sequences of arbitrarily fine partitions. These stability conditions capture the intuitive idea thatthe initial measure µ1 should not be deformed too much by pushing it forwards by the maps fn1 = fn ◦ · · · ◦ f1, so thatsuch sequences become an appropriate nonautonomous substitute of invariant measures. In particular, we show that theexpanding systems studied in Ott, Stenlund, Young [23] satisfy such a stability condition with respect to smooth initialmeasures.
2. Preliminaries
2.1. NotationBy a nonautonomous dynamical system (short NDS) we understand a deterministic process (X1,∞, f1,∞), where X1,∞ =
{Xn}n≥1 is a sequence of sets and fn : Xn → Xn+1 a sequence of maps. For all integers k, n ∈ N we write

f0
k := idXk , fnk := fk+(n−1) ◦ · · · ◦ fk+1 ◦ fk , f−nk := (fnk )−1.

The last notation will only be applied to sets. We do not assume that the maps fn are invertible. The trajectory of apoint x ∈ X1 is the sequence {fn1 (x)}n≥0. By fk,∞ we denote the sequence {fk , fk+1, fk+2, . . .} which defines a NDS on
Xk,∞ = {Xk , Xk+1, Xk+2, . . .}.
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We consider two categories of systems, metric and topological. In a metric system, the sets Xn are probability spacesand the maps fn are measure-preserving. That is, each Xn is endowed with a σ-algebra An and a probability measure
µn such that the maps fn are measurable and fnµn = µn+1 for all n ≥ 1, where fnµn denotes the push-forward (fnµn)(A) =
µn(f−1

n (A)) for all A ∈ An+1. In this case, we call µ1,∞ = {µn}n≥1 an f1,∞-invariant sequence. In a topological system,each Xn is a compact metric space and the maps fn are continuous.If X is a compact topological space and U an open cover of X , we denote by N (U) the minimal cardinality of a finitesubcover. If U1, . . . , Un are open covers of X , we write ∨n
i=1 Ui for their join, i.e., the open cover consisting of all theintersections Ui1 ∩ Ui2 ∩ . . . ∩ Uin with Uij ∈ Uj .In a metric space (X, ρ), we denote the open ball centered at x with radius ε by B(x, ε) or B(x, ε; ρ). We write dist(x, A)for the distance from a point x to a nonempty set A, i.e., dist(x, A) = infa∈A ρ(x, a). The closure, the interior, and theboundary of a set A will be denoted by clA, intA, and ∂A, respectively.Recall that the Lebesgue number of an open cover U of a compact metric space X is defined as the maximal ε > 0 suchthat every ε-ball in X is contained in one of the members of U.

2.2. Topological EntropyIn this subsection, we recall the notion of entropy for a topological NDS (X1,∞, f1,∞), as defined in Kolyada et al. [14].As in the classical autonomous theory, three equivalent definitions are available. We denote the metric of Xk by ρk anddefine on each of the spaces Xk a class of Bowen-metrics by
ρk,n(x, y) := max0≤i≤n−1 ρk+i

(
f ik (x), f ik (y)) (n ∈ N).

It is easy to see that ρk,n is a metric on Xk which is topologically equivalent to ρk . In order to define the topologicalentropy of f1,∞, we only use the metrics ρ1,n. A subset E ⊂ X1 is called (n, ε)-separated if any two distinct points
x, y ∈ E satisfy ρ1,n(x, y) > ε. A set F ⊂ X1 (n, ε)-spans another set K ⊂ X1 if for every x ∈ K there is y ∈ F with
ρ1,n(x, y) ≤ ε. We let rsep(n, ε, f1,∞) denote the maximal cardinality of an (n, ε)-separated subset of X1 and rspan(n, ε, f1,∞)the minimal cardinality of a set which (n, ε)-spans X1, and we define

hsep(f1,∞) := lim
ε↘0 lim sup

n→∞

1
n log rsep (n, ε, f1,∞) ,

hspan(f1,∞) := lim
ε↘0 lim sup

n→∞

1
n log rspan (n, ε, f1,∞) .

The corresponding limits in ε exist, since the quantities rsep(n, ε, f1,∞) and rspan(n, ε, f1,∞) are monotone (non-increasing)with respect to ε, and this property carries over to their exponential growth rates. Hence, the limits can also be replacedby the corresponding suprema over all ε > 0. With the same arguments as in the autonomous case, one shows that thenumbers hsep(f1,∞) and hspan(f1,∞) actually coincide. We call their common value the topological entropy of f1,∞.The definition of topological entropy via open covers has to be modified a little bit in order to fit to the nonautonomouscase. Consider a sequence U1,∞ = {Un} such that Un is an open cover of Xn for each n ≥ 1. The entropy of f1,∞ withrespect to the sequence U1,∞ is then defined as
hcov(f1,∞;U1,∞) := lim sup

n→∞

1
n logN (n−1∨

i=0 f
−i1 Ui+1

)
.

In contrast to the autonomous case, the upper limit cannot be replaced by a limit (see [13] for a counterexample). Inorder to define the topological entropy of f1,∞, one should not take the supremum of hcov(f1,∞;U1,∞) over all sequencesof open covers. The problem is that the value of hcov(f1,∞;U1,∞) might become arbitrarily large just by the fact that themaximal diameters of the open sets in the covers Un exponentially converge to zero for n → ∞. In this case, informationabout the initial state can be obtained due to finer and finer measurements even if the system has very regular dynamics.To exclude this, we restrict ourselves to sequences of open covers with Lebesgue numbers bounded away from zero. Wedenote the family of all these sequences by L(X1,∞) and define
hcov(f1,∞) := sup

U1,∞∈L(X1,∞)hcov(f1,∞;U1,∞).
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We leave the easy proof that this number coincides with the topological entropy as defined above to the reader. In therest of the paper, we write htop(f1,∞) for the common value of hsep(f1,∞), hspan(f1,∞), and hcov(f1,∞).
Remark 1.Note that the value of htop(f1,∞) heavily depends on the metrics ρk in contrast to the classical autonomous situation.However, in many relevant examples, as, e.g., systems defined by time-dependent differential equations, all of thesemetrics come from a single metric on a possibly compact space. So in this case the dependence on the metrics disappearsdue to a canonical choice.
The topological entropy of an autonomous system given by a map f satisfies the power rule htop(f k ) = k · htop(f ) for all
k ≥ 1. In order to formulate an analogue of this property for NDSs, we have to introduce for every k ≥ 1 the k-thpower system of the NDS (X1,∞, f1,∞). This is the system (X [k ]1,∞, f [k ]1,∞), where

X [k ]1,∞ := {X(n−1)k+1}n≥1 , f [k ]1,∞ := {f k(n−1)k+1}n≥1 .
In case that the spaces Xn coincide, the following result can be found in [13, Lem. 4.2]. Since the proof for the generalcase works analogously, we omit it.
Proposition 2.
For every k ≥ 1 it holds that

htop (f [k ]1,∞
)
≤ k · htop (f1,∞) .

In general, the converse inequality in the above proposition fails to hold (see [13] for a counterexample). However,if we assume that the family {fn} is equicontinuous, equality holds. Equicontinuity in this context means uniformequicontinuity, i.e., for every ε > 0 there exists δ > 0 such that ρn(x, y) < δ for any x, y ∈ Xn, n ∈ N, implies
ρn+1(fn(x), fn(y)) < ε. In [13, Lem. 4.4] this is proved for the case when the spaces Xn all coincide, by using the definitionvia separated sets. Here we present a different proof using the definition via sequences of open covers, since we wantto carry over the arguments later to the proof of the power rule for metric entropy.
Lemma 3.
Let U1,∞ ∈ L(X1,∞) and assume that f1,∞ is equicontinuous. Then for each m ≥ 1 the sequence V1,∞, defined by
Vn := ∨m−1

i=0 f−in Un+i, is an element of L(X1,∞).
Proof. Let ε > 0 be a common lower bound for the Lebesgue numbers of the covers Un. Then, for each n ≥ 1, ε isalso a lower bound for the Lebesgue number of Vn with respect to the Bowen-metric ρn,m. This is proved as follows: Let
x ∈ Xn and assume that ρn,m(x, y) < ε. Then f in(y) is contained in the ball B(f in(x), ε; ρn+i) for i = 0, 1, . . . , m− 1. Since
ε is a lower bound of the Lebesgue number of Un+i for all i, we find sets Ui ∈ Un+i such that B(f in(x), ε; ρn+i) ⊂ Ui for
i = 0, 1, . . . , m − 1, which implies that

B(x, ε; ρn,m) ⊂ U0 ∩ f−1
n (U1) ∩ f−2

n (U2) ∩ . . . ∩ f−(m−1)
n (Um−1)

∈
m−1∨
i=0 f

−i
n Un+i = Vn.

It is easy to see that from equicontinuity of f1,∞ it follows that also the family {f in : n ≥ 1, i = 0, 1, . . . , m − 1} isequicontinuous. Hence, we can find δ > 0 such that ρn(x, y) < δ implies ρn+i(f in(x), f in(y)) < ε for all n ≥ 1 and
i = 0, 1, . . . , m − 1. Therefore, every Bowen-ball B(x, ε; ρn,m) contains the δ-ball B(x, δ; ρn), which shows that δ is alower bound for the Lebesgue numbers of the covers Vn.
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Lemma 4.
Let {an}n≥1 be a monotonically increasing sequence of real numbers. Then for every k ≥ 1 it holds that

lim sup
n→∞

an
n = lim sup

n→∞

ank
nk .

Proof. It suffices to prove the inequality “≤”. To this end, consider an arbitrary sequence {nl}l≥1 of positive integersconverging to ∞. For every l ≥ 1 there is an ml ∈ N0 with mlk ≤ nl ≤ (ml + 1)k , and ml →∞. This implies
1
nl
anl ≤

1
mlk

a(ml+1)k .
It follows that lim sup

l→∞

a(ml+1)k
mlk

= lim sup
l→∞

ml + 1
ml

a(ml+1)k(ml + 1)k = lim sup
l→∞

amlk
mlk

.

Hence, we conclude that lim sup
l→∞

anl
nl
≤ lim sup

l→∞

amlk
mlk

≤ lim sup
m→∞

amk
mk ,which yields the desired inequality.

Proposition 5.
If the sequence f1,∞ is equicontinuous, then

htop (f [k ]1,∞
) = k · htop (f1,∞) for all k ≥ 1.

Proof. It suffices to prove the inequality “≥”. To this end, let U1,∞ ∈ L(X1,∞). Define a sequence V1,∞ = {Vn} ofopen covers for X [k ]1,∞ as follows:
Vn := U(n−1)k+1 ∨ f−1(n−1)k+1U(n−1)k+2 ∨ . . . ∨ f−(k−1)(n−1)k+1Unk

= k−1∨
j=0 f

−j(n−1)k+1U(n−1)k+1+j .

Then we find
hcov (f [k ]1,∞;V1,∞) = lim sup

n→∞

1
n logN (n−1∨

i=0 f
−ik1 Vi+1

)

= lim sup
n→∞

1
n logN n−1∨

i=0 f
−ik1

k−1∨
j=0 f

−j
ik+1Uik+1+j


= lim sup

n→∞

1
n logN n−1∨

i=0
k−1∨
j=0 f

−(ik+j)1 U(ik+j)+1


= k · lim sup
n→∞

1
nk logN (nk−1∨

i=0 f
−i1 Ui+1

)
= k · hcov (f1,∞;U1,∞) .

To obtain the last equality we used Lemma 4. By Lemma 3, V1,∞ ∈ L(X [k ]1,∞), which implies
htop (f [k ]1,∞

)
≥ hcov (f [k ]1,∞;V1,∞) = k · hcov (f1,∞;U1,∞) .

Since this holds for every U1,∞ ∈ L(X1,∞), the desired inequality follows.
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Remark 6.Next to the classical notion of entropy for continuous maps on compact spaces, the notion of topological entropyintroduced above generalizes several other concepts of entropy. Here are three examples:
(i) Topological entropy for uniformly continuous maps on noncompact metric spaces (cf. Bowen [4]): Consider auniformly continuous map f : X → X on a metric space X . The topological entropy of f is defined by

htop(f ) := sup
K⊂X

lim
ε↘0 lim sup

n→∞

1
n log rspan(n, ε, K ),

where the supremum runs over all compact sets K ⊂ X and rspan(n, ε, K ) is the minimal cardinality of a set which(n, ε)-spans K . Alternatively, one can take maximal (n, ε)-separated subsets of K . If we define for each compactset K ⊂ X a NDS f (K )1,∞ by
Xn := fn−1(K ), f (K )

n := f |Xn : Xn → Xn+1,we see that htop(f ) can be written as
htop(f ) = sup

K⊂X
htop(f (K )1,∞).

(ii) Topological sequence entropy (cf. Goodman [8]): Here the sequence X1,∞ is constant and the sequence fn is ofthe form fn = f kn , where f : X → X is a given continuous map and (kn)n≥1 an increasing sequence of integers.
(iii) Topological entropy of random dynamical systems (cf. Bogenschütz [3]): Consider a probability space (Ω, F, P)with an ergodic invertible transformation θ on Ω, and a measurable space (X, B ). A mapping φ : Z×Ω×X → Xsuch that (ω, x) 7→ φ(n,ω, x) is F ⊗B-measurable for all n ∈ Z and φ(n+m,ω, x) = φ(n, θmω, φ(m,ω, x)) for all

n,m ∈ Z and (ω, x) ∈ Ω× X is called a random dynamical system on X over θ . If X is a compact metric space,
B is the Borel σ-algebra of X , and the maps φ(n,ω, ·) are homeomorphisms, one speaks of a topological randomdynamical system. If U is an open cover of X , one defines for every ω ∈ Ω

htop(φ;U) := lim
n→∞

1
n logN (n−1∨

i=0 φ(i, ω)−1U
)
. (1)

From Kingman’s subadditive ergodic theorem it follows that this number exists for almost every ω ∈ Ω and isconstant almost everywhere. Then one can take this constant value (for each U) and define the topological entropyof the random dynamical system by taking the supremum over all open covers U. If we fix one ω ∈ Ω and considerthe number (1), replacing the limit by a lim sup, and then take the supremum over all U, we obtain the topologicalentropy of the NDS (X1,∞, f1,∞) given by Xn := X , fn := φ(1, θn−1ω, ·).
Remark 7.It is an interesting fact that not only Bowen’s notion of topological entropy for uniformly continuous maps is a specialcase of the topological entropy for NDSs, but that for an equicontinuous NDS (X1,∞, f1,∞) also the converse statementis true: htop(f1,∞) can be regarded as the topological entropy of a uniformly continuous map, restricted to a compactnoninvariant set. To see this, let X be the disjoint sum of the spaces Xn, i.e.,

X := ∞∐
n=1Xn, ρ(x, y) := { |n − m| if x ∈ Xn, y ∈ Xm, n 6= m,

ρn(x, y) if x, y ∈ Xn.
Then a uniformly continuous map f : X → X is given by putting f equal to fn on Xn, and we have

htop(f1,∞) = htop(f , X1).
This observation in particular allows to conclude the power rule from the corresponding power rule for Bowen’s entropy.Taking the supremum of htop(f , K ) over all compact subsets K of X gives the quantity called the asymptotical topological
entropy of f1,∞ in [13], defined by limn→∞ htop(fn,∞).
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3. Metric EntropyIn this section, we introduce the metric entropy of a NDS.
3.1. The Entropy with Respect to a Sequence of PartitionsRecall that the entropy of a finite measurable partition P = {P1, . . . , Pk} of a probability space (X,A, µ) is defined by

Hµ(P) := − k∑
i=1 µ(Pi) log µ(Pi),

where 0 · log 0 := 0, and that it satisfies 0 ≤ Hµ(P) ≤ log k . The equality Hµ(P) = log k holds iff all members of P havethe same measure.If P and Q are two measurable partitions of X , the joint partition P ∨ Q = {P ∩ Q : P ∈ P, Q ∈ Q} satisfies
Hµ(P ∨Q) ≤ Hµ(P) +Hµ(Q).Now consider a metric NDS (X1,∞, f1,∞, µ1,∞), where µ1,∞ denotes the sequence of probability measures with fnµn = µn+1.Let P1,∞ = {Pn} be a sequence such that Pn is a finite measurable partition of Xn for every n ≥ 1, and define

h(f1,∞;P1,∞) := lim sup
n→∞

1
nHµ1

(n−1∨
i=0 f

−i1 Pi+1
)
.

We call this number the metric entropy of f1,∞ with respect to P1,∞. Note that in the autonomous case this definitionreduces to the usual definition of metric entropy with respect to a partition. In this case, the lim sup is in fact a limit, whichfollows from a subadditivity argument. However, in the general case considered here, subadditivity does not necessarilyhold. (In [13], one finds a counterexample for the topological case, which can be modified to serve as a counterexamplein the metric case, since this system preserves the Lebesgue measure.) For an autonomous system given by a map fwith an invariant measure µ and a partition P, we also use the common notations hµ(f ;P) and hµ(f ) = supP hµ(f ;P).Several well-known properties of the entropy with respect to a partition carry over to its nonautonomous generalization.In order to formulate these properties, we have to introduce some notation. We say that a sequence P1,∞ of measurablepartitions is finer than another such sequence Q1,∞ if Pn is finer than Qn for every n ≥ 1 (i.e., every element of Pn iscontained in an element of Qn). In this case, we write P1,∞ � Q1,∞. If P1,∞ and Q1,∞ are two sequences of measurablepartitions, we define their join P1,∞ ∨ Q1,∞ := {Pn ∨ Qn}n≥1. For a sequence P1,∞ and m ≥ 1 we define anothersequence P〈m〉1,∞(f1,∞) by
m−1∨
i=0 f

−i1 Pi+1,
m−1∨
i=0 f

−i2 Pi+2, . . . ,
m−1∨
i=0 f

−i
k Pi+k , . . .

Finally, recall the definition of conditional entropy for partitions of a probability space (X,A, µ). If A,B ∈ A with
µ(B) > 0, then µ(A|B) := µ(A ∩ B)/µ(B). If P and Q are two partitions of X , the conditional entropy of P given Q is

Hµ(P|Q) := −∑
Q∈Q

µ(Q)∑
P∈P

µ(P|Q) log µ(P|Q).
Some well-known properties of the conditional entropy are summarized in the following proposition (cf., e.g., Katok andHasselblatt [11]).
Proposition 8.
Let P, Q and R be partitions of X .

(i) Hµ(P|Q) = 0 iff Q is finer than P (modulo null sets).

(ii) Hµ(P ∨Q|R) = Hµ(P|R) +Hµ(Q|P ∨R).
(iii) If R is finer than Q, then Hµ(P|R) ≤ Hµ(P|Q).
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(iv) 0 ≤ Hµ(P|Q) ≤ Hµ(P).
(v) Hµ(P|R) ≤ Hµ(P|Q) +Hµ(Q|R).

Now we can prove a list of elementary properties of h(f1,∞;P1,∞) most of which are straightforward generalizations ofthe corresponding properties of classical metric entropy.
Proposition 9.
For any sequences of finite measurable partitions for X1,∞ the following assertions hold:

(i) 0 ≤ h(f1,∞;P1,∞) ≤ lim supn→∞(1/n)∑n
i=1 log #Pi.

(ii) h(f1,∞;P1,∞ ∨Q1,∞) ≤ h(f1,∞;P1,∞) + h(f1,∞;Q1,∞).
(iii) If P1,∞ � Q1,∞, then h(f1,∞;P1,∞) ≥ h(f1,∞;Q1,∞).
(iv) For every k ≥ 1 it holds that

h
(
f1,∞;P1,∞) = lim sup

n→∞

1
nk Hµ1

(nk−1∨
i=0 f

−i1 Pi+1
)
.

(v) For every m ≥ 1 it holds that h(f1,∞;P1,∞) = h(f1,∞;P〈m〉1,∞(f1,∞)).
(vi) h(f1,∞;P1,∞) ≤ h(f1,∞;Q1,∞) + lim supn→∞(1/n)∑n

i=1 Hµi (Pi|Qi).
(vii) h(fk,∞;Pk,∞) = h(fl,∞;Pl,∞) for all k, l ∈ N.

(viii) Let E denote the family of all sequences P1,∞ of finite measurable partitions for X1,∞ with uniformly bounded
cardinalities #Pn. Then a metric on E is given by

dR (P1,∞, Q1,∞) := sup
n≥1 Hµn (Pn|Qn) + sup

n≥1 Hµn (Qn|Pn).
Moreover, the function P1,∞ 7→ h(f1,∞;P1,∞) is Lipschitz continuous with Lipschitz constant 1 on (E , dR ).

Proof. The properties (i)–(iii) follow very easily from the properties of the entropy of a partition. Property (iv) isa consequence of Lemma 4, since the partitions ∨n−1
i=0 f−i1 Pi+1 become finer with increasing n, and hence the sequence

n 7→ Hµ1 (∨n−1
i=0 f−i1 Pi+1) is monotonically increasing. To show (v), note that for every n ≥ 1 we have the identities

Hµ1
(n−1∨

i=0 f
−i1 P〈m〉i+1(f1,∞)) = Hµ1

n−1∨
i=0 f

−i1
m−1∨
j=0 f

−j
i+1Pj+i+1


= Hµ1

n−1∨
i=0

m−1∨
j=0 f

−(i+j)1 Pi+j+1
 = Hµ1

(n+m−2∨
k=0 f−k1 Pk+1

)
.

This implies
h
(
f1,∞;P〈m〉1,∞(f1,∞)) = lim sup

n→∞

1
nHµ1

(n+m−2∨
k=0 f−k1 Pk+1

)

= lim sup
n→∞

1
nHµ1

(n−1∨
k=0 f

−k1 Pk+1
) = h

(
f1,∞;P1,∞) ,
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which concludes the proof of (v). Next, let us prove (vi): From Proposition 8 (ii) it follows that
Hµ1
(n−1∨

i=0 f
−i1 Pi+1

)
≤ Hµ1

(n−1∨
i=0 f

−i1 Pi+1 ∨
n−1∨
i=0 f

−i1 Qi+1
)

= Hµ1
(n−1∨

i=0 f
−i1 Qi+1

)+Hµ1
(n−1∨

i=0 f
−i1 Pi+1|

n−1∨
i=0 f

−i1 Qi+1
)
.

For the last term in this expression we further obtain
Hµ1
(n−1∨

i=0 f
−i1 Pi+1|

n−1∨
i=0 f

−i1 Qi+1
)

= Hµ1
(
P1 ∨ f−11

n−2∨
i=0 f

−i2 Pi+2|
n−1∨
i=0 f

−i1 Qi+1
)

= Hµ1
(
P1|

n−1∨
i=0 f

−i1 Qi+1
)+Hµ1

(
f−11

n−2∨
i=0 f

−i2 Pi+2|P1 ∨
n−1∨
i=0 f

−i1 Qi+1
)
.

Now we use Proposition 8 (iii) to see that this sum can be estimated by
≤ Hµ1 (P1|Q1) +Hµ1

(
f−11

n−2∨
i=0 f

−i2 Pi+2|
n−1∨
i=0 f

−i1 Qi+1
)
.

Using the same arguments again, for this expression we find
= Hµ1 (P1|Q1) +Hµ1

(
f−11 P2 ∨

n−3∨
i=0 f

−(i+2)1 Pi+3|
n−1∨
i=0 f

−i1 Qi+1
)

= Hµ1 (P1|Q1) +Hµ1
(
f−11 P2|

n−1∨
i=0 f

−i1 Qi+1
)

+Hµ1
(n−3∨

i=0 f
−(i+2)1 Pi+3|f−11 P2 ∨

n−1∨
i=0 f

−i1 Qi+1
)

≤ Hµ1 (P1|Q1) +Hµ1 (f−11 P2|f−11 Q2)
+Hµ1

(
f−21

n−3∨
i=0 f

−i3 Pi+3|
n−1∨
i=0 f

−i1 Qi+1
)
.

Using f1µ1 = µ2, we find that Hµ1 (f−11 P2|f−11 Q2) = Hµ2 (P2|Q2). Going on inductively, we end up with the estimate
Hµ1

(n−1∨
i=0 f

−i1 Pi+1|
n−1∨
i=0 f

−i1 Qi+1
)
≤

n∑
i=1 Hµi (Pi|Qi) .

Hence, we obtain
h
(
f1,∞;P1,∞) ≤ h (f1,∞;Q1,∞) + lim sup

n→∞

1
n

n∑
i=1 Hµi (Pi|Qi) ,

which finishes the proof of (vi). Let us prove (vii): For any k ∈ N we find
h(fk,∞;Pk,∞) = lim sup

n→∞

1
nHµk

(
Pk ∨

n−1∨
i=1 f

−i
k Pk+i

)

34



Metric Entropy of Nonautonomous Dynamical Systems

≤ lim sup
n→∞

1
n

[
Hµk (Pk ) +Hµk

(n−1∨
i=1 f

−i
k Pk+i

)]

= lim sup
n→∞

1
nHµk

(
f−1
k

n−1∨
i=1 f

−(i−1)
k+1 Pk+i

)

= lim sup
n→∞

1
nHµk+1

(n−2∨
i=0 f

−i
k+1P(k+1)+i

) = h
(
fk+1,∞;Pk+1,∞) .

Using the elementary property of the entropy of partitions that H(A) ≥ H(B ) whenever A is finer than B , the converseinequality is proved by
h(fk,∞;Pk,∞) = lim sup

n→∞

1
nHµk

(
Pk ∨

n−1∨
i=1 f

−i
k Pk+i

)

≥ lim sup
n→∞

1
nHµk

(n−1∨
i=1 f

−i
k Pk+i

) = h(fk+1,∞;Pk+1,∞).
This implies (vii). Finally, to prove (viii), note that the assertion that dR is a metric easily follows from the properties ofconditional entropy stated in Proposition 8. From item (vi) we conclude the nonautonomous Rokhlin inequality

|h(f1,∞;P1,∞)− h(f1,∞;Q1,∞)|
≤ max{lim sup

n→∞

1
n

n∑
i=1 Hµi (Pi|Qi) , lim sup

n→∞

1
n

n∑
i=1 Hµi (Qi|Pi)}

≤ lim sup
n→∞

1
n

n∑
i=1 Hµi (Pi|Qi) + lim sup

n→∞

1
n

n∑
i=1 Hµi (Qi|Pi)

≤ sup
n≥1 Hµn (Pn|Qn) + sup

n≥1 Hµn (Qn|Pn) ,
which finishes the proof of the proposition.
Remark 10.Note that the equality in item (vii) of the preceding proposition reveals an essential difference between metric andtopological entropy of NDSs, since in the topological setting only the inequality

htop(fk,∞) ≤ htop(fk+1,∞)
holds. A counterexample for the equality is given by a sequence f1,∞ on the unit interval such that f1 is constant and allother fn are equal to the standard tent map. In this case, clearly htop(f1,∞) = 0, but htop(fk,∞) = log 2 for all k ≥ 2 (seealso [13] for a counterexample with htop(fk,∞) < htop(fk+1,∞) for all k). Therefore, the notion of asymptotical topologicalentropy, as defined in [13], has no meaningful analogue for metric systems.
Remark 11.Item (viii) of the preceding proposition is the nonautonomous analogue of the Rokhlin inequality.
From Proposition 9 (vii) we can conclude a similar result as [13, Thm. A] which asserts that the topological entropy ofautonomous systems is commutative in the sense that htop(f ◦ g) = htop(g ◦ f ).
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Corollary 12.
Consider two probability spaces (X, µ) and (Y , ν) and measurable maps f : X → Y , g : Y → X such that fµ = ν and
gν = µ. Then µ is an invariant measure for g ◦ f , ν is an invariant measure for f ◦ g, and it holds that

hν (f ◦ g) = hµ(g ◦ f ).
Proof. We consider the NDS (X1,∞, f1,∞) defined by X1,∞ := {X, Y , X, Y , . . .} and f1,∞ := {f, g, f , g, . . .}. Thecorresponding f1,∞-invariant sequence of measures is µ1,∞ := {µ, ν, µ, ν, . . .}. Consider a finite partition Q of Y , put
P := f−1Q, and P1,∞ := {P,Q,P,Q, . . .}. Using Proposition 9 (iv), we find

h
(
f1,∞;P1,∞) = lim sup

n→∞

12nHµ

(2n−1∨
i=0 f

−i1 Pi+1
)

= lim sup
n→∞

12nHµ

(n−1∨
i=0 f

−2i1 P2i+1 ∨
n−1∨
i=0 f

−(2i+1)1 P2i+2
)

= lim sup
n→∞

12nHµ

(n−1∨
i=0(g ◦ f )−iP ∨

n−1∨
i=0(g ◦ f )−if−1Q

)

= 12 lim sup
n→∞

1
nHµ

(n−1∨
i=0(g ◦ f )−iP

) = 12hµ(g ◦ f ;P).
Similarly, we obtain 2h(f2,∞;P2,∞) = hν (f ◦g;Q). Hence, from Proposition 9 (vii) we conclude hµ(g◦f ;P) = hν (f ◦g;Q).Since we can choose Q freely, this implies hν (f ◦g) ≤ hµ(g◦f ). Starting with a partition P of X and putting Q := g−1P,we get the converse inequality.
Remark 13.In Balibrea, Jiménez López, and Cánovas [2] one finds proofs for the commutativity of metric and topological entropywhich are not based on entropy notions for nonautonomous systems. These commutativity properties were first found inDana and Montrucchio [6]. Later, Kolyada and Snoha [13] rediscovered the commutativity of topological entropy.
We finish this subsection with an example which shows that the entropy h(f1,∞;P1,∞) can be arbitrarily large even fora very trivial system.
Example 14.Let X1,∞, f1,∞ and µ1,∞ be constant sequences given by Xn = [0, 1], fn = id[0,1], and µn = λ (the standard Lebesguemeasure). Consider the family P1,∞ of partitions given by

Pn = {[0, 1/kn), [1/kn, 2/kn), . . . , [(kn − 1)/kn, 1]}
for a fixed integer k ≥ 2. Then one easily sees that

Hµ1
(n−1∨

i=0 f
−i1 Pi+1

) = Hλ(Pn) = − kn∑
i=1

1
kn log 1

kn = log kn = n log k,
which implies h (f1,∞;P1,∞) = log k .
From this example one sees that by taking appropriate sequences of partitions, one obtains arbitrarily large values forthe entropy of the identity. Here we have the same problem as we had in defining the topological entropy via sequencesof open covers. If the resolution becomes finer at exponential speed, one obtains a gain in information which is not dueto the dynamics of the system. Hence, in the definition of the metric entropy of f1,∞, we have to exclude such sequences.
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3.2. Admissible Classes and Metric Entropy of Nonautonomous SystemsTo define the entropy of the system (X1,∞, f1,∞, µ1,∞), we have to choose a sufficiently nice subclass E from the classof all sequences P1,∞. Then the entropy can be defined in the usual way by taking the supremum over all P1,∞ ∈ E .In view of the definition of topological entropy in terms of sequences of open covers and Example 14 it is clear thattaking all sequences of partitions is too much. Since there is no direct analogue to Lebesgue numbers for measurablepartitions, we introduce suitable classes of sequences of partitions by axioms which reflect some properties of the family
L(f1,∞) defined in Section 2.
Definition 15.We call a nonempty class E of sequences of finite measurable partitions for X1,∞ admissible (for f1,∞) if it satisfies thefollowing axioms:

(A) For every sequence P1,∞ ∈ E there is a bound N ≥ 1 on #Pn, i.e., #Pn ≤ N for all n ≥ 1.
(B) If P1,∞ ∈ E and Q1,∞ is a sequence of partitions for X1,∞ with P1,∞ � Q1,∞, then Q1,∞ ∈ E .(C) E is closed with respect to successive refinements via the action of f1,∞. That is, if P1,∞ ∈ E , then for every m ≥ 1also P〈m〉1,∞(f1,∞) ∈ E .

From Axiom (A) it follows that the upper bound in Proposition 9 (i) is always finite. Moreover, by adding sets of measurezero, we can assume that #Pn is constant for every element of E . Axiom (B) says that with every sequence P1,∞ ∈ Ealso the sequences which are coarser than P1,∞ are contained in E . Axiom (C) will be essential for proving the powerrule for metric entropy. It reflects the property of sequences of open covers stated in Lemma 3.
Definition 16.If E is an admissible class, we define the metric entropy of f1,∞ with respect to E by

hE (f1,∞) = hE (f1,∞; µ1,∞) := sup
P1,∞∈E h(f1,∞;P1,∞).

Proposition 17.
Given a metric NDS (X1,∞, f1,∞), let E be the class of all sequences of partitions for X1,∞ which satisfy Axiom (A). Then
E is an admissible class. E is maximal, i.e., it cannot be extended to a larger admissible class. Therefore, we denote
this class by Emax or Emax(X1,∞).
Proof. It is obvious that E cannot be enlarged without violating Axiom (A). Hence, it suffices to prove that E satisfiesAxioms (B) and (C). If P1,∞ ∈ E and Q1,∞ is a sequence of partitions which is coarser than P1,∞, it follows that#Qn ≤ #Pn for all n ≥ 1, which implies Q1,∞ ∈ E . Now consider for some P1,∞ ∈ E and m ≥ 1 the sequence
P〈m〉1,∞(f1,∞). We have

#[m−1∨
i=0 f

−i
n Pi+n

]
≤

m−1∏
i=0 #[f−in Pi+n] = m−1∏

i=0 #Pi+n ≤ (sup
i≥1 #Pi)m .

This implies that E satisfies Axiom (C).
The following example shows that Emax is in general not a useful admissible class.
Example 18.We show that hEmax (f1,∞) =∞ whenever the maps fi are bi-measurable and the spaces (Xn, µn) are non-atomic. Indeed,for every k ≥ 1 we find a sequence P1,∞ of partitions with #Pn ≡ k such that h(f1,∞;P1,∞) = log k , which is constructedas follows. On X1 take a partition P1 consisting of k sets with equal measure 1/k . Then Q2 := f1P1 is a partitionof X2 into k sets of equal measure. Partition each element Qi of Q2 into k sets Qi1, . . . , Qik of equal measure 1/k2.Then define a new partition P2 of X2 consisting of the sets P21 := Q11 ∪ Q21 ∪ . . . ∪ Qk1, P22 := Q12 ∪ . . . ∪ Qk2, . . .,
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P2
k := Q1k ∪ . . . ∪ Qkk . Also P2 is a partition of X2 into k sets of equal measure 1/k , and P2, Q2 are independent. Thisimplies

Hµ1 (P1 ∨ f−11 P2) = Hµ1 (f−11 Q2 ∨ f−11 P2)= Hµ2 (Q2 ∨ P2) = Hµ2 (Q2) +Hµ2 (P2) = 2 log k.
Inductively, one can proceed this construction. For i from 1 to some fixed n, assume that Pi is a partition of Xi into ksets of equal measure such that Rn := P1 ∨ f−11 P2 ∨ . . . ∨ f−(n−1)1 Pn consists of kn sets of equal measure. Then considerthe partition Qn+1 := fn1Rn of Xn+1. Let Rn = {R1, . . . , Rkn} and partition each Ri into k sets of equal measure 1/kn+1,say Ri = Ri1 ∪ . . . ∪ Rik . Define the partition Pn+1 = {Pn+11 , . . . , Pn+1

k } by Pn+1
j := R1j ∪ . . . ∪ Rknj . This gives

Hµ1
( n∨
i=0 f

−i1 Pi+1
) = Hµ1 (Rn ∨ f−n1 Pn+1) = Hµ1 (f−n1 Qn+1 ∨ f−n1 Pn+1)

= Hµn+1 (Qn+1 ∨ Pn+1) = Hµn+1 (Qn+1) +Hµn+1 (Pn+1)= log kn + log k = (n+ 1) log k,
which implies h(f1,∞;P1,∞) = log k for the sequence P1,∞ = {Pn} obtained by this construction.
As this example shows, we have to consider smaller admissible classes. These are provided by the following propositionwhose simple proof will be omitted.
Proposition 19.
Arbitrary unions and nonempty intersections of admissible classes are again admissible classes. In particular, for every
nonempty subset F ⊂ Emax there exists a smallest admissible class E (F ) which satisfies F ⊂ E (F ) ⊂ Emax (defined as
the intersection of all admissible classes containing F). We also call E (F ) the admissible class generated by F.

We also have to show that the metric entropy of a NDS generalizes the usual notion of metric entropy for autonomoussystems. To this end, we use the following result.
Proposition 20.
Let F be a nonempty subset of Emax. Then

H(F ) := {Q1,∞ ∈ Emax | ∃P1,∞ ∈ F : h(f1,∞;Q1,∞) ≤ h(f1,∞;P1,∞)} (2)
is an admissible class with F ⊂ H(F ) ⊂ Emax. Consequently, E (F ) ⊂ H(F ) and it holds that

hE (F )(f1,∞) = hH(F )(f1,∞) = sup
P1,∞∈F h

(
f1,∞;P1,∞) .

Proof. It is obvious that F ⊂ H(F ) ⊂ Emax. Clearly, H(F ) satisfies Axiom (A). It also satisfies Axiom (B), since anysequence R1,∞ of partitions coarser than some Q1,∞ ∈ H(F ) satisfies h(f1,∞;R1,∞) ≤ h(f1,∞;Q1,∞) ≤ h(f1,∞;P1,∞) forsome P1,∞ ∈ F . With the same reasoning and Proposition 9 (v), we see that H(F ) satisfies Axiom (C) and hence is anadmissible class.
The preceding proposition shows not only that there exists a multitude of admissible classes, but also that the metricentropy of f1,∞ can be equal to any of the numbers h(f1,∞;P1,∞) by taking the one-point set F := {P1,∞} as a generatorfor an admissible class. The next corollary immediately follows.
Corollary 21.
Assume that the sequences X1,∞, f1,∞, µ1,∞ are constant, i.e., we have an autonomous system (X, f, µ). Let F be the set
of all constant sequences of finite measurable partitions of X . Then hE (F )(f1,∞) = hµ(f ).
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3.3. Invariance and RestrictionsIn order to be a reasonable quantity, the metric entropy of a system f1,∞ should be an invariant with respect toisomorphims. By an isomorphism between sequences (X1,∞, µ1,∞) and (Y1,∞, ν1,∞) of probability spaces we understanda sequence π1,∞ = {πn} of bi-measurable maps πn : Xn → Yn with πnµn = νn. Such a sequence is an isomorphismbetween the systems f1,∞ on X1,∞ and g1,∞ on Y1,∞ if additionally for each n ≥ 1 the diagram
Xn

fn−−−−−→ Xn+1
πn
y yπn+1
Yn −−−−−→gn

Yn+1
commutes. In this case we also say that the systems f1,∞ and g1,∞ are conjugate. If the maps πn are only measurablebut not necessarily bi-measurable, we say that the systems f1,∞ and g1,∞ are semiconjugate. The sequence π1,∞ is thencalled a conjugacy or a semiconjugacy from f1,∞ to g1,∞, respectively.Given two admissible classes E and F for X1,∞ and Y1,∞, resp., we also define the notions of E-F-isomorphisms and
E-F-(semi)conjugacies via the condition that π1,∞ respects E and F in the sense that

P1,∞ = {Pn}n≥1 ∈ F ⇒ {π−1
n (Pn)}n≥1 ∈ E.

In the case of an isomorphism or a conjugacy, the implication into the other direction must hold as well.
Proposition 22.
Let (X1,∞, f1,∞, µ1,∞) and (Y1,∞, g1,∞, ν1,∞) be metric NDSs with admissible classes E and F, respectively. Let π1,∞ be
an E-F-semiconjugacy from f1,∞ to g1,∞. Then

hF (g1,∞) ≤ hE (f1,∞).
Proof. First note that the semiconjugacy identities πn+1 ◦ fn = gn ◦ πn imply gi1 ◦ π1 = πi+1 ◦ f i1 for all i. Let
P1,∞ = {Pn} be a sequence of finite measurable partitions for Y1,∞. Fix n ∈ N and Pji ∈ Pi, i = 1, . . . , n. Then we find

ν1
(n−1⋂

i=0 g
−i1 Pji+1

) = µ1
(
π−11

n−1⋂
i=0 g

−i1 Pji+1
) = µ1

(n−1⋂
i=0(gi1 ◦ π1)−1Pji+1

)

= µ1
(n−1⋂

i=0(πi+1 ◦ f i1)−1Pji+1
) = µ1

(n−1⋂
i=0 f

−i1 π−1
i+1Pji+1

)
.

Define Q1,∞ = {Qn} by Qn := {π−1
n (P) : P ∈ Pn} for all n ≥ 1. Then Qn is a finite measurable partition of Xn andfrom the preceding computation we get

Hν1
(n−1∨

i=0 g
−i1 Pi+1

) = Hµ1
(n−1∨

i=0 f
−i1 Qi+1

)
.

Hence, h(f1,∞;Q1,∞) = h(g1,∞;P1,∞). Writing Q1,∞ = π−11,∞(P1,∞), we find
hF (g1,∞) = sup

P1,∞∈F h(g1,∞;P1,∞) = sup
P1,∞∈F h(f1,∞;π−11,∞(P1,∞))

≤ sup
Q1,∞∈E h(f1,∞;Q1,∞) = hE (f1,∞),

as desired.
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Given a metric NDS (X1,∞, f1,∞, µ1,∞), assume that we can decompose each of the spaces Xn as a disjoint union Xn =
Yn∪̇Zn such that fn(Yn) ⊂ Yn+1, fn(Zn) ⊂ Zn+1 and µn(Yn) ≡ c for a constant 0 < c ≤ 1. Then let us consider therestrictions of f1,∞ to the sequences Y1,∞ := {Yn} and Z1,∞ := {Zn}, resp., i.e., the systems defined by the maps

gn := fn|Yn : Yn → Yn+1, hn := fn|Zn : Zn → Zn+1.
It we consider the probability measure νn(A) := µn(A)/c on Yn, it follows that (Y1,∞, g1,∞, ν1,∞) is also a metric system.If c < 1, we can define a corresponding invariant sequence of probability measures for the system (Z1,∞, h1,∞) as well.
Proposition 23.
Let E be an admissible class for (X1,∞, f1,∞) and assume that P1,∞ ∈ E implies {Pn ∨ {Yn, Zn}} ∈ E. Then

E|Y1,∞ := {Q1,∞ | ∃P1,∞ ∈ E : Qn ≡ {Yn} ∨ Pn}

is an admissible class for (Y1,∞, g1,∞) and
chE |Y1,∞ (g1,∞) ≤ hE (f1,∞).

If c = 1, then equality holds.

Proof. It is clear that E |Y1,∞ satisfies Axiom (A). Let Q1,∞ ∈ E1,∞|Y1,∞ . Then there exists P1,∞ ∈ E such that theelements of each Qn are the intersections of the elements of Pn with Yn. Now assume that R1,∞ is a sequence ofpartitions for Y1,∞ which is coarser than Q1,∞. Then the elements of each Rn are unions of elements of Qn. Takingcorresponding unions of elements of Pn for each n, one constructs a sequence S1,∞ ∈ E coarser than P1,∞ such that
{Yn}∨S1,∞ = R1,∞, which proves that E |Y1,∞ satisfies Axiom (B). Finally, if Qn ≡ {Yn}∨Pn for some P1,∞ ∈ E , then forall k,m ≥ 1 it holds that

m−1∨
i=0 g

−i
k Qi+k = m−1∨

i=0 f
−i
k ({Yi+k} ∨ Pi+k ) = {Yk} ∨ m−1∨

i=0 f
−i
k Pi+k ,

which implies that E |Y1,∞ satisfies Axiom (C). To prove the inequality of entropies, consider Q1,∞ ∈ E|Y1,∞ and thecorresponding P1,∞ ∈ E with Qn ≡ {Yn} ∨ Pn. Then
Hν1

(n−1∨
i=0 g

−i1 Qi+1
) = Hν1

(
{Y1} ∨

n−1∨
i=0 f

−i1 Pi+1
)

= −1
c

∑
P∈
∨
i f−i1 Pi+1

µ1(P ∩ Y1) log µ1(P ∩ Y1)
c

= −1
c

 ∑
P∈
∨
i f−i1 Pi+1

µ1(P ∩ Y1) log µ1(P ∩ Y1)− ∑
P∈
∨
i f−i1 Pi+1

µ1(P ∩ Y1) log c
 .

The last summand gives ∑
P∈
∨
i f−i1 Pi+1

µ1(P ∩ Y1) log c = µ1(Y1) log c = c log c,
and thus can be omitted in the computation of h(g1,∞;Q1,∞). We obtain

h(g1,∞;Q1,∞) = lim sup
n→∞

1
n

−1
c

∑
P∈
∨
i f−i1 Pi+1

µ1(P ∩ Y1) log µ1(P ∩ Y1)
 .
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If we consider the sequence P̃1,∞ of partitions P̃n := {P ∩ Yn : P ∈ Pn} ∪ {P ∩ Zn : P ∈ Pn}, we see that
h(g1,∞;Q1,∞) ≤ 1

c h(f1,∞; P̃1,∞). (3)
By the assumption on E it follows that P̃1,∞ ∈ E and hence the assertion follows. In the case c = 1, the measures µn(Zn)are all zero, and hence equality holds in (3). Since P̃1,∞ is finer than P1,∞, we have

hE (f1,∞) = sup
P̃1,∞

h(f1,∞; P̃1,∞) = c sup
Q1,∞∈E|Y1,∞

h(g1,∞;Q1,∞) = chE |Y1,∞ (g1,∞),
which finishes the proof.
Remark 24.For a topological NDS given by a sequence of homeomorphisms, endowed with an invariant sequence of Borel probabilitymeasures, the above proposition can be applied to the decomposition Yn := supp µn, Zn := Xn\ supp µn, where supp µn =
{x ∈ Xn|∀ε > 0 : µn(B(x, ε)) > 0} is the support of the measure µn.
3.4. The Power Rule for Metric EntropyGiven a metric NDS (X1,∞, f1,∞) and k ∈ N, we define the k-th power system (X [k ]1,∞, f [k ]1,∞) in exactly the same way aswe did for topological systems. It is very easy to see that this system is a metric system as well.If E is an admissible class for (X1,∞, f1,∞), we denote by E [k ] the class of all sequences of partitions for X [k ]1,∞ which aredefined by restricting the sequences in E to the spaces in X [k ]1,∞, i.e., P1,∞ = {Pn} ∈ E iff

P[k ]1,∞ := {P(n−1)k+1}n≥1 ∈ E [k ].
Proposition 25.
If E is an admissible class for (X1,∞, f1,∞), then E [k ] is an admissible class for (X [k ]1,∞, f [k ]1,∞) and

hE [k ]
(
f [k ]1,∞

) = k · hE
(
f1,∞) . (4)

Proof. It is clear that E [k ] satisfies Axiom (A). To verify Axiom (B), consider P[k ]1,∞ ∈ E [k ] for some P1,∞ ∈ E . If Q1,∞ isa sequence of partitions for X [k ]1,∞ which is coarser than P[k ]1,∞ (i.e., Qn � P(n−1)k+1 for all n ≥ 1), we can extend Q1,∞ toa sequence R1,∞ of partitions for X1,∞ which is coarser than P1,∞. This can be done in a trivial way by putting
Rn := { Pn if n − 1 is not a multiple of k,

Q1+(n−1)/k if n − 1 is a multiple of k.
Then it follows that Rn = Pn � Pn in the first case, and Rn = Q1+(n−1)/k � Pn in the second one. Since E satisfiesAxiom (B), we know that R1,∞ ∈ E , which implies that Q1,∞ = R[k ]1,∞ ∈ E [k ]. To show that E [k ] satisfies Axiom (C), let
P1,∞ ∈ E and m ≥ 1. We have to show that the sequence Q1,∞ defined by

Qn := m−1∨
i=0 f

−ik(n−1)k+1P(i+n−1)k+1

is an element of E [k ]. To this end, first note that
Qn �

mk−1∨
i=0 f

−i(n−1)k+1P(n−1)k+1+i =: Rn.

41



Christoph Kawan

The sequence R1,∞ can be extended to an element S1,∞ of E , which is given by
Sn := mk−1∨

i=0 f
−i
n Pn+i.

Indeed, S1,∞ ∈ E , since E satisfies Axiom (C). Hence, R1,∞ = S[k ]1,∞ ∈ E [k ] and since E [k ] satisfies Axiom (B), this implies
Q1,∞ ∈ E [k ]. Now let us prove the formula for the entropies. Let P1,∞ ∈ E . We define a sequence Q1,∞ of finitemeasurable partitions for X [k ]1,∞ as follows:

Qn := k−1∨
j=0 f

−j(n−1)k+1P(n−1)k+1+j .

The sequence Q1,∞ is an element of E [k ], since it is of the form Q1,∞ = R[k ]1,∞ with R1,∞ ∈ E . This follows by combiningthe facts that P1,∞ ∈ E and E satisfies Axiom (C). We find that
h
(
f [k ]1,∞;Q1,∞) = lim sup

n→∞

1
nHµ1

(n−1∨
i=0 f

−ik1 Qi+1
)

= lim sup
n→∞

1
nHµ1

n−1∨
i=0 f

−ik1
k−1∨
j=0 f

−j
ik+1Pik+1+j


= lim sup

n→∞

1
nHµ1

n−1∨
i=0

k−1∨
j=0 f

−(ik+j)1 P(ik+j)+1


= k · lim sup
n→∞

1
nk Hµ1

(nk−1∨
i=0 f

−i1 Pi+1
) = k · h

(
f1,∞;P1,∞) .

To obtain the last equality we used Proposition 9 (iv). Now consider also the sequence P[k ]1,∞. It is obvious that Q1,∞ isfiner than P[k ]1,∞. Hence, using Proposition 9 (iii), we find
h
(
f [k ]1,∞;P[k ]1,∞

)
≤ h

(
f [k ]1,∞;Q1,∞) = k · h

(
f1,∞;P1,∞) .

Taking the supremum over all P[k ]1,∞ on the left-hand side and over all P1,∞ on the right-hand side, the inequality “≤” in(4) follows. The converse inequality follows from
hE [k ]

(
f [k ]1,∞

)
≥ h

(
f [k ]1,∞;Q1,∞) = k · h

(
f1,∞;P1,∞) ,

which holds for every P1,∞ ∈ E .
4. Relation to Topological EntropyIn order to prove a variational inequality, we consider a topological NDS (X1,∞, f1,∞) with an f1,∞-invariant sequence
µ1,∞ of Borel probability measures. When speaking of measurable partitions in this context, we mean “exact” partitionsand not partitions in the sense of measure theory, where different elements of the partition may have a nonempty overlapof measure zero. We will frequently use the property of inner regularity of Borel measures, i.e., µ(A) = sup{µ(K ) : K ⊂
A compact} for any Borel subset of a compact metric space.
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4.1. The Misiurewicz ClassIn this subsection, we introduce a special admissible class which we will use to prove the variational inequality. Thisclass is constructed in such a way that its elements are just perfect to apply the arguments of Misiurewicz’s proof of thevariational principle to them. Therefore, we call it the Misiurewicz class.Let (X1,∞, f1,∞) be a topological NDS with an f1,∞-invariant sequence of Borel probability measures µ1,∞ = {µn}.We define the Misiurewicz class EM ⊂ Emax as follows. A sequence P1,∞ ∈ Emax, Pn = {Pn,1, . . . , Pn,kn}, is an element of
EM iff for every ε > 0 there exist δ > 0 and compact sets Cn,i ⊂ Pn,i (n ≥ 1, 1 ≤ i ≤ kn) such that for every n ≥ 1 thefollowing two hypotheses are satisfied:

(a) µn(Pn,i\Cn,i) ≤ ε.(b) The minimal distance between the sets Cn,i is at least δ , i.e.,
min1≤i<j≤kn min {ρn(x, y) : (x, y) ∈ Cn,i × Cn,j} ≥ δ.

Proposition 26.
If f1,∞ is equicontinuous, then EM is an admissible class.

Proof. First note that EM is nonempty, since it contains the trivial sequence defined by Pn := {Xn} for all n ≥ 1. Toshow that EM satisfies Axiom (B), assume that P1,∞ = {Pn} ∈ EM, Pn = {Pn,1, . . . , Pn,kn}, and let Q1,∞ be a sequencewhich is coarser than P1,∞. Let Qn be given by
Qn = {Qn,1, . . . , Qn,ln}.

Then every element of Qn must be a disjoint union of elements of Pn:
Qn,i = Nn,i⋃

α=1Pn,jα .

Since P1,∞ ∈ EM, we can choose compact sets Cn,i ⊂ Pn,i and δ > 0 depending on a given ε = ε̃/(maxn≥1 #Pn) suchthat (a) and (b) hold for P1,∞. Define
Dn,i := Nn,i⋃

α=1Cn,jα , n ≥ 1, i = 1, . . . , ln.
It is clear that Dn,i is a compact subset of Qn,i. Moreover, it holds that

µn
(
Qn,i\Dn,i

) = µn

Nn,i⋃
α=1Pn,jα \

Nn,i⋃
α=1Cn,jα


= µn

Nn,i⋃
α=1[Pn,jα \Cn,jα ]

 = Nn,i∑
α=1 µn

(
Pn,jα \Cn,jα

)
≤ Nn,iε̃maxn≥1 #Pn ≤ ε̃.

For i 6= j we have
min

ρn(x, y) : (x, y) ∈ Nn,i⋃
α=1Cn,jα ×

Nn,j⋃
β=1Cn,jβ


= min

α,β
min {ρn(x, y) : (x, y) ∈ Cn,jα × Cn,jβ} ≥ δ,
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since each Cn,jα is disjoint from all Cn,jβ . Hence, Q1,∞ ∈ EM. To show that Axiom (C) holds, let P1,∞ = {Pn} ∈ EM, Pn =
{Pn,1, . . . , Pn,kn}, and m ≥ 1. Consider the sequence P〈m〉1,∞(f1,∞). For given ε = (1/m)ε̃ > 0 choose δ > 0 and compactsets Cn,i ⊂ Pn,i such that (a) and (b) hold for P1,∞. For every r ≥ 1 and (j0, . . . , jm−1) ∈ {1, . . . , kr}×· · ·×{1, . . . , kr+m−1}define

Dr,(j0,...,jm−1) := m−1⋂
i=0 f

−i
r (Cr+i,ji ).

These sets are obviously compact subsets of Xr and each element of P〈m〉r (f1,∞) contains exactly one such set. We have
µr

(m−1⋂
i=0 f

−i
r (Pr+i,ji )\ m−1⋂

i=0 f
−i
r (Cr+i,ji ))

= µr

(m−1⋃
l=0
[(m−1⋂

i=0 f
−i
r (Pr+i,ji )) \f−lr (Cr+l,jl )])

≤
m−1∑
l=0 µr

(
f−lr (Pr+l,jl )\f−lr (Cr+l,jl ))

= m−1∑
l=0 f

l
rµr
(
Pr+l,jl\Cr+l,jl) = m−1∑

l=0 µr+l
(
Pr+l,jl\Cr+l,jl) ≤ mε = ε̃.

Finally, in order to show that (b) holds for P〈m〉(f1,∞), we need the assumption of equicontinuity for f1,∞, which yieldsa number ρ > 0 such that ρr(x, y) < ρ implies ρr+i(f ir (x), f ir (y)) < δ for all r ≥ 1 and i = 0, 1, . . . , m − 1 (cf. theproof of Lemma 3). Now consider two sets Dr,(j0,...,jm−1) and Dr,(l0 ,...,lm−1). These sets are disjoint iff there is an index
α ∈ {0, 1, . . . , m − 1} such that jα 6= lα . This implies ρr+α (fαr (x), fαr (y)) ≥ δ for all x ∈ Dr,(j0 ,...,jm−1) and y ∈ Dr,(l0,...,lm−1),and hence ρr(x, y) ≥ ρ. Thus, we have found that for every r ≥ 1 it holds that

min(j0 ,...,jm−1)6=(l0 ,...,lm−1)
min {ρr(x, y) : (x, y) ∈ Dr,(j0,...,jm−1) ×Dr,(l0,...,lm−1)} ≥ ρ,

which completes the proof.
In [13, Thm. B] it is shown that an equiconjugacy preserves the topological entropy of a topological NDS. An equicon-jugacy between systems f1,∞ and g1,∞ is an equicontinuous sequence π1,∞ = {πn} of homeomorphisms such that also
{π−1

n } is equicontinuous and πn+1 ◦ fn = gn ◦ πn. The following proposition shows that an equiconjugacy also preservesthe Misiurewicz class and hence the associated metric entropy.
Proposition 27.
Consider two equicontinuous topological NDSs (X1,∞, f1,∞) and (Y1,∞, g1,∞). Assume that π1,∞ is an equisemiconjugacy
from f1,∞ to g1,∞, i.e., it holds that πn+1◦fn = gn◦πn for all n ≥ 1 and the sequence {πn} is equicontinuous. Then, if µ1,∞
is an f1,∞-invariant sequence, ν1,∞ = {νn}, νn := πnµn, is g1,∞-invariant and π1,∞ is an EM(f1,∞)-EM(g1,∞)-semiconjugacy.
Hence,

hEM (g1,∞) ≤ hEM (f1,∞).
Proof. We have gnνn = gn(πnµn) = πn+1fnµn = πn+1µn+1 = νn+1 and hence, ν1,∞ is g1,∞-invariant. To show that
π1,∞ is an EM(f1,∞)-EM(g1,∞)-semiconjugacy, consider some Q1,∞ ∈ EM(g1,∞) and let Pn := {π−1

n (Q) : Q ∈ Qn} for all
n ≥ 1. To show that P1,∞ ∈ EM(f1,∞), let ε > 0. Then, if Qn = {Qn,1, . . . , Qn,kn}, we find compact sets Cn,i ⊂ Qn,i and
δ > 0 such that νn(Qn,i\Cn,i) ≤ ε and

min1≤i<j≤kn min {ρYn (y1, y2) : (y1, y2) ∈ Cn,i × Cn,j} ≥ δ. (5)
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Since {πn} is equicontinuous, there exists ρ > 0 such that ρXn (x1, x2) < ρ implies ρYn (πn(x1), πn(x2)) < δ for all n ≥ 1and x1, x2 ∈ Xn. Now consider the closed (and hence compact) sets π−1
n (Cn,i) ⊂ π−1

n (Qn,i) =: Pn,i ∈ Pn. We have
µn(Pn,i\π−1

n (Cn,i)) = νn(Qn,i\Cn,i) ≤ ε. Assume to the contrary that there exist n ∈ N, i 6= j , and x1 ∈ π−1
n (Cn,i),

x2 ∈ π−1
n (Cn,j ), such that ρXn (x1, x2) < ρ. This implies ρYn (πn(x1), πn(x2)) < δ . Since πn(x1) ∈ Cn,i and πn(x2) ∈ Cn,j thiscontradicts (5). Hence, P1,∞ ∈ EM(f1,∞) and the rest follows from Proposition 22.

4.2. The Variational InequalityNow we are in position to prove the general variational inequality following the lines of Misiurewicz’s proof [19].
Theorem 28.
For an equicontinuous topological NDS (X1,∞, f1,∞) with an invariant sequence µ1,∞ it holds that

hEM (f1,∞) ≤ htop(f1,∞).
Proof. Let P1,∞ ∈ EM. We may assume that each Pn has the same number k of elements, Pn = {Pn,1, . . . , Pn,k}. Bydefinition of the Misiurewicz class, we find compact sets Qn,i ⊂ Pn,i (for all n, i) such that

µn(Pn,i\Qn,i) ≤ 1
k log k , i = 1, . . . , k, n ≥ 1,

and δ > 0 with min1≤i<j≤k min {ρn(x, y) : (x, y) ∈ Qn,i ×Qn,j
}
≥ δ. (6)

By setting Qn,0 := Xn\
⋃k
i=1 Qn,i we can define another sequence Q1,∞ of measurable partitions Qn :=

{Qn,0, Qn,1, . . . , Qn,k}. As in Misiurewicz’s proof one finds Hµn (Pn|Qn) ≤ 1, which by Proposition 9 (vi) leads to theinequality
h
(
f1,∞;P1,∞) ≤ h (f1,∞;Q1,∞) + 1. (7)

Define a sequence U1,∞ of open covers Un of Xn by
Un := {Qn,0 ∪ Qn,1, . . . , Qn,0 ∪ Qn,k} .

To see that the sets Qn,0 ∪ Qn,i are open, consider their complements Qn,1 ∪ . . . ∪ Qn,i−1 ∪ Qn,i+1 ∪ . . . ∪ Qn,k , which arefinite unions of compact sets and hence closed. For a fixed m ≥ 1, let Em ⊂ X1 be a maximal (m, δ)-separated set. From(6) it follows that each (δ/2)-ball in Xn intersects at most two elements of Qn for any n ≥ 1. Hence, we can associateto each x ∈ Em at most 2m different elements of ∨m−1
i=0 f−i1 Qi+1, which implies

#[m−1∨
i=0 f

−i1 Qi+1
]
≤ 2mrsep (m, δ2 , f1,∞

)
.

Consequently, we obtain
Hµ1

(m−1∨
i=0 f

−i1 Qi+1
)
≤ log #[m−1∨

i=0 f
−i1 Qi+1

]
≤ log rsep (m, δ2 , f1,∞

)+m log 2.
Using (7), we therefore have

h
(
f1,∞;P1,∞) ≤ lim sup

m→∞

1
m log rsep (m, δ2 , f1,∞

)+ log 2 + 1
≤ htop(f1,∞) + log 2 + 1.
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Taking the supremum over all P1,∞ ∈ EM, we find
hEM (f1,∞) ≤ htop(f1,∞) + log 2 + 1.

That the constant term log 2+1 can be omitted in this estimate now follows from a careful application of the power rulesfor topological and metric entropy. Inspecting the definition of the Misiurewicz class, one sees that for every k ≥ 1 theadmissible class E [k ]M is contained in the Misiurewicz class of f [k ]1,∞. Therefore, the arguments that we have applied to thesystem (X1,∞, f1,∞) can equally be applied to all of the power systems (X [k ]1,∞, f [k ]1,∞), k ≥ 1. Hence, using the power rules(Proposition 2 and Proposition 25), we obtain
hEM (f1,∞) ≤ htop(f1,∞) + log 2 + 1

k .

Since this holds for every k ≥ 1, sending k to infinity gives the result.
An interesting corollary of Theorem 28 is the following generalized variational principle for autonomous systems.
Corollary 29.
For a topological autonomous system (X, f ) it holds that

sup
µ1,∞ hEM(f ,µ1,∞)(f ) = htop(f ),

where the supremum is taken over all sequences µ1,∞ with fµn ≡ µn+1.
Proof. The inequality “≤” holds by Theorem 28. The converse inequality follows from the classical variationalprinciple, if we consider only the constant sequences µ1,∞, i.e., the invariant measures of f , and assure ourselves thatthe associated Misiurewicz classes contain all constant sequences.
Corollary 30.
Let f1,∞ be an equicontinuous sequence of (not necessarily strictly) monotone maps fn : X → X, where X is either a
compact interval or a circle. Then for every f1,∞-invariant sequence µ1,∞ it holds that hEM (f1,∞) = 0.

Proof. This follows from [13, Thm. D], which asserts that the corresponding topological entropy is zero.
4.3. Large Misiurewicz ClassesUp to now, we only know that the Misiurewicz class EM contains the trivial sequence of partitions. If it would containno further sequences, Theorem 28 would not give any valuable information on the metric or topological entropy. Theaim of this subsection is to find conditions on invariant sequences of measures which give rise to a large Misiurewiczclass. The simplest case consists in a system (X1,∞, f1,∞, µ1,∞), where both X1,∞ and µ1,∞ are constant, say Xn ≡ X and
µn ≡ µ. Then any finite measurable partition P of X gives rise to a constant sequence Pn ≡ P of partitions which isobviously contained in EM. The following proposition slightly generalizes this situation.
Proposition 31.
Let (X1,∞, f1,∞) be an equicontinuous NDS with an f1,∞-invariant sequence µ1,∞. If X1,∞ is constant and the closure of
{µn} with respect to the strong topology on the space of probability measures is compact, then EM contains all constant
sequences of partitions.
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Proof. We first show that every Borel set A ⊂ X can be approximated by compact subsets uniformly for all µn. Thestrong topology is characterized by
µn → µ ⇔ µn(A)→ µ(A) for every Borel set A ⊂ X.

Let C be the strong closure of µ1,∞, and let A ⊂ X be a Borel set and ε > 0. For each µ ∈ C there exists a compact set
Bµ ⊂ A such that µ(A\Bµ) ≤ ε/2. Now take a neighborhood Uµ of µ in C such that |ν(A\Bµ) − µ(A\Bµ)| ≤ ε/2 for all
ν ∈ Uµ . Then for every ν ∈ Uµ we have

ν(A\Bµ) ≤ µ(A\Bµ) + ε2 ≤ ε.We can cover the compact set C by finitely many of such neighborhoods, say Uµ1 , . . . , Uµr . Then B := ⋃r
i=1 Bµi is acompact subset of A which satisfies ν(A\B) ≤ ε for all ν ∈ C, so in particular for all ν = µn. Now let P = {P1, . . . , Pk}be a finite measurable partition of the state space X . Then for any given ε > 0 we find compact sets Ci ⊂ Pi such that

µn(Pi\Ci) ≤ ε for all n ≥ 1 and i = 1, . . . , k . Moreover, since the sets Ci are pairwisely disjoint,
min1≤i<j≤k min {ρ(x, y) : (x, y) ∈ Ci × Cj} > 0.

This implies that the constant sequence Pn ≡ P is an element of EM.
Example 32.Consider a system which is given by a periodic sequence

f1,∞ = {f1, f2, . . . , fN , f1, f2, . . . , fN , . . .} .
Let µ1 be an fN1 -invariant probability measure on X (which exists by the theorem of Krylov-Bogolyubov). Define

µ2 := f1µ1, µ3 := f2µ2, . . . , µN := fN−1µN−1,
and extend this to an N-periodic sequence

µ1,∞ = {µ1, µ2, . . . , µN , µ1, µ2, . . . , µN , . . .} .
Then µ1,∞ is an f1,∞-invariant sequence, which follows from

fNµN = fNfN−1µN−1 = fNfN−1fN−2µN−2 = · · · = fN1 µ1 = µ1.
Clearly, {µ1, . . . , µN} is compact.
The assumption that the closure of {µn} should be compact still seems to be very restrictive. The next result (Proposition34) provides another condition for a large Misiurewicz class.
Lemma 33.
Let (X, ρ) be a compact metric space with a Borel probability measure µ. Let A ⊂ X be a Borel set with µ(∂A) = 0.
Then A can be approximated by compact subsets with zero boundaries, i.e.,

µ(A) = sup {µ(K ) : K ⊂ A compact with µ(∂K ) = 0} .
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Proof. We can assume without loss of generality that ∂A 6= ∅, since otherwise A is closed and hence compact itself.For every ε > 0 define the set
Kε := {x ∈ intA : dist(x, ∂A) ≥ ε} .We claim that each Kε is a closed subset of X and hence compact. To this end, consider a sequence xn ∈ Kε with

xn → x ∈ X . By continuity of dist(·, ∂A), it follows that dist(x, ∂A) ≥ ε and x ∈ clA. Assume to the contrary that
x ∈ ∂A. Then ε ≤ dist(x, ∂A) = 0, a contradiction. Hence, x ∈ Kε . We further claim that µ(Kε) → µ(A) for ε → 0. Toshow this, take an arbitrary strictly decreasing sequence εn → 0. Then Kεn ⊂ Kεn+1 for all n ≥ 1. Hence, by continuityof the measure µ and the assumption that µ(∂A) = 0, it follows that

µ(A) = µ(intA) = µ
(⋃
n≥1Kεn

) = lim
n→∞

µ(Kεn ).
To conclude the proof, it suffices to show that one can choose the sequence εn such that µ(∂Kεn ) = 0. To this end,we first show that for δ1 < δ2 the boundaries of Kδ1 and Kδ2 are disjoint. Assume to the contrary that there exists
x ∈ ∂Kδ1 ∩ ∂Kδ2 . Then, by continuity of the dist-function, dist(x, ∂A) ≥ δ1 and dist(x, ∂A) ≥ δ2. However, if one ofthese inequalities would be strict, the point x would be contained in the interior of the corresponding set. Hence,dist(x, ∂A) = δ1 < δ2 = dist(x, ∂A), a contradiction. Now, we can construct the desired sequence εn → 0 as follows. Fix
n ∈ N and assume to the contrary that µ(∂Kε) > 0 for all ε ∈ (1/(n+1), 1/n). Define the sets Im := {ε ∈ (1/(n+1), 1/n) :
µ(∂Kε) ≥ 1/m}. Then (1/(n+ 1), 1/n) = ⋃m∈N Im and hence one of the sets Im, say Im0 , must be uncountable. However,since the boundaries of the Kε are disjoint, this would imply that the set ⋃ε∈Im0 ∂Kε has an infinite measure. Hence, wecan take εn ∈ (1/(n+ 1), 1/n) with µ(∂Kεn ) = 0.
Proposition 34.
Let (X1,∞, f1,∞) be an equicontinuous system such that X1,∞ is constant and let µ1,∞ = {µn} be an f1,∞-invariant
sequence. Assume that the measures in the weak∗-closure of {µn} are pairwisely equivalent. Then EM contains all
constant sequences of partitions whose members have zero boundaries (with respect to the measures µn).

Proof. Let C denote the weak∗-closure of {µn}. Consider a finite measurable partition P = {P1, . . . , Pk} of the statespace X such that ν(∂Pi) = 0, 1 ≤ i ≤ k , for one and hence all ν ∈ C. Fix ε > 0 and pick ν ∈ C. By Lemma 33, we findcompact sets Cν,i ⊂ Pi with ν(∂Cν,i) = 0, 1 ≤ i ≤ k , and
ν(Pi\Cν,i) ≤ ε/2, 1 ≤ i ≤ k.

Since ∂(Pi\Cν,i) ⊂ ∂Pi ∪ ∂Cν,i and hence ν(∂(Pi\Cν,i)) = 0, the Portmanteau theorem yields a weak∗-neighborhood
Uν ⊂ C of ν such that for every µ ∈ Uν it holds that |ν(Pi\Cν,i) − µ(Pi\Cν,i)| ≤ ε/2. Therefore, µ(Pi\Cν,i) ≤ ε for all
µ ∈ Uν . Since C is weakly∗-compact, we can cover C with finitely many of these neighborhoods, say Uν1 , . . . , Uνr . Then
Ci := ⋃r

i=1 Cνi is a compact subset of Pi for 1 ≤ i ≤ k and for every µ ∈ C it holds that µ(Pi\Ci) ≤ ε, in particular forall µ = µn. This implies that the constant sequence Pn ≡ P is in EM.
Remark 35.Note that every compact metric space admits finite measurable partitions of sets with arbitrarily small diameters andzero boundaries (cf. [11, Lem. 4.5.1]).
Example 36.An example for systems with invariant sequences satisfying the assumption of Proposition 34, can be found in [23]: Let
M be a compact connected Riemannian manifold. By d(·, ·) denote the Riemannian distance and by m the Riemannianvolume measure. For simplicity, we will assume that m(M) = 1, so m is a probability measure. For constants λ > 1 andΓ > 0 consider the set

E (λ,Γ) := {f ∈ C2(M,M) : f expanding with factor λ, ||f ||C2 ≤ Γ} ,
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where “expanding with factor λ” means that |Dfx (v )| ≥ λ|v| holds for all x ∈ M and all tangent vectors v ∈ TxM . Wewill consider a NDS f1,∞ = {fn} on M with fn ∈ E (λ,Γ) for fixed λ > 1 and Γ > 0. It is clear that such a system isequicontinuous. We define
D := {φ : M → R : φ > 0, Lipschitz, ∫ φdm = 1}

and for every L > 0 the set
DL := {φ ∈ D : ∣∣∣∣φ(x)

φ(y) − 1∣∣∣∣ ≤ Ld(x, y) if d(x, y) < ε
}
,

where ε > 0 is a fixed number (depending on λ and Γ). Note that
D = ⋃

L>0 DL,

since for every φ ∈ D we have ∣∣∣∣φ(x)
φ(y) − 1∣∣∣∣ = 1

φ(y) |φ(x)− φ(y)| ≤ Lip(φ)minφ d(x, y).
For any expanding map f : M → M we write

Pf (φ)(x) = ∑
y∈f−1(x)

φ(y)
| detDf (y)| , Pf (φ) : M → R,

for the Perron-Frobenius operator associated with f acting on densities φ ∈ D . Note that this makes sense, sinceexpanding maps are covering maps, and hence the sets f−1(x) are finite, all having the same number of elements.Now let φ ∈ D . We claim that the f1,∞-invariant sequence, defined by µ1 := φdm and µn := fn−11 µ1 for all n ≥ 2, hasthe property that the elements of the weak∗-closure of {µn}n∈N are pairwisely equivalent. To show this, let L > 0 bechosen such that φ ∈ DL and note that µn+1 = Pfn1 (φ)dm for all n. By [23, Prop. 2.3], there exist L∗ > 0 and τ ≥ 1such that Pfn1 (φ) ∈ DL∗ for all n ≥ τ . Hence, we may assume that Pfn1 (φ) ∈ DL∗ for all n. We will first show that thedensities in DL∗ are uniformly bounded away from zero and infinity and that they are equicontinuous. Assume to thecontrary that there are φn ∈ DL∗ and xn ∈ M such that φn(xn) ≥ n. Without loss of generality, we may assume that
φn(xn) = maxx∈M φn(x). Choosing δ ∈ (0, ε] with Lδ < 1, we obtain

1 = ∫
M
φndm ≥ ∫

B(xn,δ) φn(x)dm(x) = ∫
B(xn,δ)

φn(x)
φn(xn)φn(xn)dm(x)

≥ n
∫
B(xn,δ) (1− Ld(x, xn)) dm(x)

≥ n
∫
B(xn,δ) (1− Lδ) dm = n (1− Lδ)m(B(xn, δ)).

Since m(B(xn, δ)) is bounded away from zero, this is a contradiction. Hence, the functions in DL∗ are uniformly boundedby some constant K . This immediately implies equicontinuity, since for x, y ∈ M with d(x, y) < ε we have
|φ(x)− φ(y)| = φ(y) ∣∣∣∣φ(x)

φ(y) − 1∣∣∣∣ ≤ KLd(x, y).
To show that the φ ∈ DL∗ are uniformly bounded away from zero, assume to the contrary that there exist φn ∈ DL∗ and
xn ∈ M such that φn(xn)→ 0. By compactness, we may assume that xn → x . Then

|φn(x)− φn(xn)| ≤ KLd(x, xn)→ 0 ⇒ φn(x)→ 0.
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Now pick some y ∈ B(x, ε). Then
|φn(x)− φn(y)| = φn(x) ∣∣∣∣1− φn(y)

φn(x)
∣∣∣∣ ≤ φn(x)Lε → 0.

Using the theorem of Arzelà-Ascoli, we can choose a uniformly convergent subsequence φmn → φ. The above argumentshows that the closed set φ−1(0) is open, and by assumption it is nonempty. Hence, it is equal to M . This is acontradiction to the integral condition ∫ φmndm = 1, which implies ∫ φdm = 1. Now we prove the claim: Let ν bea weak∗ limit point of {µn} and let φ1 := φ, φn+1 := Pfn1 φ. Then, for a subsequence mn and for every continuous
g : M → R we have ∫

M
gφmndm → ∫

M
gdν.

On the other hand, by the theorem of Arzelà-Ascoli, we may assume that φmn converges uniformly to some φ∗, which isbounded away from zero and satisfies ∫ φ∗dm = 1. Hence,∫
M
gφmndm → ∫

M
gφ∗dm,

implying ν = φ∗dm.
Remark 37.The above example can be regarded as a nonautonomous version of the classical result of Krzyzewski and Szlenk [15]which asserts that every expanding C2-map has an absolutely continuous invariant measure.
Remark 38.In view of Proposition 34 and Proposition 27, the most general criterion which guarantees a large Misiurewicz classfor an equicontinuous system (X1,∞, f1,∞) with invariant sequence µ1,∞ is the existence of an equiconjugacy to a systemwhich satisfies the assumptions of Proposition 34. That is, there exists a compact metric space X and an equicontinuoussequence {πn} of homeomorphisms πn : Xn → X such that all elements of the weak∗-closure of the set {πnµn} areequivalent.
5. Concluding Remarks and Open QuestionsIn this paper, we introduced a notion of metric entropy for quite general nonautonomous dynamical systems and studiedits elementary properties, in particular its relation to the topological entropy defined by Kolyada, Misiurewicz, andSnoha. The number of open questions about this new quantity tends to infinity. We restrict ourselves to a very shortlist of questions and topics for future research:
• In order to obtain a fruitful theory of metric entropy for nonautonomous systems, it seems inevitable to findappropriate analogues of the notion of ergodicity. Describing ergodicity as the property that the state spacecannot be broken apart into two invariant subsets of positive measure, one can use the same definition for ametric NDS on a single probability space. However, this definition is probably too strict. It seems more likelythat for different purposes different analogues of ergodicity of varying strength will fit.
• One of the next steps in the further development of the entropy theory for nonautonomous systems certainly is thestudy of the question to which extent the variational inequality (Theorem 28) can be extended to a full variationalprinciple. Another interesting question is under which conditions there exist reasonably small generating sets forthe Misiurewicz class.
• The classical Pesin formula and Margulis-Ruelle inequality relate the metric entropy of a diffeomorphism toits Lyapunov exponents, given by the Multiplicative Ergodic Theorem. It is an interesting and probably veryfar-reaching question to which extent such results can be transferred to the nonautonomous case.
• The notion of metric entropy in this paper also generalizes the metric sequence entropy introduced in Kushnirenko[16]. It might be an interesting topic for future research to look for generalizations of the known results aboutmetric sequence entropy.
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