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Abstract
In rural areas, shared mobility-on-demand services can improve the sustainability of 
public transport. However, bundling customer rides is challenging due to an unfa-
vorable spatial and temporal demand distribution. As one potential solution, ser-
vice providers could apply demand management. By controlling the availability of 
offered rides on an operational level, they could try to influence the resulting orders 
to allow more bundling. In practice, however, the introduction of demand manage-
ment, which is a strategic decision, is often impeded by the inability of stakehold-
ers to assess the exact impact on system performance in advance. In this paper, we 
tackle this issue by developing a methodology that serves as a basis for the strategic 
decision on how to implement operational demand management by realizing differ-
ent types of demand control policies. More precisely, we propose a methodology 
that evaluates different policies by applying them to a model of the operational plan-
ning problem, which itself has not been considered in the existing literature. For 
this purpose, we first formulate the operational planning problem as a Markov deci-
sion process. Second, we apply practical solution algorithms representing different 
control policies on a model variant supporting the strategic decision. Finally, draw-
ing on real-world data from FLEXIBUS, a rural provider in Germany, we conduct 
a computational study and present managerial insights into the impact of different 
control policies on the system performance in terms of profit, which the provider 
aims at maximizing, and other sustainability-oriented objectives of municipal con-
tracting authorities.
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1 Introduction

Sustainable mobility is a key societal goal, where there are still critical issues 
despite all efforts: severe environmental impacts of the transport sector (EEA 
2023; EPA 2023), a lack of social equity in terms of access to mobility (Banister 
2011, European Parliament 2021), and economic inefficiencies that lead to sig-
nificant macroeconomic costs (Allcott 2013; Gössling et al. 2022). A significant 
cause of these issues is the high reliance on individual motorized transportation, 
accounting for about 80% of the modal split during the period from 2010 to 2020 
(Eurostat 2022). This has pushed many countries to pursue a shift towards more 
sustainable public transportation options.

In rural areas, traditional scheduled public transport often enters a vicious cir-
cle of limited demand and supply (Bar-Yosef et  al. 2013). This leads to ineffi-
ciencies in mobility provision, unattractive schedules, and, therefore, a low modal 
split owing to its non-competitiveness with motorized individual transport (Nobis 
and Kuhnimhof 2018). To overcome these issues, shared mobility-on-demand 
(SMOD) represents one of the most promising concepts (Alonso-González et al. 
2018; Poltimäe et al. 2022; Sörensen et al. 2021). Also known as demand-respon-
sive transportation (Schasché et al. 2022) or (shared) ride-hailing (Gilibert et al. 
2020), SMOD refers to a flexible, demand-responsive passenger transportation 
system in which rides can be booked on request and shared by unrelated individu-
als through pooling.

In practice, SMOD systems have been successfully implemented in rural areas 
across various countries and by different providers, such as ioki (ioki 2024), 
Padam Mobility (Padam Mobility 2024), and Via (Via 2024). Several publica-
tions have also demonstrated the substantial sustainability benefits of SMOD in 
ecological (Coutinho et al. 2020; Prud’homme et al. 2011), social (Asatryan et al. 
2023; Ma and Koutsopoulos 2022), and economical (Bischoff et al. 2017; Vazifeh 
et al. 2018) terms. There are also promising results regarding the comparison to 
scheduled public transport. E.g., Asatryan et al. (2023) compare scheduled buses 
with an SMOD system operating during late evening hours in Wuppertal (Ger-
many), and find that the SMOD system improves the service quality.

However, trade-offs exist between improving traditional public transport and 
introducing SMOD (e.g., Viergutz and Schmidt 2019; Sieber et al. 2020). Over-
all, while cost-efficiency is highly dependent on the region, SMOD systems have 
a high potential in rural areas to improve service quality, accessibility, and envi-
ronmental sustainability, especially if integrated with scheduled services (Mor-
tazavi et al. 2024).

Still, many providers face operational challenges that lead to failure (Currie 
and Fournier 2020). This highlights the critical importance of operational plan-
ning. The general operational planning problem in SMOD systems has two main 
components: demand management, which refers to the operational decision on 
which rides to offer to a customer requesting service, and vehicle routing, which 
refers to the decision on how to fulfill the collected orders (Arian et  al. 2022; 
Atasoy et al. 2015; Haferkamp and Ehmke 2022).
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Existing literature concludes that an SMOD system’s performance improves 
in different ways by using either more advanced demand management or more 
advanced vehicle routing (Haferkamp and Ehmke 2022). However, in rural areas 
where compatible requests are scarce, demand management seems to be more effec-
tive. It can potentially “generate” more compatible requests that can be success-
fully pooled. Despite this potential, rural providers in practice to date usually do not 
actively manage demand. Instead, rides are typically offered in a first-come-first-
served manner. One reason for this is that the precise effects of implementing spe-
cific, more sophisticated approaches are hard to assess in advance.

In this paper, we tackle this issue by developing a methodology for supporting 
a rural SMOD provider’s strategic decision on how to implement demand manage-
ment. On the operational planning level, this requires selecting some type of demand 
control, which is realized by applying a control policy. To allow for a sound strategic 
decision, our methodology incorporates a precise model of the operational planning 
problem along with appropriate practical solution algorithms for possible control 
policies. We take into account the following unique characteristics, which have not 
yet been considered in the literature on demand management for SMOD systems:

• First, pricing is integrated and harmonized with scheduled public transport 
resulting in a static pricing scheme (Schasché et  al. 2022). For such a pricing 
scheme, demand control is restricted to availability control which is a concept 
from the area of revenue management and which is based on the definition of 
(virtual) products (Klein et al. 2020; Strauss et al. 2018). In the context of rural 
SMOD, such products may correspond to fulfillment options, i.e., different pick-
up or drop-off times, in response to a specific request. During the booking pro-
cess, availability control then decides on which products to offer to each request-
ing customer.

• Second, due to the limited scheduled public transport alternatives in rural areas, 
both long-term planning reliability and short-term service availability are crucial 
features for rural SMOD systems to compete with motorized individual trans-
port. To meet these requirements, any customer can place a ride request for a 
future service day (advance request), for a time later in the current service day 
(same-day request), and for the current point in time (ad-hoc request).

• Third, in rural areas, demand for SMOD services is often sparse and spread over 
a wide geographical area (Imhof and Blättler 2023; Wang et  al. 2015), which 
makes efficient pooling of requests challenging.

Given these unique characteristics, i.e., the application of availability control 
to advance requests, same-day requests, and ad-hoc requests in a setting with dis-
persed demand, the operational planning problem for SMOD in rural areas is a novel 
dynamic and stochastic optimization problem which we refer to as the rural Shared 
Mobility-on-Demand Control Problem (r-SMCP).

Our work differs from existing literature on SMOD as we are the first to ana-
lyze the combination of availability control and advance requests in a rural context. 
In terms of the methodology, our approach is the only one guiding the strategical 
selection of availability control policies. The only other work taking a strategic view 
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on demand management is Haferkamp und Ehmke (2022), which introduces only a 
simple accept/reject policy and does not account for the three unique characteristics 
in rural areas. In addition, our methodology preserves the stochasticity of request 
arrivals, features solution algorithms that are readily applicable also at the opera-
tional planning level, and analyzes sustainability-oriented objectives. Apart from 
this, the only other works analyzing multi-option availability control in SMOD sys-
tems are by Sharif Azadeh et al. (2022) and Atasoy et al. (2015), both in an urban 
context. Finally, Arian et al. (2022) also consider a rural setting but apply dynamic 
pricing instead of availability control.

We consider availability control policies based on three characteristics: First, they 
can employ different mechanisms, i.e., rejections of a request (not offering a ride at 
all) or utilizing time shifts (offering alternative times to the originally desired time). 
Second, they can use two different criteria – feasibility or profitability – for deci-
sion-making. Third, they may differ in their use of information, resulting in myopic 
or anticipatory decision-making. Our methodology then incorporates a model vari-
ant supporting the final strategic decision, which we call semi-perfect information 
model. It serves as the basis for our computational analyses and carefully trades-off 
model accuracy and data availability. To maintain the focus on demand management 
and isolate its performance impact, we use a uniform approach for making vehicle 
routing decisions.

In summary, our work makes the following scientific contributions:

• We develop a methodology for analyzing the impact of different availability con-
trol policies on performance metrics reflecting the provider’s and the municipal 
contracting authority’s objectives. Transferred into practice, our methodology 
can be applied at the strategic planning level to evaluate in advance whether, and 
if so, which policy fits best for their specific system.

• As part of the methodology, we are the first to present a model and solution algo-
rithms for the novel operational planning problem problem of rural SMOD pro-
viders (r-SMCP).

• We apply our methodology to one year of real-world data from our industry 
partner FLEXIBUS who have been operating an SMOD system since 2009, and 
therefore, belong to the most experienced providers in Germany. Therefore, this 
case study not only serves as a proof-of-concept for the methodology, but it also 
yields structural insights into the system performance in a typical, mature rural 
SMOD system.

The remainder of this work is structured as follows: In Sect. 2, we first review the 
literature and distinguish our work from the existing publications. In Sect. 3, we pre-
sent the methodology, comprising models and solution concepts, for analyzing the 
impact of demand management in rural SMOD systems. The computational study 
using real-world data from FLEXIBUS, which serves as a proof-of-concept for the 
methodology and yields managerial insights, follows in Sect. 4. Section 5 summa-
rizes the key managerial insights and includes a discussion of promising research 
opportunities.
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2  Literature review

In this section, we delve into the existing literature and review publications that 
consider an SMOD system with similar basic characteristics. These basic charac-
teristics include the following: First, customers place requests dynamically and 
must receive an immediate offer. Second, the provider cannot decide on the pick-
up and drop-off stop of requests and has full control over the fleet. Third, the 
system allows ridepooling and is accessible for the general public. Fourth, the 
SMOD system is controlled independently without explicitly considering multi-
modal interdependencies. Table 1 lists all currently existing publications that—
to the best of our knowledge—meet these criteria. With the exception of Hafer-
kamp and Ehmke (2022), all of them only consider the operational planning level. 
To show that we cannot directly draw on the models, solution algorithms, and 
computational results from these publications for evaluating operational demand 
control policies for the r-SMCP, we compare them to our work regarding three 
dimensions: the considered operational problem and instance structure, the solu-
tion concept, and the data used in the computational study.

Columns 2 to 6 compare problem and instance structure. Regarding the type 
of demand control (Column 2), we distinguish between feasibility-based control 
(FE), accept/reject decisions (AR), availability control (AV), or dynamic pric-
ing (PR). Columns 3 to 5 indicate whether each of the three types of requests is 
considered. Column 6 indicates whether instances resembling the demand struc-
ture in rural areas are considered. To characterize the solution concept, Column 
7 indicates whether the analysis is based on a Markov decision process (MDP), 
and Column 8 categorizes the solution concept as myopic (M) or anticipatory, 
more precisely, sampling-based (S) or learning-based (L). Finally, in Column 9, 
we distinguish between computational experiments based on an artificially gener-
ated data set (A), a data set sampled from real-world demand distributions (D), 
and a data set comprising original real-world requests (O). Based on Table 1, we 
discuss the assumptions and contributions of existing publications and delineate 
them from our work, and then summarize the resulting research gap. The discus-
sion is loosely grouped along the problem and instance structure.

The only two works using availability control in SMOD systems are Sharif Aza-
deh et al. (2022) and Atasoy et al. (2015), albeit in an urban context. Consequently, 
the respective booking processes exclude advance requests, and the instance struc-
ture resembles an urban setting, which is more favorable for ridepooling. Another 
difference to our work is that both systems do not operate exclusively in a ridepool-
ing mode, as customers are additionally offered a taxi-like service. In the case of 
Sharif Azadeh et al. (2022), there are further differences, since the authors integrate 
discrete pricing and generate fulfillment options by varying the length of the pick-up 
time window instead of varying the pick-up or drop-off time. There are also signifi-
cant methodological differences to our work as both papers neither include an MDP 
formulation nor an anticipatory solution concept.

Arian et al. (2022) is the only existing publication considering demand control 
specifically suited for a rural SMOD system. However, their approach involves 
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dynamic pricing and only allows customers to place ad-hoc requests. This also 
results in a different definition of fulfillment options, since only one option per 
vehicle is generated based on the time it becomes available next. Similar to our 
methodology, they formulate an MDP and present an anticipatory solution algo-
rithm. Qiu et al. (2018) investigate a comparable urban problem setting.

If requests can only be answered by offering a single fulfillment option for a 
static price, demand control is still possible by completely rejecting requests. The 
resulting control problem, involving only ad-hoc-requests and in an urban context, 
is investigated, e.g., by Haferkamp and Ehmke (2022). Their work is the closest to 
ours in terms of the methodology, as their goal is to analyze the performance impact 
of applying different demand control and vehicle routing policies from a strategic 
perspective. To this end, they also formulate the problem as an MDP and perform 
analyses based on a corresponding perfect information model, which provides 
results independent of the quality of the available data on customer choice behav-
ior. In comparison, the semi-perfect information model we propose is more refined 
in that it preserves the stochasticity of request arrivals. Further, we use algorithms 
representing each control policy that can readily be applied to solve the actual fully 
stochastic operational planning problem.

There are several other publications considering accept/reject control in urban 
settings with ad-hoc requests. Among them, Heitmann et al. (2023) is the only one 
presenting an MDP formulation and an anticipatory policy. Hosni et al. (2014), Jung 
et al. (2016), and Lotfi and Abdelghany (2022) only apply myopic policies.

Finally, there are papers investigating purely feasibility control. The one most 
closely related to the paper at hand is Elting and Ehmke (2021), since their work 
is the first to investigate a problem with all three types of requests in a rural con-
text. Hence, their analysis focuses on the performance of feasibility control depend-
ing on the share of advance requests. Other works investigating feasibility control 
include Hungerländer et al. (2021), Lotze et al. (2023), and Lu et al. (2023), each 
of which analyzes a data set with original requests from a rural SMOD provider. 
Araldo et al. (2019), Attanasio et al. (2004), Bischoff et al. (2017), Haferkamp and 
Ehmke (2020), Horn (2002), and Jung et al. (2012) also employ feasibility control 
but analyze urban settings.

In addition to the publications listed in Table 1, there is literature on (S)MOD 
services that are less closely related, which we briefly summarize for the sake of 
completeness:

• SMOD systems that allow providers to process and consolidate requests in 
batches (e.g., Alonso-Mora et al. 2017), which is impractical in rural areas due to 
the sparse demand.

• Ride-hailing systems that provide a taxi-like service and exclude ridepooling 
(e.g., Bertsimas et al. 2019).

• SMOD systems that control the assignment of pick-up and drop-off stops, which 
is also a form of demand control (e.g., Melis and Sörensen 2022).

• SMOD systems dedicated to a specific group of users (e.g., Schilde et al. 2011).
• Ex-post analyses based on the static demand control problem (e.g., Gaul et al. 

2022).
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• Evaluation of empirical data through descriptive analyses (e.g., Coutinho et al. 
2020).

• Analyses from a system-oriented perspective using multi-agent simulation to 
explicitly model the interplay between different modes of transportation (e.g., 
Zwick et al. 2021).

In summary, the review of the existing literature reveals a significant research 
gap. Although there is some literature on availability control for SMOD systems 
(Atasoy et al. 2015; Sharif Azadeh et al. 2022) and on controlling advance requests 
with a pure feasibility control (Elting and Ehmke 2021), we are the first to analyze 
the combination of availability control and advance requests. In conclusion, the 
r-SMCP itself is a novel optimization problem that rural SMOD providers face on 
the operational level. Methodologically, our approach differs from the bulk of exist-
ing work, which all aim to solely develop specific solution algorithms for the opera-
tional planning level. Opposed to that, our work aims at comparing the impact of 
selecting different availability control policies from the strategic perspective similar 
to Haferkamp and Ehmke (2022).

To solve the semi-perfect information model of the r-SMCP, we transfer and 
adapt algorithms from literature on closely related attended home delivery prob-
lems (Campbell and Savelsbergh 2005, Yang et al. 2016, and Koch and Klein 2020) 
for two reasons: First, these algorithms are tailored to controlling advance requests, 
whereas there are no SMOD-specific solution algorithms for this purpose. Second, 
the existing specific anticipatory algorithms for similar SMOD control problems are 
all learning-based (see Table 1), which limits explainability and requires extensive 
training and tuning, unlike the sampling-based algorithms designed for attended 
home delivery problems.

3  Methodology to analyze the impact of demand management

In this section, we outline our methodology for conducting an impact analysis of 
demand management on the SMOD system performance at the strategic planning 
level. We first provide a brief overview in Sect. 3.1. Then, we elaborate on the two 
main components of our methodology, each of which we explain in a dedicated sub-
section: The problem formalization and modeling in Sect. 3.2 and the solution con-
cept in Sect. 3.3.

3.1  Overview

At the strategic planning level, an SMOD provider may decide whether to apply 
demand management at all, and in case of static pricing, which availability control 
policy to select. This requires an explicit evaluation of the impact of applying dif-
ferent availability control policies at the operational planning level compared to the 
status quo (feasibility control).
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Figure 1 provides an overview of the methodology. To support this strategic deci-
sion, the methodology evaluates different policies by applying a specific algorithm 
of it to a modelling variant of the operational control problem (r-SMCP), in our case, 
to the semi-perfect information model. Following the framework presented in Fleck-
enstein et al. (2023), the r-SMCP itself can be cast as a sequential decision problem 
for the provider, involving provider-side decisions (black boxes) and customer-side 
realizations of exogeneous information (gray boxes) at every decision epoch of the 
planning horizon: First, a request arrives. Second, the provider makes a offer deci-
sion. In the context of rural SMOD this means that the provider offers a restricted 
set of fulfillment options (availability control), more precisely, rides with different 
pick-up or drop-off times, in response to a specific request. The offer decision is 
determined by the availability control policy selected at the strategic planning level 
and an offer set results. Third, the customer’s response to the offer set realizes in 
the order confirmation step, i.e., the customer either chooses one of the fulfillment 
options or abandons the booking process. Fourth, the provider makes a vehicle rout-
ing decision to dynamically plan the order fulfillment.

3.2  Modeling

In this section, we first develop the operational MDP formulation as a mathematical 
formalization of the r-SMCP in Sect. 3.2.1. Regarding this operational problem for-
mulation, we then propose a modelling variant, the semi-perfect information model, 
which serves as a basis for the analyses of the impact of demand management at the 
strategic planning level.

3.2.1  Operational Markov decision process formulation

3.2.1.1 General notation and assumptions We formalize the r-SMCP as a Markov 
decision process (Puterman 2014), using a consider-then-choose discrete choice 
model (Aouad et al. 2021) to capture customer choice behavior. We follow this mod-
eling approach because MDPs are suitable both as a concise mathematical problem 
definition as well as a formal basis for the solution concept we consider (Fleckenstein 
et al. 2023; Ulmer et al. 2020).

First, we introduce some general notation and assumptions:

• Planning horizon: Customers can place requests for a specific service horizon 
(operating day) over a multi-day booking horizon. We subdivide the booking 
horizon into a set of stages T = {1,… , ts,… , T} with t ∈ T  denoting each indi-
vidual stage. ts indicates the first stage within the corresponding service horizon, 
i.e., both horizons overlap.

• Requests: Customers can place requests for a ride between pairs pre-defined 
stops. All stops can be used as a pick-up or drop-off stops and are stored in the 
set H . Formally, a request of type c ∈ C is characterized by the following attrib-
utes:
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• Pick-up stop: pc ∈ H

• Drop-off stop: dc ∈ H

• Number of passengers: mc

• Desired time: tc ∈ {ts,… , T}
• Desired time type: fc ∈ {0,1} encoding whether tc is a pick-up ( fc = 0 ) or a 

drop-off time ( fc = 1)

• Each request type c is associated with a fixed revenue rc . Please note that a 
request can be placed for a single passenger ( mc = 1 ) or a group of multiple 
passengers ( mc > 1).

• Individual requests i ∈ I  , with I  denoting the set of all individual requests, are 
defined by the underlying request type ci . This implicity defines the request’s 
pick-up stop pci , drop-off stop dci , number of passengers mci

 , desired time tci , and 
type of the desired time fci.

• Finally, to model the case of no request arrival, we introduce a dummy request 
type c = 0.

• Fulfillment options: A fulfillment option o ∈ Oc represents a certain pick-up or 
drop-off time that the service provider offers in response to a request of type c 
with desired time tc . The set Oc includes all fulfillment options that can poten-
tially be offered. When a customer places a request with a desired time tc , the 
provider can respond in several ways:

• Desired option: o = tc (the provider offers the exact desired pick-up or drop-
off time)

• Alternative option: o ≠ tc (the provider offers a pick-up or drop-off time o 
deviating from the desired time)

• No-purchase option: o = 0 (the provider allows the customer to abadon the 
booking process)

Thus, the set of potential fulfillment options Oc can include the desired option 
and multiple alternative options but must include the no-purchase option.

Note that each fulfillment option o for a request of type c can be converted 
into a pair of time windows for pick-up and drop-off based on the direct ride time 
between pick-up and drop-off, the waiting time, and the maximum added ride 
time (see Appendix C or Jaw et al. (1986) for an in-depth explanation).

The provider then decides to present an offer set g ⊆ Oc , which comprises a 
subset of the potential fulfillment options.

• Order confirmation: When faced with an offer set g , a customer with a request of 
type c chooses an option o ∈ g based on probabilities Pc,o(g) reflecting their time 
preferences. If an option o ≠ 0 is chosen, the request i ∈ I  becomes an order 
j ∈ J  with i = j . Thus, the set of orders J  is a subset of the set of requests I  
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( J ⊆ I  ). In addition to the attributes of the corresponding request, an order j is 
further characterized by its associated fulfillment option oj ∈ Ocj

.
• Order fulfillment: To fulfill the orders, the provider deploys vehicles v ∈ V from 

a given fleet V . Each vehicle has the following attributes:

• Seat capacity: Qv (maximum number of passengers per vehicle)
• Start time: tb

v
∈ {ts,… , T} (start of the service horizon)

• End time: tr
v
∈ {ts,… , T} (end of the service horizon)

• Start and end location: h = 0 (the vehicle starts and ends its route at the depot)

• The planned route of each vehicle is encoded as the set 
�v =

{(
j1, hj1 , a

−
j1
, a+

j1

)
,
(
j2, hj2 , a

−
j2
, a+

j2

)
,… ,

(
jn, hjn , a

−
jn
, a+

jn

)}
 , where hjn ∈ H is 

the n-th stop of the route. jn ∈ J  encodes the corresponding order the vehicle 
picks up or drops off. a−

jn
∈ {ts,… , T} and a+

jn
∈ {ts,… , T} encode the vehicle’s 

arrival time at and the departure time from the stop, respectively.

3.2.1.2 Markov Decision Process Now, with the general notation at hand and draw-
ing on the modeling frameworks by Fleckenstein et al. (2023), Klein and Steinhardt 
(2023), and Ulmer et al. (2020), we formulate the MDP. Please note that the follow-
ing explanations are complemented by two visual representations. Figure 2 depicts 
an intuitive visualization in the form of a decision tree. Figure 3 is more technical and 
provides a compact overview of the most important notation.

• Decision epochs: A decision epoch marks the beginning of each stage of the 
MDP, where the provider must make a decision. We adopt an incremental time-
based definition (Puterman 2014). Each stage t ∈ T = {1,… , ts,… , T} of the 
booking horizon is defined as a micro-period, with each period being equally and 
sufficiently short that the probability of more than one request arrival during the 
stage is negligible. Given this property, the arrival rate �t

c
 of the Poisson process 

underlying the request arrivals accurately approximates the probability of receiv-
ing exactly one request of type c in stage t.

• States: The post-decision state st =
(
Ct,�t

)
 stores the information required for 

decision making at the subsequent decision epoch t + 1 . The state definition of 
the r-SMCP comprises two elements:

• Set of orders: Ct (storing all orders j ∈ J  for which fulfillment has not yet 
been completed)

• Current route plan: �t =
{
�1,t,… , �V ,t

}
 (where �v,t denotes the planned route 

of vehicle v ∈ V)
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• Since in the r-SMCP, the provider makes decisions in response to a specific 
request arrival, defining st as a post-decision state simplifies the MDP formula-
tion (Powell 2022). Note that decisions at epoch t are then made based on infor-
mation stored in the preceding post-decision state st−1 and the attributes of the 
request newly arrived in stage t (also see Fig. 3).

• Actions: An action is represented as at =
(
gt,

(
�t(o)

)
o∈gt

)
 , and includes all oper-

ational decisions made at decision epoch t . In the r-SMCP, the provider applies 
demand management in form of an availability control, i.e., offers a limited set of 
fulfillment options, i.e., the pick-up or drop-off times. This availability control 
decision gt is associated with integrated vehicle routing decisions 

(
�t(o)

)
o∈gt

 for 
any option o ∈ gt the customer could potentially choose when presented the offer 
set gt . Note that both the control decision and the integrated vehicle routing deci-
sion are interdependent.

The availability control decision is encoded as an offer set 
gt ∈ G

(
st−1, c

)
⊆ 2Oc ⧵∅ . The corresponding action space G

(
st−1, c

)
 includes every 

feasible offer set, i.e., it is a subset of the power set 2Oc of Oc (excluding the empty 
set). An offer set is feasible if it only contains feasible fulfillment options.

A fulfillment option o is considered feasible if it satisfies the constraints of the 
integrated vehicle routing problem (see Appendix B for the corresponding model), 

Fig. 2  Visualization of the Markov decision process with a decision tree
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which is a standard dial-a-ride problem (DARP): More specifically, there must be 
at least one feasible route plan �t(o) that allows the provider to serve the following 
orders:

• All pending orders stored in Ct−1.
• The new potential order given option o is chosen.

We denote the set of feasible fulfillment options by 
Of

c
=
{
o ∈ Oc ∶ Φ

(
st−1, c, o

)
≠ ∅

}
 . Thus, we can define the action space of the 

control decision more precisely as G
(
st−1, c

)
= 2O

f
c ⧵∅.

If there is no request, i.e., c = 0 , the only feasible option is the no-purchase 
option, i.e., G

(
st−1, 0

)
= {{0}}.

• For each feasible fulfillment option o ∈ gt , the provider must make a tentative 
vehicle routing decision �t(o). The complete vehicle routing decision is encoded 
as a tuple of route plans 

(
�t(o)

)
o∈gt

 . If the customer chooses option o , the corre-
sponding route plan �t(o) is executed by the fleet until the subsequent decision 
epoch.

• The action space for the integrated vehicle routing decisions is 
∏

o∈gt
Φ
�
st−1, c, o

�
 , 

which represents all combinations of feasible route plans.
• An important feature of this modeling approach is that vehicle routing decisions 

are predominantly tentative, meaning that large parts of the determined route 
plans �t(o) can still be adapted by future routing decisions. Only the parts of the 
route plans �t(o) that involve vehicle movements starting during stage t + 1 are 
definitive and must be executed.

• Transitions: Starting in a post-decision state st−1 , a sequence of transitions 
caused by the provider’s actions (availability control and routing decision) and 
customer-side stochasticity (request arrivals and customer choice behavior). The 
sequence leads to a successor state st . The transition process can be broken down 
into four steps: request arrival, availability control decision, order confirmation, 
and integrated vehicle routing decision (see Fig. 2):

• Step 1 (Request arrival): First, the system transitions stochastically to the pre-
decision state spret  when a new request it ∈ I  arrives (also see Powell 2022). 
If a request arrives ( cit ≠ 0 ), Step 2 follows. If no request arrives ( cit = 0 ), the 
transition continues with Step 4.

• Step 2 (Availabiltiy control decision): Once a request arrives, the provider 
determines an offer set gt , which contains the options (pick-up times or drop-
off times) the customer can choose from. This decision deterministically 
leads to the next step, where the customer makes a choice from the available 
options.

• Step 3 (Order confirmation): Given the offer set gt , the customer either con-
firms their order jt by choosing a option ojt ∈ gt , or they abandon the booking 
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process. The order confirmation follows customer-specific choice probabili-
ties Pcit ,o

(
gt
)
 . If the order jt is confirmed, it is added to the set of orders Ct−1.

• Step 4 (Integrated vehicle routing decision): Finally, the process reaches the 
succeeding post-decision state st by a deterministic update of the route plan. 
The route plan �t

(
ojt

)
 determined as part of the routing decision replaces the 

route plan �t−1 in the system state and is potentially partly executed. As 
already defined, �t

(
ojt

)
 is the route plan, pre-determined in the vehicle rout-

ing decision, specifically for the case that the customer chooses fulfillment 
option ojt . If in �t

(
ojt

)
 vehicle movements are planned to start until decision 

epoch t + 1 , the respective stops 
�v,t

(
�t

(
ojt

))
=
{(

j, hj, a
−
j
, a+

j

)
∈ �v,t ∶ �v,t ∈ �t

(
ojt

)
, a

+

j
= t + 1

}
 are 

removed from the individual routes �v,t ∈ �t

(
ojt

)
 to reflect the planning being 

executed, and hence, becoming irreversible. If, by these vehicle movements, 
the fulfillment of some orders from Ct−1 is completed, these orders are 
removed from Ct−1 . The respective orders are determined according to

• Ψt

�
�t

�
ojt

��
=
�
j ∈ Ct−1 ∶

�
j, hj, a

−
j
, a+

j

�
∈
⋃

v∈V�v,t

�
�t

�
ojt

��
, hj = dcj

�
 , 

i.e., based on the drop-offs ( hj = dcj ) removed from the route plan.

• In summary, the transition from st−1 =
(
Ct−1,�t−1

)
 to st =

(
Ct,�t

)
 can be 

described as follows:

 

• Rewards: The provider collects two types of rewards:

• Availability-control-related rewards 
(
rc ≥ 0

)
 : These rewards are collected 

when a request of type c converts into an order. The reward corresponds to the 
fare paid by the customer, based on a static pricing scheme (see, e.g., Appen-
dix J).

• Vehicle-routing-related rewards ( r�t(o)
≤ 0) : These are costs (negative 

rewards) incurred for the irreversible vehicle movements planned in �t(o) . 
The routing costs are calculated based on the set of stops that are removed 
from the route plan �v,t

(
�t

(
ojt

))
 as follows:

 with h′ denoting the successor stop of h in �v,t ∈ �t(o) and �h,h′ denoting the 
routing cost for traveling from stop h to stop h′.

(1)Ct =
(
Ct−1 ∪

{
jt
})

�Ψt

(
�t

(
ojt

))

(2)�t =
{
�v,t��v,t

(
�t

(
ojt

))
∶ �v,t ∈ �t

(
ojt

)}

(3)r�t(o)
=

⎧⎪⎨⎪⎩

−
∑
v∈V

∑
h∶

�
j,h,a−

j
,a+

j

�
∈�v,t(�t(o))

�h,h� , if ∃�v,t

�
�t(o)

�
≠ �

0, otherwise
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• Bellman equation: The provider’s objective can be represented using the Bell-
man equation (e.g., Powell 2019), which recursively defines the value Vt

(
st
)
 , i.e., 

the expected future reward, for each state st and decision epoch t ∈ T .

with boundary condition VT

(
sT
)
= 0.

• The Bellman equation (4) consists of two summands, which can be explained as 
follows:

• Request arrival: The first summand models the case in which a request of 
type c arrives. The probability of such an event is �t

c
 . If a request of type c 

arrives as part of the transition from t − 1 to t , an integrated demand manage-
ment and vehicle routing decision is necessary, which is reflected by the two 
nested maximum operators: First, the availability control decision is encoded 
by the outer maximum operator max

gt∈G(st−1,c)
(⋅) . The provider selects an offer set 

gt that maximizes their expected profit. Therefore, the provider must deter-
mine the sum of the positive reward (the fare paid) and the negative reward 
resulting from the vehicle routing decision for each option o , weighted by the 
probability Pc,o

(
gt
)
 . Second, the vehicle routing decision is encoded by the 

inner maximum operation max
�t(o)∈Φ(st−1,c,o)

(⋅) . For each option o ∈ gt , the pro-

vider must also decide on a routing plan �t(o) , for which an evaluation of the 
vehicle-routing-related reward r�t(o)

 and the value of the resulting post-deci-
sion state Vt

(
st|st−1, c,�t(o)

)
 is necessary.

• No request arrival: The second summand addresses the case in which no 
request arrives, indicated by c = o = 0 . Here, the provider only makes a vehi-
cle routing decision �t(0) by analogously solving the maximum operator 

max
�t(0)∈Φ(st−1,0,0)

(⋅).

• Drawing on the interim state s�
t
|st−1, c, o introduced by Fleckenstein et  al. 

(2024), we can transform (4) such that the availability control subproblem is 
separated from the routing control subproblem:

with V �
t

(
s�
t
|st−1, c, o

)
= max

�t(o)∈Φ(st−1,c,o)

(
r�t(o)

+ Vt

(
st|st−1, c,�t(o)

))
.

• With another transformation, we can reformulate the avail-
ability control subproblem in (5) based on the opportunity cost 

(4)

Vt−1

(
st−1

)
=
∑
c∈C

�t
c

max
gt∈G(st−1,c)

(∑
o∈gt

Pc,o

(
gt
)[

rc ⋅ 1o≠0 + max
�t(o)∈Φ(st−1,c,o)

(
r�t(o) + Vt

(
st|st−1, c,�t(o)

))])

+ �t
0

max
�t(0)∈Φ(st−1,0,0)

(
r�t(0) + Vt

(
st|st−1, 0,�t(0)

))

(5)

Vt−1

(
st−1

)
=
∑
c∈C

�t
c

max
gt∈G(st−1,c)

(∑
o∈gt

Pc,o

(
gt
)[
rc ⋅ 1o≠0 + V �

t

(
s�
t
|st−1, c, o

)])
+ �t

0
⋅ V �

t

(
s�
t
|st−1, 0, 0

)



 F. Anzenhofer et al.

ΔVt

(
st−1, c, o

)
= V �

t

(
s�
t
|st−1, c, 0

)
− V �

t

(
s�
t
|st−1, c, o

)
 of converting a request of 

type c with option o into an order:

• Thereby, we exploit that V �
t

(
s�
t
|st−1, c, 0

)
= V �

t

(
s�
t
|st−1, 0, 0

)
 for each c ∈ C . 

Formulation (6) is important, because it provides the theoretical foundation 
for decomposition-based solution concepts for integrated demand manage-
ment and vehicle routing problems, which we also draw on in this work (see 
Sect. 3.3).

Stochastic modeling: The MDP formulation introduced above must be comple-
mented by a suitable customer choice model, which defines the choice probabilities 
Pc,o

(
gt
)
 . These probabilities represent the exogenous information process (Powell 

2022), determining how customers choose from a given offer set. While the MDP 
can be combined with any choice model, we apply a consider-then-choose model 
(Aouad et  al. 2021). Generally, models of this class assume a two-step choice 
process:

• Consideration set: Customers use simple decision rules to filter out alterna-
tives that they are not willing to choose at all. The remaining options form the 
customer’s individual consideration set.

• Ranking: Second, customers rank the options in the consideration set according 
to their preferences and choose the highest-ranked option from the offer set. This 
can be the no-purchase option.

To allow for heterogeneity in the customer behavior, we define a set of customer 
segments L . Each segment l ∈ L has its own consideration set structure and pref-
erence ranking. Many empirical studies have shown that the consider-then-choose 
paradigm and the heuristic construction of consideration sets are typical components 
of customers’ multi-product decision-making (Hauser 2014).

In our model, the consideration set Sl,c for each customer segment l ∈ L and 
request types c ∈ C is determined by two quality cut-offs: Δ+

l
 for positive flexibility 

and −Δ−
l
 for negative flexibility. These cutoffs represent the deviation from the cus-

tomer’s desired time tc that they are willing to accept. Thus, the consideration set is 
defined as Sl,c =

{
o ∈ Oc ∶ o − tc ≤ Δ+

l
∧ o − tc ≥ −Δ−

l

}
.

Further, we assume a unique ranking function � for all segments, which ranks 
the fulfillment options in non-decreasing order based on their difference from the 
desired time tc . In this regard, our model is similar to the lowest-open-fare model 
(e.g., Talluri and van Ryzin 2004), which is one of the standard models used in rev-
enue management.

(6)
Vt−1

(
st−1

)
=
∑
c∈C

�t
c

max
gt∈G(st−1,c)

(∑
o∈gt

Pc,o

(
gt
)[
rc ⋅ 1o≠0 − ΔVt

(
st−1, c, o

)])

+ V �
t

(
s�
t
|st−1, 0, 0

)
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Given an offer set g , a request of type c and the customer’s segment affiliation l , 
we obtain the option the customer will choose by:

This means that the customer chooses the option that is closest to their desired 
time among the options they are willing to consider.

Finally, the choice probabilities Pc,o(g) can be calculated as.

with �l denoting the share of segment l in the customer population.

3.2.2  Semi‑perfect information model

3.2.2.1 Motivation and outline While the operational MDP introduced in Sect. 3.2.1 
accurately formalizes the r-SMCP, directly solving it to analyze the performance 
impact of demand management at the strategic planning level may not yield accurate 
results. This is because the quality of the results depends not only on the accuracy of 
the MDP formulation but also on how well the uncertain parameters of the MDP can 
be derived from historical real-world data to generate problem instances.

If these parameters are biased, the results will not properly reflect the real-world 
performance impact. In the case of the r-SMCP, there are two types of uncertain 
parameters:

• Request arrivals: It is uncertain what type of request c will arrive at each deci-
sion epoch t ∈ T  . This depends on the arrival rate �t

c
.

• Customer choice behavior: It is also uncertain which fulfillment option ojt a cus-
tomer chooses. This choice depends on the choice probabilities Pc,o

(
gt
)
.

In practice, SMOD providers, such as our industry partner FLEXIBUS, can accu-
rately track request arrivals because these are observable events. However, it is more 
challenging to capture customer choice behavior precisely as it involves complex, 
individual decision-making that is not easily observable.

To address this, we base our analyses on a semi-perfect information model, which 
is derived from the MDP formulation. It results from, on the one hand, preserving 
the stochasticity regarding request arrivals, but, on the other hand, deterministically 
modeling customer choice behavior. Hence, the solution algorithm is given perfect 
information about which fulfillment option a customer will choose from a certain 
offer set, but not about the requests that will arrive in the future. Thereby, the semi-
perfect information model carefully trades off the accuracy of the model formulation 
against the accuracy of the parameter values obtainable from historical data. In the 
following, we explain in detail how this is achieved by the semi-perfect information 
model:

(7)ocgl = argmin
o∈Sl,c∩g

{�(o)}

(8)Pc,o(g) =
∑
l∈L

�l ⋅ 1o=ocgl
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We assume that in SMOD systems, providers can track the arrival of a requests at 
each decision epoch t , including the type of request c . This allows us to obtain the 
true realizations of demand reflecting the arrival rate �t

c
 from historical service days. 

Thus, no additional assumptions and modeling adjustments are required to model 
this source of uncertainty compared to the operational MPD formulation. To pre-
serve the stochasticity of request, we simulate the request arrival process for each 
historical service day. That is, we generate a customer stream per day by using all 
original requests.

Unlike request arrivals, the true customer choice behavior cannot be directly 
observed. Historical data only reveals choices in response to the provider’s historical 
demand control decisions. Approximating the true choice behavior by statistically 
estimating a choice model, which is the usual approach to modeling this uncertainty, 
would be particularly error-prone for the r-SMCP. Due to control decisions being 
made knowing the customer’s desired time, providers usually try to offer options as 
close as possible to the desired time. Therefore, the historical data contains hardly 
any information on the true flexibility of customers, and there is a lack of explora-
tion of the choice behavior.

To avoid having to rely on a potentially severely inaccurate customer choice 
model estimated on biased historical data, we instead consider customer choice 
deterministically. Since this assumption is strict, it is important to conduct sensitiv-
ity analyses to explore different customer choice behaviors in a systematic way (see 
Sect. 4.4).

3.2.2.2 Model formulation We now explain the resulting mathematical formula-
tion of the semi-perfect information model and how it differs from the operational 
MDP formulation. The key difference is that while we retain the stochastic nature 
of request arrivals, we assume that the provider has perfect information about the 
customer’s segment affiliation lit for each request it for t ∈ T  . By assuming this, we 
can eliminate the need for estimating choice probabilities Pc,o(g) , which cannot be 
done reliably based on typically available data. Introducing perfect information on 
customer choice, the provider can deterministically steer the customer within their 
consideration set, which also changes the definition of actions and transitions. In 
Fig. 3, this corresponds to replacing the box with the solid frame by the box with the 
dashed frame.

• Formally, the following modifications occur compared to the operational MDP 
formulation:

• Stochastic modeling: In the semi-perfect information model, requests still arrive 
stochastically, following an arrival rate �t

c
 for each type of request c , just like in 

the operational MDP. However, customer choice behavior is now modeled deter-
ministically. Since the segment affiliation l of a customer placing a request of 
type c is known, the provider can predict with certainty which option the cus-
tomer will choose from the offer set g . Specifically, the choice probabilities are 
defined as:
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In more detail, the segment affiliation yields the customer’s consideration set 
Sl,c which, according to the consider-then-choose paradigm, reveals which options 
Sl,c ∩ g from the offer set g the customer is generally willing to consider. Then, the 
known (uniform) ranking function � yields the most preferred among all considered 
options, which is the option the customer chooses with certainty. Therefore, the 
choice probabilities are effectively eliminated from the MDP. We illustrate the dif-
ferences between the stochastic modeling component of the operational MDP and of 
the semi-perfect information model in Appendix D.

• Actions: The action space of the availability control subproblem can be reduced 
to G�

(
st−1, c

)
=
(
Of

c
∩ Sl,c

)
∪ {0} . Instead of determining an offer set that the 

customer chooses from, the provider deterministically assigns a feasible option 
from the consideration set. The assigned option becomes the confirmed order 
( ojt = gt ∈

(
Of

c
∩ Sl,c

)
 ), or the customer is rejected ( ojt = gt = 0 ). Thereby, the 

provider can fully exploit the flexibility provided by the customer.
• Transitions: Since the order directly results from the availability control decision 

( ojt = gt) , the originally stochastic transition from the pre-decision state spret  to 
the interim state s′

t
 becomes deterministic.

• Bellman equation: Analogously to (6), the value function of the semi-perfect 
information model is then defined as:

• Compared to the operational MDP (6), this formulation eliminates the need for 
choice probabilities Pc,o

(
gt
)
 in the maximum operator max

gt∈G
�(st−1,c)

(⋅) . Since cus-

tomer choice behavior is known with certainty, the reward for any availability 
control decision gt consisting of the immediate reward rc (if an order is confirmed) 
and the opportunity cost ΔVt

(
st−1, c, gt

)
 , becomes deterministic. Hence, determin-

ing the optimal control decision boils down to calculating the reward resulting 
from selling each of the feasible fulfillment options from the customer’s consider-
ation set, given by G�

(
st−1, c

)
 , and assigning the most profitable option as gt . How-

ever, the stochasticity regarding request arrivals is preserved in the form of the 
arrival rate �t

c
 analogously to the value function of the operational model (6).

In summary, using the semi-perfect information model instead of the fully accu-
rate operational MDP formulation, has two main advantages (Haferkamp and Ehmke 
2022): First, our results represent an upper bound for the scenario of a certain aver-
age consideration set size, i.e., flexibility, in the customer population. Second, the 

(9)Pc,o(g) =

{
1, if o = argmin

o�∈Sl,c∩g

{
�
(
o�
)}

0, otherwise

(10)

Vt−1

(
st−1

)
=
∑
c∈C

�t
c
⋅ max
gt∈G

�(st−1,c)

(
rc ⋅ 1gt≠0 − ΔVt

(
st−1, c, gt

))
+ V �

t

(
s�
t
|st−1, 0, 0

)
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control policies’ decision-making is only driven by the (accurately observable) cus-
tomer stream and the general level of flexibility rather than a specific choice model. 
Thus, we obtain a clear picture of their respective control behavior and the perfor-
mance impact, which is not distorted by the influence of a biased model of the cus-
tomer choice behavior.

3.3  Solution concept

Solving the r-SMCP is equivalent to determining a policy, i.e., a function mapping 
each state to a decision, with a specific solution algorithm. To compute the opti-
mal policy, it would be necessary to solve the Bellman Eq. (10), e.g., by backwards 
recursion. However, this is not possible for real-world instances since even the semi-
perfect information model still exhibits two of the three curses of dimensionality 
(Powell 2019), namely regarding state and exogeneous information. Thus, as part 
of our methodology, we define heuristic availability control policies for the r-SMCP 
(Sect.  3.3.1) and compare the performance of state-of-the-art solution algorithms 
that are representative of each policy (Sect. 3.3.2). This allows us to attribute perfor-
mance differences to basic characteristics of availability control, i.e., to certain ways 
of decision-making, for the r-SMCP.

3.3.1  Availability control policies

Availability control policies for the r-SMCP can be systematically distinguished 
based on three key characteristics of availability control decision-making: First, a 
policy can utilize different mechanisms of availability control, namely rejections 
(not offering a ride at all) and time shifts (offering alternative times to the originally 
desired time). Second, availability control can be based on different criteria, either 
feasibility or profitability. Third, different types of information can be used for deci-
sion-making, either myopic information or anticipatory information. In the follow-
ing, we provide a more detailed explanation of each characteristic in the context of 
the semi-perfect information model, which allows a deterministic assignment of ful-
fillment options by the provider. Since it is closely related to the operational MDP, 
the policies are readily transferable to policies for the operational MDP involving 
stochastic customer choice behavior.

• Mechanisms: For the r-SMCP, a policy can use rejections as a control mecha-
nism, meaning that no fulfillment option is offered. The second mechanism are 
time shifts, i.e., controlling the offered times for request such that it differs from 
the desired time (e.g., by incremental steps). In the operational MDP, this can be 
done by only offering a selected subset of feasible fulfillment options. Note that 
both mechanisms can be applied separately or combined.

• Criteria: Both rejections and time shifts can be applied based on different crite-
ria: feasibility and profitability. In the former case, the policy assigns an alterna-
tive fulfillment option or entirely rejects the request to avoid an infeasible order. 
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In the latter case, the policy assigns an alternative option although there are other 
feasible fulfillment options preferred by the customer or rejects the request if the 
order cannot be “made” profitable. Here, a request is considered profitable if it 
does not decrease the expected profit after fulfillment. Please note, that in gen-
eral, the objective function does not necessarily have to be monetary. For the 
semi-perfect information model, we can unambiguously distinguish the four 
combinations of mechanisms and criteria: A feasibility rejection is applied if 
the policy cannot identify any feasible option for a request within the customer’s 
consideration set. Conversely, if the policy rejects a request despite having iden-
tified at least one such option, it applies a profitability rejection. To distinguish 
the two types of time shifts, we can use the closest feasible option, which is 
defined as the feasible option with the smallest deviation from the desired time. 
If the policy assigns an option with a deviation from the desired time equal to 
that of the closest feasible option, it applies a feasibility time shift. If the devia-
tion is greater, this difference is a profitability time shift.

• Information: Among policies considering profitability, we can further differentiate 
between myopic policies and anticipatory policies. While the former only draw 
on information from the current state, the latter incorporate information about 
future demand to make more accurate profitability rejections and profitability time 
shifts. Feasibility-based decisions are myopic by design since the feasibility of 
any fulfillment option can be exactly verified based on the current state.

From (meaningful) combinations of these characteristics, we obtain a set of seven 
control policies, which we briefly introduce in the following:

• Feasibility control (FC): A feasibility control does not consider profitability, and, 
thus, only applies feasibility rejections and feasibility time shifts. Given at least 
one feasible option can be identified within the customer’s consideration set, it 
always assigns the closest feasible option.

• Myopic control (MC): A myopic control uses both types of rejections and time 
shifts and makes decisions according to myopic information. In addition to this 
general myopic control, we consider two special cases:

• A non-selective myopic control (NS-MC), which does not apply profitability 
rejections.

• A non-time-shifting myopic control (NT-MC), which does not apply profitability 
time shifts.

• Anticipatory control (AC): An anticipatory control also uses both types of rejec-
tions and time shifts, but its decision-making is additionally based on probabil-
istic information on future demand. Analogously to the MC, we consider two 
special cases:

• A non-selective anticipatory control (NS-AC), which does not apply profitability 
rejections.

• A non-time-shifting anticipatory control, which does not apply profitability time 
shifts (NT-AC).
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Since we aim at analyzing the impact of demand management, the policies use a 
myopic approach for making vehicle routing decisions that does not involve waiting 
strategies or empty relocations (see also Sect. 3.3.2).

3.3.2  Solution algorithms

For each policy, we design one solution algorithm that is representative of it. We 
do not compare several different algorithms per policy, which would go beyond the 
scope of this work. The selected solution algorithms do not require extensive efforts 
for training and tuning such that they are easily adoptable in practice. Furthermore, 
they yield interpretable results regarding the policies’ control behavior, which is par-
ticularly important for analyzing the performance regarding the objective of equal 
accessibility. Since we are the first to consider the r-SMCP, we transfer and adapt 
elements of existing algorithms for related control problems. We introduce the algo-
rithms such that they are suitable for the semi-perfect information model which we 
use for our analysis on the strategic planning level. However, they can readily be 
adapted such that they can be applied to the operational MDP as we explain at the 
end of this section.

Fig. 4  Basic solution algorithm
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To characterize the different algorithms, we introduce the general solution con-
cept and basic algorithmic structure. Thereby, we draw on classification and termi-
nology presented in Fleckenstein et al. (2023). Overall, we adopt a decomposition-
based approximation as the general solution concept, which is used in most existing 
publications on solving integrated demand management and vehicle routing prob-
lems and builds on formulation (10) of the r-SMCP. There are four subproblems 
resulting from this decomposition, which are tackled by different algorithmic com-
ponents: feasibility check, opportunity cost estimation, availability control, and rout-
ing control. This is directly reflected in the basic structure of the solution algorithm 
depicted as a pseudocode in Fig. 4.

Statements with italic line numbers are only needed for the AC. In statements 
with an underlined line number, the variables �sam

t
 are only required for the AC. All 

other statements are common to all policies.
Before the start of the booking horizon, the actual route plan �act

t
 , which encodes 

the routing decisions, and the set Cact
j

 of all orders j ∈ J  for which fulfillment has 
not yet been completed, are initialized as empty (lines 1 and 2). At each decision 
epoch, it is first computed which part of the route plan determined at the previous 
decision epoch has been executed, and Cact

j
 and �act

t
 are updated (line 6). Then, for 

each fulfillment option, the feasibility check is performed (line 10). If the result is 
positive, the opportunity cost estimate for the option is determined (line 12). Based 
on the results from lines 9–12, a control decision is made (line 13). If it results in a 
newly confirmed order, Cact

t
 is updated (line 15). In line 16, the routing control deci-

sion is made.
Feasibility check: By solving the feasibility check subproblem, the action space 

G�
(
st−1, c

)
 of the r-SMCP’s control subproblem is determined. Hence, the subprob-

lem must be solved separately for each fulfillment option o ∈ Oc ∩ Sl,c that is part of 
the customer’s consideration set. To ensure short computation times, we solve the 
feasibility check subproblem heuristically using a parallel insertion heuristic for the 
DARP (Jaw et al., 1986) and maintain the (tentative) route plan from the preceding 
decision epoch. If the potential order defined by it and o can be feasibly inserted, we 
add o to the set of feasible options Of

cit
 . We integrate this approach, as given in 

Appendix E, in identical form into each of the seven policies.
Opportunity cost estimation: By solving this subproblem, we aim at determin-

ing an accurate approximation ΔṼt

(
st−1, cit , o

)
 of each potential order’s opportunity 

cost. It measures the loss of expected future profit due the consumption of logistical 
resources associated with the additional order. Consequently, the classification of 
policies for the r-SMCP into FC, MC, and AC depends on the opportunity cost esti-
mation approach.

• The feasibility control is characterized by generally setting ΔṼT

(
st−1, c, o

)
∶= 0 . 

Thereby, the opportunity cost estimation problem is effectively omitted.
• Myopic policies determine a myopic opportunity cost estimate, which is solely 

based on information stored in st−1 . For the specific MC, and its two variants 
NT-MC and NS-MC, that we apply to the r-SMCP, we again draw on the parallel 
insertion heuristic and use the value of the cheapest insertion cost as a myopic 
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opportunity cost estimate, i.e., ΔṼt

(
st−1, cit , o

)
∶= cos t

(
𝜙act
t
(o)

)
− cos t

(
𝜙act
t

)
 . 

Starting with Campbell and Savelsbergh (2006), this approach has been used in 
many works on integrated demand management and vehicle routing problems.

• Anticipatory policies additionally draw on probabilistic information on future 
demand to determine an anticipatory opportunity cost estimate. For the oppor-
tunity cost estimation in our specific AC, and its variants NT-AC and NS-AC, 
we apply a sampling-based look-ahead algorithm, which combines elements 
from the algorithms developed by Koch and Klein (2020), Köhler et al. (2024), 
and Yang et  al. (2016) for an attended home delivery problem with similar 
structure. The basic idea is to derive the cost estimate from the cheapest inser-
tion position of each potential order in a skeletal route plan, which we call the 
sampled route plan �sam

t
 . At the beginning of the booking horizon, the sam-

pled route plan �sam
0

 is initialized only with a set of sampled orders Csam
0

 (line 
3 and 4). We draw Csam

0
 directly from the historical data. Compared to meth-

ods that sample from individual distributions or joint distributions of request 
attributes, this sampling method performs superior since it extracts more accu-
rate information about future demand from the historical data set (Köhler et al. 
2024). Furthermore, we consider all historical requests and not only those that 
resulted in a confirmed order to avoid the sample being biased by the policy 
the provider used at the time the requests were observed. At each decision 
epoch, the algorithm first synchronizes the sampled route plan �sam

t
 with the 

actual route plan �act
t

 based on the routing control decisions that are made (line 
7). Then, it determines the opportunity cost estimate ΔṼt

(
st−1, cit , o

)
 by search-

ing the cheapest insertion position in the sampled route plan for each feasi-
ble fulfillment option. In case a new order is confirmed, the algorithm again 
updates the sampled route plan by selecting a sampled order to be replaced by 
the new order (line 17). A more detailed description of this algorithm can be 
found in Appendix H.

Availability control: Once the action space G�
(
st−1, c

)
 and opportunity cost esti-

mates ΔṼt

(
st−1, cit , o

)
 for all options o ∈ Of

cit
 are computed, a control decision 

gt = ojt must be determined by solving the maximum operator 

ojt ∶= max
o∈G�(st−1,cit )

(
rcit

⋅ 1o≠0 − ΔṼt

(
st−1, cit , o

))
 . For the semi-perfect information 

model, this can be done in linear time by complete enumeration. This approach 
is used for similar integrated demand management and vehicle routing prob-
lems in the literature, if the action space is sufficiently small (Avraham and 
Raviv 2021; Klein and Steinhardt 2023). The resulting solution algorithm for 
the control problem comprises the three steps profitability evaluation (line 1), 
time shift evaluation (line 2), and a tie breaker (line 3) (see Appendix F for a 
formal definition):

Regarding the first step, i.e., profitability evaluation, the revenue net of the 
option’s estimated opportunity cost must be maximal as well as non-negative. 
In other words, the profitability evaluation ensures that only the most profitable 
option(s) is (are) selected. It is the only step that differs between the general 



Analyzing the impact of demand management in rural shared…

policies that are both selective and time shifting (FC, MC, and AC) and their 
non-selective and non-time-shifting special cases. In the case of the FC, both 
conditions are non-restrictive since all cost estimates equal zero. In the case 
of non-selective policies, the second condition is omitted, such that the evalu-
ation returns the least unprofitable option if no profitable option exists. Con-
versely, for non-time-shifting policies, the first condition is omitted, such that 
only unprofitable options are filtered out. Regarding the second step, the subset 
of options causing the smallest time shift is generated from the result of the 
profitability evaluation. Then, either one option or two options with the minimal 
time shift in both directions remain. In the latter case, we assign the option with 
the earlier alternative time to break the tie.

Routing control:  Mathematically, the routing control subproblem is defined by 
the maximum operator max

�t(ojt )∈Φ(st−1,c,ojt )

(
r�t(ojt )

+ Vt

(
st|st−1, c,�t

(
ojt

)))
 . We solve it 

as follows in all policies (also see Appendix G): At the last decision epoch before 
the start of the service horizon, the actual route plan �act

t
 is re-optimized from 

scratch by solving the static DARP with the parallel insertion heuristic. During the 
service horizon, we draw on the route plan �act

t

(
ojt

)
 resulting from the feasibility 

check for the assigned option ojt . In the case of a rejection, ojt = 0 and �act
t

= �act
t
(0) , 

i.e., the route plan is not changed. Combining feasibility check and routing control 
in this way is common in the literature on integrated demand management and vehi-
cle routing problems (Fleckenstein et al. 2023).

In the operational MDP, the customer’s choice behavior and thus the availability 
control decision on the offer set is stochastic. Hence, an appropriate choice model 
must be selected and estimated that yields the choice probabilities Pc,o(g) of all 
options o ∈ Oc for any possible offer set g ∈ 2Oc ⧵∅ . The availability control deci-
sion on the offer set for an individual request represents an assortment optimization 
problem (Heger and Klein 2024).

4  Computational results

In this section, we evaluate the policies presented in Sect. 3.3 using a real-world 
data set, provided by our industry partner FLEXIBUS. From the different service 
areas FLEXIBUS operates in, we consider the most mature service area estab-
lished in 2009, which consists of the small town Krumbach and the surrounding 
peripheral area.

The service area counts almost 1300 users who requested trips during the one-
year observation period from February 2022 to February 2023. For the sake of com-
parability, we consider only working days with a service horizon from 5:00 a.m. to 
9:00 p.m, excluding Fridays and holidays. This results in a data set of 200 service 
days, which all show statistically significant similarity.

In Sect.  4.1, we start with a brief descriptive analysis of this data set. Then, 
we introduce the experimental setup and the parameters of the base scenario in 
Sect. 4.2. After that, we discuss the results for the base scenario (Sect. 4.3) as well 
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as the sensitivity analyses of demand-side flexibility (Sect. 4.4), level of profitability 
(Sect.  4.5), and supply-side capacity (Sect.  4.6). Finally, we demonstrate that our 
methodology can also be applied to support other strategic decisions (Sect. 4.7). We 
performed all computations on an Intel© Core© i7-6700 processor with 4 cores, 
3.40 GHz, and 16 GB RAM. The algorithms were implemented in PYTHON (Ver-
sion 3.9).

4.1  Descriptive analysis of demand structure

The descriptive analysis serves two purposes. First, we illustrate the key features 
of the r-SMCP, namely the relevance of advance requests, same-day requests, and 

Fig. 5  Descriptive analysis of demand structure: a The horizontal axis shows the booking horizon, 
while the vertical axis displays the average number of requests per 4-h interval for a service day. b The 
horizontal axis represents the service horizon with specific desired times, while the vertical axis shows 
the average number of requests per 0.5-h interval. c The plot is a flow map, with arrows indicating the 
direction of OD pairs, and the arrowhead width representing the average frequency over the observation 
period. (d) The plot displays the empirical distribution (density) of observed average time flexibility
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ad-hoc requests as well as the low, dispersed demand. Second, we analyze how 
much temporal flexibility customers have shown.

The booking curve depicted in Fig. 5a shows the relative proportions of advance 
requests ( 54.2% ), same-day requests ( 22.8% ), and ad-hoc requests ( 23% ). Note that 
the booking curve does not show the advance booking time, but the actual time 
of request with data points grouped into 4-h bins. The fact that all three kinds of 
requests occur in relevant proportions highlights the importance of applying avail-
ability control to all of them, which is one of the distinguishing features of the 
r-SMCP. During an average booking horizon in the data set, 85.87 requests are 
received. Regarding the temporal perspective illustrated in Fig. 5b, the distribution 
of desired times is characterized by off-peak times at the beginning and the end of 
the service horizon (5 a.m. to.

9 a.m. and 5 p.m. to 9 p.m.) and the relatively popular mid-day peak (9 a.m. 
to 5 p.m.). Looking at Fig. 5c, we observe a hub-and-spoke-type spatial distribu-
tion of demand with the town of Krumbach being both the most selected origin 
(54.9%) and the most selected destination (57.3%), and the peripheral area, with 
the exception of two larger villages, showing a very low density of demand. The 
arrows represent the direction of the OD-pairs and the width of the arrow heads 
correspond to the frequency, with which they are requested. We only show the 
most popular OD-pairs that are requested at least every two days. Figure 5d shows 
the empirical distribution (density) of the observed time flexibility measured by 
the difference of the desired time of the request and confirmed time of the order. 
In total, 79.20% of all orders show non-zero flexibility. The average request has a 
flexibility of 25.62 min. However, the data is likely heavily biased, because we can 
only observe the flexibility customers have shown based on the offer set they were 
presented. Since FLEXIBUS used a FC policy to control all booking processes 
in the data set, the observable flexibility should be viewed as a lower bound for 
customers’ true flexibility, especially in case of advance requests that receive the 
best offers from an FC policy. That the observed lower flexibility bound already 
amounts to nearly half an hour, is a promising finding for the application of avail-
ability control.

4.2  Experimental setup

An instance of the r-SMCP is defined by two types of parameters: the request 
parameters and the scenario parameters. From each of the 200 historical service 
days contained in the dataset, we generate one customer stream by extracting the 
set of relevant request parameters for each request i ∈ I  . The scenario parameters 
describe the general setting of the SMOD system. Most scenario parameters result 
from the providers’ strategic and tactical decision-making (system parameters), 
the remaining ones model the customer choice behavior (choice parameters). In 
the following, we describe the scenario parameters including their values in the 
base scenario, which is designed to resemble FLEXIBUS’ real-world system as 
closely as possible.
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The set of stops H contains 563 stops across the service area, including the depot. 
Travel distance matrix and travel time matrix are calculated with Open Source Rout-
ing Machine (OSRM, n.d.) and include a constant service time of one minute. The 
fleet V comprises a single vehicle deployed continuously during each service horizon. 
Since considering shift planning on a detailed, day-specific level would be out of 
scope for this study, we do not use the original shift plans from FLEXIBUS. We 
define fulfillment options analogously to FLEXIBUS and generate alternative fulfill-
ment options with a step-size of � = 10 minutes starting from the desired time tc . As 
an example, a request with a desired pick-up time of tc = 10 ∶ 00 could be offered an 
earlier pickup at o = 09 ∶ 50, 09 ∶ 40,… or a later pick-up at o = 10 ∶ 10, 10 ∶ 20,… 
as alternative options. To derive the time windows for pick-up and drop-off (Jaw 
et al., 1986), we use a uniform waiting time of � = 10 minutes and set the added ride 
time factor to � = 0.5 . To determine the revenues rc for all request types c ∈ C , we 
use the original pricing scheme from FLEXIBUS’ system. See Appendices I and J for 
a map of the service area, which highlights the different fare zones and the associated 
pricing scheme. Following this scheme, the revenue rc depends on the number of fare 
zones, which a line connecting the stops pc and dc traverses, multiplied with the num-
ber of passengers mc . The resulting revenues range from 2.4 € (one zone) to 9.9 € 
(eight zones) per passenger. To calculate the cost matrix 

(
�hh�

)
h,h�∈H

 from the travel 
distance matrix, we use a cost parameter of 0.3 C

km
 , which is similar to the cost param-

eter FLEXIBUS assumes. For the choice parameters, we assume that customers 
belong to a single segment l = 1 with a consideration set of size Δ+

1
= Δ−

1
= 30 . 

Hence, all customers accept a maximum deviation of 30 minutes in both directions 
from their desired time, which is similar to the flexibility observable with descriptive 
analyses (Sect. 4.1) that can be viewed as a lower bound for the true flexibility.

We use a deterministic simulation framework to replay the original historical cus-
tomer streams of the problem instances, which is based on the semi-perfect infor-
mation model formulated. Each booking horizon begins at t = 0 , which is 14 days 
prior to the service horizon. Each stage has the duration of one minute, such that 
ts = 20460 and T = 21420.

We apply and compare the seven control policies introduced in Sect.  3.3: Fea-
sibility control (FC), myopic control (MC), and anticipatory control (AC) as well 
as the non-selective variants NS-MC and NS-AC and the non-time-shifting variants 
NT-MC and NT-AC. All anticipatory policies require the selection of a sampling 
acceptance rate ARsam , which we set to ARsam = 0.4 based on preliminary tests. The 
other policies do not have any tunable hyperparameters.

We evaluate the performance of the availability control policies using the follow-
ing additional metrics, each of which refers to one of the provider’s or municipal 
contracting authorities’ objectives:

• Reliability: The system should be reliable meaning that customers are shown a 
non-empty offer set as often as possible. To measure reliability, we consider the 
number of orders.

• Environmental sustainability: Having an SMOD system in place in a certain 
region should save emissions compared to not having the system. Hence, we 
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analyze the vehicle distance savings compared to motorized individual transport, 
i.e., booked passenger kilometers net of vehicle kilometers.

• Service differentiation: The SMOD service should be reasonably differentiated 
from other public transport modes regarding prices and the service character-
istics. The authorities’ aim behind this is to avoid undesirable cannibalization 
effects and create a level playing field. As a metric for this objective, we analyze 
the pooling rate, i.e., driven passenger kilometers divided by vehicle kilometers.

• Equal accessibility: Finally, equal accessibility is a prerequisite for that an 
SMOD system can provide mobility as a basic public service. It means that no 
discrimination should occur based on request characteristics. To evaluate the per-
formance regarding equal accessibility, we analyze the policies’ control behavior. 
More precisely, we consider the acceptance rate and the average time shift for 
different subsets of request types with certain characteristics (Sect. 4.3.2).

4.3  Base scenario

To analyze the impact of demand management in the base scenario, we apply the 
policies to 200 r-SMCP instances from the FLEXIBUS data set with the parameter 
setting of the base scenario introduced in Sect. 4.2. To account for the probabilistic 
nature of AC, NS-AC, and NT-AC, we calculate the (weighted) mean over 25 runs 
per r-SMCP instance for all metrics. In Sect.  4.3.1, we point out the general per-
formance differences and discuss explanations for and implications from them. In 
Sect. 4.3.2, we deepen this analysis by investigating patterns in the control behavior 
of the seven policies with a focus on the objective of equal accessibility.

4.3.1  Overview

Table 2 summarizes each policy’s performance regarding the objective metrics. To 
measure performance, we report the arithmetic mean (AM) and the coefficient of 
variation (CV). The average computation time per decision epoch lies between 0.003 
s and 0.005 s for the non-anticipatory policies and only increases to around 0.007 s 
for the anticipatory policies. This indicates that our methodology can provide results 

Table 2  Results overview of the 
base scenario

Policy Profit [€] Number of 
orders

Distance sav-
ings [km]

Pooling 
rate

AM CV AM CV AM CV AM CV

FC 68.51 0.28 51.40 0.12 − 207.17 0.14 0.75 0.10
MC 93.82 0.25 44.12 0.21 − 107.82 0.24 0.96 0.12
AC 98.42 0.21 49.84 0.14 − 124.27 0.13 0.93 0.08
NS-MC 80.20 0.26 52.72 0.13 − 180.15 0.15 0.83 0.10
NS-AC 80.74 0.23 53.05 0.11 − 182.14 0.12 0.82 0.08
NT-MC 86.85 0.26 43.34 0.21 − 124.54 0.24 0.86 0.13
NT-AC 83.95 0.24 45.40 0.17 − 137.05 0.15 0.81 0.09



 F. Anzenhofer et al.

even for considerably larger SMOD systems than that of FLEXIBUS in a reasonable 
time frame.

We observe a considerable profit gain of more than 35% due to availability con-
trol (MC and AC) compared to the FC. The revenue per order is comparable for all 
three policies (just above 4€ per order) and there are less orders for MC and AC. 
Hence, the profit gain can be attributed to a substantial cost reduction from 2.8€ 
per order to around 2.1€ per order, which is partially caused by a reduction of the 
orders’ average OD-pair length from 5.4 km to 4.5 km. This finding shows that the 
main lever of improvement for availability control with uniform prices is increas-
ing the routing efficiency and optimizing the length of orders’ OD-pairs rather than 
exploiting the customers’ willingness-to-pay to a larger extent or collecting more 
orders. The comparison to the non-selective and non-time-shifting policies shows 
that selectiveness contributes more to the performance gain.

The additional profit gain due to anticipation is only incremental ( 4.9% ) but still sta-
tistically significant (p-value of Wilcoxon rank sum test: 0.01 ). The lower coefficient 
of variation indicates a more robust performance. Interestingly, there is no profit gain 
for NS-AC and NT-AC compared to their myopic counterparts. Hence, the benefit of 
anticipation only arises as a synergy benefit from combining both control mechanisms.

Although the revenues are sufficient to cover the variable routing cost for most 
types of requests, the potential of availability control with uniform prices is not 
large enough to achieve a positive operating result. For the base scenario, we 
observe a fleet productivity of around 6€ per shift hour for MC and AC, which 
is clearly not sufficient to cover the system’s overhead cost, such as driver wages.

The number of orders, which is a measure of reliability from the customer perspec-
tive, is lower and less robust for MC ( −14%) and AC ( −3%) compared to the FC, not-
withstanding the greater routing efficiency, which frees up shift capacity and would 
even allow more customers to be served. In fact, we observe a substantial reduction of 
fleet utilization from 79% (FC) to 54% (MC) and 62% (AC), which indicates that this 
capacity is not used. Hence, there is a subset of requests that are estimated to remain 
unprofitable, and are thus rejected, despite MC and AC being able to exploit their 
entire flexibility. Further evidence for this is provided by the results of the non-selec-
tive policies: Here, the freed-up capacity is used as the fleet utilization shows ( 78% 
for both policies), and both policies outperform the FC in terms of orders. In contrast 
to the profit gain, the increase in the number of orders between MC and AC is greater 
( 13% ), such that the AC gets close to the FC in terms of reliability. Although the vehi-
cle is not fully utilized, FC, MC, and AC achieve rather low acceptance rates (FC: 
59.9% , MC: 51.3% , AC: 58.0% ), which can be improved by adding supply (Sect. 4.6).

The pooling rate indicates that MC and AC apply profitability time shifts exten-
sively and thereby exploit the available demand-side flexibility to a larger extent 
compared to the FC. This additional flexibility is used to create consolidation oppor-
tunities, which results in substantially increasing pooling rates of MC and AC. Still, 
the pooling rates are relatively low, which underlines that rural areas are generally a 
challenging environment for SMOD services since demand is hard to consolidate.

When analyzing the distance savings, we find that the vehicle travel distance 
generally increases by several kilometres per order compared to the scenario in 
which all customers use their private cars to drive directly from their desired 
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origin to destination. Regarding this metric, availability control also leads to sub-
stantial performance improvements as it cuts the additional vehicle travel distance 
almost in half in absolute terms (MC: −48% , AC: −40% ) as well as per order 
(MC: −39% , AC: −38% ). As for the profit, this improvement is partially caused 
by accepting shorter OD-pairs on average.

4.3.2  Control behavior

In this section, we investigate the policies’ control behavior toward different sub-
sets of request types with certain characteristics. Thereby, we not only gain addi-
tional insights into the causes of the performance differences but can also assess 
the performance regarding the objective of equal accessibility. We first investigate 
the behavior of the policies in different phases of the booking horizon, i.e., depend-
ing on the time of request. Then, we conduct the same analysis depending on the 
desired time and the length of the requested OD-pair. To keep the plots clear, we 
only include FC, MC, and AC in the plots of this section, and refer the interested 
reader to Appendix K for plots including NS-MC, NS-AC, NT-MC, and NT-AC.

4.3.2.1 Time of request Since the total number of request arrivals varies over the 
200 instances, we define the progress in the booking horizon based on the share 
of requests that has arrived already and group requests accordingly into 25 bins.

The MC consistently rejects more requests due to unprofitability since it only 
has information about consolidation opportunities with existing orders but not 
about future ones (Fig.  6c). By contrast, the AC correctly accepts additional 
advance requests that are unprofitable at their time of arrival but eventually 
become profitable when consolidated with future orders, which, in turn creates 
additional consolidation opportunities later. Forcing the myopic policy to accept 
any feasible order, as in the NS-MC, has a similar (but not equally beneficial) 
effect as anticipation, since consolidation opportunities with real orders start to 
arise at an earlier point in the booking process. The profitability rejection rates of 
the non-time-shifting policies are slightly higher, which indicates that for some 
of these additional requests, a profitability time shift is necessary to realize this 
consolidation.

Feasibility rejections show an inverse trend compared to profitability rejections 
(Fig. 6b). Because of the higher number of orders, the increase in feasibility rejections 
is greater for the AC, which to some extent thwarts the positive effect of more consoli-
dation opportunities. The non-selective policies achieving lower feasibility rejection 
rates than the FC shows that profitability time shifts improve capacity utilization.

The resulting acceptance rates are generally decreasing almost monotonically 
until 80% of requests have arrived (Fig. 6a). The minimum corresponds to the maxi-
mum of feasibility rejections. In this phase, most customers request desired times 
within the mid-day demand peak, which also explains the subsequent small rise of 
acceptance rates, when desired times are again off-peak. By design, the FC starts 
with a 100% acceptance rate that drops over time with increasing slope. The same 
is true for NS-MC and NS-AC but on a higher level. In contrast, MC, AC, and their 
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non-time-shifting variants achieve much more balanced acceptance rates, and thus, 
improve the performance regarding equal accessibility. Because of the fewer profita-
bility rejections of advance requests, the AC initially achieves a much higher accept-
ance rate than the MC, while still maintaining a similar level for same-day requests 
and ad-hoc requests, which explains the gains in profit and confirmed orders.

Now, we investigate the use of time shifts. Until the arrival of one third of requests, 
we can observe clear differences in profitability time shifts between MC and AC 
(Fig.  7c). The MC hardly uses them initially, while the AC shows the maximal use 
since it anticipates later consolidation opportunities that can be realized with suitable 
time shifts. From then onward, MC and AC similarly show a decreasing use of profit-
ability shifts since the available flexibility must increasingly be used for feasibility time 
shifts (Fig. 7b). NS-MC and NS-AC show a similar behavior but apply significantly 
more feasibility time shifts, probably to fulfill orders that can be consolidated poorly 
but that they are still forced to accept, leaving less flexibility for profitability time shifts.

The total time shift increases for all policies throughout the booking horizon 
(Fig. 7a). For the FC, these are all feasibility time shifts by design, which again 
indicates that it becomes increasingly difficult to find feasible options as more 
orders are confirmed. The non-time-shifting policies apply even less feasibility 
time shifts than the FC since they collect fewer orders, and more capacity is avail-
able consequently.

4.3.2.2 Desired time For this analysis, we group the requests into 1-h bins accord-
ing to their desired time. We observe more profitability rejections by the MC for all 
types of desired times but the difference varies strongly (Fig. 8c). At the center of 
the mid-day demand peak (12 a.m. to 1 p.m.) as well as during the off-peak times 
in the early morning and late evening, the policies behave similarly. Around the 
boundary between peak times and off-peak times, the difference is much greater. 
This indicates that anticipation is especially beneficial when demand is moderate, 
and thus, some consolidation is possible but hard to identify. If demand is high and 
consolidation opportunities are easy to find, or if demand is low and consolidation 
is clearly almost impossible, the MC’s inaccurate cost estimates do not lead to 
worse decisions compared to the AC.

As expected, feasibility rejection rates are roughly inversely proportional to 
the demand volume (Fig. 8b). At.

7 a.m. and 3 p.m., we observe local peaks, which are consistent with the peaks 
in the MC’s profitability rejection rate. A possible explanation could be that 
around these times commuters request rides between the peripheral villages and 
the central town of the service region, which, if not consolidated well, consume a 
lot of logistical capacity and are unprofitable.

Overall, this results in three minima of the acceptance rate, which are more or 
less pronounced depending on the policy (Fig.  8a). The FC achieves the highest 
acceptance rate during off-peak times, due to MC and AC making maximal use of 
profitability rejections. During the mid-day demand peak, the AC shows the highest 
acceptance rate. Since acceptance rates range from 50 to 70% most of the time, the 
temporal discrimination in the off-peak periods is not particularly severe.



Analyzing the impact of demand management in rural shared…

Fi
g.

 8
  

U
se

 o
f r

ej
ec

tio
ns

 d
ep

en
di

ng
 o

n 
th

e 
de

si
re

d 
tim

e:
 T

he
 h

or
iz

on
ta

l a
xi

s p
lo

ts
 th

e 
de

si
re

d 
tim

e.
 T

he
 v

er
tic

al
 a

xi
s p

lo
ts

 th
e 

ra
te

 o
f a

cc
ep

ta
nc

es
, a

 fe
as

ib
ili

ty
 re

je
ct

io
ns

, b
 

an
d 

pr
ofi

ta
bi

lit
y 

re
je

ct
io

ns
. c

 E
ac

h 
se

rie
s c

or
re

sp
on

ds
 to

 o
ne

 o
f t

he
 p

ol
ic

ie
s F

C
, M

C
, a

nd
 A

C



 F. Anzenhofer et al.

Fi
g.

 9
  

U
se

 o
f t

im
e 

sh
ift

s 
de

pe
nd

in
g 

on
 th

e 
de

si
re

d 
tim

e:
 T

he
 h

or
iz

on
ta

l a
xi

s 
pl

ot
s 

th
e 

de
si

re
d 

tim
e.

 T
he

 v
er

tic
al

 a
xi

s 
pl

ot
s 

th
e 

av
er

ag
e 

to
ta

l t
im

e 
sh

ift
 , 

a 
fe

as
ib

ili
ty

 ti
m

e 
sh

ift
, b

 a
nd

 p
ro

fit
ab

ili
ty

 ti
m

e 
sh

ift
 p

er
 o

rd
er

 in
 m

in
ut

es
. c

 E
ac

h 
se

rie
s c

or
re

sp
on

ds
 to

 o
ne

 o
f t

he
 p

ol
ic

ie
s F

C
, M

C
, a

nd
 A

C



Analyzing the impact of demand management in rural shared…

Fi
g.

 1
0 

 U
se

 o
f r

ej
ec

tio
ns

 d
ep

en
di

ng
 o

n 
th

e 
O

D
-p

ai
r l

en
gt

h:
 T

he
 h

or
iz

on
ta

l a
xi

s 
pl

ot
s 

th
e 

di
re

ct
 d

ist
an

ce
 b

et
w

ee
n 

pi
ck

-u
p 

an
d 

dr
op

-o
ff 

im
 k

m
. T

he
 v

er
tic

al
 a

xi
s 

pl
ot

s 
th

e 
ra

te
 o

f a
cc

ep
ta

nc
es

, a
 fe

as
ib

ili
ty

 re
je

ct
io

ns
, b

 a
nd

 p
ro

fit
ab

ili
ty

 re
je

ct
io

ns
, c

 E
ac

h 
se

rie
s c

or
re

sp
on

ds
 to

 o
ne

 o
f t

he
 p

ol
ic

ie
s F

C
, M

C
, a

nd
 A

C



 F. Anzenhofer et al.

Fi
g.

 1
1 

 U
se

 o
f t

im
e 

sh
ift

s 
de

pe
nd

in
g 

on
 th

e 
O

D
-p

ai
r l

en
gt

h:
 T

he
 h

or
iz

on
ta

l a
xi

s 
pl

ot
s 

th
e 

di
re

ct
 d

ist
an

ce
 b

et
w

ee
n 

pi
ck

-u
p 

an
d 

dr
op

-o
ff 

im
 k

m
. T

he
 v

er
tic

al
 a

xi
s 

pl
ot

s 
th

e 
av

er
ag

e 
to

ta
l t

im
e 

sh
ift

, a
 fe

as
ib

ili
ty

 ti
m

e 
sh

ift
, b

 a
nd

 p
ro

fit
ab

ili
ty

 ti
m

e 
sh

ift
 p

er
 o

rd
er

 in
 m

in
ut

es
. c

 E
ac

h 
se

rie
s c

or
re

sp
on

ds
 to

 o
ne

 o
f t

he
 p

ol
ic

ie
s F

C
, M

C
, a

nd
 A

C



Analyzing the impact of demand management in rural shared…

Regarding the use of time shifts, we do not find clear patterns aside from a 
slight increase in feasibility time shifts during the demand peak (Fig. 9). Thus, 
temporal discrimination by the use of time shifts is not an issue.

4.3.2.3 OD‑pair length Now, we investigate the control behavior in spatial terms 
by considering requests with an OD-pair of similar length (1-km bins). Here, MC 
and AC show a sharp increase in the rate of profitability rejections for OD-pair 
distances between 8 and 11 km (Fig. 10c). Left and right of this interval, the rates 
are relatively stable. Rather than an inherent discriminatory behavior, this suggests 
an imbalance in the pricing scheme. Apparently, the revenue of many longer OD-
pairs is not sufficient to make them equally profitable compared to shorter ones.

In terms of feasibility rejections, all three policies trend upward due to the higher 
logistical capacity consumption by the requests with longer OD-pairs (Fig. 10b). As 
a result, the FC shows a more balanced but still decreasing acceptance rate, while 
the acceptance rates of MC and AC are similarly unbalanced (Fig. 10a).

Considering the usage of time shifts, we do not find strong patterns, i.e., no 
systematic spatial discrimination (Fig. 11). Note that there is a limited number of 
data points, and consequently a high random variance, for requests with an OD-
pair length greater than 15 km, which explains the outliers, in particular between 
20 and 25 km.

4.4  Sensitivity analysis: demand‑side flexibility

As discussed in Sect. 4.1, the FLEXIBUS data set only allows a limited descriptive 
analysis of the customer’s willingness to accept time shifts, i.e., the demand-side flex-
ibility. Hence, the true average consideration set size is uncertain and may be much 
greater than the empirically observed lower bound (around 30 minutes) we assume 
for the base scenario. Therefore, we analyze the impact of alternative consideration 
set sizes on the policies’ performance in this section. For completeness, we start with 
a consideration set size of 0 , i.e., entirely inflexible customers, and increase the con-
sideration set size incrementally by 10 minutes until reaching a size of 180 minutes. 
The other scenario parameter values remain the same as in the base scenario.

Figure 12 shows the values of the objective metrics over the different scenarios. 
On the horizontal axis, we plot the consideration set size. Starting from the base 
scenario (size 30 ) and increasing flexibility, the profit of all policies improves at a 
diminishing rate (Fig.  12a). This improvement is quite considerable, especially in 
scenarios similar to the base scenario. E.g., until a consideration set size of 120 , the 
AC achieves a 3% to 5% profit gain per 10 minutes of additional flexibility. For FC 
and MC, the slope is roughly equal, and thus, a constant profit gap slightly above 
40% results. In contrast, the gap between MC and AC increases up to 19% . Hence, 
anticipation enables exploiting additional flexibility to a greater extent than already 
possible with feasibility control. Considering scenarios with very small considera-
tion sets, we observe a sharp decrease in profit, especially for MC and AC. This 
finding provides further evidence for that time shifts, which are hardly possible in 
these scenarios, represent a more powerful control mechanism than rejections.
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For the number of orders, we observe similar trends (Fig.  12b). The AC out-
performs the FC from a size of 60 onward due to the effective use of profitability 
time shifts for making more requests profitable. The improvement drops to less than 
2% per 10 minutes of additional flexibility for all policies at this point, such that 
only acceptance rates slightly above 70% are reached. This suggests that the vehi-
cle supply increasingly becomes a constraining factor for the possible gains through 
exploiting the flexibility. Similarly, regarding the distance savings (Fig. 12c) and the 
pooling rate (Fig. 12d), the AC also becomes the best-performing policy at a certain 
point with FC and MC nearly stagnating.

4.5  Sensitivity analysis: level of profitability

When applying availability control with uniform fulfillment option prices, the pro-
vider needs to decide on a pricing scheme at the strategic planning level. The pricing 
scheme is yet another crucial input parameter for the r-SMCP because it determines 
the relation between the price level and variable fulfillment costs, i.e., the level of 
profitability. In this section, we investigate how the level of profitability impacts the 
system performance. To this end, we test a set of alternative pricing schemes that 
result from a change of the price for each number of zones by a certain percentage, 
i.e., a change of the general price level. The remaining scenario parameter values are 
identical to the base scenario.

Since we generate the instances with the original historical customer streams 
from the FLEXIBUS data set, we implicitly assume the demand to be completely 
price-inelastic. This represents a very strong assumption, which becomes less valid 
the more changes we make to the original FLEXIBUS pricing scheme used in the 
base scenario. Hence, it is not possible to draw meaningful insights from the poli-
cies’ absolute performance expressed by the different metrics. Instead, we focus on 
the relative performance differences caused by the change in the level of profitabil-
ity. When interpreting those differences, the assumption of inelastic demand is far 
less problematic since all policies have the same (deterministic) information about 
the customer choice behavior.

To analyze the impact of the level of profitability, we assume price reductions (lower 
level of profitability) and price increases (higher level of profitability) by up to 50% and 
generate scenarios in 5%-intervals. The results are plotted in Fig.  13. Comparing the 
policies’ profit (Fig. 13a), we observe a declining gap between FC and MC/AC as the 
level of profitability increases. The underlying reason is that when requests become more 
profitable in general, the number of profitability rejections decreases, which more and 
more deprives MC and AC of one of their superior demand management mechanisms 
compared to the FC. If the level of profitability is very low, we observe that the FC even 
yields negative profits, which MC and AC can avoid by many profitability rejections.

Since the FC’s control behavior is completely independent from pricing, its per-
formance regarding the number of orders, the distance savings, and the pooling rate 
is constant over all scenarios. (Fig. 13b) clearly shows that MC and AC collect more 
orders when the system becomes more profitable overall since the number of profit-
ability rejections decreases. Distance savings (Fig. 13c) and pooling rates (Fig. 13d) 
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decrease with a higher level of profitability because, with higher prices, more and 
more orders for which the fulfillment is relatively inefficient become profitable.

4.6  Sensitivity analysis: supply‑side capacity

The available vehicle fleet, which results from the provider’s strategic and tactical 
planning, is a critical input parameter for the r-SMCP that constrains operational 
decisions. Given a certain demand, it determines the supply–demand ratio the 
SMOD system operates under in different phases of the service horizon. In practice, 
providers may target different supply–demand ratios. Hence, investigating how the 
policies perform under different supply–demand ratios is highly relevant.

In the base scenario, we use the minimum possible supply, i.e., a single vehicle 
over the entire service horizon (Index 0 ). We generate alternative scenarios by add-
ing vehicles according to the following pattern: We start with an additional vehicle 
deployed for a two hour period in the center of the mid-day demand peak. We then 
increase its length successively until the second vehicle is also deployed over the 
entire service day (Indices 1 to 8 ). Applying this pattern once more yields scenarios 
for a fleet of three vehicles (Indices 9 to 16 ). Table 3 provides an overview of the 
scenarios. The other parameter values remain the same as in the base scenario.

Applying FC, MC, and AC to the scenarios with additional vehicle supply yields 
the results depicted in Fig. 14. The horizontal axis plots the indices of the scenar-
ios from Table  3. For the total profit, we generally observe diminishing marginal 
gains for adding another vehicle (Fig. 14a). Deploying a second full-day vehicle, the 
FC’s profit improves by 51% , MC and AC gain 33% . Adding a third full-day vehicle 
only leads to further improvements by 12% (FC), 5% (MC), and 6% (AC). The same 
accounts for prolonging the vehicles’ time of deployment since, for the given scenario 
design pattern, the additional vehicle supply covers hours with less and less demand. 
Initially, the FC gains around 10% each time 2 vehicle hours are added, while MC and 
AC gain only around 6% . Thus, the FC’s gap to MC (AC) decreases from 37% ( 42%) 
to 13% ( 19% ), while the gap between MC and AC remains roughly constant. The per-
formance of all policies appears to converge for high-supply scenarios. We observe 
similar results for the number of orders (Fig. 14b). Naturally, the acceptance rate of 
the FC converges to 100% and already reaches 95% for three full-day shifts. However, 
MC and AC only reach acceptance rates of 73% and 80% , respectively. This indicates 
that around 15% of all requests are inherently unprofitable given the flexibility and the 
revenue they provide in the base scenario parameter setting.

The results for the distance savings are inversely proportional to the number of 
orders, i.e., the distance savings per order are constant over all scenarios (Fig. 14c). 
Generally, we expect this metric to be influenced by two effects. First, the orders that 

Table 3  Supply scenarios

Index 1∕9 2∕10 3∕11 4∕12 5∕13 6∕14 7∕15 8∕16

Start of added vehicle 12:00 11:00 10:00 09:00 08:00 07:00 06:00 05:00
End of added vehicle 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
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can be collected additionally due to the growing supply should be increasingly less prof-
itable to serve, which negatively impacts distance savings. Second, however, a growing 
number of orders entails more consolidation opportunities, which, together with the 
larger action space due to more vehicles, positively impacts distance savings. Based on 
our results, these effects seem to offset. Further evidence for this conclusion is provided 
by the pooling rate, which also remains roughly constant over all scenarios (Fig. 14d).

4.7  Further applications

Aside from supporting the strategic decision on how to implement operational demand 
management, which is the primary purpose of our methodology, it can also be applied 
to support other strategic decisions such as fleet sizing and the definition of pricing 
scheme or service areas. To demonstrate this, we exemplarily consider the fleet sizing 
decision, with which the provider mainly trades off the operating result and the reli-
ability of the SMOD system. While Fig. 14 (Sect. 4.6) shows that more supply expect-
edly increases profit and number of orders, it also increases fixed cost (e.g., driver 
wages). Although we cannot directly measure the impact on the operating result due to 
a lack of data on fixed cost, we can derive insights from the profit per shift hour.

Figure 15 plots this metric against the number of orders, which measures the reli-
ability. Each data point corresponds to the performance of one of the shift plans from 
Table 3 in combination with one of the demand control policies FC, MC, and AC. 
The different shades of grey indicate how much supply in terms of shift hours is avail-
able according to a certain shift plan. For all three policies, we observe that the profit 
per shift hour, and thus also the operating result, deteriorates with every additional 

Fig. 15  Evaluation of potential shift plans: the horizontal axis plots the number of orders. The vertical 
axis plots the profit per shift hour. The marker shape indicates the policy of a data point, the shade of 
gray indicates the supply of shift hours
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shift hour, even though the total profit increases (Fig.  14a). Hence, any increase of 
the fleet size can be seen as an investment into service quality. The specific numerical 
relation between the two metrics, i.e., the return of a certain investment, depends on 
the demand management policy. Thus, providers should optimize fleet sizing decisions 
such that they obtain a pareto-efficient shift plan reflecting their own weighting of eco-
nomic efficiency and reliability. To this end, it is important to explicitly evaluate the 
potential shift plans regarding their operational consequences when the actual demand 
management policy is used. In this vein, evaluating all potential shift plans as depicted 
in Fig. 15, potentially taking into account other system parameters, can be viewed as a 
(brute-force) fleet sizing approach. Likewise, the provider can evaluate, e.g., the per-
formance of different pricing schemes or service areas sizes.

5  Conclusion

In the following, we summarize the key findings our work. Based on the results from 
our computational study, we provide recommendations for implementing demand 
control in rural SMOD systems (Sect. 5.1). Furthermore, we address the limitations 
of our approach when applied to real-world settings, focusing on data availability, 
infrastructure requirements, and assumptions about customer behavior (Sect.  5.2). 
Finally, we outline possible future research directions (Sect. 5.3).

5.1  Recommendations

In this paper, we propose a methodological approach to evaluate at the strategic 
planning level whether and how an SMOD provider should control the availability 
of rides when performing demand management. We introduce a semi-perfect infor-
mation model and representative algorithms for different availability control poli-
cies. These policies differ in three characteristics: applied mechanisms (rejections 
and/or time shifts), criteria (feasibility or profitability), and utilized information 
(myopic or anticipatory). The following recommendations summarize key insights 
from our computational study, focusing on the positive impact of demand manage-
ment across multiple dimensions: economic efficiency (profit), reliability (number 
of orders), environmental sustainability (distance savings), service differentiation 
(pooling rate), and equal accessibility (control behavior):

• Positive impact of availability control: Overall, our experiments demonstrate that 
implementing availability control policies substantially improves the system per-
formance across multiple objectives when compared to feasibility control. In the 
base scenario, myopic availability control already increases profit by about 37% . 
While there is a reduction in the number of orders (up to 14% ), this is primarily 
due to the rejection of inherently unprofitable requests, leading to a far more effi-
cient use of available resources. Distance savings show remarkable improvement, 
with availability control policies achieving around 48% greater savings compared 



Analyzing the impact of demand management in rural shared…

to feasibility control. Regarding service differentiation, the pooling rate increases 
by 28% . Lastly, equal accessibility also benefits, with more balanced acceptance 
rates for advance and same-day requests, although slight disparities for off-peak or 
long-distance requests may occur. Overall, the adoption of demand management 
through availability control policies offers considerable potential to improve the 
system performance across multiple objectives. Hence, we recommend its applica-
tion in practice.

• Advantages of anticipatory information: While myopic availability control already 
yields substantial improvements, the use of anticipatory information further 
enhances system performance. In the base scenario, anticipatory control increases 
profit by an additional 5%. Moreover, it reduces the decline in the number of orders 
to −3% compared to myopic control. However, with anticipatory control, distance 
savings decline by −15% compared to myopic control, as it tends to generate more 
orders, leading to increased vehicle kilometers. The differences in pooling rate and 
accessibility are minor between myopic and anticipatory information utilized, with 
no significant patterns emerging. Thus, while the larger performance gain can be 
attributed to the applied criteria (profitability and not only feasibility), utilizing 
anticipatory information can bring additional benefits and is recommendable.

• Synergy of mechanisms – rejections and time shifts: Our results highlight that the 
combination of profitability rejections and time shifts unlocks the full potential of 
availability control policies, particularly when paired with anticipatory informa-
tion. Profitability rejections ensure that unprofitable requests are excluded, while 
time shifts allow for more flexible and efficient order fulfillment. This synergy is 
especially pronounced in terms of profit, distance savings, and pooling rate. There-
fore, we strongly recommend using both mechanisms in combination to fully 
exploit the potential of availability control policies.

• Leveraging demand-side flexibility: Our analysis shows that higher customer flex-
ibility can improve system performance. Increasing the consideration set size from 
30 to 120 min yields profit gains between 3% and 5% per 10 min of additional flex-
ibility. However, after 120 min, gains begin to diminish as vehicle supply becomes 
a limiting factor. The number of orders, distance savings, and pooling rate also 
benefit from increased flexibility, with availability control outperforming feasibil-
ity control beyond a 60-min consideration set. Thus, providers should leverage as 
much of the customers’ time flexibility as possible, e.g., by applying profitability 
time shifts.

• Balancing supply and demand: Adding more vehicles improves performance, but 
the marginal gains decrease as fleet size increases. E.g., adding a second full-day 
vehicle increases profit by 51% for feasibility control and 33 − 35% for anticipatory 
and myopic control. However, adding a third vehicle yields only 12% to 6% fur-
ther improvement, and performance across all policies begins to converge as sup-
ply grows. The number of orders rises with vehicles, but distance savings and the 
pooling rate remain constant. These results show that providers should carefully 
balance vehicle supply with demand. Vehicle oversupply results in diminish-
ing returns and does not improve key metrics like the distance savings.

• Balancing profitability with environmental sustainability: As prices increase, 
the profit gap between feasibility control and advanced control policies narrows, 
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with fewer requests being rejected as unprofitable. While this can boost profit 
given sufficiently high willingness-to-pay, it creates a trade-off with environ-
mental sustainability. Higher profitability leads to more fulfilled requests, even 
if they result in inefficient vehicle usage, as routing costs become less critical. 
This can increase vehicle kilometers, reducing the system’s environmental sus-
tainability. Providers could adopt sustainability-oriented demand management 
approaches to ensure that profit maximization does not undermine environmen-
tal goals.

• Computational times: Importantly, our solution approaches are scalable for larger 
SMOD systems. The average computation time per decision epoch is 0.003–0.005 s 
for non-anticipatory policies and 0.007 s for anticipatory policies, ensuring that the 
proposed demand management strategies can be applied in real-time operational envi-
ronments without causing performance bottlenecks.

In summary, we find a considerable improvement potential by applying availability 
control. A positive finding is that even “less sophisticated” forms of demand manage-
ment, i.e., myopic, non-selective, and non-time shifting policies, already yield benefits 
compared to feasibility control, which makes a step-wise introduction viable.

5.2  Limitations

While our approach for strategic decision support on the selection of demand man-
agement policies yields promising results, there are several limitations that need to 
be considered when implementing our methodology in real-world settings:

• Data availability—Request arrival: To apply our approach, providers must have 
access to comprehensive historical request data. This data should include request 
attributes such as the time of request, desired pick-up and drop-off times, loca-
tions, and the number of passengers. It is essential that this data is uncensored: 
All customer requests, not just those that were successfully converted into orders, 
must be recorded, and the provider must not communicate any information on 
service availability before request placement.

• Data availability—Customer choice behavior: The semi-perfect information 
model assumes perfect information regarding customer segment affiliation, 
which is a strict assumption. It is necessary because typically, real-world data on 
customer preferences is incomplete or noisy, making it difficult for providers to 
estimate choice models accurately. To mitigate this limitation, it is important to 
conduct sensitivity analyses to account for the uncertainty around the true cus-
tomer choice behavior (see Sect. 4.4).

• External factors: For anticipatory demand management, we assume that the 
provider uses information from historical request data. While this accounts for 
any external effects that occurred in the past, it may not fully account for future 
events affecting demand such as economic shifts. Hence, in systems with a vola-
tile demand structure (e.g., newly established systems), the benefits of anticipa-
tory demand management are likely lower than in the results of our computa-
tional study.
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5.3  Future research directions

Existing research on the operation of rural SMOD systems is still scarce, and our 
results give rise to further novel research questions in this area:

• First, we see potential for developing anticipatory availability control policies 
that are tailored to the rural problem setting. Since algorithm development is 
not the focus of our work, we transferred existing algorithms that are practical, 
interpretable, and do not require parameter tuning. Also, we focused only on the 
availability control subproblem. Hence, e.g., by drawing on methods that involve 
statistical learning, explicitly consider displacement effects, or allow anticipatory 
routing decisions, there is still potential for algorithmic improvements.

• Second, the low-profitability rural environment makes subsidies by municipal 
contracting authorities a necessity. Since there are various possibilities for the 
design of subsidy schemes, future research could apply a similar methodological 
approach to investigate the impact of different subsidy schemes on the system 
performance. Such an approach could also provide decision support to authori-
ties on how to design a subsidy scheme such that the profit-maximizing provider 
is incentivized to make operational decisions in a way that guarantees the author-
ities’ sustainability objectives to be reached.

• Third, it could be investigated how demand management can be applied to 
SMOD systems with more complex, differentiated fulfillment option designs. 
Being able to offer and control, e.g., express rides, subscriptions, or group tickets 
could make the system more customer-centric and further increase its attractive-
ness compared to motorized individual transport.

• Fourth, future research is required conducting a holistic environmental sustain-
ability assessment of rural SMOD systems. Besides the direct vehicle kilometer 
savings, we believe that it is particularly important to investigate indirect effects 
within the entire transportation system of rural areas that result from an SMOD 
system being in place. Examples are possible reductions of the private fleet 
size or line-based public transport, but also induced demand or cannibalization 
effects regarding more sustainable means of transport.

• Finally, while the work at hand focuses on demand management, we believe that 
it is promising to analogously analyze the impact of different policies for vehicle 
routing on the performance of rural SMOD systems. Building on these results, it 
is also of practical relevance to provide guidance on which combination of algo-
rithmic elements provides the best performance depending on a limited computa-
tional budget that is available due to the requirement of real-time decision-mak-
ing.

Appendix A: notation

See Tables 4, 5, 6 and 7.



 F. Anzenhofer et al.

Table 4  Notation Markov decision process model

t ∈ T = {1,… , ts,… ,T} Decision epoch
ts Start of the service horizon
c ∈ C Customer request type
�t
c

Arrival rate of request type c in stage t
pc, dc ∈ H Pick-up (drop-off) stop of request type c
mc Number of passengers of request type c
tc ∈ {ts,… ,T} Desired time of request type c
fc ∈ {0,1} Indicator for time window type of request type c
rc Revenue of request type c
i ∈ I Request
�i ∈ T Time of request for request i
o ∈ Oc Fulfillment option defined for request type c(
�e+
c,o
, � l+

c,o

)
,

(
�e−
c,o
, � l−

c,o

)
Pick-up (drop-off) time window for request type c and option o

g ⊆ Oc Offer set that can be presented to customer type c
Pc,o(g) Probability of customer placing a request of type c choosing option o 

when presented offer set g
j ∈ J Order
v ∈ V Vehicle
Qv Seat capacity of vehicle v
tb
v
, tr
v

Start (end) of operations for vehicle v
�t Route plan at decision epoch t
�v,t ∈ �t Planned route of vehicle v according to route plan �t

a−
jn
, a+

jn
Vehicle arrival (departure) time at the n-th stop in a route

st Post-decision state at decision epoch t
Ct Set of confirmed but not yet fulfilled orders at decision epoch t
at Action at decision epoch t
gt ∈ G

(
st−1, c

)
Availability control decision at decision epoch t

�t(o) Route plan at decision epoch t  including a potential order resulting 
from combining the newly arrived request with option o�

�t(o)
�
o∈gt

∈
∏

o∈gt
Φ
�
st−1, c, o

�
Vehicle routing decision at decision epoch t  for request type c avail-

ability control decision gt
Of

c
Set of feasible fulfillment options for request type c

s
pre

t
Pre-decision state at decision epoch t

ojt Fulfillment option chosen by the customer placing order jt
s′
t

Interim state at decision epoch t
�v,t

(
�t(o)

)
Stops that are visited definitively according to vehicle routing decision 
�t(o)

Ψt

(
�t(o)

)
Orders for which fulfillment is completed according to vehicle routing 

decision �t(o)

r�t (o)
Vehicle-routing-related reward incurred by vehicle routing decision 
�t(o)

�h,h′ Routing cost for traveling from stop h to stop h′
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Table 5  Notation of Markov decision process model (continued)

Vt

(
st
)

Value of post-decision state st
V ′
t

(
s′
t

)
Value of interim state s′

t

ΔVt

(
st−1, c, o

)
Opportunity cost of an order by request type c with fulfillment option o

l ∈ L Customer segment
Sl,c Consideration set of customer segment l  and request type c
Δ+

l
+ Δ−

l
Total time flexibility provided by segment l

� Ranking function over fulfillment options
ocgl Fulfillment option chosen by request type c and segment l  from offer set g
�l Share of segment l  in the customer population

Table 6  Notation of static Dial-a-Ride problem model

k ∈ P ∪D = N Pick-up/drop-off node
�kk′ Distance for traveling from node k to node k′

�kk′ Time for traveling from node k to node k′

A Set of arcs(
�e
k
, � l

k

)
Time window of node k

kv Node at which vehicle v becomes available
qk Number of passengers picked-up or dropped off at node k
xkk′v Binary decision variable indicating whether vehicle v 

travels from node k to node k′

Bkv Time at which vehicle v stops at node k
Qkv Load of vehicle v when leaving node k
tmart
c

Maximum added ride time for request type c
� Waiting time
� Maximum added ride time factor

Table 7  Notation of solution algorithms

Cact
j

Set of actual orders
�act
t

Actual route plan at decision epoch t
�act
t
(o) Actual route plan at decision epoch t  including a potential order resulting from combin-

ing the newly arrived request with option o
Csam
t

Set of sampled orders
�sam
t

Sampled route plan at decision epoch t
�sam
t

(o) Sampled route plan at decision epoch t  including a potential order resulting from com-
bining the newly arrived request with option o

ARsam Sampling acceptance rate

ΔṼt

(
st−1, c, o

) Approximation of opportunity cost of an order by request type c with fulfillment option o

�sam
t,j

Sampled route plan at decision epoch t  excluding sampled order j
j∗ Sampled order with the highest cost saving
Opro

cit
Subset of profit-maximizing fulfillment options

Oclo
cit

Subset of profit-maximizing fulfillment options closest to the desired time
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Appendix B: mixed‑integer‑program for the static dial‑a‑ride 
problem

Determining the action space 
∏

o∈gt
Φ
�
st−1, c, o

�
 for the vehicle routing decisions (

�t(o)
)
o∈gt

 in the MDPs for the r-SMCP described in Sect.  3.2 corresponds to 
searching all solutions to ||Oc

|| constraint satisfaction problems. Each of these prob-
lems (CS-DARP) has a structure similar to the static DARP. The instance is given by 
the set of unfulfilled orders Ct−1 , the current vehicle positions stored in �t−1 , and the 
potential order resulting from assigning the newly received request it a fulfillment 
option o . In the following, we present a mixed-integer programming model for the 
CS-DARP based on the DARP formulation by Cordeau (2006) and describe how its 
parameters can be determined from the information given in state st−1.

The model is based on a graph G = (N,A) consisting of a set of nodes N  and a 
set of arcs A . The set of nodes N = {0} ∪ P ∪D ∪ {2|J| + 1} contains a pick-up 
node k = j ∈ P and a drop-off node k = (j + |J|) ∈ D for each order j ∈ J  in addi-
tion to the origin depot node k = 0 and the destination depot node k = 2|J| + 1 . The 
geographical location of each node is given by the pick-up stop pcj and the drop-off 
stop dcj . This mapping of nodes to stops allows the computation of travel distances 
�kk′ , travel times �kk′ , and travel costs �kk′ between two nodes k, k� ∈ N  . The three 
parameters are weights of the respective arcs 

(
k, k�

)
∈ A =

{(
k, k�

)
∶ k = 0,

k
� ∈ P ∨

(
k, k� ∈ P ∪D ∧ k ≠ k

� ∧ k ≠ k
� + |J|) ∨ k ∈ D, k� = 2|J| + 1

}
 . The time 

window of each node k is defined by two time points marking its start �e
k
 and its end 

� l
k
 . It is equal to the order’s pick-up time window defined by the earliest pick-up time 

�e+
k

 and the latest pick-up time � l+
k

 in case of k ∈ P or the drop-off time window 
defined by the earliest drop-off time �e−

k
 and the latest drop-off time � l−

k
 in case 

k ∈ D . Similarly, the number of passengers qk that are picked-up or dropped-off at 
node k can be computed based on the number of passengers mc.

The unfulfilled orders for the vehicle routing decision at decision epoch t are 
stored in Ct−1 . A subset of these orders may be partly fulfilled, meaning that the pas-
sengers are already on board a vehicle. Hence, to derive the set of pick-up nodes P , 
we remove these orders based on the route plan �t−1 such that only indices of orders 
remain that have not yet been picked up:

The set of drop-off nodes D contains one node for each unfulfilled order:

Each vehicle v ∈ V starts its route from the origin node kv = k1 with (
k1, hk1 , a

−

k1
, a+

k1

)
∈ �t−1,v, �t−1,v ∈ �t−1 , at which it next becomes available according 

to the arrival times a−
k
 stored in �t−1:

Similarly to the set of pick-up nodes, we can also derive the initial vehicle load qkv 
from the route plan �t−1:

(11)P = Ct−1 ⧵
{
k ∈ Ct−1 ∶ a+

k
≤ t,

(
k, hk, a

−
k
, a+

k

)
∈ �v,t−1, �v,t−1 ∈ �t−1

}

(12)D =
{
j + |J| ∶ j ∈ Ct−1

}



Analyzing the impact of demand management in rural shared…

In summary, we have the set of nodes N = P ∪D ∪ {2|J| + 1} , which also 
includes the destination depot node k = 2|J| + 1 where all vehicles must finish their 
route. The binary decision variables xkk′v encode whether vehicle v drives directly 
from node k to node k′ ( xkk�v = 1 ) or not ( xkk�v = 0 ). Further, decision variables Bkv 
encode the time at which vehicle v stops at node k , and decision variables Qkv encode 
the load of vehicle v when leaving node k.

Constraints (14) make sure that each order’s pick-up node is visited by exactly one 
vehicle. Constraints (15) enforce that this vehicle also visits the corresponding drop-
off node. Flow conservation is guaranteed by Constraints (16)-(18) for the vehicles’ 
origin nodes, the remaining pick-up nodes and drop-off nodes, and the destination 
depot node, respectively. Consistency regarding time flow and loads is guaranteed 

(13)qkv ∶= qkv +
∑

{k∈Ct−1∶a
+
k
≤t,(k,hk ,a−k ,a

+
k )∈�t−1,v}

mck

(14)
∑
v∈V

∑
k�∈N

xkk�v = 1 ∀k ∈ P

(15)
∑
k�∈N

xkk�v −
∑
k�∈N

x�J�+k,k�v = 0 ∀k ∈ P, v ∈ V

(16)
∑
k�∈N

xkv,k�v = 1 ∀v ∈ V

(17)
∑
k�∈N

xk�kv −
∑
k�∈N

xkk�v = 0 ∀k ∈ (P ∪D)�K, v ∈ V

(18)
∑
k∈N

xk,2�J�+1,v = 1 ∀v ∈ V

(19)Bk�v ≥
(
Bkv + �kk�

)
xkk�v ∀k ∈ N, k� ∈ N, v ∈ V

(20)Qk�v ≥
(
Qkv + qk�

)
xkk�v ∀k ∈ N, k� ∈ N, v ∈ V

(21)B|J|+k,v − Bk,v ≥ �k,|J|+k ∀k ∈ P, v ∈ V

(22)�e
k
≤ Bkv ≤ � l

k
∀k ∈ N�K, v ∈ V

(23)av ≤ Bkv,v
v ∈ V

(24)max
{
0, qk

}
≤ Qkv ≤ min

{
�v, �v + qk

}
∀k ∈ N, v ∈ V

(25)xkk�v ∈ {0, 1} ∀k ∈ N, k� ∈ N, v ∈ V
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by Constraints (19) and (20), respectively, which can be straightforwardly line-
arized. Constraints (21) ensure that pick-up nodes are visited before drop-off nodes 
for all orders. Constraints (22) prevent any time window violations and thereby also 
prevent violations of the maximum ride time, since it is included in the time window 
definition (see Appendix C). The vehicles’ time of availability is considered through 
Constraints (23). Finally, Constraints (24) prevent violations of the seat capacity.

Appendix C: time window generation for the dial‑a‑ride problem

In the following, we briefly define how the time windows for pick-up 
(
�e+
c,o
, � l+

c,o

)
 and 

drop-off 
(
�e−
c,o
, � l−

c,o

)
 are computed based on the desired time tc (Jaw et al., 1986). To 

guarantee a certain service level for all types of requests c ∈ C , we define a maxi-
mum added time tmart

c
 to the direct ride time �pc,dc from the pick-up stop pc to the 

drop-off stop dc . It consists of a constant waiting time � and a certain fraction � of 
the direct ride time. Thus, tmart

c
= � + (1 + �)�j,j+|J| . Further, each node is assigned a 

time window 
(
�e
k
, � l

k

)
 resulting from �j,j+|J|, �, � , and the trip type fcj . The respective 

formulae are given in Table 8. Finally, each node is associated with a weight qk indi-
cating the number of passengers to be picked up ( qk > 0 ) or dropped off ( qk < 0 ), 
which is given by mcj

 for each order j.
See Table 8.

Appendix D: example for the stochastic modeling component 
of the operational MDP and semi‑perfect information model

Consider a brief numerical example that illustrates the differences between the sto-
chastic modeling component of the operational MDP and the semi-perfect informa-
tion model. For simplicity, we assume a three-period time horizon T = {1,2, 3} with 
an incoming request of type c = 1 and a desired time t1 = 2 . The feasible fulfillment 
options o ∈ Of

c
= {0,1, 2,3} represent (alternative) times that the provider can offer 

in response to the customer’s desired time t1 = 2 , specifically o = 1 and o = 3 , as 
well as the no-purchase option o = 0.

We assume that the customer population is divided into two customer segments 
L = {1,2} with shares of �1 = 0.4 for segment l = 1 and �2 = 0.6 for segment l = 2 : 
Customers of segment 1 will only accept alternative times earlier than their desired 
time, and customers of segment 2 will only accept alternative times later than their 

Table 8  Computation of time windows

f
c
= 0(outbound trip) f

c
= 1(inbound trip)

k ∈ P(pick-up node) �e+
c,o

= o − �j,j+|J| − tmart
c

 , � l+
c,o

= o − �j,j+|J| �e+
c,o

= o , � l+
c,o

= o + �

k ∈ D(drop-off node) �e−
c,o

= o − � , � l−
c,o

= o �e−
c,o

= o + �j,j+|J| , 
� l−
c,o

= o + �j,j+|J| + tmart
c
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desired time. Both, of course, consider the no-purchase option. This leads to the fol-
lowing consideration sets: S1,1 = {0,1, 2} , S2,1 = {0,2, 3}.

We assume a ranking function � = (2,1, 3,0) that represents the general prefer-
ences within consideration sets, with the desired time being the most preferred 
option, followed by alternative times that are less preferred with increasing devia-
tion, and lastly the no-purchase option. For alternative times with the same devi-
ation, e.g., o = 1 and o = 3 , alternative times earlier than the desired time are 
favored.

Given an offer set g = {0,1} , we can illustrate the differences of the stochastic 
modeling component for the operational MDP and the semi-perfect information 
model.

Operational MDP: According to the shares of the segments �1 and �2 , we can 
calculate the probabilities that a customer with request type c = 1 will choose an 
option. A customer from segment l = 1 will choose option 1, since the customer is 
willing to accept a time deviation before t1 = 2 . A customer of segment l = 2 will 
choose the no-purchase option. This results in the following probabilities, derived 
from the segments’ share of the customer population:

To summarize, for the operational MDP we first observe a deterministic transi-
tion by the provider choosing an offer set g = {0,1} , followed by a stochastic transi-
tion according to the customer’s choice behavior, resulting in the choice probabili-
ties P1,o({0,1}) (see also Fig. 3).

Semi-perfect information model: Contrary to the operational MDP, in the 
semi-perfect information model, the provider knows the true segment affili-
ation of each customer request. Assuming that the customer belongs to seg-
ment l = 1 , the stochastic component of the choice behavior is eliminated: 
The provider knows with certainty ( P1,1({0,1}) = 1 ), that the customer will 
choose option o = 1 and we can omit the choice probabilities for other options 
(P1,0({0,1}) = P1,2({0,1}) = P1,0({0,1}) = 0) . This implies that this transition in 
the semi-perfect information model is completely deterministic as the provider can 
effectively assign any fulfillment option from the customer’s consideration set by 
choosing an offer set that makes this option the customer’s most preferred one in the 
offer set (see also Fig. 3).

Appendix E: feasibility check

See Fig. 16.

P1,0({0,1}) = 0.6

P1,1({0,1}) = 0.4

P1,2({0,1}) = P1,3({0,1}) = 0
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Appendix F: availability control

See Fig. 17.

Appendix G: routing control

See Fig. 18.

Fig. 16  Feasibility check function

Fig. 17  Availability control function

Fig. 18  Routing control function
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Appendix H: additional functions for anticipatory control

In the following, we first describe the initialization and second the additional computa-
tions of the anticipatory policies at each decision epoch in a more detailed fashion.

Initialization: The basic steps of the initialization are given in lines 2–4 of Fig. 4. 
First the sampled route plan is initialized as empty (line 2). Then, the set of orders 
Csam
0

 for the skeletal route planning is sampled (line 3). The pool of historical 
requests from which we sample is defined hierarchically by three attributes of the 
service day that is controlled, which are encoded by day_type . Primarily, we check 
whether the service day is a public holiday and, if so, sample from a pool of all 
public holidays. On the second level, we check whether the service day is a school 
vacation day. Finally, we evaluate the day of week. To determine the size of the sam-
ple, we multiply the average number of requests received per day over all days in the 
sampling pool with a fictive acceptance rate ARsam , which is the only parameter of 
the AC. From each of the sampled requests, we generate a sampled order by assign-
ing the desired time as the fulfillment option. In the final step of the initialization 
(line 4), we generate the initial sampled route plan from the set of sampled orders 
Csam
0

 by means of the parallel insertion heuristic.
Iterations:  At each decision epoch, there are three basic steps associated with 

solving the opportunity cost estimation subproblem in the AC (lines 7, 12, and 17). 
First, the sampled route plan is synchronized with the actual route plan (Fig. 19). 
This step ensures that the cost estimate is based on the actual positions of the vehi-
cles and the actual (tentative) routing decisions. Consequently, it is only required at 
decision epochs within the service horizon (line 1). The synchronized sampled route 
plan �sam

t
 is initialized as a copy of the actual route plan �act

t
 . Then, the sampled 

orders remaining at the preceding decision epoch Csam
t−1

 are inserted into �sam
t

 (line 3). 
Those sampled orders that cannot be feasibly inserted any more, e. g., because they 
are expired, are not included in the updated set of sampled orders Csam

t
 (lines 4–6).

See Fig. 19.
The computation of the cost estimate in the second basic step is shown in Fig. 20. 

First, the potential order resulting from the assignment of option o to request it is 
inserted into the current sampled route plan �sam

t
(o) (line 1). If the insertion is not 

Fig. 19  Route plan synchronization function
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feasible, the cost estimate is set to a sufficiently high value such that the option is 
guaranteed to not be offered (line 3), which is similar to the approach by Yang et al. 
(2016). Otherwise, the cost estimate is equal to the cheapest insertion cost in the 
sampled route plan (line 5).

See Fig. 20.
As a third step at each decision epoch, the sampled route plan is updated such 

that the newly confirmed order jt replaces one of the sampled orders (Fig. 21). This 
approach is also used by Koch and Klein (2020). If a new order is confirmed, the 
sampled route plan including this order �sam

t

(
ojt

)
 already determined in the preced-

ing step is used further (line 2). Then, each sampled order is preliminary removed 
from the sampled route plan to evaluate the associated cost savings (line 4). Finally, 
the algorithm permanently removes the sampled order j∗ with the greatest cost sav-
ing (lines 5 and 6). The reasoning behind this rule is as follows: The greater the 
cost estimate for a sampled order, the more likely a similar actual request potentially 
arriving in the future would be rejected. Therefore, sampled orders with a high cost 
estimate forecast consolidation opportunities that are very unlikely to realize and 
would distort the cost estimates for the arriving request. By incorporating this rule, 
we not only anticipate future demand but also future decision-making.

See Fig. 21.

Fig. 20  Opportunity cost estimation function (anticipatory control)

Fig. 21  Update sampled route plan function (anticipatory control)



Analyzing the impact of demand management in rural shared…

Appendix I: service area Krumbach divided in zones

See Fig. 22.

Appendix J: pricing scheme FLEXIBUS

See Table 9.

Appendix K: control behavior of non‑selective and non‑time‑shifting policies

See Figs. 23, 24, 25 and 26.

Fig. 22  Service area of Krumbach divided in zones (FLEXIBUS 2024) 

Table 9  Pricing scheme 
FLEXIBUS (FLEXIBUS 2024)

Zones 1 2 3 4 5 6 7 8

Price 2.40€ 3.60€ 4.80€ 5.50€ 6.60€ 7.70€ 8.80€ 9.90€
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