
Universität Augsburg

KABCROMUNGSHO0

Safe Reasoning with Logic LTS

Gerald Lüttgen, Walter Vogler

Report 2008-18 November 2008

Institut für Informatik

Copyright c© Gerald Lüttgen, Walter Vogler
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Safe Reasoning with Logic LTS

Gerald Lüttgen1 and Walter Vogler2

1 Department of Computer Science, University of York, York YO10 5DD, U.K.
luettgen@cs.york.ac.uk

2 Institut für Informatik, Universität Augsburg, D–86135 Augsburg, Germany
vogler@informatik.uni-augsburg.de

Abstract. Previous work has introduced the setting of Logic LTS, to-
gether with a variant of ready simulation as fully-abstract refinement
preorder, which allows one to compose operational specifications using a
CSP-style parallel operator as well as the propositional connectives con-
junction and disjunction. In this paper, we show how a temporal logic
for specifying safety properties may be embedded into Logic LTS so that
(a) the temporal operators are compositional for ready simulation and
(b) ready simulation, when restricted to pairs of processes and formulas,
coincides with the logic’s satisfaction relation. The utility of this set-
ting as a semantic foundation for mixed operational and temporal-logic
specification languages is demonstrated via a simple example.

1 Introduction

Recently, the setting of Logic LTS has been introduced which combines opera-
tional and logic styles of specification [13, 14] in one unified framework. It in-
cludes operational operators, such as parallel composition, and the propositional-
logic operators conjunction and disjunction. Logic LTS extends labelled transi-
tion systems by an inconsistency predicate on states, where an inconsistent state,
or process, denotes empty behaviour that cannot be implemented (cf. Sec. 2).
Inconsistencies may arise when conjunctively composing processes with different
ready sets, i.e., initial action sets [13]. The refinement preorder ⊑RS adapted for
Logic LTS is a variant of ready simulation [2, 6, 18]. It is fully abstract wrt.
a reference preorder that relates consistent implementations only to consistent
specifications [14], i.e., it is the coarsest compositional preorder wrt. parallel
composition, conjunction and disjunction when taking consistency into account.
Most notably, the setting justifies a simulation-type preorder when starting from
the binary basic observable ‘consistency’.

This paper extends Logic LTS by temporal-logic operators, thereby fulfilling
our ultimate goal of combining process algebraic and temporal logic operators
in a uniform compositional refinement setting in which logical satisfaction and
process refinement can be used interchangeably. The temporal logic of interest
is a branching-time logic, allowing one to specify the most important class of
temporal properties in practice, viz. safety properties, over atomic propositions
that refer to the enabledness of actions; in particular, we consider the standard

temporal operators always and unless (weak until). These operators will be em-
bedded into Logic LTS such that the logic satisfaction relation |= is compatible
with ⊑RS (cf. Sec. 3). This means that, firstly, p |= φ if and only if p ⊑RS φ,
for any process p and temporal-logic formula φ; secondly, ready simulation is
compositional for the temporal operators. Obviously, the logic’s propositional
operators will exactly match the ones that are already included in Logic LTS.

This setting is unique in the literature in that it allows one to freely mix
operational operators, propositional logic operators and temporal logic opera-
tors, while still permitting compositional reasoning, as discussed in the related
work section below (cf. Sec. 6). Our work is strongly inspired by current research
into novel notations and methodologies for developing software, where require-
ments and designs of behaviourally complex systems are regularly specified using
a mixture of declarative and operational languages, allowing for the traceable
transitioning from software requirements to designs. At the requirements level,
popular languages include restricted forms of English or simple spreadsheets
(declarative, also temporal) and block diagrams or state machines (operational).
At design level, UML class diagrams combined with the Object Constraint Lan-
guage (declarative, partly temporal) and Statecharts (operational) are frequently
used. The setting presented in this paper serves as the semantic backbone for
a related, industry-supported research project3 that extends Statecharts with
temporal-logic-style contracts and employs ready simulation ⊑RS for composi-
tional model checking. Indeed, our main theorem proving the compatibility of |=
with ⊑RS (Thm. 12) provides a formal basis for compositional verification.

2 The Setting of Logic LTS

We begin with briefly recalling the setting of Logic LTS as introduced in [13, 14],
together with several results and notations that are relevant to this paper.

Inconsistency. Logic LTS considers inconsistencies that may arise under con-
junctive composition as first-class observables. A conjunctively composed state
between two processes is marked as inconsistent, if one offers an action that the
other cannot perform, i.e., if the processes have different ready sets. Consider the
processes p, q and r in Fig. 1(a). Process p and q specify that exactly action a and
resp. b is offered initially, i.e., their ready sets are {a} and resp. {b}. Similarly,
r specifies that a and b are offered initially and thus has ready set {a, b}. Hence,
p∧q and p∧r are inconsistent (or false), and should be tagged as such. Formally,
our variant of LTS will be augmented by an inconsistency predicate F , so that
p ∧ q, p ∧ r ∈ F in our example. Observe also that, e.g., according to failures
semantics [3], p and q (resp. p and r) do not have a common implementation.

Most notably, inconsistencies may propagate backwards along transitions.
For example, in the conjunction p′ ∧ q′ shown in Fig. 1(b), both conjuncts re-
quire action a to be performed, whence p′ ∧ q′ should have an a-transition. But

3 “Refinement Patterns for Contractual Statecharts”; EPSRC grant EP/E034853/1.
The research resulting in this technical report was partially supported by this grant.

3

(b)

a ba b a
F

a ba
F

b
F

τ τa b

F

(F)(c) (d) (e)

F
a a

b c

a
(F)

F

a

p’ q’p rp q(a)

Fig. 1. (a)–(b): Conjunctive composition; (c)–(e): Backward propagation.

this transition leads to an inconsistent state and, in the absence of any alterna-
tive a-transition leading to a consistent state, p′ ∧ q′ must itself be considered
inconsistent. In this spirit, inconsistency propagates backwards for the process in
Fig. 1(c), whereas it does not for the processes in Figs. 1(d) and 1(e). Note that
in Fig. 1(e), actions τ are used to specify the disjunction between alternatives.

Formal definitions. Let A be a non-empty alphabet of visible actions with
representatives a and b. With τ being a distinguished, internal action, let Aτ

denote A ∪ {τ} with representatives α and β. An LTS is a triple 〈P,−→, F 〉,
where P is the set of processes (states), −→⊆ P × Aτ × P is the transition

relation, and F ⊆ P is the inconsistency predicate. We write p
α

−→ p′ instead of
〈p, α, p′〉 ∈−→, and p

α
−→F p

′ if additionally p, p′ /∈ F ; I(p) stands for the ready

set {α ∈ Aτ | p
α

−→} of p. A process p that cannot engage in a τ -transition, i.e.,

p 6
τ

−→, is called stable.

We introduce weak transitions by writing (i) p
ǫ

=⇒ p′ if p
τ

−→
∗
p′; and

(ii) p
a

=⇒ p′ if ∃p, p′. p
ǫ

=⇒ p
a

−→ p′
ǫ

=⇒ p′. If all processes along a computation

p
ǫ

=⇒ p′ or p
a

=⇒ p′, including p and p′, are consistent, we write p
ǫ

=⇒F p
′ and

resp. p
a

=⇒F p′. If in addition p′ is stable, we write p
ǫ

=⇒| p′ and resp. p
a

=⇒| p′.
With this, we introduce a notion to deal with divergence, i.e., infinite sequences
of τ -transitions, where divergence is viewed as catastrophic if a process cannot
stabilise: process p cannot stabilise if 6 ∃p′. p

ǫ
=⇒| p′.

Moreover, we require an LTS to satisfy the following τ-purity condition: p
τ

−→
implies 6 ∃a ∈ A. p

a
−→, for all p ∈ P . Hence, each process represents either an

external or internal (disjunctive) choice between its outgoing transitions. This
restriction reflects the fact that ready sets can only be observed at stable states,
and is justified in [13]. Logic LTSs must satisfy two further properties, of which
the first one formalises our backward propagation of inconsistencies:

Definition 1 (Logic LTS [13]). An LTS 〈P,−→, F 〉 is a Logic LTS if

(LTS1) p ∈ F if ∃α ∈ I(p)∀p′ ∈ P. p
α

−→ p′ =⇒ p′ ∈ F ;
(LTS2) p cannot stabilise =⇒ p ∈ F .

Operators. Logic LTSs are equipped with various propositional-logic and pro-
cess-algebraic operators; we can only give a brief account here and refer the
reader to [13, 14] for details. The parallel operator ‖A, for some synchronisation
alphabet A ⊆ A, is essentially the one of CSP [3], but favours τ -transitions over
visible transitions so as to preserve τ -purity. Naturally, p ‖A q is inconsistent

4

if p or q is inconsistent. The conjunction operator ∧ is a synchronous product
(or parallel composition) for visible transitions and an asynchronous product for
τ -transitions, and thus also favours τ -transitions. Process p ∧ q is inconsistent
if p or q is inconsistent; or if p and q are stable but have different ready sets; or
if it becomes inconsistent by backward propagation.

The disjunction operator ∨ is an internal choice operator, where p ∨ q is
inconsistent if both p and q are. Fig. 1(e) depicts a disjunction of an inconsis-
tent process with a consistent process that can engage in action b; hence, the
disjunctive process is consistent. Thus, p∨ q essentially is a process with two τ -
transitions to p and resp. q; correspondingly, τ is not so much seen as an internal
action in our setting but primarily indicates a logical disjunct.

Refinement. Our refinement preorder is a variant of ready simulation [2, 6, 18]:

Definition 2 (Ready simulation on Logic LTS [14]). Let 〈P,−→P , FP 〉
and 〈Q,−→Q, FQ〉 be two Logic LTSs. Relation R ⊆ P × Q is a stable ready

simulation relation, if the following conditions hold, for any 〈p, q〉 ∈ R, a ∈ A:

(RS1) p, q stable; (RS3) p
a

=⇒| p′ =⇒ ∃q′. q
a

=⇒| q′ and 〈p′, q′〉 ∈ R;
(RS2) p /∈ FP =⇒ q /∈ FQ; (RS4) p /∈ FP =⇒ I(p) = I(q).

We write p ⊏
∼RS

q if there exists a stable ready simulation relation R such that

〈p, q〉 ∈ R. Further, p is ready simulated by q, in symbols p ⊑RS q, if ∀p′. p
ǫ

=⇒| p′

=⇒ ∃q′. q
ǫ

=⇒| q′ and p′ ⊏
∼RS

q′. Finally, we let =RS stand for the kernel of ⊑RS.

While we allow transitions leaving inconsistent states, they are ignored in the
above definition. Thus, one may remove such transitions without changing the
relevant behaviour of processes; for technical convenience, we do not include this
additional normalisation when defining our operators. Our operators satisfy the
following properties wrt. ⊑RS:

Proposition 3 ([14]). Let p, q, r be processes, p′ ⊑RS q
′ and A ⊆ A.

• Compositionality: p′ ∧ r ⊑RS q
′ ∧ r, p′ ∨ r ⊑RS q

′ ∨ r, p′‖Ar ⊑RS q
′‖Ar;

• ∧ is conjunction: r ⊑RS p ∧ q ⇐⇒ r ⊑RS p and r ⊑RS q;
• ∨ is disjunction: p ∨ q ⊑RS r ⇐⇒ p ⊑RS r and q ⊑RS r.

The second item above demonstrates that ∧ is indeed conjunction: clearly, a pro-
cess should implement a conjunction if and only if it implements both conjuncts.

In addition, we have shown in [14] that relation ⊑RS is fully abstract for
the preorder ⊑F , which is defined by p ⊑F q iff q ∈ FQ =⇒ p ∈ FP (i.e.,
an inconsistent specification q cannot have a consistent implementation p as
refinement). This means that our simulation-type preorder is justified simply by
starting from a binary basic observable, namely consistency.

3 Temporal Logic & Logic LTS

The temporal properties we embed in Logic LTS are essentially the safety prop-
erties of the universal fragment of action-based CTL [4], adapted to our setting.

5

This is the largest fragment we can hope for since, firstly, Logic LTS is based
on standard LTS, without Büchi annotations or similar acceptance conditions.
Hence, finite-state Logic LTS is not expressive enough for encoding liveness (or
fairness) properties. Secondly, we wish for the logic satisfaction relation |= to
be compatible with ⊑RS, i.e., p |= φ ⇐⇒ p ⊑RS φ, for any process p and for-
mula φ. Hence, by transitivity of ⊑RS, we have that p ⊑RS q and q |= φ implies
p |= φ, i.e., the implementation p with the ‘smaller’ behaviour has to satisfy
more formulas than the specification q. This justifies our focus on the universal

fragment. Therefore, we consider the following set F of temporal formulas φ:

φ ::= tt | ff | en(a) | dis(a) | φ ∨ φ | φ ∧ φ | [a]φ | �φ | φWφ

Here, the atomic propositions en(a) and dis(a) denote the enabledness and resp.
disabledness of action a, and [a], � and W are the usual next, always (generally)
and unless (weak until) operators. The latter can be seen as a weak version of
the until in [4]. In addition, formula tt (resp. ff) may be derived as en(a)∨dis(a)
(resp. en(a)∧dis(a)); moreover, �φ is equivalent to φWff . Note that having en(a)
and dis(a) in the logic is similar to positive normal forms in state-based logics.

Satisfaction relation. Recall that, in our setting, action τ is not so much seen
as an internal action, but an instable process p is a ‘disjunction’; hence, p |= φ

should mean that p0 |= φ for all ‘disjuncts’ p0 of p, i.e., for each p0 with p
ǫ

=⇒| p0.

Thus, we define |= as follows, where
A

=⇒| stands for
⋃

a∈A
a

=⇒| :

Definition 4 (Satisfaction relation). Given a Logic LTS with state set P ,
the satisfaction relation |=⊆ P ×F is defined by the following rules:

p |= tt always p |= en(a) if ∀p0. p
ǫ

=⇒| p0 =⇒ p0
a

−→

p |= ff if p ∈ F p |= dis(a) if ∀p0. p
ǫ

=⇒| p0 =⇒ p0 6
a

−→

p |= φ ∨ ψ if ∀p0. p
ǫ

=⇒| p0 =⇒ (p0 |= φ or p0 |= ψ)

p |= φ ∧ ψ if ∀p0. p
ǫ

=⇒| p0 =⇒ (p0 |= φ and p0 |= ψ)

p |= [a]φ if ∀p0, p1. p
ǫ

=⇒| p0
a

=⇒| p1 =⇒ p1 |= φ

p |= �φ if (pn |= φ whenever p
ǫ

=⇒| p0
A

=⇒| p1 . . .
A

=⇒| pn)

p |= φWψ if (pn |= φ or ∃i ≤ n. pi |= ψ, whenever p
ǫ

=⇒| p0
A

=⇒| p1 . . .
A

=⇒| pn)

This definition coincides for τ -less p with the standard one but, in contrast to
processes within LTS, ff is satisfiable, namely by inconsistent processes.

To motivate the quantification “∀p0. p
ǫ

=⇒| p0” for the ∨-case further, consider
that |= must be defined such that the process p that has one initial a-transition
followed by a b-transition, satisfies formula [a]en(b). Similarly, the process q that
has one initial a-transition followed by a c-transition, should satisfy [a]en(c).
Since we aim for a setting in which |= may be freely replaced by ⊑RS and since
⊑RS is a precongruence, we must have p ∨ q |= [a]en(b) ∨ [a]en(c). In a classic
definition of satisfiability, this would mean p ∨ q |= [a]en(b) or p ∨ q |= [a]en(c),
which are both clearly false. In addition and as claimed above, each process p

6

indeed satisfies en(a) ∨ dis(a) since each ‘disjunct’ p0 of p is stable and hence
either can engage in a (i.e., satisfies en(a)) or cannot (i.e., satisfies dis(a)).

As an aside and provided that p and q belong to Logic LTSs that are finitely

branching, we get the following Hennessy-Milner-style characterisation of ⊑RS,
where FRS are the essential formulas, namely the formulas in F that do neither
contain operators ∧, � and W, nor sub-formulas tt and dis(a):

Theorem 5 (Characterisation). p ⊑RS q ⇐⇒ ∀φ ∈ FRS. q |= φ =⇒ p |= φ.

This characterisation is more or less a corollary to an analogous result of Bloom
[2]. In his thesis, Bloom considered a characterisation based on the opposite
implication than the one we require. Correspondingly, he used the dual fragment
of formulas, e.g., employing 〈a〉-modalities instead of [a]-modalities.

...

ff
F tt

b in A

dis(a)

τ

(d)tt

τ

b in A b in A

...τ

en(a)

a (if a in A)b in A

tt

[a]

τ...
ττ τ τ τ

......
τ

... ...
τ τ

(e)

Φ

Φ

tt

(a)

(b)

(c)

\{a}

... ...
Att

...
A (cont. a)

...
A (not cont. a) A (arbitrary)

...

Fig. 2. Embedding of temporal-logic formulas into Logic LTS.

Embedding. We embed our temporal formulas into Logic LTS and present the
desired compatibility result between |= and ⊑RS. The embedding is conducted
along the structure of formulas. Formula tt corresponds to the initial state of
the Logic LTS sketched in Fig. 2(a), which can nondeterministically select an
arbitrary ready set A ⊆ A via a τ -transition to process ttA. From there, it can
engage in any transition labelled with an action b ∈ A and return to tt. Hence,
tt is a process that can simulate any other process, and is thus indeed the desired
‘universal’ process. Formula ff is trivially mapped to the inconsistent process de-
picted in Fig. 2(b), which can only ready simulate an inconsistent process. For-
mula en(a) corresponds to the initial state of the Logic LTS in Fig. 2(c). This can
select any ready set A containing a by silently moving to process A, from where
it can engage in a b-transition, for any b ∈ A, to tt. We embed formula dis(a)
analogously, where we require a /∈ A instead of a ∈ A; see Fig. 2(d).

Formula φ ∧ ψ (resp. φ ∨ ψ) is embedded by conjunctively (resp. disjunc-
tively) composing the Logic LTSs of the embeddings of φ and ψ, using opera-
tor ∧ (resp. ∨) on Logic LTS. The embedding of a formula [a]φ is sketched in
Fig. 2(e). Again, the initial process may choose an arbitrary ready set A. The
corresponding process A can engage in a b-step, for any b ∈ A \ {a}, to tt. In
addition, if a ∈ A, there is an a-step to the initial state of φ’s embedding. Hence,

7

any a-derivative of [a]φ behaves as φ, whereas arbitrary behaviour is permitted
for differently labelled derivatives. We now define �- and W-operators on Logic
LTS, which facilitate the straightforward embedding of formulas �φ and φWψ:

Definition 6 (�-operator, “always”). Let 〈P,−→P , FP 〉 be a Logic LTS.
Then, �p, for p ∈ P , is process (p) in Logic LTS 〈�P ,−→�P , F�P 〉, where:

– �P =df {~p = (p1, p2, . . . , pn) |n≥1, ∀1≤i≤n. pi∈P} is the set of finite vec-
tors over P .

– −→�P is defined by the following operational rules:

pi
τ

−→P p′i =⇒ (p1, . . . , pi, . . . , pn)
τ

−→�P (p1, . . . , p
′
i, . . . , pn)

∀i. pi
a

−→P p′i =⇒ (p1, . . . , pn)
a

−→�P (p′1, . . . , p
′
n, p) .

– F�P is the least set of finite vectors such that ~p = (p1, . . . , pn) ∈ F�P if any
one of the following conditions holds:
(BF1) ∃i. pi ∈ FP ;
(BF2) ~p stable but ∃i, j. IP (pi) 6= IP (pj);

(BF3) ∃α ∈ I�P (~p)∀~p ′. ~p
α

−→�P ~p ′ =⇒ ~p ′ ∈ F�P ;
(BF4) ~p cannot stabilise outside F�P .

In the sequel, we use the convention that ~p ∈ �P has components p1, p2, . . . , pn.
Observe that 〈�P ,−→�P , F�P 〉 is indeed a Logic LTS and that ~p behaves as the
conjunction

∧
i pi. Intuitively, the above construction adds p to the process vector

after every visible step. Although the employed vector notation is convenient for
proving compositionality, its use immediately leads to an infinite state space.
However, we could have used process sets instead of process vectors, which would
result in an =RS-equivalent definition. This would make the process sets of �P
finite if P is finite, and permit an implementation of the �-operator.

Definition 7 (W-operator, “unless”). Let 〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉
be Logic LTSs. Then, pWq, for p ∈ P and q ∈ Q, is a process within the Logic
LTS 〈PWQ,−→PWQ, FPWQ〉, where:

– PWQ =df {pWq} ∪�P ∪ (�P ×Q) with �P = {~p |n≥1, ∀1≤i≤n. pi ∈ P}.

– −→PWQ is defined by the following operational rules:

always pWq
τ

−→PWQ 〈(), q〉

always pWq
τ

−→PWQ (p)

pi
τ

−→P p′i =⇒ (p1, . . . , pi, . . . , pn)
τ

−→PWQ (p1, . . . , p
′
i, . . . , pn)

∀i. pi
a

−→P p′i =⇒ (p1, . . . , pn)
a

−→PWQ 〈(p′1, . . . , p
′
n), q〉

∀i. pi
a

−→P p′i =⇒ (p1, . . . , pn)
a

−→PWQ (p′1, . . . , p
′
n, p)

q′
τ

−→Q q′′ =⇒ 〈(p1, . . . , pn), q′〉
τ

−→PWQ 〈(p1, . . . , pn), q′′〉

pi
τ

−→P p′i =⇒ 〈(p1, . . . , pn), q′〉
τ

−→PWQ 〈(p1, . . . , p
′
i, . . . , pn), q′〉

q′
a

−→Q q′′ and

∀i. pi
a

−→P p′i =⇒ 〈(p1, . . . , pn), q′〉
a

−→PWQ 〈(p′1, . . . , p
′
n), q′′〉 .

8

– FPWQ is the least set such that r ∈ FPWQ if any one of these holds:
(RF1) r equals ~p or 〈~p, q′〉 so that ∃i. pi ∈ FP , or r = 〈~p, q′〉 and q′ ∈ FQ;
(RF2) r is stable, equals ~p or 〈~p, q′〉 and ∃i, j. IP (pi) 6= IP (pj),

or r = 〈~p, q′〉 stable and ∃i. IP (pi) 6= IQ(q′);

(RF3) ∃α ∈ I(r)∀r′. r
α

−→PWQ r′ =⇒ r′ ∈ FPWQ;
(RF4) r cannot stabilise outside FPWQ.

This Logic LTS is well-defined. Processes 〈~p, q〉 should be thought of as
∧

i pi∧q.
Intuitively, pWq behaves similarly to �p; however, initially and at any stable
state along a computation, it may decide to withdraw from conjoining p in
favour of a one-off conjunction with q.

Theorem 8 (Compositionality). Let p ⊑RS q, r ⊑RS s and a ∈ A. Then,

[a]p ⊑RS [a]q, �p ⊑RS �q and pW r ⊑RS qW s.

An essential point in the proof of this theorem is the reasoning about inconsis-
tencies; e.g., for a �P Logic LTS, we adapt the concept of witness of [13]:

Definition 9 (�-witness). A �-witness for �P is a set W ⊆ �P such that,
for all ~p ∈ W , the following conditions hold:

(W1) ∀i. pi /∈ FP ;
(W2) ~p stable =⇒ ∀i, j. IP (pi) = IP (pj);

(W3) ∀α ∈ I�P (~p)∃~p ′. ~p
α

−→�P ~p ′ and ~p ′ ∈ W ;

(W4) ~p can stabilise in W , i.e., ∃~p ′, ~p1, . . . ~pm. ~p
τ

−→�P ~p1
τ

−→�P . . .

. . .
τ

−→�P ~pm = ~p ′ 6
τ

−→�P and ∀i. ~pi ∈W .

The following straightforward property of �-witnesses gives us a useful tool for
proving that always processes are consistent:

Proposition 10. ~p /∈ F�P if and only if ∃�-witnessW. ~p ∈W .

Proof. Direction “=⇒” follows from the fact that F�P , i.e., the complement
of F�P , is an ∧-witness. For direction “⇐=” we note that W satisfies the con-
ditions of F�P , whence F�P ⊆W . ⊓⊔

The concrete witness needed in the �-compositionality proof is the following:

Lemma 11 (Concrete witness). Given stable p /∈ FP and q ∈ Q with p ⊏
∼RS

q,
the set W =df W1 ∪W2 ⊆ �Q is a �-witness, where

W1 =df {~q = (q1, . . . , qn) | ∃~p = (p1, . . . , pn). ~p /∈ F�P and ∀i. pi
⊏
∼RS

qi};

W2 =df {~q = (q1, . . . , qn) | ∃~q ′ = (q′1, . . . , q
′
n)). ~q ′ ∈W1 and ∀i. qi

ǫ
=⇒| q′i} .

Proof. We need to check Conds. (W1)–(W4) of �-witness.

(W1) If ~q ∈W1, then ~p /∈ F�P , which implies pi /∈ FP for all i. Hence, qi /∈ FQ

by pi
⊏
∼RS

qi, for all i.

If ~q ∈ W2, then qi
ǫ

=⇒| , for all i, and thus qi /∈ FQ.

9

(W2) If ~q ∈ W1 stable, then qi, qj are stable for any i, j and, by the above,
qi, qj /∈ FQ. By pi

⊏
∼RS

qi and pj
⊏
∼RS

qj , we obtain IQ(qi) = IP (pi) =

IP (pj) = IQ(qj), where the second equality holds due to ~p /∈ F�P .
If ~q ∈ W2 stable, then ~q ∈W1 and we are in the case above.

(W3) We first consider the case α = τ . Then, ~q
τ

−→ implies ∃i. qi
τ

−→ qi for
some qi. Moreover, ~q can only be in W2 and not in W1 since W1 requires ~q to

be stable. Thus, w.l.o.g., qi is chosen such that qi
ǫ

=⇒| . By definition of W2,

we have ~q
τ

−→ (q1, . . . , qi, . . . , qn) ∈W2.

If α 6= τ , then ~q
α

−→ means ~q ∈ W1. Moreover, qi
α

−→ for all i. Thus, due
to ~p /∈ F�P and pi

⊏
∼RS

qi, we have ∀i. pi
α

−→ by (RS4). Thus, ~p
α

−→, and

hence ∃~p′. ~p
α

=⇒| (~p′, p) and ∀i. pi
α

=⇒| p′i. By (RS3), there exist q′i and q̂i such

that qi
α

−→F q̂i
ǫ

=⇒| q′i and p′i
⊏
∼RS

q′i. Moreover, we know p ⊏
∼RS

q and p /∈ FP ,

whence (q′1, . . . , q
′
n, q) ∈ W1. Now, ~q

α
−→ (q̂1, . . . , q̂n, q) ∈W2.

(W4) If ~q ∈ W1, then qi is stable for all i, which implies that ~q is stable, too.
Therefore, ~q can stabilise trivially in W .
If ~q ∈ W2, then ~q can stabilise since every qi can stabilise by the definition
of W2. This stabilisation is in W2 by construction. ⊓⊔

A similar witness concept and construction is needed for proving the W-operator
compositional. We may now prove Thm. 8:

Proof. Recall that the compositionality results for parallel composition, conjunc-
tion and disjunction were stated and proved in [14].

We start off with sketching the compositionality proof for [a]. Firstly, stable
process A in the encoding [a]P of [a]p is matched by stable process A in the
encoding [a]Q of [a]q, showing (RS1) and (RS4). For (RS2), we observe: if A ∈
F[a]Q, then we must have a ∈ A and q ∈ FQ, thus p ∈ FP and A ∈ F[a]P . Now

we assume A 6∈ F[a]P ; if A
a

−→F p
ǫ

=⇒| p0 then, since p ⊑RS q by assumption,

there is some q0 with q
ǫ

=⇒| q0 and p0
⊏
∼RS

q0; furthermore, A
a

−→F q
ǫ

=⇒| q0 in

[a]Q. For b ∈ A \ {a}, we have A
b

−→F tt in both [a]P and [a]Q. Thus, (RS3)
holds as well.

We now turn to proving compositionality regarding the operator �. If p ∈ FP ,
then �p ⊑RS �q is trivial. Now consider p /∈ FP (and hence q /∈ FQ). Since

the processes on which �p can stabilise are exactly those (p̂) with p
ǫ

=⇒| p̂ (and
similarly for q), we only have to establish the following statement:

Let p ⊑RS q be given, i.e., for all p̂ with p
ǫ

=⇒| p̂, there exists some q̂ such that

q
ǫ

=⇒| q̂ and p̂ ⊏
∼RS

q̂. We show that (p̂) ⊏
∼RS

(q̂) in �P and resp. �Q. To do so, it
is sufficient to prove that

R =df {〈~p, ~q〉 | ~p = (p1, . . . , pn), ~q = (q1, . . . , qn), ∀1≤i≤n. pi
⊏
∼RS

qi}

is a stable ready simulation relation. Obviously, 〈(p̂), (q̂)〉 ∈ R. We verify Conds.
(RS1)–(RS4) of Def. 2, using the �-witness W1 ∪W2 of Lemma 11:

10

(RS1) Here, ~p and ~q are stable since all pi and qi are stable due to pi
⊏
∼RS

qi.

(RS2) If ~p /∈ F�P , then ~q ∈ W1 since pi
⊏
∼RS

qi for all i. Hence, ~q /∈ F�Q by
Prop. 10.

(RS3) Let ~p
a

=⇒| ~p′, i.e., (p1, . . . , pn)
a

−→F (p1, . . . , pn, p)
ǫ

=⇒| (p′1, . . . , p
′
n, p̂) = ~p′

for some suitably chosen pi. Hence, pi
ǫ

=⇒| p′i and resp. p
ǫ

=⇒| p̂, as well as

pi
a

−→F pi, for all 1 ≤ i ≤ n. Therefore, by pi
⊏
∼RS

qi and (RS3), there

exist qi and q′i such that qi
a

−→F qi
ǫ

=⇒| q′i and p′i
⊏
∼RS

q′i, and also p̂ ⊏
∼RS

q̂

by assumption. Thus, ~q
a

−→ (q1, . . . , qn, q)
ǫ

=⇒ ~q′ =df (q′1, . . . , q
′
n, q̂) 6

τ
−→.

Since ~p′ /∈ F�P , we have ~q′ ∈ W1, whence all processes along the compu-
tation (q1, . . . , qn, q)

ǫ
=⇒ ~q′ are in W2. Finally, ~q /∈ F�Q by (RS2) above.

Summarising and referring to Prop. 10, we have ~q
a

=⇒| ~q′ and, obviously,
〈~p′, ~q′〉 ∈ R.

(RS4) The premise ~p /∈ F�P and the stability of ~p by (RS1) imply I�P (~p) =
IP (p1) = . . . = IP (pn). Thus, by pi

⊏
∼RS

qi according to the definition of R,

we have IP (pi) = IQ(qi) for all i. Therefore, I�P (~p) = IQ(q1) = . . . =
IQ(qn) = I�Q(~q) by our operational rules.

This completes the compositionality proof wrt. the �-operator. The proof for
the W-operator follows along similar lines; it is omitted here since it does not
require any new concept but only additional notation and case distinctions. ⊓⊔

We may now state the desired compatibility result:

Theorem 12 (Compatibility). Let p be a process and φ a temporal-logic for-

mula in F . Then, p |= φ ⇐⇒ p ⊑RS φ.

The proof of this theorem uses the following lemma for dealing with process
vectors in the case that φ = �ψ:

Lemma 13. Let ~q = (q1, . . . , qn) ∈ �Ψ and p ⊑RS ~q. Then, p ⊑RS qi for all i.

Proof. We first show the lemma for ⊏
∼RS

in place of ⊑RS, before concluding by

establishing the root condition. In order to prove p ⊏
∼RS

qi from p ⊏
∼RS

~q for all
p ∈ P and ~q ∈ �Ψ , it is sufficient to establish that

R =df {〈p, qi〉 | ∃n, q1, . . . , qi−1, qi+1, . . . , qn. p ⊏
∼RS

~q}

is a stable ready simulation relation. We verify Conds. (RS1)–(RS4) of Def. 2:

(RS1) Process p is stable, and all qi are stable since ~q is stable.
(RS2) If p /∈ F , then ~q /∈ F since p ⊏

∼RS
~q. Hence, qi /∈ F .

(RS3) Let p
a

=⇒| p′. By p ⊏
∼RS

~q, there exists some ~q′ = (q′1, . . . , q
′
n+1) such that

~q
a

=⇒| ~q′ and p′ ⊏
∼RS

~q′. Therefore, qi
a

=⇒| q′i and 〈p′, q′i〉 ∈ R.

(RS4) Let p /∈ F . Then, I(p) = I(~q) due to p ⊏
∼RS

~q. By construction, I(~q) =

I(q1) = . . . = I(qn) since ~q /∈ F by the above. Hence, I(p) = I(qi).

11

We can now complete the proof of the lemma by establishing the root con-
dition. Let p

ǫ
=⇒| p′ for some p′. Hence, by p ⊑RS ~q, there exists some ~q′ =

(q′1, . . . , q
′
m) such that ~q

ǫ
=⇒| ~q′ and p′ ⊏

∼RS
~q′. This implies qi

ǫ
=⇒| q′i and, by the

above, p′ ⊏
∼RS

q′i. ⊓⊔

We can now prove Thm. 12:

Proof. The proof is by induction on the structure of φ. Note that the cases φ = tt

and φ = ff are trivial, the case φ = dis(a) is analogous to the one for φ = en(a),
and the case for φ = ψ1Wψ2 follows along similar lines to the one for φ = �ψ.
Therefore, we focus only on the remaining cases:

– φ = en(a): (“=⇒”) Let p |= en(a), i.e., p
ǫ

=⇒| p0 implies p0
a

−→, for any p0.

Then, p ⊑RS en(a) since p0
⊏
∼RS

I(p0).

(“⇐=”) For all p0 such that p
ǫ

=⇒| p0 we must have some action set A con-
taining a with p0

⊏
∼RS

A. Since p0 /∈ F , this means by (RS4) that a ∈ I(p0),

and by (LTS1) that p0
a

−→F. Hence, p |= en(a).

– φ = [a]ψ: (“=⇒”) Let p |= [a]ψ and consider some process p0 with p
ǫ

=⇒| p0.

By the definition of |= we know that p1 |= ψ for all p1 such that p0
a

=⇒| p1.

Hence, p1 ⊑RS ψ by induction hypothesis, which implies ψ
ǫ

=⇒| q1 for some q1
with p1

⊏
∼RS

q1. We argue p0
⊏
∼RS

I(p0) by showing that {〈p0, I(p0)〉} ∪ ⊏
∼RS

is a stable ready simulation relation. Obviously, the pair 〈p0, I(p0)〉 satisfies
Conds. (RS1), (RS2) and (RS4) of Def. 2. Regarding (RS3), we have for

all p0
b

=⇒| p1 with b 6= a (and b ∈ I(p0)) that I(p0)
b

=⇒| tt and p1
⊏
∼RS

tt.

Furthermore, for all p0
a

=⇒| p1, we have I(p0)
a

−→F ψ
ǫ

=⇒| q1 with p1
⊏
∼RS

q1,

as noted above. Altogether, we thus have p ⊑RS [a]ψ.

(“⇐=”) Let p ⊑RS [a]ψ. Therefore, whenever p
ǫ

=⇒| p0, we have [a]ψ
ǫ

=⇒|A
for some A with p0

⊏
∼RS

A. Obviously, A = I(p0). By our Logic LTS encoding

of [a]ψ and (RS3), p0
a

=⇒| p1 for any such p1 implies ψ
ǫ

=⇒| q1 for some q1 with

I(p0)
a

=⇒| q1 and p1
⊏
∼RS

q1. Hence, p1 ⊑RS ψ and, by induction hypothesis,

p1 |= ψ. Therefore, p |= [a]ψ.

– φ = ψ1 ∨ ψ2: (“=⇒”) Let p |= ψ1 ∨ ψ2. Whenever p
ǫ

=⇒| p0, then p0 |= ψ1

or p0 |= ψ2, i.e., p0 ⊑RS ψ1 or p0 ⊑RS ψ2 by induction hypothesis. Assume

w.l.o.g. that p0 ⊑RS ψ1, whence ψ1
ǫ

=⇒| q0 for some q0 with p0
⊏
∼RS

q0. By

ψ1 ∨ ψ2
ǫ

=⇒| q0, we conclude p ⊑RS ψ1 ∨ ψ2.

(“⇐=”) Let p ⊑RS ψ1∨ψ2 and p
ǫ

=⇒| p0. Therefore, w.l.o.g., ψ1∨ψ2
ǫ

=⇒| q0 due

to ψ1
ǫ

=⇒| q0 with p0
⊏
∼RS

q0. Hence, p0 ⊑RS ψ1 and, by induction hypothesis,

p0 |= ψ1. This implies p |= ψ1 ∨ ψ2.

– φ = ψ1 ∧ ψ2: (“=⇒”) Let p |= ψ1 ∧ ψ2. Whenever p
ǫ

=⇒| p0, then p0 |= ψ1

and p0 |= ψ2, i.e., p0 ⊑RS ψ1 and p0 ⊑RS ψ2 by induction hypothesis. By
Prop. 3, we get p0 ⊑RS ψ1 ∧ ψ2. Hence, p ⊑RS ψ1 ∧ ψ2.
(“⇐=”) Let p ⊑RS ψ1 ∧ ψ2 and p

ǫ
=⇒| p0. Thus, p0 ⊑RS ψ1 ∧ ψ2 and, by

Prop. 3, we can now conclude that p0 ⊑RS ψ1 and p0 ⊑RS ψ2. Hence, by
induction hypothesis, p0 |= ψ1 and p0 |= ψ2 and thus p |= ψ1 ∧ ψ2.

12

– φ = �ψ: Recall that
A

=⇒| stands for
⋃

a∈A
a

=⇒| . In this part of the proof,

we write p
A∗

=⇒| p′ whenever p
ǫ

=⇒| p0
A

=⇒| p1 . . .
A

=⇒| pn = p′ with n ≥ 0.

(“=⇒”) We first prove that

R =df {〈p
′′, ~q〉 | p

A∗

=⇒| p′′, ~q ∈ �Ψ, ∀i. p′′ ⊏
∼RS

qi}

is a stable ready simulation relation. We verify Conds. (RS1)–(RS4) of Def. 2:
(RS1) p′′ and all qi are stable, whence ~q is stable, too.
(RS2) Here, it is sufficient to show that W ′

1 ∪W
′
2 is a witness, where

W ′
1 =df {~q ∈ �Ψ | ∃p′′. p

A∗

=⇒| p′′ and ∀i. p′′ ⊏
∼RS

qi}

W ′
2 =df {~q ∈ �Ψ | ∃~q′ ∈W ′

1 ∀i. qi
ǫ

=⇒| q′i} .

The proof is similar to the one of Lemma 11, except for the proof of (W3)

in case α 6= τ . Here, ~q
α

−→ means ~q ∈ W ′
1 and qi

α
−→ for all i. Since

p′′ /∈ F , we get p′′
α

−→, by (RS4), and p′′
α

=⇒| p′′′. By (RS3), there exist q′′i
and q′i such that qi

α
−→F q′′i

ǫ
=⇒| q′i and p′′′ ⊏

∼RS
q′i. Moreover, p′′′ |= ψ,

whence p′′′ ⊑RS ψ by induction hypothesis and thus p′′′ ⊏
∼RS

ψ0 for some

ψ
ǫ

=⇒|ψ0. Thus, (q′1, . . . , q
′
n, ψ0) ∈W ′

1 and ~q
α

−→ (q′′1 , . . . , q
′′
n, ψ) ∈W ′

2.

(RS3) Let p′′
a

=⇒| p′′′. Then, for some q′i, qi
a

=⇒| q′i and p′′′ ⊏
∼RS

q′i by (RS3)

for p′′ ⊏
∼RS

qi. Furthermore, p
A∗

=⇒| p′′′ implies p′′′ |= ψ, i.e., by induction

hypothesis, p′′′ ⊑RS ψ and p′′′ ⊏
∼RS

ψ0 for some ψ
ǫ

=⇒|ψ0. Thus, ~q
a

−→

(q′′1 , . . . , q
′′
n, ψ)

ǫ
=⇒ (q′1, . . . , q

′
n, ψ0) 6

τ
−→, for suitably chosen q′′1 , . . . , q

′′
n,

and 〈p′′′, (q′1, . . . , q
′
n, ψ0)〉 ∈ R. Therefore, we have (q′1, . . . , q

′
n, ψ0) ∈W ′

1,
and all processes along the computation are in W ′

2. By Prop. 10, this

proves ~q
a

=⇒| (q′1, . . . , q
′
n, ψ0).

(RS4) Let p′′ /∈ F . Then, (RS4) for p′′ ⊏
∼RS

qi yields I(p′′) = I(qi) for all i,

i.e., I(p′′) = I(~q) by the definition of �Ψ .
Now, p ⊑RS �ψ by the following reasoning: Firstly, p |= ψ implies p ⊑RS ψ by

induction hypothesis. Together with p
ǫ

=⇒| p0, this guarantees the existence

of some ψ0 such that ψ
ǫ

=⇒|ψ0 and p0
⊏
∼RS

ψ0. Then, (ψ)
ǫ

=⇒| (ψ0) in �Ψ and

〈p0, (ψ0)〉 ∈ R. Thus, p ⊑RS (ψ) = �ψ.

(“⇐=”) Let p
A∗

=⇒| p′. Then, by p ⊑RS �ψ, there exists some ~ψ′ such that

(ψ)
A∗

=⇒| ~ψ′ (performing the same sequence of visible actions) and p′ ⊏
∼RS

~ψ′.

By Lemma 13, we have p′ ⊏
∼RS

ψ′
i for all i. By our operational rules, the last

component ψ′ of ~ψ′ is such that ψ
ǫ

=⇒|ψ′. Hence, p′ ⊑RS ψ and, by induction

hypothesis, p′ |= ψ. Thus, p
A∗

=⇒| p′ implies p′ |= ψ, i.e., p |= �ψ. ⊓⊔

As a corollary to Thm. 12 we obtain the following statement:

Corollary 14. φ ⊑RS ψ ⇐⇒ ∀p. p |= φ =⇒ p |= ψ.

13

Proof. Let φ ⊑RS ψ and p |= φ. Then, p ⊑RS φ ⊑RS ψ by Thm. 12, and we are
done by transitivity of ⊑RS. Conversely, if p |= φ implies p |= ψ, then p ⊑RS φ
implies p ⊑RS ψ, again by Thm. 12, for all p. Hence, φ ⊑RS ψ when setting
p = φ. ⊓⊔

Duality. We conclude this section by briefly discussing negation. Since our set-
ting of Logic LTS is not expressive enough to encode liveness properties, such as
the formula ¬�φ, we do not have negation. Furthermore, Thm. 12 implies for
the stable process ff that ff |= tt and ff |= ff. Hence, we cannot define “p |= ¬tt

if not p |= tt” for inconsistent p, since ¬tt should be equivalent to ff. However,
for consistent processes and propositional formulas, we can express negation in
our ¬-less logic. To show this, we define for consistent p and propositional φ:
p |= ¬φ if ∀p0. p

ǫ
=⇒| p0 =⇒ not p0 |= φ; as well as for formulas φ and ψ:

φ =||= ψ if ∀p/∈F. p |= φ ⇐⇒ p |= ψ.

Proposition 15 (Dualities).
¬tt =||= ff ¬en(a) =||= dis(a) ¬(φ ∧ ψ) =||= ¬φ ∨ ¬ψ
¬ff =||= tt ¬dis(a) =||= en(a) ¬(φ ∨ ψ) =||= ¬φ ∧ ¬ψ

As a consequence, we can specify implications for consistent processes, e.g.,
en(a) −→ dis(b) can be expressed as dis(a)∨dis(b). Finally, note that one cannot
replace =||= by =RS in Prop. 15 since =RS also relates inconsistent processes.

4 Hiding in Logic LTS

Adding a process-algebraic operator /h of hiding to our setting — similar to the
identically named operator in CSP [9] and where h denotes a visible action —
is a necessity to be able to model systems that involve internal communication
across parallel components. However, doing so is non-trivial since relabelling a
visible action by the internal action τ typically destroys the τ -purity property
required of Logic LTS. Hence, for the hiding operator to be well-defined, it must
not only hide but also re-establish τ -purity. We start off by discussing some
examples.

Firstly, consider the LTS shown in Fig. 3(a) on the left, but think of the
τ -transition as the result of hiding action h; the idea should be that b must be
offered, while a might be offered as an alternative. This can equivalently be ex-
pressed as the τ -pure LTS in Fig. 3(a) on the right. Operationally, this transfor-
mation can be understood as collecting all moves that are possible when ‘looking
through’ the hidden action h or pre-empting action a by performing h. The sec-
ond example, depicted in Fig. 3(b), requires us to iterate this idea when hiding
action h. Note that, in the LTS on the right, the target states of the b-transitions
are actually the same state, as are the target states of the c-transitions; we have
drawn the LTS as a tree to improve the layout, which is also the case for the
rightmost LTS in Fig. 3(c). In the final example, depicted in Fig. 3(c), we first
observe the indicated equality, which translates the internal choice on action h
to an h-step followed by disjunction. This rewriting makes it clear that actions b

14

(c)

RS

τ τ

a bb

a τ

b

τ ττ

a b
c

ccb

hiding h

c

a h

b h

c

τ

aba

τ ττ

b c

hiding h
RS

cb

a h h

b c

a h

τ τ

(a) (b)

Fig. 3. Three examples regarding hiding.

and c are exclusive alternatives, and each of these may be combined with action a
when hiding h as shown.

We briefly indicate the ‘equational’ rationale behind these examples. The
transformation in Ex. (a) is based on the following law of failures semantics [3]:
(p + h.q)/h = (p + q)/h ∨ q/h, where + denotes external choice. This law has
been applied three times in Ex. (b), together with some other, obvious laws.

Note that the above law does not hold for ready simulation in case p can
engage in an initial h-transition since, e.g.,

(h.a + h.b)/h =RS (h.a + b)/h ∨ b =RS (a + b) ∨ a ∨ b
6=RS a ∨ b =RS (h.(a ∨ b)/h =RS (h.a + h.b)/h

However, this issue is not a problem since several h-transitions can be merged
into one via internal choice (disjunction), as shown in Ex. (c).

To formalise our intuition of ‘looking through’ h, we employ again some vec-
tor notation: given a Logic LTS 〈P,−→P , FP 〉, we augment P to P̂ = P ∪
~P by adding all finite vectors of stable, consistent processes: ~P =df {~p =
(p1, p2, . . . , pn) |n≥1, ∀1≤i≤n. pi ∈ P stable and pi /∈ FP }. In the sequel, we
use the convention that p̂ is a generic process in P̂ , p ∈ P̂ is a process from P ,
and ~p ∈ P̂ is a process from ~P with components p1, p2, . . . , pn.

Definition 16 (Hiding operator). The hiding of visible action h ∈ A in a
Logic LTS 〈P,−→P , FP 〉 results in the Logic LTS 〈P/h,−→P/h, FP/h〉, where

– P/h =df {p̂/h | p̂ ∈ P̂}
– −→P/h is determined by the following operational rules:

(H1) p
τ

−→P p′ =⇒ p/h
τ

−→P/h p
′/h

(H2) p
a

−→P p′, p 6
h

−→P =⇒ p/h
a

−→P/h p
′/h

(H3) p
h

−→P , p(
h

=⇒|P)∗p1
h

=⇒|P p2 · · ·
h

=⇒|P pn 6
h

−→P =⇒

p/h
τ

−→P/h (p1, p2, . . . , pn)/h

(H4) pj
a

−→P p′, a 6= h, (p1, p2, . . . , pn) ∈ P/h =⇒

(p1, p2, . . . , pn)/h
a

−→P/h p
′/h

15

– FP/h is the least set satisfying the following conditions:

(HF1) p/h ∈ FP/h if p ∈ FP ;

(HF2) p/h ∈ FP/h if 6 ∃p′. p
ǫ

=⇒|P (
h

=⇒|P)∗p′ 6
h

−→P ;

(HF3) p̂/h ∈ FP/h if ∃α∈I(p̂/h)∀p̂′/h. p̂/h
α

−→P/h p̂
′/h =⇒ p̂′/h ∈ FP/h;

(HF4) p̂/h ∈ FP/h if p̂/h cannot stabilise outside FP/h.

Now, hiding a visible action in a Logic LTS results again in a Logic LTS.
Conds. (HF1) and (HF2) show that inconsistencies may be inherited from P , or
may result from an inescapable divergence that arises by hiding h. Conds. (HF3)
and (HF4) enforce Conds. (LTS1) and (LTS2) of Logic LTS.

Theorem 17 (Compositionality). If p ⊑RS q, h ∈ A, then p/h ⊑RS q/h.

In the proof, we employ again a notion of witness for reasoning about the incon-
sistencies that may arise under hiding. For this, it will be convenient to consider
every vector process ~p ∈ ~P as consistent and augment the transition relation by
transitions such that pi

a
−→P p =⇒ ~p

a
−→P̂ p, i.e., a process vector inherits

all transitions of its component processes. Similarly, we extend ⊏
∼RS

⊆ P × Q

to obtain a new relation ⊏̂
∼RS

⊆ P̂ × Q̂, by adding all pairs 〈~p, ~q〉 ∈ ~P × ~Q of

vectors of equal length such that ∀i. pi
⊏
∼RS

qi. Our extensions are well-defined:

Lemma 18. If 〈P,−→P , FP 〉 is a Logic LTS, then so is 〈P̂ ,−→P̂ , FP 〉. More-

over, ⊏̂
∼RS

is a stable ready simulation relation, whence ⊏̂
∼RS

⊆ ⊏
∼RS

.

Proof. The first statement is quite straightforward. Firstly, τ -purity and (LTS2)

are not violated since all ~p ∈ ~P are stable. Secondly, let ~p
a

−→, i.e., there exists
some i such that pi

a
−→. By (LTS1) for pi ∈ P , we have the existence of some

p /∈ FP such that pi
a

−→ p. Hence, also ~p
a

−→ p /∈ F , which establishes (LTS1)
for our extension.

To prove the second statement, we verify Conds. (RS1)–(RS4) of Def. 2:

(RS1) Straightforward by the added operational rule.

(RS2) If ~p ⊏̂
∼RS

~q, then both ~p, ~q /∈ F .

(RS3) If ~p ⊏̂
∼RS

~q, then ~p
a

=⇒| p′, i.e., ~p
a

−→ p
ǫ

=⇒| p′ for some p /∈ F , implies

pi
a

−→F p
ǫ

=⇒| p′ by the added operational rule, i.e., pi
a

=⇒| p′. Since pi
⊏
∼RS

qi,

we have qi
a

=⇒| q′ for some q′ with p′ ⊏
∼RS

q′. Hence, also ~q
a

=⇒| q′, as well as

p′ ⊏̂
∼RS

q′ by the definition of ⊏̂
∼RS

.

(RS4) If ~p ⊏̂
∼RS

~q, then pi
⊏
∼RS

qi and pi /∈ F for all i; hence, I(pi) = I(qi)

by (RS4) for pi
⊏
∼RS

qi. Thus, I(~p) =
⋃

i I(pi) =
⋃

i I(qi) = I(~q). ⊓⊔

Now we are in a position to formally define the concept of witness needed in the
proof of Thm. 17:

16

Definition 19 (Hiding-witness). A hiding-witness is a set W ⊆ P/h such
that the following conditions hold:

(HW1) ∀p/h ∈W. p /∈ FP and ∃p′. p
ǫ

=⇒|P (
h

=⇒|P)∗p′ 6
h

−→P ;

(HW2) ∀p̂/h ∈W. (a) ∀α ∈ IP/h(p̂/h)∃p̂′/h ∈W. p̂/h
α

−→P/h p̂
′/h;

(b) p̂/h can stabilise in W .

The statement and proof of the following proposition is analogous to the one for
�-witnesses:

Proposition 20. p̂/h /∈ FP/h if and only if ∃hiding-witnessW. p̂/h ∈ W .

The particular hiding-witness that we will need is the following:

Lemma 21. Let 〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉 be Logic LTS and h ∈ A.

Then, the set W =df W
′′
1 ∪W ′′

2 is a hiding-witness for 〈Q/h,−→Q/h, F 〉, where

W ′′
1 =df {q̂/h ∈ Q/h | ∃p̂ ∈ P̂ . p̂ ⊏̂

∼RS
q̂ and p̂/h /∈ F};

W ′′
2 =df {q̂/h ∈ Q/h | ∃q̂′′. q̂

τ
=⇒| q̂′′ and q̂′′/h ∈ W ′′

1 } .

Note that q̂ in W ′′
2 must necessarily be of the form q and cannot be the vector ~q.

Proof. To establish Cond. (HW1) of Def. 19, let us first consider q/h ∈W ′′
1 due

to p. Note that p/h /∈ F implies p /∈ FP and q /∈ FQ by p ⊏
∼RS

q and (RS2). Then,

since p/h /∈ F implies ∃p′. p(
h

=⇒|)∗p′ 6
h

−→ we find, by p ⊏
∼RS

q and (RS3), some q′

such that q(
h

=⇒|)∗q′ and p′ ⊏
∼RS

q′. Since p′ /∈ FP , we obtain q′ 6
h

−→ by (RS4).

Now, let us consider the case q/h ∈ W ′′
2 due to q

τ
=⇒| q̂′′ with q̂′′/h ∈ W ′′

1 .
Obviously, q /∈ FQ. Furthermore, q̂′′ has the form q′′, and we have just shown

that ∃q′. q′′(
h

=⇒|)∗q′ 6
h

−→. Hence, q
ǫ

=⇒| q′′(
h

=⇒|)∗q′ 6
h

−→.
To verify Cond. (HW2a), consider some α ∈ I(q̂/h) and distinguish the

following cases:

α 6= τ : Then q̂/h ∈W ′′
1 due to some p̂. Note that it cannot be the case that q̂/h ∈

W ′′
2 ; assume otherwise, q̂

τ
−→ and thus also q̂/h

τ
−→ by (H1), contradicting

q̂/h
α

−→ with α 6= τ .

Again, we distinguish two cases, for both of which we establish p̂/h
α

−→. The

first case is q̂/h
α

−→ due to (H2). Then, q̂
α

−→ and q̂ 6
h

−→. By p̂ ⊏̂
∼RS

q̂ and

p̂ /∈ FP , we have p̂
α

−→ and p̂ 6
h

−→ by (RS4). Hence, p̂/h
α

−→.

The second case is q̂/h
α

−→ due to (H4). Take some i with qi
α

−→. Since

pi /∈ FP by p̂ ∈ P̂ and since pi
⊏
∼RS

qi by p̂ ⊏̂
∼RS

q̂, we have pi
α

−→ and

p̂/h
α

−→.
Now we may conclude the proof for both cases. By (LTS1) and (LTS2),

p̂/h
α

=⇒| . Let p̂′′/h /∈ F be the first state on this computation with p̂′′ stable,

whence p̂
α

=⇒| p̂′′. By p̂ ⊏̂
∼RS

q̂, we also have some q̂′′ and q′ with q̂
α

−→F

q′
ǫ

=⇒| q̂′′ and p̂′′ ⊏̂
∼RS

q̂′′. Since p̂′′/h /∈ F , we have q̂′′/h ∈ W ′′
1 . Thus, q̂/h

α
−→

q′/h ∈W .

17

α = τ : If q̂/h ∈ W ′′
1 due to p̂, then q̂, being stable, must be q with q

h
−→ and

p̂ = p. Since p/h /∈ F , we have p /∈ FP and, by (RS4), p
h

−→; furthermore,

p(
h

=⇒|)∗p′ 6
h

−→ for some p′. Thus, p/h
τ

−→ by (H3) and p/h
τ

−→ ~p/h /∈ F

for some suitable ~p/h by (LTS1), with p(
h

=⇒|)∗p1
h

=⇒| p2 · · ·
h

=⇒| pn 6
h

−→ and
~p = (p1, p2, . . . , pn). From the assumption p ⊏

∼RS
q we conclude by (RS3) that

q(
h

=⇒|)∗q1
h

=⇒| q2 · · ·
h

=⇒| , pi
⊏
∼RS

qi for all 1 ≤ i ≤ n, and qn 6
h

−→ by (RS4).

Thus, by (H3), q/h
τ

−→ ~q/h and ~p ⊏̂
∼RS

~q, i.e., ~q/h ∈W ′′
1 ⊆W .

If q̂/h ∈ W ′′
2 , then the state q̂′ succeeding q̂ on the respective computation

q̂
τ

=⇒| q̂′′ satisfies q̂
τ

−→ q̂′ and q̂′/h ∈ W ′′
2 , or q̂′/h = q̂′′/h ∈W ′′

1 .

To establish Cond. (HW2b) we can assume that we are in the case α = τ

above. Thus, either q̂/h
τ

−→ ~q/h ∈ W and ~q/h is stable; or q̂/h
ǫ

=⇒ q̂′′/h with
all states in W and q̂′′ stable. If q̂′′/h is not stable, it can stabilise in W with

some q̂′′/h
τ

−→ ~q/h as in the ‘either’ case. ⊓⊔

We can now prove Thm. 17, i.e., the compositionality result for ready simulation
wrt. hiding.

Proof. We first proof the compositionality statement wrt. stable ready simula-
tion, i.e., the statement:

Let p ⊏
∼RS

q and h ∈ A with p 6
h

−→ and q 6
h

−→. Then, p/h ⊏
∼RS

q/h.

To do so, it is sufficient to establish that R =df R1 ∪R2 with

R1 =df {〈p/h, q/h〉 | p ⊏
∼RS

q, p 6
h

−→ and q 6
h

−→}

R2 =df {〈~p/h, ~q/h〉 | ~p = (p1, p2, . . . , pn) ∈ ~P , ~q = (q1, q2, . . . , qn) ∈ ~Q, and

~p ⊏̂
∼RS

~q }

is a stable ready simulation relation. We check the four conditions of Def. 2:

(RS1) This condition is straightforward for all pairs in R1 and R2.

(RS2) Let 〈p̂/h, q̂/h〉 ∈ R. Then, p̂/h /∈ F and p̂ ⊏̂
∼RS

q̂ implies q̂/h ∈ W ′′
1 ⊆W .

Hence, q̂/h /∈ F by Lemma 21.

(RS3) Let 〈p/h, q/h〉 ∈ R1. We distinguish the following two cases: p/h
a

=⇒| p′/h

and p/h
a

=⇒| ~p/h.

If p/h
a

=⇒| p′/h, then this computation does not contain a state ~p/h since

such states are stable, i.e., ~p/h
ǫ

=⇒| p′/h is not possible. Hence, the first step

of p/h
a

=⇒| p′/h arises from (H2) and the others from (H1), i.e., p/h
a

=⇒| p′/h

due to p
a

−→F p1
τ

−→F p2 · · ·
τ

−→F pn = p′. We have that p′ is stable

since p′
τ

−→ would imply p′/h
τ

−→ by (H1). Furthermore, p′ 6
h

−→; otherwise,

p′/h /∈ F would imply ∃p′′. p′
ǫ

=⇒| (
h

=⇒|)∗p′′ 6
h

−→, whence p′(
h

=⇒|)∗p′′ 6
h

−→ by

the stability of p′ and thus p′/h
τ

−→ by (H3).

18

Since p ⊏
∼RS

q and p
a

=⇒| p′, we have q
a

=⇒| q′ for some q′ with p′ ⊏
∼RS

q′. As-

sume q
a

=⇒| q′ arises from q
a

−→F q1
τ

−→F q2 · · ·
τ

−→F qm = q′. By (RS4), we

get q 6
h

−→ from p 6
h

−→ and q′ 6
h

−→ from p′ 6
h

−→.

Further, q 6
h

−→ implies q/h
a

−→ q1/h
τ

−→ q2/h · · ·
τ

−→ qm/h = q′/h. Since
p/h, p′/h /∈ F by assumption, we have q/h, q′/h ∈ W ′′

1 . In addition, qi/h ∈

W ′′
2 , for all 1 ≤ i ≤ m− 1. This gives q/h

a
=⇒F q

′/h.

Since q′ is stable and q′ 6
h

−→, Rules (H1) and (H3) are not applicable to q′/h,

i.e., q/h
a

=⇒| q′/h. This finishes the first case.

We now consider p/h
a

=⇒| ~p/h. This computation has the form p/h
a

=⇒F

p′/h
τ

−→F ~p/h for some p′. Since p′/h
τ

−→F ~p/h implies p′
h

−→ and thus
p′ stable, we can repeat some of the argument of the first case to obtain

some q′ with p′ ⊏̂
∼RS

q′, q
a

=⇒| q′ due to q
a

−→F q1
τ

−→F q2 · · ·
τ

−→F qm = q′,

q/h
a

−→ q1/h
τ

−→ q2/h · · ·
τ

−→ qm/h = q′/h and q/h /∈ F .

Now, p′/h
τ

−→F ~p/h due to p′(
h

=⇒|)∗p′1
h

=⇒| p′2 · · ·
h

=⇒| p′n 6
h

−→. This implies,

by (RS3), that q′(
h

=⇒|)∗q′1
h

=⇒| q′2 · · ·
h

=⇒| q′n, for some q′i with p′i
⊏
∼RS

q′i, for

1 ≤ i ≤ n, and q′n 6
h

−→ due to (RS4). Since p′
h

−→, we have q′
h

−→ due

to (RS4), i.e., q′/h
τ

−→ (q′1, q
′
2, . . . , q

′
n)/h = ~q/h 6

τ
−→ with 〈~p/h, ~q/h〉 ∈ R2.

It remains for us to argue that qi/h /∈ F , for all 1 ≤ i ≤ m, and ~q/h /∈ F .

The latter follows from ~q/h ∈ W ′′
1 due to ~p ⊏̂

∼RS
~q and ~p/h /∈ F . Further,

q′/h /∈ F is a consequence of q′/h ∈ W ′′
1 due to p′ ⊏̂

∼RS
q′ and p′/h /∈ F .

Finally, qi/h ∈W ′′
2 , for all 1 ≤ i < m.

Next, we establish (RS3) for some pair 〈~p/h, ~q/h〉 ∈ R2 and distinguish again

two cases: ~p/h
a

=⇒| p′/h and ~p/h
a

=⇒| ~p ′/h.

In the former case, ~p/h
a

−→F p/h
ǫ

=⇒| p′/h due to pj
a

−→F p = p′1
τ

−→F

p′2 · · ·
τ

−→F p′k = p′ with p′ 6
τ

−→ and p′ 6
h

−→. Since pj
⊏
∼RS

qj by assumption

and since pj
a

=⇒| p′, we have qj
a

=⇒| q′ for some q′ with p′ ⊏
∼RS

q′. Assume

qj
a

=⇒| q′ due to qj
a

−→F q′1
τ

−→F q′2 · · ·
τ

−→F q′m = q′. Hence, we obtain,

by (H4) and (H1), ~q/h
a

−→F q′1/h
ǫ

=⇒| q′/h. To see this, observe that q′ 6
τ

−→

and q′ 6
h

−→ by p′ 6
h

−→ and (RS4), i.e., q′/h is stable. Furthermore, q′/h ∈ W ′′
1

due to p′, and thus q′i/h ∈ W ′′
2 , for all 1 ≤ i < m; similarly, ~q/h ∈ W ′′

1 due

to ~p ⊏̂
∼RS

~q by assumption.

Additionally, p′ 6
h

−→, q′ 6
h

−→ and p′ ⊏
∼RS

q′ imply 〈p′/h, q′/h〉 ∈ R1. This com-
pletes the reasoning for the former case.

In the latter case, we have ~p/h
a

=⇒F p
′/h

τ
−→F ~p ′/h, again due to pj

a
−→F

p′1
τ

−→F p
′
2 · · ·

τ
−→F p

′
k = p′ and p′(

h
=⇒|)∗p′1

h
=⇒| p′2 · · ·

h
=⇒| p′l 6

h
−→ with ~p ′ =

(p′1, p
′
2, . . . , p

′
l) and p′ 6

τ
−→ (due to p′

h
−→). Since pj

⊏
∼RS

qj and pj
a

=⇒| p′,

we have some q′ with qj
a

=⇒| q′ and p′ ⊏
∼RS

q′. Exploiting the latter we get

19

q′(
h

=⇒|)∗q′1
h

=⇒| q′2 · · ·
h

=⇒| q′l 6
h

−→, with p′i
⊏
∼RS

q′i for all 1 ≤ i ≤ l, and q′
h

−→.

Now, q′/h ∈ W ′′
1 due to p′, as well as ~q/h ∈ W ′′

1 due to ~p. The other

processes on the computation ~q/h
a

=⇒ q′/h are in W ′′
2 . Finally, q′/h

τ
−→F

(q′1, q
′
2, . . . , q

′
l)/h since (q′1, q

′
2, . . . , q

′
l) ∈W ′′

1 due to ~p ′. We can now conclude

~q/h
a

=⇒| (q′1, q
′
2, . . . , q

′
l)/h and 〈~p ′/h, (q′1, q

′
2, . . . , q

′
l)/h〉 ∈ R2.

(RS4) Let 〈p/h, q/h〉 ∈ R1. Because of (RS4) and p/h /∈ F , whence p /∈ FP , we
have I(p) = I(q). Hence, I(p/h) = I(p) = I(q) = I(q/h) by the operational
rules for hiding. Next, let 〈~p/h, ~q/h〉 ∈ R2. Then, I(~p/h) = (

⋃
1≤i≤n I(pi)) \

{h} = (
⋃

1≤i≤n I(qi)) \ {h} = I(~q/h). To verify the second equality, observe
that pi /∈ FP (by the definition of ~p/h), pi

⊏
∼RS

qi and (RS4).

Now we turn to proving the statement of Thm. 17 itself. Firstly, consider a
computation p/h

ǫ
=⇒| p′/h; this is due to p

ǫ
=⇒| p′ with (H1) as above. By the

assumption p ⊑RS q, we know of the existence of some q′ with q
ǫ

=⇒| q′ and

p′ ⊏
∼RS

q′. Additionally, p′ 6
h

−→ must hold; otherwise, by p′/h /∈ F , (H3) would

be applicable, contradicting that p′/h is stable. Since p′ /∈ FP and by (RS4) we

get q′ 6
h

−→, which implies that q′/h is stable. Furthermore, q′/h ∈ W ′′
1 and, for

all other processes q along the computation q
ǫ

=⇒| q′, we have q/h ∈W ′′
2 . Hence,

q/h
ǫ

=⇒| q′/h and 〈p′/h, q′/h〉 ∈ R1, whence p′/h ⊏
∼RS

q′/h.

Secondly, we consider a computation p/h
ǫ

=⇒| ~p/h, i.e., p/h
ǫ

=⇒F p′/h
τ

−→F

~p/h for some suitable p′. Hence, p
ǫ

=⇒| p′(
h

=⇒|)∗p1
h

=⇒| p2 · · ·
h

=⇒| pn 6
h

−→ and

p′
h

−→. Again, we have q
ǫ

=⇒| q′ for some q′ with p′ ⊏
∼RS

q′ and, by (RS4), q′
h

−→.

By (RS3), q′(
h

=⇒|)∗q1
h

=⇒| q2 · · ·
h

=⇒| qn with pi
⊏
∼RS

qi for all 1 ≤ i ≤ n and,

by (RS4), qn 6
h

−→. Similarly as above, we conclude q/h
ǫ

=⇒F q′/h; note that

~q/h ∈ W ′′
1 since ~p ⊏̂

∼RS
~q and ~p/h /∈ F . Thus, q/h

ǫ
=⇒| ~q/h and 〈~p/h, ~q/h〉 ∈ R2,

whence also ~p/h ⊏
∼RS

~q/h. ⊓⊔

5 Example

Consider the specification of a very simple networking component. Sender S (cf.
Fig. 4) receives messages from a user process on port send and passes them
on, via port in, to channel C. The specification of C employs an off-the-shelf
design P (cf. Fig. 4), a generic channel that may lose messages; additionally, the
behaviour of P is restricted by a constraint ψ =df �[in][in](en(out) ∧ dis(in)).
Intuitively, ψ ensures that at most one message may be lost in a row.

φ

send

inS: P:

in

out

τ

τ

:
send send,

out
out

τττ

(s
ee

 n
ex

t
pa

ge
)

Fig. 4. Some Logic LTSs that occur in the example.

20

As an aside and assuming the availability of the standard process-algebraic
prefix operator, ψ could equivalently be specified as �[in][in]out.tt, where out.tt
denotes the Logic LTS consisting of an out-transition from an initial state to
process tt. Here, prefixing is employed as a compact notation for specifying that
only a single action is allowed, which is especially useful (or even necessary)
if the underlying alphabet is large (or infinite). This demonstrates one of the
advantages of mixing operators from process algebras and temporal logics.

(c)

out
(in)

(in) send

send τ
τ

(d)

out

out

out
in

inin

in

τ

τ
τ τ

in

out

out(e)

send

out

tt

tt

tt

out out in in

outout in in

out

τ τ
ττ

τ τ
ττ

out

out out
inin

out out

in in

τ ττ τ

τ τ
ττ

in

in

Simplified:

in

in

out out

out out

ττ

τ

τ τ

ττ τ τ

ττ
τ

(b)(a)

Fig. 5. Developing the Logic LTS of Spec.

The overall specification of our example is now Spec =df ((P∧ψ) ‖{in} S)/in,
where /in is the hiding operator on action in. Spec is a truly mixed specification
that conjunctively composes an operational component with a temporal-logic
formula, and puts the result in parallel with another operational component
while synchronising on the internal channel in. The Logic LTS semantics of Spec
is successively developed in Fig. 5: (a) depicts the Logic LTS of [in][in]out.tt;
(b) depicts the Logic LTS of ψ when reduced wrt. =RS (recall that there is a
standard finite-state definition of the �-operator); (c) depicts the Logic LTS of
C =df P ∧ ψ as well as a simplified, =RS-equivalent version; and (d) depicts

21

the simplified Logic LTS (omitting inconsistent states) of Spec, where label (in)
stands for a τ that results from hiding in.4

Assume that the designer wishes to verify that Spec does not deadlock:
φ =df �(en(send) ∨ en(out)), i.e., always send or out is enabled. To demon-
strate Spec |= φ, it is by Thm. 12 sufficient to prove Spec ⊑RS φ. This is easy
when considering the Logic LTSs of Spec and φ, which are depicted in Figs. 5(d)
and 4. We also know that, whenever we implement the channel design C = P ∧ψ
by some Ci so that Ci ⊑RS C, the implementation Impl =df (Ci ‖{in} S)/in
satisfies φ, too. This is because Impl ⊑RS Spec by compositionality and Prop. 3;
thus, by transitivity, Impl ⊑RS φ. Hence, Impl |= φ by Thm. 12.

Possible implementations Ci of C include the LTS C1 that engages in an
in-out-loop, C2 that behaves as an in-in-out-loop, or C3 depicted in Fig. 5(e);
the latter requires that at most one of each two messages and at most two of five
messages are lost. Rather than proving C3 ⊑RS C, one could establish C3 ⊑RS P
and C3 ⊑RS ψ separately and then infer C3 ⊑RS P ∧ ψ = C by Prop. 3.

6 Related Work

Related work has often avoided mixing operational and logic styles of specifi-
cation by translating one style into the other. Logic content may be translated
into operational content, such as in Kurshan’s work on ω-automata [11] which in-
cludes synchronous and asynchronous composition operators and employs trace
inclusion for refinement. However, trace inclusion is insensitive to deadlock and
is thus inadequate in the presence of concurrency.

Dually, operational content may be translated into logic formulas, as is im-
plicitly done by Lamport in [12] where logic implication serves as refinement
relation [1]. A similar approach is followed in UTP [10], the Unifying Theories

of Programming, where a translation of the process algebra CSP [9] into logic for-
mulas is indicated. Thus, conjunction is, e.g., applicable to processes a and a+ b
(i.e., the p and r in Fig. 1(a)), which yields a process that can neither refuse b
in the sense of failure semantics, nor can it perform b. Hence, a ∧ (a + b) is an
inconsistent process, but it is not treated as logically false as in our work. It
seems that this inconsistency can be repaired in [10] by adding further choices
(e.g., as in (a ∧ (a+ b)) + b = a+ b), which we regard as undesirable.

A seminal step towards a mixed setting was taken by Olderog in [15], where
process-algebraic constructs are combined with trace formulas, and where failure
semantics underlies refinement. In this approach, trace formulas can serve as
processes, but not vice versa. Thus, and in contrast to our present work, [15] does
not support the unrestricted mixing of operational and logic specification styles,
which can be very useful as, e.g., demonstrated with our example in Sec. 5. In [7],
a mixing of process algebraic and temporal logic operators is advocated, too: a
simple process algebra is extended with an operator to express that eventually
some action occurs (see also [16]). Again, the semantics is based on traces and

4 Note that applying the hiding operator is straightforward in our example, since
processes with an outgoing in-transition do not have any other outgoing transition.

22

is thus not deadlock-sensitive. However, the ideas of Guerra and Costa [7] may
help to extend our approach to liveness properties, as may those in [8]. The
recent [17] mixes conjunction and synchronous product using some version of
ready semantics.

Finally, we mention the work of Fecher and Grabe [5], where ready simulation
is used as implementation relation and where a specific satisfaction for temporal
logic formulas is defined similar to our approach. Also in [5], whenever a process
satisfies a formula, each implementation of the process satisfies the formula.
However, [5] does not allow the free mixing of operators.

7 Conclusions & Future Work

This paper embedded a temporal logic for specifying safety properties into the
ready-simulation-equipped setting of Logic LTS [14]. The chosen logic was a
branching-time logic that allows one to specify properties regarding the enabled-
ness of actions, using standard temporal operators such as always and unless

(weak until), which were shown to be compositional for ready simulation. The
embedding is conservative in that ready simulation, when restricted to pairs of
processes and temporal formulas, coincides with the logic’s satisfaction relation.
The extended setting of Logic LTS is unique in the literature in that it lends
itself to freely mixing operational and temporal-logic styles of specification, with
ready simulation facilitating compositional refinement and model checking.

Regarding future work, Logic LTS should be extended so as to be able to
express liveness and fairness, too; this is a non-trivial task since full abstrac-
tion should be preserved. We also wish to re-phrase our setting in the classic
process-algebraic style and to study axiomatisations of ready simulation. The
challenge here will be to integrate both least and greatest fixpoint operators in
a compositional way.

References

[1] M. Abadi and G. Plotkin. A logical view of composition. TCS, 114(1):3–30, 1993.

[2] B. Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-like Lan-

guages. PhD thesis, MIT, 1990.

[3] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. J. ACM, 31(3):560–599, 1984.

[4] R. De Nicola and F. Vaandrager. Action versus state based logics for transition
systems. In Semantics of Systems of Concurrent Processes, volume 469 of LNCS,
pages 407–419. Springer, 1990.

[5] H. Fecher and I. Grabe. Finite abstract models for deterministic transition sys-
tems. In FSEN 2007, volume 4767 of LNCS, pages 1–16. Springer, 2007.

[6] R. van Glabbeek. The linear time – branching time spectrum II, 1993. Available
at http://theory.stanford.edu/̃ rvg/abstracts.html#26.

[7] H. Guerra and J. F. Costa. Processes with local and global liveness requirements.
J. of Logic and Algebraic Programming, 2008. To appear.

23

[8] T. A. Henzinger and R. Majumdar. Fair bisimulation. In TACAS 2000, volume
1785 of LNCS, pages 299–314. Springer, 2000.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[10] C.A.R. Hoare and H. Jifeng. Unif. Theories of Programming. Prentice Hall, 1998.
[11] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The

Automata-Theoretic Approach. Princeton Univ. Press, 1994.
[12] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.
[13] G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via ready-

tree semantics. TCS, 373(1–2):19–40, 2007.
[14] G. Lüttgen and W. Vogler. Ready simulation for concurrency: It’s logical! In

ICALP 2007, volume 4596 of LNCS, pages 752–763. Springer, 2007.
[15] E.-R. Olderog. Nets, Terms and Formulas. Cambridge Tracts in Theoretical

Computer Science 23. Cambridge Univ. Press, 1991.
[16] A. Puhakka and A. Valmari. Liveness and fairness in process-algebraic verification.

In CONCUR 2001, volume 2154 of LNCS, pages 202–217. Springer, 2001.
[17] J.-B. Raclet. Residual for component specifications. In Formal Aspects of Com-

ponent Software, volume 215 of ENTCS. Elsevier, 2008.
[18] I. Ulidowski. Refusal simulation and interactive games. In AMAST 2002, volume

2422 of LNCS, pages 208–222. Springer, 2002.

24

