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Abstract. This study explores the potential of federated learning (FL) to develop a 
predictive model of hypoxemia in intensive care unit (ICU) patients. Centralized 

learning (CL) and local learning (LL) approaches have been limited by the localized 

nature of data, which restricts CL approaches to the available data due to data 
privacy regulations. A CL approach that combines data from different institutions, 

could offer superior performance compared to a single-institution approach. 

However, the use of this method raises ethical and regulatory concerns. In this 
context, FL presents a promising middle ground, enabling collaborative model 

training on geographically dispersed ICU data without compromising patient 

confidentiality. This study is the first to use all five public ICU databases combined. 
The findings demonstrate that FL achieved comparable or even slightly improved 

performance compared to local or centralized learning approaches. 
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1. Introduction 

In critical care settings, peripheral oxygen saturation (SpO2) is routinely monitored as a 

critical tool to assess a patient's oxygenation status. Low blood oxygen saturation, known 

as hypoxemia, is associated with higher mortality rates [1]. The prediction of hypoxemia 

has received recent attention in the field [2]. Machine learning (ML) approaches have 

been explored to predict hypoxemia or SpO2 in hospitalized patients. Studies have 

employed artificial neural networks [3] and deep learning models with time series 

analysis [4] to predict future SpO2 values or classify hypoxemia events. 

Federated learning (FL) offers a stronger privacy guarantee compared to centralized 

learning (CL) and the opportunity to create more generalizable models compared to local 

learning (LL). Unlike CL, which gathers data centrally, and LL, which trains models 

solely within institutions, FL enables collaborative learning while keeping data 

distributed [5]. While prior work has compared FL and CL for classification tasks [6] 

and explored FL for different domains, e.g. vital sign classification using MIMIC-IV [7], 

no research has investigated FL for SpO2 prediction across multiple datasets. This study 

addresses this gap by evaluating a FL-based approach for SpO2 prediction in the ICU. 
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The objective of this study is to investigate the effectiveness of various ML approaches 

– CL, FL, and LL – in predicting SpO2 solely from retrospective SpO2 data for critically 

ill patients in five intensive care databases comprising real-world data of more than 200 

hospitals. 

2. Methods 

In this retrospective study, we utilized five publicly available ICU databases, namely 

eICU-CRD [8], HiRID [9], MIMIC-IV [10], SICdb [11], and UMCdb [12] to evaluate 

SpO2 prediction for different ML approaches. All datasets included are IRB-exempt. In 

the LL setting, four LL models were trained and validated individually using data from 

four databases, i.e., eICU-CRD, HiRID, MIMIC-IV, and UMCdb. Similarly, a CL model 

was trained using the combined data from these four datasets. Finally, the initial four 

datasets were integrated into a federated learning framework for FL model development. 

The model's performance and generalizability were evaluated through two validation 

steps. Internal validation was conducted on four separate datasets and the centralized 

dataset, while external validation utilized the SICdb dataset. 

2.1. Data Preprocessing 

Accounting for inherent limitations in pulse oximeter design, SpO2 values were restricted 

to the clinically relevant range (70%-100%) [13]. Values below 70% were excluded due 

to unreliable accuracy, while those exceeding 100% were removed as outliers. SpO2 

values were scaled using the method described by [4]. Data was systematically sampled 

at five-minute intervals, with only the first value within each interval included. A 

minimum of three consecutive intervals with at least one valid SpO2 measurement were 

required for prediction. Only patients with at least 100 minutes of continuous monitoring 

(20 consecutive observations) were included. 

2.2. Machine Learning Model 

The model predicts the SpO2 value for the next five-minute interval. The prediction is 

based on the two most recent observations from each of the two preceding five-minute 

intervals in the patient's stay. A recurrent neural network (RNN) with Long Short-Term 

Memory (LSTM) [14] units was adopted for SpO2 prediction [4]. The architecture 

consisted of two LSTM layers (16 and 2 units) followed by a dense layer. Batch 

normalization and dropout (0.1) addressed training stability and overfitting, respectively. 

The Adam optimizer (learning rate = 0.001) with mean squared error (MSE) loss function 

was used. A learning rate scheduler (20% reduction per epoch) and early stopping 

(patience: 4 epochs) were implemented for optimization. The model architecture 

remained consistent across all experimental settings. 

2.3. Federated Learning 

In the context of FL, we utilized the Flower framework [15] within a Docker 

containerized environment. Each participating site (n=4) contributed data from a critical 

care database (eICU-CRD, MIMIC-IV, HiRID, UMCdb) encapsulated in a separate 
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container. Furthermore, the central server was deployed in a separate container. This 

setup facilitated strict data privacy throughout the FL process. Experiments are done with 

Flower 1.5, Python 3.10, and TensorFlow 2.14. The FL training involved five global 

rounds with FedProx aggregation [16]. Each round included five-fold cross-validation 

with up to 20 local epochs and early stopping (patience=4). The process yielded four 

client-specific models and one globally aggregated model. We utilized a five-fold cross-

validation for model training with 10% of the training data used for validation. Internal 

performance is reported as the mean and standard deviation (SD) across folds. For 

external validation, a bootstrapped (n=50) sample from the SICdb is used. Results for 

external validation mirror those for internal validation, using micro-averages across all 

predictions. 

3. Results 

A total of 98,238 ICU encounters were selected for this study from four databases 

originating in the United States, the Netherlands, and Switzerland. Specifically, 66,941 

encounters were selected from eICU-CRD, 64 from MIMIC-IV, 25,711 from HiRID, 

and 5,522 from UMCdb. For external testing, 7,481 patient ICU encounters from SICdb 

were included. 

 

Figure 1. This figure shows the performance metrics for the models trained in three different settings: CL, 

FL, and LL. The color coding of each bar corresponds to the respective training setting. The x-axis shows the 
training datasets. Validation was conducted on the same dataset used for training. The CL model was 

validated on each dataset independently. 

Figure 1 shows the results for three training settings: CL, LL, and FL. Across all 

four databases, the MSE was consistently the lowest in CL (�0.0005) and the highest in 

LL, with values ranging from 0.00046 (eICU-CRD) to 0.0075 (MIMIC-IV). In FL, the 

MSE values are slightly better than the LL results and range from 0.00042 (eICU-CRD) 

to 0.0064 (MIMIC-IV). The results in MIMIC-IV are worse than those in the other 

databases for LL and FL, but similar for CL. Similarly, the R2 results were best in the 

CL setting. Overall, values were greater than 0.97 for all experiments, except for FL and 

LL in MIMIC-IV. The latter only had an R2 of 0.822�0.0089 and 0.856�0.0047 for LL 

and FL, respectively.  

Figure 2 illustrates the results of the external validation on SICdb. The MSE was 

0.0007 for all models of the LL and the FL setting except for MIMIC-IV (0.0014 (LL) 

and 0.0011 (FL)). The R2 values were greater than 0.963�0.0011 (MIMIC-IV) across all 

settings, with FL being marginally better. 
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Figure 2. This figure shows the performance metrics for the models trained in three different settings: CL, 

FL, and LL. The color coding of each bar corresponds to the respective training setting. The x-axis shows the 

training datasets. Testing was performed on SICdb for all models. 

4. Discussion 

Employing three distinct ML approaches – CL, FL, and LL –, this study explores the 

application of ML models based on the SWIFT approach [4] that predicts the next SpO2 

value using only prior SpO2 values. FL allows geographically dispersed ICUs to 

collaboratively train a model without sharing raw patient data and thereby protecting 

patient data privacy. An analysis of such an algorithm with different approaches has not 

been done before for this domain. The results of this study show that FL slightly 

outperformed the LL. Across most datasets, FL achieved performance comparable to CL, 

the ideal scenario with unconstrained data access. However, in the LL setting, the 

performance did not exhibit substantial deviations. Our results are consistent with [17], 

who observed only minimal variation across settings for mortality prediction in a single 

database. The smallest dataset, MIMIC-IV, did benefit the most from the CL and FL 

settings. While MIMIC-IV achieved substantially worse results in the LL, the model 

performance improved when trained in the FL setting. Additionally, the results indicate 

an improved MSE in the CL (�0.0005) compared to the MSE in [4] (�0.0007). 

5. Conclusions 

The results suggest that especially hospitals managing relatively limited datasets may 

benefit substantially from FL while preserving patient data privacy. While this study 

analyzed a very simple ML task with only a single variable, future work could explore 

the application of more complex prediction tasks and models, potentially unlocking the 

full potential of FL. 
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