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We devise an autonomous quantum thermal machine consisting of three pairwise-interacting qubits,
two of which are locally coupled to thermal reservoirs. The machine operates autonomously, as it
requires no time-coherent control, external driving or quantum bath engineering, and is instead
propelled by a chemical potential bias. Under ideal conditions, we show that this out-of-equilibrium
system can deterministically generate amaximally entangled steady-state between two of the qubits,
or any desired pure two-qubit entangled state, emerging as a dark state of the system. We study the
robustness of entanglement production with respect to several relevant parameters, obtaining nearly-
maximally-entangled states well-away from the ideal regime of operation. Furthermore, we show that
our machine architecture can be generalised to a configuration with 2n − 1 qubits, in which only a
potential bias and two-body interactions are sufficient to generate genuine multipartite maximally
entangled steady states in the form of a W state of n qubits.

Quantum thermal machines are open systems of interacting quanta that
harvest spontaneous interactions with thermal reservoirs to perform a
designated task. These machines have been proposed as quantum
mechanical counterparts to the classical thermal machines of the indus-
trial age, for instance, for work extraction, heating, cooling and keeping
time1–5. In recent years, they have also been implemented in
experiments6–10. However, quantum thermalmachines can go further, and
perform tasks that themselves are inherently quantum mechanical. The
paradigmatic example is the generation of entanglement. It is well-known
that entanglement can be generated via dissipation, and the topic has
received much interest11–16. When operating out-of-equilibrium, it is
achieved by external driving of the system17–19 or engineering of the
quantum reservoirs20–22.

This progress spurred the question of identifying the minimal
resources to generate steady-state entanglement in dissipative out-of-
equilibrium systems, i.e. with a time-independent Hamiltonian, no external
work sources and no quantum bath engineering. The challenge is to rely
only on spontaneous interactions with an uncontrolled environment while
the system is not in equilibrium. Interestingly, an affirmative answer has
been given. Two interacting qubits that are individually coupled to reser-
voirs of different temperature can end up in an entangled steady-state23, due
to a heat current through the system24. Unfortunately, however, the gen-
erated entanglement is weak and unable to defy several notions of
classicality25. Going beyond the two-qubit systems, maximal entanglement
is possible by using networks of several qubits26,27. However, in aiming for a

minimalmachine that producesmaximal entanglement, several works have
considered supplementing the two-qubit systemwith some additional, non-
autonomous, resources to amplify the two-qubit entanglement22,25,28–31.
Amplification of the entanglement has been possible also in the fully
autonomous setting32, in particular by leveraging a voltage bias instead of a
temperature bias33.Nevertheless, none of these approaches have been able to
deterministically generate maximal, or even nearly maximal, steady-state
entanglement.

In this work, we identify the minimal thermal machine for gen-
erating any pure entangled state between the degrees of freedom of two
physically separated qubits, using only time-independent, i.e. autono-
mous, resources. The machine exploits a chemical potential bias between
two fermionic reservoirs at equilibrium, and involves three qubits subject
to Coulomb repulsion and pairwise flip-flop interaction. Our machine,
illustrated in Fig. 1a, thus uses the third qubit as a mediator for entan-
glement generation. Furthermore, we show that the machine performs
well beyond the ideal regimeof operation; reasonableCoulomb forces and
potential biases, small detunings, and coupling strength variations all lead
to nearly-maximal steady-state entanglement. Motivated by this, we
investigate the conceptually deeper question of whether autonomous
machines based only on two-body Hamiltonians are able to generate
maximal entanglement between any number of qubits.We answer this in
the positive by identifying a generalisation of ourmachine, which features
2n− 1 qubits, and prove that it can render n of these qubits in a W-type
steady-state.
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Results
Model
We consider a setup of three interacting qubits, as shown in Fig. 1a. The
excited state of each qubit corresponds to the energy gap ε. Qubit pairs 1-3
and 2-3 interact via flip-flop interactionswith coupling strengths g13 and g23
respectively. Every qubit pair also interacts electrostatically via a Coulomb
repulsion of magnitudeU. The Hamiltonian of the three qubits is therefore
given by (ℏ = kB = 1),

H ¼P3
i¼1

εσðiÞþ σ
ðiÞ
� þ P

j¼f1;2g
gj3 σðjÞþ σ

ð3Þ
� þ σðjÞ� σ

ð3Þ
þ

� �n o
þU ∣110i 110h ∣þ ∣101i 101h ∣þ ∣011i 011h ∣þ 3∣111i 111h ∣ð Þ

ð1Þ

where σðjÞþ ðσðjÞ� Þ is the raising (lowering operator) for qubit j. Such a
model can be realized in quantum dot systems34 with spin-polarized
electrons. For example, in Refs. 35,36 such a triangular system was
studied in a two-dimensional electron gas. The authors managed to
bring all excitation energies into resonance36 and suitable values of
Coulomb interactions and tunnel coupling could be achieved35.
Alternatives could be based on pilar structures37 or graphene bilayers38,
where such triple dots have been realized. A further interesting approach
could apply ultracold fermionic atoms39. Similar to the transport
experiments35,36, we take qubits 1 and 3 to be coupled to equilibrated
reservoirs of non-interacting fermions, with bare coupling strengths γ1
and γ3. Throughout this article, we restrict ourselves to the regime of
operation in which γj ≪ max{Tj, ∣ε ± gij − μj∣}, where Tj and μj are the
temperature and chemical potential respectively, of reservoir j. Then, the
evolution of the system can accurately be modelled by a Lindbladmaster
equation. Further imposing gij ≪ max{Tj, ∣ε − μj∣} ensures that the
dissipation acts locally on the qubits40,41. Therefore, the Lindblad
equation takes the following form,

_ρ ¼ Lρ ¼ �i H; ρ
� �þ X

j 2 f1; 3g
p; q 2 f0; 1g

γþjpqD Ljpq
h i

ρþ γ�jpqD Lyjpq
h i

ρ
� �

;

ð2Þ

where the dissipators are D½L�ρ :¼ LρLy � 1
2 LyLρþ ρLyL
� �

and γþjpq and
γ�jpq are the rates corresponding to transitions induced by the Lindblad jump

operatorsLjpq andL
y
jpq. These are respectivelydefinedas,L1pq :¼ ∣1pq

�
1pq
	

∣
and L3pq :¼ ∣pq1

�
pq1
	

∣. The exact excitation and relaxation rates are
determined by the statistics of the reservoirs. For our reservoirs, we have that

γþjpq ¼ γjnF εþ Upq; μj;Tj

� �
and γ�jpq ¼ γj 1� nF εþ Upq; μj;Tj

� �� �
,

where nF ε; μ;T
� � ¼ 1=ðeðε�μÞ=T þ 1Þ is the Fermi-Dirac distribution.Upq :

¼ Uδpþq;1 þ 2Uδpþq;2 takes into account the Coulomb interaction. It
ensures that the potential energy difference ofU is added for each additional
excitation created in the system;U for a second excitation and 2U for a third.
We takeμ1=μ and for simplicity,we setμ3=0 (Small variations inμ3 haveno
impact on the generated entanglement in the ideal parameter regime and
havenegligible impact on entanglementwhenperturbed away from the ideal
parameter regime). Therefore, the system is driven by two reservoirs which
are out-of-equilibrium with each other. In the case of equal temperatures of
the reservoirs, the imbalance is determined solely by the chemical potential
of the left reservoir.

Generation of arbitrary pure entangled states
We now show that there exists an ideal parameter regime in which the
steady-state solution to Eq. (2), when reduced to qubits 1 and 2, can cor-
respond to any pure entangled state (up to local unitaries). As in Ref. 33, we
consider the limit in which

U ! 1 and μ ! 1; with U=μ ! 1: ð3Þ

The first limit ensures that whenever there is already an excitation in
the system, the fermions in either reservoir cannot overcome the large
Coulomb interaction to excite the system further. On the level of rates, this
translates to γþjpq ¼ 0 whenever p+ q ≥ 1. This eliminates the possibility of
double or triple excitation in the three-qubit steady state. The second limit
ensures that when there is no excitation in the system, the population in
reservoir 1 is filled, i.e., nF(ε, μ, T1) = 1. The last limit is important to ensure
that no double or triple excitations are possible at any point in the evolution
of the machine. The reservoirs are therefore, extremely out-of-equilibrium
with eachother,with the left reservoir (coupledwithqubit 1) at an extremely
high bias and the right reservoir (coupled with qubit 3) at a low or zero bias.
Theonlypathway for an excitation to leave the system is throughqubit 3 and
the right reservoir. We therefore refer to this qubit as the sink qubit. In the
limits (3), the only relevant transitions are induced by the jump operators
L100, L300 and L

y
300. Note that one does not need to engineer the couplings to

surpress the transitions corresponding to the other jump operators. in the
considered limit, they become irrelevant regardless of their coupling
strength. A matrix form of the LiouvillianL in these limits can be found in
the Supplementary Information. The steady-state of the machine is the
unique eigenstate ofLwith eigenvalue zero. The situation can be intuitively
understood using the flow chart shown in Fig. 1b. As double and triple
excitations are prohibited, only four classical states (∣000i, ∣100i, ∣010i,
∣001i) are relevant in the evolution of themachine. Twoof these states, ∣000i
and ∣001i are directly coupled to reservoir transitions and play no role at
long times. In principle, a complex phase can be added in this superposition
by using a magnetic field, through the Peierls subsitution method42. The
steady state is pure and a superposition of ∣100i and ∣010i,

∣Ψss

� ¼ g23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g223 þ g213

p ∣10i � g13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g223 þ g213

p ∣01i
 !

� ∣0i; ð4Þ

which is actually a 1-particle energy eigenstate of the Hamiltonian (1). This
state can be written as ∣Ψss

� ¼ cos θ∣10i � sin θ∣01ið Þ � ∣0i, with
θ :¼ arctan g13=g23

� �
. Clearly, we obtain a partially entangled pure state

between qubits 1 and 2, while qubit 3 is pushed into its ground state. The

Fig. 1 | Setup and functioning. aThe three-qubit autonomous thermalmachine. The
chemical potential of the left reservoir is the key resource for entanglement generation.
The steady-state for the ideal regime of operation, has the solid gray qubits in the state
∣Ψ�i while the shaded-blue qubit in the state ∣0i. b A representative flow chart
showing the relevant states of the three qubits. The states ∣100i, ∣010i and ∣001i
effectively form a lambda system49. The dashed box indicates the entangled subspace
corresponding to the steady-state.
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coefficients of the superposed states depend solely on the couplings between
the qubits. Setting g13 = g23, we obtain a maximally entangled state in the
formof the singlet ∣Ψ�i ¼ ∣10i � ∣01ið Þ= ffiffiffi

2
p

. Importantly, these results are
independent of any temperatures of the reservoirs and the coupling rates
between the latters and the qubits (within the ideal limit (3) and the validity
of the master equation).

While Lindbladian evolution typically decoheres an initially pure state
into a mixed state, it is generally possible to obtain a pure steady-state
provided that certain conditions are satisfied. Firstly, the state ∣Ψss

�
is

invariant under the action of the jump operators L100, L300 and L
y
300 which

are relevant for the evolution. In other words, ∣Ψss

�
is unaffected by the

dissipators in Eq. (2) that remain after applying the limits (3). Secondly, this
state is an eigenstate of the effective non-Hermitian Hamiltonian
H0 ¼ H � i γþ100L

y
100L100 þ γþ300L

y
300L300 þ γ�300L300L

y
300

� �
=2. These prop-

erties here ensure that ∣Ψss

�
is the unique steady state of L under the

considered limits43,44. Using such reasoning, it can be shown that no two-
qubit machine (autonomous or not) in the regime of validity of the local
master equation can deterministically generate a pure entangled steady
state, implying that our machine is minimal.

Minimality of the three-qubit setup
We now argue that a two-qubit machine cannot produce a Bell state as the
unique steady state of local Lindbladian evolution considered in past works
(e.g. in Refs. 22–25,33,41). We assume a flip-flop interaction between the
qubits, and that each qubit is individually coupled to a thermal reservoir.
The Hamiltonian of the qubits is given by

H ¼
X
i¼1;2

εσðiÞþ σ
ðiÞ
� þ g σð1Þþ σð2Þ� þ σð1Þ� σð2Þþ

� �
; ð5Þ

whereσðiÞ± are the raisngand loweringoperators of qubit i. There are a total of
eight Lindblad operators corresponding to possible transitions that the
reservoirs can induce,

L1 ¼ ∣10i 10h ∣; L2 ¼ ∣01i 01h ∣; L3 ¼ ∣01i 01h ∣; L4 ¼ ∣10i 10h ∣
L5 ¼ ∣00i 00h ∣; L6 ¼ ∣00i 00h ∣; L7 ¼ ∣11i 11h ∣; L8 ¼ ∣11i 11h ∣:

ð6Þ

Weassume that the rates γj corresponding to these transitions can in general
be distinct and can also be zero. The Lindblad equation then takes the form,

_ρ ¼ Lρ ¼ �i½H; ρ� þ
X8
j¼1

γjD½Lj�ρ: ð7Þ

If there exists a steady state, itmust satisfyLρss ¼ 0.Moreover, in the case of
a pure steady state, ∣ψss

�
, wemust have that all the dissipators annihilate this

state, i.e., D½Lj�∣ψss

�
ψss

	
∣ ¼ 044. To satisfy L∣ψss

�
ψss

	
∣ ¼ 0, we must also

have that �i½H; ∣ψss

�
ψss

	
∣� ¼ 0, i.e., ∣ψss

�
must be an eigenstate of the

Hamiltonian. Since the two Bell states ∣Ψ±
� ¼ ð∣10i± ∣01iÞ= ffiffiffi

2
p

are
eigenstates ofH, we try to see whether these states can be the steady state of
Eq. (7). First, we note that these Bell states are annihilated by the dissipators
D½L1�4� but not by D½L5�8�. Therefore, from Eq. (7), we remove L5−8 and
are left with the following equation to check,

_ρ ¼ ~Lρ ¼ �i½H; ρ� þ
X4
j¼1

γjD½Lj�ρ: ð8Þ

We note that while ~L satisfies ~L∣Ψ±
�
Ψ±
	

∣Ψ± ¼ 0, it does not have a
unique zero eigenvalue and an initial-state-independent steady state in the
usual sense. Specifically, in general, ~L has two zero eigenvalues, which
correspond to multiple fixed points of ~L. Moreover, due to the structure of
the Lindblad operators, there can be residual oscillations even in the steady
state (see, for example, Ref. 45). This can be seen with a simple example.
Suppose the system starts initially in the tensor product of the qubit ground

states, ∣00i. Then the system can gain an excitation on qubit 1 or 2 (through
L1 or L2, respectively), but cannot gain a further excitation or lose one.
Furthermore, through the flip-flop interaction Hamiltonian, the excitation
continuously jumps fromqubit 1 and 2, with a frequency that is determined
by the coupling strengthbetween thequbits. Therefore, aBell state cannot be
the unique steady state of the two-qubit machine and Eq. (7).

We note that the above discussion can be extended to any two-qubit
Hamiltonian. To produce a steady Bell-state, theHamiltonianmust have
this state as an eigenstate. The Hamiltonian (5) has ∣Ψ±

�
as eigenstates.

We may instead consider another Hamiltonian that has ∣Φ±
� ¼

ð∣00i± ∣11iÞ= ffiffiffi
2

p
as eigenstates. It can be checked that dissipators cor-

responding to the jump operators L5−8 in Eq. (6) annihilate ∣Φ±
�
into

the null state, i.e.,D½L5�8�∣Φ±
�
Φ ±
	

∣ ¼ 0.However, a Lindblad equation
with just L5−8 leads to similar problems as described above and the
evolution is initial state dependent. For example, initial ground ∣00i and
excited ∣11i states have no excitation or de-excitation channels,
respectively. On the other hand, an initial state like ∣10i can evolve either
to ∣00i or ∣11i, with no further jump-channel and only the interaction
Hamiltonian to control the dynamics. Therefore, no two-qubit Hamil-
tonian can possibly produce a perfect Bell state as the steady state of the
two-qubit thermal machine.

Current at ideal operation
The average energy current, J, can be defined as the average rate of energy
exchange between the system and reservoirs. Here, the energy current from
reservoir j into the system takes the form46,

QjðtÞ ¼ Tr H
X

p;q2f0;1g
γþjpqD Ljpq

h i
ρ tð Þ þ γ�jpqD Lyjpq

h i
ρ tð Þ

� �( )
: ð9Þ

In our convention, the heat flow from a reservoir to a qubit is positive, while
the other way round is negative. Therefore, currents from the high bias and
low bias reservoirs have opposite signs and the average current can be
naturally defined as JðtÞ :¼ Q1ðtÞ � Q3ðtÞ

� �
=2.

Since at long times, the third qubit is completely depopulated, no
excitation can travel into the right reservoir. Moreover, due to the large
chemical potential, no excitation can travel back into the left reservoir. As a
result, there cannot be any current between the system and reservoirs in the
steady state despite the reservoirs being heavily out-of-equilibrium with
each other. Therefore, ∣Ψss

�
is a dark or non-conducting steady-state of the

machine, similar to the works47,48.
In Fig. 2a,weplot the energy current as a functionof timewith the three

qubits initially in the ground state ∣000i. This is merely a relevant example
since the steady-state (4) holds for any choice of initial state.As expected, we
find that the initially non-zero energy current drops to zero.We note that a
deviation from the ideal limits (3) drives the system to a mixed “bright”
steady state exhibiting a non-zero energy current. However, this state can
still be considerably entangled, as discussed below.

We remark that in the absence of dissipation, ∣Ψss

�
is a time-

independent solution of the Schrödinger equation for the three levels ∣100i,
∣010i and ∣001i. Therefore, these states effectively form a lambda system
with the couplings g13 and g23 playing the role of Rabi frequencies of a probe
field. The three-qubit state is coherently trapped49 between the states ∣010i
and ∣100i with coefficients determined by the couplings.

Time-scale and entanglement generation away from ideal
operation
Although the maximally entangled state can be obtained independently of
the couplings and temperatures (as long as g13 = g23), the couplings to the
reservoirs determine the time-scale at which the steady state is reached.
Specifically, the larger the coupling, the shorter the time-scale. In Fig. 2b, we
plot the fidelity of ρ(t) with the state ∣Ψ�i � ∣0i, with the system initially in
the ground state ∣000i. Choosing the natural frequency of the qubits as 1
GHz. 1 GHz is, for example, the relevant scale for state-of-the-art
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superconducting platforms50. For semiconductor quantum dots, the scale
can be one or two orders of magnitude larger, we find that the steady state
can be reached within a fewmicroseconds for all three considered coupling
strengths. This is only a relevant example; the relaxation time scale is
determined by the Liouvillian eigenvalue having the largest (smallest
negative) real part. This is controlled specifically by the system-reservoir
couplings. Therefore, this time-scale is the same for any initial state and of
the order of magnitude of 1/γ.

In Fig. 3, we investigate the quality of the generated entanglement with
respect to changes in the system’s parameters, i.e., away from the limits in
Eq. (3). In such a situation, all possible classical states of the three-qubit
system are involved in the dynamics, including at long-times. The solution
must therefore take into account all possible transitions inducedby the jump
operators Ljpq and L

y
jpq in the general Lindblad equation (2). As ameasure of

entanglement, we use the concurrence, which for the state of qubits 1 and 2
canbewritten asCðρÞ ¼ 2 max f0; jcj � ffiffiffiffiffiffiffiffiffiffiffiffi

p11p00
p g, where c is the coherence

corresponding to element ∣01i 01h ∣ and p11(p00) is the probability corre-
sponding to the state ∣11i 11h ∣ð∣00i 00h ∣Þ. We find that large entanglement
can be created with reasonable Coulomb interaction and chemical poten-
tials.As expected fromthepreviousdiscussion, to generatea large amountof

entanglement, we also find thatU should be chosen to be sufficiently larger
thanμ. For instance, choosingU=15T andμ=8T (whereT1 =T3 =T) yields
a concurrence greater than 0.99, while μ = 15T with the same Coulomb
interaction yields only 0.25. This is due to the presence of double excitations
coming from the left reservoir when the Coulomb interaction is not large
compared with the chemical potential. Overall, we note that the scheme
requires the Coulomb interaction and chemical potential to be much larger
than the qubit energies and the temperatures. In the Supplementary
Information, we also consider variation in the coupling rates γ1 and γ3, as
well as the influence of single-qubit dephasing.

Our analytical results have been obtained using the Lindblad equation
(2) with local coupling, which restricts to individual transitions between
reservoirs andqubits. In order to assess the validity of this approach,wehave
shown numerical calculations with the second-order von Neumann
approach51,52 using theQMEQpackage53 in the Supplementary Information.
This approach includes cotunneling events, partially lifting the blockade of
current in the steady state. For larger system-reservoir coupling,wefindonly
a minor reduction in the entanglement, as quantified by the concurrence
(still above 98% for parameters fromFig. 3). In addition, we find that Lamb-
shift terms lead to a slight change in the resonant condition between the
qubit energies. Importantly, both effects vanish with decreasing system-
reservoir coupling. More details can be found in the Supplementary
Information.

Multipartite entanglement generation
A natural question is whether autonomous resources and two-body
interactions can go even further and producemaximally entangled states
ofmany qubits. A naive approach is to add a fourth qubit in the system in
Fig. 1 and coupling it to the sink qubit, but this does not yield multi-
partite entanglement or even a unique steady state. The reason for this is
similar to the explanation in Sec. IIC. For successful operation, i.e., to
produce a unique pure entangled steady state, the scheme requires
coupling to a filled reservoir, as well as an exit way for excitations
through the sink qubit. In the absence of such exit ways, there will be
oscillations due to inter-qubit couplings even at long times. Therefore,
the additional qubit to be entangled requires its own, additional, sink
qubit. That is, to generate maximal genuine multipartite entanglement
between three qubits, we use two auxiliary qubits serving as sinks. This is
illustrated in Fig. 4. This idea can be directly extended to an arbitrary
number of qubits; for every additional qubit to be entangled, we couple it
to the qubit already connected to the high-bias reservoir, and then we
add a corresponding sink qubit. This can be seen as many ‘triangles’ of
qubits, within each of whichwe have an electrostatic interaction between
every pair and a flip-flop interaction between the sink qubit and the other
two qubits (in complete analogy with the original machine in Fig. 1). In
this way, we can deterministically generate an n-qubitW-type entangled
state in a (2n− 1)-qubit autonomous thermal machine. Under the same

Fig. 2 | Steady-state time scale. a Energy current and (b) fidelity with ∣Ψ�i � ∣0i as a function of time, with the parameters ε= 1GHz,T1 =T3 =T = ε, γ/ε= γ1/ε= γ3/ε, g13/ε=
g23/ε = 0.05, U → ∞, μ→ ∞, U/μ → ∞ and system-reservoir couplings as given in the legend. The qubits are initially in the ground state ∣000i.

Fig. 3 | Contour plot of the concurrence between the first two qubits as a function
of μ and U, with the system-reservoir couplings γ1/ε = γ3/ε = 0.1 and other
parameters taken from Fig. 2. Near-maximal entanglement is obtained for a large
range of parameters, such that μ/T and U/T are both sufficiently larger than 1.
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limits as the two-qubit case, namely Eq. (3), we show in Supplementary
Information that this scheme corresponds to a generalised coherent
population trapping over n states (instead of just two), which renders the
steady state of this scheme pure and entangled. Specifically, it is

∣Ψn
ss

� ¼ 1ffiffiffi
β

p ∣10:::0i �
Xn�1

j¼1

αj∣�0j
E
� ∣1i � ∣�0n�j�1

E !
� ∣�0n�1

�
;

ð10Þ

where ∣�0k
�
:¼ ∣0i � ∣0i � � � � � ∣0i is the ground state of k qubits and

αj :¼
g1;nþj

g1þj;nþj

and β :¼ 1þ
Xn�1

j¼1

α2j : ð11Þ

∣Ψn
ss

�
corresponds to a W-type partially entangled state for qubits 1 − n.

The condition to obtainmaximal entanglement is similar to the three-qubit
machine. Here, if the inter-qubit couplings within each triangle are equal,
i.e., g1,n+j = g1+j,n+j or αj = 1, ∣Ψn

ss

�
corresponds exactly to the followingW

state of n qubits, while n − 1 qubits are pushed into their ground state,

∣Wn

� ¼ 1ffiffiffi
n

p ∣100:::0i � ∣010:::0i � :::� ∣000:::1ið Þ � ∣�0n�1

�
ð12Þ

∣Wn

�
denotes a W state in the space of n qubits and a ground state in the

nextn− 1 qubits. In this enumeration, the first system is the high-bias qubit
and the ground state ∣�0n�1

�
corresponds to all the sink qubits. For

simplicity, in Fig. 4, we have chosen all temperatures and all qubit-reservoir
couplings to be equal. However, this is not a necessary condition to produce
a ∣Wn

�
state. The couplings can be chosen almost arbitrarily (within the

validity of the Lindblad equation) and the temperatures have to be chosen
such that U ≫ μ ≫ Tj. Robustness to variations in system-reservoir
couplings are further discussed in Supplementary Information.

Discussion
A considerable number of earlier works on autonomous entanglement
generation focussed on creating two-qubit entanglement using a setup of
two qubits. The amount of entanglement in these works was always noisy
and far frommaximal. In thiswork, we have shown that this is limited due
to the structure of the Lindblad equation - it is impossible to generate a
perfect Bell state using a a two-qubit autonomous thermal machine.
Importantly, we have introduced a minimal three-qubit architecture that
generates a steady Bell state for ideal operation. The scheme is robust;
even away from ideal operation, it can generate near-maximal entan-
glement. Furthermore, we have demonstrated that our results can be
extended to producing genuinely multipartite entanglement in the form
ofWstates of an arbitrary number of qubits. It is an interesting theoretical
question whether our ideas can be extended to produce arbitrary pure
entanglement, in particular, the Greenberger-Horne-Zeilinger states54

and whether it is possible to obtain high-dimensional entanglement55 in a
similar setting.

While maximal entanglement generation is possible with non-
autonomous resources such as driving19 and athermality31, our work pro-
vides a fully autonomous pathway to generating maximal entanglement. In
other words, our work demonstrates that pure dissipation into thermal
environments is sufficient to generate the strongest forms of quantum
correlations. This reveals the striking fundamental power of autonomous
evolution.

Finally, beyond their fundamental significance, we believe that
recent developments in quantum technologies make our predictions
experimentally feasible. While there are many platforms that may be
suitable, electronic quantum dots are a natural candidate. Here, the right
coupling regimes (within the validity of our master equation) can be
already engineered in triple-dot setups35,36. Crucially, Coulomb repulsion
is naturally present and bias voltage (and therefore the chemical
potential) can freely be controlled, making the operation of the setup
possible close to the ideal limit.

Data availability
Data used in this project are available on request.

Code availability
The code used for the 2vN approach is available at https://github.com/
gedaskir/qmeq.
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