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Abstract

Due to the progress of Digital Production and the Industrial Internet of Things, continuous shop floor data is available with high
coverage, accuracy, and in high detail for Production Planning and Control software. Detailed Capacity Planning and Scheduling
(DCPS) can benefit by applying the Digital Twin concept and Machine Learning for an accurate and automated virtual
representation of the production resource. However, the effort and difficulty required for data connection, data preparation, and
modelling are high. Connection standards enable interoperability and plug-and-play software, and constitute an opportunity to
reduce the effort and difficulty. This article compiles requirements regarding the virtual representation of the production resource
for DCPS. It then proposes the concept of a plug-and-play, Machine Learning Digital Twin to meet these requirements. The
elements of the according Digital Twin software are described, and the need for future research is identified.
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1. Introduction

Detailed capacity planning and scheduling (DCPS) is a subtask of Production Planning and Control (PPC), at which
production operations are allocated to production resources, capacity demand and availability are determined and
aligned, and exact operation dates are scheduled [1, 2]. By this, DCPS improves the on-time delivery rate and the
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utilisation of production resources. DCPS also increases the probability of actual shop floor adherence to the
production plan. Buffer times and subsequent work-in-progress inventory can therefore be kept at a low level, and
suboptimal production plans resulting from replanning are avoided [1]. In sum, DCPS increases the logistical
performance and efficiency of production systems. These goals are strategically important for production
organisations [3]. The deployment of PPC software which include DCPS functionalities, such as Manufacturing
Execution Systems (MES) and Advanced Planning and Scheduling systems (APS), is widespread [4].

The primary production resources that operations are allocated to in DCPS are work units such as machines or
assembly stations [2, 5]. They are virtually represented in PPC software, where models map the resource properties
which are relevant for planning and predict capacity parameters, such as production time and technical efficiency. The
effectiveness of DCPS strongly depends on predicted capacity parameters corresponding with actual shop floor data,
and knowledge-based estimates often do not provide sufficient accuracy [1, 6]. Production organisations see the
improvement of the accuracy of planning parameters as a main measure to improve their on-time delivery rate [7].

With the progress of Digital Production and the Industrial Internet of Things, shop floor data acquisition and
network access of data acquisition systems have increased. Continuous shop floor data is available with high coverage,
accuracy, and in high detail to be connected to and used in software [8]. PPC is seen as a main beneficiary of the
improved data availability [9]. Following the idea of Industry 4.0, shop floor data can be deployed to apply the Digital
Twin concept and data-driven modelling through Machine Learning, and thereby establish an accurate and automated
virtual representation of the production resource. Digital Twins in production entail a synchronisation of the virtual
representation and the real-world object [10, 11]. They typically use a data connection to update states and adapt
properties that are required for decision support based on continuous shop floor data, e.g. through data-driven
modelling [12, 13]. However, the high effort and difficulty required for data connection, data preparation, and
modelling represent burdens for applying the Digital Twin concept and Machine Learning [14]. Approaches described
in scientific literature do not yet address a corresponding solution for DCPS. At the same time, the development of
industrial connection standards has advanced, and their adoption has increased [15]. They enable interoperability and
plug-and-play software, and constitute an opportunity to address the described challenge [14].

This article proposes the concept of a plug-and-play, Machine Learning Digital Twin for the virtual representation
of the production resource for DCPS. Section 2 discusses related work. Section 3 then presents application scenarios
that illustrate the benefit of a data-driven modelled Digital Twin. Section 4 compiles the requirements regarding the
virtual representation of the production resource for DCPS that are stated in scientific literature, which are then verified
by empiric case studies. Based on the requirements, section 5 presents and describes the solution concept. The
requirements and the concept are evaluated by expert interviews. Section 6 discusses the concept. In conclusion,
section 7 identifies the need for future research to develop a Digital Twin software in accordance with the concept.

2. Related work

Several approaches are described in scientific literature regarding the virtual representation of the production
resource in PPC software and the modelling of capacity parameters. The data-driven approaches of [6, 16—18] deploy
shop floor data for an accurate modelling of capacity parameters. Capacity parameters are modelled as expected
values, distribution functions, or univariate functions that describe a known correlation to an influencing factor such
as the product group. Multiple and dynamic influencing factors like production conditions are not considered. [19—
21] use Machine Learning to model multivariate functions, where correlations to influencing factors are unknown.
The adaptive approaches of [22-25] emphasise the change of resource properties over time. They use a data connection
to adapt models of capacity parameters based on continuous shop floor data and can be regarded as Digital Twins. In
the approach of [26], the need to remodel capacity parameters is identified by deviations from shop floor data. The
modelling of capacity parameters is then carried out knowledge-based, assuming it to be more accurate than data-
driven modelling. Approaches that are explicitly described as Digital Twins in the context of PPC use a data
connection to the production resource to update the state or to execute functionalities, but not to map properties [27,
28]. [29, 30] describe the benefit and requirements of applying the Digital Twin concept to represent production
resources and the production system in PPC software. Capacity parameters of production resources are stated as
required properties to be mapped by a Digital Twin for PPC by [31]. [32-34] define methods and building elements
to develop Digital Twins for PPC.
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The presented data-driven and adaptive approaches are effective to accurately model capacity parameters.
However, the high effort and difficulty required for data preparation and modelling, as well as for the implementation
of an automated software, which uses a data connection and Machine Learning algorithms, are stated. The approaches
do not yet address a corresponding solution and plug-and-play software.

3. Application scenarios

Current approaches of production organisations regarding the virtual representation of production resources for
DCPS often reveal shortcomings. Three real-world examples from different industries that are described in the
following illustrate these shortcomings, as well as benefits of a Digital Twin with data-driven modelling of capacity
parameters. They represent potential application scenarios.

Application scenario 1: An organisation that produces strip steel carries out demand planning and rough scheduling
in Enterprise Resource Planning (ERP) software, and conducts DCPS for some of the production lines in an APS.
While delay times are modelled data-driven, the modelling of production times is knowledge-based or default values
based on the production technology, like feed. The approach proves to be inaccurate, the default values reflecting
ideal values that do not include unrecorded short delay times. As a result, on-time delivery rates do not meet
expectations and work-in-progress inventory is high, as planning inaccuracies are compensated by buffer times.

Application scenario 2: An organisation that produces automotives uses Discrete Event Simulation (DES) to carry
out capacity planning and ensure that the final assembly lines and their material supply systems meet the capacity
demand of the production plan. Modelling of capacity parameters is knowledge-based, or based on supplier
information and technical data sheets. These parameters often prove to be inaccurate. An alternative modelling
approach is data-driven based on shop floor data from the corresponding or a similar assembly line. The provided data
is extensive and heterogeneous. The effort required for data provision, data preparation, and modelling often takes up
much or exceeds the available time and resources to carry out DES-based capacity planning, and is re-conducted for
each capacity planning initiative.

Application scenario 3: An organisation that produces semiconductors optimises their DCPS procedure to improve
on-time delivery rate and resource utilisation by applying Reinforcement Learning. A virtual agent is trained based
on a DES model, resulting in an optimised DCPS procedure. The procedure is then transferred to the real-world DCPS.
A challenge when applying Reinforcement Learning is the simulation-to-reality gap, which refers to the deviation
between the simulation model and the actual production system, which is also caused by inaccurate and non-adaptive
mapping of properties [35].

4. Requirements

This section compiles requirements regarding the virtual representation of the production resource for DCPS that
are stated in the reviewed scientific literature. The requirements are verified and amended based on two empiric case
studies. Case study 1 examines the bottleneck resource group within a production line of an organisation that produces
strip steel. Shop floor data from the production resources is recorded based on manual machine operator entries,
including production time, setup time, delay time, good quantity, and scrap and rework quantity. It is compared to
capacity parameters that were predicted for planning in the APS, and a DES is used to analyse the effects of deviations.
The DES model is deployed by the production organisation for factory planning and was validated by metrics
comparing it to the real-world production system, as well as by expert analysis. Case study 2 examines an additive
manufacturing workshop that is operated in a scientific institute. Shop floor data is recorded based on time series data
from sensors and event data created by the machine control. By that, production times and delay times are recorded
in a MES, as well as production parameters and production conditions. The technical efficiency of one machine is
analysed along with correlations to production parameters and production conditions. The requirements were
evaluated by four questionnaire-based interviews with PPC experts from scientific institutes and production
organisations, and subsequently adjusted. The requirements are grouped by the main aspects of integration in the
procedure of DCPS (section 4.1), sufficiency (section 4.2), accuracy (section 4.3), and effort and difficulty to create
and maintain (section 4.4). Section 4.5 provides a summary of the requirements with a reference to their description
in the previous sections.
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4.1. Integration in the procedure of DCPS (R1)

A systematic DCPS is usually carried out with the support of PPC software [1, 2]. APS is a dedicated software for
DCPS, while MES typically entail DCPS functionalities [5]. ERP software generally support demand planning and
rough scheduling, additional functionalities for DCPS are sometimes included. DES is also be used to support DCPS.
The virtual representation of the production resource must provide capacity parameters to these types of PPC software
(R1.1). Production organisations potentially use predicted capacity parameters of a specific production resource in
several software also for other capacity planning tasks, like factory planning or demand planning and rough
scheduling. The predicted capacity parameters must then correspond for consistent and effective planning (R1.2).
Relevant influencing factors may only be included in the modelling of capacity parameters when they are available
for planning in the deployed PPC software or the virtual representation (R1.3).

4.2. Sufficiency (R2)

DCPS predicts the capacity demand of production operations, capacity availability of production resources, and
the dates of operations [2]. Capacity parameters that are relevant for this must be provided by the virtual representation
of the production resource (R2.1). DCPS must be executable when required, a low accuracy of the predicted capacity
parameters is preferred over capacity parameters not being provided at all. That is the case when relevant influencing
factors cannot be determined at the time of planning or no applicable shop floor data has been recorded (R2.2, R3.3).
A resource schedule must provide the resource’s availability, excluding already allocated production and maintenance
operations, and non-operation times. For the allocation of production operations, resource capabilities and production
costs must be provided by the virtual representation, as well as restrictions, e.g. lot sizes or sequence rules (R2.4) [31].

4.3. Accuracy (R3)

The deviation of capacity parameters predicted for planning from actual shop floor data must be low for effective
DCPS (R3.1) [6, 17]. In case study 1, the mean deviation of the predicted production time per unit from the recorded
shop floor data is -18% (Fig. 1). The mean absolute deviation is 31%. An evaluation through DES shows that a
deviation of -18% of the predicted production time leads to a 2,6% reduction of the on-schedule delivery rate for the
production line, when not compensated by buffer times and subsequent work-in-progress inventory. The shop floor
data in case study 1 show a high variance, as shown in fig. 1. More than 10% of the recorded production time per unit
fall 47% or more below the mean, another 10% exceed the mean by 65% or more.
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Fig. 1. Recorded shop floor data of the bottleneck resource group in case study 1 (own figure).
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Some approaches described in scientific literature address the variance by modelling capacity parameters as
distribution functions and determining a robust DCPS result through simulation experiments [16, 17]. The variance
of actual capacity parameters decreases when linked to relevant influencing factors, and the accuracy of capacity
parameters predicted for planning must be improved by considering multiple influencing factors (R3.2). That is
addressed in approaches that model capacity parameters as functions to correlating influencing factors [20, 21]. In
case study 2, the inert gas filter differential pressure, which is an indicator of contamination that leads to delay times,
shows a linear correlation to the technical efficiency with a coefficient of -0.69, as shown in table 1.

Table 1. Correlation coefficients of several production parameters and conditions with technical efficiency in case study 2.

Production parameter/condition Correlation coefficient with technical efficiency
Inert gas flow velocity 0.22
Inert gas filter differential pressure -0.69
Temperature in build envelope -0.04
Pressure in build envelope 0.13

The accuracy of the modelled capacity parameters must be improved by adapting to their change over time which
is not reflected by functions to correlating influencing factors (R3.3). That is addressed in adaptive approaches for
modelling capacity parameters [22, 23]. Such changes are caused by new product properties, changes in production
parameters, or changing production conditions. In case study 2, the simple moving average of the technical efficiency
gradually increases by about 4 percentage points over the course of 4 months (fig. 2).
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Fig. 2. Simple moving average of technical efficiency in case study 2 (own figure).
4.4. Effort and difficulty to create and maintain (R4)

The high effort and difficulty are main challenges for creating and maintaining virtual representations of production
resources with the required accuracy [16, 20, 25]. The modelling requires expert knowledge of the production system
and potentially data-driven modelling competencies, which are scarce [14]. High personnel time and competencies
are also needed to provide and prepare shop floor data to support the modelling of capacity parameters. Shop floor
data is often unstructured and provided in various types of communication protocols and data formats by
heterogeneous data acquisition systems. Ultimately, the adaption of models of capacity parameters and provision to
PPC software adds to the effort needed. To avoid that capacity parameters are not being modelled in the required
accuracy, the effort and difficulty for data provision, data preparation, and modelling must be low (R4.1, R4.2).
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4.5. Summary

The compiled requirements are listed in table 2. The solution concept proposed in Section 5 references these
requirements.

Table 2. Requirements for the virtual representation of the production resource for DCPS.

Requirement Description

R1 The virtual representation must be integrated in the procedure of DCPS.

RI1.1 Capacity parameters must be usable in PPC software, e.g. ERP, MES, APS, or DES.

R1.2 Capacity parameters must be provided to all deployed capacity planning software.

R1.3 Functions for capacity parameters may only include correlating influencing factors that are available in

the deployed PPC software or the virtual representation.
R2 The virtual representation must be sufficient for DCPS.

R2.1 Models of capacity parameters must enable the prediction of capacity demand, capacity availability, and
dates of production operations.

R2.2 Capacity parameters must be predicted also when influencing factors cannot be determined at the time of
planning.
R2.3 Capacity parameters must be predicted for planning also when no applicable shop floor data has

previously been recorded.

R2.4 A resource schedule, resource capabilities, restrictions, and production costs must be provided for the
allocation of production operations.

R3 The virtual representation must be accurate.

R3.1 The deviation of predicted capacity parameters for planning from actual shop floor data must be low.

R3.2 Correlations to influencing factors must be mapped in functions for capacity parameters.

R3.3 Capacity parameters must be modelled continuously.

R4 The effort and difficulty to create and maintain the virtual representation must be low.

R4.1 The personnel time spent and the competencies required for modelling capacity parameters must be low.

R4.2 The personnel time spent and the competencies required for providing and preparing data must be low.
5. Concept

Based on the compiled requirements, this section proposes a solution concept to meet these requirements. It is
referred to as a plug-and-play, Machine Learning Digital Twin of the production resource for DCPS. The Digital Twin
adapts properties of the production resource based on continuous shop floor data. The Digital Twin software is
automated through a data connection, a data transformation algorithm, and a Machine Learning algorithm.
Additionally, it is plug-and-play capable by supporting connection standards and including a uniform, generally
applicable data model and Machine Learning algorithm. The data model consists of a resource-agnostic data structure
and standard capacity parameters. The Digital Twin software is accompanied by a method to support the manual steps
of data preparation. The solution concept was evaluated and adjusted based on four semi-structured, questionnaire-
based expert interviews along with the requirements.
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An overview of the proposed Digital Twin is outlined in fig. 3. It is based on the building elements of Digital Twins
for PPC of [33], as well as the Cross-Industry Standard Process for Data Mining, a standard methodology for data-
driven modelling [36]. The continuous shop floor data from the data acquisition system is transformed by the algorithm
and recorded in the resource-agnostic data structure. The Machine Learning algorithm continuously models standard
capacity parameters for PPC software that entail DCPS functionalities. The Digital Twin software has a data
connection to the data acquisition system and the PPC software and supports connection standards.

= — PPC software
_|j:|:|] Detailed Capacity Planning and Scheduling

— Digital Twin software -————————————A—— ———————————————————

— Virtual representation of the production resource —

Models of standard capacity parameters

i

— Machine Learning algorithm
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F\_—L Resource-agnostic data structure {§}
E ’7Dala transformation algorithm 7

upport of connection standards

Data connection

:}
{3
B

' Data acquisition system
CN F

Continuous shop floor data

Fig. 3. Plug-and-play, Machine Learning Digital Twin of the production resource for DCPS (own figure).
5.1. Resource-agnostic data structure

The continuous shop floor data from the data acquisition system in the form of time series and event data is cleaned
and constructed, and then recorded in a resource-agnostic data structure usable for the supervised Machine Learning
algorithm. A data transformation algorithm automises these data preparation steps (R4.2). The resource-agnostic data
structure entails the capacity parameters itself, as well as influencing factors. The influencing factors are recorded as
numeric or categorical data that describe product properties, production parameters, and production conditions.
Features are extracted from time series data of production conditions to ensure consistency between modelling and
applying the models in planning. The data transformation algorithm is configured with the help of a configuration
software component to reduce the scope of software coding. Before applying the Digital Twin software, influencing
factors are selected which are known to be independent from other considered influencing factors and sensitive
towards the capacity parameters. This dimensional reduction improves the confidence of the modelling result. Only
influencing factors are selected that are available in the deployed PPC software or the virtual representation (R1.3).
The manual steps of data preparation before applying the Digital Twin software are supported by the data preparation
method, which describes the verification of the shop floor data quality, the selection of influencing factors to be
recorded, and the configuration of the data connection and the data transformation algorithm.
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5.2. Machine Learning algorithm

The Machine Learning algorithm automises the modelling of capacity parameters (R4.1). Supervised Machine
Learning methods are suitable and mature to carry out regression analysis to determine models that predict parameters
[37]. The Machine Learning algorithm maps expected values, distribution functions, and functions to correlating
influencing factors for the capacity parameters as recorded in the resource-agnostic data structure (R3.1). If required
the influencing factors are normalised, encoded, or discretised. The modelling is continuous and adapts to the
continuous shop floor data (R3.3). Based on the resource-agnostic data structure, the uniform, generally applicable
Machine Learning algorithm enables plug-and-play modelling of standard capacity parameters (R4.1). The Machine
Learning algorithm does not presume a specific type of mathematical functions to correlating influencing factors for
capacity parameters, and handles both numeric and categorical data for influencing factors. The Machine Learning
algorithm establishes robust models of capacity parameters. When an influencing factor cannot be determined at the
time of planning, or when no applicable data is available in the recorded shop floor data, the models provide adequate
predictions (R2.2, R2.3).

5.3. Virtual representation of production resource

The virtual representation of the production resource predicts numeric data for capacity parameters regarding the
production operations that are allocated to the production resource (R1.1). Standard capacity parameters include
production time per unit, setup time, delay time, technical efficiency, and quality ratio (R2.1) [38]. The models of the
capacity parameters predict expected values and entail multivariate functions to correlating influencing factors (R3.2).
In the case of delay time, the model maps its distribution function. The influencing factors are determined by the PPC
software or the virtual representation for the prediction of capacity parameters at the time of planning. The virtual
representation provides standard capacity parameters that are applicable in various PPC software to enable a plug-
and-play Digital Twin software (R4.2). The virtual representation also entails a resource schedule, resource
capabilities, restrictions, and production costs (R2.4).

5.4. Data connection

The Digital Twin software entails a continuous data connection to the data acquisition system and the PPC software
to automise data provision (R4.2). It is unenclosed, and capacity parameters are provided to other capacity planning
tasks and their corresponding deployed software, such as factory planning or demand planning and rough scheduling
(R1.2). The Digital Twin software enables plug-and-play connectivity with data acquisition systems and PPC software
by supporting connection standards (R4.2). For data acquisition systems that do not support these connection
standards, the Digital Twin software entails a configuration component that allows to integrate and format data without
software coding. Interoperability is then enabled by the uniform, generally applicable data model.

6. Discussion

The proposed concept of a plug-and-play, Machine Learning Digital Twin aims to create and maintain a virtual
representation of the production resource with a low level of effort and difficulty, while meeting the functional
requirements of DCPS. It contributes to an intelligent production resource by providing self-assessment capabilities
[39]. The personnel time and competencies required for the development of a specific Digital Twin software must not
outweigh the benefits of an automated data provision, preparation, and modelling. The proposed plug-and-play Digital
Twin software addresses that. The Digital Twin software can be extended for other functional areas, such as
maintenance planning or quality management, by using the data connection to the data acquisition system and
providing corresponding models of resource parameters to different software. It can be transferred to other types of
resources, such as secondary production resources or logistics resources.

A more detailed specification and weighting of requirements depend on the specific application. E.g. the required
accuracy may be relatively low when the logistical performance of a specific production system has a low sensitivity
to the deviation from predicted capacity parameters. This can be the case when planning includes larger buffer times
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because work-in-progress inventory has relatively low costs. The consideration of influencing factors may not have
to be required, e.g. to predict the production time in cycle time production. Also, constraints depend on the specific
application, e.g. the quality of shop floor data may vary. Sensor technology usually provides more accurate and
detailed shop floor data than manual data acquisition [8]. Low-volume production with high product variety may
record a relatively low amount of shop floor data for specific factor values, and data-driven modelling may not reach
a high confidence. Application prerequisite therefore influence the effectiveness of the proposed solution concept, and
alternative approaches, e.g. a knowledge-based approach, may be advantageous. The requirements can be measurably
specified, e.g. the mean deviation can be used as a metric to measure accuracy. This can support the required validation
of the solution concept in empiric case studies. The presented requirements are stated from the perspective of DCPS
and neutral towards a solution. More detailed non-functional requirements regarding the proposed Digital Twin
software can be addressed before its development, such as response time, robustness, and resource efficiency.

7. Conclusion and need for research

In this article, the requirements regarding the virtual representation of the production resource for DCPS were
compiled. The concept of a plug-and-play, Machine Learning Digital Twin was proposed to meet these requirements.
The reviewed scientific literature does not describe sufficient findings to develop the proposed Digital Twin software,
which have to be obtained by future research. A standard data model for an according resource-agnostic data structure
is missing and has to be established [14]. The proposed data preparation method has to be formulated, which can
include PPC-specific criteria for the verification of the shop floor data quality [40]. For the construction of structured
data from time series data, feature extraction methods can be deployed, which describe e.g. means and peaks [41]. To
design the Machine Learning algorithm, suitable Machine Learning methods have to be identified. Base methods such
as Regression Trees, Support Vector Regression or Artificial Neural Networks can predict numeric data when
categorical data is included in the influencing factors and the type of mathematical functions to correlating influencing
factors is unknown [21]. They can be enhanced by Curve Fitting and Ensemble Learning methods such as Random
Forest and Gradient Boosting. Additionally a method for continuously modelling capacity parameters can be adopted
from the field of Continual Learning [42]. The modelling can e.g. be triggered periodically, or when the deviation of
the predicted capacity parameters from recorded shop floor data increases anomalously. Suitable connection standards
can be applied to enable a plug-and-play connectivity of the Digital Twin software with data acquisition systems and
PPC software. These are e.g. the Open Platform Communications Unified Architecture, a connection standard for
industrial resources, and the Asset Administration Shell, a connection standard and standard for the virtual
representation of objects in the context of Industry 4.0 [43, 44]. A architecture has to be designed for the Digital Twin
software that specifies components for data processing and storage and their communication. Concluding, a validation
in empiric case studies has to be carried out with the implementation of demonstration software, along with the
analysis of application prerequisites.
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