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Abstract— Inverse modeling is the process uncovering the
relationships from the system observations to its inputs. It is
essential in various fields such as control, robotics, and signal
processing. We propose an inverse modeling method using
amortized variational inference based on conditional normaliz-
ing flows (IMFlow). IMFlow is data-driven and can therefore
be applied to black-box environments with limited observability
and unknown complexity. Besides, the probabilistic modeling
characteristics of conditional normalizing flows allow IMFlow to
cope with unknown system uncertainties. We deploy IMFlow as
a probabilistic model predictive controller, which estimates the
control inputs as stochastic processes based on reference signals
and system responses. In addition, we also adjust IMFlow
to an online model-free reinforcement learning setting. We
demonstrate our proposed method achieves the same accuracy
in comparison to the standard model predictive control method
using white-box models.

I. INTRODUCTION
In general, system identification refers to the process

of establishing a mathematical model for a system using
measurements of the input and output signals of the system
[1]. Model Predictive Control (MPC) applies the identified
model to predict the system’s responses to control inputs, and
to choose the best control inputs through optimizing an ob-
jective. Therefore, system identification plays a fundamental
role in designing a model predictive controller.

Denoting uuut as input signals, xxxt as the state signals, and
yyyt as the observable output signals, the identified models g,
h satisfy:

xxxt+1 = g(xxxt ,uuut), (1a)
yyyt = h(xxxt). (1b)

Over a prediction horizon [N1,N2], a MPC optimization
problem aims to find the optimal control sequence uuut+N1:t+N2 ,
by minimizing an objective function with subject to system
constraints. Given a reference signal (target) rrrt+N1:t+N2 , the
objective function J is usually quadratic for the sake of
convex optimization [2] as follows:

min
uuu

J(rrrt ,yyyt) = min
uuu

N2

∑
i=N1

rrrt+i− yyyt+i|t
2
, (2)

subject to

xxxt=0 = xxx0, xxxt+1 = g(xxxt ,uuut), yyyt = h(xxxt), (3a)
uuulb < uuut+ j|t < uuuub, ∀ j ∈ [N1,N2], (3b)

yyylb < yyyt+i|t < yyyub, ∀i ∈ [N1,N2]. (3c)
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The symbols yyyt+i|t , uuut+i|t , xxxt+i|t stand for predicted signals
by models g, h based on yyyt , uuut , xxxt .

In order to circumvent explicit system identification for
control tasks, inverse modeling methods can be applied, i.e.,
deriving inputs uuu directly from yyy. Generally, the inverse
problem is solved as an optimization problem by mini-
mizing the least square error between the simulated and
measured system responses. In most practical cases, the
inverse problem is ill-posed because not all state variables or
initial conditions are known [3]. Besides, for systems with
higher complexity and unknown uncertainty, optimization-
based methods are quite computationally burdensome. To
tackle these challenges, deep learning based methods are
exploited and improve the prediction accuracy and efficiency.
In [4], common deep learning architectures are compared in
predictive control tasks. The research [5] put forward to train
neural networks with additional theory-guided loss evaluat-
ing governing equations and boundary/initial conditions. In
[6], backpropagation neural networks are applied in inverse
modeling with small datasets. In [7], a neural network is
implemented as an adaptive filter in the adaptive inverse
control framework. However, the above mentioned methods
do not take inverse uncertainty quantification into account.

TABLE I: Comparison of RL-based MPC methods

model-based model-free

online

GP [8][9][10]
Neural Network [11][12]
Dynamic Mirror Descent
[13]

Q-Learning [14]
Deep Q-Network [15][16]
Actor–Critic [17][18]
Policy Gradient [19][20]

pros data-efficient
more explainable

computationally efficient
suitable for various tasks

cons
can be computationally
complex; tend to
overfitting

dependent on
environment large dataset
required

offline

MBOP [21]
MPUR [22]
UMBRELLA [23]
PETS [24]

Q-ensemble with BC [25]
Actor–Critic [26]
Analytic Policy Gradient
[27]

pros less computationally
complex; relatively stable

diverse data allowed
steadily performant

cons highly dependent on data
quality; less adaptive sub-optimally performant

In terms of the iterative prediction process of future control
input (action) utilizing a simulation model (agent) in interac-
tion with the real system (environment), learning-based MPC
is very similar to model-based reinforcement learning (RL)
[28]. The difference is, model-based RL usually aims to find
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a global policy for a long horizon, while MPC focuses on
optimizing a local policy for an finite horizon [29]. Model-
based approaches build a predictive model of an environment
and derive a controller from it, while model-free approaches
learn a direct mapping from states to actions [30][31]. RL
optimizes the closed-loop performance in the MPC scheme
using data from the real system, rather than purely improving
the model predictive accuracy. Therefore, RL-based methods
outperform among learning-based MPC [32].

In Table I, we summarize the state-of-the-art RL-based
MPC methods in black-box environments according to
model-based/model-free approaches [33] and data collection
methods (online/offline) [34][35].

From the perspective of model-free or model-based, IM-
Flow is close to model-free because the policy is direct
inverse modeling from outputs to inputs. However, IMFlow
does not optimize the policy through a reward based on
the interaction between the agent and the environment and
thus is different from RL. In order to keep the strengths of
both online and offline approaches, we propose to train a
supervised probabilistic model with conditional normalizing
flows (cNFs) for directly capturing state-to-input relationship
offline, then adapt the model online for precise control tasks.
Besides, the way of online adaptation also relates to test-
time adaptation [36]. From the perspective of RL, the offline
supervised training and online sample-specific adaptation
balances the exploration and exploitation trade-off [37].

In other researches, based on sampling-based MPC meth-
ods [38], e.g., model predictive path integral (MPPI) [39]
and sample-efficient cross-entropy method (iCEM) [40],
normalizing flows are trained to learn the sampling dis-
tribution of control inputs, proposed in [41] (NFMPC),
[42] (FlowMPPI), and [43] (FlowMPPI, FlowiCEM). The
sampling-based approaches sample repeatedly random action
trajectories, evaluate them under the model, and re-fit the
sampling distribution to the best. Unlike that, IMFlow do
not sample action trajectories randomly. Besides, in these
methods, the control sequences are sampled point-by-point
with cNFs. Unlike standard cNFs, we modify the architecture
to predict control sequences as a time series, which is more
suitable for dynamic systems.

Contributions: We propose a novel method IMFlow1

to perform inverse modeling using conditional normalizing
flows. The identified inputs from outputs are modeled as
stochastic processes through a probabilistic mapping. Then,
the trustworthiness of inputs is indicated with confidence
intervals. We put forward three modes to implement IMFlow
into MPC framework for black-box environments. Firstly,
IMFlow can be applied in an open loop to efficiently obtain
a long sequence of control inputs. Secondly, in closed-loop
mode, an additional subspace encoder can be integrated to
IMFlow for acquiring information from the system feedback.
Thirdly, if the closed-loop approach can not achieve de-
manding accuracy, IMFlow can also be efficiently re-trained
partially online. We compare the proposed methods with

1Code available https://github.com/yiyi1zhang/IMFlow

standard MPC in terms of accuracy, computation time and
performance in trajectory tracking tasks.

II. PRELIMINARIES

Normalizing flows learn complex distributions from a
simple base distribution with invertible transformations under
the change of variables formula [44]. For variational infer-
ence, conditional normalizing flows are applied to learn a
common inference function, which maps each observation
to its approximate posterior [45].

A. Conditional Normalizing Flows

Denote the observation as yyy, the target as uuu, and the
parameters of a cNF as φ , the posterior distribution pφ (uuu|yyy)
is

pφ (uuu|yyy) = p(zzz|yyy) det (
dzzz
duuu

)

∣∣∣∣ . (4)

In the training process, zzz = fφ (uuu;yyy), it is assumed p(zzz|yyy) =
p(zzz) = N(000,I). Using a batch of dataset {uuu(m),yyy(m)}, m =
1, . . . ,M, φ is optimized by minimizing the Kullback-Leibler
divergence between the ground truth and the model-induced
posterior [46]:

Ep(yyy)KL(p(uuu|yyy)||pφ (uuu|yyy)) =
1
M

M

∑
m=1

[
1
2

fφ (uuu(m);yyy(m))
2

− log det JJJ(m)
fφ

], (5)

where JJJ fφ is the Jacobian matrix of fφ evaluated at uuu. In the
inference process, the posterior pφ (uuu|yyy) is obtained by first
sampling zzz ∼ p(zzz|yyy) = N(000,I), then passing it through the
bijective mapping f−1

φ
(zzz;yyy).

The cNF can be interpreted as an indirect correlation
map between target and observation through a likelihood-free
modeling from the joint distribution of target and observation
to the latent space.

B. SUBNET

It was proposed to use SUBNET [47] for subspace mod-
eling in nonlinear MPC system. SUBNET consists of a
subspace encoder ψη and two models gϑ , hϕ . In the horizon
[0,H), the subspace encoder ψη extracts information from
previous inputs and outputs for N steps to an estimated initial
state x̂t|t . Then, the models gϑ , hϕ propagate the initial state
to the future states x̂t+1:t+H−1|t and outputs ŷt+1:t+H−1|t . For
i = 0, . . . ,H−1, the process is formulated as:

x̂t|t = ψη(ut−N:H−1,yt−N:t) (6a)

x̂t+i+1|t = gϑ (x̂t+i|t ,ut+i, êt+i|t) (6b)

ŷt+i|t = hϕ(x̂t+i|t) (6c)

êt+i|t = yt+i− ŷt+i|t (6d)

The models ψη ,gϑ ,hϕ are optimized by minimizing the
mean squared error (MSE) between ŷt+i|t and yt+i.

We apply the subspace encoder to obtain implicit state
information from the system feedback.
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III. METHODS

Our proposed method IMFlow is developed from
BayesFlow for the sake of identifying inputs as time series
from observations. We aim to predict the control inputs in a
finite time horizon from given reference signals (open loop)
or from given reference signals along with the system outputs
(closed loop). Moreover, the closed-loop IMFlow can be
adapted into an online RL setting.

A. From BayesFlow to IMFlow

BayesFlow [46] is a parameter identification architecture,
consisting of a summary network (SM) for squeezing in-
formation from stochastic observations yyy, and a cNF for
transforming the base distribution zzz ∼ N(000,I) to the target
posterior distribution of the underlying parameters of the
observations.

Our IMFlow inherits the basic structure of BayesFlow.
SM models the reference signals rrr (and system outputs yyy)
to the hidden variable ỹyy. In order to process the information
in both time and feature dimensions, we construct SM with
double lanes. On the one lane, only the feature dimension
is processed. On the other lane, the time dimension is
further learned after the feature dimension is processed. The
architectures are shown in Fig.1.

RNN

BN

MLP
BN

MLP
T T

(a) one-head SM: input is reference signals rrr.

RNN

BN

MLP

BN

MLP
T T

RNN

BN

MLP

R

(b) two-head SM: inputs are reference signals rrr and system outputs
yyy.

Fig. 1: Summary network architectures of IMFlow. (RNN:
recurrent neural network, BN: batch normalization, MLP:
multiple layer perceptron, T: transpose, R: repeat, ◦: con-
catenate, H: horizon size, N: window size, D∗: dimension)

To model stochastic processes in the latent space, the base
distribution of the cNF in IMFlow is not a standard normal
distribution but a standard Wiener process www(t). A standard
Wiener process [48] (often called Brownian motion) is a
random variable depending continuously on t ∈ [0,H] and
satisfies:

(1) www(0) = 000;

(2) for 0≤ s < t ≤ H, www(t)−www(s)∼
√

t− s N(000,I);
(3) for 0≤ s1 < t1 < s2 < t2≤H, www(t1)−www(s1) and www(t2)−

www(s2) are independent.
We discretize the Wiener process with a time step ∆ts as
dwww ∼

√
∆ts N(000,I). It indicates the prediction at later time

step has larger variance than the earlier one, which agrees
with real scenarios. Correspondingly, the target posterior is
the joint distribution of H steps, pφ (uuut:t+H−1|t |ỹyyt:t+H−1|t). We
use RealNVP [49] as the architecture of normalizing flows.

B. Open-Loop IMFlow for Fast Planning

Assuming the system is stable and the path is free of
obstacle, we can generate control input sequences quickly
from reference signals. We train the one-head SM (Fig.1a)
and the forward cNF with split {uuu,rrr} pairs at the length of H
time steps, then sample the base distribution www(t), t = 1 : H
and pass the samples into the inverse cNF as well as rrr into
SM. Because the open-loop procedure has no interaction with
the system, the calculation is very efficient and can be used
in fast planning. Besides, the estimated inputs are modeled
as stochastic processes and thus provide the possibility of
uncertainty quantification.

C. Closed-Loop IMFlow for Predictive Control

However, in the long term, the inputs generated by open-
loop IMFlow may cause noticeable drift from the reference
signals to the real system responses. Then, the closed-loop
IMFlow with the two-head SM (Fig.1b) is an option. We
apply the subspace encoder of SUBNET as another head
in SM to acquire an implicit initial state x̃xxt|t . Pre-training
the SUBNET can accelerate convergence of IMFlow. In the
training phase, the subspace encoder is re-trained to further
optimize the extracted information from the previous system
responses. Both yyy and rrr in the training set are observable
system output signals. To distinguish yyy from rrr and improve
the robustness of prediction for noisy models, we add small
white noise to yyy during training. The loss function is a sum
of Kullback-Leibler divergence5 and the MSE between the
reference and the predicted system responses by SUBNET.
During deployment in the MPC framework, the subspace
encoder handles the last system feedback yyyt−N:t−1, while the
other head in SM receives the next reference rrrt:t+H−1, and
the inverse cNF calculates uuut:t+H−1 from the sampled latent
variable.

D. Online-RL IMFlow for Predictive Control

When the test data lies out of or in the tail of distribution
of the training set, the trained IMFlow cannot estimate
control input precisely. Here, we re-train part of IMFlow, for
example, the last layers of the subspace encoder for previous
system outputs, by minimizing the distance between system
responses and references. The algorithm is an adaptation of
closed-loop IMFlow, as shown in Algorithm 1. The update
rate of system is ∆tp = H × ∆ts. The window size N is
assumed to be an integer multiple of the horizon size H.
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Algorithm 1: Online-RL IMFlow MPC
Data: k = 1 : K, yyy0, xxx0, rrr1:K , δ .
k← 1, uuu0← 000;
while k ≤ K do

yyyk,xxxk←model(xxxk−1,uuuk−1);
if MSE(yyyk,rrrk)> δ then

re-train part of IMFlow by min MSE(yyyk,rrrk);
end
rrrkH:(k+1)H−1← interpolate(rrrk:k+1);
if k ≤ N/H then

yyypast ← repeat(yyy0) ∪ interpolate(yyy0:k);
else

yyypast ← interpolate(yyyk−N/H:k);
end
uuukH:(k+1)H−1← IMFlow(yyypast ,rrrkH:(k+1)H−1);
uuuk← uuukH:(k+1)H−1

end
Result: uuu0:K

IV. EXPERIMENTS

We validate open- and closed-loop IMFlows with a multi-
body dynamic vehicle model. Then, we compare the pre-
diction accuracy and computation time as the horizon size
grows. For closed-loop IMFlow, we investigate the prediction
deviation and precision against the intensity of noise added
onto the model. At last, we apply open-loop, closed-loop, and
online-RL IMFlow in trajectory tracking with a single-track
kinematic model. The results for the multi-body model are
compared with a nonlinear MPC using a dynamic single-
track model, while the results of single-track model are
compared with a linear MPC with a kinematic single-track
model. The MPC experiments are supported by the do-mpc2

package. We also compare the results of horizon test, noise
test, and trajectory tracking with two RL methods Analytic
Policy Gradient (APG) [27] and Probabilistic Ensembles
Trajectory Sampling (PETS) [24]. Due to instability of PETS
for the multi-body vehicle model, we only evaluate PETS on
trajectory tracking tasks.

A. Dataset

We summarize the two datasets generated with the multi-
body and the single-track model respectively in Table II. The
implementation of both models are from CommonRoad3. The
datasets are generated by solving the ordinary differential
equations of the models from various inputs signals, such as,
sinus, exponential, logarithmic, step, and triangle functions.
The sizes of training, validation and test set are 2000, 500 and
100. For training and validation, all samples are segmented
into the length of horizon size (5). The time step ∆ts is 0.01 s.
The simulation lasts from 0 s to 3 s.

B. Ablation Study

We compare IMFlow methods with MPC with a nonlinear
dynamic single-track model for a multi-body vehicle. The

2https://www.do-mpc.com/en/latest/
3https://github.com/CommonRoad

TABLE II: Dataset

model states inputs outputs

# 29 2 6

multi-
body

xyz-position & velocity,
yaw, pitch, roll angle &
rate of center, front &
rear, steering angle,
angular velocity of four
wheels

steering
velocity,
long.
acceleration

x position,
y position,
steering angle,
long. velocity,
yaw angle &
rate

# 4 2 4

single-
track

x-position, y-position,
long. velocity,
yaw angle

steering
angle,
long.
acceleration

x-position,
y-position,
long. velocity,
yaw angle

following three constructions are considered:

• cNF for point-by-point prediction ("cNF")
• open-loop IMFlow ("o.IMFlow")
• closed-loop IMFlow with previous system outputs

("c.IMFlow")

The networks are trained on a GPU and evaluated on a
CPU. All of the above three methods are sampled for 50
times. Fig.2 shows the comparison of control inputs predic-
tion and the resulting system responses with IMFlow meth-
ods and MPC. The open- and closed-loop IMFlow with time
series modeling outperform the cNF significantly and are
slightly less accurate than the MPC. Both methods achieve
the same accuracy, as shown in Table III. Compared with
the reference input sequences, the IMFlow methods predict
smoother actions. From the perspective of computation time,
the cNF is the fastest and about 15 times faster than MPC
in terms of time per simulation time step. IMFlows with
50 sampling times take comparable time to MPC with one
pass. The closed-loop IMFlow is about 40 % slower than the
open-loop IMFlow. The computation time of IMFlows can
be further reduced by less sampling. For sampling only one
time, open-loop IMFlow takes 1/5 and closed-loop IMFlow
takes 1/3 computation time in comparison to MPC.
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Fig. 2: Comparison between IMFlows and MPC
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TABLE III: Comparison to MPC

methods cNF o.IMFlow c.IMFlow MPC

norm. RMSE 0.0438 0.0198 0.0176 0.00811

com. time 50 [ms] 0.139 1.87 2.71 –

com. time 1 [ms] 0.139 0.581 0.964 2.59

C. Horizon Test

We investigate the influence of the length of horizon on
the prediction accuracy and computation time of open- and
closed-loop IMFlow in comparison with MPC. Because of
computational limitations and model inaccuracy, a larger
control horizon can lead to larger errors.

As the horizon size grows, the normalized root mean
squared errors (RMSEs) of IMFlows and MPC increases
linearly, while APG is relatively insensitive to horizon size
and remains at an average level. At larger horizon sizes, IM-
Flows overtake MPC and achieve lower deviation. Besides,
closed-loop IMFlow takes less computation time than MPC
when the horizon size is larger than 10, while open-loop
IMFlow with 50 sampling times saves about 1/3 time in
comparison to MPC. Surprisingly, APG works more than 10
times faster than the other methods and stays at 1.5 ms as
horizon changes (shown in Fig.3). It is important to note that
IMFlow has a far more complex architecture than APG, and
that vectorized sampling causes IMFlow to slowdown.

c.IMFlow

MPC

0.02

0

0.04

0.06

0.08

0.10
norm. RMSE

computation time / horizon

horizon size

o.IMFlow

0

0.02

0.04

0.03

0.01

5 10 15 20

APG

0.001

Fig. 3: Influence of horizon size

D. Influence of noise

To train the closed-loop IMFlow, we use a noise factor
multiplied onto additive white noise in the previous system
outputs to distinguish the system outputs from the reference.
In the deployment of MPC, the training with noise also
enhances the robustness of IMFlow against noise in the
system. We compare the normalized RMSE of closed-loop
IMFlow trained with differently intense noise in the previous
system responses. The closed-loop IMFlow achieves lower
deviation for controlling noisy systems. On the contrary, the
performance of the standard MPC without any estimator and

APG are heavily impaired by noise. Besides, we can observe
the mean prediction interval width (MPIW) of IMFlow.
MPIW remains constantly at 0.06 with increasing noise
factor, indicating IMFlow is able to identify the control
inputs precisely despite of noise in the system. Because of
the capability pf probabilistic modeling, IMFlow is able to
overcome some disturbance to the system and thus can be
applied in robust control.

noise factor

0 0.01 0.02 0.03 0.04 0.05
0

0.40

0.60

0.80

1.00

MPC

norm. RMSE

c.IMFlow

0.20

APG

Fig. 4: Influence of noise factor

E. Trajectory Tracking

We implement the open- and closed-loop IMFlow for
trajectory tracking of a kinematic single-track vehicle model.
As shown in Fig.5a and Table IV, MPC is the most accurate
method because of fully comprehension of the single-track
model. Two IMFlow methods also achieve comparable accu-
racy as PETS. However, APG diverges accumulatively after
extrapolation and must be adjusted frequently. Besides, we
measure the computation time of one single simulation step
with sampling the latent variable of IMFlows for 50 times
in Table IV. In comparison to the results for the multi-body
system, as shown in Table III, the computation time of two
IMFlows remains the same, while MPC takes 20 % less time.
Based on this, we could infer that, as the system complexity
increases, the computation time of MPC will increase as
well. IMFlows, in contrast, do not respond strongly to system
complexity since they regard the system as a black box.
The computational time with sampling is slightly longer
than that of the deterministic APG, and 10 times shorter
than that of the probabilistic PETS. Considering the re-
training expense, PETS is much more flexible than IMFlow
and APG due to its low computational complexity while
training. On the other hand, IMFlow as an optimizer-free
method takes 10 times longer than PETS for each iteration,
which can be further accelerated. In comparison to the other
optimizer-free method, APG, IMFlow outperforms in terms
of both computational time and the frequency of necessary
re-training. However, PETS can be unstable because of the
unpredictable behaviors of the sampling based optimizer.
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Fig. 5: Trajectory tracking

TABLE IV: Performance of trajectory tracking

methods o.IMFlow c.IMFlow MPC APG PETS
norm.RMSE 0.0205 0.0200 6.08e-4 0.0662 0.0234

com. time [ms] 10.5 14.9 1.81 9.97 124
retrain time

/episode [ms] - 45.8 - 132 4.39

V. CONCLUSIONS AND FUTURE WORKS

Conclusions: We explore the potential of conditional nor-
malizing flows for probabilistic inverse modeling of black-
box systems. Firstly, we construct a novel architecture IM-
Flow for identifying input sequences as time series from
observed system responses. Secondly, the open-loop IMFlow
achieves close accuracy as MPC and much higher accuracy in
comparison to the cNF. Besides, IMFlow outperforms MPC
for larger horizon sizes in terms of both accuracy and com-
putation time, making it appropriate for fast planning with
uncertainty quantification. However, in comparison to APG,
IMFlow is less accurate for larger horizon and takes much
longer computational time due to its complexity. Thirdly, the
closed-loop IMFlow improves the robustness against noise
in the system. The architecture is able to filter some weak
noise and regularize the prediction because of the Bayesian
inference characteristics. Fourthly, the closed-loop IMFlow
enables precise control tasks by adapting the partial networks
online efficiently.

Future works: The proposed model-free online-RL IM-
Flow exhibits its capability for adaptive model predictive
control. The accuracy of trajectory tracking is comparable
with the RL-based methods. However, the efficiency should
be further improved. Besides, so far, the evaluation is based
solely on simulation models, it could be challenging to apply
IMFlows in real systems. Furthermore, recent researches
on learning-based MPC in grey-box environments reveal
the combination of first-principle models and data-driven
methods can improve the prediction accuracy while accel-
erating online calculation. We will investigate the possibility
of incorporating IMFlow with physics-based models. Last
but not the least, like most data-driven model predictive
controllers, the stability of our proposed methods are not
proved. There is no theoretical guarantee that the control
system’s states converge to desired points. It should be
considered in our future research.
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