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The draping process in the preforming stage of composite manufacturing is very cost- and time-expensive and
requires substantial manual labor. One strategy towards automation is the use of collaborative robots. Recent
advances in Al have made it possible to train robots on difficult real-world tasks with reinforcement learning.
However, training a robot using reinforcement learning is practically challenging and leveraging simulation
is often the only option to use reinforcement learning in real-world settings at all. Existing FE models, which
are commonly used for optimization of preforming processes, are too slow for reinforcement learning training.
We addressed this issue by developing an XPBD-based surrogate model, drastically reducing simulation times

compared to a classic FE model. With the achieved speedup, the training of a reinforcement learning agent
became feasible and a draping trajectory could successfully be transferred to a real-world cobot, demonstrating
the potential and capabilities of this innovative approach.

1. Introduction

In the composite industry, about one third of carbon fiber reinforced
components are manufactured using a draping procedure to obtain the
component geometry [1]. Due to their extraordinary properties, the
amount of composite components used in the aircraft industry, and
thereby the amount of draped components, is increasing steadily [2].
The draping step is typically part of the preforming stage, where a
semifinished product (e.g., dry woven fabrics, prepregs or non-crimp
fabrics (NCFs)) is placed onto a tool and prefixed using some adhe-
sive agent or binder. This layup process often requires many manual
steps, making the preforming phase very cost- and time-expensive [3].
To reduce the expenses in the manufacturing process, it is therefore
essential to address the draping step in the process chain. One strategy
close at hand to optimize the draping step is to reduce manual work by
automating this process step.

In industry, (semi-)automated draping methods such as automated
fiber placement (AFP), automated tape laying [4] and diaphragm-
forming [5] are already well-established for manufacturing preforms
for aircraft components. They are commonly used for simple geometries
such as single-curved panels or C- and L-profiles for stiffening ribs.
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However, at present, the amount of manual labor scales with geom-
etry complexity. This is mainly because complex components require
higher flexibility and sensitivity in the layup process, which cannot
be fully achieved by conventional automated processes. Therefore,
latest research focuses on the development of more flexible solutions
for automated composite manufacturing [6-8]. One way of increasing
flexibility in the automated manufacturing is to develop new manufac-
turing processes using collaborative robots (cobots), which are designed
to perform precise tasks and are able to mimic manual processing
steps [9,10].

New composite manufacturing processes are typically developed by
experts in an iterative process where an initial execution environment
is set up in a CAD software, implemented in real-world and optimized
using trial-and-error experiments. This process is accompanied by nu-
merical process simulations using a digital twin in a finite element (FE)
software. For semifinished products such as dry fabrics or prepregs,
however, the simulations can have substantial calculation times [11].
This inhibits an efficient process optimization and determination of
optimum parameters, requiring a lot of expertise by qualified workers
to keep the development effort to a minimum.
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A commonly used strategy to tackle that issue is surrogate-based
optimization (SBO), where simulation processes are approximated us-
ing computationally inexpensive operations. Especially in sheet metal
forming, SBO is already an established method [12,13]. Compared
to sheet metal, the reduced stiffness and slack forming behavior of
composite preforms poses an extra challenge to solving the problem.
Therefore, only in the last few years, SBO has been established within
that field. Recent studies focus on using artificial intelligence (AI) to
learn surrogate models in order to facilitate and speed up the optimiza-
tion of manufacturing processes [14]. These Al-based surrogate models
have also been applied to approximate the behavior of FE simulation
models and enable faster calculation times [15-18]. However, the
technology readiness level (TRL) of surrogate models for composite
manufacturing — whether Al-based or not - is still quite low, which
is why the developed surrogates are used on a laboratory scale rather
than in industry.

Another field where fast simulations of physical processes are re-
quired is physics-based animation. The simulation field was introduced
to graphics by Terzopoulos et al. [19] in 1987. It ranges from the
simulation of solid objects, soft bodies and cloths up to fluids, fire
and smoke simulations. The difference in simulations between the
computational sciences and computer graphics lies in the importance
of accuracy: computational sciences seek to replace real-world exper-
iments and should be as accurate as possible. The main application
of simulations in computer graphics are visual effects for movies and
games that should look realistic. The focus is much more on speed
and controllability, and much less on accuracy. Hence, the computer
graphics community has produced methods and approaches that are
much more efficient than traditional methods, while not really focusing
on accuracy. One such method is Position Based Dynamics (PBD) [20],
which — besides applications in computer graphics, such as [21,22] —
has also been applied in other fields, for instance in medicine [23-25]
and robotics [26,27].

Reinforcement learning (RL) is a method that has recently seen a
lot of success in solving sequential decision making problems across
a lot of different subfields, such as manufacturing [28,29], medicine
[30,31], robotics [32], communications [33] and energy [34]. Since
draping path optimization is also a sequential decision making problem,
RL can be applied here. One downside when applying RL to a real-
world problem is that you usually require an efficient simulation of
the problem you want to solve. An FE model is not suitable for this
since its runtime for a single simulation is simply too long. This is why
we developed a PBD-based surrogate model to serve as the simulation
backbone in the RL optimization pipeline in this work. As it turned out,
this surrogate is fast enough to enable the use of RL for the draping
optimization problem.

The aim of this study is to investigate the basic feasibility of
using reinforcement learning (RL) in combination with PBD to cre-
ate optimized work instructions for an automated draping process
with a robot. For this purpose, we created an FE draping simulation
model, which serves as our baseline. The model includes a draping
tool geometry and the mechanical data of a glass-fiber woven fabric
obtained by standard material characterization methods. We validated
the FE baseline by comparing the results of experimental and numerical
diaphragm-draping using the characterized material. Subsequently, we
developed a PBD-based surrogate of the FE model. In contrast to Al-
based surrogates, this is generalizable to any geometry. By comparing
the surrogate to the FE model, we ensure that the surrogate yields
a sufficient approximation of the baseline results. Optimized work
instructions were determined by using RL in combination with the
PBD-based surrogate simulation. We defined a test case for which the
developed method determines an optimal draping trajectory. The tra-
jectory was transferred to a custom real-world execution environment
to validate the Al-proposed draping strategy for our test case.

Our work is structured in the following way: we describe the
characterization of the material we used in Section 2.1 and introduce
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the FE model using the characterized material in Section 2.2. The PBD-
based surrogate model is described in Section 3. The RL approach to
determine an optimal draping path is introduced in Section 4 and the
method for comparing FE and PDB-based model is described in Sec-
tion 5. The real-world execution environment is described in Section 6.
The results are presented in Section 7 and we draw our conclusions in
Section 8. Potential future work is discussed in Section 9.

2. FE digital twin

To create a simulation model that provides the baseline for draping
results, we created a digital twin in the commercial finite element
software Abaqus/CAE [35].

2.1. Material

For complex and highly nonlinear problems involving large de-
formations and velocities (such as in a draping process), a dynamic,
explicit FE solver is required. Especially for slack fabrics, this causes
increased calculation times because the time-determining factor for
such simulations is the stable time increment Ar,,,,. Per definition,
the stable time increment (4ty,,, = L¢/c,;) depends on the smallest
element length L¢ of the FE mesh and the wave speed ¢, of the material.
The wave speed (¢, = v/E/p), in turn, is defined by the ratio of the
Young’s modulus E to the mass density p of the material [35].

Therefore, we selected the glass fiber woven fabric Interglas 92125
with a 2 x 2 twill weave pattern and a ply thickness of about 0.35 mm
for the lamina. Compared to carbon fiber materials (which are com-
monly used for structural aircraft components), the E to p ratio of glass
fiber materials is smaller, leading to an increased stable time increment.

2.1.1. Material characterization

To obtain mechanical data for the numerical simulation, we char-
acterized the material using the following testing methods:

Uniaxial Extension. We used the uniaxial test setup as described in
ISO 13934-1 to test the mechanical response in warp and weft direction
of the fabric. In each direction, 6 specimens of 200x 60 mm were tested
using the Zwick/Roell Z020 (20 kN load cell) with a testing velocity of
0.33 mm/s.

In-Plane Shear. We tested the in-plane shear response using the bias-
extension test as described in [36]. Samples (170 x 50 mm) with a
+45° (n=10) and —45° (n=11) angle shift to the warp direction were
prepared for testing. We used the Zwick/Roell Z0.5 with a testing
velocity of 1.6 mm/s.

Bending. To determine the bending behavior of the fabric, we used a
manual cantilever bending test apparatus as shown in [37]. As for the
uniaxial extension test, we tested 6 specimens (150 x 20 mm) in each
direction. The bending length was measured using a ruler.

Friction. The friction between tool and fabric was tested using a test-
ing setup inspired by ISO 8295 with a carrier system (200 g sled) [37].
We tested the friction between the specimens (6 samples per direction)
and a steel sheet with the same surface property as the draping tool.

2.1.2. Validation of characterized material

To validate the characterized material data, we conducted experi-
mental draping tests using a diaphragm forming process and compared
them to the simulation result. Therefore, we modified the setup de-
scribed in [38] by replacing the tool with a hemisphere tool and using
a single ply of the characterized glass fiber material. The dry fabric was
fixed on the tool using a spray adhesive.

We conducted 11 draping experiments and compared the results
with the simulation result for our material. For the comparison, we
analyzed the topology, the boundary contour and the fiber orientations
in warp and weft directions. The topology and boundary contour of
the experiments were captured using a 3D laser scanner and Geomagic
Control X and the fiber orientations were captured using a fiber angle
sensor (FScan, Profactor).



P.M. Blies et al.

Fig. 1. (a) Meshed rib tool and (b) setup of the FE model before draping, with
quadratic blank cut placed above the tool, fixated at the red spherical areas.

2.2. FE model setup

Fig. 1 shows the FE model setup before draping. In the model, a
quadratic lamina blank cut (370 x 370 mm) was placed above a double-
curved rib tool (Fig. 1a) and fixed at three clamping points (red spheres
in Fig. 1b). The lamina blank cut was meshed using 8192 S3 elements.
Since our surrogate model has its root in computer graphics, where
it is common to work with triangular meshes, triangular elements
were preferred over quad elements. We implemented the characterized
fabric material using the hyperelastic, test-data based *FABRIC material
model in Abaqus.

Using this FE model, different draping scenarios can be realized.
Starting from an initial draped geometry (i.e., a predefined draping
use case containing topological draping defects such as wrinkles and
bridging), local pressure loads can be applied on the top surface of the
lamina to smooth out draping defects.

To simulate continuous load application and enable the realization
of different draping paths, we created a VDLOAD subroutine. Within
the subroutine, loads are defined within a rectangular bounding box,
mimicking a load application using a roller. The bounding box is
defined in 2D and projected onto the lamina geometry. In each time
step, the bounding box can be shifted in space to imitate continuous
loading. The pressure load is set to 1 N/mm?. Areas which are already
draped remain at 1 N/mm?, simulating the fixation of the lamina onto
the tool using a spray-adhesive.

3. XPBD surrogate model

Having the FE model in place, the next step was to increase its
efficiency up to the point where an interactive draping approach with
reinforcement learning is possible. Classical methods to increase the
efficiency of an FE model are to reduce the mesh resolution (i.e., in-
creasing the element size) and (in case of shell elements) to reduce
the number of integration points through thickness. Another effective
measure is to use mass scaling, where the mass of some elements is
increased to augment the stable time increment. Similarly, it is also
possible to reduce the time of dynamic events (time scaling). However,
both the mass and time scaling can lead to unrealistic inertial or
dynamic effects. Overall, the above-mentioned measures are always ac-
companied by a loss in output precision. More general approaches, that
do not influence output precision, are to reduce the output frequency
to a minimum and to use symmetry (as far as possible) [39]. Likewise,
a quite common approach that does not influence the simulation result
is to use CPU parallelization in order to distribute the computational
workload across multiple CPU cores, speeding up the calculation pro-
cess. Although parallelization enables a considerable speedup, it does
have limitations and its effect depends on the type of problem.

For the application of RL, calculation times must be within an
interactive range. Considering that calculation times for FE draping
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simulations are typically ranging from several hours to days [11], a
speedup of that magnitude is unrealistic for conventional acceleration
methods. Therefore, to achieve the required speedups for RL, other
approaches must be investigated. One option is to go with a learning-
based approach. This has the drawback of a limited generalization
capability and usually requires a large amount of training data. In
addition, for a draping problem, the correct representation of contact
forces is essential, which intensifies the need for sufficient training data
for any geometry.

Instead, the approach we investigated for this work was to develop
a manual surrogate model for the lamina based on a method that has
been used in computer graphics community for a long time and is
known for its efficiency: Position Based Dynamics (PBD) [20] and its
enhancement Extended Position Based Dynamics (XPBD) [40]. Com-
pared to a learned model, a simulation approach has the advantage
of easier generalization to unseen geometries because once a proper
surrogate model for the lamina has been developed, this lamina sur-
rogate can be used in an interactive way with any tool geometry. In
addition, it does not require any data to train on and handles contact
forces naturally.

3.1. Extended position based dynamics

XPBD is a simulation technique that originates in computer graphics
and physics-based animation. It belongs to the class of position based
simulation methods. To give an intuition as to why XPBD is more
efficient than a traditional simulation method, we give a very short
comparison of the two methods:

Classical simulation. Classical dynamics simulation methods typically
formulate the change of momentum of a system as a function of the
applied forces: internal and external forces are accumulated, from
which accelerations are computed based on Newton’s second law. For
a system of n particles with positions x;, this amounts to solving the n
equations

1
b= —f, i€[l.n]
i PELL o)
X

=V

i

where f; is the sum of all forces acting on particle i. Now, for realistic
physical systems, the calculation of internal forces can be very complex,
often relying on constitutive equations and the resulting differential
equations can be hard to solve numerically. Furthermore, if the dif-
ferential equations are stiff, taking too large timesteps during time
integration can lead to instabilities, which means that the achievable
timestep can be severely limited by the stiffness properties of the
equation.

Discretization of the differential equations with FE method leads to
a large and often sparse system of equations, which needs to be solved
at each time step. This is computationally expensive and direct solvers
typically have a time complexity of O(n?), while iterative solvers still
have at least O(nlog n), where n is the number of particles used to model
the system.

XPBD. Position based approaches, on the other hand, omit the velocity
and acceleration layers for the internal forces f; and compute positions
directly by iteratively solving a set of geometric constraints, which
describe the desired properties of the simulated system, such as the
residual distance between two particles (see Fig. 2 for an example of
constraints). This has the advantage that a computation of the internal
forces is not necessary and we get no large linear system of equations
that needs to be solved. Instead, each constraint can be processed
independently, which makes the process highly parallelizable on a
GPU, making it suitable for real-time applications such as games or
interactive simulations.

Furthermore, XPBD is generally more stable and less prone to
numerical instabilities, in particular for stiff systems or large time steps.
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Fig. 2. Depiction of the stretching and bending constraints: (a) Projection of the distance constraint C(x,, X,) = ||x; — X, || — d. x; is the position of vertex i, m; is its mass and d is

the initial distance of the two vertices and (b) The bending resistance is modeled with the constraint function C(x,,X,,X;,X,) = arccos(n, - n,) — ¢. X; is the position of vertex i, n

J

is the normal of face j. ¢, is the initial, ¢ is the actual dihedral angle between the normals of two faces. x,, is shorthand for x, — x, From [41].

This means that the time integration step for stiff systems can be larger
than with traditional methods.

The combination of not having to compute internal forces but
instead being able to use a parallelizable constraint projection step
and using larger time steps makes XPBD able to achieve a speedup in
simulation performance that we need for RL.

Of course, the tradeoff for the speedup that XPBD provides is a
limited accuracy. In graphics and animation, the accuracy is not of
primary importance since the only goal is visual plausibility. In this
work, we investigated whether this reduced accuracy is still sufficient
when using XPBD as surrogate when draping composites in an RL
pipeline.

For a more thorough introduction into PBD and XPBD, the reader is
referred to the survey by Bender et al. [41].

3.2. Our implementation

To develop the XPBD surrogate, we built an interactive simulation
environment from scratch with the Taichi programming language [42].
The advantage of the Taichi language is its combination of simple
Python syntax, efficient use of GPUs and inbuilt rendering support,
which makes it ideally suited for prototyping and studying novel ap-
proaches.

3.2.1. Representation of the lamina

We used the same mesh for the surrogate model as for the FE
model, i.e., a 370 x 370 mm triangle mesh with 8192 faces and 4225
vertices. We represented the mesh as a particle system, where each
mesh vertex corresponds to a particle with position x; and mass m;.
Depending on the degree of each vertex, the weight is distributed to
attribute to the fact that edge and boundary vertices have different
structural contributions than inside vertices. For our mesh, this gives
particle masses in the range of 0.0049 g to 0.029 g.

As PBD constraints for the lamina, we used distance constraints
(see Fig. 2(a)) and bending constraints (see Fig. 2(b)). The bending
compliance was manually adjusted to achieve a high similarity with
the FE model.

3.2.2. Representation of the tool

For the tool, we used the same mesh as the FE model. It had 4575
vertices and 9146 triangular faces and was treated as a static collision
object.

3.2.3. The XPBD solver

We used the substep XPBD algorithm that was presented in [43].
The algorithm is reprinted in Algorithm 1 for the reader’s convenience.
For the solution of the constraint equations, we used a parallelized,
colored Gauss-Seidel method.
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Algorithm 1 Substep XPBD simulation loop from [43]

1: perform collision detection using x", v"
Aty
2 At s <

Msteps

3: while n<n

do

steps

4 predict position & « x" + Ar,v" + APM'f, (x")
5 for all constraints do

6: compute AA

7 compute Ax

8 update A"*! « A\ (optional)

9: update x"*! « Ax + %

10: end for

11: update velocities v+ « ﬁ(x”*' —x")

120 nen+l \

13: end while

3.2.4. Interacting with the simulation

We added an interactive component to the simulation, such that is
possible to apply a force to any position of the lamina. This can be
done either as a human interactively with the mouse or as an Al agent
programmatically. When the simulation is controlled by humans, they
can choose the position where the lamina should be draped. The tip of
the mouse pointer is taken as the middle position for the interaction.
Around this middle position, a stencil is calculated that approximates
the size and behavior of the actuator of the real robot (see Section 6).

For this initial proof of concept, we have chosen not to simulate the
robot arm itself. While this has certain drawbacks when transferring
the determined paths from the simulation to the real robot later in the
pipeline (see Section 7.4), it significantly simplifies the simulation of
modeling the whole robot just by its actuator. We opted for discrete
loading in the simulation, meaning that the stencil is pressed down
and lifted again before it is pressed down at the next position. We
approximated the contact surface between the end-effector and the tool
as a square of size 18 x 18 mm?. With our mesh resolution, the stencil
typically covers 9 vertices. Fig. 8 shows a visualization of the stencil.

The stencil is always rotated such that its normal is parallel to the
tool face normal that is nearest to the mouse ray, to ensure that the
draping force is applied along the normal direction of the tool surface.
Fig. 3 shows how the stencil changes orientation depending on the
normal surface.

Once a vertex has been acted upon by a stencil, it counts as draped
when the distance to the tool surface lies within a given threshold. In
cannot be moved any more once it has been draped. This represents the
behavior of applying a spray adhesive to the lamina, which was done
for the real-world setup (see Section 6.1).

Fig. 4 shows a visualization of a manually draped trajectory and the
surrogate behavior for this path.

3.2.5. Simulation efficiency

The surrogate needs to be reasonably fast when using it as part
of an RL pipeline. On the development laptop, which runs on an
Intel Core i7-10870H CPU @ 2.20 GHz and an NVIDIA GeForce RTX
3070, the surrogate simulation runs with about 20-30 FPS. This means
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-

Fig. 3. Visualization of applying the draping force in the surrogate simulation. The purple rectangle shows the area and direction how the force is applied to the surface. The
area of the square is 18 x 18 mm?. The yellow vertices show the action mask (see Section 4.2.1) for the RL agent. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

- -
Fig. 4. Visualization of a manually draped trajectory in our simulation environment.

I

|

Fig. 5. Isometric view of the initial state of the surrogate simulation model. @ (b)

Fig. 6. (a) Top view and (b) isometric view of the initial condition in the FE
. X . . environment for the draping path determination.
that one simulation step takes at most 0.05 s. In this regime, op-

timization with RL is possible. A more detailed comparison of the
surrogate performance and the FE model performance can be found in

Section 7.2.2. 4. Rl-based draping path optimization
3.3. Testcase setup Having the surrogate simulation in place, we could turn towards
solving the draping problem that we started with. We initialized our
To obtain an initial draping state to serve as our test case, we have surrogate simulation with the initial condition visible in Fig. 6 and
attached the lamina with three clamps on one side and then simulated started the training of the RL agent. The objective of the agent was
a free fall onto the tool. The resulting lamina geometry contains two to find a path of stencil application points such that the lamina is fixed
major wrinkles and serves as the test case for this work. Fig. 5 shows to the surface of the tool and no wrinkles are present (see Fig. 13 for

the starting configuration in our simulation environment. depiction of start and desired goal state).
In order to create identical initial conditions for both the XPBD and Initially, our goal was to have the agent drape the whole laminate.
the FE simulation model, we transferred the deformed lamina mesh This turned out to be infeasible for our hardware and time constraints.
back to the FE simulation model (see Fig. 6). That is why we introduced a focus region: we basically simplified the
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experiment by limiting the agent’s action space to the area around one
of the two wrinkles. The objective with the active focus region was then
to find a trajectory of stencil application points, such that all vertices
in the focus region are fixed to the surface and the wrinkles are gone.

The RL agent had the same boundary conditions that were described
in Section 3.2.4, i.e., once a vertex was touched by a stencil, it cannot
be moved any more and will stay fixed to the surface until reset of the
trial. Initially, when the agent was still randomly exploring, this led to
many unsolvable states of the environment because the agent pressed
down and thereby fixed the laminate at the wrong locations, making it
impossible to drape out the wrinkle.

We will now give a more formal description of the process.

4.1. MDP formulation

In essence, the problem is a sequential decision making problem
because with each step in the draping process, the lamina geometry
changes (by defect formation, e.g.) such that for the next step, the
changed geometry needs to be taken into account. One way to formalize
sequential decision making problems is the Markov Decision Process
(MDP) [44] and one method to solve MDPs is reinforcement learning.

In general, the components of an MDP are the following:

+ a set of states (the state space)

« a set of actions (the action space)

» formulation for the reward obtained after transitioning from one
state to another state due to an action

- transition probabilities that determine how one state leads to
another state or a simulation of the process

In this section, we describe how we approached each of these for
the draping problem.

4.1.1. State space

The state of the system was encoded as an image enabling the use
of an efficient, real-time capable class of models: Convolutional Neural
Networks (CNNs) [45].

We encoded the state in the following way: the mesh of the lamina is
square and has 65 x 65 vertices. For the state encoding, we represented
each vertex as a single pixel in an image of size 65 x 65 x 3. The
channels contain the following information:

+ The first channel contains binary information about whether the
vertex has already been draped to the surface. A vertex is defined
as fixed to the surface when it has been pressed down by the
stencil and came into contact with the collision object.

» The second channel encodes the distance of the respective vertex
to the collision object as real value.

+ The third channel contains binary information about whether the
stencil has already attempted to push down the vertex.

Mathematically, the state space can be expressed as
S = (s € [O9X65 5 ROSXES 5 6565

where I = {0, 1} represents the binary values.

Two example states are shown in Fig. 7. Fig. 7(a) shows the encoded
initial state, visible in Fig. 5. Only one wrinkle is visible because we
introduced focus regions (see Section 4.2.2).

4.1.2. Action space
We defined the action space as the set of integers between zero and
the number of vertices in the cloth mesh (4225 in our case) minus 1:

A={0,1,2,...,4224}

After choosing an action, the same stencil that is used for the manual
interaction (see Section 3.2.4) is calculated around the chosen vertex
that is used for the interaction. This action space will be significantly
reduced with the design of an action masking approach (Section 4.2.1).
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4.1.3. Reward formulation

We chose a sparse reward formulation that only provides reward to
the agent at the end of an episode. One episode is defined as a single
trial of the agent, i.e., it starts with O vertices touched and ends when
every vertex has been touched at least once. After one episode, the
environment is reset to the initial position.

The exact reward depends on the focus region (see Section 4.2.2)
and is defined the following way: at the end of an episode, the distance
of each vertex of the lamina to the tool is computed. Then, all the
distances are summed and the reward is calculated by

4224
r = Dyt — Z d;.
Jj=0

D;,;; is the initial sum of all vertex distances for the currently used focus
region at the start of the episode (which is constant across all episodes
for a given initial condition and focus region) and d; is the distance of
lamina vertex j to the tool. The reward is only calculated at the end of
each episode. For each intermediate step, the provided reward is 0.

4.1.4. Transition probabilities

This is where our simulation surrogate comes into play. Usually, an
MDP requires the specification of the probabilities defining how new
states develop from previous states and actions,

P(Spe1lsis ap).

When a simulator is available, this can be left unspecified because the
probability is then approximated by sampling experience tuples from
the simulator. For us, the surrogate simulation serves as the simulator
and provides us with a new state when we supply it with an action.

4.2. Reducing the exploration space

RL is very computationally expensive. One reason for this is the
exploration that an agent needs to perform in the environment. To
simplify solving the above MDP and to reduce the exploration space, we
have used the following methods: action masking and the specification
of a focus region.

4.2.1. Action masking

A common way to reduce the exploration space in RL is the use of
action masking.

Our actions so far consist of separate push-down motions for each
time step. However, as shown in Section 6, our real-world robot has
a roller actuator, so a more continuous trajectory is actually more
compatible with our robot. For this reason, we have used the following
action masking approach to get a more continuous trajectory from
our agent: we only allow vertices to be chosen as actions that lie
immediately next to the current stencil and have not been draped yet.
While the resulting stencil areas do overlap, the actual action chosen
by the agent (i.e., the center point of the stencil) can never be chosen
from points that have been part of a stencil before. This forces the
agent to take a continuous path until there are no more neighboring
vertices available. In that case, it is allowed to choose another vertex
from anywhere in the region that we currently work with. This reduces
the action space from size 4225 per time step to about 16 for a stencil
of size 3 x 3, which is the size our stencil typically has for the given
mesh resolution. See Fig. 8 for a graphical depiction.

The reason why action masking is employed in most RL applications
is that it drastically reduces the effort necessary for exploration. Imag-
ine we had a horizon of only 10, i.e., after 10 steps, the environment
would reset. If we have 4225 possible actions per step, this amounts to
4225'0 = 1.8 % 1030 possible trajectories (if the agent is not restricted
in any way, i.e., if it can choose the same action again and again).
This is practically impossible to explore, which makes action masking
a necessary ingredient for practical RL applications.
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(a) Initial state representation

(b) State representation after 24 steps

Fig. 7. Example for an (a) initial state representation and a (b) state representation after 24 steps, showing how the wrinkle is pushed upwards by the stencil. The first channel
(red) contains information about draped vertices, the second channel (green) contains the distance of the fiber material to the tool, the third channel (blue) shows the trajectory
that was taken by the stencil so far. The purple path indicates a superposition of the first and third channel (red + blue), while the second channel is zero because the distance
to the tool is zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Action masking for our discrete action space. The red vertex is the chosen
action of the agent, the blue vertices are all the vertices that are taken to lie under
the stencil and are hence pressed down. The yellow vertices depict the possible next
actions. Every action that is not a direct neighbor of a stencil vertex is masked out. In
addition, all vertices that have been draped are already masked out. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

4.2.2. Focus regions

As already touched upon in Introduction to Section 4, it was not
possible to tackle the problem on the whole geometry with our hard-
ware and time constraints. That is why, besides using action masking to
reduce the exploration space, we have also partitioned our problem into
two sub-problems. The initial conditions that we worked with showed
two wrinkles, that are relatively far apart from each other. This enabled
us to focus on one wrinkle at a time by limiting the agent to only see
(and being able to interact with) a sub-region of the whole setup. This
way, we were able to focus our experiments on the MDP formulation,
RL algorithms and hyperparameters instead of approaching a larger and
potentially too difficult problem. The focus region for our test case is
visible in Fig. 13(b) as the region in which draping (visible as blue
vertices) has been performed.

4.3. Reinforcement learning experiments

The RL training was performed with the Proximal Policy Opti-
mization (PPO) algorithm [46], as it is implemented in the Maze
framework [47]. Additional experiments with other RL algorithms were
also performed, but PPO turned out to be sufficient for this problem.
The used hyperparameters can be found in Table 1.

The policy and value networks consisted of 2D convolutions with
kernel size 3 x 3, stride 1, padding 1 and subsequent max pooling, two
dense layers with 256 hidden units each and a softmax layer.
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Table 1

The used PPO hyperparameters for our RL training.
Hyperparameter Value
Learning rate 25107
Discount factor 0.999
GAE 4 1.0
Batch size 400
Policy loss coeff 1.0
Value loss coeff 0.5
Entropy coeff 25107
Clip range 0.2
Optimization epochs 4

5. Comparison of modeling frameworks

The FE simulations were calculated parallelized on 4 CPUs of an
Intel Core i7-8665U (1.90 GHz/2.11 GHz) processor. The baseline
was calculated with the model described in Section 2.2. We tried to
accelerate the FE simulation in order to check the suitability of the
FE simulation model for the RL agent. Thereby, we approximated
the baseline solution using mass scaling and by reducing the output
frequency. The mesh density for the baseline solution was already quite
coarse, thus, a further increase in mesh size did not seem feasible. To
assess the time efficiency of the simulations, we compared the runtime
for the FE baseline model, the accelerated FE model and the surrogate
model.

To validate the simulation of the surrogate model, we transferred
the optimized path suggested by the RL agent, to the FE simulation
model using the VDLOAD subroutine. The draping results of both
modeling systems can be exported as point cloud within an .stl file.
We compared the resulting lamina geometries using the open-source
software Meshlab.

6. Real-world execution environment

For the validation of the Al-proposed draping strategy, we built
a physical execution environment (see Fig. 9(b)). This environment
consists of an ABB CRB 15000 Cobot and the rib tool mounted on
a rotatable plate to increase the tool accessibility for the Cobot. To
enable a realistic draping process, a clamping frame was installed. The
frame allows for an individual positioning of the blank cut. All four
corners are individually height adjustable. In addition, there are various
clamping positions on all four sides of the tool. The blank cut can be
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(b) Execution environment

Fig. 9. Comparison of the RobotStudio model of the execution environment and the real execution environment.

clamped by applying springs, fixed rods or small weights on a thread
on the clamping frame.

As end-effector for the draping action, we mounted a small roller
(width of 18 mm and a diameter of 30 mm) on the Cobot.

6.1. Boundary conditions

The execution environment offers many possibilities for adjusting
the position and tension of the blank cut, to enable an optimized
draping process. For the training of the RL agent, most of the variable
boundary conditions were fixed in order to reduce parameters for
the simulation and therefore shorten training duration. The chosen
boundary conditions are a compromise of RL agent training duration
and realistic draping conditions. In the simulation model, we assumed
that the blank cut is fixed after being draped to the tool by the stencil.
This boundary condition was realized by applying a small amount of
spray adhesive to the bottom surface of the blank cut. This allows for
a comparatively low friction before the blank cut is draped and a good
fixation after being pressed to the tool by the end-effector. That way,
we were able to reproduce the simulated behavior.

6.2. Draping strategy

Our goal was to replicate the draping strategy proposed by the RL
agent in the execution environment. The RL agent suggests a sequential
draping order for a list of points. We wrote a code in the commercial
robot programming tool Rapid (ABB RobotStudio) to convert this point
list into a path for the Cobot. Points lying close to each other were
combined into one draping action: first, the roller is oriented so that it
points in the direction of the next point in the list. Then, the distance
from starting point to subsequent point is driven in force mode on the
tool. Larger distances between two points are considered a jump during
the draping process. Isolated single points (i.e., single points with large
distances to the previous and subsequent point) are pressed to the tool
with a given force and without movement. That way, we can reproduce
the behavior of the surrogate model.

7. Results
7.1. Material
7.1.1. Material properties

Input data for the *FABRIC material model was generated by fitting
the experimental data. For modeling the tensile behavior, we used a

bi-linear fit for both directions. Since for the dry fabric even small
compressive loads lead to buckling, there is no established method to
test the compressive stiffness experimentally. Therefore, as proposed
by [37], we determined the input parameters for compression phe-
nomenologically by matching the experimentally determined bending
length with the cantilever bending simulation results. For the in-plane
shear behavior, only the small strain region (accounting for strains up
to 10 %) was modeled using a linear fit. The transverse shear stiffness
values K11 (warp direction) and K22 (weft direction) were derived
from the in-plane shear data as described in [35]. We determined the
friction coefficients by calculating the mean value of the experiments
for the static and dynamic friction. An overview of the input parameters
is shown in Table 2.

7.1.2. Material validation

The diaphragm forming simulation with the characterized material
was validated by comparing the draping simulation result with 11
experimental draping results. An exemplary comparison with one of the
experiments is shown in Fig. 10.

Topology. The simulation result (Fig. 10a) was compared to the
experimental results (representative experimental result in Fig. 10b)
in terms of topology (Fig. 10c), boundary contour (Fig. 10d) and
local fiber orientations (Fig. 10e and f). For the simulation as well as
the experiments, the lamina was not fully draped onto the tool but
showed some bridging at the transition of hemisphere and baseplate.
All 11 experimental results showed similar draping results. Concerning
the topology, the experiments tend to show highest deviations at the
bridging area, with an average maximum deviation of about 2.7 mm
(see Table 3). For the experiments we removed the blankholders af-
ter draping (which is not the case for the simulation), resulting in
negative deviations at the areas of the blankholders. Excluding those
blankholder areas from the evaluation, there are only slight deviations
at the bridging areas. Apart from that, simulation and experiments are
in good agreement.

A common approach to evaluate the topology is to use photographs
(e.g., [48-501), only enabling a qualitative comparison between simu-
lation and experiment. Alternatively, it is also common practice to use
strain-based methods for evaluating topological differences (e.g., [51]).
However, recent studies incorporate 3D evaluations of topological de-
fects such as wrinkles and bridging. Osterberger et al. report a slight
underestimation of large deviations (above 1 mm) by the simula-
tion, which is also the case for the bridging areas in our hemisphere
simulation [38].
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Table 2
Material parameters used for the FE simulation model obtained by material characterization with nominal stresses ¢ in [MPa] and nominal strains e.
Uniaxial tension Friction
Warp-Direction Weft-Direction Warp-Steel Weft-Steel
Tension Compression Tension Compression
€ c € c € o € Hs Hp Hs Hp
0 0 0 0 0 0 0 0 0.28 0.25 0.27 0.24
3 0.005 0.12 0.02 5 0.006 0.0405 0.02
40 0.02 60 0.025
In-Plane shear Bending stiffness
Shear +45° Shear -45° K11 K22 K12
c € o € 27.2 27.2 0
0 0 0 0
0.005 0.1 0.0036 0.1
HEXE]
F 4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
2 302
B o-249 %
I 25-4.99° weft
[ s5-7.49°
[ 75-999°
[ 10-1249°
[ 12.5-14.99°
Wl 15-1749°
> 1750

(@

(e)

®

Fig. 10. Exemplary comparison of the (a) simulation with a (b) experiment result in terms of (c) topology, (d) boundary contour and fiber orientations in (e) warp and (f) weft

direction.

Boundary contour. On average, the boundary contours maximally
deviate by about 6.4 mm from the boundary of the simulation (with
the worst result showing deviations by 8.7 mm). These deviations
are mostly due to the fringing of the lamina at the boundary in the
experiments which is not modeled within the FE simulation. In recent
literature, evaluations on edge contours are mostly done in 2D. The
presented contour deviations (c.f. Table 3) align well with values found
in literature. Dorr et al. [52] investigated the draping behavior of
different commercial FE codes for thermoplastic UD materials in a
benchmark study, reporting deviations between 8 and 10 mm. Oster-
berger et al. [38] conducted a contour comparison between simulations
and experiments using UD epoxy prepregs, describing deviations in a
similar range. For woven fabrics (epoxy prepregs), Chen et al. [53]
report deviations of about 5 mm for a hemispheric and 8 mm for
pyramid-shaped tool.

Fiber angles. Overall, about 88% (warp) and 78% (weft) of fiber
angles deviate by less than 5° from the simulation result. The fiber
angles in weft direction tend to deviate more than in warp direction.
This is explained by the blankholders which have a higher influence on
the fiber orientation perpendicular to the transition line of blankholder
and tool. Additionally, higher deviations are near the border of the
lamina, caused by fringing at the boundary. Increased deviations at
the hemispherical area are measurement artifacts of the FScan mea-
surement because those areas were most challenging to reach for the
robot.

The comparison of fiber angle deviations with literature poses a
challenge because most studies either focus on shear angle evaluations
or merely conduct local evaluations of fiber angles. Full-field fiber
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angle comparisons for UD prepregs presented in [54] reported about
95% within 4° deviation between simulation and experiment (only
considering areas free from topological defects). Chen et al. evaluated
global deviations in biaxial non-crimp fabrics (NCFs) within a range
of 0-5° [51]. The presented validation shows slightly less accordance,
mainly originating from the fringing boundaries, the blankholder areas
as well as the measuring artifacts. Excluding the affected elements
would result in accuracies comparable to the literature. Bai et al.
evaluated fiber angles in woven fabrics locally, reporting up to 3.3°
deviations [55]. This correlates well with our evaluation, where the
majority of fiber angle deviations lies within 0° and 5° (see Fig. 10e
and f).

7.2. Comparison FE and surrogate model

7.2.1. Results comparison with baseline

Fig. 11 shows a contour plot displaying topological deviations on
the top surface of the surrogate model result. Within the masked area
(red box), there are hardly any deviations to the baseline obtained by
the FE model. Highest deviations occur at areas outside the tool surface
area (i.e., where the lamina protrudes beyond the tool).

For the accelerated FE simulation we applied mass scaling, reduced
the output frequency to a minimum and spared damping parameters.
Thereby, the calculation time was reduced to 40.2 min. Fig. 12 shows
the comparison of the accelerated FE model result with the baseline. As
for the surrogate model result, the masked area shows no deviations.
However, due to the increased mass and the lack of material damping
(which also increases calculation time), distinct effects of oscillations
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Table 3
Deviations of topology, boundary contour and fiber orientations between simulation
and experiments.

Sample Deviations of...

Topology Boundary Fibers < 5°

[mm] [mm] [%]

Min Max Mean Max Warp Weft
1 -3.0 2.3 1.8 5.4 86.8 73.8
2 -2.6 2.7 2.8 8.7 89.1 78.3
3 -1.6 2.3 2.0 5.5 88.3 78.1
4 -3.4 3.3 2.6 6.4 90.0 77.7
5 -39 33 2.5 6.3 87.9 77.5
6 -2.8 2.2 3.0 6.7 86.4 78.9
7 -2.9 3.0 2.8 6.8 85.7 82.7
8 -3.4 2.6 2.3 5.6 86.5 78.9
9 -2.7 2.6 2.6 6.0 88.5 76.4
10 -2.6 2.4 2.4 5.8 87.6 76.7
11 -3.2 2.6 2.7 6.8 90.2 80.1
Mean -2.9 2.7 2.5 6.4 87.9 78.1

[mm]
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= RN
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h

Fig. 11. Topology comparison of the simulation result from the surrogate model and
the baseline solution from the FE model after smoothing the wrinkle using the path
suggested by the surrogate model. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

[mm]

Fig. 12. Topology comparison of the simulation result from the accelerated FE model
and the baseline model after smoothing the wrinkle using the path suggested by the
surrogate model.

within the material are visible, leading to higher deviations to the
baseline in the residual areas. Considering the deviations to the baseline
and that 40.2 min is far too slow for the RL agent to determine a
viable solution, the approximation using a GPU based surrogate model
is inevitable.

7.2.2. Runtime comparison with FEM
The calculation time for the baseline solution using the FE model
was about 8.15 h. This calculation time could be reduced to 40.2 min
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using classical acceleration methods for dynamic FE simulations. De-
spite the 92% decrease in calculation time, the accelerated simulation
was still too slow for the RL agent to determine the optimum path. In
comparison, a rollout of the draping strategy on the first wrinkle takes
about 19 s with the surrogate simulation. This means that the surrogate
model allows for runtimes reduced by three orders of magnitude,
enabling suitable starting conditions for the RL agent.

7.3. RL results

The RL agent managed to successfully and fully autonomously find a
trajectory for the focus region that almost completely drapes the lamina
to the tool and thus removes the right-hand side wrinkle. Fig. 13 shows
the states of the surrogate simulation before and after the draping.
There are still minor issues to be seen in the final state: for instance,
there are 6 undraped inner vertices (visible as inner black vertices
in Fig. 13(b)) and there is self-penetration visible in the upper-right
corner of the focus area. The undraped inner vertices point to the fact
that there is still a small distance between these vertices and the tool,
which means that the region has not been draped perfectly. The self-
penetration is due to the fact that self-collision is not implemented for
this simulation yet. These are both issues that will be addressed in
future work.

Intermediate trajectory states are shown together with the real-
robot trajectory in the Appendix A in Fig. A.16.

The path can also be seen in the video from the supplementary
material. One sees that the RL agent is compelled to start draping the
wrinkle to the tool right from the start because this is what our reward
formulation encourages. Once the wrinkle is draped, the movement of
the stencil becomes more or less random because the agent was only
rewarded based on the sum of distance of all vertices to the tool surface.
When this distance does not change any more, the reward does not
increase further and learning stops. This results in the basically random
jumping-around behavior that is observable in the end. One way to
address this could be to experiment with different reward formulations
that supply penalties for jumping too far, for instance.

A typical training run for the focus area takes about 1.5 days on
two NVIDIA RTX 4090 GPU, of which one is used for the surrogate
simulation and one for RL. Fig. 14 shows a reward curve of such a
training run for the draping of the wrinkle within the focus area.

7.4. Real-world results

Fig. A.16 shows a comparison of the surrogate and the experimental
draping result at different stages within the draping path. The predicted
intermediate results as well as the end result match quite well with the
experiment. Our goal for the execution environment was to implement
an automated routine that imports the point list provided by the RL
agent, assigns corresponding robot configurations, classifies the points
into the different categories for the draping strategy and starts the drap-
ing process. We have realized the automation of the draping process as
described in Section 6. However, we had to add manual steps in order
to enable an error free robot path. We faced two challenges, preventing
a fully automated routine:

Singularities. Some points of the trajectory suggested by the RL agent
resulted in singularities, which led to an error. For those points, we
slightly modified the inclination of the end-effector manually. In case
that the singularity could not be resolved, affected points were omitted.

Collisions. Due to the complex tool geometry, some movements
(automatically generated by RobotStudio using the trajectory) would
have led to collisions. In those cases, we had to manually teach the
robot alternative alignments of the end-effector that avoided collision.

Although the full automation of singularity and collision prevention
(either in terms of continuous checks during execution or through
iterative path adaption) is theoretically possible, it would lead to a
dramatic increase in computational demand, contradicting the goal of
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(a) Initial state of the environment.
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(b) Final state of the environment.

Fig. 13. Initial and final state of the environment after rolling out the optimized trajectory the RL agent determined during training. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Average reward over the course of an experiment to drape the first wrinkle.
The y-axis shows the obtained mean reward per episode, the x-axis represents the
number of PPO training steps.

our approach. The manual effort needed to readjust the robot configu-
ration and movement fully depends on the path suggested by the agent
and the position of the robot. We realized the readjustment applying
standard techniques for singularity and collision avoidance. The main
problem is that activated force control leads to small deviations from
the planned path. This leads to errors during runtime that are not de-
tected a priori by RobotStudio. This is mainly the case for singularities,
while collisions are rarely affected by these slight deviations from the
path. A potential solution to avoid singularities and collisions is to add
the rotation of the tool relative to the robot as an additional degree
of freedom. If singularities or collisions are detected by RobotStudio,
for certain movements, the tool can be rotated stepwise for 45° or
90° until a valid solution for these movements is found. In addition
to the additional degree of freedom, also a different position of the
Cobot relative to the tool can help to solve the mentioned problems.
Modifications of the roller design can also reduce the errors during path
planning. This applies only for errors detected by RobotStudio. The er-
rors occurring only during runtime because of the small deviations from
the planned path cannot be detected in advance because the robot arm
itself is not simulated. Therefore, this can also not be mitigated before
a first test run. Considering the robot position and the kinematics of the
robot during the training of the agent by simulating the arm explicitly
could help to reduce or even avoid singularities and collisions, while
increasing the computing time and limiting the agent to this predefined
setting.

8. Conclusion

The glass fiber woven fabric material was successfully characterized
using standard testing methods. Comparisons of experimental and nu-
merical results of a diaphragm draping process are in good agreement
and occurring deviations of topology, boundary contour as well as fiber
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deviations align well with values found in literature. Therefore, the use
of FE simulation results as baseline solutions is plausible. We attempted
to accelerate the FE simulation model using conventional acceleration
methods, achieving a 92 % decrease in calculation time. Since the
reduction was not enough for a RL agent to provide a feasible solution,
we created a PBD surrogate model enabling interactive simulations
(speedup by three orders of magnitude). Using the surrogate model,
we successfully trained the RL agent to determine the optimum draping
path for smoothing out the wrinkle present at the focus region within
the test case. The determined draping path was transferred back to the
FE simulation model in order to get a baseline solution. Within the
focus region, comparisons between the resulting topologies of FE and
surrogate simulation after draping were in good agreement. Compared
to the accelerated FE model, the PBD surrogate achieved results more
similar to the baseline simulation — additionally providing enough
calculation speed to enable the application of RL.

The determined path was then transferred to the real-world execu-
tion environment. Despite difficulties in reproducing the exact wrinkle
of the initial test case, the draping path proposed by the RL agent
led to a smoothing out of the wrinkle. A visual comparison of the
resulting geometries after path draping shows high similarities between
the surrogate and experimental result.

We therefore conclude that the application of RL for the draping
problem of woven fabrics is actually a promising direction if one can
replace the computationally expensive FE model by a cheaper surrogate
simulation. This study was meant as a proof of concept to demonstrate
the basic feasibility.

9. Future work

The promising results obtained in our study, demonstrating the
feasibility of training a draping agent in simulation within a reasonable
time frame and successfully applying its output to a real robot, open
several avenues for future research. One significant opportunity lies
in creating a fully automated system for draping cloth materials over
any tool geometries using collaborative robots. This can be achieved
by integrating cutting-edge technologies such as 3D scanning, cloth
simulation, reinforcement learning, and robotic control, as depicted in
Fig. 15.

1. Real-World Setup Scanning: Use high-resolution 3D scanning
technologies, such as structured light or laser scanning sys-
tems [38,56], to accurately capture the 3D geometry of the
tool and the initial state of the cloth. These systems would
generate detailed 3D models that serve as the foundational data
for subsequent simulation and planning stages.

. Cloth Draping Simulation: The 3D models obtained from the
scanning process would be transferred into a cloth draping sim-
ulator. This simulator would need to accurately replicate the
physical interactions between the cloth and the tool. To ensure
computational efficiency, surrogate models designed for fast
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Fig. 15. Development pipeline for fully automated draping. The real-world setup, featuring the robot with the cloth to be draped on a given tool, informs both the robotic
simulation setup and the cloth draping simulation. The draping simulation trains a policy, which is validated in the robotic simulation before being transferred to the real robot

for execution.

cloth draping simulation as the one presented in this work would
be employed. These models would allow for rapid iteration and
evaluation of different draping strategies.

. Reinforcement Learning Policy Training: With a fairly accu-
rate and rapid simulation environment established, a RL policy
can be trained to determine the optimal draping path. The RL
agent would use a small stencil, representing the robot gripper,
to perform the draping actions. The training process would
involve learning from the surrogate model to develop a policy
that effectively drapes the cloth over the tool with minimal topo-
logical defects. To facilitate the Sim-to-Real transfer, it would
be beneficial to investigate varying stencil sizes and different
methods of applying the stencil to the cloth. Additionally, Imita-
tion Learning can be employed by having the RL agent observe
and learn from an expert performing the task [57]. This can
significantly enhance the initial training phase by providing the
agent with a set of optimal behaviors to mimic. Combining
reinforcement learning with imitation learning enables the agent
to leverage expert demonstrations to improve performance and
reduce training time.

. Robotic Simulation and Path Validation: The draping path
generated by the RL agent would be transferred to a robotic
simulator. This simulator would utilize an inverse dynamics
solver to attempt to reproduce the same path. Validating the
robotic actions in this simulated environment ensures they are
feasible and free from singularities or other technical issues. Any
encountered issues in reproducing the provided paths would sug-
gest modification on how the RL agent interacts with the cloth to
ensure a seamless transfer to the simulated robot. Additionally,
sim-to-real state-of-the-art techniques can be integrated [58].

. Real-World Execution: If the robotic simulation confirms that
the generated path is valid, the action sequence would be trans-
ferred to the real-world robotic system. The robot would then
execute the draping task according to the learned policy. In cases
where the simulated path encounters issues, such as singularities
or a discrepancy in the outcome of the executed actions, the
automation system would adjust the action space in the cloth
simulation and modify relevant parameters.

. Continuous Improvement and Adaptation: Continuous im-
provement of the surrogate model and RL policy would be
achieved through feedback from both simulations and real-world
executions. This iterative improvement loop would refine the
system’s performance and its capability to adapt to different
types of cloth materials, initial states and tool geometries.
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Building a fully automated system would lead to more precise
and efficient fabric draping, paving the way for innovative automated
manufacturing processes.
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Appendix A. Comparison of RL and robot trajectories

See Fig. A.16.
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Fig. A.16. Snapshots of the optimized trajectory that was obtained by the RL agent and its playback on the real-world robot.
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