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1. Introduction

In the theory of dynamical systems, entropy is an invariant which measures the exponential complexity of the orbit
structure of a system. Undoubtedly, the most important notions of entropy are metric entropy for measure-theoretic
dynamical systems, sometimes also named Kolmogorov-Sinai entropy by its inventors, and topological entropy for
topological systems (cf. Kolmogorov [12], Sinat [25], and Adler et al. [1]). There exists a huge variety of modifications
and generalizations of these two basic notions. However, most of these only apply to systems which are governed
by time-invariant dynamical laws, so-called autonomous dynamical systems. In the literature, one basically finds
two exceptions. In the theory of random dynamical systems, which are nonautonomous dynamical systems described
by measurable skew-products, both notions of entropy, metric and topological, have been defined and extensively
studied (see, e.g., [3, 7, 17, 18, 27)). In particular, the classical variational principle, which relates the two notions of
entropy to each other, has been adapted to their random versions by Bogenschiitz [3]. The second exception is the
quantity introduced in Kolyada and Snoha [13], the topological entropy of a nonautonomous system given as a discrete-
time deterministic process on a compact topological space. The theory founded in [13] has been further developed in
[5,9, 10, 14, 20, 22, 26, 28, 29] by several authors. In some of these articles, the definition of entropy has been extended,
in particular to continuous-time systems, to systems with noncompact state space, systems with time-dependent state
space, and to local processes. Besides that, there have been other independent approaches (see, e.g., [21, 24]), which
essentially lead to the same notion. Both of the nonautonomous versions of entropy, random and deterministic, are
intimately related to each other but nevertheless, one cannot draw direct conclusions from the well-developed random
theory to the deterministic one except for generic statements (saying that something holds for almost every deterministic
system in a large class of such systems parametrized by a random parameter).

* E-mail: christoph.kawan@math.uni-augsburg.de

26



Metric Entropy of Nonautonomous Dynamical Systems VERSITA

The reason why the deterministic nonautonomous theory of entropy is still quite poor-developed in particular lies in the
fact that the notion of metric entropy (together with a variational principle) has not yet successfully been established
in that theory. To the best of my knowledge, the only approach in this direction can be found in Zhu et al. [28]. This
work shows that one of the obstacles in establishing a reasonable notion of metric entropy which allows for a variational
principle lies in the proof of the power rule which relates the entropies of the time-t-maps (the powers of the system)
to that of the time-one-map. The aim of this paper is to introduce the notion of metric entropy for nonautonomous
measure-theoretic dynamical systems together with a formalism which allows for a power rule and at least the easier
part of the variational principle.

We briefly describe the contents of the paper. In Section 2, we recall the notion of topological entropy for a nonau-
tonomous dynamical system as defined in [14] by Kolyada, Misiurewicz, and Snoha. This notion generalizes the one in
[13] by replacing the state space X (a compact metric space) by a whole sequence X, of such spaces. The process is then
given by a sequence of continuous maps f, : X, = X,11. As in the classical theory, three equivalent characterizations
of entropy are available, via open covers, via spanning sets, or via separated sets. However, one crucial point here is
that in the open cover definition, sequences of open covers for the spaces X, with Lebesgue numbers bounded away
from zero have to be considered. In order to prove the power rule for this entropy, the additional assumption that the
sequence f, be uniformly equicontinuous is necessary.

In Section 3, the metric entropy is defined. Here the system is given by a sequence f, : X;, — X, 11 of measurable maps
between probability spaces (X,, y,) such that the sequence p, of measures is preserved in the sense that f,u, = pi,11.
The metric entropy with respect to a sequence of finite measurable partitions of the spaces X, can be defined in the
usual way (with the obvious modifications), and has similar properties as in the autonomous case. Similarly as in the
topological situation (the definition of entropy via sequences of covers), one does not get a reasonable quantity by
considering all sequences of partitions. One problem is that information about the initial state can be generated merely
due to the fact that the partitions in such a sequence become finer very rapidly. Hence, we have to restrict the class
of admissible sequences of partitions, which is done in an axiomatic way by requiring some of the properties that are
satisfied in the topological setting by the class of all sequences of open covers with Lebesgue numbers bounded away
from zero. This leads to the notion of an admissible class which enjoys some nice and natural properties. For instance,
in the case of an autonomous measure-preserving system, one can consider the smallest admissible class which contains
all constant sequences of partitions, which leads to the classical notion of metric entropy. Several properties of the
classical metric entropy carry over to its nonautonomous generalization. In particular, we can establish an analogue of
the Rokhlin inequality, invariance under appropriately defined isomorphisms, and a power rule.

In Section 4, we prove for equicontinuous systems the inequality between metric and topological entropy which es-
tablishes one part of the variational principle. We adapt the arguments of Misiurewicz’s elegant proof from [19] by
defining an appropriate admissible class of sequences of partitions which is designed in such a way that Misiurewicz's
arguments can be applied to its members. This class depends on the given invariant sequence of measures. In general,
it might be very small, so that our variational inequality would not give any meaningful information. For this reason, we
establish different stability conditions for invariant sequences of measures which guarantee that the associated Misi-
urewicz class contains sequences of arbitrarily fine partitions. These stability conditions capture the intuitive idea that
the initial measure 1 should not be deformed too much by pushing it forwards by the maps f] = f, o--- o f;, so that
such sequences become an appropriate nonautonomous substitute of invariant measures. In particular, we show that the
expanding systems studied in Ott, Stenlund, Young [23] satisfy such a stability condition with respect to smooth initial
measures.

2. Preliminaries
2.1. Notation

By a nonautonomous dynamical system (short NDS) we understand a deterministic process (Xj o, f1,00), Where Xj o =
{X:}n>1 is a sequence of sets and f, : X, = X,;1 a sequence of maps. For all integers k, n € N we write

fo=idy, f{:=feypnyo---ofepofy, f":=(f)".
The last notation will only be applied to sets. We do not assume that the maps f, are invertible. The trajectory of a

point x € X; is the sequence {f](x)},>0. By fico we denote the sequence {fy, fii1, fry2, ...} which defines a NDS on
Koo = {Xkr Xiet1, X2, - }
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We consider two categories of systems, metric and topological. In a metric system, the sets X, are probability spaces
and the maps f, are measure-preserving. That is, each X, is endowed with a o-algebra A, and a probability measure
Uy such that the maps f, are measurable and f,p, = pp41 for all n > 1, where f,p1, denotes the push-forward (f,p,)(A) =
ta(F71(A)) for all A € A,.1. In this case, we call 0 = {pn}n>1 an fie-invariant sequence. In a topological system,
each X, is a compact metric space and the maps f, are continuous.

If X is a compact topological space and U an open cover of X, we denote by N (U) the minimal cardinality of a finite
subcover. If Uy, ..., U, are open covers of X, we write \/[_;U; for their join, i.e., the open cover consisting of all the
intersections Uy, N U, N...N U, with U; € Y;.

In a metric space (X, g), we denote the open ball centered at x with radius € by B(x, €) or B(x, €; g). We write dist(x, A)
for the distance from a point x to a nonempty set A, ie., dist(x, A) = infsca 0(x, a). The closure, the interior, and the
boundary of a set A will be denoted by cl A, intA, and dA, respectively.

in

Recall that the Lebesgue number of an open cover U of a compact metric space X is defined as the maximal € > 0 such
that every e-ball in X is contained in one of the members of U.

2.2. Topological Entropy

In this subsection, we recall the notion of entropy for a topological NDS (X s, f1.0), as defined in Kolyada et al. [14].
As in the classical autonomous theory, three equivalent definitions are available. We denote the metric of Xi by g and
define on each of the spaces X; a class of Bowen-metrics by

Guolx,y) = max oui (A0, fi(y) (0 € N).

It is easy to see that g, is a metric on X which is topologically equivalent to g,. In order to define the topological
entropy of f; ., we only use the metrics g1,. A subset E C Xj is called (n, €)-separated if any two distinct points
x,y € E satisfy 01,,(x,y) > €. Aset F C Xj (n, €)-spans another set K C X if for every x € K there is y € F with
01.n(x, y) < €. We let rep(n, €, f1,5) denote the maximal cardinality of an (n, €)-separated subset of X; and ropan(n, €, f1,00)
the minimal cardinality of a set which (n, €)-spans X, and we define

N 1

huep(fio) := lim limsup —log re, (n, € i),
. 1

hspan(Fr,00) = i@) llTjol:p o log Fepan (n, £, f“x,) .

The corresponding limits in € exist, since the quantities ry,(n, €, f1,00) and rqpan(n, €, f1,5) are monotone (non-increasing)
with respect to €, and this property carries over to their exponential growth rates. Hence, the limits can also be replaced
by the corresponding suprema over all € > 0. With the same arguments as in the autonomous case, one shows that the
numbers hgep(f1,00) @and hgpan(f1,00) actually coincide. We call their common value the topological entropy of fi .

The definition of topological entropy via open covers has to be modified a little bit in order to fit to the nonautonomous
case. Consider a sequence Uy o, = {U,} such that U, is an open cover of X, for each n > 1. The entropy of f; ., with
respect to the sequence U  is then defined as

n—1
1 .
heon(F1003Un ) 1= lim sup -~ log A/ ( \/ f Ui

n—o00 .
i=0

In contrast to the autonomous case, the upper limit cannot be replaced by a limit (see [13] for a counterexample). In
order to define the topological entropy of f; », one should not take the supremum of heo (f1.00; Ui 00) Over all sequences
of open covers. The problem is that the value of hey(f1,00;U1.00) Might become arbitrarily large just by the fact that the
maximal diameters of the open sets in the covers U, exponentially converge to zero for n — oco. In this case, information
about the initial state can be obtained due to finer and finer measurements even if the system has very reqular dynamics.
To exclude this, we restrict ourselves to sequences of open covers with Lebesgue numbers bounded away from zero. We
denote the family of all these sequences by £(Xj ) and define

hcov(f1,oo) = SUP hcov(f1,oo;u1,oo)-
Un 00 €L(X1 00)
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We leave the easy proof that this number coincides with the topological entropy as defined above to the reader. In the
rest of the paper, we write hyoy(f1,60) for the common value of heep(f1.00), Aspan(fi,c0)r @nd heoy(Fr 00)-

Remark 1.

Note that the value of hyp(f1,c) heavily depends on the metrics g, in contrast to the classical autonomous situation.
However, in many relevant examples, as, e.g., systems defined by time-dependent differential equations, all of these
metrics come from a single metric on a possibly compact space. So in this case the dependence on the metrics disappears
due to a canonical choice.

The topological entropy of an autonomous system given by a map f satisfies the power rule hy,(fX) = k - hyp(f) for all
k > 1. In order to formulate an analogue of this property for NDSs, we have to introduce for every k > 1 the k-th
power system of the NDS (Xj s, f1,00). This is the system (XRL, f%lo), where

K K
X1[z]>o = {X(nf1)k+1},,21 , fg]oo = {f(kn71)k+1}n21 :

In case that the spaces X, coincide, the following result can be found in [13, Lem. 4.2]. Since the proof for the general
case works analogously, we omit it.

Proposition 2.
For every k > 1 it holds that

b (1) < K g (1.

In general, the converse inequality in the above proposition fails to hold (see [13] for a counterexample). However,
if we assume that the family {f,} is equicontinuous, equality holds. Equicontinuity in this context means uniform
equicontinuity, e, for every € > 0 there exists 0 > 0 such that g,(x,y) < d for any x,y € X,, n € N, implies
0n+1(fn(x), fa(y)) < €. In[13, Lem. 4.4] this is proved for the case when the spaces X, all coincide, by using the definition
via separated sets. Here we present a different proof using the definition via sequences of open covers, since we want
to carry over the arguments later to the proof of the power rule for metric entropy.

Lemma 3.
Let Uy 0o € L(X100) and assume that f1 is equicontinuous. Then for each m > 1 the sequence V, , defined by
V, = \/7:01 f~ U, i, is an element of L(X1 ).

Proof. Let € > 0 be a common lower bound for the Lebesque numbers of the covers U,. Then, for each n > 1, € is
also a lower bound for the Lebesqgue number of V, with respect to the Bowen-metric g, . This is proved as follows: Let
x € X, and assume that g, »(x, y) < €. Then fi(y) is contained in the ball B(fi(x), € g,4:) for i =0,1,..., m —1. Since
€ is a lower bound of the Lebesque number of U,; for all i, we find sets U; € U,4; such that B(f}(x), € g,+:) C U for
i=0,1,...,m—1, which implies that

B(x, & 00m) C Uo7 (U)NAU) N 00U, )
m—1

€ \/ £ Ui =V,

i=0

It is easy to see that from equicontinuity of f; ., it follows that also the family {fi : n > 1, i =0,1,...,m — 1} is
equicontinuous. Hence, we can find & > 0 such that g,(x,y) < & implies g,+i(fi(x), fi(y)) < € for all n > 1 and
i=0,1,....,m—1. Therefore, every Bowen-ball B(x, €; g,,») contains the d-ball B(x, 0; g,), which shows that 0 is a
lower bound for the Lebesgue numbers of the covers V,. O

29



VERSITA

Christoph Kawan

Lemma 4.
Let {a,},>1 be a monotonically increasing sequence of real numbers. Then for every k > 1 it holds that

ank

lim sup — = limsup
nooo N oo Nk

Proof. It suffices to prove the inequality “<". To this end, consider an arbitrary sequence {n;};>1 of positive integers
converging to oo. For every [ > 1 there is an m; € Ny with m;k < n; < (m;+ 1)k, and m; — oo. This implies

1

—0p < — O 1)k-
n n mk (m+1)

It follows that

. Ak . mi+1 Ak Ak
lim sup ——— = limsup ————— = limsup
[—00 mlk [—00 m (ml + 1)k l—o0 M
Hence, we conclude that
mk
>0 ny [—00 m[ m—o00
which yields the desired inequality. O

Proposition 5.
If the sequence f, ., is equicontinuous, then

hop (L) = k- iy (Fee)  for all k> 1.

Proof. It suffices to prove the inequality “>". To this end, let U o, € L(Xi ). Define a sequence Vi, = {V,} of
open covers for X1[k(]>o as follows:

_ k—1)
V, = U(n—1 k+1 V f(n11)k+1u(n—1)k+2 V. f(n( 1 k+1unk

\/ (n— 1)k+1u(" Dk+1+j-

Then we find

Beoy (fﬁkm,vm)

n—o00

n—1
lim sup logN ( \/ 7y
i=0

=1 k=1
ik
= lim sup log/\/ \/ i \/ fo Uik
n—o00 i=0 =0
n—1

k=1
= lim sup log/\/ \/ \/ ff<ik+/)u(ik+,)+1

n—00 i=0 j=0
nk—1
\/f uz+1
i=

0

n—oo

k - lim sup — logN
hcov (f1,oo;u1,oo) .

To obtain the last equality we used Lemma 4. By Lemma 3, V; o, € E( ) which implies

hiop (L) 2 heon (A Vi) = k- heas (Froilh o)

Since this holds for every U . € L(X1 ), the desired inequality follows. O
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Remark 6.
Next to the classical notion of entropy for continuous maps on compact spaces, the notion of topological entropy
introduced above generalizes several other concepts of entropy. Here are three examples:

(i) Topological entropy for uniformly continuous maps on noncompact metric spaces (cf. Bowen [4]): Consider a
uniformly continuous map f : X — X on a metric space X. The topological entropy of f is defined by

1
hiep(f) == ilég L{]?) lim sup o log repan(n, €, K),

where the supremum runs over all compact sets K C X and rqpan(n, €, K) is the minimal cardinality of a set which
(n, €)-spans K. Alternatively, one can take maximal (n, €)-separated subsets of K. If we define for each compact
set K C X a NDS ffil by

X, = "7U(K), R =l s Xy = Xogd,

we see that hy,(f) can be written as

hiop(f) = iu;;hmp(f}ig).
C

(it) Topological sequence entropy (cf. Goodman [8]): Here the sequence X, is constant and the sequence f, is of
the form f, = f*, where f : X — X is a given continuous map and (ka)n>1 an increasing sequence of integers.

(iit) Topological entropy of random dynamical systems (cf. Bogenschiitz [3]): Consider a probability space (Q,F, P)
with an ergodic invertible transformation U on ), and a measurable space (X, B). A mapping ¢ : Zx Qx X — X
such that (w, x) — @(n, w, x) is F ® B-measurable for all n € Z and @(n+ m, w, x) = ¢(n, " w, ¢(m, w, x)) for all
n,m € Z and (w, x) € Q x X is called a random dynamical system on X over U. If X is a compact metric space,
B is the Borel o-algebra of X, and the maps ¢(n, w, -) are homeomorphisms, one speaks of a topological random
dynamical system. If U is an open cover of X, one defines for every w € Q

n—1

o S
hiep(@;U) = nl:ngo - logN (\/ oli, w)™U

i=0

. (M

From Kingman's subadditive ergodic theorem it follows that this number exists for almost every w € Q and is
constant almost everywhere. Then one can take this constant value (for each i) and define the topological entropy
of the random dynamical system by taking the supremum over all open covers U. If we fix one w € () and consider
the number (1), replacing the limit by a limsup, and then take the supremum over all U, we obtain the topological
entropy of the NDS (Xi oo, f1.00) given by X, := X, f, := ¢(1, 9" 'w, /).

Remark 7.

It is an interesting fact that not only Bowen’s notion of topological entropy for uniformly continuous maps is a special
case of the topological entropy for NDSs, but that for an equicontinuous NDS (X o, f1,.0) also the converse statement
is true: hyop(f1,50) can be regarded as the topological entropy of a uniformly continuous map, restricted to a compact
noninvariant set. To see this, let X be the disjoint sum of the spaces X, iLe.,

,_oo _Jin—m| UxeX, ye X, n#m,
X = UXn; Q(Xrg) = { Qn(X, y) if X,y c X,,.

n=1

Then a uniformly continuous map f : X — X is given by putting f equal to f, on X,, and we have
hmp(f1,oo) = hmp(f,X1)‘

This observation in particular allows to conclude the power rule from the corresponding power rule for Bowen’s entropy.
Taking the supremum of h,(f, K) over all compact subsets K of X gives the quantity called the asymptotical topological
entropy of f; o in [13], defined by lim,_,c hiop(face)-
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3. Metric Entropy

In this section, we introduce the metric entropy of a NDS.

3.1. The Entropy with Respect to a Sequence of Partitions

Recall that the entropy of a finite measurable partition P = {Py, ..., Pc} of a probability space (X, A, p) is defined by

k

Hy(P) := =Y u(Pi)log u(Py),

i=1

where 0-log0 := 0, and that it satisfies 0 < H,(P) < log k. The equality H,(P) = log k holds iff all members of P have
the same measure.

If P and Q are two measurable partitions of X, the joint partiton PV Q = {PNQ : P € P, Q € Q} satisfies
Hu(PV Q) < H,(P) + H,(Q).

Now consider a metric NDS (X o0, 1,00, H1,00), Where 11 o, denotes the sequence of probability measures with f,u, = p,41.
Let P10 = {P,} be a sequence such that P, is a finite measurable partition of X, for every n > 1, and define

h(f1.00; P1,co) := limsup %Hm

n—o0

n—1
\/ ff['P[H ) .

i=0

We call this number the metric entropy of f ., with respect to Pi ... Note that in the autonomous case this definition
reduces to the usual definition of metric entropy with respect to a partition. In this case, the limsup is in fact a limit, which
follows from a subadditivity argument. However, in the general case considered here, subadditivity does not necessarily
hold. (In [13], one finds a counterexample for the topological case, which can be modified to serve as a counterexample
in the metric case, since this system preserves the Lebesgue measure.) For an autonomous system given by a map f
with an invariant measure p and a partition P, we also use the common notations h,(f; P) and h,(f) = supp h,(f; P).
Several well-known properties of the entropy with respect to a partition carry over to its nonautonomous generalization.
In order to formulate these properties, we have to introduce some notation. We say that a sequence Py ., of measurable
partitions is finer than another such sequence Q; , if P, is finer than Q, for every n > 1 (i.e., every element of P, is
contained in an element of Q,). In this case, we write P1 o > Q100 If P1oo and Q1 are two sequences of measurable
partitions, we define their join Py V Q100 := {Ps V Q,p}ns1. For a sequence Py, and m > 1 we define another
sequence 732"";()‘1,00) by

m—1 m—1

m—1
\/ 7P, \/ P2, ., \/ fe Pisk,
i=0 i=0 i=0

Finally, recall the definition of conditional entropy for partitions of a probability space (X, A, p). If A, B € A with
p(B) > 0, then p(A|B) := u(AN B)/u(B). If P and Q are two partitions of X, the conditional entropy of P given Q is

H,(P|Q) := =) u(Q)) u(P|Q)logu(P|Q).

QeQ PeP

Some well-known properties of the conditional entropy are summarized in the following proposition (cf., e.g., Katok and
Hasselblatt [11]).

Proposition 8.
Let P, Q and R be partitions of X.
(i) H,(P|Q) = 0 iff Q is finer than P (modulo null sets).
(i)) H,(PV Q|R) = H,(P|R) + H,(Q|P V R).
(iii) If R is finer than Q, then H,(P|R) < H,(P|Q).
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(iv) 0 < H,(P|Q) < H,(P)
(v) Hy(PIR) < H,(PIQ) + H,(QIR).

Now we can prove a list of elementary properties of h(fi s; P1,00) most of which are straightforward generalizations of
the corresponding properties of classical metric entropy.

Proposition 9.
For any sequences of finite measurable partitions for X », the following assertions hold:
(i) 0 < h(f1,00; P1,oo) < limsup,_,o(1/n) Y_i_; log #P..
(ii) h(f1.00: P1.oo V Qi,00) < h(F1 005 Prioo) + h(f1 001 Qi.00)-
(iii) 1f P1oo = Q1,00 then h(f1,00; P1,0e) = h(F1,00i @i,00)-

(iv) For every k > 1 it holds that

nk—1

\/ f1 “P1+1

i=0

(f1oo,73100)—ltmsup — H,,

n—.oo

(v) For every m > 1 it holds that h(fi «; P1.co) = h(fy, 00,7?1 (f1 ))-
(Vi) h(f100; Proo) < h(f100: Q1,00) + limsup, . (1/n) Y_1_; H,, (Pi]Qy).
(vii) h(f.00s Pr.oo) = h(fioo; Pioo) for all k, 1 € N.
(viii) Let € denote the family of all sequences P, of finite measurable partitions for Xi ., with uniformly bounded

cardinalities #P,. Then a metric on £ is given by

dr(Pi1,cor Q1,00) 1= sup Un(P |Qn) + SupHUn QH|P

n>1

Moreover, the function Py o > h(f1 00 P1.0o) is Lipschitz continuous with Lipschitz constant 1 on (€, dg).

Proof.  The properties (i)—(iii) follow very easily from the properties of the entropy of a partition. Property (iv) is
a consequence of Lemma 4, since the partitions \/ 70 f7“Piy1 become finer with increasing n, and hence the sequence
ne— H, (\/l o [T"Pis1) is monotonically increasing. To show (v), note that for every n > 1 we have the identities

n—1

\/ P (Fr.00)

i=0

—1m=1
\/ \/ P
i=0 j=0

H, m

n—1 m—1

_ —i —=J

= H,, \/ fi \/ fia Pitisa
i=0 j=0

n+m—2

\/ £ 5 Prsa
k=0

This implies

,I n+m—2
h(f1,oo;P‘<|7'DzJ(f1,oo)) = ltmsup ( \/ kP

n—1
= llmsup Hu1 \ 75 Prst | = h (Fleei Preo)
- k=0
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which concludes the proof of (v). Next, let us prove (vi): From Proposition 8 (ii) it follows that

n—1

\/ 7 Pig

i=0

H“1 < Hm

n—1 n—1
VA¢MVVmQH)

i=0 i=0

n—1 ) n—1 )

\/ B Pisal \/ 7' Qi ) .
i=0 i=0

n—1

= Hm \/ friQiH +Hu1
i=0

For the last term in this expression we further obtain

Hy,

n—1 n—1
VA%MVAQM)
i=0 i=0

n—2 n—1
=m1ﬁvqu%MVﬁg4
i=0 i=0
n—1 n—2 n—1
= Huy [ Pil\/ f7'Quct | + Hy | 7' 5Pl P v \/ 77 Qi ) .
i=0 i=0 i=0

Now we use Proposition 8 (iii) to see that this sum can be estimated by

S Hm (P1 |Q1) + Hm

n—2 n—1
1‘1_1 \/ 5 Pisal \/ Qi ) .

i=0 i=0

Using the same arguments again, for this expression we find

= Hu1 (P1|Q1) + Hm

n—=3 n—1
mmvaW%MvH@m)
i=0 i=0
n—1
7' Pal \/ F71 Qi
i=0

= Hm (P |Q1) + Hm

+H,,

n—=3 n—1
VKW%MW%VVAQM)
i=0 i=0
Hyy (P11Q1) + Hy, (P21 Q0)

n—3 n—1
MVG%MVﬂme
i=0 i=0

IA

+H,,

Using fipn = i, we find that H,, (f7'P2lf;'Q2) = H,,(P2]|Q2). Going on inductively, we end up with the estimate

H,,

n—1 n—1 n
\/ 7P \/ 7 Qi ) < Z H,, (P:|Q;).
i=0 i—1

i=0
Hence, we obtain
,I n
hfoor ooghfoor 00 Li - H,, i1=i)
(F1.00: P00 h,%,ngyné:MP@)
which finishes the proof of (vi). Let us prove (vii): For any kK € N we find
n—1

AAVE

i=1

1
h(fk 00 Proo) = limsup EHUk

n—-oQ
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|

=h (fk+1,m;Pk+1,w) .

n—1

\/ fi Pres

i=1

IN

n—o0

1
lim sup . [H,Jk (Pi) + H,,

1
= limsup EHW

n—o00

n—1

_ —(i—1

fk1 \/ fk+(1 )Pkﬂ')
i=1

n—2

\/ fe1Plesy+i
i=0

1
limsup —H,, .,
n—oo n

Using the elementary property of the entropy of partitions that H(A) > H(B) whenever A is finer than B, the converse
inequality is proved by

n—1

Pr VvV \/ fi Prai

i=1

’
h(feooi Proo) = limsup EH“k

n—o00

n—1

\/ fI:iPkJri

i=1

1
> limsup EHM‘

n—o00

= h(fis1,00; Pit1,00)-

This implies (vii). Finally, to prove (viii), note that the assertion that dg is a metric easily follows from the properties of
conditional entropy stated in Proposition 8. From item (vi) we conclude the nonautonomous Rokhlin inequality

|h(f1,oo;7)1,oc) - h(f1,:>c; Q1,oo)|

1 < 1 <
< max {lim sup Z H,, (Pi|Q;), limsup - Z H,, (Q,'|79,»)}
i=1 =00 i=1

1 n 1 n
< limsup — > Hy, (PiQi) + lim sup - > Hy (QilP)
n—oo i=1 n—oQ i=1

< sup H,, (Pa]Qn) + Slig Hy, (Qn|Py),

n>1 n>

which finishes the proof of the proposition. O

Remark 10.
Note that the equality in item (vii) of the preceding proposition reveals an essential difference between metric and
topological entropy of NDSs, since in the topological setting only the inequality

hlop(fk,DO) < hlop(fk+1,oo)

holds. A counterexample for the equality is given by a sequence f; o, on the unit interval such that f; is constant and all
other f, are equal to the standard tent map. In this case, clearly hiop(f1,00) = 0, but hiep(fr.00) = log 2 for all k > 2 (see
also [13] for a counterexample with hyop(fi,c0) < hiop(fis1,00) for all k). Therefore, the notion of asymptotical topological
entropy, as defined in [13], has no meaningful analogue for metric systems.

Remark 11.

Item (viii) of the preceding proposition is the nonautonomous analogue of the Rokhlin inequality.

From Proposition 9 (vii) we can conclude a similar result as [13, Thm. A] which asserts that the topological entropy of
autonomous systems is commutative in the sense that hy,(f 0 g) = hyop(g o f).
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Corollary 12.
Consider two probability spaces (X, p) and (Y, v) and measurable maps f : X — Y, g : Y — X such that fu = v and
gv = p. Then p is an invariant measure for g o f, v is an invariant measure for f o g, and it holds that

hy(fog)=h,(gof).
Proof.  We consider the NDS (X o, f1.,) defined by Xio, := {X,Y,X,Y,...} and fio := {f.g,f,g,...}. The

corresponding f; -invariant sequence of measures is fi, := {u, v, 1, v,...}. Consider a finite partition Q of Y, put
P:=f1Q, and Pi := {P,Q,P,Q,...}. Using Proposition 9 (iv), we find

h(fi00iProo) = lim sup 5~

n—o0

2n—1
\/f PL+1)

n—1
1 i
= ll:LSOl:p on \/ f1 7)2,+1 \% \/Of 2+1),P21+2
= ltmsup H, \/(gof ”P\/\/gof ) Q)
1 1 (Y 1
= iuinijp H, i\:/o(gof)*'P = Shilg o f;P).

Similarly, we obtain 2h(fy,c; P2,so) = hy(fo g; Q). Hence, from Proposition 9 (vii) we conclude h,(gof;P) = h,(fog; Q).
Since we can choose Q freely, this implies h,(fog) < h,(gof). Starting with a partition P of X and putting Q := g~ 'P,
we get the converse inequality. O

Remark 13.

In Balibrea, Jiménez Lépez, and Canovas [2] one finds proofs for the commutativity of metric and topological entropy
which are not based on entropy notions for nonautonomous systems. These commutativity properties were first found in
Dana and Montrucchio [6]. Later, Kolyada and Snoha [13] rediscovered the commutativity of topological entropy.

We finish this subsection with an example which shows that the entropy h(fi .; P1.) can be arbitrarily large even for
a very trivial system.

Example 14.
Let X100, f1.00 @and i be constant sequences given by X, = [0,1] f, = idps), and p, = A (the standard Lebesgue
measure). Consider the family P, o, of partitions given by

P, = {10, 1/k"), [1/k", 2[k"), ..., [(k" —1)/k", 1]}

for a fixed integer k > 2. Then one easily sees that

k”
= H,(P») Z F log — k” = logk” = nlogk,

HW

n—1
\/ 7" Pisa
i=0

which implies h (f1,oo;731,oo) = log k.

From this example one sees that by taking appropriate sequences of partitions, one obtains arbitrarily large values for
the entropy of the identity. Here we have the same problem as we had in defining the topological entropy via sequences
of open covers. If the resolution becomes finer at exponential speed, one obtains a gain in information which is not due
to the dynamics of the system. Hence, in the definition of the metric entropy of f; o, we have to exclude such sequences.
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3.2. Admissible Classes and Metric Entropy of Nonautonomous Systems

To define the entropy of the system (Xj . f1.00, H1.00), We have to choose a sufficiently nice subclass € from the class
of all sequences P; . Then the entropy can be defined in the usual way by taking the supremum over all Py, € &.
In view of the definition of topological entropy in terms of sequences of open covers and Example 14 it is clear that
taking all sequences of partitions is too much. Since there is no direct analogue to Lebesque numbers for measurable
partitions, we introduce suitable classes of sequences of partitions by axioms which reflect some properties of the family
L(f1,) defined in Section 2.

Definition 15.
We call a nonempty class £ of sequences of finite measurable partitions for X o, admissible (for f, ) if it satisfies the
following axioms:

(A) For every sequence P, € € there is a bound N > 1 on #P,, i.e, #P, < N forall n > 1.
(B) f P1o € € and Q4 is a sequence of partitions for Xj o, with Py o > Q1. then Q1 € £

(C) € is closed with respect to successive refinements via the action of f; ... That is, if Py € &, then for every m > 1
also P") (f1 o) € €.

From Axiom (A) it follows that the upper bound in Proposition 9 (i) is always finite. Moreover, by adding sets of measure
zero, we can assume that #P, is constant for every element of £&. Axiom (B) says that with every sequence Py, € €
also the sequences which are coarser than P; ., are contained in £ Axiom (C) will be essential for proving the power
rule for metric entropy. It reflects the property of sequences of open covers stated in Lemma 3.

Definition 16.
If £ is an admissible class, we define the metric entropy of f; o, with respect to € by

he(fi,00) = he(fi,00i th,0o) = SUP h(F1,00; P1co)-
P10 EE

Proposition 17.

Given a metric NDS (X1, f1.5), let € be the class of all sequences of partitions for X1 ., which satisfy Axiom (A). Then
& is an admissible class. £ is maximal, i.e., it cannot be extended to a larger admissible class. Therefore, we denote
this class by Eyax 0 Enax(Xi,00)-

Proof. It is obvious that £ cannot be enlarged without violating Axiom (A). Hence, it suffices to prove that £ satisfies
Axioms (B) and (C). If P € € and Qq is a sequence of partitions which is coarser than P; ., it follows that
#9, < #P, for all n > 1, which implies Q1. € £ Now consider for some Py, € £ and m > 1 the sequence
P (F100). We have

m—1
# [v fr7_i7)i+n
i=0

This implies that & satisfies Axiom (C). O

m—1 m—1 m
< |_| #* [fn_ipi-%—n] = I_l #Piyn < (SUP #PE) .
i=0

i=0 21

The following example shows that &« is in general not a useful admissible class.

Example 18.

We show that hg,_ (1) = 00 whenever the maps f; are bi-measurable and the spaces (X, 1,) are non-atomic. Indeed,
for every k > 1 we find a sequence Py o, of partitions with #P, = k such that h(fi o; P1.00) = log k, which is constructed
as follows. On X; take a partition P; consisting of k sets with equal measure 1/k. Then Q, := f;P; is a partition
of X, into k sets of equal measure. Partition each element Q; of Q, into k sets Q;,..., Qi of equal measure 1/k?.
Then define a new partition P, of X, consisting of the sets F’12 = Q11U Oy U...UQ, P22 = QpU...UOQy, ...

37



VERSITA

Christoph Kawan

Pf 1= Q1x U... U Q. Also P, is a partition of X, into k sets of equal measure 1/k, and P,, Q; are independent. This
implies

Huw (Prv f1_17)2) Huw (f1_1 QV f1_17)2)

Hi,(Q2 V Pa) = Hyy(Q2) + Hyy (P2) = 2log k.

Inductively, one can proceed this construction. For i from 1 to some fixed n, assume that P; is a partition of X; into k
sets of equal measure such that R,, := Py V ff“Pz V...V ff("_”??,, consists of k" sets of equal measure. Then consider
the partition Q,41 := /R, of X,11. Let R, = {Ry,..., Rwn} and partition each R; into k sets of equal measure 1/k"*",
say R, = Ry U...U Ry. Define the partition P,y = {P;*, ..., P{*"} by Pf*" := Ry;U... U Rij. This gives

Hy,

\/ f;['PiJA ) = H;I'\ (Rn \ f17n,Pn+1) = Hm (f;”QnJA \ f17n7)n+1)

i=0
= Hu,,+1 (Qn+1 \ Pn+1) = Hun+1 (Qn+1) + Hu”_H (Pn+1)
log k" + log k = (n + 1) log k,

which implies h(f «; P1,c) = log k for the sequence Py, = {P,} obtained by this construction.

As this example shows, we have to consider smaller admissible classes. These are provided by the following proposition
whose simple proof will be omitted.

Proposition 19.

Arbitrary unions and nonempty intersections of admissible classes are again admissible classes. In particular, for every
nonempty subset F C &Enax there exists a smallest admissible class E(F) which satisfies F C E(F) C &Enax (defined as
the intersection of all admissible classes containing F). We also call E(F) the admissible class generated by F.

We also have to show that the metric entropy of a NDS generalizes the usual notion of metric entropy for autonomous
systems. To this end, we use the following result.

Proposition 20.
Let F be a nonempty subset of E,a. Then

H(]:) = {Q1oo S gmax | 3P1m € f : h(f1oo:Q1oo) S h(f1z>or7)1<>0)} (2)
is an admissible class with F C H(F) C Enax- Consequently, E(F) C H(F) and it holds that

her)(fi.00) = hyry(Froe) = sup h (Fo0i Prios) -

P1oc€EF

Proof. It is obvious that F C H(F) C &Eax. Clearly, H(F) satisfies Axiom (A). It also satisfies Axiom (B), since any
sequence R4 of partitions coarser than some Q; ., € H(F) satisfies h(f1 00; R1,00) < h(F1.00; Q1.00) < h(f1,001 Pr.co) for
some Pj o € F. With the same reasoning and Proposition 9 (v), we see that H(F) satisfies Axiom (C) and hence is an
admissible class. O

The preceding proposition shows not only that there exists a multitude of admissible classes, but also that the metric
entropy of f o, can be equal to any of the numbers h(f; o; P1.00) by taking the one-point set F := {P; .} as a generator
for an admissible class. The next corollary immediately follows.

Corollary 21.
Assume that the sequences Xi oo, f1.00, 0o Gre constant, i.e,, we have an autonomous system (X, f, p). Let F be the set
of all constant sequences of finite measurable partitions of X. Then hgr)(f1,00) = h,(f).
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3.3. Invariance and Restrictions

In order to be a reasonable quantity, the metric entropy of a system f; ., should be an invariant with respect to
isomorphims. By an isomorphism between sequences (X 00, 11,00) @nd (Y100, V1.00) Of probability spaces we understand
a sequence 7o, = {m,} of bi-measurable maps 7, : X, — Y, with m,u, = v,. Such a sequence is an isomorphism
between the systems f; o, on Xj o and g1 on Yi . if additionally for each n > 1 the diagram

fn
Xn ? Xn+1

Tn l J{’Tn+1

Y, — Yors
n

commutes. In this case we also say that the systems f; ., and g1, are conjugate. If the maps m, are only measurable
but not necessarily bi-measurable, we say that the systems f; o, and g1, are semiconjugate. The sequence 7 is then
called a conjugacy or a semiconjugacy from f; o, to g1, respectively.

Given two admissible classes € and F for X and Yi ., resp., we also define the notions of £-F-isomorphisms and
E-F-(semi)conjugacies via the condition that s  respects £ and F in the sense that

Pioo ={Pur}us1 € F = {7 (Pa)}as1 € E.
In the case of an isomorphism or a conjugacy, the implication into the other direction must hold as well.

Proposition 22.
Let (X1.00: Flioor H1,00) @Nd (Y100, G1.001 Vi.0o) be metric NDSs with admissible classes £ and F, respectively. Let m , be
an E-F-semiconjugacy from fy o, to g1.00. Then

hr(g1.00) < he(fro0)-

Proof.  First note that the semiconjugacy identities 7,1 o f, = g, o 7, imply g{ o 7y = myq o £ for all i. Let
P1.eo = {Py} be a sequence of finite measurable partitions for Y; . Fixn € Nand P, € P, i =1,...,n. Then we find

n—1 n—1

o (5 Qe ) < (Pasemre. |
i=0 i=0

n—1 n—1

m(ﬂm o fj)”"! Pj.s ) = (ﬂ frins Pi ) :

i=0 i=0

n—1
—i
4 m [ sz+1
i=0

H

Define Q10 = {Q,} by Q, := {m;'(P): P € P,} for all n > 1. Then Q, is a finite measurable partition of X, and
from the preceding computation we get

HV1 = Hm

i=0

n—1
\/ ffiQi+1 ) .

n—1
\/ 91_i7)i+1
i=0
Hence, h(f1,00; Q1,00) = N(G1,00; P1.co)- Writing Q1 = ﬂ{lo(ﬂ,oo), we find

hr(Gios) = SUP h(G1.00i Prioo) = SUP  A(fie0; 71 a (Pioo))

P1oc€EF P10 EF
< sup M(fie0r @ic0) = he(fro0),
Q1,0EE
as desired. -
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Given a metric NDS (X 00, f1,00, H1,00), @ssume that we can decompose each of the spaces X, as a disjoint union X, =
Y,UZ, such that £,(Y,) C Y,u1, f,(Z,) € Zyiq and p,(Y,) = c for a constant 0 < ¢ < 1. Then let us consider the
restrictions of f;, to the sequences Y, := {Y,} and Z; o, := {Z,}, resp., i.e,, the systems defined by the maps

gn ‘= fn|Y,, : Yn - Yn+1: hn = fn|Z,, :Zn —>Zn+1~

It we consider the probability measure v,(A) := p,(A)/c on Y, it follows that (Y}, G100 Vi,eo) is also a metric system.
If ¢ <1, we can define a corresponding invariant sequence of probability measures for the system (Z; o0, h1,00) as well.

Proposition 23.
Let € be an admissible class for (X1 e, f1.00) and assume that Py, € & implies {P, V {Y,, Z,}} € E. Then

5|Y1,oo = {QLOQ | 37)1,00 [SH Qn = {Yn} Vpn}

is an admissible class for (Y1 00, g1.00) and
chepy, (91.00) < he(frco)-

If ¢ =1, then equality holds.

Proof. It is clear that Ely, ., satisfies Axiom (A). Let Q10 € & coly,,.. Then there exists Py, € £ such that the
elements of each Q, are the intersections of the elements of P, with Y,. Now assume that R4, is a sequence of
partitions for Yj ., which is coarser than Q; .. Then the elements of each R, are unions of elements of Q,. Taking
corresponding unions of elements of P, for each n, one constructs a sequence S, € £ coarser than P; ., such that
{42} V81,60 = Ri0, which proves that £|y,  satisfies Axiom (B). Finally, if @, = {Y,} VP, for some Py, € &, then for
all k, m > 1 it holds that

m—1 m—1 m—1

\/ 9¢ Qi = \/ f ({Visk} V Pisi) = {Yi} v \/ fi Prsk
i=0

i=0 i=0

which implies that £|y,  satisfies Axiom (C). To prove the inequality of entropies, consider Q1. € &|y, ., and the
corresponding P ., € € with Q, = {Y,} VP,. Then

n—1 n—1
Ho [\ 97°Qist | = Hoy [ (M1} V \/ HPiss
i=0 i=0
1 u (P NY
= =2 Y mPavg LN
PeV; 7Py

Y mPnYi)legm(Pny)— > m(PnYi)loge
PEV; f{ ' Pigs PEV, i Piss

The last summand gives

Z m(PNnYy)logec=p(Yi)logec = clogec,
PEV; 17 Piya

and thus can be omitted in the computation of h(g1.c; Q1.00). We obtain

1 1
h(g1.00; Qi) = limsup — | —— > m(PnYi)logm(PnYy)

n—o0 p
PEV 17" Pis
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If we consider the sequence 751,00 of partitions 75,7 ={PnY,:PeP,}u{PNnZ,:PeP,} we see that
1 ~
h(g1,001 Q1.00) < ;h(f1,oo;7)1,oo)~ (3)

By the assumption on £ it follows that 731,00 € & and hence the assertion follows. In the case ¢ = 1, the measures p,(Z,)
are all zero, and hence equality holds in (3). Since P; is finer than Py o, we have

he(fio0) = SUP h(Frooi Proo) = ¢ SUp  h(g100; Qi 00) = cheyy, (gi.00),

Proo Q1,00€ElY] o

which finishes the proof. O

Remark 24.

For a topological NDS given by a sequence of homeomorphisms, endowed with an invariant sequence of Borel probability
measures, the above proposition can be applied to the decomposition Y, := supp p,, Z, := X\ supp p,, where supp p, =
{x € X,|Ve > 0: u,(B(x, €)) > 0} is the support of the measure p,,.

3.4. The Power Rule for Metric Entropy

Given a metric NDS (Xj, f1,00) and k € N, we define the k-th power system (X[k] fgkio) in exactly the same way as

1,007
we did for topological systems. It is very easy to see that this system is a metric system as well.
If £ is an admissible class for (X1, f100), We denote by EX the class of all sequences of partitions for ngio which are
ie., 7%,m =:{7)n} e iff

defined by restricting the sequences in £ to the spaces in ngio

,ng})o = {P-tjkt1}n>1 € g,

Proposition 25.

If € is an admissible class for (X1, f1.00), then EX is an admissible class for (nglo

fgk]m) and
hew (AL) = k- he (). (4)

Proof. ltis clear that ¥ satisfies Axiom (A). To verify Axiom (B), consider ’P[ﬁo € &M for some Py €E. If Q4 is
a sequence of partitions for nglo which is coarser than ng]m (ie, Qn X Pu-1)k+1 forall n > 1), we can extend Q;  to
a sequence R of partitions for Xj o, which is coarser than P; . This can be done in a trivial way by putting
R = P, if n —1 is not a multiple of k,
m Q- i n—1is a multiple of k.
Then it follows that R, = P, X P, in the first case, and R, = Qi(n—1)x <X Pa in the second one. Since £ satisfies

Axiom (B), we know that R4 ., € &, which implies that Qq . = R[ﬂx € &¥. To show that ¥ satisfies Axiom (C), let
Pis € E and m > 1. We have to show that the sequence Q. defined by

m—1

Q, = \/ f(;ik1)k+17)(i+n—1)k+1
i=0

is an element of EX. To this end, first note that
mk—1

Q, =X \/ fint ks Pin—tks1+i = Ra-
i=0
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The sequence R can be extended to an element Sy, of £, which is given by
mk—1

Syi=\/ f;Pusi
i=0

Indeed, S14 € €&, since & satisfies Axiom (C). Hence, Rq 0 = Sgklx) e &K and since &X satisfies Axiom (B), this implies
Q1o € M. Now let us prove the formula for the entropies. Let Pio, € £ We define a sequence Qo of finite
measurable partitions for ngio as follows:

k—1
Q= \/ f(;/,1)k+17)(n—1)k+1+j-
j=0

The sequence Q1 is an element of X, since it is of the form Q; ., = ’R[f]oo with Ry € E. This follows by combining
the facts that Py € € and € satisfies Axiom (C). We find that

1
lim sup EH“‘

n—oo

h (AL Qi)

n—1
\ 7% Qu )

i=0
n—1

k=1
= i 'y N/ £
tmsup - Fyy 1 ket Pik1+4f
i=0 j=0

n—oQ

‘ 1 n—1k—1 ke
= limsup ;Hm \/ \/ f, ( +/)P(ik+/’)+1

=00 i=0 j=0
nk—1

\/ £ Pisa ) =k h(f100:P1o) -
i=0

1
k - limsup WH‘”

n—o00

To obtain the last equality we used Proposition 9 (iv). Now consider also the sequence ’ng]x) It is obvious that Q1 is

finer than ng]m Hence, using Proposition 9 (iii), we find
b (AL PR < b (AL Que) =K b (fraiProc)

Taking the supremum over all nglxj on the left-hand side and over all P; o, on the right-hand side, the inequality “<” in
(4) follows. The converse inequality follows from

heiw (ﬂ[klo) > h (fﬁﬁ]x,;Qm) =k h (fieeiPreo)

which holds for every Py, € €. O

4. Relation to Topological Entropy

In order to prove a variational inequality, we consider a topological NDS (Xj ., f1.00) With an f; -invariant sequence
11 of Borel probability measures. When speaking of measurable partitions in this context, we mean “exact” partitions
and not partitions in the sense of measure theory, where different elements of the partition may have a nonempty overlap
of measure zero. We will frequently use the property of inner regularity of Borel measures, i.e., p(A) = sup{u(K) : K C
A compact} for any Borel subset of a compact metric space.
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4.1. The Misiurewicz Class

In this subsection, we introduce a special admissible class which we will use to prove the variational inequality. This
class is constructed in such a way that its elements are just perfect to apply the arguments of Misiurewicz's proof of the
variational principle to them. Therefore, we call it the Misiurewicz class.

Let (X100, f1,00) be a topological NDS with an f; -invariant sequence of Borel probability measures 0 = {tn}-

We define the Misiurewicz class &y C Enax as follows. A sequence Py € Enaxs Pn = {Pan, .., Pax, }, is an element of
& iff for every € > 0 there exist 0 > 0 and compact sets C,; C P,; (n > 1,1 < i < k,) such that for every n > 1 the
following two hypotheses are satisfied:

(a) UH(Pn,i\Cn,i) S E.

(b) The minimal distance between the sets G, ; is at least 9, e,

min min{g.(x,y) : (x,y) € Goix Gy j} > 0.

1<i<j<k

Proposition 26.
If i o is equicontinuous, then &, is an admissible class.

Proof.  First note that & is nonempty, since it contains the trivial sequence defined by P, := {X,} forall n > 1. To
show that &y satisfies Axiom (B), assume that Py = {P,} € &, P = {Pu1,.... Pax,}, and let Q. be a sequence
which is coarser than P; ... Let Q, be given by

Qn = {Qn,1r~ ce Qn,ln}'

Then every element of Q, must be a disjoint union of elements of P,:
Nai
On,i = U Pn,ja~

a=1

Since Py € Eu, we can choose compact sets C,; C P,; and 0 > 0 depending on a given £ = £/(max,> #P,) such
that (a) and (b) hold for P; . Define

Nn,i

Dn,i::UCn,j(,r n21: i:1r--~11n-
a=1

It is clear that D, ; is a compact subset of Q,;. Moreover, it holds that

Ni,i Nai
Hn (Qn,i\Dn,i) = Htn U Pn,jq\ U Cn,/’a
a=1 a=1
N, i N, i N. E
=t g[Pn,ja\Cn,ja] = ;Un (Pjc\Crio) < e #P, =

For i # j we have

N, Na,j
min 4 o,(x, y) : (x,y) € U G, % U G jg
a=1 p=1

= mlf? min {Qn(x, y) : (xy)e G x CMB} >0,
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since each G, ;, is disjoint from all C,,,,-B. Hence, Q1 € &u. To show that Axiom (C) holds, let Py = {P,} € &, Pn =

{Pp1,..., Py, }, and m > 1. Consider the sequence Pﬁ'z(ftw). For given € = (1/m)€ > 0 choose 6 > 0 and compact
sets C,; C P,; such that (a) and (b) hold for Py ,. Foreveryr > 1and (jo, ..., jm1) € {1.... .k} x-x{1, ..., keymr}
define

m—=1

T ﬂ 7 (Crvi):
i=0
These sets are obviously compact subsets of X, and each element of Pﬁ'">(f1,00) contains exactly one such set. We have
m—1 m—1
Hy ( () 7 Praii)\ () £ (Crvi)
i=0 i=0

m—1 m—1
=y, ( U [( ﬂ fri(Pm./;)) \fr[(Cr+Ln)] )
(=0

i=0
m—1
<Y e (7 P\ (Cran)
(=0
m—1

Il
TR

m—1
rHr (Pr+[,j,\cr+1,j[) = Z Hr+t (Pr+[,j1\Cr+l,j1) <me=E¢.
=0

Finally, in order to show that (b) holds for P{™(f; ), we need the assumption of equicontinuity for f; ., which yields
a number p > 0 such that g,(x,y) < p implies g,i(fi(x), fi(y)) < d forall r > 1 and i = 0,1,...,m — 1 (cf. the
proof of Lemma 3). Now consider two sets D, . i._) and D, ..., These sets are disjoint iff there is an index
ae{0,1,...,m—1} such that j, # [,. This implies g q(f7(x), f?(y)) = 0 for all x € D, j,..j ) and y € Dy .
and hence g,(x, y) > p. Thus, we have found that for every r > 1 it holds that

alm—1)r

o -T‘lnﬂ# min {Q,(X, y) : (xy) € Dr,(io,...,/'mq) x Dn(lo rrrrr 1117—1)} 2P
(loilm—1)

which completes the proof. O

In [13, Thm. B] it is shown that an equiconjugacy preserves the topological entropy of a topological NDS. An equicon-
jugacy between systems fi ., and g1, is an equicontinuous sequence 7y, = {m,} of homeomorphisms such that also
{7} is equicontinuous and 7,1 0f, = g, o 7,. The following proposition shows that an equiconjugacy also preserves
the Misiurewicz class and hence the associated metric entropy.

Proposition 27.
Consider two equicontinuous topological NDSs (Xi e, f1.00) and (Yi,.0, §1,00). Assume that 71 is an equisemiconjugacy
from f1 oo 10 g1 00, L-€., it holds that 7,1 0f, = g,om, for all n > 1 and the sequence {m,} is equicontinuous. Then, if p
is an fy oo -invariant sequence, Vi oo = {Vy}, Vi 1= Talin, IS g1 co-invariant and 7 o is an Eu(fi s)-Em(g1,00)-semiconjugacy.
Hence,

hey(g1,00) < hey(Fie0)-

Proof.  We have g,v, = ¢,(m,t,) = Tp1folln = Tnsilins1 = Vorq and hence, vi o, is g1 -invariant. To show that
M 00 1S AN EM(F1,00)-EM(G1,00)-s€Miconjugacy, consider some Q100 € Eu(G1.00) and let P, := {m;'(Q) : O € Q,} for all
n > 1. To show that Pi . € Eu(fi). let € > 0. Then, if Q, = {Q,1,..., Qux, }, we find compact sets C,; C Q,; and
0 > 0 such that v,(Q,\C,;) < € and

min - min {gy,(y1.y2) : (y1,y2) € Coi x Gy j} > 0. (5)

1<i<j<kn

44



Metric Entropy of Nonautonomous Dynamical Systems VERSITA

Since {m,} is equicontinuous, there exists p > 0 such that gx, (x1, x2) < p implies gy, (71,(x1), 7T, (x2)) < 0 for all n > 1
and x1,x; € X,. Now consider the closed (and hence compact) sets 7, '(C,;) C ;' (Q,:) =: P,i; € P,. We have

n

U (P \7t7 1 (Coi)) = va(0,:\Cp)) < €. Assume to the contrary that there exist n € N, i # j, and x; € 7;"(C,.),
x; € 7,1(C, ;). such that gx, (x1, x2) < p. This implies gy, (7,(x1), Ta(x2)) < 8. Since 7,(x1) € C,; and m,(x2) € C,; this
contradicts (5). Hence, P1 . € &u(fi,00) and the rest follows from Proposition 22. O

4.2. The Variational Inequality

Now we are in position to prove the general variational inequality following the lines of Misiurewicz's proof [19].

Theorem 28.

For an equicontinuous topological NDS (X1, f1,00) With an invariant sequence 1 it holds that
hgy(Ffi.e0) < hiop(f,e0)-

Proof.  Let P;. € &u. We may assume that each P, has the same number k of elements, P, = {P,1,..., P.x}. By
definition of the Misiurewicz class, we find compact sets Q,,; C P, ; (for all n, i) such that

1
1'Dni nigi, .:1,...,k, 21,
Hr ( , \Q , ) P |.Og k 1 n
and 0 > 0 with
min min {g,(x,y) : (x,y) € Qnix Qns} 2 0. (6)
By setting Q,0 = X,,\Uf;1 Q,; we can define another sequence Qi. of measurable partitions Q,

{Qn0,Qna,--., Opk}. As in Misiurewicz's proof one finds H,, (P,|Q,) < 1, which by Proposition 9 (vi) leads to the
inequality
h (F1,00: Prioo) < B (Fro0i Qio) + 1. (7)

Define a sequence U, , of open covers U, of X, by

Z/{n = {Qn,O U Qn,‘lr s Qn,O U Qn,k} .

To see that the sets Q,o U Q,; are open, consider their complements Q,1 U ... U Q-1 U Qp 41 U ... U Q,, which are
finite unions of compact sets and hence closed. For a fixed m > 1, let E,, C Xj be a maximal (m, 0)-separated set. From
(6) it follows that each (0/2)-ball in X, intersects at most two elements of Q, for any n > 1. Hence, we can associate
to each x € E,, at most 2" different elements of \/1"":_01 f{‘QM, which implies

m—1
, 0
# |:\/ f1[Q[+1:| S 2mrsep (m: z:ftoo) .

i=0

Consequently, we obtain

Hm

m—1 m—1
) . 0
\/ f1th_+1) < log# [\/ f1‘Qi+1] < log reep (m, 5 f1,oo) + mlog 2.

i=0 i=0

Using (7), we therefore have

h (f1,m;p1,m)

IN

lim sup 1 log reep (m, g,ﬁm) +log2 +1

m—oo M

IN

hiop(fr,00) +log2 + 1.
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Taking the supremum over all Py o € &, we find
hey (f1.00) < hioplFre0) + log2 + 1.

That the constant term log 2+ 1 can be omitted in this estimate now follows from a careful application of the power rules
for topological and metric entropy. Inspecting the definition of the Misiurewicz class, one sees that for every k > 1 the
admissible class E,El,(l] is contained in the Misiurewicz class of fgklo Therefore, the arguments that we have applied to the
system (Xi 0, f1.00) can equally be applied to all of the power systems (X%lo, fglfio), k > 1. Hence, using the power rules
(Proposition 2 and Proposition 25), we obtain

log2 +1
e (F ) < roplfroc) + —7

Since this holds for every k > 1, sending k to infinity gives the result. O

An interesting corollary of Theorem 28 is the following generalized variational principle for autonomous systems.

Corollary 29.

For a topological autonomous system (X, f) it holds that

SUP hy (01,000 (F) = iop(f),

Hl,00

where the supremum is taken over all sequences (i o, with fu, = 4.

Proof.  The inequality “<” holds by Theorem 28. The converse inequality follows from the classical variational
principle, if we consider only the constant sequences i, i.€., the invariant measures of f, and assure ourselves that
the associated Misiurewicz classes contain all constant sequences. O

Corollary 30.
Let f1 be an equicontinuous sequence of (not necessarily strictly) monotone maps f, : X — X, where X is either a
compact interval or a circle. Then for every f, . -invariant sequence |1« it holds that hg,(f1 ) = 0.

Proof.  This follows from [13, Thm. D], which asserts that the corresponding topological entropy is zero. O

4.3. Large Misiurewicz Classes

Up to now, we only know that the Misiurewicz class &y contains the trivial sequence of partitions. If it would contain
no further sequences, Theorem 28 would not give any valuable information on the metric or topological entropy. The
aim of this subsection is to find conditions on invariant sequences of measures which give rise to a large Misiurewicz
class. The simplest case consists in a system (X s, f1,00, l1,00), Where both X; ., and p o, are constant, say X, = X and
u, = p. Then any finite measurable partition P of X gives rise to a constant sequence P, = P of partitions which is
obviously contained in &,. The following proposition slightly generalizes this situation.

Proposition 31.

Let (X1,00, f1,00) be an equicontinuous NDS with an f o,-invariant sequence ph . If X1, is constant and the closure of
{un} with respect to the strong topology on the space of probability measures is compact, then &, contains all constant
sequences of partitions.
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Proof.  We first show that every Borel set A C X can be approximated by compact subsets uniformly for all p,. The
strong topology is characterized by

Ur =4 & pp(A) — p(A) for every Borel set A C X.

Let C be the strong closure of yy ., and let A C X be a Borel set and € > 0. For each py € C there exists a compact set
B, C A such that p(A\B,) < €/2. Now take a neighborhood U, of i in C such that |v(A\B,) — u(A\B,)| < €/2 for all
v €U,. Then for every v € U, we have

VA\B,) < u(A\B) + 5 <.

We can cover the compact set C by finitely many of such neighborhoods, say U,,,,...,U,. Then B :=|J_, B, is a
compact subset of A which satisfies v(A\B) < € for all v € C, so in particular for all v = p,. Now let P = {Py,..., P}
be a finite measurable partition of the state space X. Then for any given € > 0 we find compact sets C; C P; such that
n(P\G) < eforalln >1and i=1,..., k. Moreover, since the sets C; are pairwisely disjoint,

min  min {Q(X, y) : (x,y) € G x Cj} > 0.

1<i<j<k

This implies that the constant sequence P, =P is an element of &u. O

Example 32.

Consider a system which is given by a periodic sequence
freo ={fi.f2 ... NP foy oo N, )
Let i be an fN-invariant probability measure on X (which exists by the theorem of Krylov-Bogolyubov). Define
= f, 3=, oo, UN = InciN-
and extend this to an N-periodic sequence
Mo = {M,Hz,-~~,UN,H1,H2,-~,IJN,~-}~
Then o s an fy o-invariant sequence, which follows from
fnin = Infncitinet = Infnaifnealines = - = 1NH1 = H.
Clearly, {gn, ..., un} is compact.

The assumption that the closure of {¢,} should be compact still seems to be very restrictive. The next result (Proposition
34) provides another condition for a large Misiurewicz class.

Lemma 33.
Let (X, 0) be a compact metric space with a Borel probability measure . Let A C X be a Borel set with p(dA) = 0.
Then A can be approximated by compact subsets with zero boundaries, i.e.,

p(A) = sup {u(K) : K C A compact with p(dK) = 0} .
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Proof.  We can assume without loss of generality that dA # @, since otherwise A is closed and hence compact itself.
For every € > 0 define the set
Ke == {x € intA : dist(x,0A) > €} .

We claim that each K, is a closed subset of X and hence compact. To this end, consider a sequence x, € K. with
x, — x € X. By continuity of dist(-, dA), it follows that dist(x,0A) > € and x € clA. Assume to the contrary that
x € 0A. Then ¢ < dist(x, 0A) = 0, a contradiction. Hence, x € K. We further claim that p(K;) — p(A) for e - 0. To
show this, take an arbitrary strictly decreasing sequence ¢, — 0. Then K,, C K;,,, for all n > 1. Hence, by continuity
of the measure p and the assumption that p(dA) = 0, it follows that

H(A) = plintA) =

UK.,

n>1

= lim p(K,)-

To conclude the proof, it suffices to show that one can choose the sequence ¢, such that p(0K,,) = 0. To this end,
we first show that for §; < &, the boundaries of Kj and Kj, are disjoint. Assume to the contrary that there exists
x € 0Kj, N 0Ks,. Then, by continuity of the dist-function, dist(x,dA) > &, and dist(x,0A) > d,. However, if one of
these inequalities would be strict, the point x would be contained in the interior of the corresponding set. Hence,
dist(x, 0A) = & < 0, = dist(x, dA), a contradiction. Now, we can construct the desired sequence &, — 0 as follows. Fix
n € N and assume to the contrary that y(0K;) > 0 for all € € (1/(n+1),1/n). Define the sets I,, := {e € (1/(n+1),1/n) :
p(OKe) > 1/m}. Then (1/(n +1),1/n) = J,,en Im and hence one of the sets /,, say /,,, must be uncountable. However,
since the boundaries of the K, are disjoint, this would imply that the set Uee/mo 0K, has an infinite measure. Hence, we
can take g, € (1/(n +1),1/n) with p(dK,) = 0. O

Proposition 34.

Let (X100, f1.00) be an equicontinuous system such that Xi . is constant and let i, = {p.} be an fi-invariant
sequence. Assume that the measures in the weak*-closure of {p,} are pairwisely equivalent. Then &, contains all
constant sequences of partitions whose members have zero boundaries (with respect to the measures (i,).

Proof.  Let C denote the weak*-closure of {u,}. Consider a finite measurable partition P = {P;, ..., Py} of the state
space X such that v(0P;) =0, 1 < i < k, for one and hence all v € C. Fix € > 0 and pick v € C. By Lemma 33, we find
compact sets C,; C P; with v(dC,;) =0, 1< i<k, and

v(P\C,) < €2, 1<i<k.

Since 9(P\C,;) C aP; U dC,; and hence v(d(P:\C,;)) = 0, the Portmanteau theorem yields a weak*-neighborhood
U, C C of v such that for every p € U, it holds that |v(P\C,,;) — p(P\C..))| < /2. Therefore, p(P\C,,) < € for all

p € U,. Since C is weakly*-compact, we can cover C with finitely many of these neighborhoods, say U,,,...,U,,. Then
G := U, C, is a compact subset of P; for 1 < i < k and for every p € C it holds that p(P;\C;) < ¢, in particular for
all gy = p,. This implies that the constant sequence P, =P is in &u. O
Remark 35.

Note that every compact metric space admits finite measurable partitions of sets with arbitrarily small diameters and
zero boundaries (cf. [11, Lem. 4.5.1]).

Example 36.

An example for systems with invariant sequences satisfying the assumption of Proposition 34, can be found in [23]: Let
M be a compact connected Riemannian manifold. By d(-, -) denote the Riemannian distance and by m the Riemannian
volume measure. For simplicity, we will assume that m(M) =1, so m is a probability measure. For constants A > 1 and
" > 0 consider the set

EAT) == {f €C*(M,M) : f expanding with factor A, [|f]|= < T},
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where “expanding with factor A" means that |Df,(v)| > A|v| holds for all x € M and all tangent vectors v € T,M. We
will consider a NDS fy ., = {f,} on M with f, € E(A,T) for fixed A > 1 and " > 0. It is clear that such a system is
equicontinuous. We define

D::{¢:M—>R : @ >0, Lipschitz, /(pdm:1}

and for every L > 0 the set

D = {(peD : ‘%—1‘§Ld(x,y) lfd(x,y)<8},

where € > 0 is a fixed number (depending on A and ). Note that

p={Jn,

L>0

since for every ¢ € D we have

L D Lip(¢)
() 1‘ (p(y)lst)(X) <P(y)|£m.m(pd(xly)-

For any expanding map f : M — M we write

- ?y) .
Pr(e)(x) = Z )m, Pr(p) : M - R,

yef~T(x

for the Perron-Frobenius operator associated with f acting on densities ¢ € D. Note that this makes sense, since
expanding maps are covering maps, and hence the sets f~'(x) are finite, all having the same number of elements.

Now let ¢ € D. We claim that the f; ,-invariant sequence, defined by 1 := ¢dm and p, := f1”*1;J1 for all n > 2, has
the property that the elements of the weak*-closure of {y,},en are pairwisely equivalent. To show this, let L > 0 be
chosen such that ¢ € T} and note that p,1 = P (@)dm for all n. By [23, Prop. 2.3], there exist L* > 0 and 7 > 1
such that P () € D+ for all n > 7. Hence, we may assume that P (¢) € Th+ for all n. We will first show that the
densities in D~ are uniformly bounded away from zero and infinity and that they are equicontinuous. Assume to the
contrary that there are ¢, € D+ and x, € M such that ¢,(x,) > n. Without loss of generality, we may assume that
@n(xn) = maxyenm @n(x). Choosing 0 € (0, €] with Lo < 1, we obtain

_ _ @n(X)
1 = /Mgo”dm > /B(X”ﬁ) @n(x)dm(x) = /B(X”ﬁ) (pn(Xn)tpn(xn)dm(x)

n /B(M) (1 — Ld(x, X)) dm(x)

[\

v

n/ (1= L8)dm = n (1 — L&) m(B(x,, 9)).
B(xn.,0)

Since m(B(x,, 0)) is bounded away from zero, this is a contradiction. Hence, the functions in )+ are uniformly bounded
by some constant K. This immediately implies equicontinuity, since for x, y € M with d(x, y) < € we have

ox)

oly) ‘ < Ktdbey).

lo(x) — o(y)| = <P(U)’

To show that the ¢ € T+ are uniformly bounded away from zero, assume to the contrary that there exist ¢, € )+ and
X, € M such that ¢,(x,) — 0. By compactness, we may assume that x, — x. Then

|(pn(X)_(pn(Xn)| S KLd(Xan)_)O = (pn(X)—)O
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Now pick some y € B(x, €). Then

1_ #nly)

[0a(x) = @a(y)] = @alx) @ (x)

‘ < @q(x)Le — 0.

Using the theorem of Arzela-Ascoli, we can choose a uniformly convergent subsequence ¢,, — ¢. The above argument
shows that the closed set ¢~'(0) is open, and by assumption it is nonempty. Hence, it is equal to M. This is a
contradiction to the integral condition [ ¢, dm = 1, which implies [ @¢dm = 1. Now we prove the claim: Let v be
a weak* limit point of {u,} and let ¢ := @, @41 = 7%n(p. Then, for a subsequence m, and for every continuous

g : M — R we have
[g(pm”dm—>/ gdv.
M M

On the other hand, by the theorem of Arzela-Ascoli, we may assume that ¢,,, converges uniformly to some ¢*, which is
bounded away from zero and satisfies [ ¢*dm = 1. Hence,

/gsvmndm—>/g¢*dm,
M M

implying v = ¢*dm.

Remark 37.
The above example can be regarded as a nonautonomous version of the classical result of Krzyzewski and Szlenk [15]
which asserts that every expanding C>-map has an absolutely continuous invariant measure.

Remark 38.

In view of Proposition 34 and Proposition 27, the most general criterion which guarantees a large Misiurewicz class
for an equicontinuous system (X, f1,00) With invariant sequence i o, is the existence of an equiconjugacy to a system
which satisfies the assumptions of Proposition 34. That is, there exists a compact metric space X and an equicontinuous
sequence {m,} of homeomorphisms 7, : X, — X such that all elements of the weak*-closure of the set {m,u,} are
equivalent.

5. Concluding Remarks and Open Questions

In this paper, we introduced a notion of metric entropy for quite general nonautonomous dynamical systems and studied
its elementary properties, in particular its relation to the topological entropy defined by Kolyada, Misiurewicz, and
Snoha. The number of open questions about this new quantity tends to infinity. We restrict ourselves to a very short
list of questions and topics for future research:

e In order to obtain a fruitful theory of metric entropy for nonautonomous systems, it seems inevitable to find
appropriate analogues of the notion of ergodicity. Describing ergodicity as the property that the state space
cannot be broken apart into two invariant subsets of positive measure, one can use the same definition for a
metric NDS on a single probability space. However, this definition is probably too strict. It seems more likely
that for different purposes different analogues of ergodicity of varying strength will fit.

e One of the next steps in the further development of the entropy theory for nonautonomous systems certainly is the
study of the question to which extent the variational inequality (Theorem 28) can be extended to a full variational
principle. Another interesting question is under which conditions there exist reasonably small generating sets for
the Misiurewicz class.

e The classical Pesin formula and Margulis-Ruelle inequality relate the metric entropy of a diffeomorphism to
its Lyapunov exponents, given by the Multiplicative Ergodic Theorem. It is an interesting and probably very
far-reaching question to which extent such results can be transferred to the nonautonomous case.

e The notion of metric entropy in this paper also generalizes the metric sequence entropy introduced in Kushnirenko
[16]. It might be an interesting topic for future research to look for generalizations of the known results about
metric sequence entropy.
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