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Abstract

The accurate representation and prediction of physical phenomena through numeri-
cal computer codes remains a vast and intricate interdisciplinary topic of research.
Especially within the last decades, there has been a considerable push toward high-
performance numerical schemes to solve partial differential equations (PDEs) from the
applied mathematics and numerics community. The resulting landscape of choices re-
garding numerical schemes for a given system of PDEs can thus easily appear daunting
for an application expert who is familiar with the relevant physics, but not necessarily
with the numerics. These high-performance schemes in particular pose a substantial
hurdle for domain scientists regarding their theory and implementation. In this the-
sis, a unifying scheme for grid-based approximation methods is proposed to address
this issue. Some well-defined restrictions are introduced to systematically guide an
application expert through the process of classifying a given multiphysics problem,
identifying suitable numerical schemes and implementing them. By defining a fixed
set of input parameters, amongst them for example the governing equations and the
hardware configuration, the process can be executed in a systematic and reproducible
manner. This method not only helps to identify and assemble suitable schemes but en-
ables the unique combination of multiple methods. This process and its effectiveness
are exemplarily demonstrated using different approaches. As a practically relevant and
complex multiphysics problem, the powder bed scale process dynamics during Laser
Powder Bed Fusion is investigated. After a thorough investigation of current simula-
tion approaches, it is shown how this work contributes to enhancing the current state of
research by proposing a tailored discretization to this problem. Overall, it is systemati-
cally shown how one can exploit some given properties of a PDE problem to attain an
efficient compound discretization.
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Chapter 1

Introduction

1.1 Simulation and Virtual Prototypes

The design and validation of products in an engineering context has undergone sub-
stantial changes in the last two decades towards more digitally dependent processes.
Especially simulation of products and their behavior under certain conditions has made
a notable impact on product development. One of the most prevalent use cases for sim-
ulation within this domain is for the design of virtual prototypes. A virtual prototype,
or digital mock-up, is a computer simulation of a physical product that can be pre-
sented, analyzed, and tested from concerned product life-cycle aspects such as design
and engineering, manufacturing, service, and recycling as if on a real physical model.
The construction and testing of a virtual prototype is called virtual prototyping (Wang,
2002).

Simulation of physical processes plays a crucial role in virtual prototyping. It allows
engineers to model and understand complex physical phenomena that would otherwise
not be accessible, e.g. due to lack of proper measuring equipment. From a more prac-
tical perspective, it allows for experimental studies with low effort. Tuning a given
set of parameters in a model enables experts to understand and qualify processes with
minimal empirical effort. Thus, simulation may contribute considerably towards saving
cost, material and time. The tight integration of simulation into the virtual prototyp-
ing process is shown in Figure 1.1. For instance, simulation-based virtual prototypes
have been employed to accelerate the development of battery electric car components
and are furthermore extensively used within the aerospace industry (Moatamedi et al.,
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1. Product Specification

2. Design: 3D Modeling (CAD)

3. Simulation: Virtual Prototyping

4. Production (CAM)

Multiphysics
Simulation

Acoustics

Electromagnetics

Chemical
Reactions

Structural
Mechanics

Heat
Conduction

Fluid
Dynamics

Fig. 1.1: A coarse overview of the virtual prototyping process. Simulation is crucially
involved in refining and reworking the virtual product through multiple feedback loops.
Following Hirsch (2007)

2021). Overall, several studies have found a clear upward trend in the worldwide mar-
ket revolving around virtual prototyping. In a market study from 2017, the international
market this year was quantified to be worth around $210.40 million. Until 2025, an
annual growth of 19.4% is expected in this scenario (Grand View Research, 2017). An-
other study quantifies the worldwide market to be $1,058.63 million by 2026 (Knowl-
edge Sourcing Intelligence, 2021). The market for simulation software in particular was
found to have a turnover of $11.08 billion and is expected to grow up to $39.20 billion
by the year 2028 (Emergen Research, 2022).
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1.2 Simulation of Physical Processes

Simulation in itself, however, is an overall intricate, interdisciplinary topic that has been
studied by the science, technology, engineering and mathematics (STEM) community
for multiple decades. To this day, the majority of physical processes are described using
Partial Differential Equations (PDEs) have to be approximated numerically to enable
simulation (Morton and Mayers, 2005; Pinchover and Rubinstein, 2005). This process,
oftentimes also referred to as discretizing a problem, is ambiguous as there does not
yet exist a universal mathematical method capable of performing equally well for all
modeling tasks. As such, generating numerical simulations for real physical problems
remains a challenging topic.

To make an appropriate choice of modeling strategy, one first needs to decide on a
set of relevant physics. This task in itself might already pose a considerable challenge,
as shown in Figure 1.2 for the case of metal additive manufacturing (AM). For each
level of hierarchy, the relevant quantity of interest is given along the accompanying
physics and the characteristic length scale. As the process poses harsh, unsteady ther-
modynamic conditions, varying material constants, irregular microstructure and melt
pool topography have to be considered (Hariharan et al., 2022, 2023). If one were to
predict the mechanical properties of a metallic microstructure, it is necessary to con-
sider a large amount of physics in the process. These physics may often span multiple

material constants
(molecular dynamics)

microstructure
(solidification kinetics)

mesoscopic defects
(fluid-thermodynamics)

1 nm 100 nm 10 µm

Fig. 1.2: The multiple length scales involved in modeling the mechanical response of
additively manufactured metallic parts.
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length scales, thus posing a so-called multiscale problem (Weinan, 2011; Weinan and
Lu, 2011). Such processes are naturally evenmore challenging to solve than single-field
problems. Not only does a modeling strategy have to fit each model involved, but, in
many cases, there is also some coupling that has to be performed between models.

Furthermore, recent developments in numerical methods in the academic commu-
nity have noticeably impacted the capabilities of such models, both regarding accu-
racy and performance. Especially within FEMs, there exists an increasing gap regard-
ing overall performance between academic and commercially available software. The
recent utilization of massively parallel hardware, such as Graphics Processing Units
(GPUs) has contributed to widening this gap (Kirby and Mavriplis, 2020; Vargas et al.,
2021). To emphasize that this difference in performance not only is of theoretical use
but rather also has considerable practical impact, some studies have been published
that also address the capabilities of methods using resource efficiency metrics. For in-
stance, Vermeire and colleagues developed a custom fluid dynamics solver based on
a flux reconstruction approach and benchmarked it against the popular Computational
Fluid Dynamics software Star-CCM+ that is commercially available. The evaluation of
a common problem encountered in external aerodynamics is shown in Figure 1.3. Lines
drawn in orange denote the custom solver PyFR, black lines indicate solutions gener-
ated by the commercial solver Star-CCM+. For the same target model error, resource
utilization differs by roughly a factor of 300. The PyFR model was run on an NVIDIA
Tesla GPU whilst Star-CCM+ could only be executed on an Intel XEON-based CPU
architecture. The authors use a custom resource metric that multiplies the sum of hard-
ware acquisition and operating cost with model execution time. Using this as scale, one
can observe that there exists a large gap between the two simulation environments that
can mainly be attributed to the GPU acceleration of the custom, academic flow solver.
For the same approximation error, the difference in resource utilization is around two
orders of magnitude, highlighting the potential for savings in development time and
cost in a product development environment.

However, given a particular choice of numerical method, there usually still is a non-
negligible amount of setting up and tuning of model parameters involved. This process
naturally becomes more intricate with more high-performance methods, as parameters
have to be aligned with the target model and computing architecture. As such, de-
veloping and operating high-performance methods often remains a topic for experts in
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+ 200% Accuracy
- 3000% Resource Utilization

Fig. 1.3: Flow simulation of a turbulent, isentropic vortex advection problem using
two different solvers. For the same error 𝜎, resource utilization differs by two orders of
magnitude. This figure is adapted from Vermeire et al. (2017).

numerical computing (Kirby andMavriplis, 2020; Vargas et al., 2021). Unfortunately, a
bad parametrization may not only affect model performance but even stability to a point
where no solution might be obtained. Figure 1.4 shows an example of how varying a
single parameter of a model may completely dictate the stability and thus usability of an
approximation. The two approximations were generated using the open-source software
FEniCS with two different types of Finite Elements. Here, model accuracy is destroyed
by an improper choice of finite element function space, i.e. the types of functions used
to generate a discrete approximation. Such phenomena are common in so-called saddle
point problems, which in turn may be found in various branches of physics (Logg et al.,
2012c).
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(a) Bad approximation (b) Good approximation (c) Analytical solution

Fig. 1.4: Unstable (a) and stable (b) approximations of amixed diffusion problem using
the FEM. The typically smooth analytical solution (c) is well represented using solution
(b) whereas (a) produces invalid results governed by unphysical oscillations. This figure
is adapted from Logg et al. (2012c).

1.3 Motivation

In summary, simulation is of crucial importance for product development and is ex-
pected to further grow in the next years. The accurate modeling of complex physical
processes offers large future potential regarding more efficient simulation due to recent
developments in the research community. The developed, highly efficient methods,
however, seem to lack adoption in practice. This is expected to be due to the high and
increasing complexity of implementation as well as the intricate knowledge necessary
for optimal parametrization and tuning. From a practical point of view, the question
remains if and to what extent modern numerical methods may be applied to practically
relevant simulation problems by engineers and researchers outside the respective de-
veloper community - henceforth denoted as ”application experts”.

1.4 Contributions

This work contributes to the wider field of application-driven simulation of physical
processes that are governed by PDEs. It aims to improve the field of research in the
following three key areas:

1. A common taxonomy for the most widespread, yet high-performance, grid-based
approximation methods for PDEs is established, given some well-defined restric-
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tions. By doing so, this work aims to unify the view on grid-based simulation
techniques from an application point of view and create a better understanding of
the individual properties that each discretization method exhibits. This work ex-
plicitly does not claim universal equivalence of these methods but rather outlines
useful cases where equivalence can be shown.

2. A method is established that, given a particular multiphysics problem and hard-
ware to execute on, recommends a set of numerical methods that fall in the above-
mentioned taxonomy. The resulting mixed spatial discretization is stable, fits the
qualitative nature of the quantities that are solved and suits the computational
hardware in terms of performance requirements. Especially stability has been
shown in Figure 1.4 to be an issue that is nontrivial to solve in more application-
oriented domains. Furthermore, the method always yields, for the multiphysics
problems of interest, a result that follows a strict, easy-to-follow process. For
more intricate discretization schemes based on the FEM, it is also shown how to
derive the necessary mathematical weak form that is required to implement such
methods, which oftentimes also poses a considerable hurdle in practice.

3. This work discusses the state of the art for the simulation of mesoscopic melting
and solidification within Laser Powder Bed Fusion. This model problem is taken
as an illustrative example for a wider class of multiphysics problems. These are
characterized by high complexity in terms of the number of PDEs in the system,
varying physics and degree of coupling between equations. It is shown that the
motivation for this work holds in particular for this specific model problem as
well. That is, there exists a large number of proposed methods to solve this prob-
lemwith no universal solution standing out in terms of accuracy, performance and
ease of implementation. This gap is addressed using the established method, i.e.,
a mixed spatial discretization of the system is proposed that respects the charac-
teristics of the problem. It is furthermore shown how the intricate mathematical
formulation required to set up a corresponding computational model can be sys-
tematically attained from the system of PDEs. Lastly, by comparing the resulting
configuration with the literature, it is shown that it falls well within current trends
in this field regarding high-performance schemes whilst retaining the easier ap-
plicability of simpler discretizations.





Chapter 2

Theory of Multiphysics Problems

2.1 Modeling Strategies and Partial Differential Equations

The overarching goal of investigating Multiphysics Problems is the accurate represen-
tation and prediction of the behavior of physical processes.

This process may be separated into discrete parts which are shown in Figure 2.1
and consecutively executed. As a first step, a simplified and formal description of the
real phenomenon has to be generated. This description that forms the basis for further
calculations is denoted as the model. As such, an accurate model that captures all rel-
evant aspects is considered preliminary for obtaining valid results from a subsequent
simulation. Within this work, this will also be taken as a requirement and is thus not
part of the presented research. The focus will instead be on the following two steps,
that is, computation and implementation. The former denotes the adequate preparation
of a model, such that it may be processed by a computer. This necessarily involves
creating a discretization. During implementation, the previously worked-out simula-

Modeling Computation Implementation

VisualisationValidationIntegration

Fig. 2.1: A typical simulation pipeline. The core aspects of simulation that this work
is concerned with are highlighted in orange. Adapted from Bungartz et al. (2013).
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tion is typically tailored and rewritten towards computational performance. Such steps
are oftentimes necessary from a practical perspective since the computation time may
quickly become a bottleneck in terms of overall development resources (Bungartz et al.,
2013).

In addition, not all possible modeling strategies are considered in this work. To
model a given process, there exist several approaches that each focus on different aspects
that are listed in Table 2.1. The problems of interest for this work are typically in the
form of physical processes and their spatial and temporal evolution. Thus, the focus
will lie on models that are described by PDEs. A more formal definition has been
established by Evans:

Definition 2.1.1 (Partial Differential Equation (Evans, 2010)). An expression of the
form

𝐹 (𝐷𝑘𝑢(𝑥), 𝐷𝑘−1𝑢(𝑥), ..., 𝐷𝑢(𝑥), 𝑢(𝑥), 𝑥) = 0 (𝑥 ∈ 𝑈) (2.1)

Table 2.1: Different modeling approaches and some typical applications (Bungartz
et al., 2013).

Exemplary
Type Formulation Application
Algebraic equations 𝐸 = 𝑚𝑐2 Physical laws
Ordinary Differential
Equations

𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡) Temporal evolution of systems,

e.g. growth
Partial Differential
Equations

Δ𝑢 = 𝑓 Deflection of a membrane
under load

Automata and
State Diagrams

Queueing, text recognition

Graphs Processes and work flows
Probability distributions Stochastic processes

and correlations
Rule based systems and
fuzzy logic

Control system tasks

Language concepts UML Complex software systems
Algebraic structures Quantum mechanical groups
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is called partial differential equation (PDE) of kth order, where

𝐹 ∶ ℝ𝑛𝑘 × ℝ𝑛𝑘−1 × ... × ℝ𝑛 × ℝ × 𝑈 → ℝ (2.2)

is given and one seeks to find the function

𝑢 ∶ 𝑈 → ℝ (2.3)

The solution variable 𝑢 might appear as a scalar-, vector- or even tensor-valued quan-
tity. As such, 𝑢 can also represent an entire system of variables described by a system
of equations. For instance, the flow of a viscous fluid through a pipe is always charac-
terized by its velocity 𝑢 and pressure field 𝑝. In this case, the solution function 𝑢 can be
defined as:

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑣𝑥(𝑥, 𝑦, 𝑧, 𝑡)
𝑣𝑦(𝑥, 𝑦, 𝑧, 𝑡)
𝑣𝑧(𝑥, 𝑦, 𝑧, 𝑡)
𝑝(𝑥, 𝑦, 𝑧, 𝑡)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.4)

with the underline notation ⋅ denoting a vector-valued quantity.
As a prototypical PDE throughout this work, the nonhomogeneous heat equation

𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (2.5)

is considered, where 𝜕𝑡 denotes the temporal derivative, Δ the laplacian operator and
𝑓 is an arbitrary forcing function. In addition to Equation 2.5, one must supply a set
of boundary conditions (BCs) as well as an initial condition (IC) to fully determine a
solvable PDE problem. This equation is of high importance throughout physics and
describes the evolution in time of some quantity 𝑢 such as heat, chemical concentration
and others. It is also known as the diffusion equation (Evans, 2010). In this case, 𝑓
may act as a source term, e.g. providing either a heat source or sink within the domain.
This equation always produces smooth and continuous solutions due to its diffusive
character, even if the initial and boundary values that define the problem are nonsmooth
(Evans, 2010).

It is commonly known that only a small subset of PDEs that have been discov-
ered to date possess an obtainable analytic solution (Pinchover and Rubinstein, 2005).



12 Theory of Multiphysics Problems

One must instead for most problems rely on numerical approximations that involve the
abovementioned discretization of the established model. However, obtaining a valid,
stable and accurate discretization in general is ambiguous and nontrivial. Therefore, to
form a baseline for this work, the most common techniques to discretize a PDE-based
model are given in the following.

2.2 Common Grid Based Approximations

In this section, the most prevalent methods to solve PDEs based on a computational grid
will be outlined alongside their most important properties. The focus of this outline
is set on a problem-oriented and practical perspective to introduce the characteristic
properties of each method.

At this point, it should be noted that the presented methods are only described in
terms of computing spatially discretized systems. Some PDEs however also involve
temporal derivatives, such as the heat or the wave equation. A very common method to
deal with those terms separately is to only discretize the system of equations in space.
This leaves the analyst with a large system of Ordinary Differential Equations (ODEs)
which can then be solved using standard techniques for such problems. This procedure
is called Method of Lines and will be employed throughout this work (Liskovets, 1965;
Jones et al., 1972; Schiesser, 2012). In the case of the heat equation (Equation 2.5),
one would first discretize the laplacian Δ𝑢 and the right-hand side 𝑓 at 𝑛 discrete points
using some spatial discretization technique. Afterward, one is left with 𝑛 ODEs which
can, for example, be integrated in time using the implicit Euler method

𝑢𝑛,𝑖+1 − 𝑢𝑛,𝑖
Δ𝑡 − 𝐿 [𝑢𝑛,𝑖+1] = 𝑓𝑛,𝑖+1, (2.6)

where 𝑛 is the discrete spatial point of evaluation, 𝑖 and 𝑖+1 are the previous and current
time steps, respectively, and 𝐿 is the discretized spatial differential operator (Pinchover
and Rubinstein, 2005).

Alternatively to the Method of Lines, there exist other approaches to compute time
derivatives, such as the space-time FEM as originally proposed by Argyris and Scharpf
(1969). However, as such methods are tightly coupled to specific spatial discretization
techniques, those do not apply universally and hence those will be omitted from the
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following discussion.

2.2.1 Restrictions

Within the scope of this work, only methods that employ computational grids will be
considered to solve a given set of physically sound PDEs in a valid, reliable and fully
reproducible manner. In particular, this excludes mesh-free methods as well as non-
deterministic methods, such as Machine Learning.

Mesh-free approximations tend to have good performance but lack physical sub-
stance in the way that they require artificial terms to stabilize a solution. While this
typically produces systems that are fast and easy to evaluate, it also introduces an addi-
tional calibration of the model in practice that must be accounted for (Lind et al., 2020).
Consequently, one encounters an additional stage in product development, more specif-
ically in modeling which requires careful attention, expertise and resources and is hence
undesirable.

The prominent advantage of mesh-free methods lies within the locality of the differ-
ential operator approximations. An instructive example of this is the Smoothed Particle
Hydrodynamics (SPH) method. Here, integral kernels are used that only incorporate
values from the immediate neighbors of an individual particle (Colagrossi and Lan-
drini, 2003). This creates a strongly localized operator that leads to a high degree of
parallelism due to few messages being passed between processors. That in turn makes
the method very suitable for the use of highly parallel hardware architectures, such as
GPUs (Lind et al., 2020).

Hence, careful tuning of pseudo-physical parameters is required to obtain a viable
solution. They are therefore not suitable for solving arbitrary physical problems in a uni-
fied fashion. For example, when solving the mesoscopic flow field during Laser Powder
Bed Fusion (c.f. section 3.2.3) using the SPH method, one must introduce artificial and
arbitrarily set parameters, such as an artificial viscosity (Colagrossi and Landrini, 2003)
or artificial speed of sound (Hu and Adams, 2006) to stabilize the model.

Machine Learning approaches, on the other hand, do not exhibit deterministic con-
vergence behavior (Shin et al., 2020). In this context, some approaches exist that lever-
age neural network architectures as a means to achieve a purely synthetic solution to a
PDE, i.e. without the need for training data (Raissi et al., 2019). However, to this date,
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the convergence of set order in general cannot be guaranteed for all classes of PDE
problems. Furthermore, obtaining solutions to optimization problems via stochastic al-
gorithms always poses the question of reliability. This nondeterministic behavior how-
ever is generally unfavorable in the context of engineering applications, where solution
strategies need to exhibit strong and uniform convergence. Otherwise, physical laws
are not necessarily obeyed and e.g. structural integrity cannot be guaranteed.

It is therefore given by the principle of exclusion that this work will be focused on
more classical numerical methods that operate on computational grids.

2.2.2 Finite Difference Method

Developed initially in the early twentieth century, the Finite Difference Method (FDM)
can be regarded as one of the oldest methods to generate numerical solutions to PDEs
as its original appearance dates back to the early 1910s (Richardson and Glazebrook,
1911).

It operates in a point-wise manner on a computational grid that should be spanned
by an equispaced, cartesian coordinate system.

The guiding principle of the FDM lies in approximating differential terms by com-
puting the slope of the desired field quantity at a given point with respect to its neigh-
bors. In one dimension, this process closely resembles the definition of the derivative
with the exception that the limit in the expression is simply never taken:

d
d𝑥𝑓(𝑥) = lim

ℎ→0
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ (2.7)

It immediately follows that omitting the limit creates a finite-dimensional approxima-
tion of the derivative. Onemay alternatively view this type of approximation as a Taylor
series expansion where higher-order terms are simply omitted. This idea is easily ex-
tended to functions of multiple spatial variables as will be shown.

By taking into account all immediate neighbors of a given point, a stencil is created
for each location being evaluated. The order of the method can be adjusted by widening
or narrowing the stencil such that more or less points in the vicinity are taken into
account. Figure 2.2 gives a visual impression of how such stencils are constructed.
The resulting partial derivative expressions can consequently be used to approximate
more complicated differential operators, such as the gradient, divergence or curl (Smith
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et al., 1985). The formulation of the derivatives given in Figure 2.2 is a particularly
popular choice as it is second-order accurate, i.e. the error of approximation decreases
with 𝒪(ℎ2). Its construction is straightforward and is given by combining Equation 2.7
evaluated at the previous and the next vertex respectively and taking the sum of both
terms.

If the differencing scheme is chosen carefully depending on the type of PDE, the
FDM produces efficient, stable and accurate solutions. Its implementation can also be
regarded as relatively straightforward. This is indicated by its simple construction of
derivative expressions.

However, treatment of BCs can, for more complicated expressions, prove to be non-
trivial (Smith et al., 1985). Another shortcoming of the method is the comparatively
harsh restrictions on the problem geometry. If the domain cannot be approximated
properly by a hypercube but instead has a more complicated, possibly curved shape,
the method loses much of its computational efficiency. There are however some works
that extend the method to also work with a wider scope of domains (Fornberg, 1988).

Concerning the approximation of functions, the FDM can be seen as a technique
to generate linear interpolations to more complex solutions. This property is shown in

ui,j ui+1,jui−1,j

ui,j+1

ui,j−1

y

x

∂u
∂x

≈
ui−1,j−2ui,j+ui+1,j

dx2

∂u
∂y

≈
ui,j−1−2ui,j+ui,j+1

dy2

dx

dy

Fig. 2.2: Approximation of a two-dimensional derivative of the field 𝑢 by a 4-point
Finite Difference stencil. The neighboring points (blue) are arranged around the central
vertex (red) in two cartesian directions and are equispaced in each direction. One can
then construct the two partial derivatives using the central differencing scheme, where
the formulae are given in the grey box. This scheme is second-order accurate.
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Figure 2.3. At the discretized grid points, the solution approximation is of high accuracy
whereas elsewhere considerably larger errors of the absolute value can be observed. The
two functions shown in Figure 2.3 can, for example, be regarded as continuous (blue)
and discrete (orange) solutions to the heat equation (2.5) at some given time.

2.2.3 Finite Volume Method

In contrast to the FDM, which can be regarded as a universal approximation scheme, the
Finite Volume Method (FVM) was initially conceived with a rather specific purpose in
mind, namely modeling conservation laws (Samarskii, 1965; Eymard et al., 2000). As
such, this method exceeds in representing the temporal evolution of conserved quanti-
ties and is hence often used in Computational Fluid Dynamics.

To illustrate the guiding principle of the FVM, a simple scalar conservation law is
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Approximate solution uh(x)

Fig. 2.3: Approximation of a first-order Finite Difference interpolation (orange line) to
a one-dimensional function 𝑢(𝑥) = sin(𝑥) (blue line) in an interval from [0; 2𝜋] using
7 grid points. At these, 𝑢(𝑥) = 𝑢ℎ(𝑥) holds up to machine precision. At all other
intermediate points, the solution is interpolated linearly.



2.2 Common Grid Based Approximations 17

considered (Versteeg and Malalasekera, 2007)

𝜕𝑡𝑢 + 𝑣 ⋅ ∇𝑢 = 0, (2.8)

or equivalently in integral form
˚

𝑉

𝜕𝑡𝑢 d𝑉 +
˚

𝑉

𝑣 ⋅ ∇𝑢 d𝑉 = 0. (2.9)

This simple first-order PDE describes the conservation of a passive scalar quantity 𝑢
in a domain 𝑉 , where 𝑣 denotes the convective velocity. Using Gauss’ theorem and
applying it to the second term in Equation 2.9 yields

˚

𝑉

𝜕𝑡𝑢 d𝑉 +
˚

𝑉

𝑣 ⋅ ∇𝑢 d𝑉 =
˚

𝑉

𝜕𝑡𝑢 d𝑉 +
‹

𝜕𝑉

𝑣(𝑢 ⋅ 𝑛) d𝑆 = 0. (2.10)

As a result, the volume integral containing the gradient operator is now replaced by a
simple hull integral over the domain boundary 𝜕𝑉 . Hence, the problem is reduced to
finding the face values or fluxes 𝑣 (𝑢 ⋅ 𝑛) of the conserved quantity without having to
compute any derivatives. This procedure is illustrated for a two-dimensional domain
in Figure 2.4. Cells with shared faces are marked blue, and neighboring cells that do
not share common faces are drawn in grey. The volume integral over the (arbitrarily
shaped) volume 𝑉𝑖 of the 𝑖-th cell is replaced by taking the sum of the face values 𝑢𝑖,𝑗
that belong to the cell. The red-marked faces 𝑆𝑖,𝑗 are shared with the blue cells and
hence contribute to the integrals of the adjacent cells as well. The face values 𝑢𝑖,𝑗 can
in turn be interpolated from the cell values of the previous time step using multiple
methods. Choosing an appropriate scheme for this step is crucial to generate a stable
and accurate solution.

In its most basic form where the fluxes are calculated using simple interpolation
of adjacent cells, the FVM is first-order accurate and unconditionally stable, but also
generates very diffusive solutions. In terms of a conserved quantity, this means that
there tends to be an artificial or numerical loss of the quantity within the domain. This
is often regarded as unwanted and unphysical behavior. Therefore, extensive efforts
have been put into developing stable, high order and conservative schemes (Eymard
et al., 2000; van Leer, 1974).
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Fig. 2.4: Approximation of a two-dimensional divergence of the conserved quantity 𝑢
within the cell 𝑖 (red) using the FVM.

In the above discussion, it has been shown how to discretize the gradient operator.
A very similar treatment applies to the discretization of other differential operators.
Higher order derivatives are often discretized using a combination of the previously
shown FVM and FDM (Eymard et al., 2000).

One key difference to the FDM that has already become apparent is that the FVM
operates in a cell-wise manner instead of relying on point-wise evaluations. Addition-
ally, due to its guiding principle, the method does not rely on any kind of regularity
within the domain. The FVM can even handle cells with an arbitrary amount of faces,
since once the fluxes are computed, the cell value reconstruction amounts to a simple
sum of directed quantities.

From the perspective of function approximation rather than solving PDEs, the prop-
erties of the FVM are depicted by Figure 2.5. Regarding the error of absolute values,
this method visibly introduces comparably large errors. Its main purpose instead is find-
ing an approximation that matches the integral of the solution, which often relates to the
conserved quantity, for a given cell as closely as possible. For clarity, vertical dashed
lines have been added to better disambiguate the individual cells. The discontinuous
nature of this method typically leads to rather large approximation errors regarding the
solution itself for individual points. If Figure 2.5 is again considered to be a solution
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Fig. 2.5: Approximation of a Finite Volume interpolation (orange line) to a one-
dimensional function 𝑢(𝑥) = sin(𝑥) (blue line) in an interval from [0; 2𝜋] using 6 cells.

of the heat equation (2.5), it is obvious that the inherently smooth character of the so-
lution is poorly represented. However, if instead the quantity of interest is conserved,
i.e. unphysical sources or sinks must not appear in the numerical solution, the FVM
generates more accurate approximations in that sense. In the example of Figure 2.5,
each cell value is generated such that the integral value of the approximation matches
that of the true function as closely as possible. It also becomes apparent that the FVM
is by design suited for approximating functions that may contain discontinuities since
these appear naturally in the formulation of this method.

2.2.4 Finite Element Method

The primal formulations of the Finite Element Method (FEM) originate back to appli-
cations in solid mechanics and are ultimately influenced by several achievements from
applied and pure mathematics over the last three centuries. A concise overview of the
most influential works on that matter is given by Zienkiewicz et al. (2010). Similar to
the history of the FVM, its purpose originally was driven by one specific application.
However, over time, this method has evolved to be considerably more versatile as it and
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its derivatives can be found in many different applications. Thus, the latter variation of
this method will be outlined here, as it on the one hand may be more complex to set up
and understand but on the other hand, gives vastly more room for possible applications.

The basic idea of the FEM is conceptually different from the previously presented
schemes. Given a certain norm, i.e., a quantity measuring the magnitude of a function,
the method is designed to minimize the error of the approximation measured in this
norm. For the classic FEM, using an approximation that yields continuous solutions,
this is oftentimes the globally defined 𝐿2 Norm

|𝑢|2
𝐿2 =

ˆ

Ω

𝑢2 d𝑥 (2.11)

or the 𝐻1 Norm
|𝑢|2

𝐻1 =
ˆ

Ω

𝑢2 + (∇𝑢)2 d𝑥 = |𝑢|2
𝐿2 + |∇𝑢|2

𝐿2 . (2.12)

Hence, the basic idea does not involve any special manipulations of the differential
operator expressions such that problematic terms can be avoided, as demonstrated for
the FVM.

The solution approximation 𝑢ℎ to a field quantity 𝑢 is generated by interpolating it
into a discrete function space 𝑉ℎ, which is a subspace of the original function space
𝑉 . This in turn is done by choosing an appropriate function basis 𝜙 that spans a vector
space. The evaluations of the basis functions are associated with the vertices of the
computational grid. In combination with the norms given by Equation 2.11 and 2.12,
these function spaces are formulated as sets of functions where a given norm is finite,
e.g. the space 𝐻1(Ω) that contains functions that are defined over a domain Ω and have
well defined first derivatives (Larson and Bengzon, 2013).

FEMs that use such vertex-associated function bases are also called Nodal FEMs
(Ern and Guermond, 2004). Figure 2.6 illustrates such an interpolation and its error
for a one-dimensional function. Increasing the number of interpolation points, i.e. in-
creasing the number of vertices will decrease the approximation error of this method.
However, the FEM is not restricted to using linear interpolation as Figure 2.6 suggests.
Like the FDM, discretizations of arbitrary order can be generated by increasing the
order of the basis functions 𝜙.
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The actual approximation of the PDE is done by evaluating the weak form of the
equivalent problem on a discrete level. Conceptually, the weak form of a PDE can
be thought of as seeking a function, belonging to a certain function space, that mini-
mizes a certain functional. The exact form of this functional is then given by the PDE.
The origins of this method stem from variational calculus, where e.g. one may seek a
function that best describes the deformation of a membrane which in turn is governed
by the minimal surface equation 𝐺(𝑢) = 1

2
´

Ω|∇𝑢|2 d𝑥d𝑦 (Pinchover and Rubinstein,
2005). Due to this minimization principle, the FEM does not yield an exact solution,
but rather a member of the prescribed function space that comes closest to the exact
solution.

Setting up the weak formulation of a problem involves forming the inner product
with a so-called test function 𝑣, i.e. multiplying and integrating over the entire domain
of interest Ω. The resulting integral equation must then hold for all possible test func-
tions belonging to the function space. Within the field of variational calculus, the test
function is also oftentimes referred to as the infinitesimal variation 𝛿𝑢. Alternatively,
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Fig. 2.6: Approximation of a Finite Element interpolation (orange line) to a one-
dimensional function 𝑢(𝑥) = sin(𝑥) (blue line) in an interval from [0; 2𝜋] using 7 in-
terpolation points. The method tries to minimize the error of approximation which is
related to the area under the two curves (area with grey fill).
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one oftentimes considers the first variation of a functional 𝛿𝐺(𝑢)(𝜓) with respect to
the test function 𝜓 (Pinchover and Rubinstein, 2005). This work uses 𝑣 to denote test
functions for weak formulations. If the PDE solution 𝑢 and the test function 𝑣 belong
to the same function space, the resulting scheme is called a Bubnov Galerkin FEM.
Otherwise, i.e. if the function spaces are distinct from each other, the scheme is called
a Petrov Galerkin FEM (Zienkiewicz et al., 2010).

In practice, seeking a PDE solution based on its weak form in this way coincides
well with the restrictions that numerical approximations pose. Since numerical approx-
imations also in most cases do not coincide with an exact analytical solution, solving a
PDE using variational calculus naturally lends itself well to this problem.

These weak form functionals provide expressions that integrate the unknown func-
tion over the problem domain Ω. Within the Finite Element context, the domain is
further split up into single elements, as the name suggests. These elements in turn are
defined by the vertices of the computational mesh. Integration of the functionals is then
carried out on the element level, where each element gives a contribution to the inter-
polation function of its vertices. As one vertex is owned by multiple elements, these
contributions must be accumulated into a global matrix. This process in the Finite El-
ement context is also called assembly. Figure 2.7 illustrates this for a set of adjacent
elements (a) as well as one single element (b).

As the previous discussion already suggests, the FEM poses a less trivial connection
between the physical grid and the numerical approximation of a PDE. This warrants a
more concise definition of what is referred to as a Finite Element. The most modern
and arguably universal definition is given by Ciarlet:

Definition 2.2.1 (Finite Element (Ciarlet, 2002)). A Finite Element in ℝ𝑛 is a triple
(𝐾, 𝑃 , Σ), where:

(i) 𝐾 is a closed subset of ℝ𝑛 with a non empty interior and a Lipschitz-continuous
boundary,

(ii) 𝑃 is a space of real-valued functions defined over the set 𝐾 ,
(iii) Σ is a finite set of linearly independent linear forms 𝜙𝑖, 1 ≤ 𝑖 ≤ 𝑁 , defined over

the space 𝑃 .

In other words, a Finite Element contains a geometric shape of sufficient regularity
as well as a set of functions that form a mathematical space to reconstruct the solution
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Fig. 2.7: Linear shape functions 𝜙 in the FEM on a two-dimensional, triangular mesh.
a) Composition of the shape function 𝜙8 associated with the 8th node of the mesh:
Each element that contains node 8 as one of its vertices has a contribution to the global
shape function. The function value 𝑢8 at this node is the product of the unknown scal-
ing coefficient 𝑐8 and the global shape function, which in turn is the sum of all local
contributions.
b) Illustration of the fundamental property of shape functions. At each element, the
shape functions are only nonzero at the nodes that are associated with them. In this
example, 𝜙8 is one at node 8 and drops to zero at adjacent nodes 6 and 9.

function 𝑢. As the basis vectors fully span the function space, arbitrary functions be-
longing to 𝑃 can be reconstructed from the basis through linear combinations. Hence,
the unknowns of a Finite Element discretization are simply scalar values that prescribe
the appropriate contribution of each shape function to the global solution. The funda-
mental property of the function spaces shown in Figure 2.7 (b) is what enables the FEM
to gain its efficiency. When evaluating weak form integrals of e.g. type

´
Ω

𝜙𝑖𝜙𝑗 d𝑥, only

those contributions do not vanish in the entire domain Ω that come from shape functions
within one element. Otherwise, at least one of the terms will be zero, hence yielding
an integral value of zero. This leads to typically very sparse global matrices that can be
solved using appropriate linear algebra routines (Larson and Bengzon, 2013).

In principle, the FEM can operate on arbitrarily shaped domains and hence does
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not share the same restrictions that the FDM imposes. However, in contrast to the
FVM, there is a distinct set of primitive shapes, e.g. triangles and quadrilaterals in
two dimensions, where shape functions on corresponding elements are defined (Arnold
and Logg, 2014). In reality, this selection of primitives handily suffices to approximate
domains of interest, yet it does pose some restrictions on the computational mesh.

Another part of the efficiency of this method is due to the weak form integrals not be-
ing performed on the computational mesh itself, sometimes called the physical domain.
Instead, integration is only carried out once per Finite Element type on a well-defined
reference element. Then, the integral value is mapped to the physical domain through
a geometric transformation which oftentimes is a simple linear map. This way, costly
numerical integration through Gauss quadrature can be kept to a minimum and instead
be replaced by less complex geometric transformations (Ern and Guermond, 2004).

2.2.5 Discontinuous Galerkin Method

The Discontinuous Galerkin Method (DGM) is a numerical scheme that was originally
proposed in 1973 to solve challenging hyperbolic transport equations in nuclear physics
with high order (Reed and Hill, 1973).

Because the DGM is strictly speaking also a kind of FEM, the Classical FEM de-
scribed previously in section 2.2.4 is often alternatively called Continuous Galerkin
Method (CGM). This nomenclature shall be adopted here to disambiguate the distinct
approaches more clearly.

The key difference between the CGM and the DGM is the sense in which the ap-
proximation error is minimized. It has been stated in the previous section that the CGM
aims to minimize some global error norms. The DGM, however, minimizes the error
norm on the element level which in some cases yields better approximations to certain
problems. Such a strategy necessitates that shape function values do not need to be
continuous across elements. In other words, the DG variational problem does not pre-
scribe a global function space and thus a global function that solves the given problem.
Instead, the function space is given on the element level (Hesthaven and Warburton,
2008). Otherwise, the continuity requirement would impose an additional restriction
on the shape function values of adjacent elements hence constraining the minimization
of the error norm. This effect can be observed by once again looking at Figure 2.6.
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For some intervals, i.e. one-dimensional elements, the error integral is small in com-
parison, e.g. at the first and last element. However, in regions of larger changes of the
true solution 𝑢(𝑥), the error is visibly larger. Figure 2.8 shows an approximation of the
same function 𝑢(𝑥) using the DGM. In contrast to the CGM, the aim is to minimize the
approximation error in an element-wise fashion. One can observe the discontinuities in
the solution at element boundaries. For clarity, vertical dashed lines have been added
to better disambiguate the elements. It quickly becomes apparent that this variant of
the FEM behaves differently regarding its approximation properties. First, one can al-
ready observe from visual comparison that the DGM can generate an approximation
with a smaller error norm than the CGM for this configuration. However, the obvious
drawback is that there are some points located at strongly discontinuous element bound-
aries, which makes the function value at this point ill-defined. Hence, this method pro-
duces solutions that are only continuous within an element, but not at boundaries. This
behavior can be observed more clearly for dimensions higher than one in Figure 2.9.
Another consequence of the more relaxed requirements on the solution compared to
the CGM is that the treatment of differential operators also requires special attention.
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Fig. 2.8: DG approximation (orange line) of the same one-dimensional function 𝑢(𝑥) =
sin(𝑥) (blue line) as in Figure 2.6 using 7 nodes.
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As Figure 2.8 suggests, the derivative of the solution at element boundaries is not well
defined. Hence, it would not be possible to compute the necessary terms needed for
assembly. This problem is typically circumvented by manipulating the weak form of
the problem using partial integration (Larson and Bengzon, 2013). As a result, deriva-
tives appear on the test function instead and in other parts sometimes vanish. Through
this technique, however, additional boundary terms are introduced into the weak form.
Normally, within the CGM formulation, hull integrals over element boundaries sum
up to zero due to the continuity across elements. Thus the contributions from adjacent
elements would cancel out each other exactly, as the integrals at common faces involve
normals of opposite directions. In the case of the DGM, there are contributions of dif-
ferent magnitudes and hence those elemental boundary terms need to be evaluated, as
shown by the different shape function values in Figure 2.9.
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Fig. 2.9: Linear shape functions 𝜙 in the DGM on a two-dimensional, triangular mesh.
 a) In contrast to Figure 2.7, the local shape functions that contribute to the global, nodal
function 𝜙8 need not be continuous at this point. As a consequence, 𝜙8 is not uniquely
defined there. For better visual clarity, shape function contributions per element are
marked in distinct colors.
b) Within one Finite Element, the same structure holds for both CGMs and DGMs:
discontinuities only appear between element boundaries.
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2.3 Discretisations of Multiphysics Problems

So far, the presented methods have been demonstrated based on comparatively simple
PDEs that describe the evolution of one single field. Multiphysics problems on the other
hand are comprised of multiple primary variables, where each in turn is governed by a
PDE, yielding a system of PDEs. As each equation prescribes some kind of physical
behavior that may differ considerably from the others, choosing an appropriate way to
discretize and solve such a system is not trivial. As has been shown in previous sections,
each numerical scheme possesses individual properties that suit different circumstances.
These reflect the original problems that these schemes were intended to address.

If multiple governing equations are used to describe a more complex process, one
has to deal with a multiphysics problem. In this work, the following formal definition
is used:

Definition 2.3.1 (Multiphysics Problem (Keyes et al., 2013)). A multiphysics system
consists of more than one component governed by its principle(s) for evolution or equi-
librium, typically conservation or constitutive laws.

Employing one singular numerical method to solve a possibly very complex multi-
physics problem may thus yield suboptimal results. This can be formulated as a conse-
quence of a so-called no free lunch theorem, which states that a computational advan-
tage for some type of problem is inherently offset by drawbacks when solving others.
As a consequence, for an efficient solution, approximation methods need to be tailored
to the operators that describe a given field (Wolpert and Macready, 1997).

2.4 Similarities between Approximation Schemes

With the numerical schemes presented in sections 2.2.2 to 2.2.5 in place, the question
naturally arises whether these methods are entirely distinct from each other, or if there
are certain similarities they share beyond them all being grid-based. In the literature,
there are rather few works that are concerned with spanning the connection between
different grid-based approximation schemes.

Some authors rigorously showed the equivalence of the FVM to either Mixed FEMs
(Baranger et al., 1996) or Petrov Galerkin FEMs (Ye, 2001; Idelsohn and Oñate, 1994).
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With regards to the FDM and FEM, Thomée (1984) has shown early on that the FEM
can be understood as a somewhat equivalent, yet generalized variant of the FDM on
arbitrary grids. Some general differences between these schemes were outlined by Key
and Krieg (1973). In the work of Shu (2003), some analogies have been brought up
between FVM and FDM in WENO formulation. A theoretical and numerical com-
parison between higher-order FVMs and DGMs was conducted by Zhou et al. (2001).
Additionally, Dumbser et al. (2008) constructed a unifying framework to accommodate
high-order FVMs and DGMs. In the context of elliptic PDEs, Lin et al. (2015) present
a theoretical and empirical comparison between the comparably new Weak Galerkin
Method, DGM and Mixed FEM. A comparative study between DGM and the Stream-
line Upwind Petrov Galerkin method for flow problems can be found in Yurun (1997).
These works in summary draw point-wise comparisons between some grid-based ap-
proximation schemes. Despite being quite useful for disseminating individual advan-
tages and disadvantages for a given application, one may still lack an understanding of
the general properties. Furthermore, Bui-Thanh has presented an encompassing anal-
ysis and application of the Hybridizable DGM (HDG) to solve a wide variety of PDE-
governed problems. It was therefore shown that this numerical scheme is general and
powerful enough to form a unified baseline (Bui-Thanh, 2015). In addition, due to the
generality of this method, there have been works that attempt to benchmark DGMs to
more conventional and widely adopted CGMs (Yakovlev et al., 2016; Kronbichler and
Wall, 2018; Kirby et al., 2012). Some authors proposed combinations of numerical
schemes that operate optimally to solve hyperbolic (Gaburro, 2021) or parabolic (Yang
et al., 2017) systems of PDEs.

An encompassing summary and comparison of the presented numerical schemes to
address arbitrarily characterized systems of PDEs does not exist to date.

Having a common baseline would, however, be beneficial to provide flexibility in
solving multiphysics problems. As has been shown in the previous sections, the pre-
sented approximation methods possess rather distinct properties that, motivated by their
origins, lend themselves to solving different kinds of problems. The prospect of being
able to combine these methods in a unified framework can be regarded as an impor-
tant contribution to the simulation of multiphysics problems. Thus, the question arises
whether a common formulation can be found and, if so, which restrictions need to be
posed. Addressing this question from a theoretical standpoint forms the foundation of
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this work.





Chapter 3

Simulation of Laser Powder Bed Fusion

In this chapter, a brief description of the Laser Powder Bed Fusion process is given.
Due to the highly complex material behavior during melting and solidification, a multi-
scale problem typically arises, which will be outlined in brief. Furthermore, a literature
review of the powder bed scale problem is provided and for this particular application
of multiphysics problem, a research gap is identified.

3.1 Process Description

Powder Bed Fusion using a Laser Beam of Metals (PBF-LB/M) is a process of additive
manufacturing, where a powder bed consisting of a metallic material is selectively fused
using thermal energy. Additive manufacturing denotes the process of joining materials
to make parts from 3D model data, usually layer upon layer, as opposed to subtractive
manufacturing and formative manufacturing methodologies (ISO/TC 261, 2021). This
process of selectively melting material layer by layer is schematically illustrated in Fig-
ure 3.1. The molten material thus encounters several phase changes, including melting,
solidification as well as vaporization for a small fraction of the mass due to local over-
heating. Thus, a new microstructure is formed during the process that is influenced by
the thermodynamic conditions present. During the build, one may encounter imperfec-
tions and impurities that affect the final mechanical properties of a manufactured part
negatively. Such defects include delamination, i.e. large voids between layers, pores,
lack of fusion between adjacent melt tracks and keyhole pores that appear due to ex-
cessive energy input and subsequent vaporization of material. However, even if a part
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Fig. 3.1: Schematic overview of the PBF-LB/M process. Fresh powder is applied by
moving a rake from a reservoir over the part, leaving a thin layer of unmelted powder.
Through the laser beam, heat is applied to the powder, producing a melt pool and ef-
fectively welding the newly applied material to the already fabricated geometry. The
scanner system directs the laser beam across a specified path until the entire layer has
been exposed. The base plate is then lowered and a fresh layer of powder is applied
(King et al., 2015b).

appears to be defect-free from a topographical perspective, mechanical properties may
still be subpar due to an unfavorable microstructure. This problem may however be
addressed by including heat treatment as a post-processing step (DebRoy et al., 2018).

3.2 Multiphysics Problems of Interest

The physics occurring during powder bed fusion is typically split into three separate
length scales that are detailed in the following. The taxonomy coincides mostly with the
quantities of interest, i.e. part scale defects, melt pool topography and microstructure.
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3.2.1 Macroscopic Scale

Within the coarsest scale, typically the entire part to be manufactured is modeled, i.e.
the viewpoint roughly coincides with the scale of Figure 3.1. In terms of the physics
involved, mainly the thermomechanical response of the part is considered. Most sim-
ulation models approximate the topography of a single layer via a uniform grid in the
build direction and use approximate material properties to account for the powder bed
density. Then, a heat source approximating the laser beam travels along a given path
within the layer. The thermally induced eigenstresses and eigenstrains are then calcu-
lated using the simulated thermal history in a postprocessing step. As such, the macro-
scopic model consists of a thermal model that is coupled with an elastoplastic material
model. The typical length scale of such models therefore spans the region of 1mm to
100mm. The temporal length scale spans the real build time of a part and is within the
order of 10 h to 100 h (Bayat et al., 2021).

As the thermal history is highly dependent on the geometry that is to be built, simu-
lations need to be conducted separately for each layer of each part to accurately predict
part deformation and stress state. Thus, commercial interest in applications is naturally
high, resulting in widespread use so far.

The computational problem has been solved using Element-free Galerkin (Chen
and Duan, 2020), Finite Difference (Ren and Wang, 2023), Finite Element (Krol et al.,
2009)and Finite Volume methods (Wang et al., 2020) as well as meshfree approaches
based on graph theory (Yavari et al., 2019) and machine learning (Yang et al., 2020).
The latter uses a simple Artificial Neural Network that takes some process parameters
as input and predicts the resulting melt pool width of a scan pattern over several layers.
This can in turn be used to reconstruct defects on a part-scale level (Yang et al., 2020).

3.2.2 Microscopic Scale

An even finer discretization of the powder bed is given by the microscopic scale which
aims to accurately predict themicrostructure of a part. Here, one takes the thermal fields
obtained by a larger, mesoscopic model as input to model the fluid-solid transition. The
morphology of solidified grains is typically the primary quantity of interest, as this is
mostly indicative of the mechanical performance of a part. As the process itself poses
harsh spatial and temporal gradients in the vicinity of the melt pool, the microstructure
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can also be expected to vary locally. Other input quantities to such a model depend
largely on the physical models used for solidification. In the case of the phase field
method, which is a popular choice, one requires several thermochemical properties of
the material used, such as lattice diffusion coefficients, latent heat, crystal anisotropy,
etc (Zimbrod and Schilp, 2021). The typical length scale of this process is around
100 nm to 10 µm, the time scale is of order 1 µs to 100 µs (Yang et al., 2021). Other
methods that have been employed to solve the computational problem include cellular
automata (Acharya et al., 2017), crystal plasticity (Liu et al., 2021), kinetic monte carlo
(Rodgers et al., 2017) and molecular dynamics (Zhang et al., 2018a).

Such models are also typically used for material qualification, to ensure that the
process produces a usable microstructure. Figure 3.2 shows how such a model may
give insight into how a microstructure forms under certain process conditions and how
prolonged heating may contribute to grain impingement and coalescence.

t = 0.0 s

a)

t = 0.1 s

b)

t = 0.25 s

c)

t = 0.4 s

d)

50 µm

Fig. 3.2: Phase field simulation of the solidification process of a CoCrFeMnNi High
Entropy Alloy during PBF-LB/M after different time steps. Colors denote different
grain orientations. One can observe the originally small, circular grains (a) evolving
with a dendritic growth pattern (b and c) as well as the subsequent grain impingement
that forms the final microstructure (d). The model was simulated using a Finite Volume
Method implemented in FiPy
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3.2.3 Mesoscopic Scale

On the mesoscopic powder bed scale, typically one singular layer is considered and
only one or very few melt tracks are modeled. Models on this scale are of especially
high importance within the early qualification stages of AM processes, e.g. for novel
alloys. In comparison to the other two scales presented, the mathematical problem
that describes the physics here forms the most complicated and intricate one due to the
number of PDEs that need to be solved as well as the coupling between equations. It is
thus chosen in this work as a model problem to illustrate the amount of considerations
needed to solve such a problem.

The quantities of interest for this problem mainly are the exact topography of so-
lidified material, including the presence of defects, and the thermal history. For the
former, one needs to accurately resolve the flow of fluid, molten material that is in turn
largely governed by capillary effects (Zimbrod et al., 2022). Input quantities for this
model are mainly the material-specific process parameters, i.e. laser power, laser scan-
ning speed, etc. Furthermore, an exact discretization of the powder bed is needed that
in turn depends on the particle size distribution of raw powder, which can largely vary.
Lastly, one needs to ensure that accurate thermophysical material properties are used.
As the temperature range that the metallic material encounters is typically large, these
properties need to be variable with temperature to ensure accurate results. The typical
length scale of this model is in the order of 1 µm to 10 µm. For a single melt track,
a temporal scale of 1ms can be assumed. An example of such a mesoscopic model
that illustrates the length scales is depicted in Figure 3.3. White arrows denote the lo-
cal flow field. In addition, the computational grid is marked with blue lines, showing
the discretized powder bed. The temperature and flow field are calculated using a Fi-
nite Volume Method implemented in OpenFOAM. The powder packing as a function of
particle size distribution has been calculated using the Discrete Element Method im-
plemented in Yade. Overall, the purpose of this multiphysics model is to check if a set
of material and process parameters produces a defect-free and dense structure. The rel-
evance of this model is thus mainly given to material and process qualification. As this
problem is investigated further in this work, the review of previous works is discussed
in more detail.

Tomake an informed judgment on the prevalence and thus usefulness of each scheme
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Fig. 3.3: Finite Volume model of the melting and solidification of 316L stainless steel
during PBF-LB/M.

in practice, it is useful to evaluate the amount of works that implement or use a particular
method to solve the problem. Thus, an extensive literature review has been conducted
that should incorporate the most important works over mostly the past fifteen years. The
results are illustrated in Figure 3.4. Some works employ or compare multiple methods
and are thus counted and multiplied. In total, 177 publications were considered that
have been published mainly within the last 15 years. Daggers† denote mesh-based (eu-
lerian) approaches, asterisks* signify mesh-free (lagrangian) methods. An exception is
given by the Arbitrary Lagrangian-Eulerian method, which implements both material
and field viewpoints. A quantitative summary including the list of references for each
scheme is given in appendix Table A.1. As the physics on the mesoscopic scale is intri-
cate and complex, involving multiple phases, the comparably large amount of schemes
investigated over the years falls within expectation. This evaluation enables some key
observations.

First, one notices that the numerical schemes used are conceptually very distinct
from each other. That is, there are mesh-based and mesh-free methods as well as La-
grangian and Eulerian frameworks. This variety of methods leads to the conclusion that
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Fig. 3.4: Quantitative summary of previous works on simulating melt pool evolution
in PBF-LB/M.

the modeling aspect of PBF-LB/M on this scale is not trivial, as the research community
does not seem to be in universal agreement on which models to use.

Second, there does not appear to be a clear choice ofmethod that is rendered superior
to all others in a quantitative sense. However, the Finite Volume method seems to have
received notably more research interest.

Consequently, it is worthwhile to investigate the latter observation further and to
answer the question of why the FVM is the most prevalent scheme for modeling PBF-
LB/M on the mesoscale. Thus, another study was conducted that separates the 75 works
given in Table A.1 regarding the software that was employed within the publications.
For the remaining ten publications, no information on the software used was avail-
able. A graphic summary is shown in Figure 3.5. Commercial software is annotated
with an asterisk*, academic and open source software with a dagger†. The full list of
references for each software is given in appendix Table A.2. It becomes apparent that
commercial software is in sum almost equally widespread as academic and open-source
software. Thus, even within the FVM being the most widespread scheme, there is no
apparent state of the art that is prevalent within the academic community. However,
if compared with the amount of industrial-grade software that is available for the other
methods given in Table A.1, one finds that the Finite Volume Method appears to be
the most industrially mature and widespread scheme. The most used software in this
case, OpenFOAM, albeit an open source code that requires substantial programming
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Fig. 3.5: Quantitative summary of previous works that use the Finite Volume Method
to resolve melt pool dynamics in PBF-LB/M.

capabilities, has shown to be capable of fulfilling the needs of academic and industrial
research alike (Jasak, 2011; Shademan et al., 2013). This in combination with its ease
of implementation is consequently hypothesized as the reason why FVM is the most
widely used method.

However, regarding the performance aspects, FVM-based models are far from the
most performant in comparison with the rest. For example, Ninpetch and colleagues
report run times for their FV model based on FLOW-3D between 8 and 24 hours for
reasonable mesh resolutions on a 28-core machine (Ninpetch et al., 2021). In contrast,
other authors report implementations of the mesoscale model based on adaptive SPH
that can calculate the melting of a single track in the order of minutes on workstation
grade hardware (Fürstenau et al., 2021; Lüthi et al., 2023).

Introducing model accuracy into the discussion, FVM as well as SPH do not show
optimal behavior. The relatively superior performance of SPH comes at the cost of
introducing artificial quantities that need to be tuned to stabilize the simulation which
considerably hinders reproducibility and accuracy if those parameters are ill-defined.
The FVM models on the other hand are severely bound by the order of accuracy that
they can achieve due to inherent restrictions of the model. There are ways to circum-
vent this, e.g. by introducing very wide reconstruction stencils for the conserved quan-
tities. This, however, increases the computational cost considerably. Furthermore, the
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multiphase models introduced in this formulation increase model complexity and arith-
metic intensity of the solution process (Zimbrod et al., 2022). Regarding this aspect,
some other methods perform notably better, such as the Arbitrary Lagrangian-Eulerian
(ALE) method. Due to the combination of material and field viewpoints in the model,
the fluid behavior can be captured much more naturally without the need for artificial
stabilization. Though this method enables exceptionally accurate prediction of physics,
the method itself is vastly more complex to set up, thus increasing implementation effort
(Khairallah et al., 2020).

3.3 Research Gap

With the PBF-LB/M mesoscale model as a prototype for a complex multiphysics prob-
lem, one may thus conclude that the question of how to resolve such problems in an
accurate, performant and reproducible manner remains largely unsolved. Compared
to the macro- and microscopic scales, the landscape of methods to solve this coupled
multiphysics problem is rather large, which forms another reason why it is chosen as a
model problem in this work. It appears that model accuracy, performance, as well as
ease of implementation, form a magic triangle in this regard. The question of to what
extent this problem can be addressed thus serves as a blueprint for this work.





Chapter 4

Scientific Methodology

This chapter will serve as an outline of the forthcoming content that contains the central
statements and results of this work.

Beforehand, a thorough investigation of the scientific approach is needed. In the fol-
lowing, a concrete formulation of this problem is introduced, how it is formalized using
an overarching research question and more granular hypotheses and which definitions
and restrictions need to be posed.

4.1 Classification and Problem Statement

It has been outlined that there currently is a lack of reliable methods to guide an expert
with domain knowledge by selecting a numerical method tailored to a specific applica-
tion. Chapters 2 and 3 show that this gap in the current field of research is both of theo-
retical nature, but also of high practical relevance for complex, real-world multiphysics
problems such as the mesoscopic Laser Powder Bed Fusion problem. The duality of
this scientific approach - inductive and deductive through formal analysis and subse-
quent derivation - will be considered in the structure of this work. The overarching
research question that shall thus be answered is formulated as follows.

Research Question. How can an accurate, stable and performant numerical method
for a given multiphysics problem be derived in a systematic, reproducible and viable
manner?

To conclusively answer this question, the following parts of this work are separated
into three major parts that consecutively build upon each other. Each section will be
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concerned with addressing a distinct research hypothesis that makes up parts of the
research endeavor.

4.2 Formal Analysis

The first part of this work is dedicated to whether or not it is possible to even identify
a numerical method that particularly well suits a given multiphysics problem. Thus, it
is initially required to form a common baseline for numerical schemes, as outlined in
section 2.4. The proposition that such a baseline exists is formulated in the first research
hypothesis.

Hypothesis 1 (Uniqueness and Comparability). In general, there exists a combination
of grid-based approximation methods that approximates the solution of a given multi-
physics problem in a stable and computationally efficient way.

In this context, a method is considered computationally efficient if, from an algorith-
mic standpoint, there are no steps that can be trivially skipped to solve a given problem.
A practical example of an inefficient algorithm would be a geometric transformation
on a computational mesh that only applies constant scaling. Then, the transformation
reduces to multiplying with a constant scalar which can be done in a single instruc-
tion cycle, instead of performing many matrix multiplications. In addition, the solution
produced by the method should reflect the qualitative behavior of the true solution.

For a combination of grid-based approximation methods to be able to exist, they
must be comparable as well as interoperable with each other. To verify that this is the
case is an important part of this hypothesis.

Thus, it is necessary to unify the solution space of numerical schemes under a com-
mon denominator. Deriving such a common scheme will be an integral part of the
following section. As this procedure is inductive by design, formal analysis will have
to be carried out, as empirical methods in scientific theory are not able to conduct induc-
tive reasoning by definition (Popper, 1989; Lakatos, 1976). For such formal analysis,
some mathematical work will be needed to construct a sound framework. In this case,
large amounts of prior relevant work can be found in the literature. Some prior point-
wise comparisons that have been outlined have been discussed in section 2.4. The main
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task is thus to systematically arrange previous results and to restrict the mathematical
landscape where necessary for statements to be valid.

4.3 Deduction of a Decision Scheme

In the subsequent section, the common mathematical scheme will be utilized to de-
duce a specific combination of methods for a given set of parameters in the form of a
Multiphysics Problem.

The difficulty of deriving such a methodology mainly consists of distinguishing be-
tween and deciding on a set of numerical schemes. Beforehand though, it is crucial
to first ask whether it is at all possible, given the restrictions discussed, to make such
a decision unambiguously. If such a decision cannot be made, the solution space of
methods must be narrowed down appropriately. Additionally, deciding on an efficient
scheme should be a reproducible process. As reproducibility is strongly dependent on
prior knowledge and thus the targeted user, this needs to be considered as well. Thus,
the so-called application expert is introduced. This term denominates an end user who
is familiar with the desired problem to be solved, along with the relevant physical phe-
nomena and modeling aspects, but not with the necessary mathematics and numerics.
The resulting formulation for the second research hypothesis can then be summarised
as follows:

Hypothesis 2 (Decidability and Feasibility). Given a specific multiphysics problem,
one can identify the most suitable numerical method in a systematic and for an applica-
tion expert reproducible way, such that the process of finding this method can be strictly
formalized.

4.4 Application and Validation

With some sort of common baseline as well as an unambiguous decisionmetric in place,
the derived method can then be applied to real-world problems. Thus, in the third part
of this work, the usefulness of the results to the mentioned application experts should be
outlined. Therefore, the findings of the previous chapters will be demonstrated on a real
multiphysics problem. In this case, the previously discussed mesoscale problem during
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PBF-LB/M will be considered as a representative of a complex and coupled problem
with high practical relevance. The question of choosing an appropriate scheme for
this problem, as outlined in chapter 3, continues to be an open field of research and is
thus well suited to demonstrate how such a decision method can contribute to a current
problem.

By deductively evaluating the stated methodology, the usefulness, especially in
comparison with works from the literature that have previously investigated the model
test case will be demonstrated. The final hypothesis for this work is thus formulated as:

Hypothesis 3 (Applicability and Usefulness). The previously developed methodology
is fully applicable to the mesoscopic PBF-LB/M model problem and consequently de-
livers a numerical method that approximates the solution of the problem efficiently.

Upon comparison between the derived scheme and those from the literature, the fo-
cus will lie on accuracy, performance and reproducibility, as these aspects have already
been discussed in the context of other schemes in section 3.2.3. The performance aspect
is especially important for the usefulness of the scheme, as it dictates computational ef-
ficiency on current hardware and thus the viability of such simulations in practice.



Chapter 5

Formal Characterization of Discretisation
Methods

The general procedure of this chapter is as follows: First, the DGM being the most
general scheme considered here is introduced. Then, for each additional scheme con-
sidered, the necessary simplifications to recover that numerical method from the DGM
are worked out. In the remaining sections of this article, underline notation (⋅, ⋅) is used
to indicate vectors and matrices and roman indices (𝑖, 𝑗) to denote elements of lists or
arrays on the computational level.

5.1 Discontinuous Galerkin Method

In spirit, the DGM can be held as a synthesis of Finite Element and Finite Volume
schemes, and poses a generalized variant of both, as will be shown.

To derive such a scheme, the strong form of a given PDE is considered. The most
straightforward example in this case would be a first-order linear advection equation
with a homogeneous von Neumann boundary condition:

𝜕𝑡𝛼 + 𝑢 ⋅ ∇𝛼 = 0, 𝜕𝛼
𝜕𝑛 = 0 ∀𝑥 ∈ 𝜕Ω (5.1)

where 𝜕𝑡 signifies the temporal derivative, 𝑥 is the set of spatial coordinates, 𝑛 is the
outwards-pointing domain boundary normal and 𝜕Ω denotes the boundary of the com-
putational domain Ω. As outlined in section 2.2.4, evaluating a PDE using some kind
of FEM requires establishing the corresponding weak formulation first. In the case of
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Equation 5.1, it can be constructed by multiplying with a test function 𝑣, integrating
over the entirety of the domain Ω, and applying partial integration to the second term
on the left-hand side that contains the nabla operator. This results in the following
formulation (Hesthaven and Warburton, 2008): Find 𝛼 ∈ 𝑉 such that

ˆ

Ω

𝑣 𝜕𝑡𝛼 d𝑥 +
ˆ

𝜕Ω
𝑣 𝛼(𝑢 ⋅ 𝑛) d𝑠 −

ˆ

Ω

∇𝑣 ⋅ 𝑢 𝛼 d𝑥 = 0 ∀𝑣 ∈ 𝑊 , (5.2)

where it is necessary to make an appropriate choice for the solution space 𝑉 and the
test space 𝑊 which may but do not need to differ from each other.

Due to partial integration, there now is an additional term that has to be integrated
over the domain boundary 𝜕Ω, where (𝑢 ⋅ 𝑛) denotes the velocity component normal to
the boundary.

To make such a problem solvable by a computer, one must additionally choose the
discretization of the solution space 𝑉 , denoted 𝑉ℎ. A particularly popular choice of
space is the set of Lagrange polynomials which form an orthogonal function basis. In
addition, the physical spacemust be discretized in the form of a triangulation. TheDGM
then consists of assembling the finite-dimensional, linear system on the element level.
This enables high locality of the solution process, which leads to efficient computation
on parallel architectures as less data transfer is required.

One resulting key feature of the DGM is that the elements now do not overlap any-
more in terms of their degrees of freedom. Thus, the global problem is broken up into
individual problems. This in general leads to large systems that are however sparse
and in the case of the mass matrix, i.e. the form

´
Ω 𝑢 𝑣 d𝑥, even block diagonal. The

remaining term, often denoted the numerical flux, is the only term within the physical
domain that ensures coupling across elements. Through evaluation of this surface inte-
gral, adjacent degrees of freedom are weakly coupled and thus global conservation of
quantities can be assured.

As the polynomial space of DGMs only belongs to the 𝐿2 space of functions but not
𝐻1, the basis functions are discontinuous and thus the derivative at boundaries is not
well defined. Solving PDEs involving second derivatives is thus not possible as is. As a
consequence, there have been many successful extensions of this method to circumvent
that problem: The most prevalent schemes in this category are the Symmetric Inte-
rior Penalty (Epshteyn and Rivière, 2007), Hybridizable (Warburton and Karniadakis,
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1999) and Local DGM (Cockburn and Shu, 1998). These methods, despite having dif-
ferent approaches, have been extensively studied and compared to each other (Arnold
et al., 2002). As it turns out, all methods work well and have individual advantages
and disadvantages. For this work, the Hybridizable DG (HDG) scheme is chosen as a
general framework. It should be noted here that the proposed method would however
also work with the other schemes given above (Arnold et al., 2002).

Within the abovementioned methods, one introduces an additional term in the weak
form that serves as a penalty for discontinuous solutions. An alternative approach that is
also pursued within the HDG scheme is the algebraic manipulation of the PDE system
by splitting. One recursively introduces new dependent variables for quantities that
appear in higher-order derivatives such that each quantity is differentiated at most once.
This can be illustrated using the Poisson equation

Δ𝑢 = 0. (5.3)

The corresponding, well-known weak form is: Find 𝑢 ∈ 𝑉 , such that for all 𝑣 ∈ 𝑉
ˆ

𝜕Ω

𝑣(∇𝑢 ⋅ 𝑛) d𝑠 −
ˆ

Ω

∇𝑣∇𝑢 d𝑥 = 0. (5.4)

By introducing the auxiliary variable 𝜎 = ∇𝑢, Equation 5.4 is extended to the following
system:

ˆ

𝜕Ω

𝑣(𝜎 ⋅ 𝑛) d𝑠 −
ˆ

Ω

∇𝑣 𝜎 d𝑥 = 0 (5.5)

𝜎 = ∇𝑢 (5.6)

Employing such an approach enables splitting PDE systems of arbitrary order resulting
in larger systems of first-order PDEs (Hesthaven and Warburton, 2008).

5.2 Continuous Galerkin Finite Element Method

Themost straightforward step to conduct is to derive the CGM from the DGM, although
the former formally being the original formulation used to solve problems in structural
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mechanics (Liu et al., 2022).
In this case, all degrees of freedom (DoFs) in the domain are global, in contrast to

being local to each cell. However, each basis function associated with a given degree of
freedom has compact support and is thus only non-zero within the direct vicinity, that
is, at cells that the degree of freedom is associated with. The resulting linear system
hence remains sparse but has considerably fewer DoFs than an equivalent discretization
produced by a DGM.

One may obtain a CGM starting from the DGM by strongly coupling the degrees of
freedom at cell interfaces. In other words, the previously discontinuous approximation
must be made continuous. In terms of the weak form of a given problem, the numerical
flux that has been introduced by partial integration has to vanish. This step is exactly
taken in deriving weak forms for the CGM. The equivalent weak form of the advection
equation given by Equation 5.2 is then: Find 𝑢 ∈ 𝑉 such that

ˆ

Ω

𝑣 ⋅ 𝜕𝑡𝛼 d𝑥 −
ˆ

Ω

∇𝑣 ⋅ 𝑢𝛼 d𝑥 = 0 ∀𝑣 ∈ 𝑉 (5.7)

By coupling coinciding DoFs, one may equivalently introduce shared DoFs between
cells. This results, compared to a DGM discretization, in a smaller global system that
is in turn more coupled, yielding more non-zero entries per row and column in the
system matrices. The condensation of such a system by coupling DoFs is illustrated
in Figure 5.1. In the latter case, DoFs are entirely local to the cell and thus receive no
contribution from neighboring cells. Weak coupling is only introduced by the additional
numerical flux. Coupled DoFs are drawn in identical colors. From the numbering of
DoFs in both figures, it becomes apparent that the amount of additional allocations
grows drasticallywhen the dimensionality of the problem is increased. As the numerical
flux is zero by definition for a CGM, it may also be omitted from the computation.
Thus, the CGM is noticeably less arithmetically intensive in this regard. However,
this computational saving is offset by the strong coupling of DoFs, resulting in a more
dense linear system and possibly a more complex assembly process in terms of memory
management.

As equivalence can be shown here based on the weak form and thus early on in
the model assembly process, the choice of Finite Element is unaffected. This in conse-
quence also applies to the chosen type of triangulation or the order of approximation.
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Fig. 5.1: Coupling of global DoFs in the CGM (a) versus DGM (b), both of first order.
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Fig. 5.2: Comparison of the nodal nature of the FDM (a) versus the cell-wise assembly
used in the CG FEM (b) for an identical, cartesian triangulation with 9 nodes.

5.3 Finite Difference Method

At first glance, the FDM might appear to be conceptually different from the FEMs
given above. Instead of treating the discretized problem in an element-wise manner,
the FDM operates on discrete points directly and lacks a notion of cells in the domain.
Yet, both methods still may yield identical results in discretization. A comparison of
both approaches is shown in Figure 5.2. Both methods are formulated as first-order
approximations. Nodes colored in dark red signify the points where the PDE is evalu-
ated. Contributions to this node are taken from blue nodes, whereas white nodes from
no contribution In both figures, 𝑖 and 𝑗 denote vertical and horizontal indices of grid
nodes, 𝜙𝑖 are the FE basis functions and Roman letters denote indices of cells. Forming
for example the laplacian for an FDM requires access to the vicinity of vertex 𝑖, 𝑗 (red
node) in all cartesian directions (blue-colored nodes). For both methods, gray-marked
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nodes do not pose a contribution to the value of the central node. For a special case of
FEMwith quadrilateral elements, the same nodes form contributions to the global basis
function 𝜙5. However, the laplacian operator now is not evaluated directly instead con-
tributions are gathered from weak form integrals. In the case of 𝜙5, these contributions
are from cells 𝐼 to 𝐼𝑉 .

However, one may still show the equivalence of CGM and FDM by investigating the
resulting global linear system. The second-order central stencil shall be used here as an
example that is used to approximate a laplacian operator in two spatial dimensions

Δ𝑢 ≈
𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗+1

ℎ2 , (5.8)

where ℎ denotes the grid spacing that in this case is equal in each cartesian direction.
Such a system in stencil notation will produce a global matrix withmain diagonal values
4 and four off-diagonals with entries 1.

For a CG Finite Element scheme to be formally equivalent, the global systemmatrix
is required to be exactly equivalent to the FD formulation. The required weak laplacian
in CG formulation can be formulated as (Pinchover and Rubinstein, 2005): Find 𝑢ℎ ∈ 𝑉
such that for all 𝑣ℎ ∈ 𝑉

ˆ

Ω

𝑣 Δ𝑢 d𝑥 =
ˆ

𝜕Ω

𝑣 (∇𝑢 ⋅ 𝑛) d𝑠 −
ˆ

Ω

∇𝑣∇𝑢 d𝑥 = −
ˆ

Ω

∇𝑣∇𝑢 d𝑥. (5.9)

In this case, the additional restriction that trial and test space be identical has been in-
troduced. As outlined in section 2.2.4, this corresponds to a Bubnov Galerkin method.
Now, let Ω be an identical triangulation to the FD variant using quadrilateral ℚ1 ele-
ments, that is linear Lagrange elements.

Then, the four basis functions spanning the reference element are (Arnold and Logg,
2014):

𝜙1(𝑥, 𝑦) = 𝑥𝑦 − 𝑥 − 𝑦 + 1, (5.10)
𝜙2(𝑥, 𝑦) = 𝑥(1 − 𝑦), (5.11)
𝜙3(𝑥, 𝑦) = 𝑦(1 − 𝑥), (5.12)
𝜙4(𝑥, 𝑦) = 𝑥𝑦. (5.13)
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The Finite Difference stencil given by Equation 5.8 only takes into account contribu-
tions from nodes that lie strictly horizontally or vertically from the node of interest. As a
consequence, the node on the reference quadrilateral that is positioned diagonally from
the center node must not have any contribution to the weak form integral, otherwise the
resulting linear system cannot be equal. The weak form thus needs to be evaluated in a
way such that the resulting matrix 𝜙𝑖 ⋅ 𝜙𝑗 becomes sparse. It turns out that this can be
achieved by choosing a collocation method for quadrature. This means that quadrature
points are chosen to coincide with the node coordinates. As a consequence, the mass
matrix 𝜙𝑖 ⋅ 𝜙𝑗 becomes the identity matrix. From the family of Gaussian quadrature
schemes, one can achieve this using a Gauss-Lobatto quadrature of equal order to the
polynomial order of the Finite Element.

Now, the element-wise stiffness matrix −
´

Ω(𝑒) ∇𝑘𝜙𝑖∇𝑘𝜙𝑗 d𝑥 is evaluated within the
reference domain [0; 1] × [0; 1] for the given first order Lagrange element using first-
order Gauss-Lobatto quadrature. This results in

𝐾 (𝑒) =

⎡
⎢
⎢
⎢
⎢
⎣

−1 1/2 1/2 0
1/2 −1 0 1/2
1/2 0 −1 1/2
0 1/2 1/2 −1.

⎤
⎥
⎥
⎥
⎥
⎦

(5.14)

As such, 𝐾 (𝑒) does not yet equal Equation 5.8. The final step consists of assembling the
linear system in the physical domain using the reference stiffness matrix. In a cartesian
mesh in two dimensions, an interior node is owned by four quadrilateral elements and
thus the global entry in 𝐾 (𝑒) contains four accumulated matrix values. If one carries out
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this assembly process, in fact, an equivalent formulation can be obtained:

𝐾 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋱ ⋮ ⋮ ⋮
⋱ ⋱ ⋱ ⋮ 1 ⋮

⋱ ⋱ ⋱ ⋮ ⋮ ⋮
⋱ ⋱ ⋱ 1 ⋮

⋯ ⋯ ⋯ ⋱ ⋱ ⋱ ⋮ ⋯ ⋯ ⋯ ⋯
⋯ 1 ⋯ 1 ⋱ −4 ⋱ 1 ⋯ 1 ⋯
⋯ ⋯ ⋯ ⋯ ⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋯

⋮ 1 ⋱ ⋱ ⋱
⋮ ⋮ ⋮ ⋱ ⋱ ⋱
⋮ 1 ⋮ ⋱ ⋱ ⋱
⋮ ⋮ ⋮ ⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.15)

The exact position of the entries equal to one in the typically large and sparse matrix
depends on the mesh topology as well as global numbering of the degrees of freedom,
which in principle is arbitrary.

For the discretization of other operators, a similar argument holds, as the shown
procedure is irrespective of the choice of weak form or basis function. One could, for
example, discretize the gradient of a function ∇𝑢 using an upwind Finite Difference
formulation as is often done in fluid mechanics for resolving convective terms. An
equivalent FEM can be assembled by producing a weak form as given in the above
example, choosing the same collocation method and carrying out the integration nu-
merically. However, one important difference is that one cannot choose the test space
to be equivalent to the trial space. This would yield a symmetric system that does not
correspond to an upwind Finite Difference formulation and is also not stable in the case
of solving a pure advection equation. One must instead choose a test space with asym-
metric test functions to account for the notion of an upwind node, thus yielding a Petrov
Galerkin scheme (Brooks and Hughes, 1982).

Thus, the FDM may in summary be regarded as a special instance of the CG FEM.
On the one hand, integration is restricted to a collocation method and on the other hand
the Jacobian mapping from reference to physical elements is constant throughout the
domain. This close relationship has also been hinted at by analysis of boundary value
problems by Thomée (1984).
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For the sake of achieving the same discretization, the use of the FDM over the CGM
becomes apparent from the discussion above. Most strikingly, the process of producing
a local stencil is vastly more straightforward than performing element-wise assembly
and gathering the weak form integrals in a global, sparse linear system. Each element-
wise operation in assembly would otherwise require the evaluation of the mesh jacobian
for the requested element, that is the mapping from the reference to physical space.
Furthermore, this constant stencil enables Finite Difference schemes to operate in a
matrix-free manner easily. For larger systems, this can help to avoid a large amount
of allocated memory, thus being suited well for modern hardware architectures that are
typically memory-bound.

These advantages are however offset by some topological restrictions on the mesh.
The simplicity of a constant stencil also implies that the mesh must not deviate from a
cartesian geometry. Otherwise, additional complexity is introduced since Equation 5.8
becomes a stencil in the reference domain that has to be mapped to the physical do-
main. This would still save the computational effort to assemble the weak form. How-
ever, since this process only has to be carried out once for the reference element, the
computational impact can be held low by pre-computing the integrand.

5.4 Finite Volume Method

In a similar vein to the FDM, the use of the FVMmight appear distinctly different from
the idea of Finite Elements. Here, extensive use of Stokes’ theorem is made to replace
volume with hull integrals in conservation laws (Eymard et al., 2000).

It can be shown however that the FVM can simply be considered a Bubnov DGM
of polynomial order zero. To illustrate this, Equations 5.1 and 5.2 describing the strong
and weak forms of the advection equation are considered again. A Finite Volume ap-
proximation in conservation form is:

ˆ

Ω

𝜕𝑡𝛼 d𝑥 +
ˆ

Ω

𝑢 ∇𝛼 d𝑥 =
ˆ

Ω

𝜕𝑡𝛼 d𝑥 +
ˆ

𝜕Ω

𝛼 (𝑢 ⋅ 𝑛) d𝑠 (5.16)

Apart from the presence of a test function 𝑣 in Equation 5.2, the second integrand simply
represents the net flux of the conserved quantity 𝑢 𝛼 over the set of element boundaries.
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For Equations 5.2 and 5.16 to be equivalent in this case, the third integrand resulting
from partial integration has to vanish in addition. However, this can be shown trivially
by setting the order of the polynomial space for the trial and test function to zero. Then,
the derivative of the test function vanishes and thus the entire term does not contribute
to the weak form.

After performing this step, the test function is still present in the remaining parts
of Equation 5.2. For the remaining terms to be equivalent, it must vanish out of the
equation as well. This can be accomplished straightforwardly by fixing the value of the
test function to be unity. In the weak form, this step is admissible since it must hold
for all instances of 𝑉 . As 1 ∈ 𝑉 0 where 𝑉 0 is the space of constant polynomials, this
statement holds in particular for a Bubnov Galerkin scheme, as trial and test space must
be identical. The qualitative similarity of both schemes is illustrated in Figure 5.3. For
the FVM, one must first reconstruct the values of the DoFs at the mesh facets to then
compute the numerical flux. For both FVM and DGM, DoFs are entirely local to the
cell and coupling happens through the calculation of a numerical flux - or in more for-
mal terms, through the evaluation of the hull integral in the corresponding weak form.
However, the FVM only stores one DoF per cell which has notable implications for
the calculation of the numerical flux. This means that as a first step, the cell values
have to be reconstructed at the mesh facets. These reconstructed DoFs which depend
on the cell values that they interpolate between can then be coupled to their counter-
parts at opposing mesh facets. These relationships are denoted by DoFs being colored

φ1 φ2

φ3 φ4

(a)

I

IV

II

III

φ1 φ2 φ3 φ4

φ5 φ6 φ7 φ8

φ9 φ10 φ11 φ12

φ13 φ14 φ15 φ16

(b)

Fig. 5.3: Comparison of FVM (a) versus DGM (b) on an identical quadrilateral trian-
gulation. Coupled DoFs are marked in identical colors.
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identically (coupled) and being transparent (reconstructed) in Figure 5.3a. For a DGM
scheme of first order or higher, this interpolation step oftentimes is not necessary if the
quadrature scheme is chosen carefully. For a collocation method (see section 5.3 for a
more thorough discussion), one does not need to tabulate the full list of DoF values at
the set of facet quadrature points, but rather only a small subset of DoFs that are owned
by the facet (Hesthaven and Warburton, 2008).

In summary, the FVM can again be considered as a special instance of the Bub-
nov type DGM, where the shared polynomial space 𝑉 is taken to be of constant order
and the test function 𝑣 is set to be unity. Similarly to the discussion on the FDM, it
should be noted that this simplification of Equation 5.2 brings with it some computa-
tional advantages that can be offset by sacrificing flexibility. The absence of a true weak
form in a Finite Volume formulation again means that actual assembly is not needed.
In addition, one may omit the transformation from the reference to physical space, as
interpolating degrees of freedom to mesh facets and forming a finite sum of these con-
tributions can be done on the mesh directly. The caveat of this approach is that an FVM
in principle is bound to be at most first-order accurate. In practice, this does not hold
as the FVM can be extended to higher orders by applying higher order flux reconstruc-
tion techniques (Zhou et al., 2001; Shu, 2003). Such techniques can however quickly
become computationally expensive as well with increasing order. This is achieved in
this case by widening the stencil for polynomial reconstruction, increasing memory and
time complexity by a considerable amount (Liu and Zhang, 2013).

5.5 Findings

In this chapter, a common framework to formulate the most prevalent grid-based nu-
merical schemes for the solution of PDEs has been established. It turns out that the
DGM possesses enough flexibility to incorporate the CGM, FDM and FVM by impos-
ing a set of restrictions. A summary of the results presented in this section on how the
schemes compare overall is given in Table 5.1. This framework is not only of theoreti-
cal use. Rather, such a common formulation also enables the analyst to combine these
schemes arbitrarily to solve larger problems. As each scheme possesses strengths and
means to gain computational efficiency, this is an important result since it enables effi-
ciently mixed discretizations of multiphysics problems. Establishing a practical method
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to achieve exactly this will be the content of the next section.
Before concluding the discussion on relating the above numerical schemes, an im-

portant remark must be made. There exist several extensions to these methods that in
general do not fit into the framework that has been established. For the sake of illustra-
tions, some examples are given in the following.

There also exist formulations of the FDM that can capture domains with less regu-
larity, see for example (Fornberg, 1988; Visbal and Gaitonde, 2002; Zhang et al., 2012).
One can also find alternative discretization methods based on FDM in the literature that
encompass the notion of missing structure in grids more naturally, such as understand-
ing vertices as centroids of Voronoi cells (Sukumar, 2003)

As mentioned previously, there exist various formulations of the FVM that extend
far beyond the original restriction of being first-order accurate. The cell-averaged flux is
then determined in terms of reconstructing polynomials that in theory can be of arbitrary
order. Such approaches per se do not fit well into the above-given DGM but do however
achieve similar results.

In summary, research hypothesis H1 can be formally addressed as follows: There
exists a common formulation for grid-based approximation methods in the form of the
DGM, such that the schemes are comparable and can be combined. It has been shown

Table 5.1: Comparison of the individual restrictions that the presented schemes im-
pose. Certain simplifications bring with them computational advantages, as discussed
above.

Scheme Geometry Function Space Weak Form Quadrature
DGM Arbitrary Arbitrary Full Arbitrary
CGM Arbitrary Globally Con-

tinuous Space
(𝐻1)

No hull inte-
grals over inte-
rior facets

Arbitrary

FDM Cartesian Ge-
ometry

Globally Con-
tinuous Space
(𝐻1)

No hull inte-
grals over inte-
rior facets

Collocation

FVM Arbitrary Discontinous
Polynomial
Space ℙ0, Bub-
nov Galerkin

No volume inte-
grals

None required
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that the considered methods each represent simplifications of the DGM that enable ef-
ficient solutions to certain problems. Through careful tailoring of the methods to the
multiphysics problem at hand, one can indeed construct an approximation method that
generates a solution in a computationally efficient way. Therefore, H1 is considered to
be formally verified.





Chapter 6

Deduction of the Unified Modeling
Methodology

The overarching goal of this section is to identify a suitable combination of numerical
schemes for a given multiphysics problem that is stable and accurate on the one hand,
but also performant with regards to a specific choice of hardware on the other hand.

With the set relations between methods discussed in section 5, the simplifications
and thus computational advantages that each scheme presents can now be utilized. That
is, the general guideline in the following is to impose as many restrictions as possible
whilst sustaining enough degrees of freedom to accurately capture the behavior of a
given PDE.

6.1 Preliminary Assumptions

As a starting point, it has to be stated that encompassing the entire state of research on
such schemes would be a daunting if not impossible task. The likewise formalization of
a common framework is equally challenging as a consequence and thus not considered
in this work.

Instead, the following restrictions are introduced that are on the one hand enough to
construct a unifying scheme but on the other hand not too strict such that the efficient
solution to real-world problems would be out of scope:

1. Only Bubnov Galerkin schemes are considered. Consequently, Petrov Galerkin
methods are omitted from the scope. The former restricts the choice of test space
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to be identical to the trial space. As such, schemes are left aside that for instance
use weighted functions or stencils to account for flow fields. An example of such
schemes would be the Streamline Upwind Petrov Galerkin (SUPG) method that is
used tomodel flow problems, such as the passive advection equation (5.1) (Brooks
and Hughes, 1982). This restriction is essential to obtain an unambiguous choice
of method, as the notion of Petrov Galerkin methods does not imply any particular
choice of function space. Naturally, omitting the use of arbitrary test function
spaces contains a tradeoff as, in theory, the solution space is restricted by doing
so. However, the majority of numerical methods developed so far indeed fall
within the category of Bubnov Galerkin schemes with notable exceptions mainly
being Petrov Galerkin methods used to stabilize saddle-point systems, such as the
SUPG method outlined above (Fries and Matthies, 2004). Thus, mainly special
instances of numerical methods are disregarded that are tailored to particular use
cases.

2. Function spaces for approximation other than the 𝐿2 and 𝐻1 Sobolev spaces are
omitted. There exists a vast variety of so-called Mixed Finite Element schemes
that use Finite Elements based on different or composite function spaces with
unique properties Ern and Guermond (2004). For example, one may construct
function spaces that can exactly fulfill divergence-free properties (𝐻(div)) or con-
ditions based on the rotation of a field (𝐻(curl)). The specific choice of Finite El-
ement then would require a considerable amount of expertise and would warrant a
complex decision process of its own. Furthermore, the amount of elements avail-
able for such spaces is vastly ambiguous, as outlined in section 1.2. Thus, regular
scalar-, vector- and tensor-valued elements are solely focused on. They have been
shown to encompass a similar solution space as well and perform comparably for
fluid and electromagnetic problems (Cockburn et al., 2004; Hughes et al., 2006).
There also exist mixed formulations for the poisson problem Δ𝑢 = 𝑓 , which can
be regarded as a steady-state version of the heat equation (2.5), i.e. the temporal
derivative in 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 is set to zero. However, the ambiguity of choos-
ing suitable mixed Finite Elements and resulting potential stability issues pose
considerable disadvantages of such spaces, as already outlined for the poisson
problem in section 1.2 and in particular Figure 1.4. In summary, some freedom
in choosing possibly very well-suited function spaces is sacrificed for the benefit
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of attaining a decision metric that allows for an unambiguous recommendation.
3. Closely related to the previous statement, the solution space is further restricted

by requiring that only Finite Elements utilizing Lagrange polynomials should be
used. As the standard scalar- and vector-valued ℙ𝑘 and ℚ𝑘 Finite Elements, be-
ing by far the most popular choices use exactly this family of polynomials, this
requirement is weaker in practice than it might seem at first glance (Arnold and
Logg, 2014; Cockburn and Fu, 2017).

4. The following method is based on a coarse taxonomy to classify the qualitative
behavior of a given PDE. That is, limits regarding the leading coefficients of the
differential operators are introduced. This should indicate whether the physical
process described by the PDE is either more dissipative or more convective by
nature. This leads to a more physical interpretation than the considerably stricter
coercivity measures employed in functional analysis. The taxonomy closely fol-
lows the classes that were proposed by Bitsadze (1988). It should be noted that
this classification is not claimed to be universally accurate. In practice, it has been
shown however that having discrete cut-off values to disambiguate classes of PDE
eases the choice of numerical scheme for application experts considerably.

5. Only systems of PDEs with differential operators up to second order are consid-
ered. These are most common within physical processes and enable a wider range
of numerical schemes to be used. For instance, equations of higher order such as
the Cahn-Hilliard equation, would require the use of Finite Elements where up to
third-order derivatives are defined. Such elements of high continuity are cumber-
some to derive and are rarely used. Instead, a practical way to circumvent that is
to reformulate the system as a mixed problem, where in the mentioned example
one could represent the quantity of interest as two fields with second derivatives
each. This technique is also regularly used in practice.

6.2 PDE Classification

To find a numerical scheme that produces stable results, knowing the qualitative behav-
ior of the system oftentimes is a necessity. In particular, this means that the specific
capabilities that a chosen numerical scheme possesses need to reflect the properties that
the system presents.
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This is illustrated by the following example. Once again, the simple advection equa-
tion (5.1) is investigated, which is known to be first-order hyperbolic. In general, hyper-
bolic systems are prone to either preserving or even amplifying discontinuities given in
the initial condition. Thus, the capability of accurately representing these should be in-
corporated into the choice of numerical schemes (LeVeque, 1992). Suitable candidates
would then be a Finite Volume or DGM. However, the FDM using a centered stencil
or the CGM would give suboptimal results. The strong imposition of continuity in the
domain would then yield spurious oscillations that affect stability (Ern and Guermond,
2004).

Hence, the system of PDEs is required to be classified firsthand. As mentioned
previously, the popular taxonomy of second-order PDEs is used that can, for example,
be found in the book by Bitsadze (1988), but as criteria for classification, a more general
method for determining the appropriate class is used (Pinchover and Rubinstein, 2005).
That is, a singular governing equation in the form of a PDE is defined to be either
elliptic, parabolic or hyperbolic, depending on the shape that its characteristic quadric
takes in space:

Definition 6.2.1 (Classification of second order PDEs (Pinchover andRubinstein, 2005)).
Given a differential operator 𝐿 of the form:

𝐿(𝑢) =
𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(6.1)

where 𝑥𝑖 are the dependent variables and 𝑎𝑖𝑗 is the matrix forming the coefficients of
the highest spatial derivatives. Considering the eigenvalues 𝜆𝑖 of 𝑎𝑖𝑗 , 𝐿 is called

• elliptic, if all 𝜆𝑖 are either positive or negative,
• parabolic, if at least one eigenvalue is zero and all others are either positive or

negative,
• hyperbolic, if at least one eigenvalue is positive and at least one is negative.

The characterization of first-order differential operators is more straightforward,
however. It can be shown that first-order PDEs with constant, real coefficients are
always hyperbolic. This condition is met for most cases relevant to engineering or
physical applications. More precisely, a first-order PDE is hyperbolic, if the resulting
Cauchy problem is uniquely solvable. In the case of real, constant coefficients, the
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PDEs of
(up to)

second order

Diffusive /
Continuous

Convective /
Discontinuous

Ellptic Parabolic First order
hyperbolic

Second order
hyperbolic

Character of the
PDE / solution

Class of the PDE

Fig. 6.1: Classification of PDEs up to second order by qualitative nature and types
following Bitsadze (1988).

polynomial equation for each variable has to admit 𝑛 solutions for an equation of order
𝑛 while keeping all other variables constant (Hazewinkel, 2002). In the present case,
this is trivially true.

This classification is applied for each governing equation of the independent vari-
ables for a given multiphysics problem. In practice, one may oftentimes identify the
class by the differential operators that frequently appear in a given PDE. For example,
a PDE that only has a laplacian as a spatial differential operator - such as the Laplace
equation Δ𝑢 = 0 or the heat equation 𝜕𝑡𝑢 − Δ𝑢 = 0 exhibits dissipative behavior and
is prototypical for elliptic and parabolic PDEs. Oftentimes, one can easily identify a
differential operator as parabolic if it has an elliptic operator in its spatial derivatives
and an additional temporal derivative, as is exactly the case for the heat equation.

Both the abovementioned classes of PDE are dissipative, the reason being that PDEs
of second order can only have discontinuous derivatives along their characteristics.
Since elliptic differential operators lack any characteristics, they strictly admit smooth
solutions in that sense (Pinchover and Rubinstein, 2005). Thus, this qualitatively dissi-
pative behavior is associated with elliptic and parabolic PDEs as defined above.

However, the advection equation (5.1) only has the gradient as a spatial differential
operator, representing purely convective behavior. Exactly this behavior of transport-
ing information through the domain with finite speed is associated with the wave-like
character of hyperbolic equations. Figure 6.1 gives an overview of the classes of PDEs
considered. In alignment with the postulate at the beginning of this section, a given
class of PDEs should be solved with as few degrees of freedom as possible whilst not
over-constraining the solution.
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Most importantly, discontinuities that might appear in the solution should be prop-
erly accounted for and reflect the choice of numerical scheme. The direct consequence
is that methods enforcing continuity should be used for problems that qualitatively ex-
hibit high regularity and continuity. From the previous discussion, it becomes apparent
that this is the case for the FDM and CGM. Problems that either conserve or even de-
velop shocks however should be solved using methods that naturally allow for such.
This means that either the FVM or DGM suit this requirement most naturally.

6.3 Domain Geometry

As discussed in section 5.3, the discretization using the FDM inherently assumes an
even grid with uniform spacing between nodal points. The direct consequence of this
simplification is that assembly can be done in the computational domain directly and in
an equal manner for every node point.

In general, if the domain has a particularly simple shape, for example, a hypercube
and does not contain any holes, it can be triangulated using a cartesian grid. Thus, if the
discrete domain fulfills these conditions and the differential operators form an elliptic
or parabolic PDE, using the FDM to efficiently assemble the global system is advisable.

For FVM, CGM and DGM, regularity of the computational domain, in general,
does not pose any considerable advantages that may accelerate the assembly of the
discretized system.

6.4 PDE Linearity

Another crucial property to assess is the linearity of a PDE. In this case, a PDE is defined
to be strictly linear, semilinear, quasilinear and fully nonlinear:

Definition 6.4.1 (Evans (2010)). A 𝑘-th order PDE of the form

𝐹 (𝐷𝑘𝑢(𝑥), 𝐷𝑘−1𝑢(𝑥), ..., 𝐷𝑢(𝑥), 𝑢(𝑥), 𝑥) = 0

is called:
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1. linear, if it has the form

∑
|𝛼|≤𝑘

𝑎𝛼(𝑥)𝐷𝛼𝑢 = 𝑓(𝑥)

for given functions 𝑎𝛼(|𝛼| ≤ 𝑘), 𝑓 . The PDE is homogeneous if 𝑓 ≡ 0.
2. semilinear, if it has the form

∑
|𝛼|=𝑘

𝑎𝛼(𝑥)𝐷𝛼𝑢 + 𝑎0(𝐷𝑘−1𝑢, ..., 𝐷𝑢, 𝑢, 𝑥) = 0

3. quasilinear, if it has the form

∑
|𝛼|=𝑘

𝑎𝛼𝐷𝛼𝑢(𝐷𝑘−1𝑢, ..., 𝐷𝑢, 𝑢, 𝑥) + 𝑎0(𝐷𝑘−1𝑢, ..., 𝐷𝑢, 𝑢, 𝑥) = 0

4. The PDE is fully nonlinear if it depends nonlinearly upon the highest-order deriva-
tives.

While linearity does not pose much of a problem for elliptic or parabolic equations,
it plays an important role in whether a discretization is stable for hyperbolic equations.
The theory of nonlinear flux limiters is in general well researched for DGMs and largely
profits from extensive developments that originally stem from the FVM. However, ac-
curate computation and implementation remain to be a hurdle in practice. There have
thus been several approaches to circumvent this issue, for example, by switching to an
FV scheme in regions where the stability of the solution cannot be guaranteed (Maltsev
et al., 2023; Sonntag and Munz, 2014).

As the overarching goal of this method is to provide straightforward guidance for
end users, such approaches will be omitted that must in most cases be implemented in a
custom and rather particular fashion in favor of simplicity. The recommendation thus is
that, for equations where the solution is not likely to require many nonlinear iterations
per time step, one may safely use a DGM. In other cases where stability cannot be
assured universally, one should rather switch to a Finite Volume formulation that may
be overly diffusive, but on the upside is guaranteed to yield a stable solution.
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6.5 Computing Environment

Within the last decade, a pronounced plateau in processor speed can be observed which
is ultimately limiting further advancements in computing performance (Theis andWong,
2017). Due to these slowly diminishing returns, this trend has pushed for other means
of accelerating computing. One of the most established ones is the use of parallelism,
i.e. distributing a computational task across multiple workers (Leiserson et al., 2020).

As a direct consequence, the advancement of computer hardware has been known
to slowly approach the so-called memory wall (McKee and Wisniewski, 2011). This
means that applications tend to be bound by the capability of the hardware to transfer
shared information in memory instead of performing arithmetic operations. Since in
parallel environments, many workers perform operations on the same data, information
must frequently be transferred and updated. Such synchronization efforts can quickly
become a bottleneck. This in particular holds for numerical simulations that are per-
formed using many workers or problems that are large. In such cases, the evaluation
of sparse matrix-vector products poses high loads regarding memory bandwidth (Arndt
et al., 2020).

Regarding this specific, increasingly important requirement, some numerical schemes
naturally lend themselves toward parallelism and others are more memory-bound by de-
sign (Weinan and Lu, 2011; Kirby et al., 2012). Thus, for a given computing hardware
that puts enough emphasis on massive parallelism and two numerical schemes perform-
ing (nearly) identically, one should prefer the one that handles parallelism better. One
thus naturally arrives at the question of where one should disambiguate between mas-
sively parallel and other, regular hardware.

There are essentially two factors that would affect such a classification. First, the
hardware architecture itself plays an important role. One may on the one hand solve
a PDE on the classic CPU architecture that is capable of performing arithmetic on
many precision levels and use many specialized instruction sets, such as AVX or fused
multiply-add (FMA). Another possibility is the use of highly parallel computing units,
such as general-purpose graphics processing units. Those however have a memory lay-
out and instruction set that is much more tailored toward one purpose. In the case of a
GPU, this is medium to low precision operations with comparably low memory inten-
sity but instead high arithmetic effort.
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The other deciding factor is the amount of workers involved in the simulation pro-
cess. The more workers exist, the more processor boundaries are present and thus more
information has to be shared between processors. For some schemes, this overhead due
to the exchange of memory between workers can become prohibitive. Within the FVM,
for instance, parallel efficiency measured in GFlops/s starts to drop notably within the
regime of 50 to 100 workers (Marshall et al., 1997). It should be noted that the quanti-
tative drop-off also depends on the specific implementation. Fringer et al. for instance
note a decline in parallel efficiency for a Finite Volume solver starting at 32 workers
(Fringer et al., 2006). Thus, as a general guideline, it is recommended to employ meth-
ods that are suited for highly parallel environments at roughly 50 or more CPUworkers.
For execution on massively parallel architectures, such as GPUs, the switch to such al-
gorithms is considered necessary to obtain good efficiency.

6.6 Problem Scale

Another deciding factor for whether adaptivity is needed or not is the presence of mul-
tiple length scales in a multiphysics model.

The underlying definition for a multiscale problem can be found in (Weinan, 2011;
Weinan and Lu, 2011). A PDE-governed problem is thus characterized to have a mul-
tiscale nature if models of multiple spatial or temporal scales are used to describe a
system. Oftentimes, this is the case if equations are used that originate from differ-
ent branches of physics, such as continuum mechanics versus quantum mechanics or
statistical thermodynamics.

This may on the one hand be a physical process with slow and fast dynamics, for
example, in chemical reaction networks. Then, the multiscale nature shows itself in the
time domain of the problem. Another example commonly encountered problem in alloy
design is the evolution of the temperature field and phase kinetics during heating and
solidification. In this case, various length scales can be involved, such as in processes
involving laser heating. The temperature gradients then involve resolutions at a scale
of around 1 × 10−5 m, whereas the width of a solidification front rather goes down to
a sub-micrometer scale, that is, around 1 × 10−7 m (Zimbrod and Schilp, 2021). About
the previous definition, there is one model that is governed by laws of macroscale ther-
modynamics, in this case specifically the heat equation (2.5). The other part of physics
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present is typically described by the evolution of a phase field. The corresponding equa-
tions of this model are however derived from the formulation of a free energy functional
from Landau theory (Landau, 1937).

Due to the wide variety of physical processes and combinations thereof, formulating
general criteria for the presence of a multiscale problem from a mathematical point of
view is challenging. As of yet, a corresponding metric is not present in the literature
that would enable such a classification. Instead, knowledge of the application expert
is required who is assumed to be familiar with the physics that should be captured, as
stated in 4.3. For a rough disambiguation, however, if no other information is given,
one may use the definition given above.

Such multiscale phenomena are prohibitively expensive to resolve on a uniform
mesh due to the nonnegligible difference in the dynamics of the system. One option to
efficiently resolve the physics at multiple scales is to employ different grids and solve
the resulting problems in parallel. This has, for example, been done for the case of
PBF-LB/M to concurrently resolve the macro- and mesoscale physics (Ghanbari et al.,
2020).

A rather effective, alternative approach is the modification of the governing equa-
tions such that they become tailored to a specific numerical scheme. For instance, the
well-known phase field model has been adapted using specialized stencils to the FDM
such that spurious grid friction effects are eliminated (Fleck and Schleifer, 2023; Fleck
et al., 2022). This approach however requires extensive knowledge about the numerics
as well as the physical nature of a given problem, which has explicitly been excluded
from the scope of the application expert as defined in section 4.3 and can thus not be
considered as an option.

Another possibility that requires fewer algorithmic adaptions to the specific problem
is to make use of grid adaptive algorithms. This approach for the problem presented
is a popular alternative and has been implemented multiple times (Proell et al., 2023;
Olleak et al., 2022; Olleak and Xi, 2020b,a). Thus, grid adaptivity plays a key role in
creating solutions to such problems, if the domains are not to be resolved on different
discretizations entirely. Numerical methods as a consequence need to reflect on this
requirement and as such, FDMs are not suitable for such types of problems.

Whereas grid adaptivity is easily realizable within the FVM, there is little room
for adaptivity regarding the order of approximation and can at best be achieved using
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varying reconstruction stencils (Shu, 2003).
CG FEMs do enable grid as well as polynomial degree adaptivity. Yet, the impo-

sition of hanging node constraints is oftentimes not trivial. Though there have been
considerable strides toward easy and intuitive handling of hanging nodes for continu-
ous elements (Šolín et al., 2008; Bangerth and Kayser-Herold, 2009), these methods
naturally fall short of the inherently decoupled nature of DoFs present in discontinuous
methods.

By far, the most naturally suited method for h- as well as p-adaptivity is the DG
FEM. The locality of DoFs enables the splitting of cells without the need for hanging
node constraints. The same argument applies to altering the degree of a Finite Element,
as additional DoFs within the cell need not be attached to a counterpart on its neighbors.
The natural splitting and refining of cells that the DGM allows in comparison to a CGM
is illustrated in Figure 6.2. Unrefined DoFs are colored grey, refined, local DoFs blue
and refined, global DoFs are colored red. In the case of the CG FEM, the red DoFs are
considered hanging nodes, as they do not have a refined counterpart at the opposite side
of the facet and are thus drawn as half circles. For the DG FEM, all DoFs are local and
not being shared with other cells. Thus no hanging nodes are created

6.7 Resulting Method

The various aspects of choosing appropriate numerical schemes can now be condensed
as follows into a unifying method, given the restrictions posed in section 6.1.

(a) (b)

Fig. 6.2: Grid refinement within the CGM (a) versus DGM (b), both locally from first
to third order.
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First, three sets of inputs are taken that are of practical relevance: themathematically
formulated, continuous (i.e. not yet discretized) problem, the computational domain
that one wishes to solve the former on, and the configuration of the target hardware.

To design the intended decision process, the decision metrics are first evaluated that
impact the target scheme in the most general manner. The general question of whether
the prescribed system of PDEs requires an efficient solution on a large scale fulfills this
requirement here. The term large scale here denotes state-of-the-art computing hard-
ware on massively parallel architectures. That decision in turn is influenced by two
factors: One may directly intend to efficiently solve the system of PDEs on that hard-
ware, or the multiscale nature of the problem demands such a computing environment.
If either is the case, solving the entire system using the HDG method is advisable due
to the resulting locality of the problem.

The remaining parts of the decision process depend on the class of PDE present.
From here on, one operates in a field-wise manner and classifies the system of PDEs
for each independent variable separately. If a PDE is convective in character, that is,
hyperbolic, the use of numerical schemes that incorporate discontinuous approxima-
tions is recommended. But, if a problem is diffusive by nature, the solution will be
continuous and thus the use of continuous approximations is more advisable.

In the case of the former, following the discussion in section 6.4, a final disambigua-
tion must be made regarding linearity. If the PDE is linear or semilinear, a DGM can
be applied due to the unlikeliness of stability issues. Otherwise, the use of a simple FV
scheme is more advisable to obtain a stable solution without having to iterate through
many different choices of flux limiters in a trial-and-error fashion.

Regarding the continuous schemes, as has been explained in sections 5.3 and 6.3,
the configuration of the domain geometry plays an important role in the efficiency of
the overall scheme. If the domain is cartesian, irrespective of dimensionality, the FDM
can deliver accurate results with a considerably decreased amount of arithmetic opera-
tions. The conceptual flexibility of the FEM regarding the domain is then unnecessary.
In the other case though where the domain is topologically more complex, relying on
FEM algorithms that account for the necessary global mappings is more appropriate.
It would of course be possible to identify a middle ground between both schemes, for
example, when a simple and prescribed transformation can be applied to the entire do-
main. This would for example be the case for systems that can be described by polar
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coordinates. However, few computer codes implement such functionality. As the focus
of this method lies on practicality and usefulness, a method is rather chosen that can
make use of widespread and established computer codes and thus these possibilities are
omitted.

As a result, one obtains a process that guides the application expert through iter-
atively selecting the most appropriate combination of numerical schemes for a given,
fixed and well-defined set of inputs. This method is summarised in a flow chart, which
is depicted in Figure 6.3. Inputs (I) are given by purple trapezoids, decision points (D)
by white diamonds and processes (P) by orange rectangles. Processes with additional
vertical bars denote more complex processes and have references to their respective
sections. Results are shown in green trapezoids. It should be noted at this point that, as
can be seen in Fig. 6.3, this method will always output a combination of discretization
schemes for a given Multiphysics problem that fits the requirements given in this chap-
ter. Furthermore, the selected schemes are interoperable with each other and can thus
be tightly coupled due to the theory established in the previous chapter.
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Fig. 6.3: Graphic summary of the proposed process for choosing appropriate numerical
schemes.



6.8 Weak Form Derivation 73

6.8 Weak Form Derivation

As has been outlined in sections 2.2.4 and 2.2.5, working with FEMs on a general PDE
level requires setting up the corresponding weak formulations of the desired equations.
For larger or coupled multiphysics problems, this process can quickly become complex.
It is thus assumed to be not trivial from the standpoint of an application expert. There-
fore, the process of arriving at a valid weak form will be outlined below. Such weak
forms can oftentimes then be entered almost as is into modern Finite Element codes,
such as FEniCS (Logg et al., 2012b) or Firedrake (Ham et al., 2023).

For the vast majority of Finite Elements and in particular ℙ and ℚ Lagrange el-
ements, only 𝐻1 continuity holds at most, i.e. the second derivative across element
boundaries is not well defined. There are few exceptions to this statement such that
second derivatives are naturally incorporated into the Finite Element basis functions
(Arnold and Logg, 2014). These, however, are outside the scope of this work as out-
lined in section 6.1. As such, second derivatives may not be computed as is, but require
additional treatment.

If a given PDE containing only second-order derivatives or higher is to be instead
discretized using the DG-FEM, algebraic splitting of the equation is required. This is
due to the global space of DG solutions only having 𝐿2 continuity, i.e. first derivatives
are not well defined at element boundaries. Thus, applying partial integration is gener-
ally not sufficient (Nguyen et al., 2011). This procedure has already been demonstrated
for the Poisson problem in Equations 5.3 through 5.6.

Overall, an algebraic manipulation of the differential equation is required for both
schemes if higher-order derivatives are present. This process is denoted as hybridization
and can be executed as follows. For the quantity that is contained within a higher-
order differential operator, one iteratively introduces additional field quantities. These
each are defined as functions of the original quantity until only expressions are left
of up to either second order in the case of the CGM or first order for a DGM. As an
example, the Cahn-Hilliard equation is considered which is oftentimes used to model
phase separation in binary mixtures (Cahn and Hilliard, 1958):

𝜕𝑡𝑢 − ∇ ⋅ 𝑀 (∇ (𝜕𝑢𝑓 − 𝜆∇2𝑢)) = 0 (6.2)

This effectively is a fourth order PDE in the variable 𝑢, whereas 𝜕𝑢𝑓 is a free energy
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functional, i.e. a function of 𝑢, and 𝑀 is a scalar parameter. In order to enable the
solution using a CGM in combination with Lagrange elements, one has to split the
PDE once to obtain a system of two coupled, second-order equations

̂𝑢 − 𝜕𝑢𝑓 + 𝜆∇2𝑢 = 0 (6.3)
𝜕𝑡𝑢 − ∇ ⋅ 𝑀∇ ̂𝑢 = 0, (6.4)

where fields introduced by hybridization are denoted using hats ( ̂⋅) (Feng and Prohl,
2004). Alternatively, it is also possible to solve this equation using a DGM. Further
splitting is then required due to the reduced continuity of the function space. To solve
this fourth-order system, one must apply hybridization until only expressions with first-
order derivatives are left (Xia et al., 2007)

̂𝑢 − ∇𝑢 = 0 (6.5)
̂̂𝑢 − 𝜆∇ ⋅ ̂𝑢 = 0 (6.6)

̂̂̂𝑢 − 𝑀 (∇ (𝜕𝑢𝑓 − ̂̂𝑢)) = 0 (6.7)

𝜕𝑡𝑢 − ∇ ⋅ ̂̂̂𝑢 = 0. (6.8)

If the order of the differential operator 𝐿(𝑢) does not exceed one for a DG or two for a
CGM, this entire process may be skipped.

After this preprocessing step, the space of test functions 𝑣 must be chosen such
that the inner product ⟨⋅, ⋅⟩ with 𝐿(𝑢) is well defined, i.e. assumes a scalar value. The
inner product roughly corresponds to tensor multiplication where all occuring indices
are summed over. By definition, this means that 𝑣 and 𝐿 must belong to the same
function space. Otherwise, the inner product is not defined and a valid weak formulation
cannot be obtained (Brokate et al., 2016). After that, the primary weak statement can
be formed by forming the abovementioned inner product and integrating it over the
problem domain Ω. The following step usually consists of applying integration by parts
to the resulting form. However, at this point, one must disambiguate between linear and
nonlinear differential operators, as for some this step cannot be performed. In the case
of linear differential operators, there is no issue, as well as for nonlinear operators where
a differential term appears in the outermost position. For example, the following term
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may be rearranged by integration by parts, although not being linear:
ˆ

Ω
⟨𝑣, ∇(𝑢2∇𝑢)⟩ d𝑥 =

ˆ

𝜕Ω
⟨𝑣, 𝑢∇𝑢 ⋅ 𝑛⟩ d ̃𝑠 −

ˆ

Ω

⟨∇𝑣, 𝑢∇𝑢⟩ d𝑥 (6.9)

Whereas the weak formulation
ˆ

Ω
⟨𝑣, (𝑢 ⋅ ∇)𝑢⟩ d𝑥 (6.10)

does not fulfill this condition and thus, according to this method, cannot be transformed
in this way. After modifying the weak formulation through integration by parts, one is
left with an additional surface integral. The necessary antiderivative applied to 𝐿(𝑢) in
this case reduces the order of the differential operator by one. The integration measure
used for this integral d ̃𝑠 for now includes all interior and exterior facets of the computa-
tional domain. The following steps depend on the choice of the numerical scheme and
thus continuity of the approximation. If a continuous approximation is used, then all
surface integrals over interior facets are strongly enforced to be zero and thus vanish.
One may then replace this term with an integral over only the exterior facets, denoted
by the integration measure d𝑆. Otherwise, both exterior and interior contributions re-
main, and it is practical to split the integral accordingly. These are oftentimes denoted
by using d𝑠 and d𝑆, respectively as measures. The final step then consists of incorporat-
ing boundary conditions into the weak formulation. Although it is possible to enforce
general boundary conditions weakly through additional terms by Nitsche’s method, the
following procedure is more common (Nitsche, 1971; Freund and Stenberg, 1995). In
the case of Dirichlet conditions, i.e. there exists a prescribed function 𝑔(𝑢) at the domain
boundary, no modification of the weak form is necessary. This type of boundary condi-
tion is usually enforced strongly by applying a technique denoted as lifting and happens
on the discrete, algebraic level (Ern and Guermond, 2004). For Neumann-type con-
ditions, however, if the exterior surface integral contains the expression defined at the
boundary, one may directly substitute that for the prescribed boundary function ℎ(𝜕𝑛𝑢).
The same argument holds for boundary conditions that involve other differential ex-
pressions at the boundary. As an example, one may consider the boundary of a perfect
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conductor in electromagnetics, where the condition

𝑛 × 𝐻 = 0 on 𝜕Ω (6.11)

holds for the magnetic field 𝐻 (Senior and Volakis, 1995). If such expressions ap-
pear within integrals over boundary facets, then, they can simply be replaced by the
prescribed function.

Depending on whether the weak form is linear or not, a bilinear form 𝑎(𝑢, 𝑣) or a
semilinear weak residual 𝐹 (𝑢; 𝑣) is then attained. For arbitrary differential operators,
acting on real-valued functions, the described process may be generalized and formal-
ized in the form of a flow chart given by Figure 6.4. At this point, it should be noted
that the presented process for forming the weak form of a nonlinear PDE is vastly sim-
plified to provide a systematic way of derivation. More generally, weak formulations
of nonlinear systems tend to be more tailored in an ad hoc fashion to the problem.

One of themost practically relevant steps in Figure 6.4 ismodifying the form through
integration by parts. For most of the linear forms encountered in practice, i.e. the gra-
dient, divergence, curl and laplacian operators, this process however can be carried out
systematically. A summary of the resulting weak forms for each differential operator
satisfying the above-given conditions is listed in Table 6.1. Each tabulated weak form
contains 𝑣 as a test function, belonging to the same function space as 𝑢 and the do-
main Ω to be integrated over. The inner product of two tensors, i.e. contraction over
all indices, is denoted by ⟨⋅, ⋅⟩. The ⋅ operation denotes the dot product, i.e. contrac-
tion over the last index. In addition, the facet normal vector 𝑛 is introduced in the hull
integrals. For two vectors, this coincides with the regular dot product. The two inte-
gration measures d ̃𝑠 and d𝑥 denote integrals over facets (exterior and interior) and the
entire volume, respectively. For a CGM, the facet integral is only taken over boundary
facets. The resulting integration measure is then oftentimes denoted as d𝑆 instead of
d𝑠. With this tableau of weak differential operators as baseline, constructing a compu-
tational version of this rule set using modern Finite Element libraries such as FEniCS
Logg et al. (2012a) is straightforward. This is due to the common baseline that many of
these packages share in the form of the so-called Unified Form Language (UFL) Alnaes
et al. (2014). There, the residual forms of a PDE are constructed using an input that
very closely resembles the weak differential operators given in Table 6.1. The remain-
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Fig. 6.4: Generation of a weak form expression for a differential operator 𝐿(𝑢). Inputs
(I) are given by purple trapezoids, decision points (D) by white diamonds and processes
(P) by orange rectangles.
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Table 6.1: Tableau of differential operator weak forms, depending on the dimension-
ality of the target function 𝑢.

Tensor Rank
0 1 2

Gradient ∇
´

𝜕Ω
⟨𝑣 ⋅ 𝑛, 𝑢⟩ d ̃𝑠

−
´
Ω

⟨∇ ⋅ 𝑣, 𝑢⟩ d𝑥

´
𝜕Ω

⟨𝑣 ⋅ 𝑛, 𝑢⟩ d ̃𝑠

−
´
Ω

⟨∇ ⋅ 𝑣, 𝑢⟩ d𝑥

´
𝜕Ω ⟨𝑣 ⋅ 𝑛, 𝑢⟩ d ̃𝑠

−
´
Ω ⟨∇ ⋅ 𝑣, 𝑢⟩ d𝑥

Divergence ∇⋅ not defined
´

𝜕Ω
⟨𝑣, 𝑢 ⋅ 𝑛⟩ d ̃𝑠

−
´
Ω

⟨∇𝑣, 𝑢⟩ d𝑥

´
𝜕Ω

⟨𝑣, 𝑢 ⋅ 𝑛⟩ d ̃𝑠

−
´
Ω

⟨∇𝑣, 𝑢⟩ d𝑥

Curl ∇× not defined
´

𝜕Ω
⟨𝑣, 𝑢 × 𝑛⟩ d ̃𝑠

+
´
Ω

⟨∇ × 𝑣, 𝑢⟩ d𝑥

not uniquely
defined

Laplacian ∇ ⋅ ∇
´

𝜕Ω
⟨𝑣, ∇𝑢 ⋅ 𝑛⟩ d ̃𝑠

−
´
Ω

⟨∇𝑣, ∇𝑢⟩ d𝑥

´
𝜕Ω

⟨𝑣, ∇𝑢 ⋅ 𝑛⟩ d ̃𝑠

−
´
Ω

⟨∇𝑣, ∇𝑢⟩ d𝑥

´
𝜕Ω

⟨𝑣, ∇𝑢 ⋅ 𝑛⟩ d ̃𝑠

−
´
Ω

⟨∇𝑣, ∇𝑢⟩ d𝑥

ing step thus lies in translating this tableau into the domain-specific pendants of (UFL).
An exemplary implementation of the weak divergence and gradient that is compatible
with the FEniCS package is given in Listing 1. As an example, the weak divergence
of a vector quantity 𝑢 is considered using a CG formulation. According to Table 6.1,
a scalar test function 𝑣 is required. Then, by invoking the corresponding Python func-
tion via FEOperators.divergence(type="Lagrange", test=v, u=u) yields the
expression -inner(grad(v),u)*dx.

6.9 Findings

In this section, a unified decision process for the selection of numerical schemes for
multiphysics problems has been established. Its effectiveness has been demonstrated
given two distinct examples.

With these results in mind, research hypothesis H2 is addressed as follows: Given
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Listing 1: UFL implementation of the weak divergence, gradient and laplacian ac-
cording with Table 6.1. The full source code implementing the remaining operators is
available online on GitHub.

1 class FEOperators:
2 def __init__(self, mesh: Mesh) -> None:
3 self.n = FacetNormal(mesh.dolfinx_mesh)
4

5 return
6

7 def divergence(self, type: str, test: TestFunction, u: Function,
8 numerical_flux=None) -> Form:
9 F = - inner(grad(test), u) * dx # Partial integration

10 if type == "Lagrange":
11 pass # Nothing else to do
12 elif type == "Discontinuous Lagrange":
13 F += inner(jump(test),numerical_flux(u)) * dS # Hull integral
14 else:
15 raise NotImplementedError("Unknown type of discretization")
16 return F
17

18 def gradient(self, type: str, test: TestFunction, u: Function,
19 numerical_flux=None) -> Form:
20 F = - inner(div(test),u) * dx
21 if type == "Lagrange":
22 pass # Nothing else to do
23 elif type == "Discontinuous Lagrange":
24 F += (
25 dot(jump(test),numerical_flux(u)) * dS
26 )
27 else:
28 raise NotImplementedError("Unknown type of discretization")
29 return F
30

31 def laplacian(self, type: str, test: TestFunction, u: Function,
32 coefficient=None, numerical_flux=None) -> Form:
33 if type == "Discontinuous Lagrange":
34 raise TypeError("Laplacian is not defined for DG discretizations.

The operator needs to be hybridized first.")↪

35 elif type == "Lagrange":
36 if coefficient == None:
37 F = -inner(grad(test),grad(u)) * dx
38 else:
39 F = -inner(grad(test),coefficient*grad(u)) * dx
40 else:
41 raise NotImplementedError("Unknown type of discretization")
42 return F

https://github.com/pzimbrod/galerkin-pbf-lb/blob/main/powder-bed-fusion/PBFModel/FEOperators.py
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the set of restrictions introduced in section 6.1, one can indeed work out an unambigu-
ous process to find suitable numerical methods in a reproducible way. This process is
formalized using well-defined inputs as well as a set of steps to be conducted in a fixed
order. Therefore, H2 is considered to be verified as well.



Chapter 7

Computational Examples

The purpose of this chapter is to walk through the proposed method using two simple
example PDEs. Although these are not multiphysics problems, they may be combined
in theory, as will be shown in the following chapter.

7.1 Allen Cahn Equation

First, the following scalar PDE is considered, together with zero flux boundary condi-
tions to be imposed at the four borders of a rectangular domain Ω ∶ [0; 𝐿] × [0; 𝑊 ]:

1
𝐾 𝜕𝑡𝜙 − Δ𝜙 = − 2

𝜉2 𝜕𝜙𝑔(𝜙) − 𝜇0
3𝛾𝜉 𝜕𝜙ℎ(𝜙) ∀𝜙 ∈ Ω, (7.1)

𝜕𝜙
𝜕𝑛 = 0 ∀𝜙 ∈ 𝜕Ω, (7.2)

This equation is called the Allen Cahn equation and describes the time-evolution of a
scalar, non-conserved order-parameter field 𝜙, as is often called the phase field. If one
only examines the left-hand side of Equation 7.1, it becomes clear that the Allen Cahn
equation can be thought of as the heat equation (2.5) with some nonlinear terms added,
as they both only contain first temporal and second spatial derivatives. Thus, the previ-
ously discussed difficulties in choosing appropriate discretizations for the heat equation
(c.f. Section 1.2) apply here as well. However, as the equation itself is more compli-
cated due to the additional nonlinear right-hand side, it can be stated that finding an
efficient approximation is even less trivial than previously discussed. The Allen-Cahn
equation is commonly used in the modeling of self-organised microstructure evolution
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or complex pattern formation processes, as driven by local thermodynamics and/or me-
chanics. The phase field variable 𝜙 can be understood as a coloring function that locally
indicates the presence or absence of a certain phase or a certain material state within
a given microstructure. For instance, in modeling of microstructure evolution during
solidification, 𝜙 = 1 may denote the local presence of the solid and 𝜙 = 0 may denote
the local presence of the liquid phase (Fleck and Schleifer, 2023; Fleck et al., 2022).
If applied to the description of crack propagation, the order-parameter field 𝜙 is un-
derstood as the local material state, which can be either broken 𝜙 = 1 or not 𝜙 = 0
(Pilipenko et al., 2011; Fleck et al., 2011).

The scalar quantities 𝐾 , 𝜉, 𝜇0 and 𝛾 are model constants that determine the evo-
lution of the scalar field 𝜙. Here, the notation of (Fleck et al., 2018) is adopted. The
polynomials 𝑔 and ℎ on the right-hand side of Equation 7.1 pose a nonlinearity to the
equation. Their derivatives are given by the following two source terms

𝜕𝜙𝑔(𝜙) = 2𝜙(1 − 𝜙)(1 − 2𝜙), (7.3)
𝜕𝜙ℎ(𝜙) = 6𝜙(1 − 𝜙). (7.4)

In the following, those polynomial terms are gathered in the joint potential term

𝑓(𝜙) = 2
𝜉2 𝜕𝜙𝑔(𝜙) + 𝜇0

3𝛾𝜉 𝜕𝜙ℎ(𝜙). (7.5)

Further details on the parametrization of the model are given in Table 7.1. Concerning
the Allen Cahn Equation, two different scenarios are considered, highlighting different
aspects of the physics behind the equation. The first one is concerned with solving

Table 7.1: Parameters for the Allen Cahn model

Unit Value Description
Γ J/m2 1.0 Interface energy
𝑀 m2/s 1.0 Kinetic coefficient
𝜇0 J/m3 0.1 Bulk energy gradient
𝜉 m 1.5 Phase field interface width
�̃�0 m 20.0 Initial position of the interface
Δ𝑥 m 1.0 Grid spacing
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Equations 7.1 and 7.2 in one spatial dimension, whereas in the second one, the problem
is scaled up to 2D. For each of these two scenarios, quantitativemeasures are formulated
to be able to precisely investigate the accuracy of the numerical solutions as well as
compare the relative computational cost.

In the first scenario, the motion of a planar interface between two phases is consid-
ered at different energy density levels. The low energy phase is expected to grow at the
expense of the high energy phase, which induces a motion of the interface between them
at a velocity proportional to the constant energy density difference 𝜇0. The scenario is
realized as a quasi 1D problem [0; 𝐿 = 100] × [0; 𝑊 = 1], where the interface normal
direction is pointing in the x-direction and the use of simple von Neumann boundary
conditions with zero phase field fluxes at the borders of the rectangular domain is le-
gitimate. The realization of this scenario with tilted interface orientations including
the formulation of appropriate boundary conditions on the borders of the rectangular
domain is discussed in detail in Fleck et al. (2022). In this highly symmetric quasi-1D
case, the scenario can be quantitatively evaluated utilizing the existing analytic solution
for the phase field

𝜙(𝑥, 𝑡) = 1
2 (1 − tanh 𝑥 − �̃�(𝑡)

𝜉 ) , (7.6)

where the time dependence of the central interface position �̃� is given by, �̃�(𝑡) = 𝑥0 +
𝑀𝜇0𝑡/𝛾 , with the initial position at 𝑥0 = 20. The initial condition of this problem
is thus formed by evaluating Equation 7.6 at time zero. To investigate the impact of
arithmetic complexity on computational efficiency, an approximation of a real-valued
function 𝜙(𝑥, 𝑡) is sought in one spatial dimension on a [0; 100] grid with equispaced
vertices.

One may now start applying the proposed methodology, as described above in sec-
tion 5 and following Figure 6.3. That is, the path of the flowchart should be followed
from top to bottom. First, the hardware scale is classified according to P1 in the figure.
The given hardware architecture, that is, an 8-core CPU system, falls well below the
established recommendation for the threshold of partitioned problems which is at least
50 workers. Therefore, there is no need from a hardware side for massive parallelism.

Next, the problem scale is investigated with process P2. As the problem is governed
by one scalar equation and there are no sub-models involved as defined in section 6.6.
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Concerning the length scales, the presented system exhibits one extra physical length
scale and that is the width 𝜉 of the diffuse interface. This extra physical length scale
originates from the nonlinearity of the Allen Cahn Equation and complements the other
length scales such as the dimensions of the domain as well as the grid spacing, both be-
ing more natural in the numerical solution of PDEs. This poses the issue of numerical
resolution of the systems length scales, that is, both the domain dimensions, as well
as the width 𝜉 of the diffuse interface, need to be properly represented on the discrete
numerical grid (Fleck and Schleifer, 2023; Fleck et al., 2022). However, the fact that
the problem is quasi-one-dimensional restricts the computational demands of the sce-
nario. Thus, one arrives at the first decision point D1, where the necessity for massive
parallelism may be negated.

The next process step P3 involves classifying the problem at hand, following the
definition given in section 6.2. As dependent variables, the time 𝑡, as well as the spatial
components 𝑥 and 𝑦, appear in the governing equations. The coefficient matrix 𝑎𝑖𝑗 ,
summing up all leading coefficients of second derivatives then becomes for the 2D
case:

𝑎𝐴𝐶
𝑖𝑗 =

⎡
⎢
⎢
⎢
⎣

0 0 0
0 −1 0
0 0 −1

⎤
⎥
⎥
⎥
⎦

(7.7)

In this case, enumerating the eigenvalues 𝜆𝑖 is trivial, since 𝑎𝐴𝐶
𝑖𝑗 is a diagonal matrix,

and it follows that 𝜆0 = 0, 𝜆1 = −1, 𝜆2 = −1. Thus, one eigenvalue is zero since the
temporal derivative is only of the first order and all other eigenvalues are of the same
sign. Therefore, Equation 7.1 is a second-order PDE of parabolic type and one can
proceed in D2 with the left branch.

Moving on in the decision process, one would next classify the problem domain in
D3 given input I3. As an equispaced grid is used in 1D, the discretization is cartesian
and thus solving the problem using Finite Difference would be the best choice. As
there are no other fields to classify according to decision point D5, the decision process
is concluded at this point. Within the unified methodological framework, both FD and
CGMs are implemented and the scenario is comparatively solved using both schemes.
This allows a comparison of the schemes regarding numerical resolution capabilities
and an investigation of the differences in the mutual arithmetic complexity and their
impact on efficiency.
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Evaluating the CGM requires the re-formulation of Equation 7.1 in its weak form,
though. Following the proposed procedure in section 6.8, one must first form the inner
product with a scalar test function 𝑣. As a CG discretization is used and the highest order
of derivative in the PDE is two, no hybridization is needed. Due to the zero Neumann
boundary condition in combination with the CG discretization, the entirety of boundary
terms vanishes to zero in the weak form. Thus, the finite-dimensional weak statement
is: Find 𝜙ℎ ∈ 𝑉ℎ, such that
ˆ

Ω
⟨

1
𝐾 𝑣ℎ, 𝜕𝑡𝜙ℎ⟩ d𝑥 +

ˆ

Ω

⟨∇𝑣ℎ, ∇𝜙ℎ⟩ d𝑥 −
ˆ

Ω

⟨𝑣ℎ, 𝑓 (𝜙ℎ)⟩ d𝑥 = 0 ∀𝑣ℎ ∈ 𝑉ℎ, (7.8)

where it has already been assumed that both the solution and test function lie in the
finite-dimensional subspace 𝑉ℎ.

Equation 7.1 requires the discretization of the Laplacian as its only differential op-
erator. The temporal derivative will be treated using the Method of Lines approach,
that is, a large system of spatially discretized ordinary differential equations is solved.

The Finite Difference discretization of the laplacian results in thewell-known second-
order central difference stencil:

Δ𝜙 ≈
𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

Δ𝑥2 (7.9)

The nonlinear right-hand side 𝑓(𝜙) must be updated every time step using the current
value of 𝜙. As such, there is no need to perform any assembly and forming the global
system of equations can even be avoided entirely. Instead, 7.9 is used to model the
Laplacian, which can be handily vectorized. There is also no need to perform any
mapping between the reference and physical domain as explained in section 5.3.

For the Finite Element discretization, all these steps need to be performed, resulting
in a global nonlinear system of equations for each time step. The discrete form of
Equation 7.8 then reads:

𝑀𝜕𝑡𝜙 + 𝐾 𝜙 − 𝐹 (𝜙) = 0 (7.10)

Where the mass matrix 𝑀 and the stiffness matrix 𝐾 for the Laplacian have been in-
troduced. These represent the spatially discretized differential operators that act on the
vector of degrees of freedom 𝜙. The algebraic terms that are nonlinear in 𝜙 are gath-
ered in the discrete vector 𝐹 (𝜙). For the sake of comparison regarding efficiency, the
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resulting fields of both schemes are required to be (nearly) identical apart from floating
point errors.

Given this requirement, it should be noted that the Finite Difference formulation
lacks an analogous term to the Finite Element mass matrix. Consequently, 𝑀 is re-
quired to be the identity matrix in an equivalent Finite Element formulation, given all
other terms are equal. The latter can easily be verified for a stiffness matrix assembled
with first-order Lagrange polynomials and a collocation method. The derivation of such
an equivalent scheme has been covered in section 5.3. Using collocated Finite Elements
is chosen here for the sake of comparison as well as for computational efficiency. The
resulting mass matrix can then be inverted trivially by taking the element-wise inverse
instead of computing the full inverse. Such an operation is considerably more expensive
and should thus be avoided if possible.

To compare both schemes regarding efficiency, they are implemented from scratch
within the Julia programming language (Bezanson et al., 2017). Due to its flexibility,
high-level syntax and simultaneous, granular control over various performance aspects
via its rich type system, Julia has gained considerable momentum in the past few years
within the scientific community. Both schemes are carefully set up using analogous data
structures to enable a side-to-side comparison of the computational complexity. The
most high-level parts of the codes are given in Listing 2. Both implementations contain
a function that solves the semidiscrete system at each time step which is passed to the
ODE solver. The entire source code is available online at https://github.com/pzimbrod/multiphysics-
pde-methods/tree/main/code/Allen-Cahn.

In the case of the FDM, one can avoid assembling a global linear system entirely,
thus the top-level data structure only holds the solution and grid as large arrays. For the
FEM, assembly on general grids in a matrix-free manner is far from trivial. Addition-
ally, the triangulation data structure is more complex due to the necessary topological
information. Furthermore, the reference FE needs to be stored and correctly mapped
using Jacobian values.

Here, the functions that are called within each time step to solve the semidiscrete
system, are also included to give a high-level view of which steps are necessary and
how they are implemented in particular. Both semidiscrete systems use in-place op-
erations to avoid memory allocations. For the CG-FEM code, a full mesh topology is
implemented to solve the problem with a first-order method although both discretiza-

https://github.com/pzimbrod/multiphysics-pde-methods/tree/main/code/Allen-Cahn
https://github.com/pzimbrod/multiphysics-pde-methods/tree/main/code/Allen-Cahn
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Listing 2: Overview of the necessary data structures and the functions to update the
semi-discrete systems for the CG FEM (left) and FDM (right).

1 struct FETriangulation{V,C}<:Triangulation
2 vertices::V
3 connectivity::C
4 dim::Int
5 end
6
7 struct FiniteElement{E<:ElementType,
8 P<:Primitive,B<:AbstractMatrix,
9 Q<:AbstractVector,G<:AbstractArray}

10 primitive::P
11 element_type::E
12 order::Int
13 ndofs::Int
14 basis_coeffs::B
15 quadrature_nodes::B
16 quadrature_weights::Q
17 basis_at_quad::B
18 grad_basis_at_quad::G
19 grad_monomial_basis::G
20 end
21
22 struct AssemblyCache{T<:AbstractVecOrMat}
23 coeffs::T
24 loc::T
25 glob::T
26 end
27
28 struct CGProblem{T<:Triangulation,J,P,C
29 E<:FiniteElement,M<:AbstractMatrix,
30 V<:AbstractVector,F<:Function}
31 triangulation::T
32 referenceElements::E
33 detJ::J
34 bilinearForm::M
35 linearForm::V
36 u::V
37 massMatrix::Union{M,Nothing}
38 parameters::P
39 rhs::F
40 cache::C
41 end
42
43 function (a::CGProblem)(du,u,p,t)
44 mesh = a.triangulation,
45 element = a.referenceElements
46 K = a.bilinearForm
47 F = a.linearForm
48 detJ = a.detJ
49 params, = a.parameters
50 cache,rhs = a.cache, a.rhs
51 M = a.massMatrix
52
53 mul!(du,K,u,-1.,0.)
54 # f(u) changes, thus we reassemble
55 assemble_F!(F,cache,u,element,
56 mesh,detJ,params,rhs,M)
57 du .+= F
58
59 end

struct FDTriangulation{V,D}<:Triangulation
vertices::D
h::V # dx in each dimension
dim::Int

end

struct FDProblem{T<:FDTriangulation,
B<:Function,L<:Function
V<:AbstractArray,P,BC<:Function}

triangulation::T
order::Int
bilinearForm::B
linearForm::L
u::V
parameters::P
boundaryCondition::BC

end

function (a::FDProblem)(du,u,p,t)
apply_bilinear! = a.bilinearForm
apply_linear! = a.linearForm
apply_bc! = a.boundaryCondition
h = a.grid.h
params = a.parameters

a.bilinearForm(du,u,h)

a.linearForm(du,u,a.parameters)
a.boundaryCondition(du)

end



88 Computational Examples

tions consist of cartesian meshes. One could in this case assume a globally constant
Jacobian and thus save a considerable amount of arithmetic complexity. However, this
would skew the results regarding performance and would not make full use of the flex-
ibility of the FEM.

It becomes immediately apparent from the comparison that solving the Allen Cahn
equation using Finite Elements requires an assembly process that is noticeably more
complex. The only arrays that need to be stored for the FD version are the grid coordi-
nates and the solution array. Because the latter can be arranged in memory such that it
represents the cartesian topology of the grid, one can simply point to the neighbors of a
vertex in memory without having to look up the vertex-vertex connectivity. This is not
the case for the FEM. Instead, there is an additional indirection through a cell-vertex
list, where all DoFs associated with the currently visited cell are gathered.

Furthermore, it is not possible to construct the global linear system at once. Instead,
one needs to go through the cell-wise assembly process which effectively leads to most
of the non-zero matrix entries being visited multiple times. This is in sharp contrast to
the FDMwhere the global system is only present implicitly through functions that apply
the laplacian stencil. As a consequence, memory requirements are greatly reduced.

For transient problems, one needs to additionally make a suitable choice for the
temporal discretization, that is, the choice of method as well as the time step. Here,
the well-optimized Julia library DifferentialEquations.jl (Rackauckas and Nie, 2017)
is utilized. As an exemplary implementation of modern, high-performance codes for
the solution of ordinary differential equations (ODE), this package offers various algo-
rithms that are capable of adaptive time stepping such that an application expert does
not need to provide any input regarding temporal discretization. Here in particular, it
is even possible to make use of built-in heuristics that automatically select a suitable
integration scheme, based on the supplied ODE problem (Rackauckas and Nie, 2019).
The resulting effort for the end user can be condensed to selecting a suitable numerical
scheme for the spatial discretization as outlined by Figure 6.3 and leave the problem
of tuning the spatial discretization aside entirely. For this particular problem, the use
of an adaptive, implicit, 4th-order Rosenbrock method is prescribed for the temporal
evolution of both FD and CG-FE systems to achieve a fair comparison between both so-
lutions. This solver is stable and third-order accurate when used on nonlinear parabolic
problems (Rackauckas and Nie, 2017). The spatially discretized, nonlinear problems at
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each time step are solved explicitly according to the timestep update functions given in
Listing 2.

Before comparing both schemes regarding computational efficiency and to support
the theory established in section 5.3, the FD and collocated CG-FE schemes will be
shown to indeed produce identical results. Figure 7.1 shows the solutions of both
schemes for solving the phase field evolution. The position of the interface over time
is depicted by Figure 7.2. As can be observed, both schemes indeed produce visually
identical results. The quantitative differences in the numerical results are minimal and
can be attributed to floating point errors that accumulate over the process of time in-
tegration. However, there is a considerable difference between the analytical and the
numerical interface velocity, as visible in Figure 7.2. The reason for this discrepancy
is grid friction, which results from the limited numerical resolution of the diffuse in-
terface profile and could be reduced by increasing the dimensionless ratio 𝜉/Δ𝑥 = 1.5,
where Δ𝑥 denotes the grid spacing (Fleck and Schleifer, 2023; Fleck et al., 2022). Grid
friction and pinning during stationary interface motion has been studied previously, for
instance by Bösch et al. (1995); Karma and Rappel (1998). So far, this detrimental
effect has been only studied using Finite Difference based schemes. It relates to meta-
stabilities, that result from a broken translational invariance of the discrete numerical
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Fig. 7.1: Evolution of the phase front at 𝑡 = 100𝑠 with respect to the initial condition.
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Fig. 7.2: Comparison of Finite Difference and Finite Element solutions to the analyti-
cal solution given by Equation 7.6

schemes (Fleck and Schleifer, 2023; Fleck et al., 2022), As a consequence, the current
interface velocity oscillates as the center of the interface passes one grid point after the
other. If further, the time discretization error is small enough, the average interface
velocity turns out to be considerably below the expectation. With decreasing phase-
field width, we obtain increasingly larger deviations of the average velocity as well as
increasing larger oscillations. This culminates in a vanishing velocity, where the phase
field is pinned to the computational grid. Interestingly, spurious grid friction and pin-
ning can be eliminated in Fast Fourier- and Finite Difference implementation of the
Allen-Chan equation, using the newly proposed sharp phase field method (Finel et al.,
2018; Fleck et al., 2019). For phase field models, which use a double obstacle poten-
tial instead of the double well potential, a comparable technique has been proposed by
Eiken (2012). It is interesting to note that this discretization error, which is very char-
acteristic of the Allen Cahn equation, turns out to be so similar for the two different
numerical schemes in this case. This again highlights the close relationship between
the two different numerical schemes. Furthermore, it is noteworthy that computational
resource usage differs considerably. Table 7.2 reports some descriptive statistics on the
performance of both implementations. Both models were run on identical hardware and
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Table 7.2: Run times of the Finite Element and Finite Differencemodel of the 1DAllen
Cahn equation.

FDM FEM Relative
Median run time 0.450 ms 9.503 ms 21.1x
Mean run time ±1𝜎 0.578 ms ± 0.759 ms 9.643 ms ± 0.741 ms 16.7x
Allocated Memory 1.446 kB 15.598 kB 10.8x

on Julia 1.8.5 with LLVM 13.0.1 (Bezanson et al., 2017). Time stepping was performed
using the DifferentialEquations.jl library (Rackauckas and Nie, 2017). Linear Algebra
operations are performed using OpenBLAS (Wang et al., 2013; Xianyi et al., 2012)
on a single-threaded Apple M1Pro ARM processor. Fast evaluation of fused array ex-
pressions is provided by the Tullio.jl library (Abbott et al., 2022). Allocated Memory
refers to the physical size of the problem-specific data structures given in Listing 2. The
sample size for each scheme is 𝑛 = 100. These differences in run times as well as mem-
ory consumption can be attributed to multiple factors. First, the nonlinear right-hand
side changes each time step and thus assembly has to be performed dynamically for
the FEM. The FDM in contrast can simply rely on point-wise evaluation of the strong
form instead of numerically computing the weak form integrals. Secondly, the FDM
does not need to perform any mapping during the time step as no assembly is required.
During computation of the right-hand side integral, this is a necessity for the FEM.

The largest discrepancy however can be attributed to the fact that the FDM can op-
erate in a matrix-free manner due to the cartesian grid it is applied on. As all vertices
are equispaced, there exists one global stencil that can be applied on each vertex inde-
pendent of all other members of the grid. The FEM in contrast uses the grid topology
to accumulate the weak form integrals into corresponding entries of the global system
matrices and vectors. Thus, it always produces a typically very sparse global system
that cannot be vectorized similarly. It should be noted that the discrepancy in results
should not be expected to be as drastic as shown for linear PDEs, as then the FEM does
not require the re-assembly of the right-hand side. The computational advantage then
reduces to the matrix-free evaluation of the linear system.

In the second scenario, a more practically relevant benchmark in two dimensions
is investigated in the form of the vanishing grain problem, leaving all other aspects of
the problem as is. Here, the dissolution of a circular-shaped nucleus under the interface
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energy density pressure under two-phase equilibrium condition 𝜇0 = 0 is simulated.
These dynamics are also governed by the Allen Cahn equation and denote the comple-
mentary physical effects as compared to the above scenario. In a sharp interface picture,
with a constant and isotropic interface energy density 𝛾 , the temporal evolution of the
grain radius is expected to be given by:

𝑟(𝑡) = √𝑅2
0 − 2𝑀𝑡 (7.11)

Where 𝑅0 indicates the initial radius and 𝑀 is the phase field mobility. Snapshots of
the phase field 𝜙 at initial and terminal times are given in Figure 7.3. In addition, the
temporal evolution of the radius function for solving this scenario using both numerical
methods is shown in Figure 7.4. As in the one-dimensional simulation, the collocated
FE and FD solutions behave identically to each other. Both exhibit a notable discrep-
ancy towards the sharp interface behavior, which again relates to known issues of finite
numerical resolution in the phase field simulation (Fleck and Schleifer, 2023). To as-
sess the performance gap of both schemes for higher dimensions, both codes are again
benchmarked against each other. The results are given in Table 7.3. Both models were
run on identical hardware and on Julia 1.8.5 with LLVM 13.0.1 (Bezanson et al., 2017).
Time stepping was performed using the DifferentialEquations.jl library (Rackauckas
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Fig. 7.4: Evolution of radius over time of the vanishing grain problem. Both Finite
Difference and Finite Element solutions show a considerable, accumulating error to-
ward the analytical solution.

and Nie, 2017). Linear Algebra operations are performed using OpenBLAS (Wang
et al., 2013; Xianyi et al., 2012) on a single-threaded Apple M1Pro ARM processor.
Fast evaluation of fused array expressions is provided by the Tullio.jl library (Abbott
et al., 2022). Allocated Memory refers to the physical size of the problem-specific data
structures given in Listing 2. The sample size for each scheme is 𝑛 = 100. Comparing
the results from the 2D simulation benchmark in Table 7.3 with its 1D counterpart (Ta-
ble 7.2), it becomes apparent that the discrepancy in performance becomes noticeably

Table 7.3: Run times of the Finite Element and Finite Differencemodel of the 2DAllen
Cahn equation.

FDM FEM Relative
Median run time 4.743 ms 192.837 ms 40.7x
Mean run time ±1𝜎 4.731 ms ± 0.059 ms 192.787 ms ± 0.219 ms 40.7x
Allocated Memory 21.490 kB 494.730 kB 23.0x
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more drastic with increasing dimensionality of the problem. This can be attributed to
the increased scattering of DoFs in memory. Thus, memory access is less stridden,
increasing the lookup time. For a hardware architecture that demands more parallelism
and has a shared memory architecture, this could quickly evolve into a serious bottle-
neck.

This scenario has been discussed already in many different works. Quite often,
it is used to highlight accuracy gains or performance improvements of advanced nu-
merical techniques, that are particularly suggested to solve the Allen-Cahn problem.
For instance, Gräser et al. (2013) discussed the scenario in the context of solving the
anisotropic Allen-Cahn equation using fully implicit or linearized time discretization
and semi-implicit time discretizations and globally convergent truncated nonsmooth
Newton methods. They provide information on resulting differences in the achieved
accuracies and concerning the complexity of the schemes (Gräser et al., 2013). An-
other example is the nonlinear preconditioning for diffuse interface models based on
the Allen Cahn equation, as first suggested by Glasner (2001). Interestingly, this pre-
conditioning technique seems to be related to the above-mentioned Sharp Phase Field
Method suggested by Finel et al. (2018). Both methods provide a tremendous improve-
ment potential, as demonstrated by a comparative study using this scenario.

7.2 Two-phase Advection

As a second model problem, the advection equation in two dimensions is investigated.
This problem is well-studied in the literature and is known as challenging to solve ac-
curately. Due to the absence of dissipative terms, numerical algorithms oftentimes
struggle to converge towards the entropy solution and either produce spurious oscilla-
tions, rendering the solution unstable or yield overly diffusive approximations, where
conservation laws are violated (LeVeque, 1992). Here, this problem is chosen in par-
ticular due to being simple yet challenging enough to study. In addition, the advection
equation frequently arises in modeling multiple phases in an Eulerian framework and
the motion of immersed immiscible fluids in general. It is thus of high relevance in a
multitude of multiphysics problems.

In particular, a pure advection problem involving two phases with periodic boundary
conditions is considered in the following. As a model assumption, the motion of two
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fluids is described by tracking the volume fractions 𝛼𝑖, as is common for the Volume-
of-Fluid (VoF) formulation,

𝜕𝑡𝛼 + 𝑢𝜕𝛼
𝜕𝑥 = 0 (7.12)

𝛼1 + 𝛼2 = 1 (7.13)
𝛼ℎ,Γ̃𝑏,𝑙

= 𝛼ℎ,Γ̃𝑡,𝑟
∀𝑥 ∈ 𝜕Ω (7.14)

Ω ∈ [0; 5] × [0; 5] (7.15)
𝑡 ∈ [0; 5] , (7.16)

where Γ denotes the union of all interior and exterior facets of the domain and Γ̃ are the
subsets of the domain boundary 𝜕Ω. In this case specifically, Γ̃𝑏,𝑙 are the slave facets
at the bottom and left boundary that the values of the slave facets from the top and
right master facets Γ̃𝑡,𝑟 are mapped to. The initial condition to this problem is given as a
rectangle function that is one in the interval 𝑥 ∈ [2; 3]×[2; 3] and zero everywhere else.
One may alternatively track only the motion of the interface using a coloring function
𝜙. This is common for the level set method, the governing equation however is the same
as Equation 7.12.

This problem is solved on three different architectures to showcase the effect of
parallelism on the efficiency of numerical schemes. The choices of hardware along
with important quantities are given in Table 7.4. Once again, the process summarized
in Figure 6.3 is followed to identify the most suitable numerical scheme. Regarding the
system of PDEs (I1), Equation 7.13 is simply an algebraic constraint and thus can be
calculated in a simple postprocessing step. Thus, 7.13 is not a governing equation in
the sense of a PDE and 𝛼2 will consequently not be considered an independent variable,
as detailed in section 6.2. Thus, one is left to solve a single scalar advection equation
for 𝛼1.

Proceeding in the flow chart, the hardware scales within P1 are classified next. Here,
one finds the last hardware configuration listed in Table 7.4 necessitates the use of
schemes that are tailored for high parallelism, as the given amount of 128 processes
is above the specified regime where the use of parallelizable algorithms is worthwhile
using. Therefore, this configuration should be run using a DGM. For both other config-
urations using 8 and 18 processes, this does not apply. Continuing with process P2, it
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Table 7.4: Hardware configurations for the advection equation model problem. The
three setups mimic popular computing environments in applied settings: A mobile
computer, a stationary workstation grade tower and a rack-mounted server tailored to
numerical computing.

CPU Name Number of
Cores

Core
Clock
Speed
[GHz]

Memory
Size [GB]

Memory
Bandwidth
[GB/s]

Memory
Speed
[GHz]

Apple M1
Pro

8 3.2 16 200 6.4

Intel Xeon
W-2295

18 3.0 128 94 2.9

2x AMD
EPYC 7763

128 2.45 512 204 3.2

becomes clear that the given problem only exhibits one length scale and thus this crite-
rion for parallelism can be omitted. Thus, one arrives at decision D1 and finds that for
the problem statement involving the largest of the three computing architectures, the
use of the DGM is advised.

For the remaining two configurations, one can proceed by classifying the PDE ac-
cording to process P3. With the temporal derivative and gradient as the only differential
operators, Equation 5.1 is a first-order PDE. The advection velocity vector 𝑢 has con-
stant and real components. Thus, following section 6.2, it becomes apparent that the
advection equation presented here is hyperbolic and one can proceed with the right
branch of the flow chart after decision D2.

Consequently, the linearity of Equation 7.12 for process P4 needs to be evaluated as
a next step. As the terms including the differential operators are linear and there is no
right-hand side, it may be classified straightforwardly to be linear. Due to its linearity,
the most efficient choice for the remaining configurations turns out to be the DGM as
well. As stated previously, the original two-equation system only consists of one PDE,
and thus the decision process can be concluded here, as all fields governed by a PDE
have been assigned (decision D5).

It should be noted here that when the VoF method is used together with the FVM,
one can expect the interface of two phases to diffuse considerably. Within the numer-
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ics community, this problem is well-known and has led to the practice of introducing
an additional interface compression term into the advection equation (Okagaki et al.,
2021):

𝜕𝑡𝛼 + 𝑢 ⋅ ∇𝛼 + ∇ ⋅ [𝑢𝑐𝛼 (1 − 𝛼)] = 0, (7.17)

𝑢𝑐 = min (𝑐𝛼|𝑢|,max(|𝑢|))
∇𝛼

|∇𝛼|, (7.18)

where the newly introduced, artificial interface compression velocity 𝑢𝑐 is used. In
this case, 𝑐𝛼 is a positive, scalar constant somewhere around unity. As can easily be
observed by combining Equations 7.17 and 7.18, this makes the resulting PDE fully
nonlinear which can be regarded as a severe disadvantage in this case. This additional,
artificial interface motion counteracts the diffusion that the FVM has shown to exhibit.
As will be shown, such an additional term can be omitted if the problem is solved
using the recommended DGM due to the considerably lowered numerical diffusion. In
summary, choosing the FV over the recommended DGM, in this case, would not only
require evaluating a fully nonlinear variant of the advection equation to gain accurate
results, but it would also force the application expert to pick an appropriate value for an
artificial model constant, which can be subject to tedious calibration work.

In the following, this particular choice of method is compared with the FVM, which
would be the next alternative and is in principle also well-suited to tackle such problems.
The CGM and FDM do not lend themselves well to solving such equations and will
thus be omitted from this benchmark. In particular, the CGM is known to be unstable
for first-order hyperbolic equations, as the stability of the scheme can be shown to be
dependent on mesh size (Ern and Guermond, 2004).

One must add that in principle, the FDM could be applied here, where however two
different limitations apply. First, the only choice of stencil that would be stable for this
equation is the forward difference (or upwind) approximation. This choice however is
not covered by the proposed decision process, as it is formally equivalent to a Petrov
CGM. One can show that this scheme corresponds to a simplified Streamline Upwind
Petrov Galerkin (SUPG) method (Brooks and Hughes, 1982). As the scope of this work
for the sake of decidability is restricted to Bubnov Galerkin methods, this stencil is not
admissible here. Secondly, using the FDM here implies the strict use of a cartesian
grid.
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Thus, the weak form for Equation 7.12 is required which can be obtained by multi-
plying with a discrete test function 𝑣ℎ, integrating over the whole domain Ω and sub-
sequently performing integration by parts. As a discontinuous discretization is sought,
the hull integrals have to be split into contributions from internal and external facets.
Additionally, Equation 7.14 prescribes periodic boundary conditions, i.e. a special in-
stance of Dirichlet conditions. As no Neumann BC is specified, the integral over outer
facets becomes zero. Thus, the weak form becomes: Find 𝛼ℎ ∈ 𝑉ℎ such that

ˆ

Ω

⟨𝑣ℎ, 𝜕𝑡𝛼ℎ⟩ d𝑥 +
ˆ

𝜕Ω
⟨𝑣ℎ, 𝛼ℎ(𝑢 ⋅ 𝑛)⟩ d𝑠 −

ˆ

Ω
⟨∇𝑣ℎ, 𝑢 𝛼ℎ⟩ d𝑥 = 0 (7.19)

for all discrete test functions 𝑣ℎ ∈ 𝑉ℎ. To implement the weak form of this equa-
tion however, most software packages implementing FEMs require a slightly differ-
ent formulation of Equation 7.19 that however is straightforward to derive. Further
details are given in the appendix section B.1.1. An excerpt of the actual implemen-
tation in Python is shown in Listing 3. The entire source code is available online at
https://github.com/pzimbrod/multiphysics-pde-methods/tree/main/code/Advection. This
PDE in combination with periodic boundaries possesses an analytical solution of the
form:

𝛼(𝑥, 𝑡) = 𝛼(𝑥 − 𝑢𝑡, 0) (7.20)

That is, after traversing the quadratic domain with the given velocity 𝑢 = [1 1]
𝑇
, the

solution field must exactly correspond to the initial condition. Verification of numerical
results is thus very straightforward.

This problem is solved using the Firedrake problem-solving environment along with
the popular libraries PETSc and Scotch for efficient parallel computing (Ham et al.,
2023; McRae et al., 2016; Homolya and Ham, 2016; Hendrickson and Leland, 1995;
Chevalier and Pellegrini, 2008; Rathgeber et al., 2016; Dalcin et al., 2011; Balay et al.,
1997, 2023). As the FVM can simply be understood as a DGM of polynomial degree
zero, the implementation is virtually the same for both schemes.

Note that for the FVM, the last term in Equation 7.19 becomes zero since the deriva-
tive of a constant vanishes. Thus, this term is omitted from the assembly to save com-
putations and to more accurately represent the arithmetic intensity posed by the original
formulation of this scheme.

https://github.com/pzimbrod/multiphysics-pde-methods/tree/main/code/Advection
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Listing 3: Python code to form the Discontinuous Galerkin problem for the advection
equation in Firedrake. Note that the definition of the problem variational form in lines
36 and 37 is very similar to the formal definition given in Equation 7.19.

1 from firedrake import *
2 import numpy as np
3

4 n = 384 # Number of cells
5 L = 5. # Domain length
6 mesh = PeriodicSquareMesh(n,n,L,quadrilateral=True)
7

8 degree = 4
9 fe = FiniteElement("DQ", quadrilateral, degree, variant="spectral")

10 V = FunctionSpace(mesh, fe)
11 W = VectorFunctionSpace(mesh, "DQ", 0) # Velocity
12

13 # Project constant velocity into function space
14 velocity = [1.,1.]
15 x, y = SpatialCoordinate(mesh)
16 vel = Function(W).interpolate(as_vector(velocity))
17

18 # Time domain and time stepping
19 T = 5.
20 # CFL = (u_max * dt) / (dx * (2p+1)) <=> dt = CFL * (dx*(2p+1))/vel_max
21 vel_max = np.sqrt(np.sum(velocity))
22 CFL = 0.2 * 1./(2*degree+1)
23 h = L / n
24 dt = CFL * h/vel_max
25 dt_ufl = Constant(dt)
26

27 test = TestFunction(V)
28 phi = Function(V)
29 dphi = TrialFunction(V)
30

31 # Define \vec{u} * \vec{n}
32 n = FacetNormal(mesh)
33 v_max, v_min = max(max(velocity),0), min(min(velocity),0)
34 flux = dot(avg(vel*phi),n('+')) + 0.5*v_max*jump(phi)
35

36 F = test * dphi * dx
37 F += dt_ufl *(phi*div(test*vel)*dx - jump(test)*flux*dS)
38 a, l = lhs(F), rhs(F)
39

40 phi_solution = Function(V)
41 prob = LinearVariationalProblem(a, l, phi_solution)
42 params = {"mat_type": "matfree","ksp_type": "cg",
43 "ksp_monitor": None,"pc_type": "none"}
44 solv = LinearVariationalSolver(prob, solver_parameters=params)
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For the sake of visualization, the solution is projected onto a first-degree space with
𝐻1 continuity. The equations are solved by a three-stage implicit Runge Kutta method.
In both cases, careful attention has to be paid regarding the time step. For hyperbolic
problems of such time, the time step where stability is given is strictly bounded by the
Courant Friedrichs Lewy number CFL ≤ 1

2𝑘+1 for a scheme of degree 𝑘 (Cockburn and
Shu, 2001). One can easily verify that for a Finite Volume scheme, this corresponds to
the well-known condition that the CFL number must stay at or below unity. Not only
does that mean regarding arithmetic complexity that the FVMhas a simplified assembly
process, but also that the admissible time step is in general larger than for DGMs. This
discrepancy drastically increases with the polynomial order taken for the DGM.

The corresponding results of the simulation are shown in Figure 7.5. The two nu-
merical schemes produce approximations of obviously different quality. The DGM can
capture the rectangular profile throughout the simulation with relatively good accuracy,
while the FV simulation is strongly diffused. The latter is due to the missing artificial
interface compression, given in Equation 7.17, resulting in a substantial numerical loss
of the conserved quantity 𝛼.
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(a) Finite Volume solution at end time on a 384x384
grid. The solution is heavily diffused to a parabolic
profile.
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(b) Discontinuous Galerkin solution at end time on
a 96x96 grid using third order polynomials. One
can observe the presence of spurious oscillations
that remain stable inmagnitude throughout the sim-
ulation.

Fig. 7.5: Solution of the two-dimensional advection equation using the Finite Volume
and DGM. Both models were run using the identical amount of global degrees of free-
dom set to 147.456. Element facets are drawn in white to illustrate the difference in
grid size.
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At this point, it should be noted that there are formulations of the FVM that cap-
ture shocks much more accurately whilst controlling oscillations. Due to the maturity
of this method, the field of constructingWeighted Essentially Non-Oscilaltory schemes
(WENO) is quite advanced and also, in this case, will yield better approximations. Such
schemes are also applicable to considerably more complex systems of equations (Zim-
brod et al., 2022). However, this argument also applies to the DGM since it is as has
been shown an extension of the FVM. To make the comparison fair and to be able to
rely on existing tools, both schemes are compared using the same, relatively simple re-
construction technique. For both cases, the use of WENO schemes would increase the
computational load considerably, as these need to reconstruct polynomial approxima-
tions for each flux using relatively wide local stencils - similar to a high order Finite
Difference scheme (Liu and Zhang, 2013). The choice of higher-order reconstruction
techniques however should not affect the qualitative difference in approximation prop-
erties and performance. For example, Zhou et al. report very similar findings for higher-
orderWENO schemes for the advection equation in two dimensions (Zhou et al., 2001).

In addition to the previous comparison regarding accuracy, the capabilities for par-
allel computing are also benchmarked using the three machines given in Table 7.4 (c.f.
page 96). To properly scale up this problem, the amount of Degrees of Freedom per
core is kept constant for the three environments, that is, in this case around 18.400 DoF-
s/Core. This is in the vicinity of the 25.000 DoFs/Core regime, where beyond that point
considerable drop-offs in performance are to be expected (Badia et al., 2020). Accord-
ing to the theory, the DGM should perform with a noticeably higher efficiency due to
less communication overhead between processes. This is due to the reduced amount
of cells for the same amount of DoFs and as such, the DGM has a much higher ratio
of DoFs that lie inside the cell instead of at the boundary. As a consequence, there are
fewer DoFs in relative terms that require the evaluation of a numerical flux and thus not
as much overhead due to MPI efforts. This relationship is visualized for reference in
Figure 7.6. As the FVM is restricted to one DoF per cell, there are no interior DoFs,
increasing the necessary MPI effort. The DGM, on the other hand, has an increasing
amount of interior DoFs that for a collocation method do not contribute to the numer-
ical flux. For the present order four scheme, the ratio of interior to total DoFs is 36%.
The benchmarking results for all three hardware configurations are given in Figure 7.7.
The total run times are reported as well as the solution time for one singular time step.
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(a) (b)

Fig. 7.6: Comparison of shared DoFs (colored dots) between cells for a fourth-order
DGM with an FV method with an equal amount of total DoFs (100).
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Fig. 7.7: Comparison of run times for the DGM and FVM advection benchmark case,
run on the three configurations given in Table 7.4.
Left: Weak scaling of both models, measured as wall time per time step solve. The
amount of DoFs/Core was fixed at 18.400. For each sample population, 𝑛 ≈ 3000.
Horizontal lines: Median, Boxes: IQR, Whiskers: Quartiles ± 1.5 IQR, ****: 𝑝 <
0.0001.
Right: Total Wall times for the solution over all time steps.
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This is because as explained the DG model has a considerably smaller admissible time
step. Thus, comparing overall run times is not suitable to empirically validate the above
claims regarding parallel efficiency. The overall computation time is nonetheless an im-
portant factor in terms of practicality since this is the main quantity one is interested
in when performing a simulation. It becomes evident from the reported wall times that
the FV model only has an advantage on the small desktop machine concerning solution
time. As predicted, scaling up the problem size and number of workers will yield an
increasing advantage for the higher-order DGM. The differences in computation time
which were found to be empirically significant grow with increasing problem size, thus
supporting the claim that DGMs are more favorable for highly parallel architectures.

A similar trend is visible from the table reporting overall runtimes. The time step
restrictions as discussed weaken the computational advantage gained in the solution of
the semidiscrete system. However, the difference in run time still decreases noticeably
with increasing problem and hardware size. For the largest machine with 128 cores,
solution times are almost comparable, whereas in the case of the smallest machine, the
FV model computes a solution about 42% faster.





Chapter 8

Application to Melt Flow Evolution in
Metal AM

As a last example, a real multiphysics problem is investigated to demonstrate the pro-
posed method for more complex settings. The results from the problem analysis sum-
marised in Figure 6.3 are shown and an outline is given of how one may implement the
resulting numerical scheme. The problem of interest is mesoscopic fluid flow behavior
during Laser Powder Bed fusion, as introduced in section 3.2.3.

Having detailed knowledge about the fluid flow and temperature fields is crucial to
obtain dense, that is, pore-free parts with a favorable microstructure. The former is
governed by the morphology of the solidified melt pool, whereas the latter is heavily
influenced by the spatial and temporal temperature gradients. A graphic representation
of the computational problem is shown in Figure 3.3 on page 36.

The various numerical methods that have been used to tackle this problem have
been discussed in section 3.2.3. Setting up the corresponding simulation problem re-
quires knowledge of the intricate physics happening at that scale, which is governed by
multiple, coupled PDEs. For an accurate representation of the multiple phases, some
modeling of that has to be taken as preliminary, as there exist many different choices
of PDE. In the following, the phase representation that is most often used in the FVM
is employed, as this is the most widespread in section 3.2.3.
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8.1 Physics and Governing Equations

Due to the presence of solid, liquid and gaseous phases, resolving the thermo fluid
dynamics of the process involves a multitude of physics. Most prominently, research
has shown that the accurate representation of surface tension forces due to temperature
gradient plays a key role in obtaining realistic results regarding the morphology of the
solidified tracks, temperature gradients and presence of pores - all of which have shown
to be important indicators for process quality (DebRoy et al., 2018).

The multiphase problem that arises from this application is discretized using the
Volume-of-Fluid method. The equations for this model have been introduced in sec-
tion 7.2. In total, there are one solidmetallic, one liquidmetallic and two gaseous phases
for vaporized metal and the shielding gas, yielding four phase fractions that need to be
tracked. By the previous discussion in section 7.2, one may omit to model one of these
phases using a conservation law as one can calculate it using the compatibility condition
in Equation 7.13 as well.

With the phase fractions in place, one then obtains the mixed material constants at
a given degree of freedom by a rule of mixture law. For thermal conductivity 𝜅, for
instance, the phase averaged value at DoF 𝑖 is:

𝜅VOF =
𝑁Phases

∑
𝑘=0

𝜅𝑘𝛼𝑘 (8.1)

The next step consists of enumerating the governing equations of this problem. For
the melting of metallic materials, one finds that the flow field can be described by the
incompressible Navier Stokes equations in the lowReynold’s number regime, plus some
source terms that account for the additional physics

𝜕𝑡(𝜌𝑢) + ∇ ⋅ [(𝑝 − 𝑝recoil) 𝐼] − 𝜌𝑘 − 𝜂Δ𝑢 + ∇ ⋅ 𝑇 = 0, (8.2)

with the additional condition of incompressibility

∇ ⋅ 𝑢 = 0. (8.3)

Here, 𝑘 is the vector of gravity and other volumetric forces.
One important driving force for melt flow is the temperature-dependent surface ten-
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sion force, also called the Marangoni force. All capillary forces normal and tangential
to the interface are summarised using the divergence of the so-called capillary stress
tensor:

−∇ ⋅ 𝑇 = −∇ ⋅ [−𝜎(𝐼 − 𝑛 ⊗ 𝑛)] , (8.4)

where 𝜎 denotes the temperature-dependent coefficient of surface tension, 𝐼 is the iden-
tity tensor and 𝑛 is the unit normal vector to the capillary surface. The divergence of
this quantity represents the capillary force acting on interfaces (Lafaurie et al., 1994).

This in turn needs to be computed using the phase fractions and the surface gradient
operator ∇𝑠 (Brackbill et al., 1992)

𝑛 = ∇𝑠𝛼
|∇𝑠𝛼|, (8.5)

∇𝑠(𝛼1, 𝛼2) = 𝛼1∇𝛼2 − 𝛼2∇𝛼1. (8.6)

For the gaseous phase of vaporized material, the recoil pressure

𝑝recoil(𝑇 ) = 0.53𝑝0
𝐿𝑣
𝑅 exp(

1
𝑇𝑣

− 1
𝑇 ) (8.7)

is additionally considered. The only conserved quantity left is the total energy of the
system. The corresponding balance equation that governs the evolution of temperature
can be thought as a physically extended version of the heat equation (2.5). Adding
convective transport as well as some source terms, the balance equation reads:

𝜕𝑡(𝜌𝑐𝑝𝑇 ) + 𝑢 ⋅ ∇(𝜌𝑐𝑝𝑇 ) + ∑
𝑖

𝜌𝐿𝜕𝑡𝛼𝑖 − ∇ ⋅ (𝜅∇𝑇 )  + 𝑄Laser − 𝑄Vap − 𝑄Radiation = 0 (8.8)

with the following (nonlinear) source terms for the laser heat input, vaporization loss
and radiation loss, respectively (Bayat et al., 2019):

𝑄Laser(𝑥, 𝑦) = 𝑃𝐿
2�̃�

𝜋𝑅2
𝐿
exp

(
−2(𝑥2 + 𝑦2)

𝑅2
𝐿 )

, (8.9)

𝑄Vap(𝑇 ) = 0.82 𝑝recoil

√2𝜋𝑀𝑅𝑇
, (8.10)

𝑄Radiation(𝑇 ) = 𝜎𝜖(𝑇 4 − 𝑇 4
amb). (8.11)
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The laser that provides 𝑄Laser with total power 𝑃𝐿 and focal radius 𝑅𝐿 travels along
a straight line throughout the domain with constant velocity. The absorbed power is
dependent on the value for laser absorptivity �̃�. Thus, this source term represents a
transient heat source where its position can be easily interpolated given the current
time. Further details on the physical models can, for example, be found in Zimbrod
et al. (2022).

8.2 Computational Domain

The given problem is solved on a grid that is overall three-dimensional and hexahedral
in shape. The bounding box has dimensions 2.0mm in length, 0.3mm in width and
0.5mm in height.

In this problem setting, steep temperature gradients are to be expected due to the
concentrated heat input. As a result, it makes sense to employ a finer grid at locations
where the melt pool dynamics take place. One possible way to account for that is to use
a discretization technique that can incorporate adaptive grids.

However, one would instead like to make use of previous knowledge and only use a
finer grid around the vicinity of the laser path - where the actual melting takes place and
a finer grid is needed to appropriately resolve the flow field. As such, there is no need to
use algorithms that flag candidate cells and employ re-meshing at every time step. The
rest of the domain can be meshed using coarser cells, as they are primarily present in the
simulation to properly account for heat conduction to surrounding solidified material.

A slice of the resulting discretization is depicted in Figure 8.1. The actual mesh is
box-shaped, and the visible regions are colored to illustrate the different phases present
as well as the varying cell sizes. The grid consists of hexahedral elements with varying
sizing. Colors denote different phases in the initial condition. That is, blue-marked cells
contain the shielding gas, cells in red denote the already solidified metallic material of
previous layers and green cells denote the freshly applied metallic powder of the current
layer. One can observe that the cells become coarser with increasing depth about the
powder bed.
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Fig. 8.1: Slice of the computational domain for the Laser Powder Bed Fusion test case.

8.3 Computing Resources

The selection process for suitable numerical schemes as done in the previous sections
begins by investigating the computational hardware, as stated within process P1 in Fig-
ure 6.3. For this problem, the same hardware given in Table 7.4 is used. That is, this
problem is to be solved on the 18-core CPU machine. As given in section 6.5, such a
system of desktop scale does not per se necessitate the use of massively parallel hard-
ware, as the amount of processes falls below the recommended amount of 50 to 100
workers.

8.4 Problem Scale

Using the system of PDEs as input, one can proceed with analyzing the problem length
scales according to process P2 in Figure 6.3. Given the coefficients and material prop-
erties of the PDE system, it should be noted that all physics are expected to operate on
a length scale of a few micrometers. One can thus conclude that this particular problem
does not exhibit multiscale properties that would necessitate adaptivity. Therefore, in
combination with the given hardware, the first decision point D1 in Figure 6.3 can be
negated and one can proceed with field-wise analysis of the PDE system.
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8.5 Classification

As a first step, the field-wise classification of the PDE system is done, that is, decisions
D2 to D5 along with the corresponding processes as follows: All governing equations
of the system (Equations 8.4-8.11) are considered individually for each field quantity.
That is, the individual equations are extracted that one needs to solve. Afterward, the
classification methods described by P3 and P4 are used, whereas the latter is only rele-
vant for hyperbolic systems as illustrated in Figure 6.3.

First, the phase fraction fields are examined. As all variables are governed by the
same set of equations and thus the resulting classification applies to every field, the
discussion can be abbreviated by only classifying one phase fraction 𝛼. The relevant
governing equation then is exactly the passive advection equation that has been intro-
duced in section 7.2

𝜕𝑡𝛼 + ∇ ⋅ (𝑢 𝛼) = 0. (8.12)

It then immediately follows from the previous discussion that the phases are gov-
erned by first-order, linear, hyperbolic systems. One consequently arrives at the DGM
for these variables.

Next, the velocity vector 𝑢 will be addressed. Extracting all components from Equa-
tion 8.2 that contain differentials of 𝑢 yields:

𝜌𝜕𝑡𝑢 − 𝜂Δ𝑢 = 0 (8.13)

This system of equations, for each component, possesses the exact structure of the heat
diffusion equation, which is known to be a model parabolic equation. Following the
more rigorous approach given in section 6.2, one would obtain for the coefficient matrix
𝑎𝑖𝑗

𝑎𝑢
𝑖𝑗 =

⎡
⎢
⎢
⎢
⎣

0 0 0
0 −𝜂 0
0 0 −𝜂

⎤
⎥
⎥
⎥
⎦

. (8.14)

The first zero diagonal element is due to the time component only appearing in a first, but
not in any second derivative. Consequently, the same conclusion can be drawn, being
that the governing equation for velocity in this case is parabolic. Thus, the left branch
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after D2 applies and the next step involves classifying the regularity of the domain. The
question of whether the grid is strictly regular and cartesian has already been answered
in the previous section, and therefore one arrives at the CGM for the velocity field.

The pressure 𝑝 only appears within the momentum balance in Equation 8.2 within
the expression ∇⋅𝑝𝐼 , which is equal to the gradient ∇𝑝. That is, 𝜕𝑥𝑝 appears as a source
term in the components in this equation and thus the evolution of 𝑝 is not per se given
by a separate governing equation. Therefore, one needs to fall back to the qualitative
classification that was described in section 6.2 and choose an appropriate class based
on the continuity requirements of the pressure field. The present problem consists of
multiple phases, therefore steep jumps in pressure can be expected at interfaces. Con-
sequently, the pressure field can be assumed to be discontinuous at some points during
the simulation and thus follow the process in Figure 6.3 along the path of hyperbolic
equations. As there are no additional source terms or nonlinearities in 𝑝, this constraint
is classified as linear in D4 and therefore, one also arrives at the DGM.

For the remaining Temperature field 𝑇 , the terms containing differential operators
on 𝑇 are gathered from the governing equation, Equation 8.8:

𝜌𝑐𝑝𝜕𝑡𝑇 + 𝜌𝑐𝑝𝑢 ⋅ ∇𝑇 − 𝜅Δ𝑇 = RHS(𝑇 ). (8.15)

The remaining terms in Equation 8.8 that have been gathered in RHS(𝑇 ) are either
constant, or depend on 𝑇 itself, but not in its derivatives. Therefore, one may omit
them for the sake of classification. As such, the corresponding PDE is of second order
and one may proceed analogously to the classification of the velocity 𝑢. The coefficient
matrix 𝑎𝑖𝑗 is then

𝑎𝑇
𝑖𝑗 =

⎡
⎢
⎢
⎢
⎣

0 0 0
0 −𝜅 0
0 0 −𝜅

⎤
⎥
⎥
⎥
⎦

. (8.16)

Similarly to the previous discussion, this resembles a parabolic system and the dis-
cretization of the temperature field should be done using the CGM, as the question of
domain regularity (D3) has already been addressed and is the same for all fields. If
the coefficient of thermal diffusion 𝜅 would be zero in this case, the governing equa-
tion would then collapse into a hyperbolic PDE and another classification would apply.
However, the amount of heat conduction present in the model cannot be neglected, and
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thus it follows that 𝜅 > 0 everywhere in the domain.

8.6 Weak Formulation

As has been demonstrated in section 6.8, producing a valid weak formulation out of the
strong form of a PDE is not always trivial. Thus, this process will be carried out for the
mesoscale PBF-LB/M system exemplarily.

First, the set of advection equations for the Volume-of-Fluid method is considered
that is described by Equation 8.12. The process of obtaining a weak formulation has
largely been addressed in section 7.2. One important distinction, however, is that the
advection velocity vector 𝑢 is no longer constant with a fixed, prescribed velocity field
as it is separately solved for. For the three present phases, the weak form then reads
according to Equation 7.19 and the notation introduced in Figure 6.4
ˆ

Ω

⟨𝑣𝛼, 𝜕𝑡𝛼⟩ d𝑥 +
ˆ

𝜕Ω
⟨𝑣𝛼, 𝛼 (𝑢 ⋅ 𝑛)⟩ d𝑠

+
ˆ

𝜕Ω
⟨𝑣𝛼, 𝛼 (𝑢 ⋅ 𝑛)⟩ d𝑆 −

ˆ

Ω
⟨∇𝑣𝛼, 𝑢 𝛼⟩ d𝑥 = 0, (8.17)

where 𝑣𝛼 denotes the test function belonging to the same function space as 𝛼. As the
fields are to be discretized using DGM, the hull integral resulting from partial integra-
tion does not vanish.

Next, the incompressibility constraint, given by Equation 8.3 is transformed. Ac-
cording to Table 8.1, the velocity field 𝑢 should be discretized using the CGM. Since
the differential order of this equation does not exceed two, no hybridization is needed.
The dimensionality of the corresponding test function has to be scalar in this case, since
𝐿(𝑢) = ∇ ⋅ 𝑢 is scalar as well. Thus, the preliminary weak form reads

ˆ

Ω
⟨𝑣𝛼, ∇ ⋅ 𝑢⟩ d𝑥 = 0. (8.18)

As this differential operator is linear according to Definition 6.4.1, one may proceed by
integration by parts. The rule for performing integration by parts in case of the diver-
gence of a vector quantity is given in Table 6.1. As the velocity vector is modeled using
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a continuous approximation, only the boundary integral over exterior facets remains.
Thus, the weak form reads

ˆ

𝜕Ω
⟨𝑣𝑢, 𝑢 ⋅ 𝑛⟩ d𝑆 −

ˆ

Ω
⟨∇𝑣𝑢, 𝑢⟩ d𝑥 = 0. (8.19)

The weak form of the momentum balance Equation 8.2 may be formed accordingly.
The capillary stress term will be dealt with separately, as it does not involve the flow
velocity 𝑢 and forms part of a more complicated expression requiring more in-depth
analysis. As the remainder of Equation 8.2 is linear in 𝑢, one can proceed as previously
by writing down the integral form

ˆ

Ω
⟨𝑣𝑢, 𝜌 𝜕𝑡𝑢⟩ d𝑥 −

ˆ

Ω
⟨𝑣𝑢, ∇ ⋅ (𝜂∇𝑢)⟩ d𝑥. (8.20)

Since this equation describes the evolution of the vector quantity 𝑢, a corresponding
test function 𝑣𝑢 is required to form the inner product. Partial integration of the viscous
term in Equation 8.20 can also be performed using Table 6.1 and yields

ˆ

Ω
⟨𝑣𝑢, 𝜌 𝜕𝑡𝑢⟩ d𝑥 −

ˆ

𝜕Ω
⟨𝑣𝑢, 𝜂 ∇𝑢 ⋅ 𝑛⟩ d𝑆 +

ˆ

Ω
⟨∇𝑣𝑢, 𝜂 ∇𝑢⟩ d𝑥. (8.21)

The term containing the static pressure 𝑝, i.e. 𝐿(𝑝) = ∇ ⋅ (𝑝𝐼) = ∇𝑝 can be
transformed straightforwardly. Using the same vector test function 𝑣𝑢, one obtains

ˆ

Ω
⟨𝑣𝑢, ∇𝑝⟩ d𝑥. (8.22)

Again performing integration by parts for a DG discretisation yields
ˆ

𝜕Ω
⟨𝑣𝑢, 𝑝 𝑛⟩ d𝑠 +

ˆ

𝜕Ω
⟨𝑣𝑢, 𝑝 𝑛⟩ d𝑆 −

ˆ

Ω
⟨∇ ⋅ 𝑣𝑢, 𝑝⟩ d𝑥. (8.23)

The second part of the pressure term has to be treated differently, however. The recoil
pressure is a function of temperature according to Equation 8.7 in the form of a nonlinear
equation. However, as the divergence encompasses the entire expression, one may still
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perform integration by parts, yielding
ˆ

𝜕Ω
⟨𝑣𝑢, 𝑝recoil 𝐼 ⋅ 𝑛⟩ d𝑆 −

ˆ

Ω
⟨∇𝑣𝑢, 𝑝recoil 𝐼⟩ d𝑥. (8.24)

The capillary stress term is effectively a function of the phase fractions, although
through some indirections. Combining Equations 8.4 through 8.6, it becomes apparent
that one needs to compute the second derivative of the phase fractions. As they are
discretized using a DGM, hybridization is needed here. In case of an interface between
phases 𝑎 and 𝑏, the hybridization for the unit interface normal ̂𝑛𝑎𝑏 is already given by
8.5:

̂𝑛𝑎𝑏 −
𝛼𝑠∇𝛼𝑔 − 𝛼𝑔∇𝛼𝑠

|𝛼𝑠∇𝛼𝑔 − 𝛼𝑔∇𝛼𝑠|
= 0. (8.25)

However, by introducing the surface gradient given by Equation 8.6, there are still gra-
dients of the discontinuous phase field remaining which are problematic to the DG
discretization. Thus, the additional hybrid quantity

�̂� = ∇𝛼 (8.26)

is introduced. Through this indirection, the expression for the unit interface normal ̂𝑛𝑎𝑏
between solid and liquid phase becomes

̂𝑛𝑎𝑏 −
𝛼𝑠 �̂�𝑙 − 𝛼𝑙 �̂�𝑠

|𝛼𝑠 �̂�𝑙 − 𝛼𝑙 �̂�𝑠|
= 0. (8.27)

The capillary stress tensor can then be expressed as

𝑇 = −∇ ⋅ [−𝜎 (𝐼 − ̂𝑛𝑎𝑏 ⊗ ̂𝑛𝑎𝑏)] . (8.28)

This system can now be transformed into the corresponding weak form. As a starting
point, the hybridized interface normal given by Equation 8.26 is considered. Form-
ing the inner product with a vector test function, integrating over the domain Ω and
subsequently integrating by parts yields
ˆ

Ω
⟨𝑣, �̂�⟩ d𝑥 −

ˆ

𝜕Ω
⟨𝑣, 𝛼 𝑛⟩ d𝑠 −

ˆ

𝜕Ω
⟨𝑣, 𝛼 𝑛⟩ d𝑆 +

ˆ

Ω
⟨∇ ⋅ 𝑣, 𝛼⟩ d𝑥 = 0. (8.29)
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Equation 8.27 is nonlinear, thus forming the weak form simply consists of forming the
inner product with the test function and integrating over the domain. The corresponding
weak form then reads

ˆ

Ω
⟨𝑣, ̂𝑛𝑎𝑏⟩ d𝑥 −

ˆ

Ω
⟨𝑣,

𝛼𝑠 �̂�𝑙 − 𝛼𝑙 �̂�𝑠
|𝛼𝑠 �̂�𝑙 − 𝛼𝑙 �̂�𝑠|⟩ d𝑥 = 0, (8.30)

where the absolute magnitude of a vector quantity |⋅| can be computed by taking the
square root of the inner product with itself √⟨⋅, ⋅⟩.

Finally, the capillary stress tensor can be expressed in its weak form. Although this
expression is again nonlinear, it is still possible to integrate by parts due to the nabla
operator encompassing the entire expression. The weak form is thus formulated as
ˆ

Ω
⟨∇𝑣, −𝜎 (𝐼 − ̂𝑛𝑎𝑏 ⊗ ̂𝑛𝑎𝑏)⟩ d𝑥 −

ˆ

𝜕Ω
⟨𝑣, −𝜎 (𝐼 − ̂𝑛𝑎𝑏 ⊗ ̂𝑛𝑎𝑏) 𝑛⟩ d𝑠

  −
ˆ

𝜕Ω
⟨𝑣, −𝜎 (𝐼 − ̂𝑛𝑎𝑏 ⊗ ̂𝑛𝑎𝑏) 𝑛⟩ d𝑆. (8.31)

This concludes the weak form of the momentum balance. As the temperature is ap-
proximated using a continuous discretization and Equation 8.8 is a second-order, semi-
linear PDE, the weak formulation is considerably less tedious to derive. Here, one can
proceed in a very similar manner to the Allen Cahn equation discussed in section 7.1.
Both equations are primarily parabolic containing a nonlinear right-hand side. The
weak temporal derivative of the temperature 𝑇 thus reads

ˆ

Ω
⟨𝑣𝑇 , 𝜌 𝑐𝑝 𝜕𝑡𝑇 ⟩ d𝑥. (8.32)

The diffusive term is again formed similarly
ˆ

𝜕Ω
⟨𝑣𝑇 , 𝜅∇𝑇 ⋅ 𝑛⟩ d𝑆 −

ˆ

Ω

⟨∇𝑣𝑇 , 𝜅∇𝑇 ⟩ d𝑥. (8.33)
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Table 8.1: Resulting schemes of the proposed decision method for the Laser Powder
Bed Fusion example problem. Columns D1 to D4 refer to the corresponding decision
points in Figure 6.3.

Variable D1 D2 D3 D4 Result
𝛼solid no hyperbolic n.a. linear DGM
𝛼liquid no hyperbolic n.a. linear DGM
𝛼gas no hyperbolic n.a. linear DGM
𝑢 no parabolic irregular n.a. CGM
𝑝 no hyperbolic n.a. linear DGM
𝑇 no parabolic irregular n.a. CGM

One additional term compared to the Allen Cahn problem is the convective part
ˆ

Ω
⟨𝑣𝑇 , 𝜌 𝑐𝑝 𝑢 ⋅ ∇𝑇 ⟩ d𝑥 −

ˆ

𝜕Ω
⟨𝑣𝑇 , 𝜌 𝑐𝑝 𝑇 𝑢 ⋅ 𝑛⟩ d𝑆. (8.34)

The remaining terms of Equation 8.8 do not contain any differential operators. There-
fore, the weak formulation can easily be obtained by forming the inner product with the
scalar test function 𝑣𝑇 and integrating over Ω

∑
𝑖

ˆ

Ω

⟨𝑣𝑇 , 𝐿 𝜕𝑡𝛼𝑖⟩ d𝑥 +
ˆ

Ω

⟨𝑣𝑇 , 𝑃 ⟩ d𝑥 +
ˆ

Ω
⟨𝑣𝑇 , 𝜎𝜖 (𝑇 4 − 𝑇 4

𝑎𝑚𝑏)⟩ d𝑥

+
ˆ

Ω
⟨𝑣𝑇 , 0.53𝑝0

𝐿𝑣
𝑅 exp(

1
𝑇𝑣

− 1
𝑇 )⟩ d𝑥. (8.35)

8.7 Findings

With all independent variables of the model addressed in the previous section, the cho-
sen combination of numerical schemes is summarised in Table 8.1. This mixed dis-
cretization in combination with the outlined weak formulation for this problem can be
implemented using any modern Finite Element code. In the first two examples, it has
been shown that both creating a custom implementation using modern programming
languages and implementing a model using popular Finite Element libraries are viable
options to create a corresponding simulation.
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In this case, a coupled, nonlinear problem is obtained. This means that instead of
solving a discrete linear system of equations, one must solve a global, nonlinear root
finding problem of the form 𝐹 (𝑢; 𝑣) = 0 in every time step by appropriate means,
such as Picard iteration or Newton’s method. Such functionality however is readily
implemented in Finite Element libraries such as Firedrake (Ham et al., 2023), which
has been used in the previous section.

In summary, the developed method given in chapter 6 has been applied to the model
problem of powder scale melting and solidification during PBF-LB/M. With the inputs
of computational hardware, grid as well as a mathematical description of the problem,
one can systematically and unambiguously derive a mixed discretization for the prob-
lem that differs from the most prevalent scheme in the literature, the FVM. For the given
problem and given a fixed grid size, this model can reflect the qualitative behavior of
each quantity of interest in a more accurate manner than the FVM. For the transport
equations representing the phases, it has been shown in section 7.2 that the DGM deliv-
ers superior accuracy compared to the FVM. Modeling of diffusive quantities has been
discussed in section 7.1 where it has been shown that the CGM does represent the con-
tinuous nature of the problem accurately. Although section 7.1 covers the Allen-Cahn
equation, which is not present in the mesoscale PBF-LB/M model, its classification ac-
cording to sections 6.2 and 6.4 is identical with the energy balance equation 8.8. That
is, both equations are semilinear, parabolic equations with a scalar quantity of interest.

Due to the restrictions posed to the present method in section 6.1, this compound
discretization will also yield a stable solution. This property can, e.g., not be guaranteed
by applying a pure CGM or FDM to this problem as special care would have to be taken
with upwinding for convective parts of the equations - for instance by using asymmetric
stencils or introducing additional, artificial diffusion for sake of dampening oscillations
(Langtangen and Linge, 2017). Using a pure FVM with unconditionally stable formu-
lations, on the other hand, would yield a stable solution. However, this comes at the
cost of accuracy in the form of pronounced artificial, numerical diffusion for convec-
tive quantities and low accuracy due to its discontinuous nature for diffusive quantities
(Versteeg and Malalasekera, 2007).

Furthermore, the present model allows for additional flexibility regarding the de-
sired resolution of each field. Although the computational grid is the same for each
variable, the order of approximation can be set arbitrarily on a per-field basis. As a
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result, large spatial gradients in, for example, the temperature field can be efficiently
resolved using higher-order Finite Elements whereas slowly changing fields such as the
phase fractions can be approximated with lower-order elements. Thus, the creation of
computational bottlenecks can be effectively avoided in this way. This strategy in this
form cannot be pursued using the FVM since it is formally limited to constant polyno-
mial order in its approximation. The details of this argument have been elaborated in
section 7.2. Furthermore, the use of a continuous FEM on the parabolic parts of the
system, i.e. fluid velocity and temperature, will yield a lower overall error with fixed
grid size since the real solution can be assumed to be continuous.

The proposed claim of having found an efficient spatial discretization is supported
by the findings of several independent groups in recent years. In particular, similar
models for resolving the melt pool dynamics in PBF-LB/M have been developed using
mixed formulations of the FEM. For example, Meier et al. developed a custom, high-
performance Finite Element simulation code called MeltPoolDG based on the DGM as
well as a mixed FEM to resolve the melt pool on the powder bed scale (Meier et al.,
2021; Kronbichler et al., 2018). Other recent developments include a Finite Element
model on multiple grids to capture the governing physics (Caboussat et al., 2023), and
a space-time FEM code that is based on a Petrov Galerkin approximation (Kopp et al.,
2022). Furthermore, there also exist implementations of such melt pool models using
commercially available software. For instance, the popular COMSOL software pack-
age which implements many variants of the FEM can resolve the relevant thermo fluid
dynamics during laser melting (Liu et al., 2020; Mayi et al., 2021).

However, none of these works outline the systematic derivation of the weak for-
mulation for the mesoscale PBF-LB/M governing equations as was done in this chap-
ter. This underlines the overall contribution towards making such high-performance
methods more accessible to application experts. Therefore, this work contributes to
bridging the gap between well-established, widely used schemes and state-of-the-art,
high-performance methods for PBF-LB/M that was outlined in Chapter 3.

It can thus be concluded that hypothesis H3 may be considered valid in the present
work.



Chapter 9

Conclusions and Future Work

This work addresses an important and emerging research gap in the research commu-
nity. Due to recent developments in high-performance numerical schemes to approxi-
mate PDEs, there is an increasing gap between well-established, widely used schemes
and state-of-the-art, high-performance methods. This trend has been outlined in partic-
ular for the simulation problem of predicting the mesoscale physics during PBF-LB/M.
Consequently, the question arises whether the abovementioned gap may be closed or
narrowed by establishing a method for guiding an application expert through selecting
suitable numerical schemes.

To answer this question, the research conducted is split into three main research
hypotheses to systematically approach this topic. The key findings of this work can
be summarised as follows. The Bubnov DGM can serve as a general mathematical
baseline for the FVM, FDM and CGM. These form the majority of schemes used in
practice, which is why the scope of this work is restricted to this specific subset. It has
been shown that one can recover all these schemes by introducing certain restrictions
to the DGM, which can either be on the algebraic or algorithmic level.

Furthermore, by using those simplified schemes where appropriate, one is to gain
stability and performance in numerical simulations that scale with problem size and
hardware. In particular, one may even avoid the assembly of a global linear system by
leveraging domain restrictions in the case of the FDM. If a PDE exhibits strong nonlin-
earity, choosing a purely reconstruction-based approach via the FVM is then beneficial
and assembly of the weak form can be avoided as well.

This common framework based on the DGM enables interoperability of the men-
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tioned schemes. As such, one can combine them when solving multiphysics problems
and thus assemble efficiently mixed discretizations. Therefore, manual coupling of dif-
ferent numerical solvers is not needed in theory. Instead, one may implement them in a
monolithic way and thus avoid costly memory transfer operations, concluding the first
research hypothesis H1.

One can systematically derive an efficient combination of numerical schemes, given
only a few inputs about the problem, that is, hardware requirements, the mathemat-
ical formulation of the problem and the domain geometry. The method to identify
these schemes is based on the field and delivers one-to-one recommendations on which
method to use. The selected methods, regarding the spatial discretization of the prob-
lem, are shown to deliver stable and computationally efficient approximations.

As such, applying the developed method to the two model problems in this work,
the Allen Cahn equation in 1D and 2D and the advection equation in 2D yields methods
that notably outperform their respective alternatives. In the former case, this difference
in computation time between FDM and FEM has been shown to exceed a factor of 40
times. In the latter case, it has been shown that as predicted by the theory, the dif-
ferences in computational efficiency between DGM and FVM grow considerably with
more powerful computational hardware and the necessary degrees of freedom for some
fixed accuracy. The presented good parallelization capabilities of the DGM are essen-
tial to obtaining solutions in viable time for complex problems, where other numerical
schemes would pose a severe bottleneck due to their algorithmic nature as outlined in
section 7.2. This unified method forms the basis for verification of the second hypoth-
esis H2.

It has also been shown that for a real multiphysics problem, even for coupled systems
of PDEs, one can derive an efficient combination of schemes in a reproducible and for
application experts accessible way. This highlights the practicality and usefulness of
the established framework for end users. Especially researchers who are familiar with
physical modeling, but not to the same degree with state-of-the-art high-performance
numerical methods are expected to profit from this approach. The exemplary use of the
developed method through the chosen example problem addresses the final hypothesis
H3.

Some future work might be attributed to further breaking down the choices of nu-
merical schemes based on a more granular problem classification. The classes of PDE
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introduced in this work are rather coarse, albeit the most widely used.
One may also include mixed Finite Element discretizations into the method. These

include the use of Finite Elements that use particular function spaces to exactly match
the map of some differential operators. Including those will, however, make the se-
lection process ambiguous and thus a key feature of this work would be sacrificed, i.e.
simplicity and reproducibility would be traded for added flexibility and possibly effi-
ciency. Thus, within the scope of this work, only scalar- and vector-valued Lagrange
elements were included which would then have to be extended considerably. By fur-
ther refining the established decision metric between numerical schemes, i.e. including
a particular choice of function space, it is likely possible to account for mixed Finite
Element methods within the established work.

Due to the clear recommendation and insight that this method can provide on a
per-problem basis, it can be expected to have a substantial impact within various sci-
entific communities that apply simulation techniques. For instance, the sharp phase
field method which can describe frictionless interface motion is thus far only well re-
searched using spectral and FDMs (Finel et al., 2018; Fleck and Schleifer, 2023). These,
however, limit the applicability to relatively simple geometries as outlined above. It is
thus desirable to obtain a formulation that allows for more flexibility, such as the FEM.
In principle, the sharp phase field method is not straightforward to generalize, since
the governing equations have to be modified on the discrete level (Fleck and Schleifer,
2023). The results outlined in section 5.3 and 7.1 may, however, provide a natural
guideline to derive such a generalization using Finite Elements from the Finite Differ-
ence formulation given in (Fleck and Schleifer, 2023) by computing a reference stencil
and applying the Finite Element specific assembly process afterward.

Thus, this work presents a possible way of establishing recent, high-performance
FEMs in more application-driven research communities. This can hopefully form a
contribution towards increasing the impact of numerical simulation in research and in-
dustry by shortening computational load and thus increasing development throughput.
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Appendix A

Literature Research for Mesoscopic
PBF-LB/M Simulation

Someworks employ or compare multiple methods and are thus countedmore than once.
In total, 177 publications were considered that have been published mainly within the
last 15 years. Daggers† denote mesh-based (eulerian) approaches, asterisks* signify
mesh-free (lagrangian) methods. An exception is given by the Arbitrary Lagrangian-
Eulerian method, which implements both material and field viewpoints.

Table A.1: Quantitative summary of previous works on simulating melt pool evolution in
PBF-LB/M.

Number of Publications
Numerical Scheme Absolute Relative [%]
Arbitrary Lagrangian Eulerian†

(Berry et al., 2021; David K. Kafui, Colin
Thornton, and Jonathan P.K, 2023; Fan et al., 2020;
Khairallah et al., 2020, 2015, 2016; Khairallah and
Anderson, 2014; King et al., 2015a; Li et al., 2023;
Martin et al., 2019)

10 5.6

Continued on next page
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Table A.1: Quantitative summary of previous works on simulating melt pool evolution in
PBF-LB/M. (Continued)

Discrete Element Method*

(Aggarwal et al., 2020; Aminnia et al., 2022b;
Boukouvala et al., 2013; Chen et al., 2022; Chien
et al., 2021; Estupinan Donoso and Peters, 2018;
Geer et al., 2018; Gu et al., 2021; He et al., 2020b,c;
Kovalev et al., 2020; Marchais et al., 2021; Mikami
et al., 1998; Xia et al., 2021; Ninpetch et al., 2023;
Peters, 2013; Ramesh Sagar et al., 2021; Shenouda
and Hoff, 2020; Si et al., 2021; Tan et al., 2018;
Tian et al., 2020; Ur Rehman et al., 2021; Wei et al.,
2018; Wu et al., 2021; Lee and Zhang, 2016; Yao
et al., 2020; Yuan et al., 2020; Zhang et al., 2019)

28 15.8

Finite Difference Method†

(Gusarov et al., 2009; Hosseinzadeh et al., 2022;
Wu et al., 2018)

3 1.7

Continued on next page
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Table A.1: Quantitative summary of previous works on simulating melt pool evolution in
PBF-LB/M. (Continued)

FEM†

(Ahsan et al., 2022; Alexopoulou et al., 2022;
Allen, 2021; Arbaoui et al.; Bayat et al., 2019;
Beghini et al., 2021; Burkhardt et al., 2022;
Caboussat et al., 2023; Cao et al., 2021; Chen et al.,
2023b, 2017; Denlinger et al., 2017; Elahi et al.,
2022; Fan and Yan, 2020; Jin et al., 2021; Keller
et al., 2017; Kopp et al., 2022; Ladani et al., 2017;
Lee et al., 2017; Liang et al., 2021; Lin et al., 2020;
Liu et al., 2020; Mandal et al., 2022; Mayi et al.,
2021; Mede et al., 2020; Meier et al., 2021;
Pantawane et al., 2020; Saadlaoui et al., 2021;
Strayer et al., 2022; Vastola et al., 2018; Xie et al.,
2021; Yan et al., 2022; Yang et al., 2023; Ye et al.,
2021; Zhang et al., 2018a,b)

32 18.1

Continued on next page



164 Literature Research for Mesoscopic PBF-LB/M Simulation

Table A.1: Quantitative summary of previous works on simulating melt pool evolution in
PBF-LB/M. (Continued)

Finite Volume Method†

(Acharya et al., 2017; Chien et al., 2021; Hedreen,
2020; He et al., 2020a; Hong et al., 2021; Le et al.,
2020b; Li and Tan, 2020; Luo et al., 2021; Noskov
et al., 2020; Rauniyar and Chou, 2019; Ren et al.,
2021; Ridolfi et al., 2020b,a; Shrestha and Chou,
2017; Staroselsky et al., 2020; Zhang and Zhang,
2019; Alphonso et al.; Bayat et al., 2020; Chen
et al., 2021, 2023a; Chen and Yan, 2020; Fan and
Yan, 2020; Ge et al., 2021; Giam et al., 2023; Gu
et al., 2020; Lee and Zhang, 2015; Li et al., 2020a;
Lu et al., 2021; Ninpetch et al., 2021; Shrestha and
Chou, 2021; Shrestha et al., 2019; Tian et al., 2020;
Wei et al., 2020; Lee and Zhang, 2016; Yuan et al.,
2020; Zielinski et al., 2017; Watari et al., 2018;
Aminnia et al., 2022a; Cao, 2021, 2020a,b,c; Cao
and Guan, 2021; Cao, 2020d; Cardiff et al., 2018;
Chouhan et al., 2018; Gürtler et al., 2014, 2013;
Hojjatzadeh et al., 2019; Katinas and Shin, 2020;
Khomenko et al., 2021; Koch et al., 2010; Le et al.,
2020a; Li et al., 2020b; Otto et al., 2012, 2011;
Pakhale, Vinit Vikas, 2023; Panwisawas et al.,
2017; Priya et al., 2020; Qiu et al., 2015; Rolchigo
et al., 2022; Saufi et al., 2020; Sun et al., 2020;
Svenungsson et al., 2017; Tang et al., 2022; Tang;
Tan et al., 2018; Vázquez et al., 2014; Wei et al.,
2020; Wells et al., 2021; Wells and Krane, 2022;
Wirth et al., 2022; Zimbrod et al., 2022; Sabau
et al., 2020)

85 48.0

Continued on next page
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Table A.1: Quantitative summary of previous works on simulating melt pool evolution in
PBF-LB/M. (Continued)

Lattice Boltzmann Method*

(Körner et al., 2013, 2011; Krzyzanowski and
Svyetlichnyy, 2021; Küng et al., 2021; Li et al.,
2016; Markl et al., 2019; Rai et al., 2017; Rausch
et al., 2017; Wu et al., 2022; Yang et al., 2022)

10 5.6

Smoothed Particle Hydrodynamics*

(Afrasiabi et al., 2021; Dao and Lou, 2021;
Dietemann et al., 2022; Fan et al., 2020; Fürstenau
et al., 2019, 2021; Lüthi et al., 2023; Ma et al.,
2023; Meier et al., 2020, 2021; Stubblefield et al.,
2021; Weirather et al., 2019; Wimmer et al., 2021)

10 5.6
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Commercial software is annotated with an asterisk *, academic and open source
software with a dagger †.

Table A.2: Quantitative summary of previous works that use the FVM to resolve melt
pool dynamics in PBF-LB/M.

Number of Publications
Software Absolute Relative [%]
ANSYS*

(Acharya et al., 2017; Chien et al., 2021; Hedreen,
2020; He et al., 2020a; Hong et al., 2021; Le et al.,
2020b; Li and Tan, 2020; Luo et al., 2021; Noskov
et al., 2020; Rauniyar and Chou, 2019; Ren et al.,
2021; Ridolfi et al., 2020b,a; Shrestha and Chou,
2017; Staroselsky et al., 2020; Zhang and Zhang,
2019)

16 21.6

FLOW-3D*

(Alphonso et al.; Bayat et al., 2020; Chen et al.,
2021, 2023a; Chen and Yan, 2020; Fan and Yan,
2020; Ge et al., 2021; Giam et al., 2023; Gu et al.,
2020; Lee and Zhang, 2015; Li et al., 2020a; Lu
et al., 2021; Ninpetch et al., 2021; Shrestha and
Chou, 2021; Shrestha et al., 2019; Tian et al., 2020;
Wei et al., 2020; Lee and Zhang, 2016; Yuan et al.,
2020; Zielinski et al., 2017)

20 26.3

FrontFlow†

(Watari et al., 2018)
1 1.4

Continued on next page
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Table A.2: Quantitative summary of previous works that use the FVM to resolve melt
pool dynamics in PBF-LB/M. (Continued)

OpenFOAM†

(Aminnia et al., 2022a; Cao, 2021, 2020a,b,c; Cao
and Guan, 2021; Cao, 2020d; Cardiff et al., 2018;
Chouhan et al., 2018; Gürtler et al., 2014, 2013;
Hojjatzadeh et al., 2019; Katinas and Shin, 2020;
Khomenko et al., 2021; Koch et al., 2010; Le et al.,
2020a; Li et al., 2020b; Otto et al., 2012, 2011;
Pakhale, Vinit Vikas, 2023; Panwisawas et al.,
2017; Priya et al., 2020; Qiu et al., 2015; Rolchigo
et al., 2022; Saufi et al., 2020; Sun et al., 2020;
Svenungsson et al., 2017; Tang et al., 2022; Tang;
Tan et al., 2018; Vázquez et al., 2014; Wei et al.,
2020; Wells et al., 2021; Wells and Krane, 2022;
Wirth et al., 2022; Zimbrod et al., 2022)

37 48.7

Truchas†

(Sabau et al., 2020)
1 1.4





Appendix B

Implementation Details of the Presented
Models

B.1 Advection Equation

B.1.1 Derivation of the Weak Form

Equation 7.19 can be obtained by the strong form of the PDE as described in the article,
by applying partial integration after multiplying with a test function and integrating
over the domain Ω. To arrive at a formulation that can be implemented, there are a few
additional steps which are described below.

In most DG codes, the weak form given by Equation 7.19, more specifically the
surface integral cannot be entered directly but needs to be reformulated using jump and
average operators. This is also done in the advection equation example described in
section 7.2. Such a modified weak form can be derived as follows.

The most straightforward consists of summarizing the convective term of the PDE
as the divergence of some flux ∇ ⋅ 𝑓(𝛼). In this case, the flux is simply 𝑓(𝛼) = 𝑢𝜙.

Then, the surface integral of Equation 7.19 can be formulated as:
ˆ

𝜕Ω
𝑣𝛼(𝑢 ⋅ 𝑛) d𝑆 =

ˆ
𝜕Ω

𝑣𝑓(𝛼) ⋅ 𝑛 d𝑆 (B.1)

One may now write down the terms of the surface integral of Equation 7.19 that con-
tribute to an arbitrary internal facet, that is, there are always two integrals from the cells
that the facet is owned by. The two cells are distinguished by introducing the notation



170 Implementation Details of the Presented Models

”+” and ”−”: ˆ
𝜕Ω

𝑣+
ℎ 𝛼+

ℎ (𝑢+ ⋅ 𝑛+) d𝑆 +
ˆ

𝜕Ω
𝑣−

ℎ 𝛼−
ℎ (𝑢− ⋅ 𝑛−) d𝑆 (B.2)

Where the yet-to-be-determined values for 𝛼+ and 𝛼− are introduced. By introducing
the common, yet unknown numerical flux 𝑓(𝛼)∗ and utilizing the fact that the facet
normal vectors 𝑛 point opposite to each other, Equation B.2 becomes:

ˆ
𝜕Ω (𝑓(𝛼)∗ ⋅ 𝑛) (𝑣+ − 𝑣−) d𝑆 =

ˆ
𝜕Ω (𝑓(𝛼)∗ ⋅ 𝑛) [[𝑣]] d𝑆 (B.3)

The only issue that is left to deal with is now the choice of an appropriate expression
for the numerical flux 𝑓(𝛼)∗ ⋅ 𝑛.

Both DG and FV implementations of the advection equation use the Lax-Friedrichs
flux function:

𝑓(𝛼)∗ = {𝛼(𝑢 ⋅ 𝑛+)} + 1
2𝐶[[𝛼]] (B.4)

Where {⋅} and [[⋅]] denote the average and jump operators as defined above. In this
case, 𝐶 is the maximum velocity in the domain and takes the role of the maximum
signal velocity, which must be computed separately for more complex problems. It is
defined as the jacobian of the PDE flux 𝜕𝑓(𝛼)/𝜕𝛼. Since that 𝑓(𝛼) = 𝑢𝛼, the jacobian
simply becomes the prescribed advection velocity 𝑢.

B.1.2 Simulation Parameters

The resulting semi-discrete ODE systems are solved using a three-stage implicit Runge
Kutta formulation using a matrix-free solver.

The entire simulation runs are timed from the command line and each is executed
six times. Wall times per time step were recorded during the run using the PETSc
distributed interface and logged to a text file.
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