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Abstract

In the rapidly advancing domain of computer vision, ac-
curately estimating the poses of multiple individuals from
various viewpoints remains a significant challenge, espe-
cially when reliability is a key requirement. This paper in-
troduces a novel algorithm that excels in multi-view, multi-
person pose estimation by incorporating depth information.
An extensive evaluation demonstrates that the proposed al-
gorithm not only generalizes well to unseen datasets, and
shows a fast runtime performance, but also is adaptable to
different keypoints. To support further research, all of the
work is publicly accessible.

1. Introduction
In many human-centric applications, determining the pre-
cise location and pose of individuals is crucial. Pose esti-
mation, which typically involves identifying the positions
of a person’s joints, is therefore essential for tasks ranging
from motion capture to human-computer interaction.

Traditional methods for pose estimation often rely on
markers attached to the body, which can be tracked by spe-
cialized cameras. While this approach yields high accuracy,
it is also cumbersome as it requires individuals to wear spe-
cific clothes, which may not be practical or not possible, for
example in public settings or in an operating room. Marker-
less methods, on the other hand, offer greater convenience
since they can extract the poses directly from images. How-
ever, they face greater computational challenges due to the
need to accurately interpret the images.

Using multiple cameras to capture scenes from vari-
ous angles enhances robustness against occlusions and im-
proves accuracy. Besides using standard RGB cameras,
depth cameras can also be employed to provide additional
information that can enhance pose estimation.

This work presents a simple but fast and reliable algo-
rithm to detect the joints of multiple humans using RGBD-
images from multiple views. It does not require additional
training and generalizes well across different scenarios.

The source-code of the presented method can be found
at: https://gitlab.com/Percipiote/

Figure 1. Example of a multi-person pose estimation from multi-
ple camera views (from the panoptic dataset [10]). Using the 2D
pose detections from the color images (top), a distance to the cam-
eras is extracted from the aligned depth images (center), and the
resulting 3D poses of each view are filtered and merged into a final
result (bottom).
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2. Related Work
Traditionally, human pose estimation is addressed by a two-
phase method. Initially, 2D poses are derived from each im-
age, and subsequently, these are fused to estimate 3D poses.
The algorithms can be categorized based on their usage of
algorithmic strategies versus learning-based methods.

From a learning-based perspective, VoxelPose [22] was
one of the first concepts, extending the work of Iskakov
et al. [8] to multi-person estimations. It projects the joint
heatmaps from the 2D images into 3D voxelized space and
then estimates a rough center for each person, which is
then used to create and extract a concentrated cube around
each individual. Following this, the locations of the joints
are computed using a second neural network. Faster-
VoxelPose [25] refined this approach by restructuring the
3D voxel space into multiple 2D and 1D projections to im-
prove efficiency. TEMPO [4] and TesseTrack [17] intro-
duced a temporal dimension to the voxel space to track the
poses across frames. Other methods like PRGnet [24] use a
graph-based method or directly regress the 3D poses from
the 2D features, as in MvP [23]. SelfPose3d [20] is a re-
cent approach that uses self-supervised training. It adopts
the structure of VoxelPose, and trains both the 2D and 3D
networks with randomly augmented 2D poses.

In terms of algorithmic methods, mvpose [6] addresses
the problem in two phases: initially, it identifies match-
ing 2D poses across images based on geometric and vi-
sual similarities, and then it triangulates these poses to con-
struct the final output. mv3dpose [21] employs a graph-
matching strategy to allocate poses through epipolar ge-
ometry and integrates temporal data to compensate for any
missing joint information. PartAwarePose [5] speeds up the
pose-matching process by utilizing poses from the previous
frame, and applies a joint-based filter to correct keypoint in-
accuracies caused by occlusions. VoxelKeypointFusion [1]
uses a voxel-based triangulation concept to predict 3D joint
proposals from overlapping views and then uses their re-
projections to assign them to persons in those views before
grouping them into a final result.

Since some cameras are capable of capturing depth data
in addition to color images, incorporating this depth infor-
mation could potentially enhance the accuracy of the pose
predictions. A few algorithms have already been developed
to leverage this additional information.

OpenPTrack [2, 15], which is frequently employed in
robotics, initially calculates the 2D keypoints for each im-
age, and then leverages depth images to determine the dis-
tance of each joint to the cameras. It generates a 3D per-
son proposal from each view, which is converted into global
world coordinates. Subsequently, these proposals are asso-
ciated with specific individuals, and a Kalman-Filter is ap-
plied for joint filtering and temporal smoothing to refine the

results. MVDeep3DPS [12] utilizes a trainable filter to elim-
inate inaccurate person proposals before combining them in
3D space. After merging, the method refines these propos-
als by a calculated confidence score for each body part. Ry-
selis et al. [18] employed a straightforward strategy of just
averaging the 3D poses from the different views. Hansen
et al.[7] generated keypoint heatmaps from depth images
and utilized a point cloud to estimate each person’s center.
They then projected these heatmaps and depth data into a
voxelized space to create a 3D pose using a V2V[14] net-
work architecture, similar to that of VoxelPose. Their source
code is not available. PointVoxel [16] is a recent work that
adopts a similar concept but distinguishes itself by using
two separate V2V-branches for keypoint and depth voxel-
maps instead of merging them directly. It then combines
the outputs from these branches. Additionally, it features
a synthetic data generator to facilitate generalization across
different setups. The source code for this method was not
available at the time of writing. VoxelKeypointFusion [1]
includes a simple voxel-based depth masking approach to
remove voxel projections that are not visible in the depth
images.

3. SimpleDepthPose
The new algorithm called SimpleDepthPose follows a very
simple concept with the following steps:

1. Predict joint coordinates for each color image
2. Extract the distance of each detected visible joint from

the aligned depth images
3. Group the 3D pose proposals into persons from the

last time-step, or create new ones if necessary
4. Filter outliers in each proposal group
5. Average remaining proposals to get the final 3D pose

To predict the joint coordinates in step (1), basically
every off-the-shelf pose estimator can be used. One im-
portant requirement is though, that the 2D pose estimation
model is able to predict only directly visible keypoints, but
no occluded ones, because they would result in extracting
wrong depth values. Here a HigherHrNet [3] model is used,
trained and then finetuned on COCO [13] to predict only
visible joints, and without the refinement step, because this
was likely to add occluded joints again. A simpler grouping
approach for the association scores was evaluated as well,
which even resulted in overall better scores, but only if the
refinement was kept, so it can not be used here.

In step (2), the distance is extracted from the depth im-
age by extracting the median value of pixels around the joint
coordinates obtained from the RGB-based 2D pose estima-
tor (see Figure 2). The depth values are selected using two
rectangular cutouts that form a cross-shape, to emphasize
the center region and reduce outliers that would occur at the
square’s edges. Afterward, a static per-joint offset is added
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to the distance, depending on the type of the joint, because
a depth camera normally measures the distance to the sur-
face, but the target location is the center of the joint. These
offsets are estimated using normal human proportions. For
example, 3 cm are added for shoulders and knees, or 1 cm
for the wrists. To account for larger persons or (thick) cloth-
ing those default values can be adapted. At last, the poses
are transformed from camera into world coordinates using
the extrinsic calibrations.

Figure 2. Visualization of the cross-shape used to extract the depth
value for each joint in a zoom-in of the depth image. All pixels
inside the cross are used to calculate the median depth distance.

In step (3), each 3D person proposal is then assigned to a
person from the last time-step, by finding the closest match
below a distance threshold. If no match is found, a new
person is created. Old persons that were not matched are
dropped after a certain number of frames.

Following this, a simple outlier removal step (4) is ap-
plied. The filter calculates the distance of each joint pro-
posal to the averaged center of its neighboring joints, and
if it is above a threshold, it is discarded. In the case of a
knee, for example, the neighbors are the hip and ankle. The
idea is to remove proposals that are very far from the other
joints, creating impossibly long limbs, which are likely to
be wrong. Therefore the threshold (default 0.5m) should
cover all limb lengths of normal-sized persons (< 2m).

Then, in the last step (5), if there are enough proposals
for a joint, a center between them is calculated, and only
the topk (default 3) closest proposals to this center are av-
eraged into the new joint location. Wrong joint proposals
are either caused by poor keypoint predictions or by errors
in the depth image (especially at object edges), both result-
ing mostly in proposals far from the correct location of the
joint. See Figure 3 for an example of the proposals and their
fused result.

In a direct comparison with OpenPTrack, which is archi-
tecturally closest, SimpleDepthPose is much simpler, but,
as can be seen later, also more accurate. Two key differ-
ences are to account for the joint visibility and the improved
concept of depth extraction. Another one is the filtering
and merging approach. While OpenPTrack uses a Kalman-

Figure 3. Example of the proposals for each view with some joint
errors (top), a zoom-in on the per-view poses (center), and their
fused result with the final joints (bottom).

Filter to smooth the joint locations, which can lag behind in
fast motions, SimpleDepthPose only uses the joints from the
last time-step, the other views, and the joint’s direct neigh-
bors to filter outlier joints before merging the remaining
proposals to the final results.
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Method PCP PCK@100/500 MPJPE Recall@100/500 Invalid F1 FPS

MV3DReg [11] - - - 176 - - - - -
VoxelPose 28.2 10.8 35.9 119 19.5 36.8 15.8 51.2 19.2
VoxelPose (synthetic) 36.3 27.8 65.9 201 15.2 72.4 76.7 35.3 8.3
Faster-VoxelPose 43.3 31.1 55.2 120 29.1 56.0 24.6 64.3 29.3
Faster-VoxelPose (synthetic) 37.9 28.1 45.5 109 29.4 46.1 7.7 61.5 30.0
MvP 0 0 0.1 343 0 0.1 99.9 0.1 8.8
PRGnet 4.9 3.6 6.2 120 3.4 6.4 44.3 11.5 11.9
TEMPO 10.4 7.9 12.6 102 8.8 12.7 14.0 22.2 20.3
SelfPose3d 48.8 36.2 67.7 143 31.1 70.2 36.5 66.7 13.0
mvpose 45.9 32.9 60.2 127 27.1 61.3 18.5 70.0 0.8
mv3dpose 1.3 0.7 2.8 235 0.4 3.1 57.7 5.8 3.0
PartAwarePose 15.3 10.3 25.5 201 6.3 27.7 20.5 41.1 6.9
VoxelKeypointFusion 54.5 43.9 75.1 128 35.9 76.6 24.2 76.2 11.3

MVDeep3DPS [12] - - - 213 - - - - -
OpenPTrack 11.7 9.9 26.8 323 0.8 33.6 83.9 21.7 1.9
VoxelKeypointFusion 54.0 44.2 72.2 119 36.3 73.4 12.9 79.7 10.9

SimpleDepthPose 74.0 62.0 94.3 113 54.1 96.6 23.5 85.4 37.2

Table 1. Transfer to mvor [19] without and with depth. All other results without extra citations are taken from [1].

4. Dataset Evaluation

In general, the number of multi-view multi-person depth
datasets is very low, only two datasets were found that
are suitable for this evaluation, mvor [19] and panop-
tic [10]. Both datasets contain RGB and depth images,
and the poses of the persons are labeled in 3D. The eval-
uation is performed using the same metrics as in VoxelKey-
pointFusion [1], which evaluate the error of 13 keypoints
(2 shoulders, 2 hips, 2 elbows, 2 wrists, 2 knees, 2 an-
kles, 1 nose/head). The metrics are described in more detail
in [1]. The FPS was measured on a Nvidia-3090 as well.

Multi View Operation Room (MVOR) [19] is more often
used in literature and records an operation room from three
different viewpoints. It is a relatively complicated dataset,
since there is much occlusion, and the persons all have sim-
ilar clothing. Only the upper body of a person is labeled,
and most, but not all persons are labeled.

Table 1 shows that many models have great problems
with this setup, and only a few of them, including Sim-
pleDepthPose, reach a decent performance on this dataset.
The problem is mainly caused by the many occlusions,
which result in some persons, or most parts of them, being
visible in only one image. All triangulation-based methods
consequently struggle to detect such persons at all. When
additionally using depth information, on the other hand, one
view is enough to correctly detect them.

In this dataset it was notable that SimpleDepthPose has
large errors at hip joints, which on average are around
170mm off. In comparison, the upper body joints have
an average error between 60mm to 100mm. This is likely
caused by the fact that the hip joints are much more of-
ten occluded, which sometimes leads to an incorrect as-
signment of depth values. Other than that, it significantly
outperforms all others in terms of the detected persons and
keypoints. It is also faster than every other approach.

The second option for evaluation is the Panoptic [10]
dataset, which is commonly used for evaluations of RGB-
only approaches, but also contains depth recordings. The
cameras are mounted in a dome-like structure and point to
the center of it. The same evaluation approach as in Vox-
elKeypointFusion [1] was used here as well. Note that since
the depth cameras were not time synchronized, their align-
ment to the color images and to the pose labels is not per-
fect. They were considered as belonging together if the time
difference was below a threshold.

As the results in table 2 show, the RGBD-based ap-
proaches outperform half of the algorithmic RGB-based
ones in terms of the percentage of detected persons. Sim-
pleDepthPose shows a detection rate of persons and joints
that is on the same level as the learned approaches that were
trained in this setup, while being faster than most. This
is especially relevant in safety-critical applications, like in
human-robot collaboration for example, where inaccurate

Method PCP PCK@100/500 MPJPE Recall@100/500 Invalid F1 FPS

VoxelPose 98.5 97.9 98.7 19.3 98.7 98.7 1.1 98.8 8.0
Faster-VoxelPose 99.4 98.6 99.9 20.5 99.7 99.9 1.0 99.5 18.0
MvP 97.6 97.2 98.3 18.7 98.0 98.5 15.8 90.8 8.9
PRGnet 99.5 99.1 99.9 17.1 99.9 99.9 2.0 99.0 6.8
TEMPO 98.1 97.4 98.5 16.8 98.4 98.4 2.4 98.0 5.1
SelfPose3d 99.3 98.7 99.8 24.9 99.7 99.9 8.0 95.7 7.1

mvpose 90.5 75.9 97.5 83.6 73.5 98.5 10.0 94.0 0.1
mv3dpose 84.5 79.4 86.1 48.8 81.8 86.4 15.6 85.4 1.3
PartAwarePose 89.8 79.9 92.1 60.5 83.1 93.0 1.4 95.8 1.5
VoxelKeypointFusion 97.1 94.0 99.7 47.8 97.3 99.9 2.4 98.7 4.2

OpenPTrack 83.0 70.9 95.1 97.6 68.9 97.2 15.5 90.4 1.8
VoxelKeypointFusion 92.6 90.0 96.9 60.1 85.4 97.8 0.1 98.9 4.0
SimpleDepthPose 96.9 91.2 100 45.5 98.6 100 4.7 97.6 17.7

Table 2. Replication of panoptic results and transfer without and with depth. All other results are taken from [1].
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Method PCP PCK@100/500 MPJPE Recall@100/500 Invalid F1 FPS

SDP (panoptic, with occluded kpts) 95.9 90.3 99.8 49.1 96.1 100 29.6 82.6 17.4
SDP (panoptic, without joint offsets) 95.6 88.8 100 52.9 97.0 100 5.9 97.0 17.5
SDP (panoptic, cameras=1) 65.7 58.6 84.2 155 38.5 89.3 5.6 91.8 50.4
SDP (panoptic, cameras=3) 92.0 82.5 99.5 64.3 90.7 99.7 3.2 98.2 27.1
SDP (panoptic, cameras=10) 98.5 96.8 99.9 37.5 98.1 100 4.8 97.5 9.5

SDP (mvor, pc2vmap) 63.7 50.0 91.1 142 29.5 94.7 21.2 86.0 3.1
SDP (mvor, pc2dimg) 74.0 61.7 94.5 114 52.9 96.8 24.3 85.0 1.2
SDP (panoptic, pc2vmap) 91.3 82.3 99.4 70.4 86.1 99.7 18.4 89.7 1.3
SDP (panoptic, pc2dimg) 96.6 90.8 100 47.4 97.7 100 7.9 95.9 0.5

Table 3. Ablation experiments with SimpleDepthPose.

joint or person estimations can be better handled, for ex-
ample by generally increasing the required distances, than a
missing one. Some of the invalid predictions might be per-
sons entering the room, which are often not labeled. Sim-
pleDepthPose already detects them if they are visible in one
image, while many other approaches require at least two.

5. Ablation studies
The visibility finetuning of SimpleDepthPose, so that only
directly visible joints are detected, has a relatively small im-
pact on most metrics, but without it, the number of invalid
predictions strongly increases. The added per-joint depth
offsets notably improve the average position accuracy.

Even with only a single camera, the algorithm is able to
detect most persons, even though the localization accuracy
strongly decreases. As expected, the results get better with
more cameras, but the inference time increases as well. In
case there are many cameras with overlapping views, imple-
menting that persons need to be seen by multiple cameras to
be valid could further reduce the number of invalid persons.

Due to the use of depth information from the cameras,
the (learned) triangulation step can be skipped, and the al-
gorithm is very fast. On Panoptic the average time is about
2.6ms for the depth extraction and 0.4ms for multi-view
fusion. For better performance, the fusion part is imple-
mented in C++ and called through a Python interface.

Besides directly pairing color and depth images, another
option would be to fuse the depth information from all cam-
eras first. For this all depth images are converted to point-
clouds which are merged together. After that two differ-
ent options were evaluated, the first one was to convert the
point-cloud back to depth images again (pc2dimg), and the
second one was to convert it to a 3D voxel-map (pc2vmap,
voxel resolution 5cm). These concepts might be interesting
if the depth information is not generated by depth cameras,
but by other sensors instead, or if a point-cloud is already
available, which is often the case in robotic applications. As
can be seen in the results, both options output usable detec-
tions, with pc2dimg being better. In comparison to the orig-
inal approach of using the depth images directly without
fusing them, the fusion takes some extra time (though the
current implementation is not very efficient, so this could
be faster), while the results are similar, so the fusion step is
not considered necessary if depth images are available.

6. Whole-body estimation
Similar to VoxelKeypointFusion the algorithmic approach of
SimpleDepthPose can be easily extended to handle different
input keypoints. This can for example be used to predict
whole-body keypoints, which include additional face, foot,
and finger keypoints.

While the 3D algorithm is easy to adjust, the 2D pose es-
timation part remains a challenge. Extending the HigherHr-
Net model did not work with its bottom-up concept, espe-
cially with the finger keypoints, since often only some of the
visible fingers are labeled, and the default training process
penalized predictions of unlabeled keypoints. Instead, it is
possible to use the whole-body keypoint model from RTM-
Pose [9], the same as in VoxelKeypointFusion. Here only
the visibility finetuning could not be included, because the
face and hand keypoints do not contain information about
their occlusion status.

This problem results in improvement possibilities for fu-
ture works. Since very often fingers are occluded by other
fingers, they, as a result, have a poor localization perfor-
mance. So currently the persons and all/most fingers and/or
the face keypoints should be directly visible for whole-body
estimations.

7. Conclusion
This paper showed, through an evaluation of different
datasets, that the proposed SimpleDepthPose algorithm is
a very fast and reliable approach if depth data is available,
and also shows the best generalization results among other
methods, without requiring any additional training.

One limitation is that since there is no neural refinement
of the resulting 3D poses, the location accuracy is highly de-
pendent on the accuracy of the depth images. Each keypoint
also has to be visible in at least one image to be detected.

Following the results of the experiments, the use of depth
data does not necessarily lead to more accurate results in
terms of joint localization, but can significantly increase
the number of detected keypoints and persons, especially in
strongly occluded settings. Since in many applications it is
more important to detect persons and their poses at all, than
to have a very accurate joint localization, using or integrat-
ing depth sensors can therefore be recommended, because
as shown, they can increase the algorithm’s performance.
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based system to monitor and analyze key performance indi-
cators of physical training. Human-Centric Computing and
Information Sciences, 10:1–22, 2020. 2

[19] Vinkle Srivastav, Thibaut Issenhuth, Abdolrahim Kadkho-
damohammadi, Michel de Mathelin, Afshin Gangi, and
Nicolas Padoy. MVOR: A multi-view RGB-D operating
room dataset for 2D and 3D human pose estimation. arXiv
preprint arXiv:1808.08180, 2018. 4

[20] Vinkle Srivastav, Keqi Chen, and Nicolas Padoy. SelfPose3d:
Self-Supervised Multi-Person Multi-View 3d Pose Estima-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2502–
2512, 2024. 2

[21] Julian Tanke and Juergen Gall. Iterative Greedy Matching for
3D Human Pose Tracking from Multiple Views. In German
Conference on Pattern Recognition, 2019. 2

[22] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. VoxelPose:
Towards Multi-Camera 3D Human Pose Estimation in Wild
Environment. In European Conference on Computer Vision
(ECCV), 2020. 2

[23] Tao Wang, Jianfeng Zhang, Yujun Cai, Shuicheng Yan, and
Jiashi Feng. Direct Multi-view Multi-person 3D Human
Pose Estimation. Advances in Neural Information Process-
ing Systems, 2021. 2

[24] Size Wu, Sheng Jin, Wentao Liu, Lei Bai, Chen Qian, Dong
Liu, and Wanli Ouyang. Graph-based 3d multi-person pose
estimation using multi-view images. In ICCV, 2021. 2

[25] Hang Ye, Wentao Zhu, Chunyu Wang, Rujie Wu, and Yizhou
Wang. Faster VoxelPose: Real-time 3D Human Pose Estima-
tion by Orthographic Projection. In European Conference on
Computer Vision (ECCV), 2022. 2

6


	. Introduction
	. Related Work
	. SimpleDepthPose
	. Dataset Evaluation
	. Ablation studies
	. Whole-body estimation
	. Conclusion

