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The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for
suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in
disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial
for teaching and training deep-learning models such as GestaltMatcher. However, medical data is often sparsely available, and
sharing patient images involves risks related to privacy and re-identification. Therefore, we explored whether generative neural
networks can be used to synthesize accurate portraits for rare disorders. We modified a StyleGAN architecture and trained it to
produce artificial condition-specific portraits for multiple disorders. In addition, we present a technique that generates a sharp and
detailed average patient portrait for a given disorder. We trained our GestaltGAN on the 20 most frequent disorders from the
GestaltMatcher database. We used REAL-ESRGAN to increase the resolution of portraits from the training data with low-quality and
colorized black-and-white images. To augment the model’s understanding of human facial features, an unaffected class was
introduced to the training data. We tested the validity of our generated portraits with 63 human experts. Our findings demonstrate
the model’s proficiency in generating photorealistic portraits that capture the characteristic features of a disorder while preserving
patient privacy. Overall, the output from our approach holds promise for various applications, including visualizations for
publications and educational materials and augmenting training data for deep learning.
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INTRODUCTION
Many genetic conditions involve features evident on physical
examination, including those that affect the face. At the time of
writing (May 28, 2024), searching with the HPO term “facial
dysmorphism” yields 2997 entries in the Online Mendelian
Inheritance of Men (OMIM) compendium (https://
www.omim.org/), indicating the importance of the facial gestalt
for characterizing disease entities. The importance of phenotype
matching extends to genetic diagnostic procedures, where
physical examination features can serve as supporting evidence
when assessing sequence variants for pathogenicity [1].
Recent advancements in computer vision have achieved expert-

level accuracy in discerning distinct facial patterns. Next-
generation phenotyping (NGP) tools such as GestaltMatcher have
become instrumental in analyzing clinical patterns in human faces
and their usage for interpreting sequencing data [2–4]. The
underlying technology, deep-learning, can be used for pattern
recognition and delineating informative features (explainable AI,
XAI) or synthesizing images with similar characteristics via
generative methods such as Generative Neural Networks (GNN)
[5]. GNNs may be particularly useful in medical settings since data
are often sparsely available and may involve sensitive, private
information. The generated images can be used for teaching or

data augmentation when training machine learning models,
including to address privacy concerns [6, 7]. In medical genetics,
Duong et al. showed that StyleGAN could generate artificial
longitudinal patient data and improve NGP classification accuracy
by better controlling age as a confounder [8].
StyleGAN is now a well-established architecture for image

generation that allows the synthesis of photorealistic images
across diverse contexts [9]. StyleGAN is based on the concept of
Generative Adversarial Networks (GAN) originally proposed by
Goodfellow et al., which consists of two parts: the generator and
the discriminator [10]. The generator crafts images—such as
human portraits—while the discriminator evaluates their quality
and originality, providing feedback to reduce artifacts and
enhance realism. The generator’s goal is to fool the discriminator
with its results such that the discriminator cannot tell whether
they are real or synthetic. Through this adversarial process, the
generator learns characteristic object properties required to
produce realistic synthetic images (in this case, human faces). A
more comprehensive introduction to the technology can be found
in the supplemental material (Related work).
With further refinement of GANs, it is possible to condition the

output depending on an input label [11]. This label is an additional
piece of information that enables one to conditionally generate a
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certain type of image. In the case of human faces, the label might
encode age, race or ethnicity, hair color, or even a certain genetic
condition, as is the focus of our work.
Artificial content creation is particularly compelling in medicine,

given the sparse availability and stringent privacy constraints on
data. However, facial images are a particularly sensitive type of
medical data, as the effort required for re-identification is relatively
low and may require no additional technology. Nevertheless, for
this study, the characteristics most suitable for de-identification
can only be those that are not disease-related. Accordingly, there
are limits to anonymization in so far as recognizing the disease is
our aim (k-anonymity is bound by the prevalence of the disorder).
However, sparse training data pose challenges, potentially leading
to overfitting, a phenomenon where the network memorizes
samples and recreates training images [7]. Balancing de-
identification with feature retention poses a nuanced challenge;
the model must learn and reproduce disorder-specific features
without replicating exact facial combinations from training
images.
We used “disorder” as an additional class label in our work. We

trained a conditional StyleGAN with images of the GestaltMatcher
database (GMDB) containing images of over 10,000 individuals
with molecularly confirmed diagnoses [12]. We hypothesized that
working with several syndromic disorders facilitates learning
certain clinical features often shared by more than one disorder
[12]. Therefore, we focused on the 20 most frequent syndromes
represented in the GMDB, comprising a total of 3209 images. In
order to enrich the characteristic features, we added a custom loss
to the training and penalized the model if GestaltMatcher-Arc’s
[13] feedback would not match the syndrome requested of
our GAN.
For the evaluation of the generated images, we tested whether

humans are still able to differentiate between synthetic and
original images, and whether the characteristic features of a
genetic condition are preserved, while data of real patients is
protected.

METHODS AND MATERIALS
Data preparation
The GestaltMatcher DataBase (GMDB) contains a collection of 581 distinct
disorders known to involve facial dysmorphisms, with over 10,980
accompanying images of 8346 affected individuals. In addition to
previously published images, all individuals newly represented in GMDB
provided consent for use of their imaging data for machine learning.
Ethical approval for the GMDB was granted by the IRB of the University
Hospital Bonn. For our GestaltGAN model training, we focused on the 20
most common disorders from the GMDB (Supplemental Fig. 1). The reason
for choosing 20 is a trade-off, balancing the benefit of using more
disorders for training data against the challenge of distinguishing between
them.
Images in the GMDB come in various formats, with differences in size,

lighting, and facial alignment. To enhance the quality of low-resolution
images, we used REAL-ESRGAN [14], a deep-learning model that predicts
high-quality image details and computes high-resolution versions for the
input images. Additionally, many older images in the GMDB come in black-
and-white, which would lead to undesired outputs if directly used for
training. We used DDColor [15] to add color to these monochromatic
images to address this, ensuring a consistent dataset for our GAN training.
All images were aligned and cropped using GestaltEngine-FaceCropper,
which relies on RetinaFace [16] that accurately pinpoints five landmark
points in each portrait: the eyes, nose, and mouth corners. Using those
landmarks, horizontal alignment of the faces could be ensured.
Given the scarcity of images of individuals with the genetic conditions of

interest, we expanded our dataset by including images of individuals
without known genetic conditions. These unaffected faces share similar
features, like hair or skin, with the images of individuals with genetic
conditions, aiding the model in generating more realistic faces of
individuals with genetic conditions. We opted for the FFHQ-Aging dataset
[17], known for its size and high-quality images across different ages, races,
and ethnicities. Since many patients in the GMDB are children (42.8%

under five years old), we balanced the age distribution by limiting the
number of unaffected adults in FFHQ-Aging to 3000 individuals for all age
groups over 20 years old. This adjustment resulted in a training set with
31,130 unaffected people. Subsequently, all images in FFHQ-Aging
underwent alignment and cropping using GestaltEngine-FaceCropper.

Training of GestaltGAN
We utilized the conditional StyleGAN3-R architecture proposed by Karras
et al. [18], representing the fourth iteration of the StyleGAN framework.
This version incorporates enhancements such as translation and rotation
invariance towards training images, which helps with imperfect alignment
that may have persisted in some training images. Notably, StyleGAN3-R
integrates adaptive discriminator augmentation (ADA), a mechanism
crucial for preventing overfitting, especially in datasets with limited
samples like the GMDB.
Our approach is to use a conditional setup, where each syndrome is

treated as a distinct class for training. This way, we can make the most of
the shared facial features among different disorders using the size of our
dataset. We also include unaffected images as a separate class, providing
the model with continuous exposure to common features like hair or skin
from those images. However, to handle the variable number of training
images for each genetic condition and to avoid producing images that
inappropriately incorporate features of unaffected faces, we added an
over-sampling function to the StyleGAN3 implementation. This ensures
that each genetic condition is represented equally during training. We
gave the model twenty times more exposure to the unaffected class to
allow the model to better understand and utilize its features.
An unaffected class was introduced to the training data to augment the

model’s understanding of human facial features. In addition to over-
sampling, we modified the loss function of StyleGAN3. Since the
GestaltMatcher model is specialized in identifying rare disorders from
images, we want to leverage this skill by penalizing our model if its
predictions deviate from what GestaltMatcher would expect for a given
class. The adjusted loss function combines this GestaltMatcher loss with
the regular discriminator lossLD :

Ltotal ¼ LD Ið Þ þ α � GestaltMatcherRank I; dð Þ

Here, I represents the image generated by the generator, and the
GestaltMatcherRank function calculates the index of the correct disorder d
has in the prediction of GestaltMatcher. The weight α adjusts the balance
between the GestaltLoss and the discriminator loss.
The chosen image resolution for our model was 256 × 256 pixels, which

is slightly below the median image resolution in the GMDB of 265 × 328
pixels. We were also able to train the model for a 512 × 512 resolution but
did not continue this approach due to the three-fold higher required
computation effort. Images generated by our GestaltGAN model can be
seen in Fig. 1. A visualization of our training setup is shown in Fig. 2.

Image averages and latent averages
To illustrate the characteristics of a disorder, the average face of several
patients is often computed by registering and overlaying their portraits.
While this method has been used in various studies, the resulting images
are often blurry and indistinct [19]. Increasing the number of individuals
often leads to a deterioration of the results (personal communications). In
this subsection, we introduce a technique to generate sharp, high-quality
portraits that accurately represent the features of specific disorders.
The image generation process of an image with StyleGAN begins with

sampling a random latent vector z 2 Z. This vector is combined with the
class label in the mapping network, which maps to the second latent space
W . An image is then deterministically generated based on this latent
vector w 2 W . Since the latent space is continuous, small variations in the
latent vector result in slight variations in the synthesized image [20]. This
means similar images, especially those of the same disorder, lie in the same
region in the latent space. This property allows us to generate an average
image for all disorders our model was trained on. To achieve this, we
sample 10,000 latent vectors w 2 W for the selected disorder, such as
Cornelia de Lange syndrome, and average these latent vectors to generate
the average image. Instead of computing the average in the image space,
we perform the averaging in the latent or feature space. Latent averages
for different disorders are shown in Fig. 1 and Fig. 3. In Fig. 3, the latent
averages are presented alongside the corresponding averages from image
space, which are currently often used for teaching purposes, such as to
help clinical trainees recognize different genetic conditions.
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An important note is that this method only works for disorders on which
the GAN has been trained. To extend the capability and generate latent
averages for other disorders, we perform GAN-inversion on all patient
portraits in the cohort to obtain the corresponding feature vectors in the
latent space that represents the patients. We use the GestaltMatcher
ensemble as a loss function for GAN inversion, as it has been trained to
recognize dysmorphic features. After averaging the feature vectors, we
generate an image from the resulting vector to obtain the latent average.

RESULTS
With GestaltGAN, our goals were threefold: we aimed to create
synthetic images that are photorealistic, de-identified, and
accurately represent clinical features. Achieving these objectives
partially involved navigating an optimization problem, as enhan-
cing privacy protection might sometimes compromise feature
preservation. Therefore, we assessed the quality of all three
objectives through computational methods and by conducting
experimental evaluations with human test participants, who
compared the generated images to the original images. Images
generated by our model are shown in Fig. 1.

Computational evaluation of image quality
We employed two machine learning-based methods to evaluate
the quality of a large number of generated images. First, we aimed
to determine whether an image depicts a face or is considered a
fail case, and second, we assessed whether characteristic features
of the disorders are present in the images.
We generated 1000 random images for each class, including the

unaffected faces class. While most generated images are high-
quality portraits, some fail to convey meaningful content. We
defined a fail-case as an image without any visible face. To estimate
the number of fail-cases, we utilized RetinaFace, which was already
used for image alignment. Since RetinaFace predicts facial features
like eyes, nose, and mouth, its confidence can be considered a
criterion for quality assessment; we considered an image a fail-case
if the confidence of RetinaFace was below 99.9% (Supplemental
Fig. 2). The percentage of fail-cases is below 10% for most disorders.
Still, the proportion of fail-cases varies between disorders, such as
2.7% and 6.9% for Cornelia de Lange and Kabuki syndrome,
respectively (Supplemental Fig. 3). Possible reasons for this could
include lower training image quality, such as a low resolution or

Fig. 2 Visualization for the GestaltGAN architecture. StyleGAN has been extended by a customized loss function, GestaltLoss, based on the
GestaltMatcher ensemble. The conditional generator synthesizes images for 20 different disorders and receives feedback from the
discriminator about the origin, which is either artificial or real. For the training of human faces and disorders, data of FFHQ Aging and the
GMDB were used. Once the training is finished the generator can be used to synthesize arbitrary amounts of artificial images.

Fig. 1 Images generated by GestaltGAN. Images in the top row are the latent averages of the disorder, which were generated by averaging
the features of the disorder. Images in the bottom row are selected images generated for the respective disorder.
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black-and-white images, or more unique facial features in certain
disorders. Unique features pose a challenge for the model, as they
are encountered less frequently in the training data.
To assess whether characteristic phenotypes of the disorders

are represented in the generated images, we utilized Gestalt-
Matcher. We tested whether the generated disorder was within its
top-5 predictions. Overall, GestaltMatcher achieved a top-5
accuracy of 76.7% on the synthesized images. The top-5 accuracy
rates for Cornelia de Lange syndrome and Williams-Beuren
syndrome were above 90%. In comparison, the correct disorder
was only listed in the top 5 differential diagnoses for synthetic
images of Baraitser-Winter in 62.1% and for Nicolaides-Baraitser in
39.9% of the cases. These performances agree with the accuracy
rates measured on real data, in which top accuracy rates also differ
per disorder depending on their distinctiveness. Therefore, the
results indicate that the generated images’ characteristic features
are indeed present.

Assessment of image quality by human experts
In addition to the computational techniques we used to assess
image quality, we also developed an online survey with questions

in three categories. We recruited 63 users of the GestaltMatcher
database for the survey. These users represent dysmorphologists
and other medical professionals working on genetic and other
rare disorders. The experiment enabled us to assess the
performance of humans in distinguishing 1) synthetic images
from non-synthetic images, 2) re-identifying original data (images)
that were used for training, and 3) identifying (diagnosing) the
correct disorder. Each survey question also included a time-limit
between 15 and 30 seconds, depending on the question, to
prevent participants from scanning images for tiny artifacts, which
can occur in synthetic images. In addition, a skip button allowed
participants to skip a question and continue with the next
question. In total we recorded 63 sessions, in which ten questions
were asked in each of the three categories. Out of the 1860
answers, we excluded 106 skipped questions and 151 timeouts,
resulting in 1603 answers for further evaluation. For all experi-
ments, the images and choices were randomly sampled. The full
experiment setup is visualized in Fig. 4.
In the first category, participants were presented with four

distinct portraits, of which three were generated by GestaltGAN.
At the same time, one, the original, was an image of an individual

Fig. 4 The survey was presented to human participants to assess their ability to recognize generated images, specific training images,
and specific genetic conditions. The lower section shows the expected result for each question due to random chance and what was
observed. The closer the observed and expected values, the harder the question. 1) Participants could identify original images slightly more
often than randomly expected. 2) Participants could not identify which individuals were used for training. 3) Participants could recognize the
characteristic features in original and synthetic images with comparable precision. Color code: Original images are depicted in black, original
images not part of the training set in yellow, and generated images in blue.

Fig. 3 Comparison of ordinary image averages and latent averages generated for four disorders GestaltGAN was trained on. Since both
averaging techniques operate in essence on the same underlying data, there is a high similarity of image averages (left) and latent averages
(right) for each condition. However, averaging in image space blurs fine structures, while latent averages appear more photorealistic.
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from the training set. Participants were asked to identify the
original. In 33.3% of the cases, participants were able to find the
original, exceeding the expected chance value of 25%. The null-
hypothesis, that generated images are indistinguishable from real
images, had to be discarded (1.9 10-5 < 0.05, binomial test).
However, this was expected since generated images often contain
artifacts that expose them as artificial, and still, in most cases,
participants could not identify the original.
In the second category, participants were presented with a

portrait representing a specific condition, averaged from the
latent space of GestaltGAN. The participants were shown three
original portraits of individuals with the same condition, only one
of which had been used during the training. They were asked to
identify the individual in the training set, in case the participant is
unable to identify the individual used for training, privacy is
considered to be protected. In 33.7% of cases, participants
answered correctly, and the null hypothesis that GestaltGAN
generates images that do not violate patient privacy (at least in
the tested approach) did hold (0.889 > 0.05, binomial test).
In the third category, a synthetic portrait was shown to the

participants, and they were asked to choose the correct disorder
from four different options. If the synthetic images accurately
represented the disorders, we hypothesized that experts should
be able to identify the correct disorder at approximately the same
rate as real images. Remarkably, in 48% of the cases, the experts
could correctly diagnose the patient based on a real portrait, while
their accuracy was 48.5% based on a generated portrait. The null
hypothesis that generated images do not exhibit any character-
istic features of the simulated disorder could be rejected
(0.001 < 0.05, χ2 test). In fact, diagnostic yield on the generated
images was even slightly higher, possibly due to an enrichment of
characteristic features due to the GestaltMatcher loss function.

DISCUSSION
In this study, we explored the application of Generative
Adversarial Networks in generating photorealistic portraits for
rare disorders that preserve the characteristic clinical features and
patient privacy. We presented GestaltGAN, a modified StyleGAN
architecture, and demonstrated in a series of experiments that
synthesizing photorealistic faces of individuals with rare genetic
conditions is possible despite limited training data. Through
careful data preparation and augmentation, we were able to
generate photorealistic portraits that accurately represent the
facial features of a syndrome. Specifically, oversampling and our
custom loss function enabled us to train the model to reproduce
the characteristic features of disorders more accurately.
Our evaluation encompassed computational assessments of

image quality and human evaluations through an online survey of
medical professionals. First, the evaluation of all images demon-
strated overall sound quality, with only a small percentage that
had to be removed. The responses of medical professionals
further indicated that synthesized portraits enabled them to
identify the intended condition and exhibited features similar to
the original disorders. Additionally, participants had difficulty
recognizing the original image used for training, suggesting that
GestaltGAN can be used to preserve patient privacy. Using the
latent space, we presented the novel latent representations for
conditions that average features in the latent space and appear
much sharper than simple averages of the faces.
Our study has several important limitations. Different aspects

were evaluated independently for different images. However, the
tests would have to be met for one image simultaneously. For
example, a synthesized image must be high-quality and distinct
while preserving the patient’s privacy. On the other hand, since an
infinite number of synthetic images can be generated, it is not
feasible to test privacy protection. An additional constraint was
that we assessed a limited number of conditions and focused on a

single generative method. While we do not necessarily anticipate
extending the study in these ways would yield very different
results, assessing our approach more broadly would be interest-
ing. In the future, it could be interesting to use more detailed
labels, such as additional age labels or individual HPO terms,
instead of solely the condition in question. This could provide the
user with more specific control over the generated faces.
In conclusion, we find the parallels of GANs to traditional

medical education striking. In medicine, trainees learn according
to the mantra “See one, Do one, Teach one”. Similarly, by
training on a relatively small number of cases, GestaltGAN
achieved proficiency in generating accurate images of indivi-
duals with genetic conditions. The quality of the internalized
knowledge was shown as the GAN discriminator, and experts
could no longer reliably distinguish artificial and real images.
Overall, this work highlights the potential of GANs in the medical
field to artificially synthesize data while protecting patient
privacy.

DATA AVAILABILITY
All training data for GestaltGAN was extracted from GMDB. Photorealistic synthetic
portraits of 20 disorders can be found at https://thispatientdoesnotexist.org.

CODE AVAILABILITY
We publish our code on GitHub: https://github.com/kirchhoffaron/gestaltgan.
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