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Abstract

With the increasing capabilities of machine learning (ML) and other artificial intelligence (AI)
methods comes a growing interest from many fields of application to employ these methods to
increase automation of work tasks and improve the efficiency and effectiveness of operations.
However, the systems will only see effective use if they are trusted by those responsible for the
task itself. False predictions and flawed decisions can have detrimental effects, for example, on
human life in medical applications or financial interest in industry. Therefore, it is reasonable
for stakeholders of these systems to want to understand the reasoning of Al systems. Methods
that can make this insight available to stakeholders have increasingly be summarized under the
term explainable AT (XAI). While approaches exist towards making black-box models explain-
able, the use of inherently explainable models can be more straightforward and promising.

One family of algorithms producing inherently explainable models are Learning Classifier Sys-
tems (LCSs). Despite their name, they are a general rule-based ML (RBML) method and repre-
sentatives for all major ML tasks have been proposed. To classify LCSs based on their mode
of operation, this work introduces a new system that is more precise than the current state-
of-the-art and based on descriptive ML terminology. While most researchers in the past have
focused primarily on LCSs’ algorithmic aspects, this work adopts a distinct perspective by ap-
proaching them through the lens of optimization. It discusses LCSs with regards to typical
tasks involved in creating an ML model and what specific elements have to be optimized and
how this is typically done. Critically, the task of model selection is usually performed by some
metaheuristic component and involves the subtasks of how many rules to use and where to place
them.

This work also proposes a template to assess use case—specific explainability requirements
based on multiple stakeholders’ inputs and extensively demonstrates its usage in a real-world
manufacturing setting. There, stakeholders indeed request XAI models over black-box ap-
proaches and, according to their answers, LCSs should be a good fit. Additionally, the results
laid out what LCS models in that application should look like which is, however, not achievable
with the major state-of-the-art LCSs.

Therefore, a new LCS, called the Supervised Rule-based learning system (SupRB), is introduced
in this work that is simpler than previous LCSs with clearer optimization objectives and models
that can fulfil the stakeholders’ requirements. In extensive testing on real-world data, SupRB
demonstrates its capabilities of producing small yet accurate models that outperform those of
well-established methods. This work also investigates numerous possible extensions for each
component of SupRB with a special focus on its optimizers and presents the findings of the
multiple studies in a comprehensive manner based on descriptive statistics, visualizations of
results, and rigorous statistical testing. Then various paths for future research and application
of SupRB are laid out which can advance the field of XAI considerably.
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1 Introduction

With the increasing mainstream use of “AI’—which is often even touted to be “everywhere”
soon—that we saw in the last few years, a whole host of new and old questions regarding the
use of “intelligent” agents also made its way into the public eye. While most of these questions
have been discussed for decades within the dedicated research communities, they were of
secondary importance even in adjacent fields where often the successful application was so
challenging that considerations about alignment, safety, trust, collaboration, resource use, data
ownership, anonymity, copyright, etc. remained under the radar. However, the advances of the
last decade(s) brought about considerable improvements and led to the successful application
of artificial intelligence (AI)' techniques in a large number of new domains.

With this successful application in (applied) research came a large interest within various in-
dustries about the integration of such systems into their operation. However, this usually
comes with a large number of challenges:® First is the lack of usable training data, exacer-
bated through the unique and often quite complex software landscapes where even existing
databases were rarely sufficiently linked and a lot of data was never stored or even never dig-
itally available to begin with. Many companies have been working for a few years now to
improve at least that issue, although the success was often mixed and incomplete. Second, the
data was often not sufficiently cleaned and verified and thus often misses elements, is mis-
labelled, shows unrealistic readings, is subject to heavy noise, or records unintended values
(e.g. sensors were not installed at the correct location). Third, systems are often already very
well-optimized and have been fine-tuned by engineers over decades and thus contain large
imbalances between classes of data, e.g. predictive maintenance struggles with the lack of data
about machines breaking down as maintenance intervals are usually shorter than the expected
time until a breakdown to safe on costs. Fourth, unclear paths to value generation often lead

'For this thesis, I assume a rather broad definition of AL In my view, this term should not be limited to machine
learning models or even only to LLMs, but rather encompass the applications of other fields such as optimiza-
tion (and with it, for example, evolutionary computation), as well as other forms of complex decision making
systems. Usually, multiple different methods and models will together form an Al-based agent with which
humans will interact, either on the physical plane, e.g. autonomous driving and intelligent robots, or in virtual
space, e.g. the recently widespread and intensely discussed ChatGPT by OpenAl. However, I want to stress
that—at least in my view—the currently publicly available systems are not yet truly intelligent even if human-
competitiveness is regularly achieved (cf., for example, the yearly human-competitiveness challenge at GECCO
(https://gecco-2024.sigevo.org/Humies)).

?All of this insight is based on extensive discussion with experts and practitioners over the last few years: Many
in joint projects where we worked on this together, some based on less formal exchanges, and many also in the
scope of the KI-Produktionsnetzwerk Augsburg (https://www kiproduktionsnetzwerk.de).
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to missing investments that could fix the issues above. Fifth is that in many cases where per-
sonalized data is concerned it is not clear whether data can even be used for training due to
privacy laws.

But even after these (and many of the other unnamed issues on the path towards Al application)
have been fixed, there is a large issue within the application of modern black-box models (e.g.
deep learning): Stakeholders struggle to verify the correctness of these systems in general, as
well as of individual predictions. Yet, in most settings, stakeholders will be held responsible
for the successful fulfilment of their tasks. Thus, if a stakeholder were to rely on a model/agent
making a prediction and that prediction was wrong, they would be considered at fault. As some
decisions can have large monetary impact, e.g. misrouting an important shipment, or even
harm human lives, e.g. missing a cancer in a vital organ or removing an organ based on a wrong
diagnosis, stakeholders will usually be quite wary about an active usage of such systems. While
this concern has been discussed within the research community (and some limited industries,
such as insurance) for decades, these issues have only become relevant for the mainstream
with the recent successes of finally solving many tasks with average performances similar to
humans.

One possible solution to this problem is the use of explainable AI (XAI) (for an in-depth dis-
cussion of XAI, cf. also Chapter 3 and [e.g. Bar+20; Bac+22]). In general, the field of XAI tries
to develop methods that directly create transparent systems, transform black-box models into
such systems, or make them otherwise explainable. However, there seems to be no general-
purpose solution to XAI even if we only considered supervised learning [DK18]. Instead, the
correct approach to XAI should be made on a case-by-case basis, including the verification
if XAl is even needed or if the correct selection and presentation of metrics are sufficient to
satisfy concerned stakeholders.

Within XAI, one approach is to directly train models or build systems that are human verifiable
as they are transparent and interpretable. Easy to interpret models, such as Linear Regression
or Decision Trees (DTs), are often much more limited in their capabilities to solve the relevant
learning tasks and can also become too complex to interpret [Bar+20]. For example, a tree with
depth n would split the data up to n times based on one of the features within each path to the
leaf node, where each split introduces two new paths resulting in a tree with up to 2" leaves.
Arguably, even smaller depths reach sizes where the tree is only theoretically interpretable
but practically impossible to analyse. Imposing size restrictions further limits their ability to
approximate the training data well, however, it can also lead to less overfitting. Despite this,
the key advantages of directly training interpretable models are that they approximate the real
data rather than approximating what a black-box model envisions the data to be like and that
they allow much more in-depth inspections of the model.

Highly regarded among the interpretable models are rule-based machine learning (RBML) mod-
els [Bar+20]. All of these models utilize rules that are trained from data and can be read directly
by a human inspecting the model structure. The specific rule design and how the individual
rules are combined to form the model and make predictions varies between the individual
RBML branches and a large variety of training schemes has been proposed in the past. The
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most commonly applied RBML methods are tree-based models (based on DTs). However, some
of DT’s improvements towards better predictions come at a steep cost regarding their explain-
ability. XGBoost and Random Forests (RFs) are often used improvements based on the concepts
of boosting and bagging (cf. Section 2.2.3), respectively, but they are usually impossible to in-
terpret due to the large number of—often also complex—trees that make up these models.

Another group of RBML models with a long research history are Learning Classifier Systems
(LCSs) [Hei+23a].* An in-depth discussion of LCSs is found in Chapter 2. In short, they can be
seen as a generalization of DTs where the restriction of non-overlapping rule responsibilities
has been relaxed. Therefore, one point of the feature space can now be matched by more than
one rule. This allows for smoother function approximation but comes at the cost of more po-
tential variety in the rules. However, the individual rules remain human readable (cf. Table 5.4
for an example). This should make them a powerful option for XAL however, they are rarely
considered in more mainstream sources outside of the evolutionary computation community.
Possible reasons often discussed in the community include a simple lack of notoriety (most re-
searchers in the (X)Al communities are not aware of LCSs), a lack of efficient implementations,
training schemes that are perceived as overly complex, and too few dedicated researchers to
keep up with the advances in other subfields of AL Yet, it should be noted that the recent boom
in XAI did bring new interest to the field and effective placement of the expected successful
applications of LCSs for XAI should improve the notoriety of LCSs as well.

The use of LCSs has been proposed for a large variety of different applications from man-
ufacturing [Hei+23b] to medicine [Woo+24].* A notable LCSs application from the field of
intelligent systems are Organic Computing (OC) systems [MSU11; MT17]. OC systems (and
similar approaches from neighbouring fields) closely relate to what the public envisions Al
to be like,”> which is most often less a software system that operates on some obscured opti-
mization or prediction task but rather a cyber-physical system where an intelligent piece of
software interacts with humans, other systems, and the environment through sensors and ac-
tuators. Within OC systems, the usage of LCSs has been discussed and actualized for a long
time, with a special focus on their explainability to humans in safety-critical applications such
as traffic management [STH16]. To this day, they remain an important field for the usage of
LCSs in the real world [Kru+22].

1.1 Research Gaps and Contributions

Despite their quite obvious potential for widespread application within next generation Al sys-
tems that will likely be focused on assisting humans rather than fully taking over,® LCSs are
rarely considered as the decision maker inside these systems (with the notable exception of

*Other RBML methods are highlighted in Section 2.2.

“The LCSs surveys [UMO09; PSN20b; PHW21b; HPW22; Sid+24] all feature a variety of additional applications.

*Given the boom of ChatGPT and similar “Al applications” this view might have shifted recently.

At least this is the sentiment conveyed by both potential users as well as management that we regularly encounter
within industry.
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OC systems). Reasons such as a low notoriety and therefore a lack of highly optimized imple-
mentations and dedicated researchers in the field are often discussed within the community
but do not paint a full picture:

The field of LCSs is highly complex and relatively fractured. LCS researchers have worked
on all major types of learning tasks and proposed a large number of changes to the existing
systems [UM09; PSN20b; PHW21b; HPW22; Sid+24]. However, the major survey from Ur-
banowicz and Moore [UM09] was still the most up-to-date source aimed at researchers rather
than students [UB17]. The effects of the metaheuristic, usually an evolutionary algorithm (EA),
on the training process are mostly discussed (if at all) from an algorithmic perspective rather
than on a conceptual level, even though it is crucial for the training success. Therefore, the first
contribution of this thesis (CI) is an elaborate metaheuristic perspective on LCSs, including

« areintroduction of what LCSs are,

« what their models’ structure is after training (rather than focussing on the training
scheme which is most common when for example discussing “what is an LCS”),

« how this fits into the common machine learning (ML) terminology of model selection and
model fitting,

« which of these tasks can be and usually are solved by EAs,
+ how LCSs relate to techniques producing similar models,

« an updated classification scheme that replaces the old and imprecise system of “Pitts-
burgh-style”, “Michigan-style” and “Hybrid” which was based on original conception of
the idea rather than solid ML terminology,

« an in-depth view on the representations on which metaheuristics must operate,

« a summary of different operators and fitness functions useful to find good rules and
models, and

« an overview of systems that function quite similar to LCSs, building the same type of
model, but do not call themselves LCSs, for example because they use different optimiz-
ers than EAs.

Most of these discussions/perspectives are novel and should help as a useful source for read-
ers of all knowledge levels about LCSs. They are based on joint work original published as
[Hei+23a] and are featured in Chapter 2.

While it is quite clear that few rules make better explainable models than tens of thousands of
rules, the actual number of rules and what they should ideally look like has not been precisely
determined. Most past research regarding LCSs has focussed on minimizing the prediction
errors and was—quite commonly—not done on real-world data or use cases. While some use-
ful developments were made from this, oftentimes the models became increasingly complex,
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producing ever larger models.” This led me to doubt their practical applicability as an XAI sys-
tem in the real-world. The second contribution of this thesis (C2) is an easy-to-use catalogue of
questions for stakeholders of a prospective XAl system, e.g. as part of an intelligent agent assist-
ing humans in their work, that determines what form a model created by an LCSs should have.
It features seven questions from an abstract and general level to details around the structure
of the LCS model itself. For its successful application, all relevant stakeholders (not only the
direct users) of a system should answer these questions. This also has the benefit that they
feel included in the process of creating these XAl-based systems which can in itself already
increase the trust in them. The questionnaire itself is presented in Section 3.4. An extensive
presentation of its successful application within a real-world scenario is given in Section 3.5.
This includes not only the answers which confirm that explainability is indeed important and
an outright requirement for any system used in this scenario, but also a meta-discussion on
the consequences for designing an LCS that produces such models (cf. Section 3.5.6). This also
forms a crucial part of C2. We can expect that the answers will vary slightly in other domains
but it is plausible that the general trend, e.g. models should feature small numbers of rules,
will be similar. Regardless, the questionnaire should be used whenever a new domain (or even
only a different plant from the same company) is encountered.

From C1 and C2, I gained some critical insights into the existing LCSs, their optimization ap-
proach (training scheme), and their applicability for XAI tasks.® I found that:’

1. The fitness of rules within LCS models, which is critical for guiding the optimizer dur-
ing model selection (determining the number of rules to use and the allocation of the
input space, i.e. the “if-part” of each rule), is not independent of the fitness of other rules
in major LCSs. Most single-solution online learning (Michigan-style) systems, such as
XCS, use fitness sharing mechanisms within a respective “niche”, which could lead to
rules’ fitnesses being assessed wrongly and not representative of their true prediction
accuracy. Crucially, it also makes the fitness value harder to explain. Usually, stakehold-
ers will be interested in the performance of a specific rule but with a niche-based fitness
we cannot view that in isolation. Most multi-solution batch learning (Pittsburgh-style)
systems assign one fitness value to a whole set of rules. This leads to individual rules not
having any clearly defined fitness/accuracy/“quality”. Critically, this causes the search
process to be more random and less efficient. When a rule is removed from an individual,
it is purely removed by chance rather than based on whether it is expected to make a
valuable contribution. Also, very good rules can be altered negatively without the meta-

"For example, many articles featuring the XCS classifier system (XCS) [Wil95] utilize models using thousands to
tens of thousands of rules (macro-classifiers) to solve their proposed tasks.

®Please note that I focus primarily on supervised batch learning. While many of the insights/arguments will be
applicable for online, unsupervised, and reinforcement learning as well, they might have to be adjusted slightly.

*While I try to keep this list as self-contained as possible, I will have to argue based on some of the core concepts
of LCSs and methods employed in specific systems. If a reader is wholly unaware of LCSs, I recommend to start
by reading at least Section 2.1 and the beginning of Section 2.3, i.e. Section 2.3.1 (although the entire section
could be helpful), before continuing here.
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heuristic noticing.*® Especially in more complex learning tasks, this can lead to a loss in
optimization guidance and the addition of unnecessary rules to the current solution(s).

2. The training mechanisms are often quite complex, involving multiple steps with different
mechanisms influencing the same aspect of model selection, e.g. in XCS, rules are created
by covering and the EA which both determine the allocation of feature space to specific
rules and increase the number of rules in the model, which is then also potentially influ-
enced by the deletion mechanism. Then there are aspects such as subsumption, which
combines redundant rules, also influencing both aspects of model selection (as defined
in Section 2.1.3 and paraphrased above). I would argue that the training of many LCSs is
most often not guided by how to effectively apply optimization techniques but rather or-
ganically grown from an experimental algorithm design perspective. This makes these
systems difficult to troubleshoot and optimize and hinders explaining them to others,
and while most stakeholders will probably not want detailed explanations about the
training process itself (cf. Section 3.5.6), this stops interested (applied) researchers—or
even data scientists within industry that are searching for a usable ML approach—from
considering most major LCSs.

3. Existing LCSs lack mechanisms to keep models as small as expected from stakeholders
(often off by orders of magnitude). While subsumption and compaction of XCS and a
fitness penalty in multi-solution batch learners can reduce the number of rules, their
application is neither straightforward nor 100% effective.’* The training processes will
almost always generate models with inefficient or outright redundant rules on more
complex learning tasks.

4. We may only use rules as simple as possible, e.g. with hyperrectangular matching and
linear local models, within our LCS models, even though more complex options have
been shown in the past to achieve better results in terms of predictive power and gener-
alization (cf. Section 6.1.2 and Section 6.2 for a discussion of these options).

This leads to the third and main contribution of this thesis (C3): a new LCS algorithm that effi-
ciently learns a simple and small set of rules from data. Its crucial innovation is the separation
of rule discovery from the composition of models (solutions to the learning task) from these
rules, thereby disentangling the two model selection tasks from each other as the allocation of
feature space to rules becomes independent from selecting an appropriate model size (number
of rules). In this system, which we named the Supervised Rule-based Learning System (SupRB),
each rule has a fitness value independent from other rules and the fitness of the model as a
whole. This allows a much greater control over the different optimization tasks and operators
that target their aspects more clearly and concisely. As the name suggests, this system is meant
to be used for supervised learning.** Its rules are simple and human readable (as demonstrated

*Note that a single change might make fitness effects relatively obvious but due to the large number of parameters
in modern ML models, usually, several changes will be made at the same time before the new fitness is assessed.

"Note that compaction is always applied post-hoc and its effectiveness is therefore limited by the quality of the
current rule set.

*While we did only explore regression tasks within the publications that went into this thesis, I illustrate a path
towards adapting the system to classification as well. Theoretically, regression should be more complex to solve
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in Table 5.4) and its models are accurate yet small (cf. Section 5.2.2 for a benchmark-based com-
parison with other RBML approaches). A detailed description of SupRB is given in Section 4.1.
In addition to proposing the system itself, we also worked on a multitude of possible improve-
ments I present in Chapter 6. These should largely be seen as part of C3 which therefore also
covers a deep look into all of the major aspects of SupRB.

Overall, SupRB should enable the usage of LCSs for XAI in a way that was impossible with
previous systems.

1.2 How my Previous Publications Fit into this Thesis

After introducing the research gaps and the contributions this thesis makes to fill them, I want
to take this section to specifically highlight how my published articles fit into this. Of course,
I published a lot more (together with my colleagues and co-authors) than the works that were
directly relevant to this thesis, but I will limit the following to the relevant publications and
only cite my own work in it to make it easier to read.’® Each section within this thesis that was
at least partially published before will also signify this to the reader, yet this section should
serve as a general overview. A late-stage concept for this thesis was—together with a short
overview of the then available results—presented at the 2023 edition of the OC-DDC [Hei24].

While working on CI, which is a metaheuristic (and therefore optimization-driven) perspec-
tive on LCSs (cf. Section 1.1), a first step was to gain some clarity on what really sets different
metaheuristics apart. For this, we proposed a unified multi-level classification system that al-
lows to assess whether metaheuristics are really different from each other (and how different
they are) beyond the consideration of only different metaphors [SHH22]. While this also mo-
tivated a proposal towards large-scale studies on components [Ste+21a)], its primary impact
on this thesis is the understanding it offers towards how we should approach optimization—
and specifically research focused on optimization—within the field of LCSs. Additionally, our
surveys on LCS literature [PHW21b; HPW22; Sid+24] improved my theoretical understanding
and knowledge about the state-of-the-art and help convey these to other researchers. While
featuring them in detail in this thesis would take away from the focus of this work, their re-
sults still informed many decisions I made. Finally, the majority of Chapter 2 (and with it the
comprehensive presentation of CI) was originally published in [Hei+23a].

The explainability questionnaire and its answers from a first case study, which form C2 and
make up the largest part of Chapter 3, was published in two stages: First, we published the
original questions as part of the workshop on Lifelike Computing Systems [HNH21]. Then,
we published the questionnaire together with a real-world case study from the manufacturing
domain in the Journal of Artificial Life as an extension of the first paper [Hei+23b]. This case
study report contained the answers of a large and diverse set of stakeholders and demonstrates

than classification, which is why we focused on that in our extensive experimentation described in the latter
chapters of this thesis.
A full list of my current publications is found before the main body of this thesis right before the table of contents.
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the usefulness of these question. Additionally, we made some assumptions about model design
for LCSs from that.

The majority of this work—and therefore a large share of the relevant publications—falls un-
der C3, which fills the research gap I found based on CI and C2 and is presented in Section 1.1.
This begins with the proposal of a new style of LCSs, named SupRB, which we introduced
at GECCO [Hei+22c]."* We originally benchmarked this system against a modern version of
XCSF on a variety of learning tasks and I presented the results at BIOMA [Hei+22b]. An ex-
tension of this benchmark was made for the Journal of Applied Soft Computing, which also
included DTs and RFs [Hei+23d] and went into more detail (cf. Chapter 5). Based on our find-
ings and theoretical understanding of SupRB and the optimization of LCSs, we made a number
of extensions to the system. First, we investigated whether other metaheuristics perform bet-
ter than the originally proposed genetic algorithm (GA) for solution composition [Wur+22].
Then, we tested the use of novelty search—based evolution strategies for the rule discovery
component of SupRB, which I presented at ECTA, where it won best paper [Hei+22a]. We
were subsequently invited to submit an extension of this article to Springer Nature Computer
Science in which we included different archiving techniques for the novelty search approaches
and perform a comprehensive statistical analysis of the results [Hei+23c]. Ultimately and most
recently, we revisited solution composition by investigating the effects of self-adaptive GAs
which I presented at IEEE CEC [Hei+24].

1.3 Outline

After motivating my work (cf. Chapter 1), summarizing the existing research gaps and this
thesis’ contributions to fill these gaps (cf. Section 1.1), and presenting my relevant (co-authored)
publications and how they fit into the context of the thesis (cf. Section 1.2), this section gives
an outline of the remaining body of text, suggests what text is most essential and should be
read at minimum, and gives some general pointers on how this thesis should be read in my
view.

Chapter 2 provides a novel metaheuristic perspective on evolutionary RBML and LCSs specifi-
cally. Section 2.1 goes into detail on the concept of LCSs. A special focus is on the models they
produce and which optimization tasks this entails from an ML-theoretic perspective, which
is often overlooked in contemporary LCS research. Section 2.2 highlights the machine learn-
ing systems which produce models most similar to LCSs. In Section 2.3, I reintroduce our
new concept of classifying LCSs, which should replace the old system of dividing them into
Pittsburgh-style and Michigan-style which is based on which university first proposed a simi-
lar system but has no clear information about the model from an ML perspective. This section

**Originally, we tried to approach an abstracted and generalized version of parametrization of industrial machinery
(which is a central aspect of [HNH21; Hei+23b], C2, and Chapter 3) by using a traditional “Pittsburgh-style”
system. We presented that at GECCO two years earlier and called it SupRB-1 [HPH20]. However, we found
that the system could not be improved to the level we would need for practical application, which then spawned
the entirely novel approach of SupRB.
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also introduces how a metaheuristic working on model selection tasks in LCSs (which is where
they are usually employed) typically represents an individual, common operators, and fitness
functions. Finally, Section 2.4 presents some other ML systems that could be considered LCSs
but usually are not for various reasons.

Next, I provide insights into the concept of explainability (which was already motivated in
Chapter 1) and a thorough case study towards assessing specific requirements systems should
fulfil in applied use cases in Chapter 3. This chapter starts with Section 3.1, which takes a first
look at some of the existing explainability methods of RBML and some options to measure this
more abstract concept based on hard metrics. Section 3.2 introduces a typical manufacturing
setting for which I motivate why we need an XAI system rather than a black-box ML approach
to increase automation further and then argue why LCSs are especially suited for this in Sec-
tion 3.3. A key contribution of this work is a template to assess the requirements XAI models
need to fulfil to be useful in a given setting. This is presented as a seven question questionnaire
in Section 3.4 that should involve all relevant stakeholders. The questionnaire is then used in
a real-world case study at a plant of REHAU SE and I present the answers as well as what this
means for what we want LCS models to look like in Section 3.5.

Based on the insights of Chapter 2 and Chapter 3, I then present the new evolutionary RBML
system SupRB in Chapter 4. I start with a general description including visualizations and
pseudocode in Section 4.1, which provides a full yet compact description of all necessary details.
Then, I discuss the systems computational complexity including a critical discussion on why
O-notation might be misleading here in Section 4.2. Section 4.3 goes into detail how SupRB can
fulfil the explainability requirements laid out earlier in Section 3.5.6 and how explainable the
system generally is—including discussions on both training and inference or model inspection.
It also critically assesses the current limitations of the system in that regard, which concerns
most other LCSs and many RBML systems as well.

After these extensive yet rather theoretical deliberations on SupRB, Chapter 5 benchmarks
SupRB against its closest competing systems from the field of RBML that are still in widespread
use (XCSF, DT, and RF). I start by revisiting the explainability of RBML models, although with
a different focus than in the previous sections in Section 5.1. The experimental setup and our
results, which confirm the hypotheses (SupRB is more accurate than DT but less than RF and
equal to XCSF, but is more compact than XCSF and much more than RF while being competitive
to DT), are presented in Section 5.2 in extensive graphical and tabular form and supported by
sound Bayesian statistical testing. As the confirmation that SupRB is indeed a working system
that is also significantly different from other RBML approaches was a central element to justify
further testing and development of SupRB, I summarize the key points of this benchmark in
Section 5.3.

The largest chapter of this work, Chapter 6, presents our extensive experiments on improving
SupRB, where we extended the basic system from Chapter 4 with a variety of options for all
major components of the system and tested them in a variety of benchmarks. I keep the basic
experimental setup of Chapter 5 and use similar graphical and statistical tools to make the
comparisons easier to follow for the reader. Each rule is made up of two major parts and some
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performance metrics. The first part, the condition or matching function, determines which
subspace of the feature space the rule is responsible for. I present experiments based on the
internal representation—which literature discussed as important for the optimization process
in XCS—of the interval-based matching function and some discussion on the possibility and
trade-offs of more complex functions in Section 6.1. The second part of a rule, its local model, is
invoked on each matching rule to make a prediction on the data. I only used linear models for
regression in this thesis, but feature an in-depth discussion on more options and their negative
trade-offs with regards to explainability in Section 6.2. After determining all matching rules
and getting their individual predictions, these have to be combined to form a system prediction.
This is called mixing. In Section 6.3, I present a total of twelve different options for the mixing
model of SupRB based on two assumptions: the impact of a rule’s experience on its mixing
weight should be capped (cf. Section 4.1 for the mixing model itself) and a prediction based on
less rules is easier to read and analyse for humans (which was an insight of Section 3.5). After
determining the makeup of rules and how we can combine them to create models, the next
step is to create them, which is usually called rule discovery. I present six additional options
for this based on Evolution Strategies with novelty search components in Section 6.4. The last
major component of SupRB missing is the solution composition. This optimizer determines
good subsets from the pool of rules. I first present experiments to determine whether the
GA is a good metaheuristic for this or whether we should replace it with another mainstream
optimizer in Section 6.5. Then, I investigate the usage of self-adaptive GAs in Section 6.6.

In Chapter 7, I discuss the potential avenues for further research based on my work. I highlight
both practical approaches towards explainability and applied usage of SupRB, as well as further
foundational and benchmarking-related considerations. For this, I make suggestions for all
components of SupRB and how it could be embedded into an Al-based system or agent that
interacts with non-scientists.

Finally, I summarize my findings and conclusions from the previous chapters in Chapter 8. In
this, I critically assess the current state and capabilities of SupRB as well as its potential for
improvement, but also its current shortcomings. Additionally, deliberations on the results of
our case study as well as the questionnaire in general are included.

A Suggestion for Minimal Reading

Although I of course suggest to read the thesis cover to cover, I found it quite useful to have
some guidance on which elements might be most relevant to me when reading similar works:

To readers already familiar with LCSs and other RBML approaches, I suggest to at least read
Section 2.1.2 and Section 2.1.3, as well as Section 2.3.1 from Chapter 2, as these subsections
contain the most relevant concepts to follow the essence of the later chapters and our most
critical findings. Those that are new to the field will benefit most from this thesis if they include
Sections 2.1 to 2.3 into their reading.

Readers familiar with the concept of explainability and LCSs in industry applications can focus
their reading of Chapter 3 on Section 3.4 and Section 3.5.6. Although the introductory parts of
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Section 3.5, which introduce the setting, the participants, and the general approach, might be
interesting as well, the in-depth discussions of our findings are less relevant and most readers
will probably take away most relevant info by starting with Section 3.5.5 and cherry-picking
the relevant other parts of Section 3.5 that did not become sufficiently clear.

From Chapter 4, readers not familiar with SupRB should consider its description in Section 4.1,
as the remaining work will make extensive reference to that and build on the presented con-
cepts. Section 4.3 discusses explainability of SupRB specifically, so, to readers that want to
either apply SupRB or research or improve the explainability of the system, I suggest to also
read this section.

Readers that want to learn more about the explainability of RBML should consider Section 5.1,
but most readers can focus on the key results of our benchmarks Section 5.3.

As Chapter 6 goes into a lot of detail and presents very different aspects of SupRB and its
possible improvements, I recommend to read the parts that are individually most relevant,
although I find that all results are insightful and relevant in their own right. I assume that
traditional LCSs researchers will be most interested in Section 6.1 and Section 6.2, but readers
that are most concerned with explainability will most likely not be able to pick up any of the
options presented here and want to focus on the simplest possible rule design and can thus
skip these sections. Section 6.3 might have some interesting aspects for both groups but is
also rather technical and the real-world impact of such changes to the mixing model is not
yet verified. Researchers from an optimization background, however, will probably focus their
reading on Sections 6.4 to 6.6.

To all readers, I suggest Chapter 7 as it discusses the possible future paths within the field
and SupRB specifically and of course Chapter 8 which summarizes and discusses this entire
work.

How to Read this Thesis

As stated, I suggest reading this thesis front to back, but some adjustments could be made
based on the previous segment. In general, I try to signify my own personal work and opin-
ions by using I, whereas joint work (even if conceptualized and designed by myself) will usually
involve we as it occurred with the relevant support of my respective co-authors or research
assistants. I tried to keep the self-containedness of the chapters as high as possible and rein-
troduce relevant terminology in the individual chapters, although I will often have to assume
knowledge about general ML, evolutionary computation, and LCS concepts and terminology,
as well as the definitions of SupRB from Section 4.1. While the figures (especially related to the
extensive statistical testing) will feature an introduction on how to interpret them, I suggest to
consult the relevant surrounding text, especially from the sections where I used the respective
concepts first, and—if applicable—the cited papers for deeper insights and explanations.
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2 Evolutionary Rule-based Machine
Learning—A Metaheuristic Perspective

In this thesis, I present my investigations into a new approach at learning compact rule sets
with the help of metaheuristic-based machine learning (cf. Chapter 4). This was inspired by
the considerable gaps in existing research as briefly laid out in Section 1.1. Therefore, this
chapter will revisit previous work on that topic with a special focus on one of the first ap-
proaches in this direction [Hol76], Learning Classifier Systems (LCSs). Within this chapter, I
will close a gap regarding the theory and perception of LCSs, especially concerning their op-
timization process, which equates to the first major contribution of this thesis, C1, as defined
in Section 1.1. This chapter is based on joint work concerning the same topic published as a
book chapter [Hei+23a].

Given that many out-of-field researchers (even within the evolutionary computation com-
munity) often find the term LCS confusing, as LCSs have been used for all major learning
paradigms (supervised, unsupervised, and reinforcement learning) and a majority of research—
including this thesis—is not (limited to) classification, we recently proposed [PHH23] to switch
to the term Rule Set Learner (for the algorithm) or Rule Set Learning (for the concept), both
abbreviated to RSL. The term is based on the fact that Learning Classifier Systems (LCSs) build
sets of if-then rules to approximate models for any learning task. Within the LCSs community,
it has already been somewhat common that some researchers use the more general and more
descriptive term evolutionary rule-based machine learning (ERBML), but we think that RSL
is beneficial to contrast models constructed by LCSs (or RSLs) from those by other rule-based
systems, e.g. decision trees. Additionally, we would like to stress that—from our perspective—
evolutionary optimization is not required but actually any metaheuristic may be employed In
this thesis, I will use the terms LCS and RSL largely interchangeably but mostly focus on LCS
for historic reasons. The traditional term is still too relevant to replace it, however, slowly
phasing it out and using it primarily for legacy discussions and specific systems that still carry
it in its name, e.g. the XCS classifier system (XCS), seems like the best approach to me.

Originally, LCSs were approaches to utilize Genetic Algorithms (GAs) for interactive tasks [e. g.
Hol76; Wil95]. While, in the beginning, somewhat independently developed from reinforce-
ment learning (RL), the two fields merged later. In this chapter, an in-depth view at LCSs from
the metaheuristics side is provided. To our knowledge, this has not been done before [Hei+23a],
despite the employed metaheuristic playing a central role in these methods. Indeed, no notable
amount of research attention has so far been received by neither the metaheuristics used in
LCSs nor their operators. [Hei+23a] (and by extension this chapter) aims to raise awareness
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of this fact and, by organizing existing research, hopefully provides inspiration for new devel-
opments in both metaheuristics and LCSs, thus, building a foundation for future research(ers)
to more easily remedy this deficiency.

This chapter shortly introduces the field of LCSs, explaining the overall approach and dis-
cussing the learning and different optimization tasks that these systems are expected to solve
(Section 2.1). The relation of LCSs to other similar machine learning (ML) approaches is de-
scribed in Section 2.2 with a focus on highlighting similarities and differences and, thus, deepen
the reader’s understanding. This chapter’s main contribution, the role of metaheuristics in
LCSs, is elaborated on in Section 2.3 where the types of systems that different design choices
result in are discussed and, in the process, a new classification system (instead of the often
ambiguous but well-known Michigan/Pittsburgh one) is proposed. Furthermore, approaches
to solution representation, metaheuristic operators, and fitness functions are laid out. Finally,
recent ML approaches that employ metaheuristics and that were developed somewhat inde-
pendently of LCSs but that rather closely resemble what we would call an LCS are presented
(Section 2.4). Some of the techniques from these fields may be relevant for LCS as well.

2.1 What are Learning Classifier Systems?

While there is no official definition for what qualifies as an LCS, there appears to be a consen-
sus [cf., e.g., Dru08; UB17] that an LCS constitutes an ML algorithm responsible for construct-
ing an ensemble model composed of a collection of simpler local models. Each local model
is designed to address a specific partition of the problem space. Importantly, this division of
the problem space is not always rigid (resulting in disjoint sets), as local models may share
overlapping responsibilities. This overlap is facilitated by associating each local model with a
corresponding matching function, which, for any given input, determines whether that input
falls within the domain modelled by the local model. Although the inclusion of overlapping re-
sponsibilities introduces additional complexity, it is regarded as a desirable characteristic. For
instance, it can lead to smoother overall models compared to those based on completely dis-
joint partitions of the problem space. In regions where responsibilities overlap, the predictions
of local models that cover the input are typically mixed, usually through the use of weighted av-
erages. The combination of a matching function and a local model can be conceptualized as an
if-then rule (or simply a rule), which is the common term within the broader field of rule-based
machine learning (RBML). Due to historical reasons, the LCS literature commonly refers to a
rule, along with its associated mixing weight (and potentially other bookkeeping parameters),
as a classifier—hence, the name Learning Classifier Systems. In this chapter and the remainder
of this thesis, we endeavour to minimize the use of the somewhat overloaded term classifier,
preferring instead to employ the term rule, especially because the work presented within the
subsequent chapters focusses on regression tasks rather than classification. We use the term
rule to describe a tuple comprising a matching function, a local model, a mixing weight, and
additional bookkeeping parameters, such as the rule’s accuracy record. Similarly, consistent
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with existing LCS literature, we utilize the term condition to denote the genotypic representa-
tion of a matching function (i.e. a specific matching function corresponds to the phenotype of
a particular condition).

The majority of the LCSs that currently enjoy popularity within the field have been developed
in an ad-hoc manner [Dru08]. This means that these systems’ mechanisms were not deduced
from a set of central, formally specified assumptions concerning the learning task (e.g. the
available data). Instead, especially in the early stages of LCS development, and likely owing to
their role as proofs of concept for ideas related to artificial evolution and genetics, the methods
to be employed were chosen first. They were then combined in such a way as to handle specific
types of inputs [see, for example, Hol76]. Subsequent LCSs have built upon these early systems.
For instance, XCS [Wil95] represents a simplification (and improvement) of ZCS, which, in
turn, is a simplification of Holland’s original framework [Wil94].

2.1.1 Learning Tasks

LCSs are a family of ML methods. Currently, with the exception of preprocessing and postpro-
cessing steps, the fundamental components found within ML can be roughly categorized as
supervised learning (SL), unsupervised learning, and reinforcement learning (sometimes referred
to as sequential decision making) [Bis09]. Although there exist LCSs designed for unsupervised
learning [cf. e.g. TBP07], their prominence has diminished in recent years. The majority of con-
temporary LCS research is dedicated to supervised learning (SL) and RL applications [PSN20a;
PHW21a; HPW22].

The initial generations of LCSs were exclusively focused on RL tasks [Hol76; Wil95; Wil94],
even though the term “reinforcement learning” was not in use during these early stages (the
development of RL and early LCS frameworks occurred somewhat independently). However,
it has become evident over time that these LCSs, while achieving competitive performance
on SL tasks such as regression and classification (as discussed in the subsequent paragraph),
do not perform well on complex RL tasks [Bar02; Ste+20]. In retrospect, this limitation led
many researchers to analyse what LCS literature refers to as “single-step problems”, which
are essentially RL tasks with episode lengths of one. In many cases, these investigations ef-
fectively involve classification tasks, due to the finite set of reward levels. Additionally, many
tasks occur within the context of deterministic environments, resulting in noise-free classifica-
tion problems. Nevertheless, several existing LCSs, such as anticipatory classifier systems [e.g.
BS02; Orh+20], where rules also model the behaviour of the environment, are indeed capable
of solving more challenging RL tasks.

A larger portion of LCS research primarily revolves around SL, particularly classification and
regression tasks. As of the time of this writing, the most widely used (and without doubt most
extensively investigated) LCSs for these tasks are predominantly derived from XCS [PSN20a;
PHW21a; HPW22; UB17]. An exception worth noting is BioHEL [cf. e.g. BK06; FKB13]. XCS is
one of the systems originally designed for RL [Wil95], but has increasingly been applied exclu-
sively to classification tasks [PSN20a; PHW21a; HPW22] rather than RL, although, there is still
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research regarding XCS and RL, [e.g. ST22]. Despite this shift, XCS retains several RL-specific
mechanisms that are either not directly beneficial or even detrimental to classification tasks.
Consequently, the UCS derivative emerged [BG03; UM15], explicitly tailored for supervised
classification tasks.

In 2002, Wilson introduced XCSF [Wil02a], an XCS derivative designed for function approxima-
tion. XCSF has undergone continuous improvements, remaining competitive, at least in input
spaces with low dimensionality [e.g. SMH18; Ste19]. Additionally, there exist other less recog-
nized LCS-based regressors [e.g., Dru08]. It is worth noting that one application of regression
involves approximating action-value functions in RL problems [SB18], effectively returning to
the early goals of LCS research.

In conclusion, it can be seen that LCSs constitute a versatile framework suitable for a wide
range of learning problems.

2.1.2 LCS Models

Most models built by LCSs are of a form similar to [PHH23; Hei+23a]:

K
Frao(@) =" m(r;x) v fu(Ohs ) (2.1)
k

=1
where
« x is the input for which a prediction is to be made,

« K is the overall number of rules in the model, which, together with the set of matching
function parameters 11, forms the model structure M = (K, {1} K ),

« m(t¢y;x) is the output of the matching function of rule k defined by its parameters 1,
for an arbitrary input x; typically, m(t¢x; x) = 1 iff rule & is responsible for input z (i.e.
if its local model models that input), and my, ., (z) = 0 otherwise,

* 7k is the mixing weight of rule k; mixing weights usually fulfil Zle mg(z)y = 1 and
0 < 4% < 1 (this can easily be achieved using normalization, which is standard for
almost all LCSs),

. fk(ﬁk; x) is the output of the local model (sometimes also referred to as a submodel)—a
discriminative function fy(6x) : X — Y—of rule k (with parameters 6y) for input =,

« and 0 = {0, v} | forms the (whole) model’s parameters out of the local models’
individual parameters 6y and their corresponding mixing weights .

Note that although the sum goes over all rules, by multiplying with m(1)y; «) only the rules that
match the considered input = contribute to the result (for non-matching rules, the respective
summand is 0). Furthermore, instead of binary matching, that is, m(i; x) being a function
with image {0, 1}, matching by degree can be an option: m(x; =) then has image [0, 1] and may
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correspondingly take on any value between 0 and 1. However, since all of the more prominent
LCSs use binary matching, we assume the same for the remainder of this chapter—unless we
explicitly write otherwise.

We first presented this version of Equation (2.1) in [PHH23], basing it on [Hei+23a], which
served as the foundation of this chapter.

2.1.3 Overall Algorithmic Structure of an LCS

To construct such an ensemble model, an LCS undertakes two primary tasks, each of which
can be understood as having two subcomponents:

Model selection consists of
() determining the suitable number of rules, denoted as K, for the given task and

(IT) allocating each rule a segment of the input space, essentially choosing the param-
eters .1, for the matching function my, .x(+) for a rule k.

It is crucial to emphasize, once more, that in LCS, the input space isn’t divided into
distinct partitions. Instead, an input may be modelled by multiple local models. The
set of matching functions (combined with the parameter K) is also referred to as the
model’s model structure, M = (K, {;;}}_,) in Equation (2.1).

Model fitting selects the best-performing local models and combines them optimally, given
a fixed model structure. This usually involves

() fitting each local model fk(Gk, -) to the data its corresponding rule is—based on the
already set matching function—responsible for, involving adjustments of its pa-
rameters 0. It is often advantageous to perform this independently for each local
model, allowing for partial (rather than full) retraining when new training exam-
ples are introduced or the model structure is modified (typically, model selection
is done iteratively and alternatingly with model fitting) [Dru08].

(IV) fine-tuning or fitting the mixing weights ’ykszl (see the introduction to Section 2.1)
to handle overlapping responsibilities among rules optimally.

These four subtasks are briefly discussed below, with a focus on the potential (and frequent)
involvement of metaheuristics.

Determining the Number of Rules (K): The choice of the number of rules, represented
by K, serves as a primary indicator of the overall model’s complexity and, therefore, expres-
siveness. A higher number of rules increases expressiveness but comes at the cost of increased
training effort and reduced interpretability. Additionally, when rules become especially nu-
merous, overfitting occurs which causes worse generalization capabilities. To illustrate, as-
sume the extreme case of less data points within the training data than rules in the constructed
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model. Conversely, too few rules may hinder the model’s ability to sufficiently capture pat-
terns in the data effectively, resulting in underfitting. Hence, selecting an appropriate number
of rules (Subtask I) constitutes an optimization problem.

Allocating Matching Functions to Rules: Subtask Il hinges on the previously chosen num-
ber of rules. It involves assigning responsibility to individual local models for modelling spe-
cific portions of the problem space. Notably, this is the subtask for which all existing LCSs
employ metaheuristics. The quality of a solution in this subtask is highly dependent on the
chosen number of rules. Assuming a model with few rules, then, for the problem space to be
properly covered, we require at least one of those rules to be responsible for a larger part of the
space than if there were more rules in the model. Therefore, Subtask I and II are often solved
concurrently by using a single metaheuristic, or are solved by employing a combination of a
metaheuristic for Subtask II and a simple heuristic for Subtask I. For instance, this latter ap-
proach has been adopted in XCS [Wil95] and its primary derivatives, where the optimization
of the set of matching functions utilizes GAs [e.g. Wil95; BG03].

Fitting Individual Local Models to Data: The process of fitting each local model to the
subset of training data, determined by the respective rule’s matching function, (Subtask III) de-
pends highly on the type of local model involved. For instance, linear local models may employ
methods like least squares [Dru08]. Several well-known LCSs, particularly XCS derivatives, en-
gage in online learning, where training data is processed instance-by-instance, enabling pre-
dictions during the learning process. Consequently, local models must support this type of
learning. For example, in the original XCS, local models’ parameters are updated incremen-
tally using gradient-based approaches [Wil95]. Overall, fitting a local model also constitutes
an optimization problem (e.g. minimizing the expected risk on the data matched by the corre-
sponding rule) typically not addressed with metaheuristics.

Combining Local Model Predictions: Given fixed sets of matching functions and fitted lo-
cal models, the remaining question (Subtask IV) is how to combine local model predictions into
a single prediction (also called the mixing of predictions). As previously noted, an LCS’s local
models may overlap in their responsibilities, and for areas where that is the case, a sensible
combination of the predictions of several local models needs to be made. Several popular LCSs
adopt a straightforward approach, where each rule is assigned a quality metric (e.g. accuracy
on the training data matched by the rule), and a weighted average is computed proportional
to these metrics. This is how XCS handles mixing [e.g. Wil95]. Although some research has
explored this task [e.g., Dru08], much of LCS research has largely neglected it and has not
thoroughly investigated various methods [Dru08]. Generally, computing mixing weights for
fixed matching functions and local models is another optimization problem, minimizing the
expected risk for the whole model (rather than individual local models as in Subtask III), and
while there are cases where provably optimal solutions exist, their computation can be costly.
As such, inexpensive heuristics based on rule properties or metrics (like those used in XCS)
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may be more practical [Dru08]. To date, there haven’t been any approaches employing meta-
heuristics for Subtask IV.

This concludes the high-level discussion of the four subtasks. Section 2.3 delves deeper into
how Subtask I and II are approached using metaheuristics in existing LCSs, along with the
challenges faced in doing so.

2.1.4 LCSs in Metaheuristics Literature

After presenting LCSs within the context of ML, we will now provide a brief overview of their
presentation in existing literature on metaheuristics. Generally, it can be observed that, if
mentioned at all, LCSs are typically discussed from a rather limited perspective, predominantly
focusing on older systems. Additionally, recent work often excludes LCSs entirely. In the
following, we will summarize the key aspects we have identified—note how these findings
contrast with the more general description of these systems provided in this chapter.

LCSs are frequently categorized as a unique form of production system [Gol89; Wei09], meth-
ods for Genetics-based machine learning (GBML) [RBK12], evolutionary reinforcement learn-
ing (EvoRL) or Evolutionary Algorithms for reinforcement learning (EARL) [Wei09], or policy
optimization [Luk13]. It is commonly assumed that LCSs employ a GA and construct sets of
if-then rules. The fitness evaluation is typically based on individual rule statistics, such as
accuracy or strength [BFM97; RBK12]. While it remains uncertain whether Evolutionary Al-
gorithms (EAs) are the exclusive means for use in LCSs [Wei09; RBK12], the significance of the
solution representation and the applied metaheuristic operators is evident. Specifically, the op-
erators for generational replacement and mutation need to be tailored for use in LCSs [Gol89].
Nevertheless, GAs employed in LCSs are often likened to those applied in standard search and
optimization problems [Gol89].

2.2 ML Systems Similar to LCSs

LCS models, as detailed in the previous section, exhibit certain resemblances to other estab-
lished ML frameworks. We will now provide a brief informal comparison between LCSs and
these frameworks, aiming to delineate the unique approach of LCSs. This distinction becomes
particularly relevant given the somewhat flexible definition of what constitutes an LCS and
the existence of numerous variations. To accomplish this, we will draw distinctions between
LCSs and other techniques, including Decision Trees (DTs), Mixture of Experts (MoE) systems,
Genetic Programming (GP), as well as ensemble learning methods like bagging and boosting.

2.2.1 Decision Trees

Decision trees represent one of the most well-known rule-based systems frequently applied
to both regression and classification tasks. They can be generated automatically from data
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or manually crafted by domain experts. A typical DT partitions the input space into a set of
disjoint regions, achieved by successively splitting the input space along its axes in an axis-
parallel manner. The resulting hierarchical structure forms a tree, where each path from the
root to a leaf node defines a distinct region. For each such region, a local model is fitted, typi-
cally stored in the corresponding leaf node. For classification, DTs, for example, often utilize a
constant function corresponding to the majority class of the training data within that region.
Deciding where to split the input space, i.e. in which dimension, at what value, and at what
level of the tree, presents an optimization task with various solution approaches. Notable—
very often applied—traditional algorithms for constructing DTs include CART [Bre+84] and
C4.5 [Qui93]. In addition to these and related methods, metaheuristics have been explored
for tree construction over the years: For instance, Boryczka and Kozak [BK10] employ Ant
Colony Optimization (ACO) to construct trees similar to CART, Barros et al. [Bar+12] pro-
pose an EA-based hyperheuristic to create heuristics that subsequently build DTs, Podgorelec,
Sprogar, and Pohorec [PSP12] introduce a GA optimizing a population of DTs based on both
accuracy and size, and Custode and Iacca [CI23] propose to use evolutionary methods to train
interpretable DTs.

A direct correspondence exists between LCSs and DTs: Similar to a path from the DT root to
a leaf, a rule in an LCS specifies a region and a local model. The only conceptual distinction
lies in LCSs allowing regions to overlap, while classical DTs do not. Thus, it is possible to
transform a DT into an LCS model straightforwardly without information loss. Conversely,
the reverse transformation can be performed by expanding an LCS model with new regions
for each overlap, and then further splitting these regions to achieve a proper hierarchy among
them. Given that LCS models permit regions to be arbitrarily positioned, it can be anticipated
that arelatively large number of regions (and consequently, tree nodes) may need to be added to
obtain a proper DT from an LCS model. It is worth noting that fuzzy DT approaches [e.g., Jan98;
BBM20] produce predictive models that closely resemble, if not match, the above definition
of LCS models that employ matching by degree. However, the way these models are fitted
fundamentally differs.

2.2.2 Mixture of Experts

Mixture of Experts (MoE) is a research direction that evolved independently of LCSs [e.g.
Jac+91; JJ94; YWG12]. Nevertheless, these two approaches share significant similarities, with
distinctions primarily arising from the MoE framework, as they usually

1. take a probabilistic view, resulting in prediction distributions instead of point estimates
returned by LCSs models,

2. lack localized (using matching functions) submodels,
3. do not train submodels independently,

4. and do not feature constant mixing weights but weights depend on the input.
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This differentiation implies that an MoE is generally more expressive than an LCS *, primar-
ily because localization (matching) in LCSs essentially determines whether the local model’s
output is multiplied by 0 or a constant mixing weight, while MoE allows for more diverse mix-
ing possibilities. However, LCSs are inherently more interpretable since binary decisions, as
in LCSs, are more comprehensible than decisions involving seemingly arbitrary values. It’s
important to note that MoE-like models with mixing weights independent of the input are
often referred to as unconditional mixture models [Bis09]. Consequently, typical LCSs can
be viewed as intermediate models, falling between unconditional mixtures and MoE models
in terms of both interpretability and expressiveness. Furthermore, independent local model
training in LCSs can result in slightly worse model performance in regions where local mod-
els overlap [Dru08]. Thus, an MoE is expected to outperform an equivalent LCS. However,
independent local model training offers two significant advantages that may lead to improved
performance given the same computational resources: More efficient model structure search
(e.g. when changing a single matching function, only the corresponding rule needs to be re-
fitted) and, for some local model forms, the absence of local optima during local model fit-
ting [Dru08].

Presently, there are two MoE-inspired formulations of LCSs, one by Drugowitsch [Dru08] and
another by Edakunni et al. [Eda+09].

Drugowitsch [Dru08] developed an LCS for regression and classification by incorporating
matching into the standard MoE model. This results in a fully Bayesian probabilistic model fit-
ted using variational Bayesian inference, independent of the employed model structure search
methods (including the GAs and Markov Chain Monte Carlo (MCMC) methods explored by
Drugowitsch). Unlike typical MoEs, local models are trained independently, leading to the
aforementioned advantages and disadvantages. This model provides probability distributions
over all possible outputs for any input, which distinguishes it from other LCSs; to our knowl-
edge, no other LCS is currently able to do this.

Edakunni et al. [Eda+09] proposed a more specific approach, closely modelling UCS, an LCS
for classification, using an MoE. Their system offers a simpler training routine compared to
Drugowitsch’s, as it handles only binary inputs (similar to the original UCS) and models all
possible rules. However, training becomes infeasible in high-dimensional spaces. In a subse-
quent paper, Edakunni, Brown, and Kovacs [EBK11] extended their model with a GA for model
selection and introduced iterative learning, features not yet supported by Drugowitsch’s sys-
tem.

2.2.3 Bagging and Boosting

Two of the most prominent ensemble learning techniques are bagging [Bre96] and boost-
ing [FS96].

'At least as long as the LCS uses the typical binary matching functions. A matching-by-degree LCS can actually
be more expressive than a comparable MoE.
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Bagging [Bre96] involves the creation of multiple bootstrap datasets from the training data,
followed by training one (weak) learner on each of these datasets. For making predictions
on a specific input, the predictions from all available weak learners are either averaged (for
regression) or combined through majority voting (for classification). This technique is known
to reduce prediction errors, particularly when the weak learners exhibit instabilities, as is the
case with DTs, neural networks (NNs), and RBML [Die00].

While there may be a superficial resemblance between the set of weak learners in bagging and
the set of local models in LCSs, several significant differences exist. Other than in bagging, in
LCSs,

+ no bootstrapping is performed to assign data points to the local models; instead a good
partition of the data set is learned by performing model selection.

« the learned data partitions not only impact the training process but also play a role in
prediction.

« local model predictions are combined based on a quality measure rather than using a
simple unweighted average.

Boosting, exemplified by the well-known AdaBoost algorithm [FS96], trains a sequence of
weak learners (submodels) sequentially. After training each submodel, the error function used
in training is adjusted based on the performance of the previously trained submodels. To
make predictions, the submodels are combined through weighted averaging (for regression)
or weighted majority voting (for classification).

LCSs differ from boosting in the following ways:
+ LCSs have localized submodels, meaning they do not model all possible inputs?®.
« Submodels in LCSs are trained independently of each other.

« In LCSs, there is a direct optimization of the function that combines submodels. While
boosting repeatedly modifies the error function, which bears some resemblance to the
interaction of matching and mixing in LCSs, the matching and mixing processes in LCSs
are more explicitly optimized.

In summary, while bagging, boosting, and LCSs share some similarities in terms of combining
multiple submodels, each approach has unique characteristics and differences in terms of how
submodels are trained, localized, and aggregated to make predictions.

°If matching by degree is used (though not the case for any of the prominent LCSs), they are softly localized,
meaning that inputs are somewhat weighted, which aligns more with the concept of boosting.
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Figure 2.1: Direct transformation of an LCS model (cf. Equation (2.1)) to a GP tree. We summa-
rized the nested summation of the local model outputs as a single large sum. Input
nodes are circular. Another version of this figure first appeared in [Hei+23a].

2.2.4 Genetic Programming

Genetic programming (GP) [Koz93], as a well-known symbolic method applicable to various
ML tasks, involves evolving syntax trees that represent functions or programs. In comparison
to LCSs, GP approaches typically offer more degrees of freedom. While it’s possible to directly
transform an LCS model into a GP syntax tree (e.g. see Figure 2.1), the reverse transformation
is not as straightforward. This is because GP trees, in general, do not need to conform to the
typical structure of an LCS model. Unlike LCSs, GP does not involve the explicit generation of
local models.

There are several approaches that incorporate GP techniques into LCSs. For instance, Igbal,
Browne, and Zhang [IBZ14a] utilize compact GP trees, referred to as code fragments, as con-
ditions to enhance the exploration of model structure space in a more efficient manner by
reusing building blocks from prior training on subproblems.

2.3 The Role of Metaheuristics in LCS

This section delves deeper into the role of metaheuristics in the learning process of LCSs. Sec-
tion 2.1 has already established that metaheuristics are nearly always employed to tackle the
task of model selection. This task encompasses Subtask II, involving the selection of matching
functions, and Subtask I, focusing on determining an appropriate number of rules. Subtask I
is sometimes approached using simpler heuristic methods rather than proper metaheuristics,
whereas all LCSs use metaheuristics for Subtask II. In the following, we will first introduce var-
ious options for the general structure of the metaheuristic process and then proceed to analyse
the representations, operators, and fitness functions utilized in this context.
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2.3.1 Four Types of LCSs

In the early years of genetic-based/evolutionary ML, two distinct “schools” emerged, with
which many of the investigated systems have since been associated: the Michigan and Pitts-
burgh approaches [DeJ88]. The classical definitions of these two terms are as follows [e.g.
DeJ88; Fre02]:

Pittsburgh-style systems are methods using a population-based metaheuristic (e.g. a GA)
at the level of complete solutions to the learning tasks. These systems maintain a pop-
ulation of rule sets, diversifying and intensifying their conditions. The operators of the
metaheuristic work at the level of entire sets of conditions.

Michigan-style systems, on the other hand, consider a single solution (a single rule set)
as a population on whose conditions a metaheuristic operates. In these systems, the
operators of the employed metaheuristic operate on individual conditions.

However, this differentiation can be somewhat problematic. Firstly, there are many systems
that don’t neatly fit into one of these two classes, as evidenced by the “hybrid” systems listed
in [UMO09]. Secondly, the two terms primarily focus on population-based approaches. But
what about an approach that uses a metaheuristic like Simulated Annealing for model structure
search and gradient-based local optimization for model fitting? This metaheuristic doubtlessly
works at the level of complete solutions to the problem, and might, in turn, be seen as a
Pittsburgh-style system. On the other hand, only a single solution is considered at any given
time and individual rules within that solution are modified by the metaheuristic, making it also
resemble a Michigan-style system.

We suggest an alternative distinction for LCSs/RSL and similar systems based on two funda-
mental design decisions that significantly impact how a particular RBML algorithm operates:

Training data processing Online algorithms update their model after each data point where-
as batch algorithms process the entire available data at once [Bis09, p. 143].

Model structure search LCSs exhibit substantial differences based on whether they consider
a single model structure (and therefore a single solution to the learning task at hand) at
a time or more than one. We propose distinguishing between single-solution and multi-
solution LCSs.

These two dimensions give rise to four basic types of RBML algorithms: online single-solution,
online multi-solution, batch single-solution, and batch multi-solution systems. These proposed
terms also accommodate a continuum of approaches, such as mini-batch methods that fall
between batch and online techniques, thereby eliminating the need for a “hybrid” category
that encompasses everything not fitting into the existing categories. Moreover, these terms

have relevance beyond the LCSs/RSL community, enhancing clarity and accessibility in the
field.
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Table 2.1 provides a concise overview of several prominent LCSs and their alignment with
the two design decisions discussed. According to our definitions, systems previously classi-
fied as Michigan-style predominantly belong to the category of online single-solution systems,
while those labelled Pittsburgh-style typically fall into the batch multi-solution systems cate-
gory. XCS and its derivatives [Wil95; Wil02a; BG03] are online learners that employ a tra-
ditional Michigan-style metaheuristic, categorizing them as online single-solution methods.
BioHEL [BK06] conducts batch learning but exclusively considers a single set of rules, placing
it in the batch single-solution methods category. GAssist [Bac04; FKB13], a classic Pittsburgh-
style system, operates with multiple sets of rules and conducts batch learning, categorizing it
as a batch multi-solution method. It’s noteworthy that, to our knowledge, there are currently
no widely recognized online multi-solution LCSs.?

Table 2.1: Popular and well-known examples classified into the different types of LCS al-
gorithms using our proposed system. A version of this table first appeared in

[Hei+23a].

online batch
single-solution XCS(F) [Wil95; Wil02a], UCS [BG03] BioHEL [BK06]
multi-solution GAssist [Bac04]

Each of the identified types of RBML algorithms presents its unique set of advantages and dis-
advantages. Batch algorithms are often simpler and more straightforward to analyse formally
than online systems because model selection and model fitting are divided more easily [Dru08].
This is especially evident for existing population-based single-solution systems, such as XCS
with its EA operating on individual rules, which are often difficult to analyse formally as the
rules both compete for a place in the population but also cooperate to form a good global
model/solution to the learning task.

Batch multi-solution systems can entail a relatively high computational cost. This is because,
for each considered model structure, local models need to be fitted until convergence. This pro-
cess can be far more computationally intensive than online single-solution systems which only
have to fit the local models until convergence once and typically do so iteratively. Although,
it should be noted that online single-solution systems perform fitting steps alternatingly with
model selection steps, making the comparison slightly unfair as it is reasonable to assume
that significantly more fitting steps are required until convergence than if the model structure
were held fixed. An indicator for this might be found in the enormous amount of training exam-
ples provided regularly in different studies to many state-of-the-art Michigan-style LCSs [e.g.
Nak+17; Ste19; LBX20]. This leads us to assume that the comparison may actually not be
as unfavourable for batch multi-solution systems as initially expected but a thorough study
investigating this hypothesis has to our knowledge not yet been performed.

*An argument could be made for classifying a few reinforcement learning systems, such as PPL by Bishop, Gal-
lagher, and Browne [BGB22] which does feature multiple solutions at a time and is described as “Pittsburgh-
style”, as an online multi-solution LCS. However, this is not (yet) a widely recognized system within the com-
munity or without, which is why it is not included in Table 2.1.
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2.3.2 Metaheuristic Solution Representation

Metaheuristics optimize the set of matching functions and, at that, operate on the set of con-
ditions (useful representations of matching functions, cf. Section 2.1).

Early LCSs were designed mostly for binary input domains and these systems are still among
the most-used and researched ones [UM09]. Matching functions for these domains are typi-
cally represented by ternary strings, that is, binary strings extended by an additional symbol
#, the so-called wild card, that represents any of the other two options and thus enables gen-
eralization. An example for the representation of a matching function m : {0,1}°> — {0, 1}
is

(1,1,0,1,#). (2.2)

It assigns 1 to (matches) the inputs (1,1,0,1,0) and (1,1,0,1,1) and 0 to any other inputs,
[e.g. Wil95; UB17].

For real-valued or mixed integer problem domains, many different representations have been
proposed. Among the simplest that are commonly applied are hyperrectangular [Wil00] and
hyperellipsoid [BLW08] conditions. An example for a hyperrectangular condition for a match-
ing function m : R® — {0, 1} is the 3-dimensional interval [I, u) (with [,u € R?) which can
be seen as a tuple

(ll,U1,l2,U2,lg,U3). (23)

It matches all z = (21, 22, 23) € R3 that fulfil* | < z < u:

m(m):{l’ [<z<u (2.4)

0, otherwise

Aside from the mentioned ones, several more complex function families have been proposed,
e.g. neural networks [e.g. BH03] and GP-like code fragment graphs [IBZ14a] (also referred to
in Section 2.2.4).

In general, any representation is possible, including composites or combinations of other rep-
resentations, as long as appropriate operators can be defined, cf. [e.g. UB17]. It has to be kept
in mind, however, that more complex representations often lead to more complex operators
being required as well as that both the size and the topology of the search space is directly
influenced by the representation (e.g. there are functions [0, 1]°> — {0, 1} that cannot be rep-
resented by the above-introduced representation of ternary strings of length 5). Furthermore,
too simplified or restricted encodings of the feature space can result in parts of the matching
functions space being inaccessible. Variable length representations may alleviate some of these
problems but can render the operator design more difficult.

*This is equivalent to (I3 < z1 < u1) A (I2 < 2 < u2) A (Is < z3 < uz).
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2.3.3 Metaheuristic Operators

Metaheuristic operators need to not only be compatible with the chosen form of conditions
but also perform well in optimizing the corresponding sets of matching functions. This can
be a challenging task for ML practitioners without a strong metaheuristic background, in turn
causing the same operators to be used repeatedly, regardless of whether they may actually be
suboptimal.

An important aspect in LCSs is when the metaheuristic is invoked and whether it operates on
the entire set of conditions or on a subset. For instance, in XCS [Wil95], for each input provided
to the system, the GA applies its operators only to the conditions of a subset of rules; namely to
the ones that matched the input seen last and of those only to the ones that also proposed the
action taken. Due to the dependence on the input introduced by only considering matching
and used rules, the GA may operate on a different subset in the very next iteration.

The initial set of conditions is usually created at random, possibly slightly directed by requiring
the corresponding matching functions to match certain inputs (matching functions that do not
match any of the training data may not be that useful since their merit cannot be estimated
properly). [E.g. Wil95; UB17]

For the generation of new individuals from existing ones, existing LCSs use both recombination
as well as mutation operators [UM09; UB17]. Recombination operators in single-solution sys-
tems may exchange condition attributes (e.g. hyperrectangular boundaries) whereas, in multi-
solution systems, they probably should also include an option to recombine sets of conditions
in a meaningful way (e.g. exchanging entire conditions between sets of conditions).

Optimizing matching functions poses a difficult problem if the training data is sparse, or, more
generally, if there are sparsely sampled parts of the input space: On the one hand, changing a
condition only leads to a detectable difference in accuracy-based fitness if that change alters
the subset of the training data that is matched by the corresponding matching function. On the
other hand, these differences, if occurring, can be very large (e.g. if a rule now matches three
training examples while, before, it only had matched two). This means that, depending on the
training data and initialization, the operators may have a low locality if fitness computation
only takes into account accuracy statistics on the training data. As a result, areas between
training data points may not be covered by solution candidates because there is no fitness signal
when exploring having some rules match them. Choosing a combination of suitable operators
and a fitness measure that present a consistent answer to this issue is an open problem; the
common workaround is to simply rely on comparably large amounts of training data.

While multi-solution systems can explore different solution sizes rather naturally, single-so-
lution systems require explicit mechanisms to control and optimize condition/rule set size. A
popular option for population-based single-solutions (used, e.g., in XCS [Wil95]) is a simple
heuristic: There is a maximum number of rules (a hyperparameter) that, when violated by rule
generation mechanisms, gets enforced by deleting rules based on roulette wheel or tournament
selection. Aside from that, the numerosity mechanism is typically employed (also used, e.g.,
in XCS [Wil95]): If there is a well-performing rule r; that is responsible for more inputs than
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another rule r3 but the inputs matched by r5 are already covered by r1, then o may be replaced
by a copy of r; (typically, no real copies are used but instead a counter associated with each
rule in the set). The set of conditions thus contains one less unique condition.

In existing online single-solution systems, metaheuristic operators gradually change parts of
conditions of the rule set in a steady-state fashion. At that, the central challenges are main-
taining a healthy diversity and identifying the required niches—and keeping them in the rule
set [UB17]. Selection is usually based on either roulette wheel or tournament selection from
either the whole set of rules (especially in earlier LCSs [UM09]) or subsets (e.g. in XCS [Wil95]),
the latter promoting niching. Niching is also promoted when performing rule discovery for
examples that are not yet matched by any rule in the set. The mutation operator modifies a
single condition; how this occurs primarily depends on the specific representation but is typi-
cally stochastic, balancing generalization and specialization pressures. Commonly used opera-
tors include bitflip [Wil95] and Gaussian mutation [Dru08]. Recombination also works at the
condition level and is usually a single-point, two-point or uniform crossover with encoding-
dependent crossover points. The replacement of rules usually employs elitism operators. [E.g.
UB17]

Batch multi-solution systems are more similar to other well known optimization approach-
es [UB17]. Most existing systems of this category are generational rather than steady-state.
Unlike in existing online single-solution systems, parents are condition sets and not individual
conditions and are selected from a population of condition sets, typically using roulette wheel
or (primarily in later systems) tournament selection. The mutation operator mutates at two
levels: at the level of condition sets by adding and removing rules, as well as at the level
of individual conditions using a method appropriate for the rule representation, for example,
Gaussian mutations of all bounds when using an interval-based condition. The recombination
operator mostly exchanges rules between rule sets but can also be extended to additionally
exchange parts of individual conditions. [E.g. Bac04]

2.3.4 Typical Fitness Functions

As already noted in Section 2.1.3, the problem that an LCS’s metaheuristic tries to solve is model
structure selection, that is, choosing the size of the rule set (Subtask I) and proper matching
functions (Subtask II). The goal of this optimization task is to enable the model to be opti-
mal after it has been fitted. At that, optimality of the model, and with it, optimality of the
model selection, is typically defined slightly handwavy based on the fitness measure used for
model selection. That fitness measure commonly weighs a high accuracy of overall system
predictions against a low model structure complexity (i. e. number of rules) [e.g. Wil95; Bac04;
BGO07]. However, there are also lesser-known, but more principled approaches to what an LCS
is meant to learn that we cannot expand on here for the sake of brevity; for example, the one
by Drugowitsch [Dru08] based on Bayesian model selection.

The need for high accuracy and a low number of rules induces a multi-objective optimization
problem with conflicting goals (the highest accuracy can consistently be achieved with a very
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high number of rules, e.g., one rule per training example). However, the utilized fitness func-
tions are not always modelled explicitly multi-objectively but often use a (weighted) sum of
the objectives—or even focus on only one of them. The exact fitness computation within the
system strongly influences the metaheuristic to be used; therefore, we will shortly describe the
different options and their implications.

Online single-solution systems usually incorporate niching and thus require mechanisms for
fitness sharing. In earlier LCSs for RL, there was an explicit fitness sharing mechanism that split
the reward among all rules in the same, activated niche [e.g. Hol76; Wil94]. The more generally
applicable technique is implicit fitness sharing, which is based on computing the fitness relative
to the rules in the same niche and applying metaheuristic operators only within that niche [e.g.
Wil95]. The fitness functions are usually to be maximized and are often based on either rule
strength [e.g. Wil94] or rule accuracy [e.g. Wil95]. Strength-based fitness is often used in earlier
LCSs built for RL settings; it builds on the sum of RL rewards after applying the rule. Accuracy-
based fitness, on the other hand, is based on the frequency of the rule’s correct predictions; and,
due to its increased stability, much more common these days.

In batch multi-solution systems, purely accuracy-based fitness functions can result in bloat-
ing [Dru08], that is, a significant amount of additional rules being included in the rule set
that do not improve the solution. To resolve this issue, multi-objective fitness functions with
the second objective being the reduction of rule set size are used. They are often modelled as
weighted sums of the individual objectives and thus still treatable like a single-objective prob-
lem (scalarization). One example for this is the utilization of the minimum description length
(MDL) principle for the fitness function [BG07] in BioHEL [BK06] and GAssist [Bac04]. MDL
is also a common strategy in optimization for feature selection problems.

2.4 Metaheuristic-centric RBML Approaches Similar to LCSs

We next discuss the similarity of LCSs to other metaheuristics-focussed RBML systems, that
is, other systems utilizing GAs, ACO, other metaheuristics or hybrids, and Artificial Immune
Systems (AISs). These were developed independently of LCSs, but are often based on the same
ideas (e.g. [Hol76]) or on the work of [Fre02], which summarizes genetic approaches for data
mining. Furthermore, they are used to construct if-then rules, mostly applied to classification
tasks, and often divided into Michigan and Pittsburgh approaches [Fre02]. The main difference
between these metaheuristics-focussed RBML systems and LCSs is that most of them do not
utilize any additional bookkeeping parameters.

The list of learning systems in this section is not exhaustive, but aims at providing a broader
view with some short examples. It is important to note that we restrict ourselves to systems

« that are more or less close to the definition of an LCS given in Section 2.1 but whose
authors do not relate them to existing LCS research (or do not explicitly call them LCSs)
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« that somewhat lie at the very border of the field of LCS research and may thus not be
known well.

While LCSs are commonly associated with evolutionary (or more specifically genetic) algo-
rithms, any metaheuristic can be used [UB17; RBK12]. This makes the comparison of these
other metaheuristics-focussed RBML systems even more relevant, as algorithms from both
fields can profit from the respective other field’s research.

2.4.1 Approaches based on Evolutionary Algorithms

The degree of resemblance to LCSs is most obvious for approaches which also utilize EAs and
of which a non-exhaustive overview is given in this section. Most of these approaches, for
example the general description of GAs for data mining and rule discovery by [Fre02], have
been proposed with—if at all—only little differentiation or comparison to LCSs.

Approaches utilizing GAs for the discovery and optimization of classification rules are for
example described in [van+97; ALF99; AS12; MSC19; Mir+20]. These are mostly subsumed
under the definition of Michigan-style systems, though many of them are actually batch single-
solution systems. They differ from LCSs in terms of the operators used in the GA, the fitness
computation, or the use of additional strategies. For example, [Mir+20] extended their RBML
system to perform multi-label classification, while [ALF99] utilize a parallel GA in their ap-
proach. A classification rule mining system using a multi-objective GA (MOGA) is presented
by [Gup+17]. There are also approaches using evolutionary techniques such as co-evolution,
which is applied to sets of examples, the rules being induced at the end [JLZ06]. This presents
an inverse order of the process compared to the traditional LCS approach. Furthermore, other
EAs can be used for rule discovery, for example a quantum-inspired differential evolution al-
gorithm [SYZ10].

While there often is no direct relation provided between other evolutionary RBML systems
and LCSs, at least some summaries describe a few of the different approaches [e.g. Fre03] or
provide experimental comparisons [TF10]. An exception is the combination of DTs and a GA
by [SSC12], which includes two rule inducing phases (a decision tree produces rules, the GA
refines these rules) and which is simultaneously described as a Michigan-style LCS with three
phases.

2.4.2 Approaches based on the Ant System

Another branch of approaches for (classification) rule discovery is based on the ant system, or
Ant Colony Optimization (ACO), with the Ant-Miner as the most prominent representative.
Their similarity to LCSs is strongly dependent on the variant of LCS and on how much the
utilized metaheuristic is seen as a defining component. For example, the Ant-Miner [PLF02] is a
batch single-solution system with an overall concept similar to BloHEL [BK06]. Its pheromone
table is similar to the attribute tracking concept in ExSTraCS [UB17]. Furthermore, it uses
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the same rule representation strategies as LCSs in general, with the exception that continuous
variables are more often discretized in the Ant-Miner. Nevertheless, the ACO algorithm [DS04]
is quite dissimilar from GAs and the resulting RBML systems can exhibit further differences.

The Ant-Miner develops if-then rules whose condition consists of a concatenation of terms (i. e.
attribute, operator, and value). Rules are constructed by probabilistically adding terms to an
empty rule under utilization of a problem-dependent heuristic function and the ACO-typical
pheromone table. Afterwards, the rule is pruned and the pheromone table is updated and the
next rule is constructed. This process is repeated until the maximum population size (number
of ants) is reached or the same rule has been constructed more than once. Then, the best rule is
selected and the data points it matches and correctly classifies are removed from the training
set. The overall algorithm is repeated until enough cases in the training set are covered by the
aggregated rule set. [PLF02]

There are several extensions and variants for the Ant-Miner [BK09; AS17], for example, differ-
ent pheromone update functions or heuristic functions and adaptations to cope with contin-
uous data [LAMO03; OFJ08]. Furthermore, there also exists a regression rule miner based on
Ant-Miner [BO15] and a batch multi-solution Ant-Miner variant [OFJ13]. Also, other ACO-
based classifier systems have been developed simultaneously to Ant-Miner [e.g. SJK04].

2.4.3 Approaches based on other Metaheuristics or Hybrids

Next to GAs and ACO, there are many more metaheuristics and hybrid algorithms that can be
utilized in RBML, especially for classification rule mining [DJ19]. They share roughly the same
basic view on rules as well as a classification into Michigan- and Pittsburgh-style approaches,
although the term Michigan-style often subsumes both online and batch single-solution sys-
tems. Again, their similarity to LCSs depends strongly on the respective variants and the
underlying definitions but a direct integration into existing LCS research is often not provided.
While this section can not present these approaches exhaustively, it showcases further insights
on how metaheuristics can be applied to RBML.

Particle Swarm Optimizations (PSOs), for example, has been used for classification rule discov-
ery [SSNO03; SSN04] as well as for a regression rule miner [MM12]. Furthermore, the Artifi-
cial Chemical Reaction Optimization Algorithm (ACROA) was used to optimize classification
rules as well [Ala12]. While these approaches all use population-based metaheuristics, it is
not impossible (or infeasible) to use single-solution based optimizers, as was demonstrated
in [Moh+08] where Simulated Annealing (SA) determines fuzzy rules for classification. This
SA variant was also extensively compared to the LCSs GAssist and XCSTS.

Hybrid approaches, that is, algorithms combining two different metaheuristics to combine their
benefits, are common to classification rule discovery as well. They are, again, often presented as
Michigan-style systems; however, many of them perform batch single-solution learning. There
exist, for example, hybrids of PSO and ACO [HF05; HF08], SA and Tabu Search (TS) [CJM12],
and ACO and SA [SK11]. Some of these hybrids explicitly divide their rule discovery process
into two phases; this is the case, for example, for the HColonies algorithm, a combination of
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AntMiner+ and Artificial Bee Colony (ABC) optimization [AM14b]. Additionally, batch multi-
solution hybrids are possible, as presented by an Ant-Miner-SA combination [ND20].

Another type of hybrid systems for classification rule mining combines not only two meta-
heuristics, but utilizes them in what the authors call a Michigan-style phase and a subsequent
Pittsburgh-style phase. In our new classification system, these would simply fall into the batch
multi-solution category. For example, [Tan+03] use a combination of a GA and GP—the ex-
act choice is dependent on the types of attributes—in the Michigan phase to generate a pool of
rules and then perform a Pittsburgh-style optimization with a GA in the second phase to evolve
the best rule set from the pool. Similarly, [AM14a] use a hybrid of ACO and a GA. AntMiner+
is used in the first phase to construct several solution based on different subsets of the training
data, while the GA uses these models as an initial population for optimization. This approach
utilizes the smart crossover developed for Pittsburgh-style LCSs, which is an indication for at
least some overlap between the two research communities.

2.4.4 Artificial Immune Systems

Artificial immune systems (AISs) are another class of algorithms inspired by biological pro-
cesses and suitable for ML and optimization tasks. AlSs are differentiated by the general strate-
gies they employ, that is, clonal selection theory, immune network theory, negative selection
and danger theory. [RBK12; HT08; Tim+08]

First of all, the similarity of AIS algorithms and LCSs depends strongly on the strategy. Clonal
selection— and negative selection-based AISs are more similar to evolutionary RBML systems
than immune network or danger theory AISs. Furthermore, both AISs and LCSs entail many
variants, depending on the learning task and implementation choices. At that, for example,
solution encoding and operator choice further increases or decreases the similarity between
these approaches. Finally, note that AISs research often acknowledges the similarities and
differences to LCSs. [FPP86; Gar05]
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This chapter will focus on interpretability, comprehensibility, and explainability * of machine
learning (ML) models with a special focus on rule-based ML (RBML) systems, especially rule set
learners (RSLs) which are traditionally called Learning Classifier Systems (LCSs). Section 3.1
will provide more general insights into explainability (without copying the large bodies of
existing literature directly). I advise the reader to follow Barredo Arrieta et al. [Bar+20]’s
seminal paper for a very in-depth view on the topic. Section 3.1 will also discuss explainability
in RBML and specifically the aforementioned LCSs. The remaining Sections 3.2 to 3.5 will
present a general template to assess LCS model requirements with regards to explainability and
will exercise through that template in a real-world case study [Hei+23b; HNH21]. The resulting
questionnaire, the demonstration of its first successful application, and the consequences that
arise from that form the second major contribution of this thesis, C2 (cf. Section 1.1). The
implications on model design gained from that case study (detailed in Section 3.5.6) will then
serve as a foundation for design choices made in the algorithmic designs presented in the
following chapters.

3.1 Explainability for Rule-based Machine Learning

Explainability of ML models can—at least to some degree—be achieved [CPC19; Bar+20] by

« using transparent models, allowing interpretation of decisions and comprehension of the
model based on the model structure itself, or

« applying post-hoc methods, utilising visualisation, transformation of models into intrin-
sically transparent models and similar techniques on models that are not by themselves
transparent.

Which of these two ways is suitable for the application at hand, however, depends on the part
of the model and prediction process that should be explained and the required properties of
the explanations [CPC19]. Furthermore, it is often necessary to consider the trade-off between
performance and explainability, which is, however, also application-dependent [Her+22].

'To enable an easier access for the reader, these terms and further similar terms will, throughout the entirety of
this thesis, be summarized under the umbrella term of explainability, unless specifically needed otherwise, due
to their inconsistent use in literature and strong similarities in many definitions where the minute differences
are not of consequence for making specific statements at the abstraction level of this work. This seems especially
reasonable as the wider field converges on the term of explainable AI (XAI).
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Generally, linear or logistic regression, decision trees, K-nearest neighbours, rule-based learn-
ers, generalized additive models and Bayesian models are considered intrinsically transpar-
ent [Bar+20]. There are many more post-hoc methods, which differ, e.g., in their targets for
explanation, their applicability or the type of explanations [VL21; Zho+21; Kau+23]. In addi-
tion, the explainability in terms of quality of explanations of these approaches is specific for an
individual application and the target audience of the explanations. This means, explainability
usually has to be evaluated on a case-by-case basis, with the evaluation being application-
grounded, human-grounded or functionally-grounded [DK18]. For application- and human-
grounded evaluation, the specific use case and human feedback on the quality of explanations
is of special importance. This also relates to determining beforehand what a good explana-
tion has to entail by performing user studies [Hei+23b]. Functionally-grounded evaluation of
explanations usually uses some kind of metric, e.g. the information transfer rate [SB19].

As rule-based learning systems, Rule Set Learners (RSLs) / Learning Classifier Systems (LCSs)
generally fall into the domain of transparent models and are regarded as excellent for inter-
pretability due to their relation to human behaviour [Bar+20]. However, several factors can
limit the degree to which humans can easily comprehend the model and follow its decision
making process, therefore reducing the practical explainability of the models. For LCSs, the
number of rules and their specific formulation are the prime factors impeding their inherent
interpretability. The high impact of the number of rules in a model lead to techniques to alle-
viate this problem, for example the promotion of smaller individuals in batch multi-solution
(Pittsburgh-style) LCSs through adjustments of the fitness function [BG07] or subsumption
and compaction methods in online single-solution (Michigan-style) LCSs [LBX19; LBX21a;
TMU13]. On the individual rule level, explainability is primarily hindered by the form of
conditions and the local models making the prediction. Conditions of rules in complex fea-
ture spaces are harder to understand than those that operate directly on the data, e.g. higher
level features aggregating multiple sensor readings versus the readings themselves. Addition-
ally, conditions can be formulated using non-linear functions rather than readable decision
boundaries [e.g. BO02]. Local models of rules in the form of complex black-box models, such
as neural networks [e.g. LL06], are also harder to understand than linear or constant models,
even if these local black box models are usually much smaller than a model of the same class
that encompasses the complete problem space would need to be. An improved understanding
of singular rules can be pursued by promoting simplicity during training through a suitable fit-
ness function, and by applying post-hoc analyses typical for the respective models, e.g. feature
importance estimations in neural networks. There are also different visualization techniques
to attain or improve post-hoc explainability for LCS models: Feature Importance Maps and
variations thereof are used for better understanding interactions of rules when the knowledge
in the resulting model depends on the cooperative information of individual rules [LBX21b].
Visualization for distinguishing predictive from non-predictive attributes is done by utilizing
heat-maps [UGM12]. These can also show patterns resulting from attribute interaction.

For rule-based learners and decision trees, there are several approaches trying to determine if
one model is more interpretable than another. Lakkaraju, Bach, and Leskovec [LBL16] state
that decision sets are more interpretable than decision lists, which again are more interpretable
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than decision trees. Their comparison is based on different metrics, i.e. the size of the rule set,
the length of individual rules, the coverage of data points and the overlap of rules, and, addi-
tionally, the accuracy of a rule based on its correct or incorrect coverage of data points. Margot
and Luta [ML21] also provide metrics for evaluating the interpretability of rule-based models,
namely a predictivity score, a stability score and a simplicity score. Related to these approaches
is explainability for Random Forests, which are not considered transparent. Explainability is
usually provided post-hoc by simplification, for example by extracting rules with methods like
inTrees [Den18] or by constructing decision paths with, for example, CHIRPS [HGA20]. The
degree of explainability can then again be determined utilizing metrics such as the rule length,
coverage, precision, or time to respond [Myl+22]. Virgolin et al. [Vir+21] proposed to use a
user-informed explainability metric during a multi-objective evolutionary model selection pro-
cess, where the score of a model was determined based on a model trained concurrently to the
evolutionary search by using active learning.

3.2 An Example Application for Audience-appropriate
Explainability

As discussed in the previous section, explainability always has to keep the target audience
in mind if we expect it to actually provide value rather than being just a buzzword. One of
the critical aspects here is that explainability might not be achievable for every learning task
and associated target group combination and many of the potential target groups might not
even care to understand. However, there are many tasks where explainability can be critical
and where groups actually want (or need) to understand why certain predictions are made or
certain actions are undertaken. In this section, a scenario in which explainability is important
will be introduced, while the following sections will discuss why LCSs/RSLs are an appropriate
method to approach this scenario (cf. Section 3.3), will present a template on how to determine
which aspects of a model would need to be explained (or whether explainability is relevant
at all), with a special focus on models constructed by LCSs (cf. Section 3.4), and, finally, will
showecase the application of this template in a real-world industrial scenario in line with the
current section and a user study of relevant stakeholder groups (cf. Section 3.5). Importantly,
Section 3.5.6 will layout implications for what a model should look like to be appropriate for
the specific audiences and the use case. Based on these implications, the later chapters of this
thesis have made assumptions about algorithmic design of the largest contribution (C3) of this
work, the Supervised Rule-based Learning System (SupRB). The remainder of this chapter has
previously been published in [Hei+23b], which itself is a substantial extension of [HNH21].

Increasing automation of manufacturing creates a continuous interest in properties commonly
associated with lifelike® [Ste+21b] or organic computing systems [MSU11; MT17], such as self-
adaptation or self-optimisation, within the production industry [Per+16]. These properties are
often achieved using data driven and learning methods [Zha+17; Lug+19; Sch+20], as with
increasing digitalisation and internet of things (IoT) efforts, where more and more devices

*https://lifelikecs.organic-computing.de/
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are interconnected and partake in complex problem solutions, data can be collected in large
amounts. In modern factories, products are usually inspected by the machines’ operators or
specialized quality assurance personnel to assess their quality, cf. Figure 3.1a. For the sake of
simplicity, we subsume both roles under the term ‘operator’. Recent advances in automated
inspection often integrate computer vision-based approaches [Mar+17; Mar+23]. However,
these can be of limited use when quality is not assessable from the surface, e.g. structural or
chemical properties that involve laboratory testing. Thus, these systems currently can only
partially automate inspection while the conclusions with regards to machine reconfiguration
are still reached manually in many cases. This requires a large amount of operator knowledge
and experience to achieve optimal or even satisfactory results. In settings with heterogeneous
machines and few operators, the strain on operator experience is further increased and pro-
duction can be seriously threatened by a loss of qualified personnel, e.g. through retirement.

* inspected

-l by

B& 1

Data Products Data Products — Y
. TN
produces inspected produces TS

by labels SL agent

! l 4/aldvises

adjusts o ¢ adjusts
Machine settings perator Machine settings Operator

(a) Operator-in-the-loop in modern (b) Assisted production using an agent trained with su-

manufacturing [Hei+23b]. pervised learning (SL) during operation [Hei+23b].

Figure 3.1: A possible transition of modern operator-in-the-loop manufacturing to the usage
of a supervised learning—based agent.

To reduce reliance on specific knowledge of operators and improve the self-adapting and self-
optimizing systems, the operator can be assisted by decision support systems. These can easily
incorporate large amounts of information simultaneously and are less biased to well known
settings, especially compared with operators that only have limited understanding of or expe-
rience with the machines. Such decision support systems utilize learning from past experience
and ongoing human expert feedback. Combining human operators and supervised learning
(SL) agents that collaboratively adjust machines (or lines thereof) that manufacture products
expands the socio-technical system with a collaborative decision making dimension, cf. Fig-
ure 3.1b.

Typical shopfloor environments will feature many workers operating on many machines, but
not necessarily in a one to one array, e.g. multiple workers might be needed to operate a single
machine while multiple other machines can be operated by a single worker due to automation.
Additionally, to utilize the available data most efficiently, not every machine should need its
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own model, but models should generalise over multiple machines of the same or similar type.
For production lines where multiple models would participate, the parametrization choices
of preceding machines would need to be accounted for by subsequent models, e.g. through
the help of models of higher abstraction. In this environment, each individual model takes
input from and advises multiple operators, while each individual operator might interact with
different models throughout a shift.

An integral element for implementing these systems is that operators are able to trust deci-
sions made by their recommendation agents. This requires the system to be self-explaining in
both adequate form and abstraction level. However, when form and abstraction level can be
considered adequate is highly use case—specific and may also be user-specific (cf. question 2 of
Section 3.4) [Her+22; BP21]. It involves an explanation regarding the basis of the recommen-
dation, e.g. what input parameters led to this output, as well as an assessment of the quality
of the decision, e.g. what is the expected error in quality when executing the recommended
parametrization. In this chapter, we posit that Learning Classifier Systems are well-suited to
be used within the proposed SL agent by reviewing different explainability techniques in light
of this setting (cf. Section 3.3). We then introduce a template of research questions that need
to be addressed to successfully apply LCSs (or other rule-based systems) in this context within
Section 3.4. In Section 3.5, we demonstrate the successful usage of those questions in a case
study where we utilize them in a sequence of interviews with stakeholders from a producing
company, the REHAU SE.

3.3 LCSs in Industrial Decision Support Systems

Many different LCSs have been proposed over the years and while originally envisioned as a
powerful reinforcement learner, they have been extended for all learning paradigms [UM09].
In our view, their structure of overlapping rules especially motivates their application within a
decision support system as this structure strikes a good balances between models’ explainabil-
ity and their performance which is not offered by any other common learning paradigm (cf.
Sections 2.1.2 and 4.3). However, we acknowledge that as there is a plethora of possibilities to
train such a model, choosing the ‘right’ LCS for an actual implementation needs to be done use
case—specific, as some LCSs will yield better performing models than others and their trans-
parency varies (for more details on transparency of models and related concepts cf. [Bar+20;
Bac+22]).

For the following, we consider the application as a decision support system that proposes set-
tings to an operator and informs them of the reasoning behind this choice to be an SL task.
This can be solved with either online or offline learning as long as the model used to make rec-
ommendations provides a compacted version of itself for inference and subsequently serving
explanations. The LCS learns from experiences including sensor readings, product informa-
tion, used machine settings and resulting quality measures, all of which will be a mixture of
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real and categorical values. When tasked with assisting an operator, the SL agent uses sen-
sor readings and product information to propose machine settings and predict the expected
quality.

Besides the previously introduced explainability techniques, LCSs also easily allow us to pro-
vide operators with all examples from our training data that formed the local model (as we
know which examples were matched by the rule’s condition). This can help further the trust
that the model’s predictions are actually based on existing expertise. Going beyond traditional
explaining by example [Bar+20], each example that influenced an individual rule’s weights
could hypothetically be listed, whereas in black-box models usually the entire sample influ-
ences every weight.

In online single-solution (Michigan-style) LCSs, each individual rule gets ascribed a quality
measure (or multiple thereof in XCS(F)). This (or in case of multiple measures, at least one of
them) represents the rule’s fitness and is used to guide an evolutionary process. Moreover,
we can utilize these measures to provide our operator with additional information on how
exact and therefore useful a recommendation is. Rules with a low prediction quality and thus
a high expected error might provide poor machine settings, while other rules in the model
might actually provide very useful settings. This disparity in different parts of the feature
space can also allow insights into where new sampling should take place [SMH17] and allows
to differentiate the model further. Even if—viewed globally—the model is less than optimal, it
can still be used within the SL agent and aid operators on problem instances where it is well

fitted.

3.4 A Template to Assess Explainability Requirements and LCS
Model Design

Following this examination of the applicability of LCSs as decision support systems for the
parametrization of industrial machinery in a complex socio-technical environment, we want
to raise several questions that—in our view—need to be answered on a case-by-case basis. We
assume that some parallels will exist between applications, it seems, however, unlikely that
general answers will hold for all or even the majority of cases. Note that we broaden the scope
from our operators that interact directly or indirectly with the machine to all stakeholders
that have a vested interest in the operation of the shopfloor, both digital and analogue. Thus,
this could also include regulatory bodies, safety officers, engineering, management, customers,
data scientists and others.

We hypothesize that the seven following questions allow those responsible for model devel-
opment and deployment to gain valuable insights into what is actually requested by those
affected by such a model. Ideally, the answers are so detailed that exact requirements could
be made on the design of an LCS model which in turn allows the design of suitable training
algorithms. But even if the answers are not detailed or specific enough to make those decisions
directly, they might serve to decide which algorithms or model designs might be suitable or
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whether LCS are even the right choice. In cases where explainability is not deemed important,
practitioners can default back to deep learning. In other cases, decision trees or simple linear
models might be more appropriate. The questions should also serve to determine whether
these different models are more fitting for the use case and can also give insights into their
design requirements. Furthermore, we assume that those questions allow stakeholders to en-
gage on what they have to expect from such a model and may later on be used to justify and
explain certain limitations and trade-offs that have to be made without going into too much
algorithmic detail. We intend for the questions to serve as a template for other practitioners in
designing their own studies, if needed by adding further questions or detailing and adjusting
some of the existing ones. However, based on our experience (among others those detailed in
Section 3.5), we assume they are fitting for many situations.

Q1: To what extent does a stakeholder request explanations? This can have numerous
dimensions, such as depth, frequency or diversity of explanations. Someone that operates the
machine directly might prefer examples of past experiences while quality assurance personnel
might prefer visualizations or vice versa. In this question we assume that stakeholders may
seek explanations that go beyond regulatory requirements, although a potential answer may
be that they are not interested in further/deeper explanations. This raises another aspect: How
important is explainability deemed if prediction quality potentially suffers?

Q2: What are the differences within a type of stakeholder? Tying directly into the pre-
vious question, we assume that the diverse stakeholders of a given type will answer questions
regarding explainability differently. Individual stakeholders may also hold different under-
standings of the machine itself, so explanations would need to accommodate specific levels of
prior knowledge. Furthermore, diversity between individual operators might be substantial
and warrant personalization approaches.

Q3: How many rules may the served model contain before being considered too
large? Smaller rule sets are easier to generate a general understanding on, while larger rule
sets can provide a more diverse coverage of the input space and, therefore, potentially more
accurate predictions. In some cases, like explanations for specific decisions, the entirety of the
rule set might not even be of interest and stakeholders may prefer explanations to be limited
to the rules whose conditions matched the situation.

Q4: What form can conditions take before they are too complex to be understood?
Many rule representations have been proposed in the past and while ellipsoids or neural net-
works can provide improved results, hyperrectangles (simple interval for each input dimen-
sion) might be easier to comprehend. Typical decision trees and random forests use hyper-
rectangular conditions with non overlapping feature space partitions. Beyond those options,
there exists the LCS-specific concept of Code Fragments, a program tree—inspired way of cap-
turing non-linear decision boundaries [IBZ14b]. They are fairly human-readable, albeit less
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than hyperrectangles, in comparison to neural networks. This should also probe whether the
exact condition is even considered relevant or if operators are content with knowing that it
applies to a certain instance. However, counterfactual-based explanations might be a worth-
while effort enabled by clear decision boundaries that can be understood by humans, i.e. if the
situation was slightly different another rule might apply, changing the model’s prediction.

Q5: How important are explanations of why the decision boundary of a rule is placed
a certain way? In LCSs, the model structure (and decision boundary of each rule) is opti-
mized using a metaheuristic to localize the rules in a way that they fit the data well. Within this
question, we want to ascertain how important insights into this process are to operators.

Q6: What form can local models take before they are too complex to be understood?
While linear models are widely regarded as easily comprehensible, more complex models might
yield better results and typical explanations, such as feature importance analysis, may satisfy
the stakeholders’ want for understanding the decision making process. This also translates to
the usage of mixing models (where multiple rules are used to construct a prediction) and the
comprehension thereof.

Q7: What information do stakeholders request about the training process? This
question aims towards the training in general and what steps are performed in the process
towards deriving a model rather than at an analysis of the utilized model. An important as-
pect of this can be the gathering, cleaning and selection of data and responsibilities therein.

Regarding the specific model (and algorithmic) design decisions practitioners can base on the
outcome of those questions, we want to highlight Section 3.5.6. In general, questions Q1 and
Q2 serve mostly to determine the trade-offs of explainability and performance and the dif-
ferences between stakeholders and individuals. They might tell us that we should train and
deploy individual models for optimal acceptance and stakeholder satisfaction. They might also
highlight the need for different visualization and analysis tools for the models or the form in
which explanations should be given, regardless of model design. Q3-Q6 are more specific for
rule-based systems such as LCS and decision trees. These also give the most insights into what
the deployed model should look like. Q3 gives the relevance of rule set size in the optimiza-
tion process (for batch multi-solution (Pittsburgh-style) systems directly during training, for
online single-solution (Michigan-style) systems in post-training compaction). Q4 answers di-
rectly what condition scheme rules should use, whereas Q6 answers the same for the rules’
predictive model. Both decisions are usually made before training is started. Q5 determines
whether the training algorithm itself should be explainable (or to what degree this is needed).
There are some approaches into making the stochastic optimization of evolutionary algorithms
explainable [Bac+22], albeit not specifically focussed on LCS training. Q7 is again more gen-
eral and not focussed on LCS model design but rather on the conditions surrounding training,
e.g. who (individuals, departments) was involved or what data was used (and, importantly,
what data was not).
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3.5 Case Study: Assisting Operators in a Chemical Industry
Plant

To demonstrate a potential use of our proposed template of questions to determine the require-
ments for a self-explaining socio-technical system that supports operators in their day-to-day
tasks while also satisfying other stakeholders needs, we performed an interview-based case
study. In this case study we interviewed a variety of different stakeholders about their indi-
vidual as well as their colleagues’ and subordinates’ needs for such a system before its final
design and implementation. Note that this study serves as an example into how to apply our
proposed questions and its answers will likely be very use case—specific and might not be trans-
ferable to other use cases. This issue of non generalizing answers is very typical for similar
studies regarding explainability needs [BP21; Her+22]. Therefore, we have to work with small
sample sizes (as few individuals in a specific stakeholder role exist) and can not apply many of
the quantitative analysis tools that might be available for large scale studies. The envisioned
operator assistance system (OAS) is to be employed in an international chemical industry com-
pany, the REHAU SE *. REHAU plans on piloting it in a German plant of their interior solutions
branch, which is the main focus of our case study, where so called edge bands are produced.
However, we also interviewed a stakeholder from a plant of their window solutions branch
to broaden the scope, potentially find differences even between branches of a single company
and, hopefully, find some answers that can be applied to other branches in the future as well.

3.5.1 Operator Assistance System

The primary motivation behind the operator assistance system (OAS) is to disencumber op-
erators and reduce their overall workload, which currently is substantial. This is to be done
through increased automation of, currently manual, routine adjustments and by providing
operators with more insights into disturbances and with potential solutions. Overall, this in-
creases the robustness of the production and reduces material and energy waste.

In the line control an OAS-like system assists operators at manual configuration of individual
machines in the line or overarching parameters and partially automates it. Its components
are largely well understood from a chemical engineering point of view. While arguably some
level of explanations to operators could always be beneficial, these algorithms do not employ
any form of ML component and therefore fall out of scope for our study, where the focus
is an SL agent operating as one of the, potentially many, systems forming the overall OAS.
Another component currently in production is a tool that aggregates existing knowledge in an
easy to navigate tree-like structure. When encountering some issue, e.g. a quality defect, the
operator navigates via web interface from broad areas to specific defects/disturbances where
individual stages are described both textually and visually. Once the issue is narrowed down,
the operator is presented with common solutions to the problem and an estimate on how
successful these have been in the past. After the issue is resolved, the operator is asked to give

*https://www.rehau.com
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feedback whether the provided suggestion was helpful and correct, promoting this suggestion
for the next operator that encounters this issue. These paths through the tree-like structure can
be reformulated as rules. Those rules can potentially in turn be used inside an LCS, either as
an initial population before training or by manual insertion into the trained model, where they
serve to cover areas of the problem space where training examples were too scarce to create
sufficiently accurate rules. Additionally, these rules can be used for potential explanations of
evolved rules, as they should—due to their crowd-sourced nature—be deemed more reliable by
operators than some rather high-level and maybe opaque ML process. For simplicities sake, we
refer to the envisioned SL-based agent as part of the OAS as the agent in the remainder of this
text and primarily consider its specific requirements without limiting other components.

Depending on its maturity, predictive power and stakeholder trust, the agent can be employed
at different levels:

1. Predict the quality of a machine parametrization selected by the operator,

2. actively make suggestions for possible parametrizations and their predicted product
quality to the operator,

3. set a single parametrization and prompt the operator to confirm and

4. regulate the process parameters fully automatically, e.g. when product quality or process
stability indicators drop, with the operator only acting as a supervisor.

These levels also change the operator’s role in our socio-technical system of machine, agent
and operator in that the higher levels lessen the mental load of trying to come up with possible
solutions and transform the operator to an executor of physical adjustments and tasks while
keeping them in a position of supervisory responsibility. Likely, different settings in which the
agent is to be used will allow higher levels of operation earlier. In less crucial (i.e. not sensitive
or prone to significant damage) parts of a production line, the agent will be able to choose
from a wider range of still sufficient parametrizations while facing less scrutiny by different
stakeholders. The same holds for areas with different data availability and quality. Ultimately,
any SL prediction is dependent on diverse and correct data for training. Machines of a line that
have long been digitized and fitted with well calibrated sensors will more likely offer such data
than machines that have until recently been controlled by analogue means. For these newly
digitized machines, it might even be unknown what sensors are missing to make meaningful
predictions and they might not yet have been online long enough to gather sufficient data
or even to allow the determination of what noise is to be expected during operation, e.g. the
impact of seasonal changes.

Regardless of the specific scenarios, it is clear that to get such an agent into production, relevant
stakeholders have to be on board from the early stages of its design process. This was also
reflected by those stakeholders in early talks about potential use cases. In these talks they first
raised the, albeit expected, issue of transparency of such an agent and its decisions as central
towards generating enough trust to employ it.
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3.5.2 Extrusion: An Example Application of the OAS and its Agent

In the production of plastics, a typical first part of a production line is the melting of syn-
thetic granulates (or powders) and subsequent form-giving extrusion of the heated semi-fluid
mass. The correct pressure—and for many products also the temperature—is crucial to ensure
sufficient dimensional accuracy and therefore product quality. The exact values are primarily
dependent on size, shape and material type, but from a process engineering point of view it
is very much possible to find a range of values that can be considered sufficiently optimal to
guarantee the desired product quality. Operators will control for this measurable parameter
rather than shape and size itself, as process engineering guarantees desired dimensionality
whenever the correct pressure was applied. This also has one key advantage for prediction:
The resulting learning task is a regression for which sensor readings are comparatively easy to
obtain, whereas the control of a multidimensional shape and size vector for which complicated
and highly accurate laser scans would be needed is much less straightforward.

In REHAU’s interior solutions branch, specifically edge band production, extrusion pressure is
regulated by eight adjustable parameters. Additionally, a multitude of additional sensor read-
ings, primarily temperatures in different sections of the extruder, are available. The adjustable
parameters show highly non-linear relationships with the target, warranting sophisticated self-
learning and—due to the requirements on transparency—self-explaining systems.

3.5.3 Study Design

One critical issue to be solved to actually get the agent into use in a scenario similar to the
one presented in Section 3.5.2 is stakeholder acceptance. This acceptance needs to be nur-
tured from the early design stages by making choices according to the wishes (and worries)
of the various stakeholders. From early preliminary talks with R&D and different manage-
ment levels, we already knew that whatever the exact embedding system design would be, the
self-explainability of the employed agent is likely central. This already hinted towards an LCS
being a very plausible choice for the learning algorithm. Thus, we use the template raised in
Section 3.4 with relevant stakeholders to determine if the assumptions that explainability is
very important are even correct and, if so, how the resulting LCS model should likely be de-
signed. This serves a second purpose, as discussing these issues in the form of the questions
with the stakeholders allows them early participation in the design process and can be used
to develop the OAS according to their requirements. This reinforces the perception of holding
a stake rather than the feeling that some ill-suited system was forced onto them. In another
direction but complementary to the described goals this also facilitates a test of the validity and
applicability of the questions raised and whether they even allow meaningful insights. This
is an important consideration for potential future applications of the template (or if they turn
out to be suboptimal for a reformulated version).

To validate the applicability of the questions and to gain some perspective on what answers
we can expect and where additional clarifications or input might be warranted, we conducted
a pilot interview with the Director of Smart Factory and selected members of his department,
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which is responsible for machine automation, data science, IoT, assistance systems and sen-
sors. We found that the questions can be used as proposed in Section 3.4, but some more ex-
planations, especially into the specific nature of LCS models, are beneficial to get more useful
answers for the LCS-specific questions. Importantly, we found that explanations are definitely
desired on many levels. More results are discussed in Section 3.5.4.

Our main study is conducted in individual interviews with stakeholders of about 45 minutes.
As all participants were German and few work with English on a daily basis, these interviews
were conducted in German. Interviews began with the interviewee prompted to give some
information about themselves and their current job as well as job history at REHAU. After a
short introduction into the general topic, possible levels on which the agent can operate and
an example use case based on the extruder (cf. Section 3.5.2), the stakeholders were presented
with the seven questions and some additional explanations, examples and follow-ups. The
questions were also reformulated into German and technical (machine learning) jargon was—
where possible—kept to a minimum. As LCS (and other ML model types) were unknown to
most participants, an example of a 1-D task solution and an eight-dimensional example rule
were also presented before question 3, where the number of rules is discussed. Interviewees
were strongly encouraged to ask for clarifications if some point of a question was unclear and
received some additional context or details if they expressed trouble answering. The interview
was aided by a set of slides, so interviewees could read along and reread the question if needed.
These slides can be found at https://doi.org/10.5281/zenodo.6505010.

The relevant archetypical stakeholder roles can be summarized as follows:

« Operators operate the machine to manufacture a product. Typically, operation takes
place in a one to one ratio in the interior solutions branch and sometimes in a one to
many ratio in the window solutions branch. They interact with the agent throughout
their shift and, as they are responsible for smooth production, rely heavily on its capabil-
ities. Especially (comparatively) inexperienced operators often need assistance, whereas
seasoned (10+ years of experience) operators will rarely be in situations where they con-
sult others.

« Team Leaders supervise a group of operators on the shop floor within a given shift. For
troubleshooting, team leaders are the subsequent responder when the colleague on the
next line was unable to assist an operator. Therefore, they interact with the line control
(and thus the OAS and the agent) on a frequent basis. If even some of the operators’
questions and issues get resolved by an agent, the team leaders’ job becomes consider-
ably less stressful, while if the agent gives poor advise or confuses the operator, their
job might become more difficult.

« Production Managers are ultimately responsible for the entire plants production and are
thus very interested in past and projected manufacturing capabilities.

Process Engineers have the deepest knowledge of the underlying process. They have deep
foundational understanding towards maintaining process stability, which they are also
constantly trying to improve. They operate either closely to/within the plant, where they
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are second in line for troubleshooting when operators and their supervisors could not fix
the issue at hand by themselves, or in more centralized process engineering departments,
where they determine set parameters and machine configurations for new material com-
positions and product types and perform other developmental steps towards machine
improvement and innovation.

« Data Scientists are expected to maintain, improve and expand the capabilities and possi-
ble applications of the agent (and other ML methods in use). They select which data is
to be used, what new sensors are needed and validate the correctness of readings. From
a model perspective, it is likely that the agent encapsulates multiple models that are di-
rectly trained to predict on this machine (model) or even for a specific product, rather
than a singular generalized model that solves all tasks, although generalization is over-
all desirable as fewer models are easier to maintain. Data scientists would thus need to
determine which machines and products can share a model and for which combinations
other models are needed. Ultimately, a badly performing agent is the responsibility of
the data science team.

We want to add an important disclaimer for this specific study that is, however, very likely
also the case for most similar studies: These stakeholder archetypes are often not clearly dis-
tinguished in a single person and their view on certain aspects might be heavily influenced by
their (job) history so that despite their current position, they still express views we can clearly
attribute to another archetype. This constitutes a form of bias which needs to be accounted
for when drawing qualitative conclusions based on such studies. With large enough sample
sizes, this might average out. However, in many typical industrial settings the number of in-
dividuals in a given position may often be too small [BP21]. Team leaders are often trained
process engineers that have been operators at REHAU before undergoing additional educa-
tion. In-plant process engineers often have a management role as well, with responsibilities
for sections of the plant. Although, in this archetype specifically, the exact position of a person
between R&D responsibilities, where university graduates are more common, and day-to-day
operations widely varies. We still chose to present these as one archetype as the general ques-
tions they ask of the agent are similar. The interview partners available for this study were
selected to allow an overview of all roles and interviewees were asked to distinguish between
the different roles they might find themselves in or have held in the past for their answers.
They were also requested to separately answer for operators and based on their perception on
operator’s requirements.

3.5.4 Interview Findings

From the conducted interviews we find that there is a need for self-explainability of the en-
visioned agent and that simpler models are generally preferable. More detailed descriptions
of the answers to the seven questions are shown in Section Pilot Interview for our pilot in-
terview and Section Main Interviews for the main interviews that were conducted afterwards.
Reassuringly, we also found that the agent is indeed wanted.
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Pilot Interview

In this first interview we primarily aimed at validating the applicability of the proposed ques-
tions to gain insights regarding the envisioned scenario. It was conducted with the Director
of Smart Factory at REHAU in the presence of some members of his department, who were
involved in the already existing parts of the OAS and a variety of data science applications. The
concept of a SL-based agent to assist operators and its various levels of application were well
established previously. Answers, as given by the Director regarding his perception of various
stakeholders’ requirements, were recorded and are stated in the following:

Q1: To what extent does a stakeholder request explanations? For operators, this pri-
marily depends on the autonomy of the agent. The more autonomous the agent acts, the less
will the individual operator request explanations. In contrast, the process engineer will always
want in-depth explanations. This requirement will likely increase with agent autonomy, e.g.
when debugging potential issues, as the operator will have less insights into what was config-
ured and why. Team leaders will require more explanations and more depth than operators.
Data scientists will want maximal transparency and self-explainability.

Q2: What are the differences within a type of stakeholder? For operators the frequency
and depth of explanations will highly depend on their experience. Experienced operators will
probably disregard the agent completely and use their own knowledge to solve upcoming is-
sues. Thus, they will also not request any explanations. For other stakeholders, experience
might matter for simple tasks, e.g. if the prediction aligns with their mental model, they will
not request an explanation, but overall explanations will be requested by all personnel in these
roles.

Q3: How many rules may the served model contain before being too large? AsLCS
models and their structure’s implications were not completely clear, we presented a small ad-
hoc visual aid what an LCS model might look like, which we then also kept for the main
interviews. Data scientists may be the only stakeholders that might want to analyse the model
in its entirety. Other stakeholders, specifically operators and team leaders, will be primarily
interested in the model’s situation-specific predictions. Therefore, explanations of the given
mixing model will be more relevant and the global model can contain a large quantity of rules
as long as it can still be experimentally or statistically verified, i.e. through well-chosen test
data. The mixing model should also contain few rules. This question also brought up a point
about local model: They should be trained in a way as to directly determine the most important
features/parameters for a given prediction, e.g. by forcing 2-3 coefficients to be considerably
larger than others in a linear model.
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Q4: What form can conditions take before they are too complex to be understood?
Interval-based rule conditions are strongly preferred over other options for both regression
and classification tasks.

Q5: How important are explanations of why the decision boundary of a rule is placed
acertain way? Operators and team leaders will probably not have this question and take the
conditions as is. Some trace-back to the training sample might be interesting for data scientists
but is not needed.

Q6: What form can local models take before they are too complex to be understood?
This question was deemed impossible to answer without taking the model’s task and perfor-
mance into account. In general, simpler local models are preferred.

Q7: What information do stakeholders request about the training process? The Di-
rector was unable to confidently provide deeper insights into this question. Likely, information
is of interest but the exact levels would need to be answered by the respective stakeholders.

Main Interviews

Following the findings of the pilot interview, an expanded introduction into both the possible
application of the agent as well as LCS was prepared. Additionally, the seven questions were
translated into German and, where applicable, follow-up questions based on answers given in
the pilot interview were formulated. After that, four interviews were conducted. As this group
of stakeholders was quite heterogeneous with different perspectives on the questions as well
as operators’ views, we attribute the (paraphrased) statements to the respective interviewees
(A through D).

A is currently a process engineer and supervisor with administrative responsibilities in
edge band production. They started in the company as an operator and then became
team leader before the promotion into the current position. They supervise and interact
with operators and machines throughout a normal work day.

« B is from the window solutions branch and head of recycling and plant optimization.
They started as an operator before training as a process engineer and receiving various
promotions up to plant management. Therefore, they have a good perception on all
relevant in-plant roles and might already give some perspective if the answers can be
re-used for a similar manufacturing process for a different product at another plant.

+ C is head of the data lab—a department responsible for all data management, analysis
and science. They have a strong statistics background and have been working with
various stakeholders from multiple plants for years. This includes directly interacting
with operators at the machines over long periods of time.
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+ Disamember of the data lab. Originally part of R&D, they have subsequently joined the
IT department and then—with its foundation—the data lab. They are primarily responsi-
ble for keeping data-related systems, like the envisioned agent, running and up-to-date.

In this section, the answers of the interviewees regarding the various stakeholder archetypes
are presented in a question-wise manner. Where conflicting answers were given we present

both.

Q1: To what extent does a stakeholder request explanations?

« Operator: New operators are thankful for all assistance, including explanations (A). Ex-
planations also enable them to fix issues on their own (A, B). In general, short textual
explanations of 2-3 sentences are preferred (A, B). Probabilities of success of a proposed
parametrization and rule quality could be useful but are not mandatory as long as the
model itself is not guessing (B). Explanations should be offered on request rather than
by default on every prediction/re-parametrization (B). They could be enriched with im-
ages of issues that may arise from the suboptimal parametrization or other information
about past production (A, D). Graphs and dashboards are not useful for operators (A, B).
Neither are mathematical formulae (A, B, C, D). As long as the performance is on some
generous level of practical equivalence, transparent models are preferred over better
performing ones (A).

« Team Leader: In addition to textual explanations, graphs can be useful to understand
and improve the manufacturing process (A). However, as long as production proceeds as
scheduled, team leaders might not care for explanations (B). Not-as-explainable models
with better performance can still be useful (A).

o Production Manager: The main interest is with keeping production up and efficient (B).
Understanding why errors are occurring is of deep interest as to prevent them in future
(B). In addition to textual explanations, which are likely too low level for most situations
in which management is involved, high-level dashboards and graphs allow them to un-
derstand their production (B). Model transparency is more important to them, but in the
end pragmatism reigns (B).

« Process Engineer: Being tasked with both ad-hoc debugging and long-term improve-
ments, process engineers have a deep interest in understanding the manufacturing pro-
cess (A). ML models that may infer connections from data that are unknown or at least
unquantified by humans are of great relevance to achieve their goals (A). However, to
be analysed these models need to be as transparent as possible (A). Diverse tools for in-
depth explanations are very important (A). Process engineers might not analyse every
decision but all that went wrong, as well as the general model (A).

« Data Scientist: Ideally, the model would be a complete white-box as transparency and ex-
planations are preferable (D). However, a substantially worse white-box model should be
replaced with a gray- or black-box system that undergoes a rigorous statistical analysis
(C, D). A well-validated model that can be inspected via graphs and dashboards could be
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deployed even without inherent transparency (C). Depending on the task, transparency
could also be approximated via post-hoc analyses, although this would make the usabil-
ity for other stakeholders questionable, depending on the correlation between the orig-
inal black-box and its transfer learned pendant created through post-hoc analysis, such
as LIME [RSG16] (C). Explanations should be in-depth and may include mathematical
formulae (C, D).

Q2: What are the differences within a type of stakeholder? For all stakeholder arche-
types, substantial experience will result in some predictions and decisions being obvious, thus,
not requiring explanation (A, B, C, D). Data scientists might still want to understand how the
model inferred this from data but this would not warrant a self-explaining model (C). Less ex-
perienced stakeholders will often require more or more in-depth explanations than those with
average experience, although on the other hand, very experienced stakeholders might in turn
require more depth to be convinced or to understand how the model found something they
did not (A, B, C). Whether or not explanations are requested is mostly dependent on attitude
and motivation rather than experience (A, B). The broadest spectrum is shown within the op-
erator role (A, B). For inexperienced operators, consulting the system replaces disturbing their
colleagues and/or supervisors to ask for their help, which will increase the agent’s acceptance
(B). Personalization of explanations might be good for individual operators but would greatly
complicate the team leaders’ and process engineers’ user experience whenever they are called
for assistance (A).

Q3: How many rules may the served model contain before being too large?

« Operator and Team Leader: The overall models number of rules can be as complex as
needed, however, in a given situation only few (up to 4 (A)) may match and be included
in the mixing model (A, B, C, D). Additionally, rules should ideally be limited in a way
as to promote high weights for only 3-4 features at most, with other features having
considerably smaller weights (A, D).

« Process Engineer: A process engineer will often analyse the full model and therefore
requires it to be small (A). However, the exact size is problem dependent (A). For the
extrusion problem, 15-20 rules should be an upper limit (A, D).

« Data Scientist: Matching rules are more important than the totality of rules (C, D). In-
tense validation of a subset of rules will likely allow data scientists to trust the other rules
as long as they share performance metrics (C). Overall, rule similarity is also important
in that many dissimilar rules are more acceptable than high overlaps (C). However, upon
further probing, sizes of 30 to 100 rules were deemed as highly complex models for suc-
cessful analysis (C, D).
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Q4: What form can conditions take before they are too complex to be understood?

« Operator: For operators the specific condition does not need to be analysed as long as we
can assure that this rule does apply (A, B). However, when interacting with operators

to explain certain decision making processes, complex models might make this more
difficult (D).

« Team Leader and Process Engineer: Easier to analyse is preferable (B) . They should not
be more complex than intervals (A).

+ Data Scientist: More complex conditions should be possible as long as they undergo
post-hoc analysis, e.g., LIME (C). If the LCS has proven to produce well-placed decision
boundaries for similar problems, not all rules of every model would need to be analysed
in future applications (C). For practically equivalent performance, easier conditions are
strongly preferred (D). With a higher degree of automation, analysing the condition
becomes more important (D).

Q5: How important are explanations of why the decision boundary of a rule is placed
a certain way? The interviewees were in agreement that there is no need for explanations
why the trained model exhibits certain decision boundaries and how the optimizer found these.
The data scientist might have an interest into the process from a scientific point of view but
for machine operation and operator assistance through a trained model, this is not relevant (C,

D).

Q6: What form can local models take before they are too complex to be understood?

« Operator: Operators will likely not value model specifics as long as a textual explanation
for the central aspects (e.g., feature importance / influence of individual features on the
prediction) is given (B). Models should be linear (A). An analysis of the mixing of the
currently matching rules is sufficient (A).

« Team Leader and Process Engineer: Local models should be kept as simple as feasible (B).
Ideally, local models are linear (A). In addition to an in-production use, process engineers
will also want to analyse the model(s) to improve the process itself, e.g. through changes
in hardware, and for this the models need to be understandable to them (D).

« Production Manager: Individual predictions are less important than overall system per-
formance (D).

+ Data Scientist: The usage of more complex local models should be possible (C, D), al-
though simpler models are always preferable (C). If complex models are used, they would
need to undergo rigorous individual testing and analysis (C). However, for better per-
forming local models, this would be worth it (C, D).
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Q7: What information do stakeholders request about the training process?

« Operator: The more information is available, the higher will be the operators’ trust in
the predictions (A). They care about which lines and which products were used for in-
formation gathering and by whom features were selected and models were build (A). As
long as predictions are correct, operators will take the suggestions as is and not further
request such information (B).

« Team Leader: More detailed information than for operators as well as some form of
involvement in the design process is requested (A).

« Production Manager: Some information on a high abstraction level is sufficient, e.g.
where did the responsibilities lie (B). Deployment time, lifetime performance and possi-
ble adaptations based on products and performance are relevant (D).

Process Engineer: To determine if model performance is in line with the current under-
standing of the process, and to subsequently improve process stability on the basis of
the models production, engineers require as much information as available (A, B, C).
They should also be involved early on to avoid model biases from possible correlations
without causation within the data (C).

« Data Scientist: While multiple stakeholder archetypes will request all information avail-
able, more than anyone else data scientists will want to do statistical testing and analysis
of the models (C). They will analyse train-test-splits in detail (C). With the model in pro-
duction, they employ statistical measures to detect possible concept or sensor drifts (C).

3.5.5 Summary

We find that stakeholder archetypes have—at times substantially—diverging requirements to-
wards the explainability of the model. All stakeholders would prefer transparent models as
long as performance is practically equivalent. However, should this not be the case, it highly
depends on both the archetype as well as the individual person.

Within the group of operators, some might not ever consult the agent and many might not care
for its explanations as long as predictions—or derived parametrizations—are correct. Regard-
less, substantial numbers of operators will both follow the agent’s suggestions and check its
explanations. These explanations can serve two purposes. On one hand, they help operators
check for plausibility of a decision based on their own mental model and therefore increase
trust in the agent. On the other hand, they may update the operator’s mental model, which
is especially important for newer and inexperienced operators that would otherwise need to
rely on a colleague’s or supervisor’s assistance. Regarding LCSs, operators tend to only want
to analyse currently matching rules. These should be few in number and kept as simple as
possible. Operators want explanations primarily in a short textual form, ideally, directly gen-
erated from those rules. With this role especially, we found staunch differences between the
two plants, where interior solutions’ operators want explanations much more frequently than
their window solutions’ counterparts, where explanations are likely only requested in case of
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production issues and defects. While these might be attributable to the interviewees, it is very
plausible that differences in the manufacturing process and how machines are interfaced with
within the socio-technical system are the root of diverging answers, e.g. the fact that within
window solutions multiple lines are operated by one operator.

Team leaders largely follow the trends set by their direct subordinates, the operators. How-
ever, due to their increased responsibilities, they require more, deeper and more diversely
represented explanations from easy to analyse models. Again, the two plants seem to differ
with regards to frequency of explanations for this role, although the trend is less substantial.

Production managers will less frequently interact with the agent and primarily require infor-
mation about its performance and if that is poor, will request more information into likely
reasons. The agent could, for example, explain its poor performance in certain areas of the
feature space with poor sampling, high noise or unexpectedly complex parameter-target rela-
tionships. Individual decisions are unlikely to be analysed by production managers. However,
depending on their background, they might be quite interested in what is running in their
plant and how it works from a personal motivation.

The process engineer requires the most in-depth and diverse explanations and general model
analysis capabilities. From our interviews, we found a second aspect of usage for the models
besides their application within our operator assistance setting. Namely, to analyse the models
(or the agent in its entirety) to deduce process improvements that go beyond a parametrization.
This can range from the hardware setup itself to chemical mixtures of line inputs to hydraulic
valve switching. The simplest models are strongly preferred for both aspects. Process engi-
neers are less diverse in their requirements, both from an individual as well as a plant-wise
perspective. Contrastingly to the perception expressed by the Director of Smart Factory, not
only data scientist but also process engineers will want to analyse the full model.

Data scientists were overall relatively open to deploying gray-box or even black-box models as
long as they had undergone substantial statistical verification or have been made explainable
through post-hoc analyses. However, transparency is preferable as statistical verification of
a black-box model can be sufficient if one deeply understands the statistical decision making
process and possible fallacies therein but is hard to convey towards stakeholders that do not
have such knowledge and training.

By gaining an understanding of the various stakeholders’ requirements through this study
we also validated that the seven questions are useful to determine them. We found that differ-
ences between the two plants seemingly exist for some but not all of our identified stakeholder
archetypes. Likely, different domains and companies will also yield slightly different answers.
Thus, these questions should serve as a template on how to design specific studies. Addition-
ally, we found that potential users not only want to be included in the agent design process but
also have important uses for the agent and its models that are not included in the originally
envisioned case that can, however, also be solved without a differently or separately designed
system and did not come up in any other previous discussion.
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3.5.6 Consequences for Model Design

While the last section focussed on highlighting the most important interview findings on both
the likely interactions with the agents and their respective models and the corresponding high-
level explainability requirements, e.g. how to present explanations to operators versus team
leaders, we want to focus on some more technical aspects regarding model (and algorithmic)
design in this section. We want to again stress that the template of questions primarily focusses
on the returned model after training completes.

With Q5, we inquired about the training process itself and found that—in the presented use
case—it is largely irrelevant for the comprehensibility of an OAS agent. Therefore, the LCS’s
algorithmic design can be freely chosen. As long as the resulting model fulfils certain criteria,
it is irrelevant whether practitioners use a batch or online, single- or multi-solution (Michigan-
style, Pittsburgh-style, or hybrid) approach. The same goes for the deeper details, e.g. how
model updates or credit assignments are made, the fitness function, when to use subsump-
tion, the specific compaction technique, how to cover or what evolutionary algorithm to apply.
None of the stakeholders expressed deeper interest in detailed knowledge about those mech-
anisms for the use case in the OAS. Data scientists are interested in this from a professional
point of view (and are likely the ones ultimately making those decisions) but also stressed the
importance of the model rather than the training process. Not having to derive explanations
of the behaviour of evolutionary algorithms is also greatly advantageous for practitioners as
this is a challenging open issue [cf. Bac+22; Zho+24].

While the algorithmic side of training was not confined by requirements, the expected struc-
ture of a trained model is. This does of course have indirect repercussions on the algorithmic
properties of the LCS and how it should be configured to best arrive at such a model. The
more straight forward aspects are the wishes for interval-based (hyperrectangular) conditions
and linear models (for regression). Both aspects are typically defined before training. For the
linear models needed for regression we found that some confinements should be made regard-
ing their coefficients as stakeholders would prefer it if few (i.e. about 3) of those were large
at a time to easier pin-point influences. Coefficient control is a very common requirement for
ML models and typically solved by some form of regularization, e.g. the well-known Tikhonov
regularization (“Ridge Regression”) to keep coefficients small. How to design this component
in an LCS depends on how the updates are made. In online-learning (e.g. Michigan-style) sys-
tems this is less straightforward than for batch learning-based systems (e.g. Pittsburgh-style)
as in those systems the traditional regularizations can be used directly. An easy to implement
option for online single-solutions systems would be to use the returned rules’ matching func-
tions but retrain their linear model’s coefficients in the same way. A very important aspect for
some stakeholders lies in the quantity of rules, both the total number of rules as well as how
many rules partake in a prediction. The total number of rules is controlled via subsumption
and compaction in online single-solution (Michigan-style) systems and directly in the fitness
function and by pruning techniques in batch multi-solution (Pittsburgh-style) systems. For
fitness-based control a practitioner could assign rule sets over a certain size an arbitrarily low
fitness. For compaction-based control (which is applied after training completes) an algorithm
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has to be chosen that offers an option to shift the performance/size-trade-off in a certain direc-
tion. One straightforward option would be to use a binary genetic algorithm for that and again
head towards fitness-based control. How many rules partake in a prediction is defined by the
mixing-model. A very common mixing-model approach is to use a fitness-based weighted av-
erage of the prediction. Here, it would be quite simple to adapt the mixing-model to only take
the top n (e.g. three) rules according to the fitness into account. As this might change where
rules should be placed to make smoother decision boundaries, we strongly recommend to use
such mixing restrictions already in training rather than afterwards.

Results like these almost automatically raise the question whether they generalize. The an-
swer to this is complex and layered but I think general trends are similar in many domains.
First, I am quite confident that they generalize to machines producing different products (but
still plastics that are extruded) within the same manufacturing plant as where the OAS will
be deployed. They very likely also generalize to different plants within the same company
with plastic extrusion—based products. However, we might already encounter different setups,
e.g. more automation on the shopfloor, that shift the patterns of interaction between human
and machine, possibly removing the requirement for explainability as stakeholders are already
comfortable with complex approaches governing their production. On the other hand, stake-
holders at less advanced sites might be happy with any model that reduces their defect rate
and feel like the potential advantages are so relevant that losing explainability is acceptable. I
suspect that in this case the answers of what they would like to see would be similar but that it
would rather be a nice-to-have feature than a hard requirement. Stakeholders from other pro-
ducing industries I would expect to give similar trends as in this use case but I would strongly
recommend to exercise through the same process and collect potential requirements without
any bias. Applications of intelligent agents outside of the manufacturing domain could show
similar trends if they are currently performed by human expertise with significant potential
losses in money or other factors. Medical applications, e.g., for systemic decisions like treat-
ment plans, would probably be less restrictive as doctors would take the time to verify the
system in great detail and then have greater trust in other doctors that confirmed the results,
however, I expect such applications to have hard requirements for both model and individual
decision explainability in general.

Overall, although we find that practitioners still have large amounts of algorithmic freedom
to train their models, we can make some clear restrictions into the expected final model struc-
ture.
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4 The Supervised Rule-based Learning
System

The primary contribution of this thesis is a new approach to train Learning Classifier System
(LCS) models." Chapter 2 presented thoroughly how this family of algorithms operates and
what the trained models look like. We find that the designers of major LCSs do consider neither
their intended model structure nor the optimizers that arrive at that structure as the primary
motivator for design choices. This leads to a situation where the control over the resulting
structure is more limited. However, we find from the case study presented in Chapter 3—and
especially Section 3.5.6—that the amount of control existing major LCSs offer us over relevant
optimization targets—most importantly the model size—is too limited for similar applications.”
Section 1.1 did provide a thorough description of the research gaps that effectively arise from
Cland C2.

This chapter introduces a new LCS: The Supervised Rule-based Learning System (SupRB). Its
design was conceptualized based on the increasing need for explainable machine learning mod-
els. While most LCS models are typically showing some form of inherent interpretability and
transparency, SupRB can control these directly by means of its split optimizer(s) which is novel
in the field. Critically, SupRB does not try to solve multiple different optimization tasks (cf.
Section 2.1.3 for those tasks) with multiple competing algorithmic heuristics but splits the tasks
clearly and assigns each optimizer one of them. This disentanglement of model selection (and
fitting) tasks makes the system easier to follow and gives it a clearer design structure which
can not only help explain it to stakeholders, but also when troubleshooting or trying to im-
prove the system, e.g. by building a specialised solution for a specific use case. Moreover, we
will find in Chapter 5 that this allows SupRB to find much smaller models than competing LCS
and rule-based ML approaches while staying competitive in terms of errors. Together with
Chapter 5 and Chapter 6, where I will discuss possible improvements of the algorithm or its
models, this chapter composes C3 as defined by Section 1.1.

4.1 General Description

This section is a culmination of all previous presentations of SupRB, beginning with the ini-
tial concept paper [Hei+22c], over numerous papers offering extensions or additional stud-

'LCS are also known as a rule set learning and evolutionary rule-based machine learning algorithms.
°I would argue that most real world applications—including outside of manufacturing domains—will exhibit sim-
ilar issues of requiring more control about model sizes.
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ies [Hei+22b; Wur+22; Hei+22a; Hei+23c; Hei+24] to its most thorough description in the
Journal of Applied Soft Computing [Hei+23d]. The latter serves as the direct basis for the
following text.

The Supervised Rule-based Learning System (SupRB)* is a new type of LCS, with alternating
phases of rule discovery and solution composition [Hei+22c]. In the first phase, rule conditions
are optimized independently of other rules. Thereby, a pool of diverse rules with convenient
localizations is discovered. The subsequent second phase aims at composing an accurate but
small solution to the learning task. To this end, the system utilizes an optimization algorithm
to select a subset of all available rules, i.e. all rules that are in the pool after rule discovery.
Therefore, SupRB diverges from other LCSs, as the model selection objectives—identifying a
number of well positioned rules and choosing a set of these for the resulting model—are sep-
arated (cf. Figure 4.1). Note that the quality of the positioning of rules depends on a trade-off
between the local prediction error and the matched volume. Altogether, this enables the pre-
diction of any input with minimal error, but the smallest possible set of rules, maintaining
high transparency and interpretability. How many rules are required exactly to compose a
good solution, however, is difficult to determine beforehand. Therefore, the two phases are
applied in turns until a termination criterion is reached, i.e. a specified number of iterations
(cf. Figure 4.2 and Algorithm 1). The alternating phases provide a unique advantage: subse-
quent rule discovery stages can be guided towards less explored regions, which were up until
then only covered by no or only imperfectly placed rules. To achieve this, SupRB incorporates
in-sample performance information from the last solution composition phase. Note, however,
that a rule, once it has been put into the pool, is fixed and will never be removed during the
training, which stands in contrast to all major batch multi-solution LCSs. Overall, according to
the categorization system from Section 2.3.1 SupRB falls into the multi-model batch learning
category.

Algorithm 1 SupRB’s main loop [Hei+22b]

pool < ()
elitist < ()
for ¢ < 1,n_iter do
pool <— pool U DISCOVER RULES(elitist)
elitist «— cOMPOSE SOLUTION(pool, elitist)
end for
return elitist

Figure 4.1 can be thought of as a single (or more specifically, the first) cycle through Figure 4.2.
From data sampled from some given function (for presentation sake, this is kept one dimen-
sional) a set of rules is discovered by selecting different partitions of the feature space and
fitting a linear model in them. Then, some of these rules are used to build a good model from
while others are discarded. This model is using a mixing model where the prediction of the

*The newest version of SupRB’s implementation is always found at https://github.com/heidmic/suprb. The
version used for all experiments in this dissertation is long-term archived at https://doi.org/10.5281/zenodo.
14181292.
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4.1 General Description

Figure 4.1: Extracting a rule-based model from data by discovering appropriate areas of the
input space to place linear models in, creating individual rules. Afterwards, a subset
of these rules is selected (denoted by cross and checkmark) to compose the output
model from. In the example, we utilize three rules and use a mixing model where

only the fittest rule per area is used for predictions. This figure first appeared in
[Hei+23d].
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Figure 4.2: Rule discovery and solution composition alternation in SupRB [Hei+22c]. ngc is
the number of iterations for the solution composing optimizer and ngp is the num-
ber of iterations performed for rule discovery.

best (according to experience and error) local model (sometimes also called a submodel) is
used in regions of overlap. For a more detailed analysis of this and other mixing models, cf.
Section 6.3. In general, this mixing model is not ideal for the type of function LCSs are meant
to approximate and it should be preferred to use, for example, weighted averages. However,
this type of mixing makes illustrations easier to read and better to understand for LCS novices.
After this elitist (cf. line 5 of Algorithm 1) has been composed, termination is checked and the
process begins anew, although for the next time a solution is composed not only the newly
generated but also all previously generated rules will be available.

SupRB is strongly aimed at providing insights into model predictions. Therefore, attaining
simplicity and interpretability of its model is essential [Hei+22c], which led to the following
choices being made:

1. Rules’ conditions use interval-based matching: A rule k applies for example z iff z; €
(lki, uk ;] Vi with [ being the lower and u the upper bounds.

2. Rules’ local models fi () are linear. They are fit using linear least squares with a12-norm
regularization (Ridge Regression) on the subsample matched by the respective rule.

3. When mixing multiple rules to make a prediction, a rule’s experience (the number of
examples matched during training and therefore included in fitting the local model) and
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Algorithm 2 SupRB’s Rule Discovery [Hei+22b]

1: procedure DISCOVER RULES(elitist)
2 rules < ()
3 for i < 1,n_rules do > (1, A)-ES for each new rule
4 candidate, proponent < INIT RULE(elitist)
5: repeat
6 children < ()
7 for k + 1, A do
8 children ¢« children U MUTATE(proponent)
9: end for
10: proponent <— child with highest fitness
11 if candidate’s fitness < proponent’s fitness then
12: candidate <— proponent
13: 7+0
14: else
15: jg+1
16: end if
17: until j =6
18: rules < rules U candidate
19: end for
20: return rules

21: end procedure

in-sample error (the error on training data) are used in a weighted average. A rules
mixing weight 7 is defined by:

. experience,,
T = * experience, = ————— (4.1)

errorg errorg

Using this weight in a weighted average mixing model is based on the inverse variance
heuristic mixing [Dru07, Section 6.2.2].

Rule discovery (RD), as displayed in Algorithm 2, can be accomplished by many different meth-
ods. While the standard version of SupRB uses an evolution strategy (ES), we also have exam-
ined different variations of novelty search [Hei+22a; Hei+23c] (cf. also Section 6.4). A single
rule discovery phase generates multiple rules to be added. Therefore, multiple runs of the
(1, X)-ES are performed independently, enabling parallelization. For each of those, an initial
candidate, i.e. parent rule, is placed around a training example which is chosen by applying
roulette-wheel selection based on the in-sample error of the current elitist (or intermediate
solution). Thus, higher probabilities of being selected are assigned to examples where the
prediction exhibited a high error. The next step is the creation of A children by repeatedly
applying the non-adaptive mutation operator. It increases the distance of the parent’s lower
and upper bounds to the center by adding values sampled from a halfnormal distribution to
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each. The fittest child individual—based on its in-sample error and the matched feature space
volume—is selected as the new parent. Additionally, if its fitness is higher than that of the
current candidate, it replaces this individual. In rule discovery, the fitness is calculated as

(14+a?)-01-09

F = 4.2
(01,02) a? - 01 + 02 (42

with
01 = PACC = exp(—MSE - f3) , (4.3)

and
us — b (4.4)

09 = V = H . .
T MiNgexy Ty — MaXgpex Tg
7

This metric (cf. Equation (4.2)) was adapted from [Wu+19], who utilized it to combine two
objectives for a feature selection problem. The Pseudo-Accuracy (PACC), Equation (4.3), com-
presses the Mean Squared Error (MSE) of a rule’s prediction into a (0, 1] range, while the
volume share V' € [0, 1] (cf. Equation (4.4)) of its bounds is used as a generality measure. The
parameter 3 controls the slope of the PACC and « weighs the importance of the objectives 0;
and oy against each other. We opted for a scalarization approach to solve this multi-objective
optimization problem to keep the optimizer simpler and more straightforward. Especially with
RD, we do not seek the globally best rule but a diverse set of options but we also do not really
need to approximate the Pareto front, as any decision on choosing from the front automati-
cally would in turn be based on some a-priori set weights, so we can just optimize based on
this weight directly. Multiple values for 3 were tested and we found /5 € [1, 2] to be suitable
defaults and selected a beta of 1 for this thesis’ runs. For «, 0.05 can be used in many problems
but, ultimately, the value should always depend on the model size requirements, which are task
dependent. Within the experiments of this thesis, we tune a € [0.01, 0.2]. The optimization
process terminates if the candidate was not replaced within the last § generations, adding this
specific elitist to the pool. Overall, the process of discovering and adding new rules is repeated
until a predefined number of rules is reached. Note that the optimizer does not aim at finding
a single globally optimal rule—as would be the case in most optimization scenarios—but the
goal is to find many optimally placed rules that allow a more accurate prediction for all inputs
than a trivial model, i.e. simply returning the mean of all data, would produce. To this end,
independent evolution is advantageous.

The second phase, solution composition (SC), utilizes a genetic algorithm (GA) to select the
subset of rules from the pool to form a new solution. Naturally, this phase can also utilize
any optimizer, and in a previous experiment in [Wur+22] we compared several options and
found that the GA is an appropriate choice. An extended version of this experiment is found
in Section 6.5. For indicating whether a rule from the pool is included in the solution, a bit
string representation is used. The pool is treated as a list with bits corresponding to specific
indices. For the GA, pairs of parents are selected with tournament selection before being
recombined utilizing n-point crossover, where the crossover probability has a default setting
of 90%. The resulting children are mutated by probabilistically flipping bits, controlled by the
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4.1 General Description

Algorithm 3 SupRB’s Solution Composition [Hei+22b]

1: procedure COMPOSE SOLUTION(pool, elitist)

2 population < elitist

3 for i < 1, pop_size do

4 population < population U INIT SOLUTION()

5 end for

6 for i < 1, generations do

7 elitists <— SELECT ELITISTS(population)

8 parents <— TOURNAMENT SELECTION (population)
9

children <— crROSSOVER(parents) > 90% probability n-point
10: population <— MUTATE(children) > probabilistic bitflip
11 population <— population U elitists
12: end for
13: return best solution from population

14: end procedure

mutation rate. For the next generation, the children and some of the fittest parents (elitism)
are kept. While the number of elitists depends on the population size, we found that, in our
experiments, 5 or 6 elitists are most suitable for a population with 32 individuals. The fitness
is also calculated based on Equation (4.2). In this case, the objectives are the solution’s in-
sample mean squared error and the number of rules selected (the complexity). Altogether,
each individual corresponds to a subset of the pool. Therefore, the effective goal of SC is to
find the composition of rules which offers the best balance (according to a in Equation (4.2))
between an accurate and a compact model, discarding all those subsets of rules which are
Pareto-dominated. We still opted for a scalarization of objectives rather than approximating
the Pareto front during training as we want to use one elitist to inform the search in RD and
would thus have to choose from the front based on some weights anyhow. The choice of
o = 0.3 was adopted from [Wu+19] and observed to allow selecting few rules for easy and
many for harder problems, all while maintaining a sensible error. However, the influence
of  is something that should be investigated in more detail in future research. In contrast
to other rule-based learning systems, especially batch multi-solution (Pittsburgh-style) LCSs,
and attributable to the two phases of rule discovery and solution composition, rules in the pool
remain unchanged by the optimizer of the SC phase and only rules within the pool can form
a solution candidate.

In general, SupRB is intended—and therefore conceptualized and designed—as a regressor. This
is reflected in the system’s description, as well as the experimental setup and evaluation of the
next chapters. Nevertheless, adapting the system so that it is able to solve classification prob-
lems is quite straightforward: An appropriate classifier, e.g. a constant model, logistic regres-
sion, or any more complex model (depending on the explainability requirements), can replace
the linear local models. In addition, the fitness function needs to be based on accuracy (or an
appropriate metric should the data be imbalanced) instead of PACC (and therefore MSE).
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4.2 Computational Complexity

The computational complexity is a key quality feature of any algorithm. While compute might
become cheaper and more accessible with time, it is still very prudent to design algorithms in
a way that they operate resource friendly. In this section, an attempt at theoretically analysing
SupRB’s computational complexity will be made. However, it should be stressed that—due
to their highly stochastic nature—it is difficult to predict evolutionary algorithms’ (and other
metaheuristics’) computational requirements convincingly. Regardless, their main influences
will be discussed as well.

At the heart of training with SupRB is the model fitting component (cf. Section 2.1.3 for what
this entails for LCSs). As discussed in Section 4.1, SupRB is currently performing regression
using linear local models and uses a constant mixing weight per rule which is based on the
number of training examples matched and the in-sample error:

« The linear local models used in SupRB are trained with Ridge Regression. Ridge Re-
gression as implemented in scikit-learn [Ped+11] (further details on SupRB’s implemen-
tation are found in Section 4.1) has a training complexity of O(nexamples * n%eatures) for

Nexamples > Nfeatures-

« The mixing weight is computed in O(examples * Mfeatures) time. To determine the mixing
weight, we need to check each example (so a total of 7examples) Wwhether it matches and
then make a prediction for each example that does (at worst this is also 72examples), Where
each prediction is linear with the number of input features.

Overall, model fitting will thus cost O(nNexamples * N2 ..ues) Per rule. Note that this happens
many times during the training of SupRB. Even for models that in the end only have a low
model complexity (the number of rules in the model) a large number of rules might have been
fitted during the model selection process. Typically, a single rule discovery phase will test
hundreds (or more) rule locations and (in the worst case) would need to fit a new local model
for each adjustment of the matching function (the rule’s condition as represented by intervals).
Given how often rule discovery will be repeated (e.g. 32 times in the experiments of Chapter 5),
this can quickly amount to high 4 and up to low 5 digit numbers of local models needed to be
fitted per training.

This leads to the question of how expensive the model selection process of SupRB is. In SupRB,
we decompose this problem into solution composition (SC; combining rules from a pool of
rules) and rule discovery (RD; filling the pool with good candidates). For both of these tasks,
we use evolutionary algorithms in SupRB, i.e. GA and ES, respectively, in the standard version
of SupRB (for more options see Chapter 6). It is very difficult to predict the runtime of such
metaheuristic black-box optimizers. Theoretically, with regards to the inputs of SupRB train-
ing (a matrix built from, typically multi-dimensional, data points) and under the assumption
that model fitting is done (or not factored in) the computational complexity of both SC and RD
is O(1). However, this is not really reflective of practical considerations. In general, for real-
world data, it is safe to assume that there is a correlation between the number of features in a
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data set and its complexity to learn. A weaker correlation should exist between the sample size
and the complexity, however, this will be less pronounced. Note that of course there are excep-
tions to this and many large and multi-featured data sets exist which are easier to solve then
some with few examples and features. Often, these smaller datasets are hard exactly because
too few data points were gathered while for others there might be more than enough.

Much more important than the size/shape of the inputs for RD’s and SC’s runtime is the com-
plexity of the data (or rather, its underlying correlations and interconnections) itself. A very
rugged, high-amplitude (i.e. highly multi-modal with relevant depth of local optima) landscape
will make it very difficult to place good linear models into. Thus, we will likely need more com-
plex (utilizing more rules) models which also requires us to discover more individual rules. The
problem SC solves scales exponentially as there are 2"~k possible models that can be created
from the nyes rules in the pool. While the GA probably scales better, this is an issue to con-
sider. Although we assume that rules in the pool are meaningful, this can still lead to issues
down the line.

RD’s computational complexity is primarily dependent on its hyperparameters, i.e. how many
rules to generate in total, how many generations per search, and how many individuals should
be created each generation. Otherwise, its own runtime is clearly O(1) for the training inputs
and it is linear with regards to these parameters. Given that in RD each local model is fitted
(rather than assuming all possible models are already fit), this leads to a true computational
complexity of O(7examples * n?eatures).

We can gain a real-world speedup of both RD and SC by buffering predictions made by local
models for the training data. With that, all known models only need to make the O(nexmples *
Nfeatures) prediction once, rather than each time that they are called. Especially for the time SC
will require to compute, this speed-up can be significant if the lookup used is efficient.

Predictions on new data points, e.g. from test data, made by a model trained using SupRB are
much more straightforward. These will always cost O(7examples ¥Mfeatures * I ) if We consider the
size of our model K (see also Equation (2.1)) as well. This cost is made up of the computational
complexity of each of the K rules for matching (O(nfeatures)) and prediction (O (nexamples *
Nfeatures))- 1his makes inference quite fast compared to many state-of-the-art ML models where
still hundreds (or millions) of matrix multiplications have to be performed.

Overall, while we can say that training (O(nNexamples * n%eatur «s)) and inference (O(Nexamples *
Nfeatures)) are scaling well with regard to the input shapes of data, it needs to be stressed that
the true runtime is very dependent on the complexity to solve the rule discovery and solution
composition tasks whose complexities are in-turn highly learning task dependent.

4.3 Towards More Explainable Models

In Chapter 3, a template on how to determine the explainability requirements for ML models
on a case-by-case basis has been discussed and its application demonstrated in a real-world
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scenario. This section shows how SupRB can be used to fulfil the requirements laid out by
the user study in Section 3.5 and how the consequences for model design (Section 3.5.6) can be
facilitated by SupRB’s approach to model construction. Note that, despite some of this section’s
examples being often tied to the user study, SupRB is still a general function approximator and
can be used for a multitude of other use cases. Therefore, the deliberations made in this section
are to be understood in a general sense. SupRB’s clear focus remains on constructing accurate
yet explainable models for any situations where this is a relevant feat and SupRB is not specific
to the use case presented in Section 3.5.

4.3.1 SupRB’s Training

In our stakeholder study, we found that how SupRB (or another LCS) trains its models is of
secondary (or even lower) importance to the interviewees and their peers. This is insofar ben-
eficial as it is, at least currently, very hard to achieve explainability of evolutionary (or other
black-box) optimization [cf. e.g. Bac+22; Zho+24; SHH23]. While we can generally explain rel-
atively well how these optimizers work on a surface level due to their underlying metaphor(s),
these can also be misleading as their biological accuracy is somewhat limited and it is usually
advisable to think outside of the metaphors [Ara+22; CA23]. In the future, we hope to improve
this aspect specifically for SupRB and maybe to derive techniques to explain to operators or
other stakeholders why a rule looks the way it does. But for now, SupRB does not make its
model selection and fitting optimizers explicitly explainable.

I would, however, argue that SupRB’s model selection (cf. Section 4.1) is easier to explain than
that of the most popular LCS, the XCS classifier system (XCS).* In XCS, a steady-state evolution-
ary algorithm (EA) introduces new rules by slightly adjusting existing rules from the action
set (the set of matching rules that proposed the value given as the system prediction) by using
crossover and mutation. These new rules are added to the population up to a certain maxi-
mum size. If that size is reached a deletion strategy, e.g. fully random, fitness-proportionately
random, age-proportionately random, highest age, lowest experience, lowest fitness, or oth-
ers, determines some rules from the population to be deleted. Another mechanism that adds
new rules is covering. If an input example is matched by few (or no) rules or only low fitness
rules that mechanism creates a new rule (or potentially more rules) which matches that exam-
ple. This rule is added in the same way as the EA’s new rules followed by the same deletion
strategy if needed. In addition to these influences on the population, there are mechanisms
like subsumption (only adding rules if there is no rule with the same “action” that is strictly
more general; note that there are two fully independent subsumption mechanisms in XCS
that follow the same goal) [Wil98] and absumption (counteracting very general rules to reduce

“Note that despite it regularly being employed for (supervised) batch learning tasks [e.g. Ste19] XCS is originally
designed for online (reinforcement) learning which obviously has an impact on its comprehensibility as it has
some—albeit arguably convoluted—mechanics to enable the example-wise input and to avoid getting stuck in
the environment. So this is less to say that XCS was ill-designed on account of its model selection process
but more to say that there was (or is) a fundamental research gap within most LCSs where SupRB does better
in—compared to XCS—when it comes to supervised batch learning applications.
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competition) [LBX19] which both impose influences on the model selection process. Espe-
cially subsumption is essential for XCS’s generalization [Ste19], and therefore learning, but is
not easy to comprehend when investigating the training process. Finally, the population at
the end of training will—at least when supervised offline learning was performed—often also
be reduced in size to increase its explainability. Compaction [LBX21a] is a mechanism that
removes unnecessary rules from the population, e.g. by filtering it according to some criterion.
It is discussed various times throughout this thesis, e.g. in Section 6.5. A variety of compaction
algorithms has been proposed over the years [LBX21a] but their core is always to remove as
many rules as possible without loosing accuracy.

All these algorithms or separate heuristics have some degree of influence on the model selec-
tion in XCS. However, they are interacting with each other in a way that makes it difficult
for users to grasp what the result of training will be. Even when tracing training step-by-step
it is not always easy to understand why certain rules have been chosen or discarded or why
they look the way they do. This is largely due to different component interactions but also the
interaction of rules with each other, for example due to fitness sharing within niches and the
areas of matched space (during subsumption).

By contrast, SupRB’s model selection first involves the independent discovery of rules where
each rule is discovered without being aware of the existence of other rules and by having
its own independent fitness assigned (rather than a fitness based on a certain niche of the
input space or a fitness representing the quality of the rule set as a whole). This discovery of
rules constitutes Subtask II as defined in Section 2.1.3. In SupRB, only a single mechanism is
responsible for adding new rules rather than a multitude of mechanics as in other LCSs. This
makes it much easier to trace why a specifically shaped rule ends up in a model (or at least
as a candidate for it). However, truly understanding it is still limited due to the explainability
limits of evolutionary methods (as discussed above). Afterwards, solution composition selects
a subset of rules from the pool of rules, thereby solving Subtask I. This is somewhat similar to
compaction as it can be seen as reducing the number of rules but is different in that it is directly
driven by a more advanced metaheuristic optimizer rather than a more simplistic heuristic.
While the more basic compaction techniques are probably easier to follow than SupRB’s GA,
the more efficient techniques (e.g. RCR3 [LBX21a] are on-par in difficulty with the GA or might
even be more difficult to follow as most stakeholders should be familiar with the concept of
iterative optimization even if they don’t have a technical or mathematical background.

SupRB’s local model fitting (Subtask IV in Section 2.1.3) is quite similar to XCS’s in terms of
comprehensibility. Where XCS often uses recursive least squares to fit local models example-
by-example, SupRB uses linear least squares to perform batch learning on matched data. Linear
least squares as an algorithm is well understood and has been around for a long time. Com-
prehending its process is an issue for all linear models and therefore not directly in the scope
of improving explainability of LCSs but it should of course be kept in mind that this could,
theoretically, be a question of non-experts.

Neither SupRB nor XCS explicitly fit their mixing weights (Subtask III in Section 2.1.3). XCS’s
mixing weights are typically tied to its fitness which is niche-based and therefore a rules weight
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is subject to nearby rules’ performance. In contrast, SupRB’s mixing weights are defined on
rule level independently of other rules as they are based on that rule’s training performance
and experience. Arguably, that makes it easier to understand why a specific rule outweighs
another than it is in XCS because the neighbourhood does not have to be observed as well.

4.3.2 SupRB’s Model

Following the results of the user study from Chapter 3 and the lack of discussion in relevant ML
literature, i.e. a complete absence in some of the most-discussed current articles in the field [e.g.
BP21; LPK21; Bar+20], the training process’ explainability is of secondary importance to the
extent of the created model’s explainability.” Accordingly, the model must offer the option
to be thoroughly inspected by humans and be as interpretable and transparent as possible.
For the usage of SupRB—and indeed other LCSs—we assume cases in which explainability re-
quirements go beyond what universal post-hoc techniques can achieve—especially on complex
black-box models such as very deep neural networks—as is confirmed by the stakeholder in-
terviews. Regardless, this does not necessarily contradict the usefulness of techniques such as
e.g., explanations by example®, to compliment explanations based on the model’s transparent
structure. Some stakeholders might specifically request that type of insight on top of deeper
model explanations as it relates to how humans explain things [Bar+20] and, yet, others might
already be satisfied with this more surface level approach. We can create those examples for
almost any type of model. However, with LCS models a complex synthesis may be circum-
vented in a quite intuitive way’ as one can select an example from the training/test data that
was matched by the rule(s) in question or at least plausible other points within the matched
space of a “fit” rule.

Barredo Arrieta et al. [Bar+20] even go so far as stating that post-hoc techniques are not needed
with rule-based learners, albeit with some caveats regarding the model structure we have to
take into consideration for SupRB as well. Some limits, such as how the data was preprocessed
and if users can understand the processes there, fall a bit out of the scope of judging SupRB
on its models’ explainability but it might of course be relevant to keep that in mind when im-
plementing a SupRB-based predictor. Another model or another internal structure within a
SupRB model might need more (or less) preprocessing in the dataset and more (or less) trans-
formations of features, thus, making it harder to understand what is put into the model. So,
even if the model itself was easier to follow, the entire process might not be. Other limits

°In general, I think it is reasonable to assume that it is more important for the model that is selected for deployment
to be explainable than for the training process to be, however, there are probably numerous use cases, e.g. in
medicine or in safety- or security-critical situations, where the ability to analyse and comprehend the training
is relevant as well.

SExplanations by example typically involves the synthesis and presentation of data points representative for a
result made by a model. This technique answers which data points also lead to this (or a very similar prediction)
to give a stakeholder an idea what to look out for in their own data.

"In a black box model, we might need to specifically filter training/testing examples for the prediction we want to
investigate, e.g. a specific class, or at least a data point with similar—which is non-trivial to define—predictions
in case of regression.
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imposed on explainability of rule-based learners, according to Barredo Arrieta et al. [Bar+20],
include the number of rules and their overall structure (cf. Section 3.1 for a bit more context
about how this applies to LCSs in general). For SupRB specifically, we control the number of
rules via our two optimization objectives of rule count and model error, attempting to balance
them against each other and find a good middle ground on the Pareto-front, while rule struc-
ture and mixing (which is not mentioned by Barredo Arrieta et al. [Bar+20] as mixing is rather
specific to LCSs and not present in many other rule-based machine learning approaches) are
fixed by design before application.

SupRB’s rules are kept as simple as possible. Therefore, they only use hyperrectangular con-
ditions and linear models for prediction.®* Hyperrectangular conditions are easily human read-
able.” However, very large feature spaces (very high-dimensional data) can make it more dif-
ficult to mentally process such rules and might make aforementioned feature transformations
beneficial. More complex conditions, which are sometimes used in other LCSs ([e.g. BLW08;
BO02; BH03; HBL09; IBZ14a]; cf. also Section 6.1), are much harder to interpret and thus
undesirable according to our findings from Section 3.5.6 and thus not considered for SupRB.
Complex local models, e.g. neural networks as used by Lanzi and Loiacono [LL06], are not
considered following the same line of arguments. Rules’ bookkeeping parameters like their
fitness, error, and experience are independent of other rules and therefore can be examined
in a standalone fashion. These choices already keep a trained models’ rules rather readable
for a human user but even with those readable rules a large number of them can still make an
unmanageable model.

The number of rules is controlled indirectly through SupRB’s solution composition (SC) pro-
cess. Before training, the optimal number of rules to achieve a certain error is unknown. Usu-
ally, training is expected to achieve the lowest possible error which—if used as a standalone
objective—can quickly lead to large numbers of rules being used (bloat), which can also lead
to overfitting and is, of course, making the model harder to understand and interpret. There-
fore, it is a good choice to balance both objectives against each other and find a middle ground
solution. We can reasonably expect that any SupRB model that has finished training (where
the training process showed clear convergence) has selected the minimal number of rules from
the pool possible to achieve the given error and, thereby, a balance between error and model
complexity. This should ensure that SupRB’s models are also reasonably well-explainable for
the given task at hand. If before training some level of error can be determined as an accept-
able threshold, i.e. models better than this are deemed equally good, or a maximum amount of
rules is given (or a lower bound at which rule counts are equally good can be defined) this can
and should be used in training to not only limit the search space and speed up convergence but
also to find more optimally tailored solutions. Such potential bounds are heavily influenced by
specific applications and explainability needs but even given a specific situation it is unlikely
that stakeholders are able to express these definitively enough.

®For regression tasks, constant models are less likely to fit the problem well if only few rules are to be used, but for
classification, constant models could be an option to achieve further simplification in case logistic regression
or similar approaches are still deemed to complex by or for stakeholders.

°An example of a rule trained on a real-world data set is presented in Table 5.4.
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Lastly, mixing is an important feature of LCSs and can, of course, make explainability of specific
decisions or the model as a whole more complex. This starts by the participation of multiple
rules (albeit much fewer than in random forests) to form a prediction, but is also a crucial factor
towards understanding how the rules come together. For SupRB, we attempted to make this as
easy as possible, especially considering approaches like Mixture of Experts (MoE) models (cf.
Section 2.2.2). We used a weighted sum of training error and experience of a rule which is rel-
atively easy to relay to stakeholders when discussing the model: The highest impact towards a
decision should be based on the individual rule that has the most experience while being closest to
the correct prediction in the past. Contrastingly, those individuals which are inexperienced or of-
ten incorrect should be given less impact. The weight is constant once a rule has been fitted and
is independent of other rules (which is often different in other LCSs). Theoretically, one could
fit that mixing model as well, similar to MoE models. However, if we tried to explain these
fitted mixing weights (even without going into details about the—likely complex—training pro-
cess) we found a more challenging task ahead as the weights values would be based on model
performance and which samples are matched. Therefore, a fitted weight will likely not be easy
to grasp—especially without extensive LCS experience—but also impossible to ignore due to
its high impact on the actual prediction of the model. Thus, a weighted sum with weights that
were set once based on training data seems like the most feasible approach if explainability is
the core goal.

Assuming the active usage of SupRB to make predictions about product quality and the inter-
actions of a machine operator, as defined in Chapter 3, we could create examples in the style of:
“The rules that inform this decision are based on a similar situation encountered by your colleague
Mrs Smith on the 25th of March last year. In this situation, the task was to manufacture <product>
and she selected configuration <set values> while encountering sensor readings of <environmental
and other readings> achieving product quality <quality parameters>.” The placeholders in this
snippet can link to other pages in the UI, open pop-ups, display information on hover/mouse-
over, or, in case this is limited to very few values, be directly replaced by the relevant data. The
exact method would depend on the overall design of the Ul and the intended UX. Personally, I
would recommend limiting the data that is displayed directly but make it available on request,
ideally including context information like sensor readings before and after the specific data
point. In contrast to synthetic examples, this type of example achieves direct relatability on an
interpersonal level. While it is of course also possible to demonstrate to users what predictions
are made with real examples within complex black box models, with SupRB and other LCSs we
can use the structure and transparency of the model to great advantage. Here, we can already
limit our explanations to a subset of rules (those that match the example) rather than having
to explain the entire model. Additionally, given the low complexity of local models, it is likely
easier to observe the interactions within features and make users comprehend predictions. In
most cases, SupRB’s rules will also be limited to much smaller subsets of the training data
that influenced one rule than would be the case for neural networks, for example, where we
assume that each weight was influence by every training example. Admittedly, there is a lot of
research to be done into the specifics of this. Open questions include but are not limited to:
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« How can we effectively present a rule to a user? This includes possible visualizations of
both conditions and local models but also possibly extends to the list of training data
this rule has seen and other aspects. Visualizing n-dimensional data is notoriously dif-
ficult for n > 4 but most interesting applications of these models will involve higher
dimensionalities.

« How do we present multiple rules at once and explain their mixing-based interactions?

« How interactive should this interface be? Should we, e.g., allow “what-if”-scenarios by
adjusting sliders or similar?

More questions arise when considering the model as a whole rather than the subset respon-
sible for a given situation. What is needed is stakeholder dependent. Most operators in our
scenario from Section 3.5 will probably mostly interact with the model (and therefore desire
it to explain its predictions) on a case-by-case basis. Whereas, process engineers and data sci-
entists might want to inspect the model as a whole, process engineers to learn from it and
what types of, possibly unknown, interactions it found within the data and data scientists to
decide if it is ready for deployment and to gather insights into its likely performance beyond
statistical measures on the test data set.
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5 Comparing SupRB with other RBML
methods

After the previous chapter introduced the basics of SupRB, the following chapter will test its
performance as a predictive model while comparing and contrasting it to more established
rule-based machine learning (RBML) approaches.’ The main contents of this chapter have pre-
viously been published in the proceedings of the BIOMA conference series [Hei+22b], as well
as the Journal of Applied Soft Computing [Hei+23d], where the latter extended the former’s
comparison of SupRB to the most common LCS for regression tasks, XCSF [Wil02a], by addi-
tionally benchmarking against Decision Trees (DTs) and Random Forests (RFs). We selected
these three methods as they are relatively widespread RBML approaches that should be the
strongest competition for use cases where SupRB can be used effectively. This is also the rea-
son why we do not compare with neural networks. As they are—at least at the moment—not
interpretable, they are best suited for different applications as SupRB. We can expect them
to show lower errors but unfit for the explainability requirement we assume for the use of
SupRB.

We find that, as hypothesised, SupRB performs competitively to XCSF with respect to predic-
tion error across datasets, while producing substantially more compact models directly. SupRB
achieves better mean errors than DT while still constructing smaller models and worse errors
than RF, albeit, with vastly smaller models than RF.

5.1 Revisiting Explainability in Rule-based Machine Learning

To ease the reader’s understanding of the core discussions around the results from the evalua-
tion presented in this chapter, this section reiterates some core concepts around what makes
Rule-based Machine Learning (RBML) models explainable that have been discussed in more
detail in most of the previous chapters of this thesis.

A well-known representative of LCSs is the XCS Classifier System (XCS) (cf. Chapter 2), which
can be utilized to solve all the major learning tasks through its many derivatives and exten-
sions [UMO09]. To compare it to SupRB and other rule-based learning systems on a set of
supervised regression tasks with real-valued domains, a specific derivative and configuration

'As introduced in Chapter 4, where I gave a general description of SupRB, the two chapters form C3 as defined
by Section 1.1 in combination with Chapter 6, where I will discuss possible improvements of the algorithm or
its models.
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is required. XCSF provides the basis for this, being designed specifically for supervised func-
tion approximation by replacing the constant predicted payoft with a linear function [Wil02a].
Additionally, the binary matching function is replaced with interval-based ones to enable ap-
plicability on real-valued problem domains [Wil02b]. There are more elaborate variants for
replacing matching functions and linear models, which aim at improving the performance,
but, at the same time, reduce the overall model transparency [BO02; LL06].

RBML systems and, therefore, also LCSs, are considered transparent or interpretable by design
due to their natural relation to human behaviour. This means they do not necessitate the use
of complex post-hoc methods, e.g. visualization or model transformation, to be explainable to
humans. There are, however, factors that can reduce the capabilities of these models, even
when they are inherently transparent. These include for LCS, among others, the applied en-
codings, the number of rules in the model and the complexity resulting from the complicated
matching functions or local models in the individual rules [Bar+20]. For a more in-depth view,
see also the previous discussions on this in Chapter 3 and Section 4.3.2.

While it is common to control these limitations in LCSs by-design (cf. Chapter 4 for the case
of SupRB), it is also possible to utilize specialized post-hoc methods. Especially visualization
techniques for rules, but also other strategies, aim at improving the model’s interpretability
[UGM12; LBX19; LBX21b]. Nevertheless, controlling interpretability by-design can be advan-
tageous, as it does not require to devise designated post-hoc methods or adapt existing ones to
the specific needs of the problem at hand, as well as the model itself, which requires not only
time but also sufficient expertise. The design must therefore focus on understandable match-
ing functions and local models, but still keep the predictive power acceptable. Other factors,
for example problem-dependent complex variables/features, can reduce the interpretability
and are additionally hard to influence, which is why a thoroughly thought through design is
important.

The interpretability of LCS and of rule-based learning systems in general is also highly depen-
dent on the resulting rule set sizes. For example, visual inspections are much easier for smaller
sets and the extensiveness of subsequent analysis is reduced. For LCSs, the control of the
rule set size is different for batch multi-solution (Pittsburgh-style) and online single-solution
(Michigan-style) systems. In batch multi-solution LCSs, the optimization algorithm’s fitness
function often combines several objectives, most commonly the accuracy and the number of
rules, therefore enabling rule set size control. In GAssist [Bac04], for example, the accuracy
and the minimum description length are combined into a single objective, while applying an
additional penalty for rule sets with too few rules. For online single-solution LCSs, large pop-
ulations are generally beneficial during the training process and therefore they do not con-
trol the rule set size using the fitness function. However, during training, two rules can be
merged if one fully encloses the other, a mechanism which is called subsumption. Addition-
ally, compaction can be invoked as a post-hoc method to decrease the number of rules in the
set [Wil02b; LBX21a]. It removes redundant rules, i.e. ones whose deletion does not decrease
prediction accuracy. Compaction methods are, however, commonly designed for classification
tasks only.
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In contrast to LCSs, Decision Trees (DTs)—the most well known RBML method—are composed
of a set of non-overlapping rules, whereas in LCSs rules may overlap which enables a higher
degree of generalization. Models based on multiple DTs, such as Random Forests (RFs) us-
ing bagging or XGBoost using boosting, are typically less interpretable than DTs and even
LCSs. LCSs are build from overlapping rules, while RFs and XGBoost models are build from
aggregations of trees which are in turn build from non-overlapping rules. For an extensive dis-
cussion on how the concepts of bagging, boosting, and mixing relate to and differ from LCSs
see [Hei+23a] and Chapter 2.

5.2 Evaluation

To evaluate SupRB as described in Section 4.1, we compare it to a recent implementation of
XCSF? [Wil02a; PP21] with hyperrectangular conditions and linear local models (trained by
recursive least squares updates [Lan+06]). This configuration very closely corresponds to the
conditions and local models used in SupRB. While we want to specifically acknowledge that
some better-performing conditions, e.g. hyperellipsoids [But05], have been proposed for XCSF,
we consider them substantially less interpretable for average users, which worsens with in-
creasing input space dimension. We expect XCSF to perform somewhat on-par with SupRB.
Usually, errors should be lower while the number of rules in the model (after model compres-
sion/compaction) is higher. Additionally, we compare SupRB (and XCSF) with Decision Trees
(DTs) and Random Forests (RFs)®>. As LCSs can be considered as one option to generalize DTs
(by dropping the assumption of non-overlapping rules (cf. [Hei+23a] and Chapter 2)), a com-
parison to them is very intuitive. We hypothesize that DTs show worse errors than the other
ML approaches while producing somewhat easier-to-interpret models. Their interpretability
is strongly supported by rules not overlapping. However, this usually also makes for less pre-
cisely approximated functions (assuming equal number of rules before mixing), increasing the
error of the overall model. RFs combine a multitude of trees which, at first glance, might look
similar to LCSs since these trees are mixed together in order to produce predictions, whereas,
in LCSs, rules are mixed. As each individual tree that is part of the RF consists of rules that
fully cover the input space, predictions are performed by mixing multiple rules (exactly one
rule per tree since there are no overlapping rules within each tree). However, due to how RF
are trained, the training steps that lead to these rules are much harder to trace. Furthermore,
RFs typically use large numbers of trees, resulting in mixing many more rules than we ex-
pect to see mixed for each prediction in SupRB. We hypothesize that their errors will be lower
than SupRB’s due to higher model complexities being allowed and, probably, also lower than
XCSF’s. The interpretation of the models generated by RFs, on the other hand, can be expected
to be more difficult due to the high number of interacting trees.

*https://github.com/rpreen/xcsf https://doi.org/10.5281/zenodo.5806708
*We use them as implemented in the Python package scikit-learn [Ped+11] v1.0.1.
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5.2.1 Experiment Design

SupRB is implemented* in Python 3.9, adhering to scikit-learn [Ped+11] conventions. We stan-
dardize the target and transform input features into the range [—1, 1]. These transformations
improve SupRB’s training process as they remove the need to tune error coefficients in fitness
calculations, i.e. balancing complexity versus error for each dataset, and help prevent rules
from being placed in regions where no samples exist (and therefore none would be matched).
While other optimizers have been proposed for rule discovery (RD) [Hei+22a] and solution
composition (SC) [Wur+22] in SupRB, the results have largely been inconclusive, with ES and
GA, respectively, probably being a good (or even the best) choice for the optimizers. Therefore,
the experiments of this chapter®, which correspond to [Hei+23d], follow the setup of [Hei+22b]
on which they were originally based and use these optimizers as well as the remaining general
configuration®: We assume that for the datasets under investigation discovering a total of 128
rules is sufficient to compose good models from. Hence, 32 cycles of alternating rule discovery
and solution composition are performed, generating 4 rules per cycle. For the ES we selected
a A (size of the offspring population) of 20. The GA performs 32 iterations with a population
size of 32. In general, all of these parameters can be chosen quite freely as long as they are
“large enough” (facilitating convergence), with larger values being neither considerably bene-
ficial nor detrimental to model performance but may impose considerable additional runtime
cost during training. There is a clear and observable difference in regards to learning tasks,
although they do not call for specific tuning. In future work, where new tasks will be investi-
gated, which are likely more complex in function type, number of data points, dimensionality,
et cetera, they could need to be increased for better performance. To tune some of the more
sensitive parameters, we perform a hyperparameter search using a Tree-structured Parzen Es-
timator in the Optuna framework [Aki+19] that optimizes average solution fitness on 4-fold
cross-validation. We tune the datasets independently for 1000 iterations or a maximum of 360
core hours per tuning process. For XCSF we follow the same process, selecting typical default
values’ [PP21] and tuning the remaining parameters independently on the datasets. This same
setup is also used for DT and RF.

The final evaluation, for which we report results in Section 5.2.2, uses 8-split Monte-Carlo cross-
validation, each with 25 % of samples reserved as a validation set. Each learning algorithm is
evaluated with 8 different random seeds for each 8-split cross-validation, resulting in a total of
64 runs per algorithm per dataset.

We evaluate the four approaches on datasets which are taken from the UCI Machine Learning
Repository [DG17]. An overview of these is presented in Table 5.1. The Combined Cycle
Power Plant (CCPP) [KT12; Tiif14] dataset shows an almost linear relation between features

“The newest version is always found at https://github.com/heidmic/suprb. The version used for all experiments
in this dissertation is long-term archived at https://doi.org/10.5281/zenodo.14181292.

*All scripts to reproduce the results of all experiments within this thesis—including the other chapters—can be
found at https://github.com/heidmic/suprb-experimentation.

‘Note that the results of [Hei+22b] were chronologically achieved first, even if they saw final publication later
than [Wur+22] and [Hei+22a] due to different publication cycles.

"https://github.com/rpreen/xcsf/wiki/Python-Library-Usage
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Table 5.1: Overview of regression datasets SupRB, XCSF, DT, and RF are compared on.

Name (Abbreviation) Ndim  Msample

Combined Cycle Power Plant (CCPP) [KT12; Tuif14] 4 9568
Airfoil Self-Noise (ASN) [BPM389] 5 1503
Concrete Strength (CS) [Yeh98] 8 1030
Energy Efficiency Cooling (EEC) [TX12] 8 768

and targets and can be acceptably accurately predicted using a single rule. Airfoil Self-Noise
(ASN) [BPM89] and Concrete Strength (CS) [Yeh98] are both highly non-linear and will likely
need more rules to predict the target sufficiently. The CS dataset has more input features than
ASN but is easier to predict overall. Energy Efficiency Cooling (EEC) [TX12] is another rather
linear dataset, but has a much higher input features to samples ratio compared to CCPP. It
should similarly be possible to model it using only few rules.

5.2.2 Results

In this section, we present and discuss the results of our experiments. We first focus on MSEs,
then discuss solution complexities, and close with a rigorous statistical analysis.

Mean Squared Errors

Table 5.2: Overview of the experimental test data results of 64 runs per dataset rounded to two
decimals. The columns give the mean error and its standard deviation over the runs
per algorithm. The errors are calculated in a standardized target space, meaning
the data was transformed to zero mean and unit variance beforehand. If the data is
normally distributed and the sample size is large enough, then a very trivial model
that predicts the mean of the output training data for any input is able to achieve
an MSE of about 1 in standardized target space. Highlighted in bold are the models
where the mean performance was stronger than the other models’.

CCPP ASN CS EEC

SupRB 0.07+0.00 0.16+0.02  0.14+0.03 0.03+0.01
XCSF  0.06+0.00 0.12£0.16 0.17+0.13 0.02+0.02
DT 0.06+0.00 0.27+0.03 0.17+0.03  0.08+0.02
RF 0.04£0.00 0.06+0.01 0.09+0.02 0.04+0.01

In our experiments, we find that—on average—XCSF performs slightly better than SupRB,
which in turn performs slightly better than DT with regards to mean squared errors (MSEs).
RF is competitive or better on all datasets and does show the lowest variance over the different
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Figure 5.1: Distribution of runs’ errors. All datasets are standardized with unit variance, there-
fore, a trivial model should achieve an error of about 1.0. Note that the plots are on
different scales, reflecting the varying difficulty of the learning tasks.

runs. This follows our previous hypotheses. While RF is performing worse than XCSF and
SupRB on EEC and—at least visually—vastly better than all on CCPP (cf. Figure 5.1a), we want
to stress the very low difference in actual value of the runs on these two datasets, which is
likely not practically relevant. Plots of all runs are found in Figure 5.1, while we report mean
(across runs) MSEs and their standard deviations in Table 5.2%. The presented results are based
on the standardized (zero mean and unit variance) versions of the targets of the respective
datasets, facilitating an easier across-dataset comparison. However, a comparison with results
from other publications that used the same datasets can be more difficult since oftentimes met-

®Note that the presented values (taken from [Hei+23d]) marginally differ from those in [Hei+22b]. We did adjust
some of the available hyperparameter ranges for our hyperparameter tuning between these two articles. For
SupRB, the differences were very small, only visible on ASN with the given two decimal precision. However,
XCSF did perform slightly better, falling less frequently into cover-delete cycles (a common problem with XCS-
based systems, cf. [SB10]).
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rics are reported on non-standardized-outputs scales as they are made with different intentions.
As we do not attempt to find the overall best solution to those specific learning tasks but want
to compare and contrast SupRB to three other RBML techniques, we deem this an appropriate
compromise.

Analysing the distributions of errors more closely, we find that the algorithms do show differ-
ent behaviours. Clearly, runs are not actually normally distributed for any algorithm. Presum-
ably, the fact that small real-world datasets are used in this analysis has an influence on this
behaviour, but the algorithms do also not converge towards the exact same model per split. No
clear relations between random seeds or data splits and errors can be seen from the experiment
data itself.

SupRB, XCSF, and DT all did show at least one outlier, although, for XCSF, these were much
further away and substantially more frequent. Cover-delete-cycles, a known issue in online
single-solution LCSs where experienced rules are removed from the population by error and
new rules are only shortly part of the population [SB10], seem to have affected many of XCSF’s
runs. In online single-solution LCSs, covering is a rule generating mechanism that is triggered
when few rules match a given input and then creates a new rule that is guaranteed to match
this input. The deletion mechanism of XCSF randomly, but fitness-proportionately, removes
rules when the population has reached its hyperparameter-imposed maximum population size.
During tuning, we allowed our tuner to choose both the number of training steps and the max-
imum population size (among the many other parameters of XCSF). Regardless, we find that
post-training population sizes almost always reach the population size limit (not accounting
for numerosity). The tuner seems to have found settings that counteract the cover-delete-cycle
somewhat well. We find that XCSF’s hyperparameter tuning chose much larger populations
than what would be expected following the typical rule of thumb of using ten times as many
rules as should be needed for a good problem solution (based on domain knowledge or prior
modelling experience) [UB17]. Upon further investigation, we also found that rules contained
in the final models were usually only discovered late during training, although the system
error had remained stagnant (at least not showing practically significant changes) for quite
some time beforehand. Subsumption in the EA—a typical method to combat cover-delete-
cycles—was utilized. This important mechanism checks whether a newly discovered rule is
fully contained within a parent rule, in which case the new rule is not added to the popula-
tion and the respective parent’s numerosity parameter gets increased by one. A numerosity
of n means that this rule is in the population n times and thus counts as n simple rules (with
a numerosity of 1; also known as micro-classifiers rather than macro-classifiers which have
a numerosity > 1) towards the population size limit. Numerosity is also used in the fitness-
proportionate delete mechanism. A rule selected for deletion gets its numerosity reduced by
one and is only fully removed if that parameter hits 0. Theoretically, subsumption is thus de-
creasing the number of macro-classifiers in the population. Regardless, it seems that in our
runs cover-delete-cycles could not be prevented as we found most rules contained in the final
model have only been part of the population for relatively short amounts of time and mostly
had numerosities of 1.
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Overall, SupRB’s training seems to converge more reliably than that of the other LCS, XCSF.
Some variance based on random seeds is strongly expected, as this is a common occurrence
in (evolutionary) stochastic optimization, cf. e.g. [Ver+22]. RF—a non-evolutionary method—
suffers less from this phenomenon, however, the overall variance, especially within one data
split, is not substantially different from SupRB (and DT) when practical significance gets taken
into account as well.

Model Complexity

Table 5.3: Overview of the solution complexities (number of rules in the solution proposed by
SupRB, the final macro-classifier count in an XCSF population after compaction and
the number of leaf nodes in a DT, respectively) across 64 runs per dataset rounded to
two decimals. We report mean and standard deviation. Note that we omit RF here,
which used 194, 228, 91, and 122 trees of—on average—similar sizes to the individual
DT models, respectively, and is therefore vastly out of scale in terms of number of
rules.

CCPP ASN CS EEC

SupRB 2.97+0.67 32.67%2.8 28.47£2.68 11.84+1.85
XCSF 1922.71£390.7 1617.58+413.12 481.68+336.33 707.94+282.16
DT 556.44+18.38 67.92£2.59 110.62+6.37 26.50%0.71

A main concern of SupRB is to produce (better) explainable models while maintaining com-
petitive results in terms of error. Figure 5.1 and Table 5.2 demonstrated that SupRB is able to
learn from complex datasets similarly well as established methods. Table 5.3 gives the model
sizes® of SupRB, XCSF, and DT. We report their mean over 64 runs and their standard devia-
tion. Model size (number of rules) is one of the key parameters that hinders interpretability
and therefore explainability of RBML models [Bar+20].

Due to the frequent cover-delete-cycles discussed extensively in the previous section, XCSF’s
trained models are usually very close to the population size limit set during tuning. We then
perform compaction (cf. Section 5.1) to remove as many rules as possible, which resulted in
about 10% of rules being removed. However, the final model size still far exceeds the one of
SupRB. Admittedly, XCSF training does not explicitly promote small macro-classifier counts;
however, many mechanisms are present that should reduce it (in particular: set subsumption,
EA subsumption, and, most importantly, compaction).

DT did show a tendency towards surprisingly large and complex trees for CCPP. Its models
for ASN and EEC were only twice the size of SupRBs, which is easily explained by LCSs ability
to have overlapping rules which DTs lack. However, the errors of DT on these two datasets

°Note that the presented values differ from those in [Hei+22b]. These differences are the result of adjusting some
of the available hyperparameter ranges for our tuning. For SupRB, this results in larger models, while, for XCSF,
it reduced model size compared with [Hei+22b].
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were also notably higher than SupRB’s. Rule overlaps could explain the roughly four times as
large model for CS as well, where DT performed only slightly worse than SupRB in terms of
error. For the training of DTs we used a slightly modified version of the well-known CART
algorithm, as implemented in scikit-learn [Ped+11]. This algorithm controls tree size on the
basis of some configurable hyperparameters like maximum depth and minimal sample count
in a leaf node and does also feature a pruning mechanism that balances prediction error with
tree complexity directly.

For RF, we tuned the number of trees to be bagged, which resulted in 194, 228, 91, and 122
trees for CCPP, ASN, CS, and EEC, respectively. The individual trees were of roughly the same
size as the ones used by DT, making RF’s models substantially larger than those of the other
three algorithms’. Models of that size are theoretically interpretable but practically it is not
realistic to gain substantial insights in an appropriate time. SupRB’s models can, however, be
read rather easily and analysed even without very deep LCS knowledge. Our results on the
complexity metric fit with our hypotheses made at the beginning of Section 5.2.

Model Inspection

Table 5.4: Exemplary rule generated by SupRB on CS dataset. The target is the concrete com-
pressive strength in MPa. The original space intervals denote the area matched by
the rule in terms of the original variable scales, while the intervals in feature spaces
are scaled into [—1, 1] and help perceiving rule generality at a glance. Coefficients
denote the weight vector used for the linear model. This rule was also presented in
our previous study [Hei+22b].

Original Space Feature Space o
input variable interval interval coef
Cement [kg/m?] 104.72,516.78] 0.99,0.89] 2.38
Blast Furnace Slag [kg/m?] 0, 359.40] 1.00,1.00] 2.29
Fly Ash [kg/m?] 13.45,200] 0.87,1.00] 0.68

[ - }
| st 1
Water [kg/m?] [122.64,244.80]  [-0.99,0.96] -1.26
Superplasticizer [kg/m?] [6.02, 24.80] [—0.63,0.54] -0.67
[ - ]
[ - }
[ - ]

Coarse Aggregate [kg/m?] 950.16, 1145] 0.13,1.00] 0.71
Fine Aggregate [kg/m?] 756.14,992.60] 0.19,1.00]  0.60
Age [days] 18.36, 365] 0.90,1.00]  2.07

intercept, = 3.9160

In-sample MSEj; 1.5310 In-sample MSE, 0.0917 Experience 84

An example rule extracted from a model trained on the CS dataset is presented in Table 5.4.
The data set consists of eight input features (and a target). For each dimension of the input,
Table 5.4 gives the name (and SI unit), what portion of that dimension is matched, and how

79



5 Comparing SupRB with other RBML methods

influential the value in a dimension is towards our target (denoted by the coefficient of the local-
ized linear model). For the matching interval (we always match hyperrectangular subspaces),
Table 5.4 contains the absolute (original/unscaled) and the normalized (min-max-scaled fea-
tures) bounds. The normalized bounds are what SupRB operated on and make it easier to
grasp what part of the populated (with samples) space is being matched, whereas the original
space representation helps at understanding proportions and relates stronger to the real world.
While we think that both representations are important for XAl we can assume that algorith-
mic behaviour is better understood/analysed on the normalized space, while the original space
is more helpful for domain experts tasked to operate with the rule’s predictions. Additionally,
Table 5.4 gives the constant intercept of the linear local model and the in-sample (encountered
during training) error of the local model, as well as how many examples from the training data
were matched and used for its training.

During training, the rule in Table 5.4 matched 84 examples (its experience is 84) and it did
match another 31 examples from our test set. The model we extracted it from consisted of
a total of 23 rules, with experiences of 7 to 240. Rules were either rather general or rather
specific. The presented rule is more general than many others.

Close inspection reveals that it matches most of the available input space for five out of CS’s
eight dimensions. It is even maximally general for the “Blast Furnace Slag” input variable. For
the “Superplasticizer” input variable, the rule matches slightly more than half of the possible
values and is roughly positioned around the center of the range of values, while for “Coarse
Aggregate” and “Fine Aggregate”, the rule matches 55 to 60 % of the input range, oriented
towards higher values. Note that despite these seemingly large intervals per dimension, the
rule only matched about 16% of the entire feature space.

The linear local model’s parameters are also based on the transformed feature space and the
standardized version of the target (in this case, the concrete’s compressive strength). While
higher concentrations/values of “Cement”, “Blash Furnace Slag”, and “Age” of the mixture
influence its compressive strength positively, high concentrations of “Superplasticizer” and
“Water” have negative effects on this target. The other three variables have lower effects on
the target but all seem to positively influence compressive strength of the concrete mixture
in the matched areas. Note that this last distinction is very important and actually the great
strength of a rule set learning approach. We are able to assign different parts of the inputs
space different coefficients for the same features and keep that in an easily readable format.

One of the rule’s matched examples is 2 = (190.3,0,125.2,161.9,9.9,1088.1, 802.6, 56)7
with an original y = 38.56. For this example, the rule proposes § = 38.39. The prediction
is clearly close to the ground truth. Providing this example to a user with domain experience
can help them assess the model’s predictive power (cf. Section 4.3.2). Moreover, the user can
then extrapolate to other examples that would fit in the provided matching intervals, increas-
ing their trust over other models, where such extrapolation is not possible from the models’
structure.

The rule performed slightly below average compared to the other rules in this solution (mean
in-sample MSE of 0.0751) on its training data, although this should be viewed critically as more
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specific rules tend to be able to fit their (noisy and non-linear) input data more easily. We find
that rule inspection can provide critical insights into the model’s predictive process and is easy
to do due to the rule’s design and the overall small number of rules per model.

Statistical Analysis
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Figure 5.2: Density plot of the posterior distribution obtained from Corani and Benavoli’s
Bayesian correlated t-test [CB15] applied to the difference in MSE between SupRB
and XCSF. Orange dashed lines and numbers indicate the 99 % HPDI (i.e. 99 % of
probability mass lies within these bounds). HPDI bounds rounded to two signif-
icant figures. Effectively, this indicates how likely a specific difference between
one run of each RBML algorithm will be (practically, probability mass above zero
equates to SupRB having a higher (worse) value than XCSF).

In this section, we compare SupRB with the three established RBML algorithms using a Bayes-
ian model comparison approach. For this, we apply Corani and Benavoli’s Bayesian correlated
t-test [CB15]*° to determine probability distributions over the differences in performance be-
tween the algorithms.* Despite their remaining popularity, we deliberately avoid the use of
null-hypothesis significance testing due to their many flaws and possible pitfalls [e.g. Ben+17].
The resulting posteriors (given in Figures 5.2, 5.3, and 5.4 for MSEs including 99 % high poste-
rior density intervals (HPDIs)) are the distribution of the difference between the considered metric
for SupRB and the considered metric for the other algorithm (practically, this equates to values
above zero indicating SupRB having a higher (worse) metric value than the other algorithm).

Figure 5.2 compares SupRB’s MSEs with those of XCSF. We see that in 99% of runs, we should
expect SupRB to perform worse on CCPP and almost even on the other three datasets. It should
be noted that on CCPP the actual difference in expected errors is quite small and a difference

%We use the implementation provided by https://github.com/dpaetzel/cmpbayes.
""Note that the results differ from [Hei+23d] due to the fix of an—at the time of writing that article undiscovered—
bug in the underlying library, cf. https://github.com/dpaetzel/cmpbayes/pull/1.
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in this range is unlikely to be practically significant. For ASN and CS, the median difference
is expected to be very close to zero with XCSF and SupRB each having a slight edge on one of
the datasets. The distributions are comparatively wide in terms of absolute errors indicating
that, when performing piecewise comparisons of individual runs of the two LCSs, some com-
binations can have vastly different errors despite the majority of combinations likely yielding
small differences. For EEC, the distribution does look similarly wide, however, it should be
noted that this is on a scale one order of magnitude smaller. XCSF might have a small edge in
the case of some EEC runs, however, it is doubtful that this difference is practically significant.
As explained, the practical significance of differences in expected performance is likely quite
low and we assume that, in terms of error, XCSF and SupRB should be considered to perform
somewhat equally or at least that no clear decision can be made. In terms of model complexity,
the result is very clear that SupRB performs considerably better and does not require further
statistical analysis.
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Figure 5.3: Density plot of the posterior distribution similar to Figure 5.2 but between SupRB
and DT.

In Figure 5.3, we compare SupRB’s MSEs with those of DT. DT might perform very slightly
better on CCPP, although this difference would again likely not be practically significant. On
the other three datasets, SupRB expectedly will perform better with smaller distributions of
differences than against XCSF. For ASN and EEC, we expect that more than 99% of runs will
have SupRB showing better errors. For CS, only a very small amount of probability mass
favours the DT’s runs. As with XCSF, the model complexity analysis clearly shows SupRB to
return models with substantially less rules but with the caveat of DT’s rules not overlapping,
making it slightly easier to explain.

The distributions in Figure 5.4 show the expected distribution of differences in MSE between
SupRB and RF. RF performs better than SupRB on CCPP, ASN, and CS, and does so rather con-
sistently. For EEC, the test expects SupRB to perform—at most—very slightly better, however,
this is clearly not a practically significant difference and I would argue that the result of the
test puts SupRB and the RF at equal performance for EEC.
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Figure 5.4: Density plot of the posterior distribution similar to Figure 5.2 but between SupRB
and RF.

Overall, we can conclude from our tests that, on MSEs, SupRB is probably outperformed by RF
or performs equally to it, outperforms DT, and is only slightly outperformed by XCSF in the
majority of cases. This fits well with our hypotheses outlined at the beginning of Section 5.2.
In terms of model complexities, SupRB does manage to produce substantially smaller and more
interpretable models without loosing too much predictive power.

5.3 Summary of the Experiment

This chapter benchmarked SupRB and compared and contrasted it to more established RBML
algorithms. It is based on [Hei+23d], which itself is an extension of [Hei+22b]. In those publi-
cations, we depicted how SupRB, as a novel RBML algorithm that uses two separate optimizers
to place and select rules, ranks in terms of compact rule sets and prediction errors when com-
pared to three well-established RBML algorithms.

In this comparison, we benchmarked SupRB, Decision Trees (DTs), Random Forests (RFs), and
the XCSF classifier systems (XCSF) on four real-world regression datasets with different learn-
ing task complexities and dimensionalities. As both SupRB and XCSF should be considered
Learning Classifier Systems, XCSF produces the most similar types of machine learning mod-
els. For both algorithms, we limited rules to use hyperrectangular conditions and linear local
models, as the main advantage of these types of models (and motivation to use them) over
other models is their inherent interpretability and transparency. We tuned the more sensitive
hyperparameters of each algorithm for every dataset independently and then performed a to-
tal of 64 runs (8 random seeds and 8-fold Monte-Carlo cross-validation with 25% test data) per
algorithm per dataset.

We expected SupRB and XCSF to perform similarly in terms of errors, with smaller models for
SupRB. Furthermore, we assumed DT to perform worse than SupRB (maybe better regarding
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interpretability) and RF to perform better than SupRB in terms of error and substantially worse
on model complexity. We found those hypotheses to largely hold. While there is some varia-
tion across datasets, general tendencies are quite clear. We did perform an extensive statistical
analysis using Bayesian correlated t-tests to critically question these findings. The results of
these tests did support the hypotheses and are in-part (where they were most interesting) pre-
sented in this chapter. Overall, we conclude that SupRB is a promising new RBML algorithm
for creating predictive models with compact sets of human-readable rules.

It is reasonable to assume that SupRB could construct less erroneous models if the pressure
to evolve small rule sets was lower. However, as explainability is the main reason to use
RBML models, rather than e.g. neural networks, we think that our current models strike a
well-acceptable balance. XCSF’s models have been severely more complex while only being
slightly better with respect to prediction error. Likely, XCSF, RF, and SupRB find themselves
at different points on the Pareto front between error and complexity, whereas DT is possibly
Pareto-dominated.

The model of SupRB—as introduced in Chapter 4 and benchmarked here—forms the basis for
all subsequent investigations featured in this thesis. Chapter 6 will propose new or updated
mechanics component-by-component, discuss their relevance given the assumptions about
SupRB’s goals, and test promising candidates for their merits. In Chapter 7, several approaches
to investigate—and potentially improve—SupRB even further will be discussed.
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After comparing SupRB with some of its closest competitors (cf. Chapter 5), finding that it
does perform as hypothesized, the next logical step is to investigate possible improvements
and/or extensions to the base formula (cf. Chapter 4)." In this chapter, possible adjustments
are discussed and various experiments where such extensions have been performed will be
presented. Importantly, this chapter also discusses why some of the more typical LCS exten-
sions from past research might not be useful for the context of providing a highly explainable
ML system. The sections of this chapter discuss extensions component-wise, starting with
the two parts of the rule (condition (Section 6.1) and local model (Section 6.2)), discussing the
mixing model used to combine multiple rules to a model (Section 6.3), and, finally, investi-
gating the two metaheuristic optimization processes (rule discovery (Section 6.4) and solution
composition (Section 6.5 and Section 6.6)).

Given the introduction of an entirely new system into a mature field, there are seemingly
endless possibilities to adapt SupRB. The following tries to provide a well-rounded first inves-
tigation of some of the more immediate options, but we had to take sensible limitations to our
experiments and focus on the most promising adaptations. In general, my mental approach
was: As someone with a deep knowledge of the literature of the LCS and wider evolutionary com-
putation fields, what would be my “Did you already try X?” questions to a colleague asking for
advice on how to improve various aspects of SupRB. Then, I tried to answer as many of them as I
could in a sensible prioritized order® and present a large number of other options in the respec-
tive sections of this chapter and, of course, Chapter 7, although even that is a non-exhaustive
list. Additionally, some options were suggested to us by peer-reviewers of our SupRB-related
publications or interested other researchers during conferences. We include them into the re-
spective sections as well. Overall, I am confident that this thesis presents versions of SupRB
that are convincing to others interested in implementing (or experimenting with) XAl and does
not leave them thinking that this is an unfinished or unrefined system that is too insufficiently
tested to even be considered for further investigation.

'As introduced in Chapter 4, where I gave a general description of SupRB, Chapters 4 to 6 constitute C3 as defined
by Section 1.1.

*My priority mainly took into account whether this is a large system change, e.g. switching whole metaheuristics
as in Section 6.5, which should be done early as it might render other work void if the improvements are
considerable, whether the actual gains are promising because there is an immediately plausible theoretical basis,
e.g. including self-adapting properties as we did in Section 6.6, and whether they still maintain our assumptions
about explainability or would just serve as a benchmark to compare to, e.g. we did not test neural network-
based rule conditions or local models or even hyperellipsoidal conditions because these will most likely not
be sufficiently explainable. However, we did investigate changes to the mixing model that might improve the
explainability.

85



6 Extending and Improving SupRB

6.1 Rule Conditions / Matching Functions

One of the often discussed and investigated elements of LCSs, especially XCS(F), are the pre-
sentations of rules, especially, their conditions. The condition (or matching function) of a rule
defines the subspace of the input feature space for which this rule can or should model the data.
How a condition is encoded is therefore also problem dependent, in addition to the previously
discussed considerations on explainability (cf. Chapter 3). For example, a binary input space
would typically be encoded using ternary [Wil95] conditions while integer- and real-valued
input spaces are modelled differently. One typical approach for these is to use interval-based
conditions.

As SupRB is conceptualized as a regressor for real-world tasks, feature spaces solely made up
of binary or categorical inputs are not considered. Similarly, hybrids, i.e. matching functions
where some dimensions are matched with one type of condition while others are matched with
others, were not yet considered, although that might provide an interesting avenue for future
work for very specific real-world tasks. Such hybrids might then contain ternary matching in
addition to, e.g., interval-based matching. In general, it is assumed that SupRB operates on real-
valued inputs. If the original feature space is different, it should be transformed to real values.
As explainability is hindered the more complex a matching function gets, there is a strong
incentive to choose simpler matching functions. Following the experiments on interval-based
matching presented in Section 6.1.1, Section 6.1.2 will present more complex approaches and
will argue why it is reasonable that adopting some of the options is inappropriate for the tasks
SupRB is meant to be used for, i.e. those where explainability of models is paramount.

6.1.1 Interval-based Matching in SupRB

Past research proposed four variations of interval-based conditions and a quite numerous num-
ber of other forms of conditions utilizing a variety of functions and hybrids thereof. This sec-
tion will summarize our own experiments regarding matching functions in SupRB.

The easiest possible matching function on real values uses an interval for each dimension. Val-
ues inside the interval bounds are matched while those outside are not. In a multi-dimensional
input space, this type of function matches hyperrectangular subspaces. It is, therefore, often
referred to both interval-based and hyperrectangular matching in literature.

Four different ways to encode such hyperrectangular conditions inside a rule have been pro-
posed in LCS literature:

« OBR: Ordered Bound Representation (sometimes also called MMR: Min Max Representa-
tion) is based on the classic way to display intervals, i.e. by directly using the upper and
lower bounds. It was first introduced by Wilson [Wil01] for an XCS for data mining with
integer inputs. OBR was also used in all SupRB experiments in this thesis. A rule k ap-
plies for example z iff z; € [l ;, uy ;] Vi with [ being the lower and u the upper bounds.
This makes it relatively easy for a human reader to evaluate whether a data point is
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matched or not. Although, with high dimensionalities, humans can even struggle with
this representation.

UBR: Unordered Bound Representation is an adaptation of OBR based on the assumption
that a potential reordering of the two bounds after mutation might have negative effects
on the search behaviour of the evolutionary algorithm [SB03]. A rule k£ applies for ex-
ample x iff z; € [min(pg ;, gk i), max(pg ;, qx ;)] Vi with p and ¢ being stored in the rules
unsorted. The potential negative effect on metaheuristic search behaviour due to sort-
ing could occur in the following example: Assume a two dimensional input space and a
rule k; that has the condition ([3, 7], [1, 5]). k1 matches z iff z; is between 3 and 7 and
xg is between 1 and 5. If the mutation operator would now change upper bound of the
first dimension from 7 to 2, OBR would require resorting to (|2, 3], [1, 5]), while the new
condition in UBR would be ([3,2],[1,5]). Although mutation only operated on one of
the four values, in OBR, two have been changed. While the same space is matched in
both representations, the genotype locality of mutation is higher with UBR. Additionally,
two genotypes can now produce the same phenotype which may be advantageous—as
argued by Stone and Bull [SB05] as no swapping operator is needed—despite the loss of
phenotype locality. Dam, Abbass, and Lokan [DAL05] argue that this goes against the
building block hypothesis in GAs and may therefore be a disadvantage, leading them to
propose MPR (see below). However, for explainability UBR should probably be parsed
into OBR before being presented to the user.

CSR: Center Spread Representation was the first hyperrectangular representation used in
a real-valued LCS, originally proposed by Wilson [Wil00] for XCSR, an XCS adaptation
for real-valued inputs. Rather than encoding upper and lower bounds of the intervals,
CSR is made up of the center points of the values and the symmetrical distance in both
directions from that point to the bounds. A rule k applies for example x iff z; € [ck; —
Ski» Ck,i + Sk Vi with ¢ being the centres and s the spreads. It is very intuitive to
imagine the size of a matched space (at least for individual dimensions) but it is a bit
harder to ad hoc determine if a data point is matched. From an optimization perspective,
there are disadvantages as well as advantages. For one, it is easier to control the size,
e.g., pushing overly specific rules towards generality, or vice versa, without changing the
general region that is matched. However, every change always changes both the upper
and the lower bound. In contrast to OBR where both values of an interval have the same
semantics, center and spread are sufficiently different to probably warrant the use of
different mutation rates. This is especially true for SupRB with the Evolution Strategy-
based rule discovery introduced in Section 4.1 as we probably want to keep the center
relatively stable and increase the spread each generation. Stone and Bull [SB05] found
that with CSR, XCS is biased towards more general intervals in its rules.

MPR Min Percentage Representation was originally proposed by Dam, Abbass, and Lokan
[DALO05] to fix the potential optimization issues of UBR as well as CSR by better adher-
ing to the building block hypothesis, which is violated by switching which gene in the
genotype expresses which behaviour in the phenotype in UBR. MPR uses a lower bound
(just as OBR) and then encodes the upper bound based on what part of the total space
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(assuming that there are known bounds for the inputs) is also matched. A rule k ap-
plies for example x iff z; € [Iki, ki + (qri * (Wmazi — lk,i)] Vi with [ being the lower
bounds, 4, the highest available values per dimension, and g being the percentages
of matched area between the lower bounds and the maximum values.

A typical notion for proposing different variants was, for example, a supposed benefit for the
evolutionary operators in the search for good rules. As this is a central aspect of SupRB’s rule
discovery, Anton Huber did investigate this in his Bachelor’s thesis under my supervision. The
experimental setup was the same as in [Hei+22b; Hei+22a; Wur+22] (cf. Chapter 5, Section 6.4
and Section 6.5, respectively) but excluding the relatively linear, and therefore similar to CCPP
in terms of potential knowledge gained, EEC dataset and replacing it with two additional data
sets available in the UCI ML repository (namely, Physicochemical Properties of Protein Tertiary
Structure (PPTS)* and Parkinsons Telemonitoring (PT)* [Tsa+09]). SupRB was used with the
ES-based rule discovery and the GA-based solution composition as described in Section 4.1
and benchmarked in Chapter 5.

The evaluation showed that UBR and MPR did not perform well within SupRB, while CSR and
OBR performed almost on-par with each other, with OBR having a slight potential edge. For
most use cases, OBR’ regularly produced smaller rule sets during individual runs and often
also performed slightly better on errors than CSR.

For UBR, the complexities of produced rule sets were similar to those of OBR, albeit with
significantly higher average MSEs. The only exception was on PT where the 64 evaluation
runs showed considerably worse values than OBR for both metrics. Typically, MPR produced
a smaller mean model complexity although it was firmly beaten in terms of errors. A closer
look into the individual rules making up UBR and MPR models hinted that they are somewhat
incompatible with the rule discovery process of SupRB. Although those are the representations
that were developed to make rule discovery easier in previous LCS, UBR and MPR should, in
my opinion, not be further considered for practical usage.

To further investigate whether OBR or CSR should probably be used, we performed a Bayesian
statistical analysis® to compare the approaches:

We first use the Plackett-Luce model-based approach as described by Calvo et al.[CCL18;
Cal+19]. Considering all four variants, OBR was expected by the statistical model to perform
on rank one for errors with a probability of 40.84% and for complexities with 22.88%. CSR
showed probabilities of 42.44% and 13.83%, respectively. The remaining probability mass was
favouring MPR (which has the highest probability to be the best in complexity with 35.42%
but only 14.48% on error), however, it is too likely that it will underperform on error to be
considered in use. These results further confirm that we can drop MPR and UBR from consid-
eration.

*https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure

*https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

*For the sake of brevity, I simplify “SupRB utilizing OBR for its rules” to “OBR” in the remaining text. This is
analogous for the other variants.

See [Ben+17] on why this is more appropriate than null-hypothesis testing despite its prevalence in ML research.
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A direct comparison on errors between CSR and OBR, using the model introduced by Be-
navoli et al. [Ben+17] and assuming a region of practical equivalence (rope) of 0.005 - Ggataset>
showed:

p(OBR > CSR) ~ 51.96 %
p(OBR = CSR) ~ 18.48 %
p(OBR < CSR) ~ 29.56 %

where:

« p(OBR > CSR) denotes the probability that OBR performs better (achieving a lower
MSE on test data),

« p(OBR = CSR) denotes the probability that both representations achieve practically
equivalent results and

« p(OBR < CSR) denotes the probability that OBR performs worse (achieving a higher
MSE on test data)

When adjusting the rope to 0.01 - 0gataset the model yielded a probability distribution of approx-
imately (0.28% | 0.41% | 0.30%), while setting the rope to 0 resulted in the probabilities (0.58% |
0.00% | 0.42%). Regardless of the chosen rope, neither of the two representations managed to
reach a threshold of 80%, as suggested by Benavoli et al. [Ben+17], to make any automated deci-
sion in this regard. Following those results (similar to our decisions about comparing XCSF and
SupRB in [Hei+22b]), we assume that OBR and CSR have specific use cases (datasets) in which
they can be applied more favourably but that, in general, especially when considering the raw
values in the results, OBR is a good all-rounder and can be chosen for all SupRB experiments
going forward.

6.1.2 More Complex Matching Functions

Other than the now extensively introduced interval-based matching functions, which have a
clear advantage for explainability, several other matching functions have been proposed in the
past for use as a rule’s condition.

A popular option is the use of hyperellipsoids (rather than hyperrectangles) as the matching
function [BLWO08]. It replaces the rectangular with an ellipsoidal shape, which has a clear ad-
vantage that is most obvious when comparing a hypercube with a hypersphere: for a spherical
shape, data points on the surface of matched space are all at the same distance to the centre.
However, for the cube, some points on the surface are closer to the centre than others. As-
suming that rules in an RSL model represent areas of similar expected behaviour (regardless
of whether we are performing classification, regression, or even reinforcement learning/agent
control), these “corners” of the hypercubes/hyperrectangles are not very intuitive and could
lead to rules matching data points they should not match. On the other hand, full coverage of
all inputs but little rule overlap is easier to achieve with rectangular partitioning. Importantly,
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the intervals are also easier to analyse and explain to stakeholders than the ellipsoidal shapes
which usually are implemented as Gaussian functions with hard cutoffs. This follows the abil-
ity to separate individual dimensions by conceptualizing the intervals one at a time, whereas,
for ellipsoids the most effective strategy would probably be to think of “How far is a certain
[non-axis parallel] point in space from the centre of the rule condition”, which is non-trivial for
n-dimensional space.

More complex models had also been proposed in the past but have mostly not seen wide adop-
tion. The use of neural networks as rule conditions has been explored by, e.g., Bull and O’'Hara
[BO02], Bull and Hurst [BH03], and Howard, Bull, and Lanzi [HBL09]. While these enable
very complex decision boundaries during matching which can theoretically enhance perfor-
mance, they are basically unexplainable at this time. Moreover, they are harder to optimize as
they contain more parameters. Igbal, Browne, and Zhang [IBZ14a] introduced GP-like code
fragment graphs as rule conditions. They can also model highly complex functions and should
show a better explainability than neural networks. Furthermore, partial structures in those
trees can likely be exploited to learn different but similar tasks much more quickly (and po-
tentially with less data) than a new training process would require. A first step towards this
was made by Nguyen, Browne, and Zhang [NBZ20]. It might be interesting for future work
to explore the use of code fragment conditions in SupRB in real world settings and test their
explainability in live scenarios. One example where this transferability of knowledge could
be very useful is the production process at the basis of the case study presented in Chapter 3.
For this product, a very high number of variations exists and new ones are introduced very
regularly, which can challenge ML-based models as they will often be tasked with predicting
the quality (or the optimal parameters) for a product that was not—or very rarely—produced
before. This would require a very high generalization capability, but the use of code fragments
might be especially useful here, regardless of the loss of explainability of rule matching which
was not deemed essential by the interviewed group of stakeholders. However, in other cases,
matching can be very important to stakeholders. This is particularly common when the focus
is not on explaining individual decisions, but on analysing the model as a whole.

6.2 Rules’ Local Models

Where a rule’s condition operates on a view of the environment, i.e. the inputs that lead to a
model returning some output, the rule’s local model governs which specific output is derived,
e.g. the action an agent should perform. This output can be quite diverse based on the model’s
tasks and integration into the agent. While some agents might allow the model to directly con-
trol a robotic arm, equating its output to certain movement of said arm, other models might
be responsible to predict the quality of a product (cf. our case study in Chapter 3) which the
agent then uses to make adaptations. While there is no “official” or universally agreed upon
distinction between agent and model, I assume agents to be more complex systems that con-
tain a model but also other components, e.g. drivers to parse model outputs into real world
behaviour.
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In general, rule set learning algorithms return a model appropriate for the learning task (cf.
Chapter 2). They can be trained using supervised, unsupervised, or reinforcement learning.
Outputs can be single values, e.g. a class (in binary and multiclass classification), a real value (in
regression for prediction or forecasting), an action (for direct control), or vectors of values, e.g.
for multilabel classification, regression of multiple values, estimating distributions over values,
or proposing actions and including their expected rewards. For this thesis and the previous
publications on the matter, I assume(d) SupRB to train models that perform regression of single
values. We did, however, propose a way to extend support towards (multiclass) classification
(cf. Chapter 4 and [Hei+22b; Hei+23d]).

In LCSs, models are made up of localized submodels (usually just called a local model) that
operate on partitions of the input space (cf. Chapter 2). We commonly refer to this combination
of local model and matching function as a rule. Section 6.1 already contained a discussion on
different matching functions. Therefore, the remainder of this section will focus on the models
contained in each rule.

The simplest possible local model to be used in SupRB is constant. These models can, theoreti-
cally, be used for both classification and regression. However, they are much more suited for
assigning a single class label to some input instance than assigning real values as rules should
cover as large as possible portions of the input space and—assuming the matched space is not
also featuring constant outputs—-a constant value will have high errors for most of the space.
Thus, we can expect that in a model geared towards small errors, this will probably lead to very
large numbers of rules. In models attempting a balance of rule quantity and error size, this will
often lead to unsatisfactory results on both metrics. When XCS is used for classification, it uses
constant models [Lan01].

The LCS most commonly used for regression is XCSF [Wil02a]. In its original conception,
XCSF used local models that were linearly approximating the function from which the data set
was sampled. Each rule contains a linear model of the space it is responsible for. These local
linear models are then mixed to make a prediction for a specific data point (cf. Section 2.1 and
Section 6.3). While their training algorithms may vary between specific implementations, the
usage of linear models is still the most common approach for regression in RSL/LCSs. For ex-
ample, our experiments presented in Chapter 5 (based on [Hei+22b; Hei+23d]) use XCSF with
recursive least squares to estimate the linear local models iteratively, as do [PHH23; PNH24].
In contrast, SupRB uses linear least squares to fit its linear models batch-wise (cf. Section 4.1).

Linear models are generally considered as among the easiest to explain [Bar+20; BP21] which
is why our interviewees of the study presented in Chapter 3 expressed a strong preference for
rules using linear models rather than more complex ones, even if this might harm performance
slightly. Therefore, SupRB also uses linear local models. For SupRB, I experimented with
different training approaches to create these models from a rule’s matched data. First, ordinary
least squares was tested. This deterministic method estimates a linear model from data by
minimizing the so called residual sum of squares (the sum of the squared errors per data point).
Given that for typical real world data sets (which are the most relevant to validate SupRB on)
each rule will only be responsible for relatively few data points, ordinary least squares did
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very often strongly overfit the data, resulting in poor generalization and, thus, performance
on validation/test data. Many approaches exist to prevent overfitting of linear models. One
can use k-fold cross-validation, although this requires more data than we can typically expect
for a linear local model. There are also numerous approaches that prepare the data to prevent
both overfitting and underfitting, e.g. feature selection, feature transformation, or the removal
of outliers from the data. However, whether these techniques are actually effective is strongly
dependent on the dataset itself.” Therefore, for SupRB, a technique should be used that is
applicable more generally.

Another option for the creation of less overfitting linear models is the use of regularization
terms during training. Two regularizations are commonly applied here:

+ L1-norm regularization (Lasso) tends to drive some coeflicients to exactly zero, which
can be advantageous for explainability purposes (cf. the results of our user study in
Chapter 3) as this should select the most predictive features while discarding less relevant
ones. However, this can also lead to poorer performance, especially if all features are
important to make a correct prediction.

+ L2-norm regularization (Ridge) reduces overall feature coefficient magnitudes. It drives
all coeflicients to zero without including the less relevant ones specifically. It is more
robust towards noisy and very small datasets which is to be expected for our local mod-
els.

It is likely that due to that last property, Ridge did perform best in my experiments in SupRB.
ElasticNet is a combination of Ridge and Lasso but this has not been tested yet.

I did experiment with the interchangeability of Ridge and Lasso and their impact on model
structure and the preliminary results® are: When training a SupRB model using local models
based on Lasso, the performance is slightly worse than when training with Ridge. When ex-
changing these local Lasso rules with Ridge models trained on the same data, the performance
of the overall model does not differ significantly and is not reaching the performance of the
model trained with Ridge in the first place. However, when replacing the local Ridge models
of a SupRB model that optimized its model structure based on these rules with Lasso models,
the system performance drops considerably. It seems like Ridge is allowing the training pro-
cess of SupRB to make choices that are incompatible (and better performing) than Lasso would.
However, as these results are very preliminary, I want to caution against making a definitive
judgement based on them.

Generally, Ridge seems to be the choice that can be expected to perform best most often.
However, for specific use cases (with varying requirements regarding the feature count) and
datasets, appropriate regularization techniques (and their parameters) should be chosen to op-
timize model performance.

’A data scientist can (and should) of course always improve the data quality beforehand to further improve the
model induction process.
®A student of mine is currently preparing a larger study as his Bachelor’s thesis.
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Of course, more complex local models than linear ones have been tested in various LCSs be-
fore. Of note are local models using higher order polynomials [Lan+05], radial basis func-
tions [SMH18], or neural networks [LL06]. For reinforcement learning, where continuous ac-
tions are often important in real-world applications, various approaches to compute the action
based on inputs exist. Tran et al. [Tra+07] use a linear model, whereas Howard et. al. [HBL09]
use a single neural network to determine both matching and actions from the inputs. Igbal et
al. [IBZ12] dealt with continuous actions by computing them via code fragments (in this case
a two branches deep binary tree similar to Genetic Programming). Naqvi and Browne [NB16]
incorporated this approach to solve symbolic regression problems.

These more complex models are probably not desirable to use in SupRB as they come with a loss
of explainability (cf. Barredo Arrieta et al. [Bar+20]’s analysis on the explainability of models).
This is also reflected in the general rejection of non-linear models in our study in Chapter 3.
However, it would be interesting to see in future work if more complex local models come with
a significant boost in performance (or model complexity reduction) and to evaluate whether the
prospective users of a SupRB-based agent actually find the loss in explainability relevant. It is
not unlikely that in the way explanations of model predictions are presented to the user (which
is an unsolved UI/UX question), sufficient abstraction took place so that the user is not exposed
to the model itself, which would make its specific make-up less relevant. However, for now, it
is assumed that the (local) models themselves are presented, explanations need to be generated
directly from the models (which is harder to do with more complex models [Bar+20; BP21]),
and that SupRB with linear models does not suffer from significant performance losses.

6.3 Rule Mixing

In RBML, a solution to the learning task, or simply a model, combines multiple individual rules.
While in Decision Tree—-based models the rules may not overlap and the set always covers the
entire input space, LCS/RSL models often have numerous rules matching a single datapoint.
Multiple tree-based models may be combined to form an ensemble, e.g. in Random Forests
or XGBoost, cf. Chapter 2, which does create rule overlap in these models. The difference
to LCSs is that the number of rules matching is fixed based on the number of trees and that
these overlapping rules are all part of different models that are individually matching all inputs.
Importantly, in LCSs, some inputs may not be matched by any rules or varying numbers of
rules. The number of rules matching individual parts of the feature space can have implications
on the comprehensibility of models as much as the total number of rules (cf. Chapter 3).

The process of making a singular prediction based on multiple rules is called mixing (cf. Chap-
ter 2). Random Forests often use majority voting for classification and averaging for regression
as their mixing model. XCS is using a mixing model which is tied to its niche-based fitness,
which is what is also used for the evolutionary operator [Wil95]. Effectively, this mixing
model is iteratively updated each time step as the individual fitness-based mixing weights are
updated for all rules matching the specific input whose action was chosen. As rules usually
match different input spaces even when proposing the same action, they are not guaranteed
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to update at the same pace (or even in the same direction) which can lead to different mixing
results even when the same input is matched by the same rules at a later time during training.
In XCSF [Wil02a], which is using a mixing model based on XCS’s but updates each matching
rule every time (as there is no action in XCSF) the issues with this are even clearer. In XCS,
the rules mixing weights influence how likely their action is to be selected (together with the
policy), whereas in XCSF, they actually directly influence the output by building a weighted
average of all matching rules’ predictions. A detailed analysis of XCS(F)’s mixing model has
been performed by Drugowitsch [Dru07, Chapter 6].

In SupRB, a mixing model based on the inverse variance heuristic mixing [Dru07, Section
6.2.2] is used, although here, we weigh the prediction error and the experience of a trained
rule (both determined based on all training data), cf. Equation (4.1). The other sections of this
thesis are using this mixing model without any limitations or adjustments. In this section,
several adjustments to that model are tested which limit which (and/or how many) rules may
partake in the mixing (and thus the final prediction of the model) and how their individual
mixing weight is calculated. The main motivation studying adjustments to the mixing model
are the results of Section 3.5. Here, stakeholders informed us that they prefer few rules to be
used to form an prediction, essentially proposing to impose some kind of upper bound on the
number of rules that are mixed, assuming that this should increase explainability. Additionally,
some of the adjustments could increase the performance of the model.

The implemented adjustments of the mixing weight calculation can be divided into three
groups:

1. A weight to weigh experience against error instead of assuming both to be equally impor-
tant to measure the quality of a rule, which in turn decides how important and impactful
it should be for mixing.

2. A limit to the number of rules partaking in mixing. This hyperparameter (! in Equa-
tion (6.3)) is a direct result of Chapter 3 where stakeholders voiced that they would like
mixing to be kept to about three rules. Thus, less rules would need to be investigated
for a given prediction. Note that, of course, some predictions might contain less rules as
fewer rules are matching the data point in question.

3. A cap to the influence of experience. Assuming an n-dimensional problem, it is quite
obvious that (assuming linear local models) a rule with experience n should be consid-
ered more reliable than a rule with experience n/2. However, with the standard mixing
model, we would also assign a rule with 10n experience substantially more impact on
the final prediction than one with 2n experience. This can be balanced out by higher
errors for bigger rules but there can be learning tasks where over-general rules might
not perform that much, i.e. a factor of five, worse than ideally sized one. However, if
a local model is strictly better, it should not be dominated by a very general rule just
because of the smaller size. While the trend towards larger rule sizes dominating could
yield easier to interpret models, it might also introduce overly complicated models as
certain regions of the input space might get harder to approximate. One could argue
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that the solution composition (SC) mechanism should select the optimal balance auto-
matically due to its fitness pressures and that mixing is unimportant for that. On the
contrary, a mixing model that is also fixing such imperfections might help SC to find
even better rule combinations which reduce overlaps, thus being arguably quite useful
for comprehensibility (as decision trees are doubtlessly easier to comprehend than RSL
models). Therefore, the maximum mixing weight a rule can acquire due to its experi-
ence is capped to a fixed value (either a constant or a linear function of learning task
dimensionality).

It is of course possible to execute all of these additional mechanisms at once, changing Equa-
tion (4.1) to the new mixing weight formula for rule k:

T = * min(experience;,, cap) * weight (6.1)

errorg

However, potentially there are fewer (at most [) rules that partake in the mixing than origi-
nally:

My ={ki|ie{l,...,K},m(¢x,;x) =1}, (6.2)

with M, denoting the original set of matching rules and ¢ being an index within the pool (list)
of rules of size K as defined in Section 2.1.2.

We now form the set M/, by using the function f(-), which receives the index of a rule within
the pool and returns its fitness value so that it only contains the [ fittest individuals.

M:; = {kilvkiga ce akil} C M, such that f(ll) > f(Z2) > > f(ll) (6.3)

Thus, the model built by SupRB modifies from the generic LCS formula (Equation (2.1)) to:

i 0, 2) ZkeM; Tllffk(ek; z)
mll, ) =
max (3 Tho 1)

(6.4)

Note that—in contrast to Equation (2.1)—matching is now contained implicitly via the defini-
tion of M, the subset of matching rules according to the predefined limit /. As before, if no
rule matches, f (x) = 0, which is the mean of the training data as we assume the outputs to
be standardized.

The following experiments on mixing also investigated whether there is a notable effect when
SupRB is not using the best [ rules according to fitness, but uses [ randomly selected rules or
selects [ rules based on a fitness-weighted roulette wheel selection. Note that any randomness
in the creation of the mixing model can (if more than / rules match a data point) change the

95



6 Extending and Improving SupRB

model’s output between two predictions on an identical input. For inference in practical ap-
plications this is, of course, very undesirable. However, we assumed it could be interesting to
check whether it has an impact on training or overall model performance or even helps the
model to avoid rule overlap. Reduced rule overlap could then make explanations easier and to
avoid the issue of non-deterministic predictions, the mixing model could be slightly adjusted
to use Equation (6.3) again.

6.3.1 Experiments

To test the different modifications to the mixing model, especially with regards to the perfor-
mance impact of limiting the number of participating rules, a set of experiments was performed.
Setup, hyperparameters and datasets and the specific mixing model modifications and their pa-
rameters are presented in the next two sections.

Setup, General Hyperparameters, and Datasets

To test the impact of different modifications to our mixing model, we follow the experimental
setup of Chapter 5 and [Hei+22b; Hei+23d]: While other optimizers have been proposed for
rule discovery (RD) [Hei+22a] and solution composition (SC) [Wur+22] in SupRB, previous
results have largely been inconclusive, with ES and GA, respectively, probably being a good
(or even the best choice) for the optimizers.” Therefore, we use these optimizers as well as the
remaining general configuration from Chapter 5:*

We standardize the target and transform input features into the range [—1, 1]. We assume that
for the datasets under investigation discovering a total of 128 rules is sufficient to compose
good models from. Hence, 32 cycles of alternating rule discovery and solution composition
are performed, generating 4 rules per cycle. For the ES, we selected a A (size of the offspring
population) of 20. The GA performs 32 iterations with a population size of 32. To tune some
of the more sensitive parameters, including some of the parameters introduced in the next
section, we perform a hyperparameter search using a Tree-structured Parzen Estimator in the
Optuna framework [Aki+19] that optimizes the average fitness on 4-fold cross-validation. We
tune the datasets independently for 1000 iterations or a maximum of 120 core hours per tuning
process.

The final evaluation, for which we report results in Section 6.3.2, uses 8-split Monte-Carlo cross-
validation, each with 25 % of samples reserved as a validation set. Each learning algorithm is
evaluated with 8 different random seeds for each 8-split cross-validation, resulting in a total of
64 runs per algorithm per dataset.

°Updated results on possible optimizer choices can be found in Sections 6.4 to 6.5 but the general conclusion of
the ES+GA combination being generally good remains.

*The code to reproduce the experiments can be found in SupRB’s experiment repository https://github.com/
heidmic/suprb-experimentation/ while the specific code version is archived at https://doi.org/10.5281/zenodo.
14181292.
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We evaluate the four approaches on the same datasets as in [Hei+22b; Hei+23d] and Chapter 5
which are taken from the UCI Machine Learning Repository [DG17]:

« Combined Cycle Power Plant (CCPP) [KT12; Tuf14]
« Airfoil Self-Noise (ASN) [BPM89]

« Concrete Strength (CS) [Yeh98]

 Energy Efficiency Cooling (EEC) [TX12]

More information on the datasets can be found in Section 5.2.1 and Table 5.1.

Tested Mixing Modifications

For the second mixing weight calculation adjustment (cf. the list at the beginning of Section 6.3),
values for [ (cf. Equation (6.3)) are chosen from {1,2,...,5}, which limits the rules that are
allowed to be mixed. Given that the stakeholders of the case study in Chapter 3 voiced their
preference for 3 rules or less, testing the values above and below for the limit seems reasonable.
We assume that more than 5 rules are probably rarely relevant given probable redundancy for
areas of such large overlaps. Additionally, considering the sizes of SupRB’s entire model in
the experiments from Chapter 5 (cf. Section 5.2.2), higher numbers of rules matching the same
datapoint seem unlikely. Note that always using only a single rule in the mixing model equates
to an overall model similar to the one shown in Figure 4.1.

In addition to selecting only the best rules according to their fitness (called “/ Best” later on; cf.
Equation (6.3)), two variations of this approach are included in the evaluation:

1. Instead of selecting the rules that exhibit the highest fitness, up to [ matching rules are
selected at random. We refer to this as “/ Random”.

2. Rather than selecting purely random, a fitness proportionate random selection similar to
the well-known roulette wheel selection, common in population-based EA and XCS(F),
is performed. We call this “RouletteWheel”.

Both approaches are mainly meant as a sanity check (see the explanation earlier in Section 6.3).
The most interesting aspect should remain the selection of the [ best rules rather than all
rules.

For the third adjustment, which caps the influence of experience on the mixing weight (cf.
Equation (6.1)) with an upper bound, the cap can be set in two ways:

1. By setting the cap to a fixed value (“Experience Cap”). To reduce the computation load,
we hyperparameter-tune cap € {20, 50} rather than testing all values.

2. By setting it to a value linearly dependent on the dimensionality of the learning task at
hand (“Experience Cap (dim)”). We hyperparameter-tune cap = ¢ * dim,, for ¢ € {2,5}.
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The optimal value for model complexity is highly task-dependent and is influenced by both
the dimensionality and noise of the learning problem. For a noiseless linear task, it is well-
established that a linear model can achieve perfect fitting when the sample size equals the
number of parameters in the model. However, most real-world tasks, such as those encoun-
tered by SupRB, are non-linear and noisy, requiring more sample points to reduce variance in
local models. While increasing sample size matched by a rule may help reduce variance, the
non-linearity introduces higher bias due to linear approximations being less local.

SupRB aims to balance this bias-variance trade-off by maintaining smaller local models. By pre-
venting larger models—those with more matched examples during training—from dominating
predictions and introducing excessive variance, this proposed adjustment to mixing might lead
to an overall better fitness. Since we lack reliable information about the noise level in many
tasks but often have insights into their dimensionality, it makes sense to use dimensionality
as a proxy when setting the threshold.

Regardless of choosing a direct value or something linearly-dependent on the dimensionality,
we can assume that sufficiently extensive tuning finds a sensible cap. There is some hope that
tuning can find a value for the cap that is “sufficiently good for most tasks” to not require
future tuning of this value and I conjecture that if it exists, it is probably correlated with the
dimensionality.

Theoretically, a lower experience bound, which removes rules from the mixing if they have
been trained on less training data points than that bound, could be plausible. However, it is
not intuitive how to set that value. While it is probably problem dependent, a value equal to
the number of dimensions of the learning task is likely reasonable for most tasks. For tasks
that are subject to a lot of noise—even restricted to some subspace of the task—any training
algorithm will often require a larger sample to fit the linear model well on. In contrast, for
subspaces where no noise is present and a perfectly approximating local model is constant
(rather than linear or more complex), a single sample point and, therefore, an experience of 1,
would be sufficient.

For the first adjustment, which weighs experience against error, we kept a default value of 1 for
the experiments of this section. The main reasoning was that we assume this would introduce
an additional pressure towards different population structures which works alongside the so-
lution fitness. This would be undesirable from a configuration point of view as, ideally, each
aspect is governed by a single parameter or at least by parameters that have predictable inter-
actions, which a weight at this point would probably not show. Preliminary results hinted that
this assumption might be correct. Thus, we decided to not invest the considerable additional
compute.'

"Reasonably, one should test at least three values but five to ten or more would be better. Given that we already had
twelve combinations of options each tested on rule counts of one through five, resulting in tuning parameters
240 times (due to the independent tuning on four datasets) and, based on the tuning results, 15360 runs to
generate the plots in Section 6.3.2, this would drive the already considerable runtime up substantially without
an obvious gain in insight.
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Overall, we thus arrive at twelve combinations, four options (including the original one) of
selecting which rules take part in mixing and three options (also including the original one)
on how to calculate the mixing weight. We tested each of these on the five rule counts and
four datasets.

6.3.2 Results

This section presents the results of our investigations on modifying the fitness function in
SupRB to improve performance and explainability. Given the large number of different exper-
iments (cf. Section 6.3.1), I cannot present them exhaustively here but will focus on the key
insights that were generated.

In the following graphics and discussions, the errors and complexities presented and contrasted
will have been normalized to an interval of [0, 1] across all evaluation runs per dataset. Thus,
we did select the best and worst error (or complexity) achieved by any mixing approach and
set them to 1 and 0, respectively. For each dataset, we had 3840 evaluation runs from which
we chose those values, and then normalized all other results on these intervals. We did this to
bring the results on equal scales across datasets and to make general discussions a bit easier.
Note that interpretations should be made carefully as the error distributions on these datasets
are not identical (cf. Section 5.2.2).

Table 6.1: Overview of the metric results to which the normalized intervals of [0, 1] correspond
to per dataset.

MSE Complexity
Dataset Min Max Min Max
Combined Cycle Power Plant 0.059 0.757 1 65
Airfoil Self Noise 0.092 1.035 1 63
Concrete Strength 0.080 1.017 1 67
Energy Efficiency Cooling 0.011 1.065 1 76

Table 6.1 shows which original result corresponds to the interval values on a per-dataset view.
Especially interesting are the maximum errors and the minimum complexities. Across all
datasets, there was always at least one run that only used a single rule as its final elitist, thus
effectively becoming a single Ridge regression model. Additionally, ASN, CS, and EEC all
showed runs where the errors after training (and therefore optimizing that metric specifically)
were about what would be expected from a model that only returns the mean of the data.

The first question is of course: How did the SupRB baseline using the unmodified mixing
formula fare under the normalization scheme? Overall, the complexities ranged from 0.05 to
about 0.8 and, while there was a noticeable gap between about 0.3 and about 0.4, the runs
were relatively uniformly distributed, showing no clear clustering otherwise. The results are
slightly poorer than those from Table 5.3, which is the result of cutting the tuning budget of
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the runs to one third. On the other hand, a majority of errors of the runs from the baseline
were between 0 and 0.1 with only about 5% between 0.1 and 0.22 and no runs above.

The best results achieved in this set of experiments were from the runs that did not restrict the
number of rules in the mixing model but added an upper cap on the effect of experience. Here,
making it dependent on the dimensionality of the input space seemed to be slightly better than
directly controlling the number. Their distribution of complexities was about the same as that
of the baseline, while the errors were a bit better, giving a tighter distribution and falling more
commonly below 0.1. However, both showed outliers at 0.3, 0.42, 0.48 and 0.51 which did not
occur in the baseline runs.

MSE

Base ~—'—|:|:|—’—~
Experience Cap %
Experience Cap (dim) v .,_.‘_D:l_’_. »
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| Best & Experience Cap
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Figure 6.1: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution
obtained from the model by Calvo et al. [CCL18; Cal+19] applied to the normalized
MSE data for [ = 3. A mixing model having a probability value of q % says that the
probability of that mixing model performing the best with respect to MSE is q %.

The dominance of these runs at achieving low error models is further illustrated when applying
the Bayesian statistical analysis model proposed by Calvo et al. [CCL18; Cal+19]* to our run

"We use the implementation provided by https://github.com/dpaetzel/cmpbayes using 10,000 steps in the MCMC
process. We tested larger numbers for sampling, namely 20,000, 50,000 and 100,000, as well but found no
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data, which, for each of the mixing models, provides us with the posterior distribution over
the probability of that mixing model performing best. As we expect from our prior knowledge
that using a maximum of three rules (! = 3) should be plausible, we show and discuss the
test results for this value. We provide a box plot which shows the most relevant distribution
statistics in Figure 6.1. The majority of options seems to be relatively equal, whereas the mixing
models without the restriction on rule counts clearly perform better. Together they make up
about 65-70% of the probability mass, with the baseline taking about 17% itself. A typical
minimal threshold for automated decision making is 80 % (or usually even more) for a single
algorithm/approach [Ben+17]. While we could not select any one approach based on this, we
could discard all rule count-restricting models based on this if we were to only care about
minimizing errors.

We performed some further statistical testing for MSE with [ = 3 but only comparing the
mixing approaches that actually use said {. The results can be found in Figure 6.2. Regardless
on how the number of rules was restricted, a positive effect of using a cap on the experience
seems to transfer. We can probably assume that, given the relatively small rule set sizes a
SupRB model typically features, the case that restricting to three rules is not occurring as often,
which would explain why a fully random selection is not as detrimental. This is likely further
illustrated as fitness-weighted randomness or strictly fitness-based selection of the rules in the
mixing model do not seem to have vastly different (albeit marginally better) results.

| Best .—'_._’—-_ .
| Best & Experience Cap . —-{—D:l—‘.—-. .
| Best & Experience Cap (dim) —] - — n
I Random : -—{—.—‘—“
| Random & Experience Cap »w-‘—.—’—-mm .
| Random & Experience Cap (dim) »-‘—.—’——om
RouletteWheel ‘ 'N'-‘—D:l—’—-w
RouletteWheel & Experience Cap MA—'—.—}—« .
RouletteWheel & Experience Cap (dim) ‘ ——'—D:l—’——- -~

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
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Mixing Variant

Figure 6.2: Box plot in the same style as Figure 6.1 but only computing the rank probabilities
on the normalized MSE data for the mixing models that introduced a limit to at
most 3 rules matching.

differences which is why the remainder of Calvo models in this thesis uses 10,000 steps unless specifically
stated otherwise.
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When setting [ to other values, the overall results of the statistical analyses do not change
significantly. With [ = b5, the other options do indeed catch up marginally but it does not
seem to have a large positive impact. However, setting | = 1 results in a clear decision against
any of the rule count-restricting models. When observing complexity, [ = 1 often leads to
collapsing populations for these approaches, regularly only featuring a single rule in the model.
This is especially pronounced when using the fitness-based selection within the mixing model,
but also happens with both randomly selecting approaches. When using fitness, this could
probably be explained by the fact that the fitness of a rule is, in part, based on its volume,
giving higher volume rules a higher fitness. Whereas traditional SupRB is able to still discover
useful small rules and effectively combine them, a substantial additional fitness pressure seems
to lead to collapsing populations. Randomly choosing the rules also has an obvious effect on
a guided search and likely interrupts any effective optimization during solution composition,
which explains the collapsing populations there.

When looking a bit closer into the distributions of runs on the various values for [ and the
different mixing models, we find that larger values for [ loose their effects, which reaffirms the
results of the statistical testing for those values. A selection of these distributions is presented
in Figure 6.3.* The other (non-shown) mixing models exhibited similar behaviours.** To con-
textualize, recall that the baseline’s runs showed (normalized) errors that were about half the
size of the ones exhibited here (see above). As expected, [ = 1 is noticeably worse than higher
values for [ for all of the variants. However, the improvement of errors when using higher
values for [ is not as pronounced (across datasets and steps in the value) as one might expect.
Selecting the best rules according to their fitness is clearly a more consistent approach towards
building a good model but the differences were not especially sharp (this was of course also
the result of our statistical testing).

A plausible reason for this is that only few rules were matching for most datapoints (recall the
relatively small model sizes from Table 6.1). When [ or less rules are matching, any restriction
is essentially meaningless automatically. Not only that, it is also plausible that any selection
scheme has a good chance of selecting the best [ rules for [ + 1 matching rules. And even if not
the best [ rules are selected in cases of more matching rules, the model usually only contains
valuable rules to begin with and it is not too likely that rules with overlapping responsibilities
exhibit vastly different local models as long as they are appropriately sized for this niche. Tied
into this is also the possible explanation for a poorer performance than the baseline: Restric-
tions on the rules obscure the fitness signal. The optimizer is no longer seeing the potential
performance of the model as a whole if not all matching rules are contributing. This harms
the search process for a good model during the SC phase, which in turn leads to less optimally
placed rules in the next RD phase(s).

When analysing model complexity, the results are somewhat surprising. Capping the experi-
ence produces populations similar to the baseline but all other approaches were vastly different.
[ Best often leads to collapsing populations for [ = 1, while it managed to always evolve larger

*Note the different scales of the individual plots which were fit to the runs for better readability.
**The full set of plots can be found at https://github.com/heidmic/diss-graphs/tree/main/MIX. The t-tests and
Calvo models in the repository are all for [ = 3.
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Figure 6.3: Distribution of runs’ normalized errors for various mixing models. Shown are 256
runs per mixing model and value for [. Due to clustering within the results, not all
points may be present within the visualizations.
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Model Complexity
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Figure 6.4: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution
obtained from the model by Calvo et al. [CCL18; Cal+19] applied to the complexity
data for [ = 3.

models for higher values of [. They were, however, much less distributed over the complexity
range, tending towards small (but not collapsed) populations. With increasing [, the cluster
where most of [ Best’s runs landed did also increase in model size, which indicates that the the-
ory of additional pressure towards small models introduced by this could be correct. [ Random
and RouletteWheel also tended to similarly small models (and only collapsed for [ = 1) but
showed a few high outliers which [ Best did not. Due to this, the statistical analysis on com-
plexity in the style above is clearly showing that the non-restricting (thus, effectively having
an infinitely large /) mixing models are expected to perform worst with negligible probabilities
to be on rank one. However, this is somewhat misleading as an overall performance metric, as
the very small populations are in-turn showing relatively bad results on errors (as expected for
non-linear learning tasks but very few rules). Figure 6.4 shows the analysis results for [ = 3
and only the rule count restricting mixing models. According to the analysis, RouletteWheel
should be expected to perform worse than even full randomness. The cap on experience did
in all but one (I Best & Experience Cap) cases lead to larger populations, with the cap based
on dimensionality performing consistently “worse”. Full randomness did not evolve models
that much smaller than selecting for high fitness, as this was hardly possible due to their very
small size compared to the standard mixing model, which already is producing rule sets that
are again very small compared to XCSF.
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Figure 6.5: Density plot of the posterior distribution obtained from Corani and Benavoli’s
Bayesian correlated t-test [CB15] applied to the difference in MSE between the base-
line and the / Best mixing model on each dataset for [ = 3. As the MSEs are now
given individually, they are no longer normalized over all datasets as before but are
still standardized on the individual data. Orange dashed lines and numbers indicate
the 99 % HPDI (i.e. 99 % of probability mass lies within these bounds). HPDI bounds
rounded to two significant figures. Effectively, this indicates how likely a specific
difference between one run with each mixing model will be (practically, probability
mass above zero equates to the baseline having a higher (worse) value than [ Best).
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Figure 6.6: Density plot of the posterior distribution similar to Figure 6.5 but between the base-
line and the Experience Cap mixing model.
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We also performed Corani and Benavoli’s Bayesian correlated t-tests [CB15]* as we did in
Section 5.2.2. The resulting posteriors for the actual (standardized) MSEs per dataset including
99 % high posterior density intervals (HPDIs) are the distribution of the difference between the
errors for each mixing model. Due to the large number of experiments, we again focus on two
key candidates: [ Best and Experience Cap. Figure 6.5 shows that indeed ! Best comes with
some losses on all datasets. When comparing them to Figure 5.3, we find that these were not
dissimilar to the difference between the results of SupRB and the Decision Trees (DTs). One
should note, however, that based on these analyses, we cannot conclude that [ Best would
perform worse than DT. In Figure 6.6, we find that the actual difference in errors between
Experience Cap and the baseline is very small and likely not practically significant, even if
Figure 6.1 could have been interpreted towards a statistically significance in the difference of
the achieved results. For EEC and CS, there seems to be no improvement. The improvement
on CCPP is not practically relevant and the improvement on ASN is quite minor.

To summarize: The experiments showed that restricting the maximum impact of experience
may have some minor beneficial effects on prediction errors (and can also have this effect on
complexity, albeit less consistently). However, this effect is likely not especially pronounced
on many datasets, although it might become more relevant on larger datasets, e.g. big data sce-
narios like Section 3.5. We found that this effect can be achieved without system knowledge
by including that parameter in the hyperparameter tuning process. As a general recommenda-
tion, I would, however, suggest to not add another parameter to the search. We also showed
that we can restrict the number of rules partaking in a mixing model, but that this does come
with a measurable and likely practically significant loss in predictive power. Whether this re-
striction really adds to the explainability of the model remains to be proven. If there should
be a measurable benefit, the next step would be to determine whether the increased errors
are worth the trade-off. Interestingly, even randomly selecting the subset of matching rules
to contribute to the global model’s prediction does have less negative effects than expected
(at least for moderate values for /). This could suggest that either all rules are close to equally
good, or it could be interpreted as them having similar local models and would be merged if
the matching functions would allow more complex geometrical shapes. Potentially, given that
solution composition seems to not have been completely inhibited, even when choosing a fully
random selection of rules during mixing, but there is still a measurable impact on the overall
training (possibly due to the obscured fitness signal), this form of more restrictive mixing could
be tested during inference-only on a model trained with the original mixing formula, which
was originally not attempted as it was not deemed overly promising.

6.4 Rule Discovery

After determining, discussing, and testing possible extensions to the rules of SupRB and how
they interact, the next step is to investigate whether more effective methods for model selec-
tion can be found. Recall that SupRB splits its model fitting and selection process into two

We use the implementation provided by https://github.com/dpaetzel/cmpbayes.
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alternating and repeatedly performed phases: rule discovery (RD) and solution composition
(SC) (cf. Section 4.1). SupRB’s models’ practical transparency (or explainability in a broader
context) is primarily influenced by the effective number of rules and their placement within
the feature space, which are determined by the two phases (cf. Section 4.3.1 and Section 4.3.2
for a detailed discussion). Therefore, the—preferably near optimal—placement of rules should
be a primary concern when designing an LCS algorithm with explainability requirements.

This section discusses possible extensions for discovering rules from data, while Section 6.5
follows a similar approach to determine more options for model building from these rules.
Different methods to discover new rules that fit the data well are proposed and benchmarked
against each other on a variety of real-world datasets. This section further extends our pre-
vious works on this topic. The first was presented at ECTA / IJCCI 2022 [Hei+22a] and was
subsequently expanded with new RD methods for publication in the Springer Nature Computer
Science journal [Hei+23c]. The extensions in this thesis feature investigations on additional
datasets when compared to the previous publications.

6.4.1 Learning Classifier Systems and Rule Discovery

As previously introduced in Chapter 2, LCSs are a family of rule-based learning systems that—
typically—construct their models using evolutionary algorithms. At the very least, the meta-
heuristics determine the shape of individual rules by adjusting the matched areas, but in some
classes of LCSs their role does go beyond that. Recently, we made advances towards a mod-
ern classification system in [Hei+23a]—substituting the old differentiation in Michigan-style,
Pittsburgh-style, and Hybrid systems—where batch (learning) versus online (learning) and
single- versus multi-solution form the basis of classification (cf. Section 2.3.1). In that sys-
tem, SupRB is classified as a batch multi-solution system. Due to those very different outsets,
LCSs from one class approach rule discovery and improvement substantially differently from
other classes.

For example, the most widespread online single-solution system, XCS [Wil95], features two
mechanisms to determine new rules.’® The first is the covering mechanism: Whenever the
number of rules that match a new data point falls below a predetermined threshold or the
fitness of the matching rules is too low, new rules are generated that match this data point.
These rules are often randomly made more general than to just match this point specifically
and therefore slightly differ when inserted into the population of rules. The second is the
evolutionary algorithm which is invoked regularly on matching rules that also proposed the
actually-chosen action. It utilizes crossover and mutation mechanisms appropriate for the
types of input data and evolves the population in a steady-state manner.

In the established batch multi-solution systems, e.g. GAssist [Bac04; FKB13], new rules can
be added directly to an individual of the population (a set of rules), shared between individu-
als, or be the product of a mutation (and, more rarely, rule-level crossover) operator. As the
evolutionary algorithm of these systems operates on rule sets rather than rules directly, the

X CS is also the most widespread “Michigan-style” system if we follow the old classification system.
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fitness signal that guides evolution is not based on individual rule performance but rather the
performance of a given set of rules, which can complicate rule discovery due to the added
indirection.

6.4.2 Rule Discovery Mechanisms for SupRB

The main subject of this section is SupRB’s RD phase’s optimizer. In contrast to many typical
optimization problems, we do not want to find a singular globally optimal rule but rather a
set of localized rules that perform well in their particular feature space partition. Thus, we
are attempting to find an unknown number of local optima without mapping the entire fitness
landscape (or even all local optima). The discovered rules should be a diverse set to enable SC
to compose a good overall model from them, which would be difficult from a set of very similar
rules that do only cover a small part of the input space. However, as SC will select the sub-
set of discovered rules most appropriate to solve the learning task, some heavily overlapping
rules in the pool are—at least assuming the training works as intended—not an issue. In the
following, the different optimization approaches for RD that will be compared in this section
are presented. As we did previously [Hei+22a; Hei+23c], we build two baselines to compare
the new algorithms against. For the first, we use the simple evolution strategy which is used
in many other publications on SupRB (cf. [Hei+22c; Hei+23d] and Section 4.1). For the second,
we employ an even less sophisticated random search that only exploits information from the
SC phase but otherwise places rules randomly. We compare those with three different vari-
ants of novelty search, for each of which we test two substantially different ways of applying
the archiving component (against which the novelty gets computed). For all heuristics, we
utilize the same approach for calculating rule fitness by combination of two objectives based
on the in-sample error and the matched feature space volume, respectively (cf. [Hei+22c] and
Section 4.1).

Evolution Strategy

The traditional choice for an LCS’s optimization processes is some form of evolutionary algo-
rithm. Therefore, the first strategy employed for RD in SupRB, which was also used for the
experiments in [Wur+22] and [Hei+22b], among others, is an Evolution Strategy (ES), specifi-
cally, a simplified (1, \)-ES [Hei+22c].

The approach is summarized below and found in Section 4.1 as Algorithm 2. The ES’s initial
individual is generated by selecting a random example from the training data around which a
rule is placed, preferring those examples exhibiting a high in-sample error in the intermediate
global solution. This individual serves both as the initial candidate for addition to the pool
and the parent of the next generation. From this parent, we generate A children with a non-
adaptive mutation operator, which moves the upper and lower bounds further outwards by
adding random values sampled from a half-normal distribution. The child individual with
the highest fitness becomes the parent for the next generation. If this individual showed a
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better fitness than the current candidate, it also becomes the new candidate. When for a fixed
number of generations no new candidate has been found, the evolutionary search terminates.
This ES produces one rule at a time, which allows it to be easily parallelized. One merit of
this approach is in the comparatively high explainability of both the search procedure and the
resulting pool. In general, rules that have fitnesses independent from other rules are easier
to understand for most non-experts (and even experts for more complex models). Whereas,
in most current LCSs, the fitness assigned to each rule is highly dependent on the other rules
it is surrounded by. Beyond these fitness-based considerations on the understandability of
our learning process, the ES itself is also an easy to follow search method: Expand the area
(or hypervolume) an individual matches, evaluate the new individuals, choose the best new
option and repeat.

Random Search

As an alternative to the strongly fitness-guided RD performed by the ES, we introduce a form
of Random Search (RS). RS commonly serves as a baseline for testing the performance of other
optimization algorithms throughout the metaheuristic literature due to its simplicity, which
usually comes with some inefficiency. Therefore, any more sophisticated metaheuristic algo-
rithm should be able to beat RS on complex problems with equal tuning budgets. Furthermore,
with the ulterior motive of finding diverse rules to add to the pool, RS provides an interesting
approach where the fitness only plays a role in the selection of the final candidate but not in
the generation of new rules.

In SupRB, RS (cf. Algorithm 4), similarly to ES, randomly selects a fixed number of data points
with the probability of selection being weighted by their respective in-sample prediction errors
in the last solution candidate (produced by the previous SC phase). We then place random
bounds around those points based on half-normal distributions (to ensure we always match
the selected point). To balance the computational cost between RD approaches, we produce
substantially more rules initially than we would in an ES generation but a number roughly
similar to the total number of children present in the ES. We then greedily select the rule(s)
with the highest fitness to become part of the pool.

Novelty Search

One of the central challenges of RD is that the optimizer’s objective is to find multiple rules
that partition the feature space and, in their individually matched hypervolume, predict data
points well. Contrastingly, optimizers operating on many typical optimization problems are
expected to find a single global optimum (or at least a point very close to it). The RD’s primary
objective can somewhat be viewed as the optimizer being tasked to map an unknown number
of deeper local optima within the search space. In other words: With RD we aim at finding a
diverse set of well-performing rules for all areas of the feature space.
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Algorithm 4 Rule Discovery with RS

1: procedure DISCOVER RULES(elitist)

2 rules < ()

3 for ¢ + 1,n_rules do

4 candidates < ()

5: for k < 1, A do > Randomly generate a large number of rules
6 candidates < candidates U INTT RULE(elitist)
7 end for

8 rules < rules U candidate with highest fitness

9 end for

10: return rules

11: end procedure

In this section, we describe a new approach towards discovering rules based on Lehman’s
Novelty Search (NS) [Leh12]. In this evolutionary search method, the optimizer tries to find
individuals that exhibit new behaviour previously unknown within the population, rather than
being guided (or at least not being fully guided) by the typical fitness function. In SupRB,
behaviour of rules can be equated to what subsample of the training data they match. We
want to find a rule that predicts an area of the feature space currently unmatched or only
matched by more general rules with high errors in this area, thus, a rule displaying behaviour
previously unknown.

For our adaptation, which is outlined in Algorithm 5, we base the NS on a (u, A)-ES with
elitism and follow the extensive experimental findings laid out by [GMC15]. In each iteration,
we select a list of \ parents out of the current population. These parents are paired, undergo
a uniform crossover and a half-normal mutation (cf. Section 6.4.2). The resulting children are
then fitted and the best performing p children are selected for the next population. Addition-
ally, we select a number of high-performing parents equal to the number of rules the NS is
expected to produce within one RD phase as part of the new population (elitism). Performance
of an individual can be based on novelty alone or on a combination of fitness (as used in the
ES; cf. Section 6.4.2 and Section 4.1) and novelty, e.g. a linear combination.

For the novelty of a rule, we compare its match set and the match sets of the other rules. In
this section, we experiment with two different approaches at the selection of those other rules.
Previously [Hei+22a], we chose the rules in the pool and those in the current NS population,
where we would compare with the other children for the selection or the parents for elitism,
respectively. In the remainder of this section, we refer to this as NS-P, with the P indicating
that a comparison of past populations is only based on rules in the pool or “pool-only”. Addi-
tionally, we investigate another option called NS-G, which we first presented in [Hei+23c]. In
this approach, we use a more traditional archiving technique and compare with this archive
and the current population (either children or parents, as previously). When initially starting
each RD phase, the entirety of the pool is copied into the archive. Therefore, NS-G automat-
ically encompasses all comparisons made in NS-P. In each generation, p (which is subject to
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Algorithm 5 Rule Discovery with NS

1: procedure DISCOVER RULES(elitist) > (based on p, \)-ES
2 population < ()
3 archive < pool
4 fori < 1, do
5: population <— population U INIT RULE(elitist)
6 end for
7 for ¢ < 1,n_iter do
8 children < ()
9: parents <— SELECTION(population, \) > Select \ parents
10: for k < 1,\/2 do
11 child_1, child_2 < crossoveR(parents|k], parents[k + A/2])
12: children < children U MuTATE(child_1) U muTaTE(child_2)
13: end for
14: EVALUATE_FITNESS_AND_NOVELTY(children)
15: best_children < SELECT_BEST_CHILDREN(children, 1)
16: if NS-G then
17: archive < archive U seLECT_BEST_CHILDREN(children, p)
18: end if
19: best_parents <— SELECT_BEST_PARENTS(parents) > Elitism
20: population < best_children U best_parents
21: end for
22: return n best rules from population

23: end procedure

hyperparameter tuning) rules are selected from the children and put into this archive, giving
NS-G its name: “generational”.’” Thus, the archive grows with each generation and—in con-
trast to NS-P—NS-G is discouraged from exploring regions it has already explored in this RD
phase. Note that, after an RD phase completes, the archive is reset to the then-current pool.
This avoids a heavy computational load on one hand but is also more in line with the idea
of independent optimization only based on the current solution to the problem. Would we
account for previous RD phases, we might hinder the incorporation of information from this
solution, as some region might have been touched but that rule was not added to the pool as
it was unimportant at the time but did become beneficial to further explore now.

The novelty score assigned to a rule is the average Hamming-distance between its match
set and its k£ nearest neighbours’ (most similar rules) from the respective comparison set. A
value typically encountered for k£ with other NS applications in literature—e.g. [LS10]—is 15,
although we tune between 10 and 20.

7As the comparison is rather expensive, we cannot add all rules to the archive, but given that many children will
be non-useful anyhow, a limitation should have little ill effects.
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After a set number of iterations, we add a predefined number of rules from the current popu-
lation to the pool and conclude this phase. Which rules get added can be randomized or based
on the highest novelty(-fitness combination).

In addition to the basic NS, we implemented and experimented with two variants of NS: Mini-
mal Criteria Novelty Search (MCNS) [LS10; Leh12] and Novelty Search with Local Competition
(NSLC) [Leh12]. For both variants, we also applied and benchmarked the “generational” and
“pool-only” options for the novelty calculation.

MCNS imposes additional pressure on the search to explore less vividly and focus more on rules
that at least fulfil some minimal requirement. In our experiments, we set the minimal criterion
to a minimum number (tuned between 5 and 15) of examples from the training data having to
be matched by the rule to become viable. However, we did also impose that at most one fourth
of the population should be removed because they missed the minimal criterion to prevent
collapsing gene pools. We also use progressive minimal criteria novelty search [GUC12], itself
based on MCNS, as an option for combining fitness and novelty as the objective and introduc-
ing increased fitness pressure by using a dynamic fitness threshold as an additional criterion.
Here, all individuals that do exhibit a fitness worse than the median fitness are removed auto-
matically in each iteration of the search. This approach is not tied to MCNS and can be used
in all three variants.

NSLC introduces a localised fitness-based pressure on the new generation. The idea is that,
within a neighbourhood of similar rules (based on their behaviour and not their position in
the search space), the rules that exhibit high fitnesses should be chosen. A rule’s novelty score
gets increased by a factor of %, where b is the number of individuals within the neighbourhood
specified by x that have a worse fitness than the rule currently evaluated. We tune « in the
same range as k, as this does also specify a neighbourhood of rules this rule is in competition
with.

One potential disadvantage for the explainability of the NS-like approaches is that rule selec-
tion is no longer solely based on independent metrics (fitness) but rather on the independent
fitness and the highly dependent (on other rules) novelty score.

6.4.3 Evaluation

To examine the differences between the rule discovery methods and to find the most versatile
strategy, we evaluated those strategies within SupRB on several regression datasets.

Experiment Design

The experimental design of this section follows those of previous papers on SupRB [Wur+22;
Hei+22b; Hei+22a; Hei+23c; Hei+23d; Hei+24] and—therefore of course—the other experi-
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ments in this thesis.”® The target is standardized and input features are transformed into the
range [—1, 1]. While these transformations are reversible, they improve SupRB’s training pro-
cess as they help preventing rules to be placed in regions where no sample could be matched
and remove the need to tune error coefficients in fitness calculations, respectively. Based on
our assumptions about the number of rules needed, 32 cycles of alternating rule discovery and
solution composition are performed, generating four (or eight in case of NS variants) rules
in each cycle for a total of 128 (256 for NS variants) rules. For NS variants, we opted for the
generation of twice as many rules as the novelty pressure will by-design lead to unsuitable
rules, e.g. overgeneral and overspecific ones, because they are substantially different from the
actually useful rules that are well balanced. This of course makes the NS variants substantially
slower in terms of run time, with a non-linear increase with the number of rules. Additionally,
the GA is configured to perform 32 iterations with a population size of 32 and 5 elitists. To
tune some of the more sensitive parameters, we performed a hyperparameter search using a
Tree-structured Parzen Estimator in the Optuna framework [Aki+19] that optimizes solution
fitness on 4-fold cross-validation. We tuned the optimizers on each dataset independently for a
fixed tuning budget of 360 core hours. The final evaluation, for which we report results in the
next subsection, uses 8-split Monte Carlo cross-validation, each with 25% of samples reserved
as a validation set. Each learning algorithm is evaluated with 8 different random seeds for each
8-split cross-validation, resulting in a total of 64 runs per dataset and algorithm.

Table 6.2: Overview of the six regression datasets the eight rule discovery approaches for
SupRB are compared on.

Name (Abbreviation) Ndim  Msample
Combined Cycle Power Plant (CCPP) [KT12; Tiif14] 4 9568
Airfoil Self-Noise (ASN) [BPM89] 5 1503
Concrete Strength (CS) [Yeh98] 8 1030
Energy Efficiency Cooling (EEC) [TX12] 8 768
Physicochemical Properties of Protein Tertiary Structure (PPPTS) 9 45739
Parkinsons Telemonitoring (PT) [Tsa+09] 18 5875

An overview of the used datasets in this set of experiments in given in Table 6.2, including
sample size and dimensionality. As with the previous articles on RD [Hei+22a; Hei+23c], we
evaluate on datasets part of the UCI Machine Learning Repository [DG17]. The Combined
Cycle Power Plant (CCPP) [KT12; Tuf14] dataset shows an almost linear relation between
features and targets and can be acceptably accurately predicted using a single rule. Airfoil Self-
Noise (ASN) [BPM89] and Concrete Strength (CS) [Yeh98] are both highly non-linear and will
likely need more rules to predict the target sufficiently. The CS dataset has more input features
than ASN but is easier to predict overall. Energy Efficiency Cooling (EEC) [TX12] is another
rather linear dataset, but has a much higher input features to samples ratio compared to CCPP.
It should similarly be possible to model it using only few rules. In addition to these four,

*The code to reproduce the experiments can be found in SupRB’s experiment repository: https://github.com/
heidmic/suprb-experimentation/

113


https://github.com/heidmic/suprb-experimentation/
https://github.com/heidmic/suprb-experimentation/

6 Extending and Improving SupRB

which were present in [Hei+23c], we also investigated the performance on Physicochemical
Properties of Protein Tertiary Structure (PPTS), which is highly non-linear, and Parkinsons
Telemonitoring (PT) [Tsa+09], which is also non-linear and has the highest number of features
of all investigated datasets. Overall, we expect these two additional datasets to be harder to
approximate than the other four. Both have also already been used in our study on local models
(cf. Section 6.1.1). We also included them here to hopefully make more conclusive statements
about which optimizer to choose than were possible following [Hei+22a] and [Hei+23c].

Results

In the following, we abbreviate SupRB using X as its RD method simply by X, e.g. SupRB using
ES as its RD method is just signified as ES. The other optimizers follow accordingly.

Tables 6.3 and 6.4 give the means and standard deviations of model performances represented
by mean squared errors (MSEs) (measured using the standardized—individually per dataset—
test data) and model complexities (measured by the number of rules in the final elitist) achieved
by the eight RD approaches when evaluated—as described in the previous section—on the six
real-world datasets.

At a first glance, on five of six datasets, RS shows the clearly worst performance in terms of
mean MSE but the models it creates generally show a low(er) model complexity, being even
the best one two datasets. ES tends towards smaller models but only has the best error on
ASN and is a bit worse, albeit close to the best, on errors for all datasets but PPPTS. The other
optimization approaches vary in their results between datasets with no clear tendencies being
easily discernible based on the tables alone.

Table 6.3: Mean and standard deviation (over 64 runs, rounded to two decimal places) of MSEs
achieved by the eight RD approaches on the six datasets. Best entry in each column
(if one exists) marked in bold.

CCPP ASN CS EEC PPPTS PT
ES 0.07+£0.0 0.15+0.02 0.15+0.04 0.04+0.03 0.63+0.02 0.31+0.03
RS 0.07+0.0 0.23£0.03 0.17+0.05 0.06+0.03 0.62+0.01 0.45=0.03
NS-P 0.06+0.0 0.19+0.02 0.14£0.03 0.04 £0.01 0.6 £0.01 0.3+0.03
MCNS-P 0.06 £0.0 0.19+0.02 0.13+0.03 0.04+0.02 059+0.02 0.3=*0.04
NSLC-P 0.06 £0.0 0.2+0.02 0.15+0.03 0.05+0.02 0.62+0.02 0.39+0.03
NS-G 0.06+0.0 0.2+003 0.14%0.03 0.04+0.02 0.59+0.01 0.35=0.03
MCNS-G 0.06 £0.0 0.19+0.02 0.14+0.05 0.03+0.02 0.59+0.04 0.34+0.03
NSLC-G 0.06+0.0 0.2+0.03 0.15%£0.03 0.04+0.02 0.63+0.03 0.38+0.03

In order to get a better overview of the runs, as well as include more detailed information
about the distributions, we created swarm plots to visualize the MSE (Figure 6.7) and model
complexity (Figure 6.8) results. For CCPP (Figure 6.7a), we see only very slight differences
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Figure 6.7: Distribution of RD runs’ test errors. All datasets are standardized with unit variance.
Note the different scales, reflecting varying difficulty of the learning tasks.
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Figure 6.8: Distribution of RD runs’ model complexities. Note the different scales, reflecting
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116



6.4 Rule Discovery

Table 6.4: Mean and standard deviation (over 64 runs, rounded to one decimal) of the model
complexities achieved over the experiments. Best entry in each column is marked in

bold.

CCPP ASN CS EEC PPPTS PT

ES 55+08 433+28 421+29 20.1+22 457+3.6 388=*3.3

RS 74+11 373+34 393+24 27927 43.1+£3.0 549zx41

NS-P 102+13 422+37 568+48 258+34 804%51 542+43
MCNS-P 100+13 27.8+3.1 50.1+33 31.9+35 982+53 623638
NSLC-P 97+14 453+%43 622+6.1 332£6.5 100.6+94 100.3+6.2
NS-G 106=+1.6 66.1%45 536+39 320+£34 1061+54 845%55
MCNS-G 103+13 384+34 49435 29.0+29 855%+53 534zx44
NSLC-G  9.7+12 533+41 547+£37 313+48 741%£6.6 793%6.8

on errors in the novelty search runs, but ES and RS are clearly falling behind. However, one
should note that due to the scale at which these errors occur it is unclear if they are of practical
significance even if they are statistically different. In terms of model complexity (Table 6.4 and
Figure 6.8a), RS is the second best approach, while ES substantially outperforms the others on
average at about half the size of the results of NS-G and 57% of the best novelty search vari-
ation. Given the questionable validity of worse results on MSE, this could make ES the best
overall approach on this dataset. The plot for errors on the ASN dataset (Figure 6.7b) as well as
the means in Table 6.3 suggest that ES outperforms all other optimizers and that the novelty
search variants are about equal but outperform RS. However, with respect to model complexity
(Table 6.4 and Figure 6.8b), we observe that MCNS-P finds models of a much lower complex-
ity, while the mean number of rules in the solutions found by the other optimizers is about
equal, with the exception of NS-G and NSLC-G which are double the size of MCNS-P. Where
ES’s low error and average complexity might indicate that it found it easier to discover rules
resulting in another area on the Pareto-front created by error and complexity, it is not really
clear what might lead to the performance difference among the other approaches other than a
worse capability during the search or a worse interaction with the GA. On CS, we again notice
relatively similar performances on errors but MCNS-P has a tighter distribution and lower av-
erage (cf. Figure 6.7c and Table 6.3). MCNS-G did show one far off outlier but should otherwise
be considered a good candidate for the best approach. Both models were about the same size
on average and close to the mean of all models. While RS is best on model size (Figure 6.8c),
the second best is ES, which is quite average on error but clearly better than RS. We can as-
sume that ES is finding a better balance of the objectives than the other algorithms, although
MCNS-X seemingly do well in this regard, also showing the lowest errors but third and fourth
highest complexities. All of these differences are statistically significant, albeit probably not
practically significant for errors and maybe not even for model size. For practically relevant
model size differences we do not have clear data yet but made the conservative assumption
that a difference of three rules should be relevant (cf. [Hei+23c]). The absolute differences of
errors are again quite small on EEC (cf. Figure 6.7d), but MCNS-G shows the best performance
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and if ES was a bit more consistent on some runs it would also be a top candidate. For ES,
we can assume that it again made a trade-off between complexity and error as it was almost
50% smaller than MCNS-G on average (cf. Table 6.4 and Figure 6.8d). Overall, the results on
PPPTS show relatively high errors for all approaches as this is a relatively difficult dataset
(cf. Figure 6.7¢). ES, RS, and both NSLC variants are about even with NS and MCNS variants,
beating them slightly in errors. There is a small tendency indicating MCNS-X to be a bit bet-
ter on this dataset. Interestingly, MCNS-G shows the most extensive outliers of all datasets
(and more than MCNS-P) but even then all but 4 of the 64 runs are below the median error
of ES. Importantly, the models of ES and RS were about half the size of MCNS-G, which was
smaller than MCNS-P (cf. Table 6.4 and Figure 6.8e). On the PT dataset, ES clearly beats all
generational variants, NSLC-P, and RS on errors (cf. Figure 6.7f). RS falls similarly far behind
as it did on ASN. NS-P and MCNS-P are slightly better than ES, with NS-P being more tightly
distributed than MCNS-P. ES is still much more compact (Table 6.4 and Figure 6.8f) than the
rest at ~72% of NS-P’s models and ~39% of NSLC-P’s, which might again indicate that it found
a path towards small yet accurate models that was a bit more on the smaller side but otherwise
not too much worse. Whether or not this loss in predictive power for more explainability is
an acceptable trade-off for a real-world application of SupRB where it was to predict PPPTS or
PT would be for domain experts to decide.

Overall, despite the hints that ES might strike a better balance between objectives than the
other RD approaches are able to find, the visual analysis combined with the rounded statistics
of mean and standard deviation is not capable of providing us with a conclusive answer regard-
ing which of the RD methods should be preferred on a range of tasks like the ones considered.
We thus investigate the gathered data more closely using Bayesian data analysis*’.

As in Section 6.3.2, we start by applying the model proposed by Calvo et al. [CCL18; Cal+19]*
to our data which, for each of the RD methods, provides us with the posterior distribution over
the probability of that RD method performing best in regards to a specific metric. We apply
this model to both the MSE observations, as well as the model complexity observations, and
provide box plots (Figures 6.9 and 6.10) which show the most relevant distribution statistics.

For the MSEs, we see in Figure 6.9 that MCNS-P and MCNS-G are about equally likely to be on
rank one, albeit with a relatively-speaking rather low probability. NS-P is a close third while
RS is the least likely on rank one. ES is about equally likely to be the best as NSLC-P and
NSLC-G. However, we can not really make any decision based on these results as a typical
minimal threshold for automated decision making is 80% (or usually even more) for a single
algorithm/approach [Ben+17]. Based on the results, we could conclude that any method other
than RS (which seems to be outranked by all) could be a candidate with a small preference for
NS-X and MCNS-X.

"We deliberately avoid the use of null-hypothesis significance tests due to their flaws and many possible pitfalls—
cf. e.g. [Ben+17].

*"We use the implementation provided by https://github.com/dpaetzel/cmpbayes using 10,000 steps in the MCMC
process.
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When considering model complexity (Figure 6.10), there is an about 75% probability that one of
ES and RS performs the best, with ES being the most likely candidate at 45%. While this does
also not meet the threshold for automated decision making, we can clearly see that ES beats
the novelty search variations. If we redistribute the probability mass of RS, ES is more likely
than all others combined to be the rank one algorithm for complexity. Note that the results
differ from those in [Hei+23c], where ES was a bit better placed on errors but only on a distant
rank three for complexity, where NS-P and MCNS-P took the top ranks. This shift is primarily
due to the addition of the new (and more difficult to solve) PPPTS and PT datasets.

MSE
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Figure 6.9: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution
obtained from the model by Calvo et al. [CCL18; Cal+19] applied to the MSE data.
An RD method having a probability value of q % says that the probability of that
RD method performing the best with respect to MSE is q %.

Based on the results of the Calvo model and the close look at the individual distributions, we
can not make an automated decision but we can narrow the field a bit. As already stated,
RS is probably not the best candidate. Given their low ranking on both complexity and MSE,
we can also set aside NSLC-P and NSLC-G. ES being the top candidate on complexity should
somewhat offset its lower ranking on MSE. Hence, we will consider it further. NS-P is higher
ranked than NS-G on both errors and complexities and Table 6.4 shows practically relevant
differences on model sizes, therefore, we remove NS-G from further consideration as well.
Thus, our remaining candidates are ES, NS-P, MCNS-P, and MCNS-G.

As our global statistical analysis was insufficient to decide among these four algorithms, we
next estimate the likely effect size of choosing among the different algorithms. While a well-
trained eye might be able to do this from the visual presentation alone, we employ Corani and
Benavoli’s Bayesian correlated t-test [CB15]** to make it more explicit and statistically sound.

*"We use the implementation provided by https://github.com/dpaetzel/cmpbayes.
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Figure 6.10: Box plot like Figure 6.9 but for the model complexity metric.

For this, we compare ES with the other three candidates, as ES was the remaining baseline and
the originally used RD optimizer for which we seek an improvement. The resulting posteri-
ors (given in Figures 6.11, 6.12, 6.13, and 6.14; including 99% high posterior density intervals
(HPDIs)) are the distribution of the differences between the considered metric for ES and for X
(practically, this equates to probability mass above zero indicating ES having a higher (worse)
value than X).

For the MSE, we find that the expected effect differences are relatively small, and often we will
have runs of ES that perform slightly better than the compared algorithm, while others are
worse than it. In Figure 6.11, we visualize the results of the t-test between ES and NS-P for
each dataset. For at least 99% of runs NS-P is better on CCPP while being worse on ASN. For
each of the other datasets, there is at least some (more than 1%) probability mass on one side of
the zero even if the mode of the distribution is on the other. For CS and EEC, we see relatively
equal performance and PT is quite close to equal as well. When investigating the effect sizes
more closely, we see that despite the vastly varying differences in absolute MSEs on each of the
datasets achieved by the runs, the differences are almost on the same scale. So even for more
complex datasets the algorithms do not drift that much further apart.?> Comparing ES and
MCNS-P (Figure 6.12), the optimizer to most likely be rank one according to the Calvo model
(cf. Figure 6.9), paints a very similar picture. There are some minor differences, e.g. the mode
being slightly shifted towards a MCNS-P performance on CS and PPPTS, which does explain
the result of the Calvo model, but overall, this does not appear practically significant (and
likely would not be statistically significant based on null-hypothesis testing either). Testing
ES against MCNS-G (Figure 6.13) again results in a very similar visualization but ES is slightly
worse on EEC and better on PT this time.

*?CCPP is an obvious exception to this but this dataset is very easy to solve as it is almost linear.
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Figure 6.11: Density plot of the posterior distribution obtained from Corani and Benavoli’s
Bayesian correlated t-test [CB15] applied to the difference in MSE between ES and
NS-P. Orange dashed lines and numbers indicate the 99 % HPDI (i.e. 99 % of proba-
bility mass lies within these bounds). HPDI bounds are rounded to two significant
figures. Effectively, this indicates how likely a specific difference between one run
of each RD method will be (practically, probability mass above zero equates to ES
having a higher (worse) value than NS-P).

In Figure 6.14, we show the results of the t-test between ES and MCNS-P on model complexity.
We include a region of practical equivalence (ROPE; in green). This effectively means that for
any probability mass within this region, we consider equal performance rather than giving it
to one of the algorithms. Therefore, the difference would be practically insignificant as well.
We set the upper and lower bound of the ROPE to the mean of the standard deviations of the
model size of each of the eight algorithms, which we assume is a number of rules small enough
that having to analyse a small percentage of additional rules is causing negligible additional
effort but still sensible for the task at hand.”® Given the large differences in absolute model
sizes between datasets, cf. Table 6.4, a relative value appears more sensible. However, we have
no priors about how large a good model should be and how much noise is introduced by the
different data splits (into train and test data). Therefore, we can not easily determine what
differences are negligible. Thus, we assume that the different models will appropriately fit to
the training data and form a roughly unimodal distribution in model size (which is supported
by the shapes seen in Figure 6.8). We can then use their standard deviations as a measure for

*As the model complexity/size is a count of rules and therefore always an integer, we round the ROPE to the
nearest integer as well.
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Figure 6.12: Density plot of the posterior distribution like Figure 6.11 for the difference in MSE
between ES and MCNS-P.
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Figure 6.13: Density plot of the posterior distribution like Figure 6.11 for the difference in MSE
between ES and MCNS-G.
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Figure 6.14: Density plot of the posterior distribution like Figure 6.11 for the difference in
model complexity between ES and MCNS-P. In green, we show a region of practi-
cal equivalence (ROPE).

the range of model sizes we should expect. Fluctuations that are within the mean standard
deviation are probably caused by factors that are beyond a model’s control and do not signify
relevant performance differences. The analysis result is rather definitive (with more than 99%
likelihood) that in all cases but a few runs on CS there is a clearly smaller model produced by
one of the two compared algorithms. In case of ASN, MCNS-P produces significantly smaller
models, while on all other datasets ES shows the smaller models. Even on CS, where a few runs
will produce practically equivalent results, over 99% of probability mass is on the side of ES.
Comparisons of ES with NS-P and MCNS-G show very similar patterns, although both have
considerably large amounts of runs that will produce practically equivalent results on ASN.
The relevant plots can be found at https://github.com/heidmic/diss-graphs/tree/main/RD.

We conclude our analysis with a summary of the key takeaways.

« On datasets like the ones we considered, MCNS-P and MCNS-G have the highest proba-
bility of being the best options MSE-wise (with NS-P not far off). However, the collected
data is not at all conclusive with respect to that. There remains an around 60% chance
of MCNS-P and MCNS-G not having the best MSEs on such datasets.

« When considering model complexity alone, there is a high probability of ES being the
best—however, its MSEs are much less likely among the best than the top algorithms on
this metric.
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« Randomly sampling rules can be a usable (albeit less powerful) option to generate the
rules to build solutions from. While it does fall short on errors, it is almost competitive on
model size. Given that some of the computation budget that is spent for tuning ES could
be shifted towards generating more randomly-placed rules, it might not be as subpar as
it appears now.

+ A closer comparison of ES with NS-P, MCNS-P and MCNS-G yielded:

— ES outperforms NS-P and MCNS-P MSE-wise on ASN but was outperformed on
PPPTS.

— The difference of ES and NS-P/MCNS-P on CCPP is likely not practically significant
and the other datasets showed similar performance of the options.

— ES also outperformed MCNS-G on ASN and probably performs slightly better on
PT as well, while MCNS-G shows a less pronounced (than NS-P and MCNS-P) im-
proved error on PPPTS.

— 'The difference on CCPP is again not practically significant, while on CS and EEC,
ES and MCNS-G show almost similar performance.

— Interestingly, ES did show higher model sizes than the others on ASN but clearly
outperformed them on the other datasets even when considering a sizeable ROPE.

6.5 Solution Composition—Other Metaheuristics

Once a good selection of rules has been discovered and placed into the pool, an appropriate
model can be build. As this model serves as a solution to a learning task, we termed this pro-
cess solution composition (SC) (cf. Section 4.1 and [Hei+22c]). As comprehensible yet accurate
models are the prime focus of SupRB, SC should build solutions accordingly. The following in-
troduces possible SC optimizers other than the Genetic Algorithm (GA) of the original SupRB
version, which were subsequently benchmarked similarly to RD in Section 6.4. The alternative
optimizers for SC discussed here are all based on various different mainstream metaheuristics
(they can all be considered relatively standard and well-established but of course have different
notorieties outside of the optimization community), whereas Section 6.6 will introduce some
adaptations of the GA itself. This section builds on joint work partially published in [Wur+22],
which is an expansion of Jonathan Wurth’s Bachelor’s thesis which was supervised jointly by
Helena Stegherr and myself. However, the experimental setup was expanded and the statistical
analysis replaced since the publication.

LCSs—similarly to other rule-based approaches—can suffer from creating more rules than are
needed to model the problem sufficiently. This is especially the case on complex learning
tasks, where the number of rules is already high and understanding the (hypothetical) optimal
rule set is non-trivial. If, additionally, many similar (redundant) rules are part of the rule set,
e.g., because several independently operating techniques to generate rules were combined or
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expert knowledge is incorporated into the training process, making even simple statements
about accuracy and usefulness of individual rules is increasingly difficult. Interpreting such
rule sets in their entirety gets confusing very quickly, especially if non-trivial mixing models
are involved. Reducing the size of rule sets and removing unnecessary or even sub-par rules
is, therefore, a sensible choice and directly correlates with an increase in interpretability and
often accuracy.

In the context of online single-solution (Michigan-style) LCSs, such approaches are known
under the term rule compaction and mostly performed as post-processing [TMU13; LBX21b].
The compaction itself is often performed deterministically based on estimated values or by ap-
plying heuristic procedures. Some batch multi-solution (Pittsburgh-style) LCSs such as GAs-
sist [Bac04] perform an intermediate rule pruning step, albeit being similarly heuristic. In
this section, a more general perspective will be taken on this: selecting a minimal subset of
rules while maintaining other objectives like accuracy is a typical model selection [DTY18],
or model pruning problem, and such problems can be solved efficiently using metaheuristics.
Diao and Shen [DS15] evaluate several nature-inspired metaheuristics such as a GA and ACO
on feature selection and find that all are capable of finding good quality solutions. An example
of pruning neural network and decision tree ensembles using a GA can be found in [ZWT02]
and [ZT03], respectively.

An obvious metaheuristic to apply here is a GA, especially because LCSs are systems origi-
nally designed to take advantage of the GA’s ability to evolve and enhance its individuals, or
rules [Hol92]. Accordingly, SupRB’s original version did use a GA to select good subsets of
rules. However, other metaheuristics like Particle Swarm Optimization (PSO) or Ant Colony
Optimization (ACO) are similarly able to handle hard optimization problems, which includes se-
lection tasks. ACO has also been applied as the primary optimizer in the batch single-solution
Ant-Miner [PLF02] (cf. Section 2.4 for other systems and additional information on the Ant-
Miner).

The No Free Lunch Theorem [WM97] states that no optimization algorithm can be the best on
all possible problem classes, which raises an interesting question in this context: which meta-
heuristic performs best on the task of rule set compaction, or, in the context of SupRB, on
composing solutions? Therefore, this section specifically compares five different metaheuris-
tics for SC as part of SupRB, which in general tries to generate a rule set (solution) as compact
and accurate as possible. The metaheuristics considered here include a GA, ACO, PSO, a Grey
Wolf Optimizer (GWO) variant, and the Artificial Bee Colony algorithm (ABC), which all share
the characteristic of being population-based and inspired by phenomena in nature.** Incorpo-
rating a non-evolutionary metaheuristics into an LCS might lead some researchers to argue
that the system would not be an LCS anymore in the most narrow, traditional sense, however,
the bounds of what can be considered one have shifted to a more general definition over the
last years [UB17; Kov12]. We followed this more broad definition as well in [Hei+23a] and
Chapter 2.

*0f course, many more specialized metaheuristics exist. In this set of experiments, we mostly wanted to inves-
tigate whether the switch to another base system would be appropriate, rather than comparing very SupRB
specific optimizations within the potential optimizers.
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6.5.1 Model Selection in SupRB

This section will recap some aspects of SupRB and set the necessary context for SC: The fun-
damental concept of SupRB is to split the LCS’s usual process of finding a maximally concise
and accurate rule set into two subtasks: RD and SC.

RD generates rules which fit a part of the input space using some local model and inserts them
into a global population of rules: the (rule) pool. To keep interpretability high, the rules simply
consist of rectangular bounds and a linear local model (Sections 6.1 to 6.2 discuss possible ex-
tensions on these two elements). By default, SupRB employs an ES to discover locally optimal
rules, preferring to generate rules in parts of the input space where the in-sample error of the
current global solution is the highest. The experiments in this section also utilize an ES for RD.
Details on this rule generation process can be found in Chapter 4, Chapter 5, and Section 6.4.
The rules in the pool are assumed to have the following properties, regardless of their origin:

+ Rules in the pool meet some minimum standard, i.e. they are at least accurate enough so
that knowledge about the part of the input space they match can be extracted.

« Some similar rules are part of the pool.
 Rules may (greatly) overlap.
» They are not modified or removed from the pool.

SC is the component that selects a minimal and maximally accurate subset of rules from the
pool, mixes them according to some mixing model, and thus creates a valid model of the whole
space. For this section we use the error and experience-based model presented in Chapter 4
and further discussed in Section 6.3. This model is also referred to as a (global) solution which,
in the context and terminology of population-based metaheuristics, equates to an individual.
SC performs a special kind of model selection, where not explicitly enumerated models are
considered, but all possible subsets of rules 2° from the pool P. Encoding these subsets can
easily be achieved by using a binary string, or genome, GG, where a 1 at index ¢ encodes that
the rule at index ¢ is part of the subset, and 0 encodes that it is not. The following string thus
represents the subset of choosing the first, third and last rule in the pool:

G = 101000...001 (6.5)

As rules are only appended to the pool and existing rules are not modified, such a solution vec-
tor stays valid by padding it with zeros, although other possibilities exist, e.g. always including
new rules (padding with ones) or using a random bit string.

A central problem in SC is that the exact number of rules required for an adequate solution is
unknown (or how good that solution should be), so there is no way to know when the global
optimum for a given pool is found. The overall goal of SC is therefore finding a good subset of
rules, while simultaneously keeping the computational cost reasonable. This also motivated
the alternating nature of RD and SC, which makes feedback on the quality of individual rules
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and the global solution immediate and simplifies the design process. As SC is not only per-
formed at the end but also during the training process, knowledge about the global solution
can then again be incorporated into the RD process, for example in the form of choosing re-
gions of the input space that are not yet predicted sufficiently.

6.5.2 Selecting Subsets of the Pool

Searching the entire binary search space 2V with N = |P| is not feasible, even for relatively
small N, and as only a subset that is “good enough” is sought after, the application of meta-
heuristics on this task is a sensible choice. Problems like Feature Selection [LM07] or Ensemble
Pruning [Zho12] are characterized by choosing a minimal subset while simultaneously opti-
mizing other objectives and the same conditions apply here. The task is therefore by definition
multi-objective, and a choice must be made if multi-objective metaheuristics should be applied
or if a fitness function is constructed that weighs the objectives in some way and that is then
optimized by standard (single-objective) metaheuristics. This choice is not obvious and highly
depends on the final goal of the optimization. The weighted fitness approach was chosen here,
simply because multi-objective optimization would certainly find a whole population of (ap-
proximately) Pareto-optimal solutions, but somebody (a human) must then again choose from
these solutions according to some criteria. Encoding these criteria into the fitness beforehand
makes the selection on the one hand automatically reproducible, and on the other hand enables
the metaheuristic to search the space of solutions that fit these criteria in much more detail, as
many multi-objective optimizers do not consider a specific ratio of objectives. For the datasets
investigated in this section, this combination of objectives into a single fitness was observed
to be rational, but applying multi-objective optimization does also hold advantages, as will be
shortly discussed in Chapter 7.

The following paragraphs will shortly introduce the five metaheuristics for SC which are com-
pared in this section. Of these metaheuristics, only the GA operates on a binary space in its
original version, so the other metaheuristics are binary adaptations of their original operat-
ing principles. Each metaheuristic contains some interchangeable components, or operators,
sometimes several of which will be presented and chosen as part of hyperparameter tuning
on a dataset basis. All of these metaheuristics are population-based, so they operate on a
population [ of individuals, or global solutions, and therefore define the population size as a
parameter.

Genetic Algorithm

The Genetic Algorithm (GA) [Hol92; Mir19; Kra17] defines three components, namely selection,
crossover, and mutation. The selection method is chosen from either roulette wheel, tournament
with size k, linear rank, or random selection. Two genomes are combined using either n-point
or uniform crossover, with a crossover rate of 90 %. The children are subsequently mutated
by flipping each bit in the genome with a probability given by a constant mutation rate. Also,
several elitists from the previous iteration are copied into the new population.
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Ant Colony Optimization

Ant Colony Optimization (ACO) [SH98; DD99; DBS06] lets artificial ants traverse a solution
graph and construct a solution by locally choosing which edge to take next. Approaches for
binary problems typically define two mutually exclusive nodes [ for every bit, where traversing
one node means a 1 and the other one a 0. The solution construction components chosen here
include a binary method [Wan+16], which decides on the selection of rules by their order
of insertion into the pool. Specifically, pheromones 7 are deposited for every rule, with the
relative fitness AF' of a rule used to calculate the heuristic value 7:

1 F(r) — mingep F(s)
AF(r) = 2 maxsep F(s) — mingep F(s)’ (6.6)
_J1-AF(r), =0
mm_{1+Amm,z=1' 6.7

The value is therefore endorsing the selection of rules with fitness higher than the mean. Ants
start at the first rule and select either the 1 or 0 node [ for every rule r, solely based on 7, (1)
and 7, (1), until the last one is reached. This virtually ignores the interactions between rules,
which is why the complete solution construction [KN13; XC20] operates on a complete graph,
with edges existing between every rule (or rather their subnodes ). For this method, ants
traverse the rules in random order and either select or deselect a rule r based on 7., 7. -, and
the 75,715, of every rule s that was selected by the ant up to this point. The heuristic value
7;,; is a combination of the relative fitness of rule j and the relative overlap AV of the bounds
of rule 7 and j:

V(bz N bj)

AVEI) = SV ).V ()] (6
1AV, 1=0
%A”{1+Avwﬂ,l:1’ (6.9)

i (D) = \/ ki (1) -7 (D) (6.10)

where r; ;(1) is defined using the heuristic value of the binary solution construction, i.e. using
Equation (6.6), and V'(b,) is the volume of the bounds of rule . Pheromones endorsing the
selection are deposited for (all pairs of) selected rules by the n best ants in this iteration and
pheromones inhibiting selection are deposited for rules that were not selected. Additionally,
ACO traditionally defines «, 8 weighting 7 and 7, and the evaporation rate p of 7.

Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) [MML14] updates its population by stochastically mixing them
with the three best individuals. It is binarized here, using the two approaches introduced
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in [EZH16]. Both rely on the modified sigmoid, or rather logistic, function

1

" 1+ exp(—10(z — 0.5)) (6.11)

()

and a comparison of a continuous value x; € [0, 1] for rule ¢ with a uniformly distributed
random value rand € [0, 1]:

(6.12)
0 otherwise

1 ifé(x;) > rand
Gi = { ( Z) - .
The sigmoid component performs this binarization at the very end, while crossover updates
the individuals mostly in binary and uses a uniform crossover mechanism to combine them.
The number of the best individuals considered for updates is traditionally set to three for this
metaheuristic (o, 3, ), but an extension to an arbitrary count is used here.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) [KE95; PKB07] emulates the real-world movement of par-
ticles in the air for adapting and moving solutions in the search space. Three ways to update
these particles are considered here. The sigmoid update [KE97] uses Equation (6.11) and Equa-
tion (6.12) similarly to GWQO’s sigmoid component to create genomes from continuous particle
positions and defines two parameters, b and c. The same approach is chosen for sigmoid quan-
tum, with the difference of using a Quantum PSO [SFX04] as underlying metaheuristic. Note
that the position and velocity of particles, in contrast to GWO, are left continuous. Binary
quantum [Wu+18; Wu+19] is a completely binary version of QPSO, which performs a kind of
tournament selection to select particles, or attractors, and performs partial crossover using a
special learning probability pjeam. All approaches incorporate some « into the particle update,
which is decreased from @,y to amin over the optimization process.

Artificial Bee Colony Algorithm

The Artificial Bee Colony algorithm (ABC) [KB07; Kar+14] constructs new solutions by com-
bining individuals with others selected by random or roulette wheel selection. New solutions
only replace their parents if the newly generated individual performs better. In addition, ABC
occasionally resets stagnated individuals after a certain number of iterations given by the trials
limit and creates a new random solution. The sigmoid approach uses the traditional continuous
combination with Equations (6.11) to (6.12), while bitwise [JDK14] relies on bitwise AND, OR,
and XOR operations to combine two genomes. Besides this recombination of solutions, individ-
uals also explore their neighbourhood by adding a probabilistic random vector to the crossover
result. The dimension flip update [San+19] performs a partial crossover of two solutions, with
the percentage of crossed dimensions given by the flip rate ;.
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6.5.3 Evaluation

This section first describes the experimental setup we use to evaluate the performance of the
different SC optimizers. Then, we present our results and the rigorous statistical analyses we
performed to determine which SC optimizer we should recommend for further usage.

Experimental Setup

The five metaheuristics presented in Section 6.5.2 are integrated into SupRB itself**, which
is sufficiently modularized to allow easy replacement of RD and SC optimizers and the other
major components discussed in this chapter. The general experimental setup follows Chapter 5
and the other sections in this chapter:*® Input features are transformed into the range [—1, 1],
while the target is standardized. The evaluation uses 8-split cross-validation, each with 25 %
of samples reserved as a validation set. Each metaheuristic is evaluated eight times using
different seeds for each 8-split cross-validation, resulting in a total of 64 runs. In addition to
experimentation with the five optimizers, a Random Search (RS) is performed as an additional
baseline (besides the original GA), finding rule subsets using an identical experimental setup.
RS randomly creates new individuals in each step, ultimately returning the best individual
found.

SupRB performs 32 RD-SC cycles in total, generating four rules in each cycle for a total of 128
rules. For RD, the ES is used, cf. Section 4.1 and Section 6.4.2. All of SupRB’s (including the ES
and the respective SC optimizer) hyperparameters are tuned for every dataset independently.
The SC metaheuristics are configured to perform 32 iterations with a population size of 32 and
RS similarly evaluates 32 - 32 = 1024 individuals per cycle. All hyperparameter tuning is done
using a Tree-structured Parzen Estimator implemented in the Optuna framework®” [Aki+19],
optimizing the solution fitness on 4-fold cross-validation with a fixed budget of up to 360 core
hours.

Similarly to RD, we evaluate on six real-world datasets presented in Table 6.2 and described
in the experiment design section of Section 6.4.3. The work by Wurth et al. [Wur+22], which
is the foundation of this section, only evaluated the SC approaches on the first four of these
datasets and had a slightly different but overall similar setup.
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Figure 6.15: Distribution of SC metaheuristic runs’ errors. Note the different scales, reflecting
varying difficulty of the learning tasks.
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Results and Discussion

Similar to the previous sections, in the following, we abbreviate SupRB using X as its SC method
simply by X, e.g., SupRB using ABC as its SC method is just signified as ABC. The other optimiz-
ers follow accordingly.

The experiments show that all five metaheuristics introduced in Section 6.5.2 are able to com-
pose good solutions and are very similar in their performance. For most of the datasets, they
also clearly perform better than the baseline (RS). Figure 6.15 shows the distribution of the
errors achieved on the testing data across the 64 runs per algorithm per dataset. Note that
we effectively re-use the results achieved by ES during our experiments on RD (Section 6.4)
as it used a GA as its SC component and is thus identical to this set of experiments where we
investigate a GA for SC that uses an ES for RD. We also set the same parameter tuning ranges
and the overall experimental setup is the same resulting in identical experimental results due
to algorithm and data seeding. We can notice that some runs produced significant outliers to
the worse, but the general distributions are quite similar between approaches both in shape
and in location. From the distributions on errors alone, it is almost impossible to determine the
best algorithms and make any statement other than that the metaheuristics are indeed better
than RS.

Figure 6.16 shows the distribution of the model complexities of the approaches on each dataset.
RS tends towards wider distributions. ACO is worse than the others on PPPTS, on PT, and,
slightly, on CS, but better on ASN. GWO is worse on ASN but generally shows similar means
than the median sized runs on the respective dataset.

As it is hard to make a definitive statement based on the distributions, we again employ
Bayesian statistical testing. Similar to Section 6.3.2 and Section 6.4.3, we start by applying
the model proposed by Calvo et al. [CCL18; Cal+19]*® to our data which, for each of the SC
methods, provides us with the posterior distribution over the probability of that SC method per-
forming best in regards to a specific metric. We apply this model to both the MSE observations
as well as the model complexity observations and provide box plots (Figures 6.17 and 6.18)
which show the most relevant distribution statistics.

In Figure 6.17, we see that the Calvo model confirms our previous analysis on the raw distribu-
tions of errors. RS falls behind the other algorithms and is unlikely to perform best. However,
the other algorithms are only separated by a few percentage points. If at all, we can see a small
tendency towards GA which is about 2% points more likely to perform the best on datasets sim-
ilar to the ones investigated than ABC, which is the second most likely algorithm to achieve

**The newest version of SupRB’s implementation is always found at https://github.com/heidmic/suprb. The
version used for all experiments in this dissertation is long-term archived at https://doi.org/10.5281/zenodo.
14181292.

**The code to reproduce the experiments can be found in SupRB’s experiment repository: https://github.com/
heidmic/suprb-experimentation/

*"https://optuna.readthedocs.io/

**We use the implementation provided by https://github.com/dpaetzel/cmpbayes using 10,000 steps in the MCMC
process.
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Figure 6.17: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution
obtained from the model by Calvo et al. [CCL18; Cal+19] applied to the MSE data.
An SC method having a probability value of q % says that the probability of that
SC method performing the best with respect to MSE is q %.
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Figure 6.18: Box plot like Figure 6.17 but for the model complexity metric.

rank one performance on MSEs. The weakest of the metaheuristics, PSO, is only 3.5% points
less likely to be on rank one than the GA.

In terms of complexities (cf. Figure 6.18), we see a slightly clearer picture but far from typical
thresholds (above 80%) for automated decision making [Ben+17]. RS is still unlikely to perform
best. ACO is also not likely a top performing approach. ABC is most likely on rank one
while the GA is second most likely. However, I want to stress that this is by no means a clear
generalist statement.

As ABC and the GA are the two most likely approaches to have the best performance on
both objectives, we will now compare their expected performance difference per dataset using
Corani and Benavoli’s Bayesian correlated t-test [CB15].>° Figure 6.19 shows the resulting

*We use the implementation provided by https://github.com/dpaetzel/cmpbayes.
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Figure 6.19: Density plot of the posterior distribution obtained from Corani and Benavoli’s
Bayesian correlated t-test [CB15] applied to the difference in MSE between GA
and ABC. Orange dashed lines and numbers indicate the 99 % HPDI (i.e. 99 % of
probability mass lies within these bounds). HPDI bounds rounded to two signifi-
cant figures. Effectively, this indicates how likely a specific difference between one
run of each SC method will be (practically, probability mass above zero equates to
GA having a higher (worse) value than ABC).

distributions of the test for the MSEs. As we can easily see, they are quite balanced overall.
The difference on CCPP is not practically relevant for at least 99% of cases. While we can see
a very slight edge for ABC on CS and an even smaller one on EEC, GA is expected to have
slightly lower errors more often on ASN, PPPTS, and PT, but even here 99% of the probability
mass is still expecting a difference in error below 0.1 standard deviations of the respective
datasets. Thus, we can comfortably state that ABC and GA are not only almost equally as
likely to rank best globally on sets of similar datasets as the six we tested on, but also that
we can expect them to perform almost equally on every individual dataset. Figure 6.20 shows
the distributions of differences on model complexity according to the test. In addition to the
distributions themselves, we set up a region of practical equivalence (ROPE). For probability
mass that falls within this region, we consider the performance equal, regardless of which side
of the zero the mass is on. Consequently, only the mass left or right of that region should
be considered towards different performance of algorithms. We set the region, as we did in
Section 6.4.3, to a dynamic bound based on the mean standard deviation of the algorithms (cf.
the previous section for a detailed explanation of our reasoning). We can see that only for
CCPP, EEC, and PPPTS a significant amount of probability mass is outside of the ROPE. Of
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Figure 6.20: Density plot of the posterior distribution like Figure 6.19 for the difference in com-
plexity between GA and ABC. In green, we show a region of practical equivalence
(ROPE).

these three, PPPTS is the only one that has more than half of the mass outside of the ROPE
(and towards ABC showing better performance). Thus, the only case where one algorithm
practically significantly outperforms the other is on PPPTS, where ABC is expected to perform
better than or equal to the GA in more than 99% of runs. We expect ABC to have about 5 rules
less, which is about 1/9th of the GA’s average model size.

ABC’s good performance could be tied to its strong exploration capabilities with its dedicated
search mechanism, which is an important feature in the changing fitness landscape that is
created by adding more rules to the pool and therefore increasing the search space with each
new SC phase. Similarly, the GA’s exploration capability seems to allow it quite well to replace
selected rules within its solution with new ones. However, we should keep in mind that the
differences to the other metaheuristics are still rather small.*

Overall, we can say that ABC and GA are the most promising candidates for further investiga-
tion and practical use. As GAs are far more widespread and recognized, I would recommend
their usage over the less well-known ABC if a choice had to be made. This also comes with the
advantage that a lot more improvements for GAs have been studied and proposed in literature
than for ABC. One possible set of such improvements will be investigated in the next section,
where we will highlight and benchmark possible approaches to reduce the number of hyper-

**We also performed the t-tests for all other combinations of algorithms. The resulting plots can be found at
https://github.com/heidmic/diss-graphs/tree/main/SC.
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parameters to set for the GA in SupRB by introducing self-adaptive components to it that were
inspired by literature on self-adaptive GAs.

6.6 Solution Composition—Self-adaptive Approaches

In the previous section (Section 6.5), we investigated whether we should use another optimizer
rather than the Genetic Algorithm (GA) for solution composition (SC) in SupRB. This section
deals with possible improvements of the GA itself. While we would of course want to improve
the raw performance in terms of model size and prediction errors, another critical aspect of
getting SupRB applied by practitioners in real-world use cases is the question of how hard
it is to use. Self-adaptive Genetic Algorithms (SAGAs) could be a useful tool to decrease the
number of hyperparameters that need to be tuned or at least to make the tunable hyperparam-
eters less impactful. While this might come with some loss of training speed, it is probably
a worthwhile trade-off to simultaneously make training easier for the data scientists and ML
engineers. If successful, this could help with a wider adoption of SupRB for real-world tasks
but also flatten the learning curve interested researchers might encounter if they were to study
SupRB further.

This section presents a set of experiments comparing four different SAGA approaches with the
GA baseline. It is based on the Bachelor’s thesis of Maximilian Krischan which was supervised
by me and was expanded with a much more substantial statistical analysis into a publication
at the 2024 IEEE Congress of Evolutionary Computation [Hei+24].

The use of self-adaptive operators within the metaheuristic optimizer of LCSs has been an ob-
ject of research for decades: Hurst and Bull [HB01] did build a fully self-adaptive ZCS [Wil94]
(the LCS on which the more well-known XCS [Wil95] is based). They found that the self-
adaptive parameters resulted in better performance over static ones even in stationary envi-
ronments but especially in dynamic settings. Hurst and Bull [HB02] also tested a self-adaptive
mutation and learning rate in XCS and showed that it improves XCS’s poor performance on
long action chain environments. Furthermore, Bull and Hurst [BHO03] used self-adaptive pa-
rameters for an LCS using small neural networks as the individual rules and showed that this
is beneficial on different variants of maze running. Unold [Uno10] investigated whether self-
adaptive mutation benefits the rule discovery process of XCS and showed that it does for mul-
tiplexer tasks.

6.6.1 Self-adaptive GAs

In this subsection, we discuss the four SAGAs we adapted to be fit for the solution composition
task in SupRB. To make this section easier to read, we decided to number them, even if in their
original paper, they were given a name. This also reflects the fact that we had to do some
changes to make them suitable. We selected these algorithms specifically as they are relatively
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easy to understand, and therefore to explain to inquiring stakeholders, and did not construct
essentially new metaheuristics but focussed on smaller adjustments to the underlying GA.

SAGA1 This GA [Vas+01] dynamically adapts crossover and mutation rates to keep the ge-
netic diversity in the population high. Diversity is determined by the coefficient of average
solution fitness to the maximal fitness within this population. Crossover and mutation rates
are adapted inversely. The more diverse a population is, the higher crossover and the lower
mutation will be.

SAGA2 Sun and Lu [SL19] adjust crossover and mutation rates according to the diversity of
the current population and the similarity between the current and the preceding generation.
First, SAGA2 adapts the bounds available for both rates on a global level and then individual
rates are set dynamically between these bounds. Diversity is measured based on minimal,
maximal, and mean fitness. Similarity operates directly on the sets of fitness values. Based on a
combination of diversity and similarity, bounds for mutation and crossover rates are increased
or decreased, similar to SAGA1. Individual crossover rates are calculated for each operation
based on the overall bounds and the relative fitness of two selected parents (using the mean
of both) in comparison to the mean, min and max fitnesses within the current population. A
similar process is used for mutation.

SAGA3 Kivijarvi et al. [KFN03] assign each individual new parameters for their respective
mutation rates, crossover operators, and a noise factor. We make a small adjustment for
SAGAS3, in that we do not need the noise factor and instead introduce a crossover rate be-
having similarly to the mutation rate. Parameters are generally propagated via crossover and
mutated along with the other parameters of an individual. After selecting the parents, their
bookkeeping parameters are recombined by randomly selecting one of the parents’ parame-
ters. Then, the new child’s parameters are mutated according to a fixed probability of 0.05 as
suggested by Kivijarvi et al. [KFNO03]. Afterwards, crossover (of both parents) and mutation
are applied to the chromosome as per the current parameters of the new child.

SAGA4 In this approach, inspired by [ST11], we adapt only the population size rather than
other parameters. They also adapted mutation and crossover rates, but their experiments were
not as promising as the population adaptivity. Instead of performing a generational replace-
ment in the GA, each individual receives an “age” attribute, which gets reduced by one in each
generation until the individual is eliminated by dropping to zero. The age is updated based
on fitness, i.e. individuals with a fitness better than the median receive an extra generation
to live, and overall size, i.e. if the population becomes very large (10 times the original size)
all individuals below a dynamic fitness threshold loose two generations. All individuals start
with an age of three. This probably reminds researchers with an XCS(F) background about
the steady-state GA within XCS(F) that adds individuals to the population up to a maximum
size and deletes them according to some deletion-scheme. In the case of SAGA4, we however

138



6.6 Solution Composition—Self-adaptive Approaches

do not have a hard upper limit but rather a relatively soft one and delete at every iteration,
whereas in XCS(F) the deletion is only invoked when needed. Regardless, the similarity might
resonate and be used as a bridge to explain SAGA4 to LCSs experts.

6.6.2 Evaluation

In this section, we first present the experimental setup including the tested datasets, then dis-
play the results and, finally, perform an extensive statistical analysis.

Experiment Setup

The code of our implementation of the self-adaptive GAs as well as our experiments have
been merged into the respective official SupRB repositories.>* In general, our setup follows the
general outline as described in Section 5.2.1 and the previous sections of this chapter.*

The (non-adaptive) hyperparameters of our (SA)GAs* and SupRB’s remaining configuration
options were tuned for each learning task using a Tree-structured Parzen Estimator in the
Optuna framework [Aki+19] that optimizes average solution error on 4-fold cross-validation
with a fixed budget up to 360 core hours or 1000 trials. We opted to tune for error rather
than fitness here, following the insights of the previous section where we found that the GA
is able to provide sufficiently compact solutions (performing slightly better when compared to
the other optimizers; cf. Section 6.5.3) and wanted to investigate whether focussing on errors
during tuning could be more sensible for the GA. Our final evaluation uses eight different splits
of training and test data, where the test data was always one fourth of the data set. We evaluate
each GA with eight different random seeds for each train-test-split, resulting in a total of 64
runs.

We perform 32 iterations of SupRB, where each rule discovery phase produces four rules with
an (1, 20)-ES. This ES is allowed to run until it did not find a new better rule for 146 generations
(which is the default of SupRB). We limited the tuning of the ES slightly to be able to spend
a larger share of the tuning budget on the (SA)GAs. Results can therefore be slightly worse
than in previous experiments due to a less effective rule discovery. We automatically tuned
the o of the ES’s mutation and the fitness weight between the objectives of large and accurate
individual rules. The remaining options for the ES are statically configured as described above.
Each SAGA has slightly different parameters which need to be configured but, in general, we
tune the number of generations, the selection operator and (for all but SAGA3) the crossover

**The current version of SupRB is always found at https://github.com/heidmic/suprb while the version used for all
experiments in this dissertation is long-term archived at https://doi.org/10.5281/zenodo.14181292.

**The code to reproduce the experiments can be found in SupRB’s experiment repository: https://github.com/
heidmic/suprb-experimentation/

*We use (SA)GAs to refer to the group of SAGAs and the GA.
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operator to use. Crucially, we—in contrast to the previously presented experiments—also al-
lowed the tuner to increase the number of generations in the expectation that self-adaptivity
can sometimes take longer to arrive at a point of balance.

Table 6.5: Overview of the five datasets we benchmark our proposed SAGAs on.

Name (Abbreviation) Ndim  Msample
Combined Cycle Power Plant (CCPP) [KT12; Ttif14] 4 9568
Airfoil Self-Noise (ASN) [BPM89] 5 1503
Concrete Strength (CS) [Yeh98] 8 1030
Physicochemical Properties of Protein Tertiary Structure (PPPTS) 9 45739
Parkinsons Telemonitoring (PT) [Tsa+09] 18 5875

We test on five datasets part of the UCI Machine Learning Repository [DG17]. An overview of
dimensionalities and sample sizes is given in Table 6.5. Section 6.4.3 provides a more extensive
description of these datasets. I decided to omit the previously-used EEC for these experiments,
as we found that the results did not add anything substantial as a benchmark that was not
already contained by the also relatively linear CCPP dataset, thus keeping the presentation
more streamlined.**

Results

As in the previous sections, in the following, we abbreviate SupRB using X as its SC method
simply by X, e.g. SupRB using SAGA1 as its SC method is just signified as SAGA1. The other
optimizers follow accordingly.

From the experimental results, we find that the original GA performs relatively similarly to the
four SAGAs. On one hand, this is of course a positive result, as it tells us that self-adaptation is
not needed (or at least not highly beneficial) to navigate the optimization landscape relatively
well and the GA alone does not get stuck in an early (and bad) local optimum it found.** On
the other hand, the benefits of using self-adaptivity become less clear at the first glance. But
of course, we still trade in the need to configure a lot of hyperparameters for no (or at least
very little) performance loss by making some of the previously static parameters self-adaptive,
which can be a valuable benefit. However, training got slower with the SAGAs (a summary of
a detailed runtime analysis is found at the end of this subsection).

When analysing the distributions of mean squared errors the 64 runs produced per dataset, we
find that, albeit marginally, the GA, SAGA2, and SAGA3 outperform SAGA1 and SAGAA4. Fig-
ure 6.21 displays these distributions in detail, where each dot represents one run’s elitist’s test
scores. All 64 runs per algorithm and dataset were performed with the parameters determined
by their individual tuning processes. Optically, it is not easy to make definitive distinctions on

**This was also done for [Hei+24].
**0Of course, this primarily corroborates the results of Section 6.5.
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Figure 6.21: Distribution of (SA)GA runs’ mean squared errors. Note the different scales, reflect-
ing varying difficulty of the learning tasks. Also note that the EEC dataset, which
was used in the previous sections, has been removed as explained in Section 6.6.2.
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performance due to the shapes of the distributions. Other common forms of displaying results
such as violin or box plots obscure this fact more but we find that this is an important results
in itself. The performance of the algorithms is not only based on the data split but also the
random seed and—even with self-adaptivity—the evolutionary search is unable to converge on
the same value each time. From exemplary analyses of the pools of rules after training, we
assume that this has more to do with the fact that some beneficial rules are missing (or oth-
ers are ill-placed). However, the current solution composition approaches are not free from
responsibility for the performance measured as they did not always converge optimally, espe-
cially during the earlier training cycles, and, crucially, RD uses information about the current
elitist’s performance to guide its search. An interesting observation is the number of some-
times even relatively strong outliers in performance, where individual runs underperformed
vastly compared to their peers, but also the generally rather wide spreads.

The (SA)GAs had a second objective that was to optimize model complexity. As discussed be-
fore in various chapters of this thesis, e.g., Section 3.1 and Section 4.3.2, when it comes to
explainability, this is a crucial parameter that determines the usability of a specific model. Ar-
guably, error is more relevant for many applications, but—on the other hand—in real-world
processes we are often also confronted with situations where tolerances for prediction errors
exist and it is reasonable to assume stakeholders would prefer models they can actually anal-
yse if all models in question perform within tolerance. In Figure 6.22, we show complexities
per algorithm and dataset in a similar manner to the errors in Figure 6.21. Recall that, in con-
trast to prediction errors, all complexities have to be integers, which makes these plots more
neat looking but has no other direct implications. We can clearly see that SAGA4 is the best
overall algorithm for complexity on this selection of datasets. Second best seems to be SAGAZ2,
followed by the GA. SAGA1 and SAGA3 are clearly worse. Especially on PPPTS, SAGA4 seem-
ingly shifted strongly toward substantially more compact solutions instead of more accurate
ones. On the other sets, SAGA4 showed vaguely similar errors while still maintaining at least
a small lead in terms of model complexity.

We did also measure runtimes for individual training and evaluation runs in isolated environ-
ments.>** We found that, as expected, the GA is the fastest of the five algorithms under investi-
gation, albeit marginally (reducing the runtime by less than 10% when compared to the others
in most cases). However, it has more parameters to tune, so as soon as tuning comes into
play, the algorithms become much more equal. While specifics were highly dataset dependent,
SAGA2 is roughly equal to the others on all but PPPTS, where it took almost 55% longer than
the GA. However, on CCPP, where GA and SAGA2 were almost identical in runtime, SAGA3
ran 30% longer than both. On the other datasets, the algorithms were rather close all the time
with very low standard deviations (typically between 0.5% and 1.5% of the total runtime). Low
variance leads us to assume that runtime is not really dependent on the data split, the random
seed of the optimizer, or even on the performance of the algorithm, but purely a question of
which values hyperparameters were tuned to, which in turn correlates with task difficulty.

**The runtime analysis was done on a Ryzen 5 5600X desktop computer with 32GB RAM and Windows 11 that
was not running any other tasks during the experiments.
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Figure 6.22: Distribution of (SA)GA runs’ model complexities. Note the different scales, reflect-
ing varying difficulty of the learning tasks. Also note that the EEC dataset, which
was used in the previous sections, has been removed as explained in Section 6.6.2.
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Figure 6.23: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution
obtained from the model by Calvo et al. [CCL18; Cal+19] applied to the MSE data.
A SAGA method having a probability value of q% says that the probability of that
SAGA method performing best with respect to MSE is q%.

As the results of our algorithms are not allowing a conclusive decision based on visualization
alone, we perform a rigorous statistical analysis to aid us in the decision which algorithm we
should select or propose to others to try first when using SupRB on their data. This analysis
is similar to the previous three sections in this chapter (cf. Sections 6.3 to 6.5). We begin with
the application of the model proposed by Calvo et al. [CCL18; Cal+19]*" to the gathered data.
This model gives us the posterior distribution over the probability of that solution composition
method performing best. Figure 6.23 displays the results of this analysis for prediction errors
on the test set. Note that typical minimal thresholds for automated decision making are 80%
(or usually even more) probability assigned to a single algorithm [Ben+17]. Based on that we
cannot clearly make a decision regarding which algorithm to choose. However, if we were
to pick a top 3, it would be GA, SAGA2, and SAGA3, reaffirming our results from the visual
inspection of the MSE data in Figure 6.21. Nevertheless, SAGA1 and SAGA4 do not fall too far
behind the others.

When performing the same analysis for complexity (cf. Figure 6.24), we find a much clearer
picture than with the MSEs, confirming the results of our visual inspection. When choosing
one of these algorithms on any dataset similar to those tested, we can expect SAGA4 to produce
the smallest model for about 62% of runs. SAGAZ2 ranks on second place, being the best in about
17% of runs, and third is the GA with marginally more than 10% of cases.

Overall, based on the Calvo models, we conclude: when small models are the goal, we should
probably run SupRB with SAGA4 in most cases, however, recall that we are still below the
threshold typically used for automated decisions and SAGA4 seems to underperform a bit in
terms of predictive performance (especially on PPPTS, cf. Figure 6.21d). If we wanted to make
a general recommendation based on this experiment’s results, SAGA2 seems like a plausible

*"We use the implementation provided by https://github.com/dpaetzel/cmpbayes using 10,000 steps in the MCMC
process.
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Figure 6.24: Box plot like Figure 6.23 but for the model complexity metric.

top candidate. Even the original GA is not far off and, depending on tuning budgets, might be
a satisfactory middle-ground approach.

To better estimate the effect sizes of a decision on one algorithm, we now apply Corani and
Benavoli’s Bayesian correlated t-test [CB15]** between the algorithm combinations in question.
This test compares two solution composition approaches directly and takes into account the
probability distribution of the difference in performance, i.e. it tells us how much better we
can expect an algorithm to perform on a certain dataset. Note that while we did perform this
test for all relevant combinations, we will only show comparisons of GA and SAGA2/SAGA4.*
Figure 6.25 shows the results for this test between the GA and SAGAZ2 on errors as these were
the best SC optimizers in terms of errors. We find that the performance is really strikingly
similar. Even if CCPP and PT return slightly smaller or wider distributions (recall that the
targets of the datasets were standardized, so we show errors scaled with the dataset’s standard
deviation rather than actual raw values), we can say that the modes are very close to equal
performance for all datasets, and on ASN, CS, and PPPTS we even have very similar variance.
While this is not surprising given the near equal probability for best results in the Calvo model,
itis by no means guaranteed. That result of the Calvo model could also be achieved with t-tests
that are showing substantially different effect sizes across datasets, e.g. GA superior on CCPP,
SAGAZ2 on ASN, GA on CS, and so on, rather than overall equal performance. This difference is
most likely not practically significant and it is therefore not even relevant whether it would be
statistically significant according to the typically-utilized, but still arbitrary, thresholds (often
called “significance levels”).

Figure 6.26 shows the results for this test between the GA and SAGA4 on errors, therefore
comparing the baseline with the most likely best SC optimizer for model complexity according
to our tests in Figure 6.24. CCPP, ASN and PT are about the same as with GA and SAGA2 in
Figure 6.25. The mode for CS is also near 0 but the distribution is a bit tighter. The most
noticeable difference is on PPPTS which is in the GA’s favour. About 95% of runs of the GA
will be better on this than the runs of SAGA4. While this is a statistically significant difference,
the practical significance is a bit unclear as the effect size is quite small. In Section 6.1.1 we

**We use the implementation provided by https://github.com/dpaetzel/cmpbayes.
*The remaining t-tests can be found at https://github.com/heidmic/diss-graphs/tree/main/SAGA.
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Figure 6.25: Density plot of the posterior distribution obtained from Corani and Benavoli’s
Bayesian correlated t-test [CB15] applied to the difference in MSE between GA
and SAGA2. Orange dashed lines and numbers indicate the 99% HPDI (i.e. 99% of
probability mass lies within these bounds). HPDI bounds rounded to two signifi-
cant figures. Effectively, this indicates how likely a specific difference between one
run of each SC method will be (practically, probability mass above zero equates to
GA having a higher (worse) value than SAGA2).

used 0.005 as the region of practical equivalence (ROPE)*® which the majority of probability
mass would fall into. Only about half a percentage point would give the better performance to
SAGAA4 if we use this ROPE here as well. Note that with this ROPE all of the probability mass
on CCPP falls within this window.

Finally, we show an example t-test for the difference in model complexity in Figure 6.27. We
chose SAGA4 as the most compact algorithm and the GA, which was also the combination
we saw a valuable difference on one dataset before (Figure 6.26). We add a ROPE identical to
what we did for the t-tests on model complexity in Section 6.4.3. It is based on the mean of
the standard deviations of all algorithms’ model complexities on this dataset (see the relevant
segment of Section 6.4.3 for our reasoning of choosing this value). We find that (as with errors)
the performance on CCPP is practically equal according to our ROPE. However, we also find
that, for CS and PPPTS, SAGA4 is composing significantly smaller models in 99% of cases.
Considering the effect size on CS, we find that we should expect over 10 rules less, which equals
about 25% of the GA’s model sizes. On PPPTS, the size of the effect is even more considerable

*The ROPE is the region of differences in which we consider the algorithms practically equal in performance.
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Figure 6.26: Density plot of the posterior distributions like Figure 6.25 but for the difference in

MSE between GA and SAGAA4.
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Figure 6.27: Density plot of the posterior distributions like Figure 6.25 but for the difference
in complexity between GA and SAGA4. In green, we show a region of practical
equivalence (ROPE). Probability mass right of the ROPE equates that we expect
that the GA has a practically (and statistically) significantly higher model size.
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(the GA had an average of 53 rules whereas SAGA4’s average was 13). Whether or not this
negates the drop in accuracy we noticed earlier is of course dependent on the actual application,
but it is not hard to see why the optimizers would consider their returned solutions high-fitness
individuals despite the clear difference. If we assume that there exists a Pareto front of both
objectives, the solutions would lie on quite different ends of this front. Overall, I find it quite
interesting that the change from a generational replacement in the GA to a (sort of) steady-state
GA with deletions has this much of an effect and especially one in this direction of the fitness
landscape, as the other SAGAs show smaller changes and the fitness function is the same for
all optimizers. This is especially interesting as XCS(F) and its derivatives use a steady-state
GA with a deletion mechanism. Therefore, at least for other LCS researchers, this option is
probably an intuitive choice.

As a general recommendation, I would choose either the GA or SAGA4, depending on if a
small increase of prediction performance is more important or if model complexity is more
relevant. The GA’s process is still easier to explain and understand than SAGA2, which has a
lot of interplaying parts related to the fitness and the overall makeup of the population. While
it does require less tuning, as was the goal of this study, I assume that in most cases we have
the budget available. When tuning for an equal number of trials rather than a fixed time,
one should note that the runtime of SAGA2 can be practically (and statistically) significantly
higher though. If there is no tuning budget at all, SAGA2 is the better choice as crossover and
mutation rates can be quite impactful on performance and are automatically adapted here.
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7 Outlook

While we answered some of the more immediate questions surrounding SupRB within the
studies that form the basis of this thesis, there are still a lot of possible avenues left for fu-
ture research. I see both paths towards applied research, which can ultimately lead to pure
application, and paths that focus more on improvements of the system itself.

In this thesis, I found that SupRB’s initial design was made on good assumptions that can-
not easily be outperformed by the numerous options proposed throughout Chapter 6. In my
view, this is an important step to clear before testing the application with actual real-world
users as, usually, the (time) budgets for evaluations regarding the practical explainability, and
thus applicability, of models are rather limited within industry. Therefore, we should only
discuss those (types of) models that we are confident about being good candidates with our
stakeholders. SupRB using ES and GA for RD and SC, respectively, and using ordered bound
hyperrectangular conditions with linear local models within rules (cf. Section 4.1) seems to be
a good candidate.!

Thus, the immediate next step will be to investigate the practical explainability with the stake-
holders from Section 3.5. This would also help confirm whether or not the stakeholders ex-
pressed their explainability-related requirements on model design correctly and effectively
and could serve as an important step to improving the process further, possibly adjusting the
questionnaire (cf. Section 3.4). Preliminary testing using the available data from that scenario
shows that SupRB is able to learn meaningful relationships from that data with acceptable
model sizes. After finding good hyperparameters and training some candidate models, we will
design a study to determine whether or not these models are explainable for individual stake-
holders. Ideally, we will be able to quantify (or at least rank) models and will hopefully find
trends based on certain stakeholder traits, e.g. the groups defined in Section 3.5. Besides the
baseline SupRB model, we could include some of the more promising options from the pre-
vious chapter but should at least include decision trees and an appropriate black-box model.
From preliminary talks we had with some of the stakeholders on how this explainability study
should best be designed, we know that stakeholders—other than the data scientists—might

+ be unaware of AI/ML in general,
« lack the necessary knowledge about the types of models and how they operate,

« not understand (or agree on) how we measure performance,

"This does not mean to exclude some of the other options that were performing quite well in Chapter 6, and some
of those (and especially combinations of these) could turn out to be better candidates than the baseline SupRB
depending on the use case.
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« fail to mentally visualize the models and derive what the implications of a specific model
structure and parameters are,

« have difficulties distinguishing specific models from each other, e.g. because individual
models might not always agree with each other, for example, as some rules could be
present in one model but not the other, and

+ get overwhelmed with the large number of new concepts and information.

This raises a lot of questions for designing the study, which have to be answered in the future.
Hopefully, we will be able to build a template similarly to [HNH21] that we and others can then
also evaluate on use cases from other companies/industries. Of course, also the study from
[Hei+23b] should be repeated on other domains to reaffirm the correctness and effectiveness
of the template of [HNH21].

For any study regarding the practical explainability of (RB)ML models for the stakeholders
from our case study in Section 3.5, we would first need to find a way to effectively present the
models. While visualizations and formats of presentation exist for LCSs and DTs (and others),
these can quickly become quite complex, especially when large numbers of rules are involved
or the datasets have many dimensions.? This could—among many others—raise questions such
as (cf. also Section 4.3.2):

1. Should we present rules individually or grouped? If so, how do we group them?

2. How do we prepare the data? Should we use scaled features, keep original units, or even
allow some feature engineering (cf. Table 5.4)?

3. What is a good UI/UX design for such a study? Should we try to keep it similar to what
they are used to from their day-to-day interface? Do we even need to integrate the study
into that interface and possibly measure their satisfaction in-line rather than in a more
artificial environment?

4. Do we need to make these and other decisions per group of stakeholders or can we design
a more general study? Do they even have the same questions as the other groups?

For question 4, we already have some answers: As we learned from our interviews in Sec-
tion 3.5, operators will often have less interest in the model as a whole and will most likely
be more interested in case-by-case decisions. Possibly, we could satisfy them with techniques
like explanation-by-example and an integration into their interface. In one interview, an in-
terviewee raised the suggestion that a short natural language explanation might suffice and
be preferred to any complex plotting or other visualization technique. We performed some
very preliminary testing using various LLMs but found their answers not specific enough and
too repetitive. However, advances in this field (which right now are very fast) and extensive

*There is no clear cut bound for when the dimensionality is high enough to cause issues with understanding but
probably most cases with more than ten dimensions without multicollinearity will be hard to follow. If we were
to focus on plotting the rules, even two inputs can become challenging.
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prompt-engineering does keep that a promising option in my view.> By contrast, process en-
gineers will most likely want to gain knowledge from the data via the model and therefore
want to analyse the rules and their relations and interactions with each other. While we could
support their inquiries by providing “what-if” scenarios, we would certainly need more detail
and a wider focus.

With such a study, we can hopefully answer some of the questions regarding the explain-
ability of SupRB. Ideally, we can also test some of the assumptions we made regarding what
options/configurations/design choices might be “less explainable”, e.g. whether the restriction
of mixing models to at most three rules is deemed useful or important as it does come with
some loss in performance. Based on our findings, we will likely be able to improve SupRB fur-
ther, both in regards of providing better performing models, but also by making the model’s
explainability better adapted to one specific use case.* One assumption we made based on our
study and a look into the more general literature in this field is that the training process does
not have to be explainable. Hopefully, we will also find answers to this question and maybe
find avenues to test the training process’ explainability and improve it in the future.

Tied into the question of determining the practical explainability is also the question of bal-
ancing model size versus performance. The experiments in Chapter 6 did regularly show that
some configurations of SupRB drove it towards smaller models while others opted for smaller
errors instead. We have some informed assumptions about preferred model sizes but should
check whether these hold true when it comes to discussing actual models. Additionally, I sug-
gest that the effects of choosing the o® and 3° parameters of our fitness functions should be
investigated more in-depth. However, I do not think that the stakeholders should be involved
directly in this. Instead, I suggest that a larger set of experiments is conducted beforehand and
then the stakeholders are confronted with some representatives of large and small models and
can judge them according to individual preference.

If the assumption that stakeholders are rather ambivalent about matching is confirmed, future
research could also explore the use of more complex matching functions (cf. Section 6.1.2).
An interesting example could be code-fragments as proposed by Igbal, Browne, and Zhang
[(IBZ14a], which might allow the transfer of knowledge to similar tasks or different machines
performing the same general task but with a different configuration, which was for example
used by Siddique, Browne, and Grimshaw [SBG20] to reuse knowledge at different abstraction
levels. Another option could be the use of heterogeneous matching functions where for each
feature the simplest option that still allows appropriate partitions is utilized. This could also

*From correspondence with some other international LCS researchers, I know that at least one group is currently
working on similar options and we specifically included the use of LLMs for LCS rule generation and explana-
tion into the call for the IWERL workshop at GECCO in 2025, which I will be co-organizing.

“There is of course the hope that similar domains or use cases will have similar requirements, but in general
much of the literature surrounding explainable Al [e.g. DK18] seems to agree that there is no general-purpose
approach.

*The two respective objectives are weighed against each other by « that is used for rule and solution fitness; cf.
Equation (4.2).

The sensitivity of the Pseudo-Accuracy objective to the in-sample MSE within each rule is determined by ; cf.
Equation (4.3).
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allow binary or mixed-integer inputs which would be a common way to describe machine
configurations.

While Ridge regression seems to be a good local model (cf. Section 6.2), future work could test
the use of ElasticNet and find good guidelines for the parameters of the regularization. Also,
we did not yet test more complex local models in a thorough study. While the assumption that
non-linear models are not sufficiently explainable seems very plausible (and was supported
by stakeholders of Section 3.5), the described-above explainability study could challenge this
assumption. Especially if we were to implement a system that is based on short natural lan-
guage explanations and explanation-by-example, more complex models might still fit the re-
quirements. However, personally, I doubt that SupRB should be the machine learning system
of choice in this case. I rather think that neural networks will be appropriate in this case but
this should be investigated with actual users in a real-world setting.

While we already investigated some options for mixing in Section 6.3, a lot of further options
exist, such as non-constant weights that are dependent on the input region, e.g. lower the
weight where the local model did have high training errors’, or are fitted during solution com-
position (similarly to MoE models; cf. Section 2.2.2). Drugowitsch [Dru07] also discussed some
other options we did not yet consider in SupRB.

The fitnesses of SupRB’s rules and solutions have two objectives each. During training, we
used a type of scalarization to weigh these objectives against each other. While this is the
most sensible approach during most of the training (cf. Section 4.1 for our reasoning), it could
be interesting to approximate the Pareto front instead in the final SC phase. This could provide
an option for the actual users of the system to choose if they want to deploy a model with lower
errors or one with lower complexity without any assumption about balancing. However, one
should keep in mind that the assumption would still be made for most of the training and guide
that training heavily. Additionally, after all rules have been added to the pool, I think it might
be valuable to drop all biases about what rules might compose a good model (which we made by
always adding the previous elitist to the population). Previously, that last SC phase is also only
run as long as the previous ones without ensuring convergence. While in general, the results
of SupRB are convincing, optimizing until convergence could boost the results slightly.

Combining the self-adapting approaches of SAGA2 and SAGA4 (cf. Section 6.6.1) should also
be tested, as well as self-adaptive algorithms that use non-fitness-based diversity measures.
This could further boost the training performance and make hyperparameter setting/tuning
easier. I also encourage other researchers to develop more options for making SupRB’s pa-
rameters self-adaptive or less impactful. In general, we have some understanding on what
parameters have to be tuned per dataset and how sensitive SupRB’s performance is to them,
but a thorough hyperparameter study should be done in the future. Crucially, such a study
should be compiled and published as a comprehensive overview to be available to a wide array
of researchers and practitioners. Better knowledge about tuning ranges and tunable parame-
ters could also speed up the overall training process as we could shift the focus towards the

"Note that rules should match larger quantities of examples for this to have noticeable effects.
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most relevant parameters or could even set some in advance based on general guidelines. Dur-
ing the experiments of Chapter 6, we found that some tuning of the ES is critical for effective
application. The experiments on SC showed that if we were to only just choose defaults for RD,
the results are significantly worse (expect errors to be doubled) and that only tuning a subset
of what we regularly tune already has slight effects (cf. Section 6.6.2).> We also found in sepa-
rate studies that tuning every parameter available in the GA can have some undesired effects.
Most of the time this made only a small difference but on some datasets it lead to very different
model sizes and—in turn—higher errors and could even lead to collapsing populations which
did not happen with more limited tuning and more assumptions. This effect could most easily
be reproduced when the solution fitness calculating function was switched to other options
we implemented before setting the fitness function described in Section 4.1 as the default. In
my view, all of this strongly warrants increased hyperparameter studies’ and some improve-
ments such as self-adaptivity to make us less dependent on choosing (or searching for) good
values.

Besides outfitting the RD method(s) with some forms of self-adaptivity'® to make the RD pro-
cess more robust, we could also experiment with different values for « in the fitness between
different RD phases but in the same training process, or the termination criterion of the search.
We also might want to make the number of cycles of SupRB dynamic rather than statically con-
figured, thus, effectively choosing a different termination criterion for SupRB. An interesting,
and previously unexplored, avenue to make SupRB’s overall training process more efficient is
to increase the information the optimizers utilize from the previous phase, i.e. RD uses more
information about the elitist solution(s) returned by the last SC phase or includes the crowding
of rules to choose the new starting points, and SC starts to utilize information of RD, e.g. tests
the integration of the new rules first rather than randomly mutating into these (or not).

While our experiments on RD (cf. Section 6.4) showed that ES is competitive with the NS
approaches, the experiments could be repeated by discovering more rules, based on other as-
sumptions, and using different functions for the novelty score. The “behaviour” of rules being
tied to the set of matched examples is reasonable but the Hamming distance might not be ideal.
MAP-Elites [MC15] and other quality-diversity techniques might also be worth investigating
as they have been successfully used for DTs [FCI23].

At the end of Section 4.1, I already hinted that SupRB’s extension to also being available as a
classifier rather than only as a regressor could be relatively easy to implement. At the time
of writing this thesis, a student of mine is investigating this option. However, I still want to
encourage other researchers to make that step. A dedicated researcher will have a much richer
and diverse experience with ML and therefore be able to gain more insights while hopefully
coming up with different and possibly more effective ways of handling this new domain. To
allow the usage of SupRB for creating classifier models, the first step would be the use of local

*In the SAGA experiments, we tuned the o of rule fitness and the mutation’s ¢ parameter but not the mutation’s
early stopping factor we tuned in the other experiments.

°Although this would constitute an even larger investment in terms of compute, I posit that these studies should
be done on a large number of datasets.

%Possible options for self-adaptivity in the ES would be the mutation’s o or A which controls the population size.
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models for classification. Theoretically, constant models that output a single class, could be
the easiest to explain option. However, this might raise questions on how mixing could be
done, but we could of course choose the best performing rule or do majority voting with the
best rule serving as a possible tie-breaker. Linear models, e.g. logistic regression, should also
be a choice that produces accurate but explainable models. In any case, the fitness functions
of rules and solutions would need to use an appropriate objective. Likely, accuracy is not the
best option for both as we can expect data to be at least unbalanced for each rule even if it was
balanced globally.

Patzel, Heider, and Hahner [PHH23] proposed a new way of benchmarking LCSs effectively
based on how well they are able to approximate data sampled from another LCS model’s pre-
dictions where both models made similar assumptions, e.g. hyperrectangular matching and
linear local models. SupRB should in the future be evaluated in this way in a thorough bench-
marking study. Additionally, this benchmark could be included in the wide array of studies
that could extend and improve SupRB further.

Of course, I want to urge everyone that became interested in SupRB after reading this thesis to
test the system on additional datasets and try its usage within other industries and on other use
cases. While including more datasets into a study comes with significant additional computa-
tional costs, it would also allow any statements on SupRB’s performance to be more definitive
and will hopefully help to find the boundaries of when SupRB is the most appropriate model
generation method or when other methods and model types should be preferred.

I want to repeat our call from [Hei+23a] that questions relating to the metaheuristics side of
LCSs should not be neglected any longer. On one hand, this includes starting to utilize state-of-
the-art metaheuristic knowledge and techniques for optimization. On the other, we advocate
for deepening the understanding of the relationship between LCS model fitting and LCS model
selection. An open question is, for example, how the nature of the model fitting problem in
LCSs relates to the nature of the corresponding model selection problem and, consequently,
what metaheuristic to use. This begins at picking representations and operators that perform
well, and translates to the usage of matching functions and local models. An interesting op-
tion could be the integration of modern metaheuristic frameworks such as MAHF [Ste+23;
Wur+23], which allow the easy construction of highly flexible optimizers. Especially interest-
ing is the large number of already available operators which can be combined in various new
ways. Studies with these optimizers could go far beyond the archetypical approaches we used
for SupRB’s optimization needs within this thesis. While it is probably too computationally
expensive for now, the use of automated algorithm design techniques [e.g. Wur+24] could
also provide new and substantially more efficient (and possibly more effective) optimizers for
SupRB.

Finally, I want to call for a reimplementation of the most promising aspects of SupRB in a faster
language than Python. While Python allows a relatively easy to maintain code structure and
can easily be highly modularized, it is also very inefficient in terms of computational overheads.
Especially if we want to convince practitioners from industry to adopt SupRB and use it for
their needs, we need to provide a library that is at least somewhat fast. This would not only be
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relevant for industry but will also allow the implemented versions of SupRB to be much more
thoroughly benchmarked. Theoretically, many compiled languages are possible options, but
C++ and Rust should be the most promising candidates in my view. If the reimplementation fo-
cuses on a very bare-bones system, e.g. SupRB with a fixed mixing model, OBR representation
of conditions, Ridge local models, ES for RD, and GA for SC with limited operators, the time
investment of writing the code should not even be unmanageable. However, a direct transfer
of all concepts currently available in Python while maintaining the modular structure would
be a considerable effort.
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8 Conclusion

In this thesis, I introduced and benchmarked a new rule-based machine learning (RBML) ap-
proach that is based on critical research gaps in the field and can serve as the basis of new
explainable artificial intelligence (XAI) applications." This last chapter will first lay out the
key elements of the preceding chapters and will focus on the major contributions of this work
including the essential experimental findings. Then follows a critical discussion on the limi-
tations of this work and potential weaknesses. Finally, I will summarize this work briefly for
some closing remarks.

With the increasing capabilities of state-of-the-art methods from the fields of artificial intel-
ligence (AI) and machine learning (ML) specifically, there is an increasing interest in further
automation of a wide variety of tasks currently performed by humans. However, these tasks
often involve decisions that can have critical effects. For example, doctors might consult intel-
ligent (Al-based) agents on medical decisions, like treatment plans, which could have terminal
effects on patients. On the other hand, production planners or other management roles might
base major financial decisions on these models, like which parts to produce and where, when,
and how to do it. On a smaller scale, individual machine operators might ask the agent for as-
sistance in their day-to-day operations to avoid producing parts that cannot be used and have
to be recycled or destroyed (cf. the scenario from Section 3.2 and Section 3.5.1). While the lat-
ter might have less global impact, it nonetheless matters to the individual, which often will be
responsible for the successful execution of their job and cannot use the model’s performance
as a justification for poor operations. Overall, this leads to one common revelation: We need
stakeholders to trust the models if we want them to be used and benefited from.

A promising path to this necessary level of trust is offered by the concepts of XAI This field
develops methods that make individual models (or algorithms) and their decisions explainable
to stakeholders. One common approach is to use methods that are inherently explainable,
either by using them to approximate a black-box model that was trained on the task or by
directly training an explainable model. Within the explainable models, RBML models are seen
as a good compromise between explainability and predictive power, although these models
can also become too complex, e.g., by incorporating large quantities of rules, to reasonably use
in XAI task.

Learning Classifier Systems (LCSs) are a family of RBML methods that produces models slightly
more complex than the very prevalent Decision Trees (DTs) but easier to explain than some of
the better performing DT-based methods like Random Forests (RFs) and XGBoost. Therefore,

'Most of the individual components of this work have already been partially published before, cf. Section 1.2, but
have been polished, detailed, and extended for this thesis.
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I believe they could fill a critical niche and essential role in achieving XAI and thus enable
ML-based tools for new use cases and with new stakeholders, further increasing automation
but also making operations more efficient and effective.

This thesis makes three major contributions as introduced in Section 1.1:

The first contribution, C1, is a new perspective on LCSs based on their target models and
the optimization tasks involved in creating these, which substitutes the relatively prevalent
view of LCSs’ algorithmic nature. The essential points of this are found in Chapter 2 which
was based on [Hei+23a]. Section 2.1.2 reintroduced the general model structure that is pro-
duced by all LCSs and therefore agnostic of training scheme or specific algorithmic elements.
Building on this, Section 2.1.3 explains what the classical ML terms of model selection and
model fitting mean for LCSs and divides these into two subtasks each based on the individual
components of an LCS model. In many LCSs, both optimization tasks that make up model
selection, and therefore determine the model structure, are performed quasi-simultaneously
by multiple—and sometimes competing—components.” All LCSs use a metaheuristic to solve
model selection and many researchers would argue that this should be an evolutionary algo-
rithm, although Section 2.4 shows several approaches that can reasonably be called LCS but are
commonly not. Model fitting is typically done using other heuristics or algorithms, e.g., linear
least squares or recursive least squares to fit linear local models for regression tasks. In Sec-
tion 2.2, we differentiated between LCSs and similar approaches, most notably DTs, Mixture
of Experts (MoE), Genetic Programming (GP), and ensemble learning methods like bagging
and boosting. The role of metaheuristics in LCSs was specified in Section 2.3, which discussed
what representations the metaheuristics typically operate on, what operators they use, and
how fitness is often defined in LCSs. The last element of C1 is a new classification system for
LCSs (cf. Section 2.3.1). Traditionally, they are differentiated into Pittsburgh-style, Michigan-
style, and hybrid, however this is neither precise nor descriptive as it is based on where the
first similar model was proposed rather than on what is done. Therefore, we propose to dis-
tinguish between the number of solutions during training and if online or batch learning is
performed. With this, most Michigan-style systems fall into the online single-solution class
while most Pittsburgh-style systems are classified as batch multi-solution.

The second contribution, C2, is a method to assess the requirements stakeholders have for the
explainability of models for a specific use case. This was motivated, introduced, and tested
in Chapter 3. Section 3.1 discussed the explainability of RBML on a general level, including
the limits and potential issues that arise when using such models for XAl A potential yet
abstracted and generalized scenario for the usage of an XAl-based agent from the field of man-
ufacturing was then introduced in Section 3.2, with Section 3.3 arguing why LCSs are uniquely
suited to make up the core component of such an agent. To assess the requirements of stake-
holders, Section 3.4 proposed a set of seven questions that should be answered by all relevant
stakeholders (or at least a representative sample of each role). While this questionnaire par-
tially focusses on LCSs specifically, three of the questions are quite general, applicable for all

®Usually, the model selection tasks do not have individual fitness signals available for their optimization process
which is a critical issue this thesis solves within its third contribution, C3.
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ML models, and most questions can easily be adjusted to other types of models. This template
to determine stakeholder preferences is then executed in a real-world case study (cf. Section 3.5)
where I interviewed different individuals in different stakeholder roles from a manufacturing
plant for a specific application scenario where an operator is advised on configuring line pa-
rameters by an intelligent agent to ensure smooth and optimal production even in cases where
operator experience is limited. After laying out the answers to each question, a summary
was made in Section 3.5.5 which confirmed that the stakeholders would value the explainabil-
ity of the agent and that statistical measures are insufficient to build trust. Rather, the agent
should be using few transparent rules that can easily be evaluated by hand and that any ad-hoc
decision should involve as few rules as possible (cf. Section 3.5.6 for more details on what the
trained models should look like according to the stakeholders).> However, the training process
itself is not specifically of interest as long as the model is explainable.

The third contribution of this thesis, C3, is the Supervised Rule-based learning system (SupRB).
SupRB is a new LCS that trains its models differently than its predecessors by disentangling
the two subtasks of model selection by separately solving the discovery of rules and the com-
position of rules into models.* This allows the fitnesses of rules to be independent from each
other and the models as a whole and, thus, a much greater control over the optimization pro-
cess as it is less obscured by interactions. With this, model sizes can be reduced significantly
compared to state-of-the-art LCSs. The training process is also more straightforward as the
components do not supersede each others effects and it follows clear goals. Section 4.1 com-
prehensively described SupRB in its basic form which uses a (1, \)-Evolution Strategy (ES)
for rule discovery (RD) and a Genetic Algorithm (GA) for solution composition (SC). In SupRB,
the RD and SC components are invoked sequentially until a termination criterion—typically a
set number of RD and SC phases—is reached. RD creates new rules using independent fitness
signals based on the rule’s in-sample error and volume. The stochastic search process starts
more likely where the currently best known solution (created by SC) showed high prediction
errors. Individual rules use interval-based matching and linear local models.” The generated
rules are added to the pool, where they remain unchanged in all subsequent training steps.
Then, SC tries to find a (new) subset of the rules in the pool that shows low prediction errors
while being of a low model complexity (number of rules). SupRB’s computational complexity
was shortly discussed in Section 4.2. As SupRB’s primary goal is to create models that are
easier to explain (satisfying the requirements laid out by Section 3.5.6) than those of previous
LCSs, I extensively discuss the strengths and remaining weaknesses and limitations of SupRB
in that regard in Section 4.3. I divided my discussion into training (Section 4.3.1), which is most
relevant for researchers®, and the model itself (Section 4.3.2) which is critical for stakeholders

*While the results of this study should not be overestimated and other companies or domains might not confirm
the specifics, it is quite reasonable to assume that any application that requires explainability will follow a
similar trend regarding these requirements. I recommend to always execute the template in the process of
implementing an XAI application. Even if no new insights are generated and the results of our study are
confirmed, involving relevant stakeholders in the decision-making and design process ensures they feel heard
and included, which can already significantly contribute to a positive reception of the system.

“In fact, all four optimization subtasks are solved independently and addressed specifically in SupRB.

°For now, only a regressor is implemented but I propose how to easily adapt the system to a classifier as well.

%At least according to our findings from Section 3.5.
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of all backgrounds. I concluded that section with some open questions on how the interface
between SupRB and a (non-technical) stakeholder could and should look with reference to the
scenario from Section 3.5.

SupRB was then benchmarked on real-world datasets against XCSF, DT, and RF (cf. Chapter 5)
which were selected because they are established and prevalent RBML approaches. Section 5.1
revisited the explainability of RBML approaches for the purpose of making clear how the mod-
els of these four methods can be compared against each other in terms of explainability. The
results of the benchmark were presented in Section 5.2. We expected SupRB’s models to have
better error scores than DT, worse errors than RF, and similar errors to XCSF. We also expected
SupRB to have much small model sizes than XCSF and especially RF while being similar or
slightly worse in terms of model size than DT. We found this confirmed by our benchmark. We
analysed based on descriptive statistics and plotting of distributions and performed Bayesian
correlated t-tests to confirm our conclusions. Especially of note was the difference in model
complexities between XCSF and SupRB, which differed by orders of magnitude even though
some compaction was performed on the XCSF model. We also found that the RBML methods
did not exhibit strictly similar trends across datasets, i.e. some perform better on a subset and
worse on the others in relation to their peers, and even within datasets the performance is
dependent on which data split is made and the random seed that initializes the method. In
Table 5.4, I presented an example rule which was chosen from one of SupRB’s models and
discussed in the surrounding text how it could be analysed and interpreted.

While the performance we found was along the lines we expected, we wanted to test some
more options for different components of SupRB to determine if our original choice was sound
or if we could find substantial improvements to the system’s capabilities of creating small and
well-performing models. Chapter 6 details these grouped by components investigated, starting
with the rules (conditions/matching functions and local models) and moving to the mixing of
multiple matching rules, rule discovery, and, ultimately, the composition of multiple rules into
a solution to the learning task.

Regarding the matching functions (or conditions) of rules (cf. Section 6.1), we investigated dif-
ferent representations (encodings for the optimizer) of the hyperrectangular (interval-based)
conditions, finding that the most commonly used options in LCSs, ordered bound (OBR) and
center spread (CSR), also work best in SupRB, although our test suggested there might be a
small advantage when using OBR. Then, I added a theoretical discussion on other options for
matching functions: Hyperellipsoids are the most obvious next option as they are still some-
what human readable and somewhat intuitive and promise a better performance, especially
on the surface of the matched hypervolume. Also interesting would be the use of “code frag-
ments” as they might allow a great reusability of models, e.g., between similar but not identical
lines in the same manufacturing plant, and can be evaluated by a human. However, these are
much harder to read than hyperrectangles.

In SupRB, linear models are used for regression. Constant models are not sufficiently good
at approximating real-world data (which would lead to more rules being needed) and more
complex options are more difficult to explain to stakeholders which I discussed in Section 6.2
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and the relevant sections on explainability. When looking more detailed at local models, I
found that we need regularization during this model fitting step to yield effective local models
and found Ridge regression to lead to better sets of rules than Lasso regression.

To make a model prediction, the individual predictions of all matching rules have to be com-
bined. There are some different approaches to that but commonly some form of weighted
average is made where the weight is based on the performance of the rules. Other options
such as simple majority voting for classification, winner-takes-all based on the highest fitness
or complex weighting networks (as inherently done in Mixture of Experts models) exist but
are often less intuitive or efficient. Assigning the rules their weights constitutes the second
subtask of model fitting and all major LCS do this heuristically. In SupRB, we use a mixing
model (cf. Equation (4.1)) where we compute a weighted average based on the matching rules’
average in-sample error and experience (the number of datapoints seen during training). Both
of these metrics are constant for rules in the pool and independent of which specific rules are
partaking in the mixing process. Section 6.3 features experiments on possible improvements
of this mixing model: Section 3.5 suggested that stakeholders could be overwhelmed when
faced with a large number of matching rules and would therefore prefer that at-most three
rules partake in the model’s overall prediction. We then implemented a mixing model that
uses such a limit for one through five rules. We tested three approaches on how to determine
which rules should be mixed from all matching rules: selecting the rules according to their
fitness, selecting them completely randomly every time, and selecting them randomly based
on a fitness-proportionate distribution. Additionally, there is the reasonable assumption that,
while more experienced rules should be better at making predictions on their matched sub-
space and should be assigned a higher weight in the mixing model, there is a reasonable upper
cap until which experience accounted for. Rules with experiences orders of magnitude higher
than the problems dimensionality are likely not better than other rules that also have large yet
numerically lower experiences, e.g., on a ten dimensional problem a linear model trained on
1,000 data points should not be significantly better than one trained on 100 data points sam-
pled from the same distribution. Therefore, they should have the same mixing weight. For this,
we tested a cap on experience based on a hard number or on a multiplier of the dimensional-
ity. In both cases, we determined the exact value using our hyperparameter tuning process.
We found that limiting the number of rules has severe effects on the performance. A limit of
three was clearly outperformed (when testing the model returned by SupRB on holdout data)
by the baseline across datasets as confirmed by our statistical testing. However, this might
still be a worthwhile trade-off for practical applications in case a real-world test proves that
this limit does indeed improve the explainability and therefore likelihood of application, trust,
and acceptance. Interestingly, we found that an increase in the limit does not show signifi-
cant improvements over a limit of three. I suspect that this is mostly because cases with more
matching rules (which also make effectively dissimilar predictions) are relatively rare due to
the generally low rule counts in SupRB models. But, as this mixing model was worse than the
base line, this limit seems to at least hinder the training process. Likely, some rules inside the
model are no longer contributing to the fitness signal which makes the optimization process
less effective. Furthermore, we found that imposing a maximum on how much the experience
factors into the weight has a positive effect. While overall, this effect was relatively small it can
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8 Conclusion

be more pronounced on some datasets. In general, larger data sets (with the same dimension-
ality) benefit more from this, which can make this a worthwhile improvement when applying
SupRB in use cases similar to the predictive quality model from Section 3.5 where we typically
have hundreds of thousands of data points available.

After investigating options for the components forming SupRB’s models directly, I then pre-
sented different experiments on the training process of SupRB by proposing and testing various
options for the individual optimizers at play.

For the RD component, we benchmarked the originally used (1, \)-ES against a form of ran-
dom search and different (u, A)-ES (with elitism) approaches that not only use the fitness as
the driving signal but also account for rule novelty, i.e. how far their matched subspaces differ
from those of existing rules. We tested three variations of novelty search we adapted from
literature and used two different ways of selecting the rules against which the novelty is com-
puted. As the original results [Hei+23c] were not as conclusive as we had liked, I added two
additional datasets to this study, finding that, while the eight RD options perform not too far
off from each other on a global scale, performance is dataset-dependent. The original ES clearly
produces the most compact models (low number of rules) yet is still sufficiently competitive
on errors. Although, some of the novelty search options are capable of creating models that
are significantly better at making predictions at the cost of model size.

The second optimization task in SupRB, SC, is the selection of a good subset of all discovered
rules to be returned as the model after training or to base the RD search’s starting points
on during training. For this, we originally proposed a traditional GA which we find to work
reasonably well. We then investigated additional options in two separate studies:

Initially, we tested a variety of mainstream metaheuristics to replace the GA (cf. Section 6.5). As
the original results [Wur+22] were not too conclusive, I also extended the experiment with the
additional two real-world datasets from my extended RD investigations. Of the four additional
metaheuristics’ tested, we found Artificial Bee Colony (ABC) to be the most probable candidate
to replace the GA. It composed slightly smaller models than the GA while being very similar
in terms of prediction errors. I suspect that this is due to its stronger exploration capabilities
that allow it to find better intermediate solutions during the alternating phases of SupRB’s
training process, which in turn leads to a better guidance of the RD process. However, one
should note that the other options were also very similar on errors and only slightly—and on
some datasets—worse on model sizes than GA and ABC. Overall, I would still recommend to
use the GA. It is the most well-known technique, has large numbers of possible extensions
and improvements that were proposed in the relevant literature over the last decades, and
evolutionary techniques are the traditional choice for LCSs.

In the latest publication on SupRB [Hei+24], we investigated the use of different Self-adaptive
GAs (SAGAs) in SupRB. Currently, there are quite numerous hyperparameters to tune due
to the two optimizers and, of course, the remaining system, e.g., the number of phases, the

"We also included another version of random search as a baseline and found it to perform notably worse than the
others.
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number of rules per RD phase, etc. The usage of self-adaptive methods promises not only the
possibility of better overall fitnesses of solutions but also the replacement of hyperparameters
which have to be tuned correctly to allow good solutions to the learning task. This can save on
overall computation budgets, but can also make the system easier to use for non-experts which
is a critical feature to get it used within industry in day-to-day operations. In Section 6.6, we
adapted four different SAGAs from literature to fit to our optimization task. In the experiments,
we found that three of the options perform reasonably well. SAGA2 and SAGA3 are on-par
with the GA in terms of errors, while SAGA4 falls behind on one dataset. However, SAGA4
produced the most compact models on all datasets and showed significantly smaller models
on the one dataset it fell behind on on errors. Likely, its mechanisms lead it to follow paths
within the fitness landscape that lead to another segment of the Pareto front.

Chapter 7 presented a large number of the many possible next steps for future research. I high-
lighted directions regarding explainability, practical application, additional learning paradigms
(i-e. classification), algorithmic extensions, additional options similar to the studies within
Chapter 6, possible benchmarking opportunities, and integration into another metaheuristic
framework.

In this summary of results, I highlighted many of the strengths and achievements of this the-
sis: Basically, the work that culminated into this, highlights and then closes relevant research
gaps towards XAl applications in the real-world while still making fundamental contributions.
SupRB is a robust and effective RBML system that produces generally explainable models ac-
cording to specific requirements.

However, this work did not answer all questions or “solve” XAL Due to their sheer number,
I was unable to address—let alone benchmark against—all other LCSs out there. There might
also be more approaches that could fill the same gap in the XAI field if they were modernized
and developed further.

While I believe the questionnaire to be a useful template for assessing requirements for XAl it
is geared towards LCSs and other approaches might work as well but need substantial adjust-
ments to the questions. Moreover, it might be possible to create a more general template to
determine what type of model is needed, although I would argue that this is mostly a question
of what can approximate the data sufficiently. If a DT with reasonably low depth is able to
make adequate predictions, this is the simpler model and should be preferred. While it is pos-
sible to adapt the template to determine the design of DT models for a use case, some things
like bad predictions before depths of 20 or more could be used to already exclude DTs from
consideration before interviewing stakeholders. Additionally, we only presented a single use
case and its requirements in the articles on which Chapter 3 was based. Other use cases, es-
pecially from other domains or outside of manufacturing, might yield different answers even
though I believe general trends regarding model design will be commonplace as long as XAI
is required at all. Theoretically, the questionnaire should work in other domains as well and
SupRB is of course a universal function approximator and applicable everywhere but I believe
it is important to verify the method.
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SupRB is not universally explainable. I would argue that it is easier to explain and understand
than previous LCSs (especially when following the solution trajectories) but the search pro-
cess is still stochastic and involves many steps. SupRB’s models are much smaller than those
of many other LCSs but they are also more complex than a DT with a similar number of rules
and of course much more complex than a linear model. In general, the overlapping nature
of LCS rules is a clear trade-off between more accurate predictions and model explainability.
High-dimensional rules can be difficult to analyse even if based on hyperrectangular conditions
and linear models as humans struggle with imagining anything beyond three-dimensional
space. As Table 5.4 showed, even more general rules will only match a small share of the
overall feature space. At the moment, there are no well-developed and rigorously tested tech-
niques on how to present LCS models or even only individual rules to stakeholders—especially
non-experts and non-technical stakeholders. Despite the likely advantages of SupRB’s models,
there is a non-zero chance that the most relevant stakeholders could not be convinced and an
application fails.®

This thesis did also not include a thorough comparison of the explainability of the four RBML
methods (and further variations of SupRB) to the specific stakeholders from Section 3.5. There-
fore, I want to reiterate my call from Chapter 7 to perform such a study and publish it for the
benefit of other researchers. Additionally, I hope we will see the development of new methods
on how methods like SupRB or other LCSs can improve operations in practical applications,
including how they can be effectively explained, ideally tested in live systems followed by a
detailed presentation in a prominent publication.

The benchmarks of SupRB were only made on a low number of real-world datasets. While
they were selected for sound reasoning (based on their size, dimensionality, and linearity)
and allow a relevant evaluation of the system, the statements made could be even stronger if
evaluated on more datasets. Especially in cases of narrow performance differences, it would be
interesting to see if these hold on new data, even though I do not expect significant changes in
the general trends seen in all experiments. For this reason, I included two additional datasets
in the investigations on rule conditions, RD, and SC, where the tests were not too conclusive
on the datasets from Chapter 5 alone. However, more tests would always be preferable even
though they take significant computation budgets to perform and time to analyse.

We never tested hyperellipsoids or other more complex options for rule conditions (or local
models). While we know that they are more complex to explain, we have no firm understand-
ing on how much performance we are missing out on and if (and by how much) stakeholders
would even consider other options to be a loss in terms of explainability. For example, if they
only cared about specific instances (e.g., the current situation) they might not even care to
know why these rules match, rendering the matching function irrelevant. On the other hand,
it is possible that the gains from these other functions are minimal or even non-existent as
they harm the training process due to the optimization becoming more difficult as well.

*There is of course the possibility of a stakeholder generally rejecting all forms of “AI” or recommender system
but that would not be SupRB’s sole responsibility.
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We did not manage to find optimizers that improved the performance of the system by a lot.
Now, the original choices on optimizers and system design were made based on sound as-
sumptions and background knowledge and were made with care, however, it is somewhat
disappointing that none of the changes could lift the performance considerably.

There might be combinations of the different options presented in Chapter 6 that yield better
performances and a thorough hyperparameter study could also find some improvements to
SupRB. Especially after the explainability of SupRB is validated in practice, a comprehensive
guide on how to configure SupRB, together with a faster implementation, would make an even
better case for practical use of the system in industry than the results I presented alone.

In conclusion, this thesis advanced the state-of-the-art in the field of XAI which is critical
to move ML towards widespread application. It did so with a focus on LCSs by advancing
the theoretical understanding, proposing and demonstrating a method to assess specific de-
sign requirements based on the explainability of models, and by culminating these findings
in a new system that produces models that are much smaller yet similarly accurate than its
competition. This system was successfully benchmarked on real-world data and advanced
considerably over a number of publications tackling individual components. Therefore, it can
form a well-rounded basis for further studies on XAI within interactive scenarios with real
stakeholders and, ultimately, the advancement of workplace automation.
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