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Abstract
Background  To investigate the association between admission glucose and HbA1c values and inflammatory plasma 
proteins in hospitalized patients with acute ST-elevation myocardial infarction (STEMI).

Methods  This analysis was based on 345 STEMI patients recorded by the population-based Myocardial Infarction 
Registry Augsburg between 2009 and 2013. Using the OLINK inflammatory panel, a total of 92 protein biomarkers 
were measured in arterial blood samples, which were obtained within the scope of cardiac catheterization 
immediately after admission. The associations between admission glucose and HbA1c levels and the 92 protein 
markers were investigated using multivariable linear regression models.

Results  Admission glucose showed significantly positive associations with the inflammatory markers IL-10, IL-8, IL-6, 
FGF-21, IL-7, ST1A1, MCP-1, 4E-BP1, SIRT2, STAMBP and IL-18R1 after Bonferroni adjustment. HbA1c values were only 
significantly associated with IL-18R1. In stratified analyses, admission glucose was not significantly associated with any 
plasma protein in the diabetes subgroup, while there were several protein markers that showed significantly positive 
associations with admission glucose in STEMI patients without known diabetes, namely IL-10, CCL20, IL-8, MCP-1 and 
IL-6.

Conclusions  Admission glucose in patients hospitalized due to an acute STEMI seems to be related to an 
inflammatory and immune-related response, expressed by an increase in inflammation-related plasma proteins in 
particular in non-diabetic patients with stress hyperglycemia. The present results may open new avenues for the 
development of biomarkers suitable as potential diagnostic or prognostic clinical markers.
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Introduction
Stress hyperglycemia, a transient elevation of blood glu-
cose, is common in critically ill patients, and the meta-
bolic milieu in which stress induced hyperglycemia 
develops in the absence of pre-existing diabetes mellitus 
is complex [1]. A combination of hormonal and meta-
bolic changes due to acute stress, including the presence 
of excessive counter regulatory hormones, such as gluca-
gon, epinephrine, cortisol, and growth hormone seems to 
play an important role [2]. Consequently, these changes 
affect carbohydrate metabolism and lead to increased 
gluconeogenesis associated with hepatic insulin resis-
tance, which appears to be the main factor in hyperglyce-
mia [3]. There is evidence that stress hyperglycemia can 
cause oxidative stress and the formation of pro-inflam-
matory cytokines [4, 5].

A high number of prior studies reported an association 
between acute hyperglycemia at admission and worse 
outcomes in patients with acute myocardial infarction 
(AMI) [6–11]. In particular in non-diabetic compared to 
diabetic AMI patients elevated admission glucose levels 
were related to short- and long-term mortality [7, 12], 
suggesting that acutely elevated glucose levels, rather 
than chronically elevated glucose levels, may be the cause 
of a poorer outcome. To date, no clear explanation exists, 
why stress hyperglycemia was mostly associated with 
a higher risk of mortality in AMI patients without than 
with diabetes.

There are prior studies on this issue investigating the 
association between stress hyperglycemia and selected 
inflammatory markers in AMI patients [13, 14]. For 
example, it was shown recently that MCP-1 may play an 
important role regarding the inflammatory response due 
to stress hyperglycemia in STEMI patients [14]. The aim 
of the present study was therefore to comprehensively 
identify inflammatory and immune-related biomarkers 
associated with admission glucose and HbA1c in diabetic 
and non-diabetic patients hospitalized with STEMI.

Methods
Study population
The present analysis was based on data from the pop-
ulation-based Augsburg Myocardial Infarction Regis-
try, Germany. It was established in 1984 as a part of the 
MONICA-project (Monitoring Trends and Determi-
nants in Cardiovascular disease) and has been operated 
as KORA (Cooperative Health Research in the Augsburg 
Region) Myocardial Infarction Registry since 1996. The 
study area comprises approximately 680,000 inhabitants 
(city of Augsburg, and the two adjacent counties). All 
acute myocardial infarction (AMI) patients admitted to 
one out of eight hospitals in the study area were consecu-
tively registered on condition the patient was between 25 
and 84 years of age and had his primary residence in the 

study region at the time of the infarction. Detailed infor-
mation on case identification, diagnostic classification 
of events and quality control of the data can be found in 
previous publications [15, 16].

The specific blood samples used for the present study 
derived from patients with STEMI admitted to the Uni-
versity hospital of Augsburg between May, 2009, and July, 
2013. For 398 consecutive patients, a panel of 92 inflam-
matory plasma proteins was measured (mean age: 63.5 
years (SD: 11.9), male: 73.1%). There was missing infor-
mation on plasma proteins for 3 patients, for another 28 
patients there was no information on either admission 
glucose or HbA1c levels and there were 22 patients with 
unknown BMI. Finally, a total of 345 AMI cases were 
considered for the present analysis.

All study participants gave written informed consent. 
Methods of data collection were approved by the ethics 
committee of the Bavarian Medical Association (Bayer-
ische Landesärztekammer) and the study was performed 
in accordance with the Declaration of Helsinki.

Data collection
All patients were interviewed during their hospital stay 
by trained study nurses using a standardized question-
naire. In addition to this, the patients’ medical chart was 
reviewed. In this way, a variety of important data (includ-
ing demographic data, data on cardiovascular risk fac-
tors, medical history, comorbidities [including diabetes], 
medication, laboratory parameters, and electrocardiog-
raphy) was collected from each patient. A patient was 
categorized as suffering from diabetes if there was either 
a former physician diagnosis of diabetes mellitus or the 
patients HbA1c was above 6.5% (48 mmol/mol).

The blood samples for the 398 patients were obtained 
within the scope of cardiac catheterization, which was 
mostly performed immediately after hospital admission. 
Therefore, EDTA blood samples (arterial blood) were 
taken right at the beginning of the catheterization. The 
samples were then immediately processed in the cathe-
ter laboratory (centrifugation, aliquoting, and freezing at 
-80 °C).

Clinical chemistry measurement
The Proseek® Multiplex Inflammation panel (developed 
by Olink Proteomics, Uppsala, Sweden) was used for 
the measurement of the 92 plasma proteins. The mea-
surements were based on the Proximity Extension Assay 
(PEA); detailed information on the process of measure-
ment can be found directly at the website of Olink Pro-
teomics [17] and in a previous publication [18]. A list of 
all measured plasma proteins including the short- and 
long-form names can be found in Table S1 of the sup-
plementary material. All plasma proteins with 25% or 
more values below the limit of detection (LOD) were not 



Page 3 of 9Christa et al. Clinical Proteomics            (2025) 22:8 

considered for this analysis. For all other plasma proteins, 
we used the values provided by OLINK even if the value 
was below the LOD.

HbA1c levels were also determined in the blood 
samples derived from the catheterization using a 
reverse-phase cation-exchange high-pressure liquid 
chromatography (HPLC) method (Analyzer HA 8160; 
Menarini, Florence, Italy). All other blood parameters 
including admission glucose were measured in venous 
blood samples taken at hospital admission or during 
hospital stay as part of the regular diagnosis and routine 
treatment.

Statistical analysis
Categorical variables were compared using Chi-square 
tests and the results were presented as absolute frequen-
cies with percentages. For the comparison of continuous 
variables Student’s t tests (in case of normal distribution) 
and Mann–Whitney U tests (for non-normally distrib-
uted variables) were used. The corresponding results 
were presented as mean and SD (standard deviation) or 
median and inter-quartile range (IQR).

Linear regression models
First, the obtained values for each plasma protein were 
standardized (the variable was centered and normalized 
so that the transformed variable had an expectancy value 
of 0 and a statistical variance of 1), which provides com-
parability between the 92 plasma proteins. Linear regres-
sion models were calculated to examine the associations 
between the inflammatory plasma proteins (outcome) 
and parameters of glucose metabolism (admission glu-
cose and HbA1c levels; exposures). According to litera-
ture research, the models were adjusted for sex (male/
female), age (in years), renal function according to esti-
mated GFR (3 groups: eGFR ≥ 60  ml/min/1,73m2, eGFR 
30–59  ml/min/1,73m2, eGFR < 30  ml/min/1,73m2), dia-
betes mellitus (yes/no) and BMI (continuous). Bonfer-
roni adjustment of the obtained p-values was conducted 
to control for multiple testing. Observations with Cook’s 
distance values > 0.5 were eliminated from the regres-
sion models as this indicates excessively influential data 
points. The effect estimates (β-coefficient and 95% CI) 
of the linear models must be interpreted as the expected 
change in standardized outcome associated with a one 
unit increase in the exposure variable (one mg/dl for 
admission glucose and 1% for HbA1c).

In a subsequent analysis, we calculated linear regres-
sion models separately for patients with and without 
diabetes to analyze the association between the inflam-
matory plasma proteins and admission glucose and 
HbA1c levels in each of the two subgroups. These models 
were adjusted for sex, age, renal function and BMI.

Results
Table 1 displays the baseline characteristics for the total 
sample and stratified for diabetes. STEMI patients with 
known diabetes were older, had more frequently hyper-
tension, more often low left ventricular EF values, higher 
admission glucose, HbA1c, and peak CRP values.

Results of the linear regression models are displayed in 
Fig. 1 (admission glucose) and Fig. 2 (HbA1c). For admis-
sion glucose, the following plasma proteins showed a pos-
itively significant association after Bonferroni adjustment 
of p-values: interleukin-10 (IL-10), interleukin-8 (IL-8), 
fibroblast growth factor 21 (FGF-21), interleukin-7 (IL-
7), Sulfotransferase 1A1 (ST1A1), interleukin-18 receptor 
1 (IL-18R1), monocyte chemoattractant protein-1 (MCP-
1), Eukaryotic translation initiation factor 4E-binding 
protein 1 (4E-BP1), sirtuin-2 (SIRT2), STAM-binding 
protein (STAMBP), and interleukin-6 (IL-6). HbA1c val-
ues were only significantly associated with IL-18R1.

In Table S1 of the supplementary material, the total 
results (beta coefficient, 95% CI, Bonferroni-adjusted 
p value) are displayed in table form. This table also pro-
vides the full names of the measured plasma proteins.

In stratified analyses, admission glucose was not signif-
icantly associated with any plasma protein in the diabetes 
subgroup, while there were several protein markers that 
showed significantly positive associations with admis-
sion glucose in STEMI patients without known diabetes, 
namely IL-10, CCL20, IL-8, MCP-1 and IL-6. The results 
of the stratified (diabetes and no diabetes) linear regres-
sion models for admission glucose are presented in Fig. 3.

Discussion
The present study investigated the associations between 
admission glucose and HbA1c levels and inflamma-
tory proteins in patients admitted to hospital due to an 
acute STEMI. Admission glucose was associated with a 
number of inflammatory markers in the total sample. In 
stratified analyses, in non-diabetic AMI patients stress 
hyperglycemia at admission was independently associ-
ated with the cytokines IL-6, IL-8, IL-10, CCL20, and 
MCP-1. Contrary, admission glucose in patients with 
known diabetes or long-term glucose control as assessed 
by HbA1c levels were not independently associated with 
inflammatory markers.

Inflammatory responses to admission glucose in 
the total sample
With increasing admission glucose, a number of inflam-
matory biomarkers were elevated in STEMI patients, 
including common markers such as IL-6, IL-8, IL-10, 
interleukin-18 receptor 1 (IL-18R1), and Fibroblast 
growth factor 21 (FGF-21). FGF21 is a metabolic regula-
tor that, among other effects, increases insulin sensitivity 
and thus lowers blood sugar levels [19]; it has been found 
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to play an important role in the prognosis after STEMI 
[20]. In the present study, higher admission glucose 
went along with an increase in interleukins, such as IL-6, 
which are known to be elevated in AMI patients indepen-
dent from glucose levels [21]. However, to date there has 
been a lack of studies in this patient group on the extent 
to which admission glucose plays a role in this context. 
The present results confirmed the results from a recent 
study on STEMI patients undergoing primary percuta-
neous coronary intervention, which showed that stress 
hyperglycemia and diabetes may contribute to high levels 
of the chemokine MCP-1 [14]. Other studies reported, 
that serum MCP-1 was significantly elevated in patients 
with type 2 diabetes and that oxidative stress increases 
locally produced MCP-1, which triggers macrophage-
induced inflammation [22, 23].

In the present investigation, increased levels of fur-
ther inflammatory markers were identified, that so far 

were not reported by other studies on this issue, such as 
ST1A1, SIRT2, and STAMBP.

STAMBP is a deubiquitinating protein which has been 
identified as a potential diagnostic biomarker for early 
Alzheimer’s disease [24], fibromyalgia [25] and squamous 
cell carcinoma of the esophagus [26]. The sulfotransfer-
ase ST1A1 catalyzes the sulfation of neurotransmitters, 
catecholamines, estrogens, and phenolics [27]. Such as 
STAMBP, ST1A1 was also associated with an increased 
risk of esophageal squamous cell carcinoma in prior 
investigations [26]. Furthermore, a recent study from our 
group found that changes in ST1A1 expression predicted 
short-term mortality in STEMI patients [20]. SIRT2, a 
deacetylase that is mainly localized in the cytoplasm, 
seems to play an important role in biological processes, 
for example neuronal differentiation, mitotic regulation, 
cell homeostasis, ageing, and oxidative stress [28].

Table 1  Baseline characteristics for the total sample and by history of diabetes (mean, SD; median IQR; n (%))
Total sample
(n = 345)

Patients with a diag-
nosis of diabetes
(n = 106)

Patients with no 
diagnosis of diabetes 
(n = 239)

p-value N*

Age (mean, SD) 63.2 (11.9) 65.3 (11.5) 62.2 (12.0) 0.022 345
Male 251 (72.8) 81 (76.4) 170 (71.1) 0.375 345
Comorbidities
Hypertension 260 (75.4) 93 (87.7) 167 (69.9) 0.001 345
Hyperlipidemia 196 (56.8) 69 (65.1) 127 (53.1) 0.051 345
Smoking status 0.236 334
Current smoker 138 (41.3) 36 (34.6) 102 (44.3)
Ex-smoker 95 (28.4) 32 (30.8) 63 (27.4)
Never smoker 101 (30.2) 36 (34.6) 65 (28.3)
Clinical characteristics
Prehospital time in minutes (median, IQR) 120.0 (71.0–271.0) 125.5 (60.0–410.8) 119.0 (80.0–255.0) 0.77 325
Left ventricular EF 0.025 332
> 50% 161 (48.5) 45 (42.9) 116 (51.1)
41–50% 78 (23.5) 28 (26.7) 50 (22.0)
31–40% 75 (22.6) 21 (20.0) 54 (23.8)
≤ 30% 18 (5.4) 11 (10.5) 7 (3.1)
Kidney function 0.727 345
eGFR ≥ 60 ml/min/1.73 m2 245 (71.0) 75 (70.8) 170 (71.1)
eGFR ≥ 60 ml/min/1.73 m2 90 (26.1) 29 (27.4) 61 (25.5)
eGFR ≥ 60 ml/min/1.73 m2 10 (2.9) 2 (1.9) 8 (3.3)
Treatment
PCI 319 (92.5) 95 (89.6) 224 (93.7) 0.267 345
Bypass therapy 34 (9.9) 14 (13.2) 20 (8.4) 0.232 345
Lysis therapy 3 (0.9) -- 3 (1.3) 345
Laboratory values
(median, IQR)
Admission glucose in mg/dl 137.0 (116.0–167.0) 177.0 (149.2–221.8) 125.0 (112.0–149.0) < 0.001 345
HbA1c in% 5.8 (5.5–6.3) 6.7 (6.1–7.3) 5.6 (5.4–5.9) < 0.001 345
HbA1c in mmol/mol 39.9 (36.6–45.4) 49.7 (43.1–56.3) 37.7 (35.5–41.0) < 0.001 345
Troponin I at admission in µg/ml 0.5 (0.1–5.8) 0.6 (0.1–8.1) 0.5 (0.1–3.8) 0.162 339
peak CRP in mg/dl 0.4 (0.3–1.0) 0.6 (0.3–1.3) 0.3 (0.3–0.8) 0.001 343
* number of cases with valid information
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In addition, we found a strong association between 
admission glucose and the eukaryotic translation initia-
tion factor 4E (eIF4E)-binding protein 1 (4E-BP1). The 
translation repressor 4E-BP1 is a known substrate of 
the mTOR (Mechanistic Target of Rapamycin) signaling 
pathway, which regulates important cellular processes 
and is involved in several pathological conditions, includ-
ing type 2 diabetes, obesity and cancer [29].

Association between HbA1c levels and inflammatory 
markers in STEMI patients
HbA1c at hospital admission due to STEMI was only 
independently associated with increased levels of the 
interleukin-18 receptor 1 (IL-18R1), which is the receptor 
for IL-18 and essential for IL-18 mediated signal trans-
duction. So far, the role of IL-18 in glucose metabolism is 
inconsistent. Although IL-18 has been ascribed a positive 

role in glucose homeostasis [30, 31], a number of clini-
cal studies have observed an upregulation of circulating 
IL-18 in patients with type 2 diabetes [32, 33], indepen-
dent of risk factors such as BMI and the presence of a 
generalized pro-inflammatory state [34]. Other investi-
gations reported a correlation between circulating IL-18 
levels and the Homeostasis Model Assessment of Insulin 
Resistance (HOMA-IR) index [35] or glucose intoler-
ance independent of BMI or age [36, 37]. Conversely, a 
decrease in IL-18 was associated with an improvement in 
β-cell function in individuals suffering from type 2 diabe-
tes [38].

Inflammatory responses to admission glucose in non-
diabetic and diabetic STEMI patients
In the non-diabetic group, admission blood glucose lev-
els were related to chemokines such as IL-8, IL-6, IL-10 

Fig. 1  Results of the linear regression models analyzing the association between admission glucose and inflammatory plasma proteins. The models 
were adjusted for sex, age, renal function, diabetes and BMI. P-values were Bonferroni-adjusted. Names of the markers are presented for all markers with 
Bonferroni-adjusted p-values below 0.05
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and MCP-1 [39, 40]. IL-10 is a Th2-type cytokine that 
is produced by a variety of immunological cell types 
and has the ability to inhibit the production and activ-
ity of cytokines, such as IL-6, thereby exerting an anti-
inflammatory effect [41]. However, there is also evidence 
that excess IL-10 may be associated with poorer clinical 
outcomes [42]. Prior studies have shown that IL-10 can 
increase insulin sensitivity and inhibit the negative effects 
of inflammatory cytokines on insulin signaling and glu-
cose homeostasis [43]. Possibly, the found association 
between admission glucose and IL-10 could be explained 
as a counter-regulatory response to insulin resistance and 
stress hyperglycemia due to acute illness [44].

Furthermore, this study showed higher levels of CCL20 
with increasing stress hyperglycemia [45, 46]. CCL20 is a 
chemokine that plays a key role in the regulation of den-
dritic cell trafficking and the recruitment and activation 

of T cells [47]. It is produced by activated cells such as 
monocytes, T cells, endothelial cells and fibroblasts. 
These results are in accordance with previous findings 
demonstrating that CCL20 is upregulated in response to 
high glucose [46].

Interestingly, in diabetic STEMI patients no inflam-
matory markers remained significantly associated with 
admission glucose after Bonferroni adjustment.

The current results indicated that especially in non-
diabetic STEMI patients, the presence of stress hyper-
glycemia is associated with inflammatory markers. This 
may partly explain why non-diabetic AMI patients with 
elevated admission glucose have a worse prognosis than 
diabetic AMI patients [48].

Fig. 2  Results of the linear regression models analyzing the association between HbA1c and inflammatory plasma proteins. The models were adjusted 
for sex, age, renal function, diabetes and BMI. P-values were Bonferroni-adjusted. Names of the markers are presented for all markers with Bonferroni-
adjusted p-values below 0.05
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Strengths and limitation
The current study has several strengths. First, the analy-
ses were based on data from the population-based Augs-
burg Myocardial Infarction Registry with consecutive 
recruitment, which minimizes the effect of selection bias. 
The highly standardized collection of the arterial blood 
samples was done immediately before the PCI procedure 
and the samples were processed and stored immediately 
afterwards. Finally, a large amount of additional informa-
tion on the patients was available, which could be consid-
ered as confounders in the linear regression models.

The present analysis has also some limitations. No 
studies were available to validate our finding for the iden-
tified protein markers associated with admission glu-
cose or HbA1c. Furthermore, due to the cross-sectional 
design of this study no conclusions about causality could 
be drawn (including the possibility of reverse causality). 

Also, residual or unmeasured confounding cannot 
be excluded. Finally, this study included only STEMI 
patients aged between 25 and 84 years, thus the results 
may not be generalized to all ethnicities as well as to 
Non-ST-elevation infarctions.

Conclusions
In summary, a number of inflammatory markers were 
associated with admission glucose in STEMI patients. 
The found associations between admission glucose and 
inflammatory proteins, which belong to inflammatory 
and immune-related signaling pathways, point towards 
a stress hyperglycemia-induced inflammation in non-
diabetic patients. Further studies are needed to clarify 
the pathophysiological mechanisms involved. The pres-
ent results may open new avenues for the development of 

Fig. 3  Results of the linear regression models analyzing the association between inflammatory plasma proteins and admission glucose separately for pa-
tients with diabetes (green) and non-diabetes patients (orange). The models were adjusted for sex, age, renal function and BMI. P-values were Bonferroni-
adjusted. Names of the markers are presented for all markers with Bonferroni-adjusted p-values below 0.05
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biomarkers suitable as potential diagnostic or prognostic 
clinical markers.
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