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Abstract
Background  Blood transfusion (BT) is a critical aspect of medical care for surgical patients in the Intensive Care 
Unit (ICU). Timely and accurate identification of BT needs can enhance patient outcomes and healthcare resource 
management.

Methods  This study aims to determine whether a machine learning (ML) model can be trained to predict the need 
for blood transfusion (BT) in patients on the ICU after a wide range of surgeries, utilizing only data from the ICU.

Results  This retrospective study analyzed data from 9,118 surgical ICU patients from the Amsterdam University 
Medical Centers database (UMCdb). The study included a primary analysis using data from 6 h before ICU admission 
up to 1, 2, 3, and 6 h after admission, and a secondary analysis using only the data from 6 h before ICU admission and 
only the data from the first hour after admission. The model integrated 32 relevant clinical variables and compared 
the performance of XGBoost and logistic regression (LR) algorithms.

Conclusions  The model demonstrated an effective BT prediction, with XGBoost outperforming LR, particularly for a 
12-hour prediction window. Notable differences in patient characteristics were observed among those who received 
BT and those who did not receive BT. The study establishes the feasibility of using ML for the prediction of BT in 
surgical ICU patients. It underlines the potential of ML models as decision support tools in healthcare, enabling early 
identification of BT needs.
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Background
The need for a red blood cell transfusion (BT) is one of 
the most important complications of surgery [1]. Prepa-
ration for a BT is time-consuming, since a BT requires 
the determination of the blood group and the subse-
quent examination and preparation of the donor blood. 
Furthermore, patients requiring BT after surgery often 
stay longer in the hospital than patients without BT [2]. 
Thus, it is of great importance to plan a hospital stay as 
thoroughly as possible, for financial and organizational 
reasons. Subsequently, for improved planning it would be 
beneficial to find and optimize prognostic markers that 
can predict the need for BT [3].

There are already several clinical risk scores that 
attempt to assess the risk of requiring BT, e.g., for car-
diopulmonary bypass and cardiac surgery. However, all 
scores have been created solely for a specific disease and 
often for patients in a specific clinical situation. Thus, 
their usability for the general patient population is lim-
ited [4, 5].

There have also been machine learning (ML) mod-
els developed to identify the need for BT; mostly peri-
operatively. Some studies focus on the prediction of 
the required blood volume [6–8]. Most of these studies 
provide models for intra or perioperative prediction of 
BT for specific surgery types, like for spinal surgery [9], 
pelvic fracture patients [10], cardiac surgery [11, 12], and 
gastric cancer [13]. There are only few studies targeting 
BT predictions from the perspective of an Intensive Care 
Unit (ICU) stay, which focus on gastrointestinal bleeding 
[14, 15] or cardiothoracic surgery [11]. Only two studies 
had a broader approach by targeting any kind of surgery 
in a perioperative setting [16] or all patients after hospital 
admission [17].

None of the studies assessed the need for BT after any 
kind of surgery from an ICU perspective, particularly 
not under consideration of an increasing large amount of 
data available over time on the ICU.

Therefore, this study aims to determine whether a 
machine learning (ML) model can be trained to predict 
the need for blood transfusion (BT) in patients on the 
ICU after a wide range of surgeries, utilizing only data 
measured after and shortly before ICU admission.

The focus is to provide an early-stage decision support 
that improves over time to identify the need for BT dur-
ing and after ICU admission.

Methods
Study design and database description
In this retrospective study, we developed and validated 
an ML model to predict BT requirements for surgi-
cal patients following their admission to ICU. Data was 
extracted from the Amsterdam University Medical Cen-
ters database (UMCdb) version 1.0.2, including 23,106 

admissions of 20,109 individual patients from 2003 to 
2016. The database provides various types of data, includ-
ing demographic data, data from patient monitors and 
life support devices (captured at a frequency of up to one 
measurement per minute), laboratory measurements, 
clinical observations and scores, medical procedures, 
medical tasks, medications, fluid balance, diagnosis 
groups, and clinical outcomes [18]. During model train-
ing and evaluation, we classified outcomes as follows:

 	• Positive Outcome: Patients who required a blood 
transfusion during ICU admission after surgery.

 	• Negative Outcome: Patients who did not require 
a blood transfusion during ICU admission after 
surgery.

These classifications were used to train and evaluate the 
machine learning model, ensuring that the predictions 
accurately reflect the necessity of blood transfusion in the 
given patient cohort.

Cohort selection
We included adult patients, aged 18 or older, who were 
admitted to the ICU primarily due to undergoing a sin-
gle surgical procedure. In scenarios where patients had 
multiple admissions to the ICU, their initial admission 
was considered for analysis. Additionally, patients with a 
length of stay of less than 12 h in ICU were excluded.

Outcome definition and experimental setup
The predicted outcome is defined as the first transfusion 
of red blood cells following admission to the ICU. Aim-
ing to develop an effective decision support tool for the 
ICU, we analyzed the predictive performance improve-
ment of our model with the incorporation of a progres-
sively increasing amount of data as input to the model. 
The overall model setup is described in Fig. 1.

In the primary analysis, we included data from 6 h pre-
ceding the ICU admission up to 1, 2, 3, and 6 h following 
an ICU admission (observation windows), in which we 
selected specific data points using statistical derivations. 
This data was employed to predict a need for BT at inter-
vals of 12, 24, and 48 h following ICU admission (predic-
tion windows). These prediction windows were defined 
according to the actual distribution of transfusion onset 
following ICU admission, presented in Fig.  2. The data 
shows a median transfusion onset time of 5.56  h. The 
distribution indicates the presence of a subset of patients 
experiencing longer transfusion onset times compared to 
the majority.

The secondary analyses were conducted with aim of 
better understanding the impact of the different observa-
tion windows on outcome prediction: pre-ICU and only-
ICU. In the pre-ICU analysis, we have a fixed observation 
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window in which we only included data 6 h before ICU 
admission up to the ICU admission. In the only-ICU 
analysis, we only included data from ICU admission until 
1  h thereafter. For both these analyses, we utilized the 
same prediction windows as those used in the primary 
analysis.

Variable selection
We incorporated 32 clinical variables typically measured 
in the ICU, as identified by clinicians, that are consid-
ered relevant in predicting the requirement for BT (see 
Table S1 in the online supplement). These variables have 
been previously employed in literature and were avail-
able within the utilized dataset. Input variables include 
demographic data, vital sign measurement, and labora-
tory values.

Data preprocessing
We implemented essential data preprocessing tech-
niques to develop accurate predictive models. We used 
the Z-score method for outlier removal to enhance the 
data integrity. We calculated various statistical measures 
of the clinical variables within the observation window 
to capture the dynamics of the observed features. These 
measures included the first, minimum, maximum, and 
last values of the clinical variables, which are served as 
model input features. This approach was designed to cap-
ture a detailed and dynamic profile of clinical variables 
over time, thereby providing a more nuanced under-
standing of the trends within our observation period. 
Missing values were handled by imputation methods, 
using a multiple-imputation method for numerical vari-
ables and the most frequent method for categorical 

Fig. 2  Distribution of transfusion onset time after ICU admission. The x-axis represents time in hours starting from the ICU admission and the y-axis 
represents the number of patients that are transfused at a specific time point. The curve shows the kernel density estimation of transfusion onset time

 

Fig. 1  Graphical schema of the model setup. Data from the observation windows using 1, 2, 3, and 6 h after admission are used to predict a BT in the 
prediction windows consist of an increasing 12, 24, and 48 h after admission
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variables. To ensure fair treatment of numerical features, 
we scaled the data into the range of (0,1).

Model development and evaluation
We utilized two machine learning algorithms, XGBoost 
(eXtreme Gradient Boosting) and LR (Logistic Regres-
sion), to predict the need for BT. XGBoost is a powerful 
ensemble learning method that combines multiple weak 
prediction models, such as decision trees, to create a 
robust and accurate predictive model. On the other hand, 
LR is a statistical modeling technique that estimates the 
probability of an event occurring based on input vari-
ables and serves as a baseline.

We utilized 5-fold cross-validation to train and evalu-
ate the model, dividing the dataset into five folds. Dur-
ing each iteration, four folds were used for model 
training, and the remaining one was employed for evalu-
ation. To address the potential class imbalance biases, we 
employed the StratifiedKFold method. This ensured that 
each fold maintained the proportion of samples for each 
class, avoiding biased performance evaluation.

The dataset includes an imbalanced ratio of posi-
tive and negative outcomes. Depending on the different 
prediction and observation windows, the positive out-
come varies from 5 to 17%. This poses a major challenge 
for machine learning models to effectively distinguish 
between positive and negative outcomes. To address class 
imbalance in our dataset, we initially applied the class 
weight method to favor the minority class. However, 
this approach didn’t yield the desired results. We then 
switched to using the Youden index, which improved 
performance by optimally balancing sensitivity and spec-
ificity. Based on its superior effectiveness, we’ve decided 
to solely use the Youden index for enhancing our model’s 
performance.

We employed SHAP values (Shapley Additive exPlana-
tions) to gain insights into the output generated by the 
XGBoost model. SHAP values offer a comprehensive 
interpretation of the model’s predictions by assigning 
importance scores to each input variable. These scores 
help us understand the influence of each feature on the 
predicted transfusion need in surgical patients, enabling 
us to identify the key factors driving the prediction. By 
employing XGBoost, LR, and SHAP values, we aimed to 
develop a robust predictive model while gaining valu-
able insights into the underlying factors contributing to a 
blood transfusion need.

Clinical variables are described according to the out-
come using mean (± SD) or n (percentage), as appropri-
ate. Mann–Whitney U-test or χ2 test were employed as 
appropriate. The predictive performance is presented 
using the Area Under the Receiver Operating Charac-
teristic Curve (AUROC), the Area Under the Precision-
Recall Curve (AUPRC), the Accuracy, the Sensitivity, the 

Specificity, Matthews Correlation Coefficient (MCC), 
and Brier Score. Furthermore, the Positive Rate (PR) 
(%) is provided as an indicator of data imbalance in each 
experiment.

Results
Following the application of our inclusion criteria, a 
cohort of 9,118 surgical patients were selected for this 
study from the original UMCdb. Of those, 2,064 patients 
underwent a BT whereas 7,054 patients did not receive 
a BT. Detailed patient characteristics of these two sub-
groups are shown in Table 1.

While the distribution of demographic parameters 
appears to be consistent between both groups, most 
other variables had a significant difference. Patients who 
required BT were more likely to require mechanical ven-
tilation, had a prolonged stays on the ICU, and a higher 
rate of in-hospital mortality. BT needs also vary depend-
ing on the type of surgery.

Feature correlation
Figure  3 illustrates the correlation between all clini-
cal variables in the overall patient selection. The stron-
gest correlation is shown among RBC, Hb, Ht, NIMBP, 
NISBP, and NIDBP, which is to be expected, as different 
blood pressure measurements also have a strong corre-
lation. The correlation coefficient between outcome (BT) 
and RBC, Lactate, Platelets, Ht, and Hb is slightly higher 
than any other set of variables.

Primary analysis using pre-ICU and in-ICU data
In the primary analysis, the model input consisted of data 
ranging from 6 h before to an increasing period after ICU 
admission to predict a BT need after 12, 24 and 48 h after 
admission. In most experiments, XGBoost outperforms 
LR, but not considerably. Overall, the best performing 
XGBoost models target a 12-hour prediction window, 
as shown in Table 2. Figure 4 further illustrates the trend 
resulting from the AUROC analysis.

The results from Table  2 indicates a progressive 
improvement in the XGBoost’s performance as the 
observation window extends from 1 to 3 h, likely due to 
increased volume of the data available over longer obser-
vation period. Interestingly, with an observation window 
of 6  h, the performance decreases, which is consistent 
with the decreasing number of BT onset. The only excep-
tion is in the observation window of 6  h with a predic-
tion window of 12  h, where LR outperforms XGBoost 
with an AUROC of 0.86 ± 0.02 compared to 0.83 ± 0.02 
in XGBoost. In contrast, with an increasing prediction 
window, the performance of the model tends to decline. 
This is anticipated because predicting over longer peri-
ods inherently becomes more challenging, leading to 
a drop in performance. These trends are similar in the 
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other metrics, hence partially less clear. The MCC, a met-
ric that is particularly suitable for imbalanced data and 
ranges from − 1 (worst) to 1 (best), yields results that cor-
respond well with the AUROC results. Results of the best 
performing model are also illustrated as AUROC and 
AURPR in Fig. 5.

Secondary analysis using pre-ICU or only-ICU data
Table 3 shows the performance results of the secondary 
analysis. If the model is based solely on the data collected 
after ICU admission, the performance of the models is 
only marginally lower compared to the primary analysis 
for all metrics. In contrast, if only data documented prior 
to the ICU admission is used, the predictability is consid-
erably lower.

Variable ranking
We employed the SHAP algorithm to gain valuable 
insights into the underlying factors contributing to 
transfusion requirements in surgical patients. Figure 5C 
ranks the top-10 variables that significantly impacted 

the performance of the most effective XGBoost model. 
In this regard, the variables that consistently emerged as 
influential across various analyses include Red Blood Cell 
count (RBC), hemoglobin (Hb), hematocrit (Ht), plate-
lets, and heart rate (HR).

Discussion
Principal findings
This study investigated the application of machine 
learning algorithms for the prediction of red blood cell 
transfusions (BT) in patients admitted to the ICU after 
any kind of surgery. In contrast to most related work, 
we sought to apply BT prediction to a large cohort of 
patients with different surgery types, but still achieved 
comparably good results. We have incorporated an 
increasing amount of data to improve predictive perfor-
mance with the increasing time the patient is on ICU. We 
have integrated most of the promising clinical variables 
from the literature and clinical expertise, with a focus on 
the variables typically measured in the ICU as opposed to 
those measured perioperatively.

Table 1  Patient characteristics. Socio-demographic and encounter parameters for all included patients and divided by positive and 
negative outcome for UMCdb. See online supplement table S1 for other measurements
Variables All (n = 9,118) BT (n = 2,064) Non-BT (n = 7,054) p-value
Demographics
Age, years, mean (SD)# 63.1 (14.5) 66.8 (13.4) 62.02 (14.6) 0.89
Female, n (%) 2,960 (32) 687 (33) 2,273 (32) 0.77
Encounter variables*
Length of stay, hour, mean (SD) 71 (175.5) 133 (281.2) 52.8 (123.3) < 0.05
In hospital death, n (%) 1,938 (21) 603 (29) 1,335 (18) 0.98
BT Time since admission, hours, mean (IQR)
BT 4.9 (2.5–9.5) 4.9 (2.5–9.5) N/A N/A
Surgery type, n (%) 0.69
Cardiothoracic surgery 5,382 (59) 1,441 (70) 3,941 (55) 0.65
Neurosurgery 962 (10) 44 (2) 918 (13) 0.4
Gastrointestinal surgery 786 (8) 152 (7) 634 (9) 0.08
Vascular surgery 753 (8) 207 (10) 546 (7) 0.8
Other surgery 1,235 (13) 220 (10) 1,015 (14) 1
Measurements, mean (SD)
Height, mean (SD)# 174.9 (9.7) 173.8 (9.5) 175.2 (9.7) 0.08
Weight, mean (SD)# 81.5 (15) 79 (13.7) 82 (15) 0.25
Mechanically
ventilated, n (%)

7,021 (77) 1,960 (95) 5,061 (71) 0.37

Heart rate, bpm 84 (73.0–97.0) 86 (75–101) 82.0 (72.0–94.0) < 0.05
SBP, mmHg 124 (108.0–142.0) 111 (98.0–127.0) 124 (108.0–143.0) < 0.05
Base Excess, mmol/l 2.2 (0.8–4.4) 2.0 (0.6–4.1) 2.0 (0.8–3.8) 0.40
Ht, l/l 0.3 (0.3–0.4) 0.3 (0.3–0.3) 0.3 (0.3–0.4) < 0.05
Hb, mmol/l 6.4 (5.7–7.3) 6.1 (5.4–6.9) 6.8 (6.0–7.7) < 0.05
Platelets, ×109/l 184 (130.0–261.0) 162 (115.0–230.0) 194 (143.0–265.0) < 0.05
RBC, ×1012/l 3.6 (3.2–4.1) 3.3 (2.9–3.9) 3.8 (3.4–4.3) < 0.05
P-values refer to any difference between subgroups. Abbreviations: bpm, beats per minute; BT, blood transfusion; Hb, Hemoglobin; Ht, Hematocrit; IQR, interquartile 
range; l, liter; mmHg, millimeters of mercury; mmol/l, millimoles per liter; n, Number; RBC, Red blood cells; SBP, Systolic Blood Pressure; SD, standard deviation

* Variables not included as input features
# Mean and SD are calculated using weighted mean and weighted SD
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Overall, the results demonstrate that conservative 
ML strategies can be used in a broad setting to pro-
vide healthcare professionals with early identification of 
patients requiring BT in the ICU.

Related work
ML algorithms are already being applied to patients in 
the perioperative setting. Similar to our study, Walczak et 
al. [16] conducted a study using data from the American 
College of Surgeons National Surgical Quality Improve-
ment Program (NSQIP) participation use files (PUF) and 

Table 2  Performance metrics of XGBoost model on the primary analysis. Only the 12 h prediction window is included. (OW, 
Observation window, PR, positive rate)
OW AUROC AUPRC Accuracy Sensitivity Specificity MCC Brier Score PR (%)
1 0.82 ± 0.01 0.40 ± 0.02 0.71 ± 0.03 0.79 ± 0.03 0.70 ± 0.04 0.35 ± 0.02 0.12 ± 0.00 13
2 0.84 ± 0.01 0.40 ± 0.01 0.72 ± 0.04 0.83 ± 0.05 0.70 ± 0.06 0.36 ± 0.02 0.11 ± 0.00 12
3 0.85 ± 0.01 0.40 ± 0.05 0.74 ± 0.03 0.83 ± 0.02 0.72 ± 0.04 0.36 ± 0.03 0.10 ± 0.00 10
6 0.83 ± 0.02 0.26 ± 0.05 0.72 ± 0.10 0.82 ± 0.08 0.71 ± 0.10 0.26 ± 0.04 0.07 ± 0.00 5

Fig. 3  Correlations between clinical variables. The darker values are highly correlated, whereas red rectangles show a positive correlation, and blue 
rectangles a negative correlation
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utilizing neural networks. Their prediction performance 
is slightly lower than ours. However, they do not describe 
the point in the patient’s stay at which the prediction is 
made. More studies have been conducted that also pre-
dict BT in the perioperative setting, each, however, 
targeting a very specific surgical procedure and are there-
fore not fully comparable to our study design [3, 9–11, 
13]. Apart from this, all of them either have a similar or 
a worse performance compared to ours, although these 
models were created very specifically for single diseases 
as opposed to all kinds of surgeries in our cohort.

There are only a few related works with a focus on 
the ICU, which also only emphasize on internal medi-
cine topics as opposed to surgery. For example, Levi et 
al. [14] proposed an ML algorithm for the prediction of 
rebleeding in patients with gastrointestinal (GI) bleed-
ing as a binary classification task. Similar to our study, 
they trained on an increasing amount of data using 
observation windows of 4, 5, 6, 7, and 8 h with ongoing 
time. Their best performing model was trained using a 
6-hour observation window and achieved an AUROC 
of 0.81. The most important variables were hematocrit, 
the amount of transfused blood, the hematocrit trend, 
and blood pressure. Similar to Levi et al. [14], Shung et 
al. [15] addressed BT in GI bleeding as a binary classifi-
cation task. They proposed a deep learning algorithm to 
predict the first transfusion after ICU admission, with 

data split into 4-hour windows. They use data from one 
4-hour observation window to predict a transfusion need 
in the subsequent 4-hour prediction window. Their best 
model achieved an AUROC of 0.81 and was therefore 
slightly worse than ours.

The only paper with a similar focus on the BT predic-
tion on a broad set of patients, authored by Mitterecker 
et al. [17] using data until the end of anamnesis directly 
after hospital admission. Among others, they investi-
gated the performance of four different machine learn-
ing algorithms in predicting transfusions and massive 
transfusions (binary classification), and the number of 
transfusions (regression task). The most important clini-
cal variables in their models were hemoglobin on admis-
sion, age, diagnoses of iron deficiency and anemia, and 
the Charlson Comorbidity Index. They report to have 
achieved prediction with an AUROC of 0.96, which 
is much higher than the AUROC in any other related 
works.

The studies described above [14, 15, 17] have also 
translated BT prediction into a binary classification task. 
However, none of these studies focused on predicting BT 
for all surgical patients from an ICU perspective, with the 
amount of data increasing with increasing duration the 
patient stays at the ICU.

Fig. 4  Comparison of the AUROC. Various observation and prediction windows divided by (A) the primary analysis and (B) the secondary analysis
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Modeling approach
XGBoost generally exhibited a better performance than 
LR across various performance metrics. Nevertheless, the 
performance difference between the two models was not 
substantial. Both models showcased promising results, 
highlighting the potential effectiveness of machine learn-
ing for BT prediction.

Overall, the primary analysis demonstrates better per-
formance compared to the pre-ICU and only-ICU anal-
yses. The performance difference between pre-ICU and 
only-ICU reflects the different condition of the patient 
and the patient data at different times. The results under-
score the importance of careful model evaluation and 
the need for context-specific adjustments when applying 
machine learning in the clinical setting.

We explored the impact of observation and predic-
tion windows on the model performance. With longer 
observation periods, both models showed improved per-
formance. This is likely due to the accumulation of more 

patient data, enabling the models to capture more mean-
ingful patterns and trends. Conversely, as the prediction 
window increased, both models faced greater challenges 
in accurately predicting blood transfusion needs. Overly 
long prediction windows, however, inherently involve 
increased uncertainty, making the task more complex as 
shown with the 6-hour observation window. This find-
ing underscores the importance of selecting appropriate 
observation and prediction windows when implementing 
machine learning models in clinical settings.

Clinical implications
The successful application of machine learning in pre-
dicting BT for ICU patients after surgery may have sev-
eral clinical implications. By identifying patients at risk 
of a transfusion at an early stage, appropriate measures 
could be initiated proactively, such as optimizing blood 
supply management, e.g. in terms of early blood group 
analysis and the possible automation of a reservation at 

Table 3  Performance metrics of XGBoost model on the secondary analysis. Only the 12 h prediction window is included. (OW, 
Observation window, PR, positive rate)
OW AUROC AUPRC Accuracy Sensitivity Specificity MCC Brier Score PR (%)
pre- ICU 0.69 ± 0.04 0.31 ± 0.04 0.62 ± 0.12 0.68 ± 0.17 0.60 ± 0.17 0.22 ± 0.06 0.14 ± 0.00 15
only-ICU 0.81 ± 0.00 0.38 ± 0.01 0.69 ± 0.05 0.81 ± 0.07 0.67 ± 0.06 0.33 ± 0.01 0.12 ± 0.00 12

Fig. 5  Results of the best XGBoost model. Illustrated are A) the AUROC, B) the AUPRC, and C) the variable ranking of the XGBoost model using SHAP 
algorithm reported for 3-hour observation window and 12-hour prediction window
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the blood bank. It is also advantageous to be able to make 
predictions with as little information as possible using 
data from the specific department. For example, when 
transferring patients from surgery to the ICU, transfer 
errors can occur in exceptional cases, which could be 
compensated for with such an algorithm with regard to 
transfusions. A further and possibly main benefit could 
be knowing which patient does not require a blood trans-
fusion. If it can be predicted that the patient will not 
require a transfusion and if a bed in the ICU is urgently 
needed for another patient, a patient could be transferred 
to the normal ward earlier. Of course, all the facts would 
have to be considered, and the prediction algorithm 
would have to be very reliable. Finally, such an algorithm 
could simply be added to the information system as a 
decision support system that provides alarms to staff, if 
necessary.

Variable importance
The list of the most important variables included in the 
XGBoost model is aligned with the clinical guidelines. 
The hemoglobin within the red blood cells binds oxygen 
and carries it to the cells. The hemoglobin levels deter-
mine the blood’s oxygen-carrying capacity. When hemo-
globin levels are low, named anemia, the blood’s ability to 
transport oxygen to tissues is reduced. Thus, hemoglobin 
measurements serve as a valuable indicator of a patient’s 
readiness for surgery and recovery progression post-
surgery. Hematocrit quantifies the percentage of blood 
volume that comprises RBC. A decrease in hematocrit 
values can be indicative of anemia. Monitoring hemato-
crit values, therefore, provides additional confirmation 
of a patient’s anemic status, complementing the insights 
taken from hemoglobin measurements. The platelet 
count plays a crucial role in coagulation, hence forming 
an integral part of the body’s defense against excessive 
bleeding. A reduced platelet count could signify a height-
ened risk of bleeding, an important consideration in the 
surgical context. Lastly, heart rate serves as a direct mea-
sure of cardiac rhythm and an indicator of cardiovascu-
lar function and overall health status. An elevated heart 
rate might suggest physiological stress or compensatory 
responses to conditions such as anemia.

Each of these variables measures a unique aspect of the 
body’s physiological response to surgical interventions. 
Taken together, these variables constitute a comprehen-
sive physiological profile that is invaluable for predicting 
blood transfusion risks in surgical patients.

Limitations and future directions
While the results are promising, this study has some 
limitations. First, the dataset’s retrospective nature may 
introduce inherent biases and limit the generalizability 
of the findings. Future research could involve a larger 

and more diverse patient cohort to validate and extend 
our findings. Moreover, incorporating additional clinical 
variables and patient-specific factors may enhance the 
predictive accuracy of the models further.

Causal inference aims to determine the actual effect of 
a particular factor or intervention on an outcome, rather 
than just identifying associations. This is especially rel-
evant in clinical settings where understanding the true 
causal relationships can significantly influence treatment 
decisions and patient care strategies [19]. In this study, 
however, we purely focused on predictive performance, 
which is not equivalent to causal inference, but is suffi-
cient for the use case.

Another limitation of our study is that we did not 
directly account for BTs occurred during surgeries. These 
intraoperative transfusions can influence the postopera-
tive BTs. While we attempted to indirectly account for 
this by including data up to six hours before ICU admis-
sion, which may encompass perioperative data, this 
approach does not precisely isolate the impact of intraop-
erative transfusions. Therefore, our model might not fully 
capture the effects of BTs administered in the OR. This 
limitation highlights the need for future research to inte-
grate comprehensive perioperative data to enhance the 
predictive accuracy of BTs during ICU stays.

Conclusion
With this study, we showed the feasibility of using 
machine learning to predict blood transfusions (BT) in 
patients admitted to ICU after any kind of surgery. We 
also showed an increasing prediction performance with 
increasing data available after time the patients stay at 
the ICU. Challenges remain, particularly regarding the 
data imbalance.
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