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Abstract
Physical therapy in acute care hospitals plays an important role for the rehabilitation
of patients. Nevertheless, the profession must deal with staff shortages caused by a
lack of qualified employees and stress-induced absenteeism. Both are results of high
physical and mental workloads as well as a lack of employee retention strategies. A
therapist shortage negatively affects the total number of appointments the department
can fulfill daily. Furthermore, severe cases where patients require two therapists at the
same time are common in acute care hospitals and contribute to the scheduling
complexity. Here, one therapist takes charge of the appointment (lead), while a
second therapist fulfills a support function role. This paper develops a multi-criteria
optimization model for the daily rehabilitation therapy scheduling problem subject to
teaming aspects and appointment priorities. We minimize preference penalties for
lead and support visits and the total priority-based violation for unscheduled
appointments. The problem is modeled as a vehicle routing problem with time
windows and synchronization constraints. We solve the problem using a branch-and-
price approach with different visit clustering methods and speed-up techniques.
Computational results show the effectiveness of a randomized greedy heuristic
implemented to enhance performance for generating new columns. Besides, a
problem-specific clustering approach is integrated to speed up subproblems’ solution
times. Our results show its high effectiveness when compared to a state-of-the-art
approach derived from literature.

Keywords OR in health services · Physical therapy · Vehicle routing
problem · Time windows · Synchronization constraints · Workforce
shortages
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1 Introduction

Workforce shortages in healthcare professions are a well-known problem in hospitals
and affect physical therapies. A shortage of physical therapists is prevalent in many
countries like Germany (Bundesagentur für Arbeit 2022) and the U.S. (Bureau of
Labor Statistics, U.S. Department of Labor 2022; Zimbelman et al. 2010). Moral
distress and time pressure lead to burnout, unpleasant work environments, and high
turnover rates among physical therapists (Lau et al. 2016). A multifaceted regulatory
environment adds complexity to creating proper therapists’ schedules. In many
countries, like Germany, health insurance is required by law to have framework
contracts with physical therapist unions which specify fixed durations for all potential
appointments as well as treatment guidelines (Verband der Ersatzkassen 2022;
Schimmelpfeng et al. 2012). From the scheduling perspective, a particularly
challenging guideline is that some rehabilitation cases require two therapists
simultaneously, where one therapist supports the responsible therapist (e.g.,
rehabilitation for severely affected neurology patients). As a result of the treatment
requirements and the workforce shortages, it is common that the hospital’s
department for physical therapy struggles to provide treatment for all patients in
the daily planning horizon. Depending on the priority of patient treatments,
treatments might be moved to the next day. Some treatments might also be fulfilled
only later by specialized rehabilitation institutions without endangering the patient. In
this context, it is important to keep a focus on therapist satisfaction and development.
In the scheduling literature, Erhard et al. (2018) for physicians, and Cheang et al.
(2003) as well as Burke et al. (2004) for nurses, describe that employee preferences
are often considered to improve job satisfaction and thus reduce absenteeism of
hospital personnel. Furthermore, giving employees opportunities to take a lead
function for their tasks will improve their identification with their employer (Cloutier
et al. 2015). Overall, the management must prioritize patients according to internal
priority rules to achieve the best outcome for them, while also keeping a focus on
therapist satisfaction and development.

In this paper, we collaborate with one of the largest German hospitals, to tackle the
daily (offline) operational rehabilitation scheduling problem in acute care hospitals.
Three hierarchical priority classes (high, normal, and low) are used to prioritize
patients. For severely affected high priority patients, rehabilitation treatments are a
necessity in acute care to be able to fully recover, for normal priority patients, acute
care treatments speed up recovery considerably, and for low priority patients, acute
care treatments improve the well-being but there is little harm to do the treatment
only later in a specialized rehabilitation institution. Thus, patients of a higher class
are strictly prioritized, i.e., a single patient of a higher class is always prioritized
compared to one or several patients of lower classes, where treatment in the acute
care hospital might be missed altogether. Further, not all patients are available for
therapy at all times, e.g., patients might be occupied by physicians or must leave the
hospital early on in the planning day. In acute care hospitals, synchronization
between two therapists is necessary to fulfill treatment for some of the patients. This
is often the case when a patient can’t follow the lead therapist’s instructions alone
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without another therapist holding the patient upright. We assume that a patient
treatment or support for a patient, can either be beneficial, neutral, or detrimental for
a therapist’s motivation. For example, a therapist who was in the lead for a particular
patient before might want to be in the lead again, while a newly qualified therapist
might prefer a support role if available. Information on therapist preferences for
patients can usually be retrieved from management support systems by matching
therapist characteristics and training with patient characteristics. Addressing this
common rehabilitation therapy scheduling problem in hospitals, the contribution of
the paper is manifold: 1) We model the operational rehabilitation scheduling problem
with teaming requirements and workforce shortage-related objectives as a vehicle
routing problem with time windows (VRPTW) and synchronization constraints. A
complex VRP variant that received little attention (e.g., according to the taxonomy
by Drexl (2012) or as described in Jungwirth et al. (2021)). 2) We model the problem
with the objective of minimizing unscheduled appointments accounting for their
priority while also including therapist preferences for appointments. We enforce the
scheduling of all required teaming visits (lead and support) in feasible solutions. This
novel modeling idea is uncommon in existing VRP literature (Vidal et al. 2020) and
in home healthcare scheduling (HHCS) literature. In HHCS, synchronization is often
relevant but not enforced for a feasible solution. Usually, the regulatory setting does
not allow unscheduled appointments (Fikar and Hirsch 2017), and missing caregivers
are then recruited from external sources. 3) We develop a branch-and-price approach
with visit clustering and a problem-specific randomized greedy heuristic in the
subproblem to solve realistic problem instances. Branch-and-price is a common
technique to solve the NP-hard VRPTW with synchronization constraints
(Desaulniers et al. 2014; Drexl 2012). To speed up the runtimes of the subproblem,
we develop a randomized greedy heuristic, which we combine with a label correcting
algorithm. Additionally, we develop and apply visit clustering approaches (Ras-
mussen et al. 2012) to manage the number of potential visits in a schedule. 4) In
computational experiments, we examine the effects of different synchronization
levels, and we show the validity of our speed-up techniques.

In the following Sect. 2, we examine the state of the art of scheduling in a
rehabilitation setting and we discuss related research in home healthcare scheduling.
Section 3 gives a problem description and introduces the mathematical model.
Section 4 describes the branch-and-price procedure. Section 5 presents the
computational study. Section 6 summarizes the findings and presents potential
future research directions.

2 Literature review

In this paper, we schedule patients’ rehabilitation treatments, which has some
similarities to appointment scheduling, as described by Gupta and Denton (2008) and
Ahmadi-Javid et al. (2017). However, a hospital typically knows all therapy patient
treatments in advance for the next day (which is the case for our partner hospital) and
does not have to plan with no-shows or walk-ins. Hence, the problem setup only
requires scheduling patients occupying a hospital bed. In the introduction, we already
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described that treatment times are given by regulations to ensure a high treatment
quality for patients, and these treatment times are deterministic. In contrast, more
general appointment scheduling problems, often deal with stochastic service times.
Nevertheless, there is existing inpatient rehabilitation therapy appointment literature
with similar (deterministic) settings.

Chien et al. (2008) model a (daily) rehabilitation scheduling problem as a hybrid
shop scheduling problem and solve the problem using a genetic algorithm. Like our
problem, they assume time windows for patients. However, their objective is to
improve patient satisfaction via minimizing makespan and waiting times. The same
is true for Huynh et al. (2018) and Zhao et al. (2018), who solve similar scheduling
problems with the same objectives using different genetic algorithms. Therapist
satisfaction, patient priorities, travel times or teaming requirements are not part of
their problem. Ogulata et al. (2008) acknowledge bad working conditions for
physiotherapists and capacity restrictions. For a weekly planning problem, they
therefore provide a three-stage mathematical programming model, where the first
stage maximizes accepted patients according to their priority. In the second stage,
they consider fairness among therapists by balancing time and patients among
physiotherapists. In the final stage, they schedule patients in the schedule of the
assigned therapist. Here, they do not assume teaming requirements or travel times.
For a rehabilitation hospital, Griffith et al. (2012) develop a three-stage procedure
using different meta-heuristics to solve a weekly rehabilitation scheduling problem
including time windows, patient priorities, and teaming requirements for some
appointments. They do not consider travel times or therapist preferences since their
focus is a fair appointment distribution for patients without consideration of therapist
satisfaction. Gartner et al. (2018), Jungwirth et al. (2021), and Frey et al. (2023) deal
with a daily rehabilitation scheduling problem with travel times and treatment time
windows in an acute care setting. Gartner et al. (2018) develop a time-indexed
formulation with the objective to minimize waiting times for patients. They solve the
problem using a cutting plane algorithm and a sequential allocation heuristic for
larger problem sizes. Jungwirth et al. (2021) model the problem as a VRPTW and
solve it using a branch-and-price-and-cut approach with the objective to minimize the
cost of all selected routes. Frey et al. (2023) model their problem as a vehicle routing
problem with time windows and flexible delivery locations and solve it using a
hybrid adaptive large neighborhood search. However, the problems considered in
these three papers do not account for patient priorities, therapist satisfaction or
teaming requirements. Kling et al. (2024) develop a greedy randomized adaptive
search procedure for a daily planning problem. They consider patient priorities,
therapist preferences, travel times and treatment time windows, but they do not
consider teaming requirements.

Table 1 summarizes important problem attributes and the described findings. As
can be seen, many existing papers deal with a daily planning problem and all shown
problems include treatment time windows. However, only four papers include travel
times and three papers consider patient priorities. Two of the three problems which
include patient priorities are not dealing with a daily planning horizon. Teaming
requirements is only considered by Griffith et al. (2012) in a weekly planning
problem. Due to workforce shortages, it becomes increasingly important to consider
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employee satisfaction. Here, only two problems consider therapist preferences. While
Kling et al. (2024) share five of the six important problem attributes, no paper
combines all problem requirements. Further, Kling et al. (2024) develop a meta-
heuristic. This paper develops an exact method to solve the problem. For larger
instances, the exact method is adapted to provide inexact but very good solutions.

We model our problem as a VRPTW in a healthcare context. This results in
similarities to home healthcare routing and scheduling problems. Cissé et al. (2017)
and Fikar and Hirsch (2017) give a broad overview over existing research and
describe the home healthcare problem (HHCP) as patients scattered across a region
requiring health services. Health service workers visit the patients at home to fulfill
patient needs. Ait Haddadene et al. (2016) consider an objective function which
minimizes the sum of non-preference of caretakers for patient visits as one part of
their objective function and they include synchronization constraints. They solve
their problem using a Greedy Randomized Adaptive Search Procedure. Qiu et al.
(2022) solve a HHCP with synchronization constraints. Their problem aims to
minimize the combined cost of dispatching caretakers and traveling costs. It is solved
using a branch-and-price-and-cut algorithm. In general, in many regulatory settings
within HHCP, the service provider is forced to fulfill all patient appointments. Soares
et al. (2024) give a recent overview of vehicle routing problems with synchronization
constraints. Therefore, only few HHCP paper deal with the possibility of missed
appointments in a daily planning horizon. Instead, the focus usually lies on
minimizing travel costs or travel time, balancing workload or minimizing overtime

Table 1 Relevant aspects in rehabilitation therapy scheduling

Patient
priorities

Therapist
preference

Teaming
requirements

Time
windows

Travel
time

Daily planning
problem

Chien et al.
(2008)

X X

Ogulata et al.
(2008)

X X X

Griffith et al.
(2012)

X X X

Gartner et al.
(2018)

X X X

Huynh et al.
(2018)

X X

Zhao et al.
(2018)

X X

Jungwirth et al.
(2021)

X X X

Frey et al.
(2023)

X X X

Kling et al.
(2024)

X X X X X

This Paper X X X X X X
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(Fikar and Hirsch 2017). An exception is Dohn et al. (2009). They consider a daily
planning problem with teaming requirements. The authors maximize the number of
fulfilled appointments and solve the problem using a branch-and-price algorithm.
They do not consider prioritization or employee preferences. Rasmussen et al. (2012)
solve a HHCP with a daily planning horizon and temporal dependencies between
caretakers where complete synchronization can occur. They apply a branch-and-price
algorithm with different visit clustering methods to speed up solution times. Their
objective function minimizes prioritized missed visits, caretaker preferences for
patient visits, and travel costs for a daily HHCP. They do not differentiate between a
lead and a support role for caretakers since caretakers with temporal dependencies
usually have different qualifications and are not forced to work in a team for feasible
solutions.

Summarizing, existing literature in rehabilitation therapy scheduling and HHCP
has some similarities to the problem of our partner hospital that we consider.
However, no existing research considers task specific preferences for leading or
supporting individual treatments. In our setting both, the lead and support functions
must be scheduled in a feasible solution. Furthermore, in our acute care rehabilitation
setting, we allow for unscheduled appointments.

3 Problem definition and mathematical model

Before each day, the planner must consider several influencing factors for the patient
appointment scheduling. The daily (offline) operational planning is influenced by
regulations, i.e., given treatment times in periods and synchronization requirements.
The planner has a set e 2 E of therapists with the same qualification. Each therapist e
works a schedule from the set Se. Set Se is the set of possible daily schedules of a
therapist. Required therapist treatments are represented by visits on the route. The
number of required visits, i.e., visit(s) by one or two therapists is a result of
regulations.M is the set of lead visits for the day, i.e., visits with the therapist leading
a treatment. Therefore, set M includes all patients. H is the set of support visits for
patients with synchronization needs. For patients with synchronization requirement,
ði; jÞ 2 P is the set of two visits necessary to treat a patient, with i 2 M and j 2 H .
Here, the index M j stands for the lead patient visit i 2 M associated with a support
visit j 2 H if synchronization is required. Finally, set V ¼ M [H contains all
necessary visits to treat all patients.

The binary parameter Ae;i;s ¼ 1 if a visit i 2 V is included in a schedule s 2 Se of
a therapist e, otherwise Ae;i;s ¼ 0. The parameter Te;i;s is the start period of visit i 2 V
in a schedule s 2 Se of a therapist e. Te;i;s ¼ 0 if a schedule s 2 Se of therapist e does
not cover visit i. Parameter Zi is the cost of missing a patient, i.e., a lead visit i 2 M
is missed. We use three different priority classes for appointments and formalize their
cost relation as follows. Let M low, Mnormal, and Mhigh be distinct subsets of M . Then
Zi [

P
j2M low Zj8i 2 Mnormal and Zi [

P
j2Mnormal Zj8i 2 Mhigh. Parameter Ce;s gives

the preference cost of a schedule s 2 Se for the individual therapists e 2 E.
Individual therapist’s preference costs use a value of �1 for beneficial visits, 0 for
neutral visits, and 1 for detrimental visits. To balance our two objectives, we
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introduce weight wMissed for the importance of missed visits (first objective)
compared to the preferences of the chosen schedules for therapists (second
objective). Binary decision variable yi ¼ 1 if a visit i 2 M is missed. If all visits
are covered yi ¼ 0 for all i 2 M . Binary decision variable ke;s ¼ 1 if a therapist e is
assigned to schedule s 2 Se, otherwise ke;s ¼ 0. In the following, we give an
overview of the sets and indices, the parameters, and the decision variables, before
we provide the model.

min wMissed
X
i2M

Ziyi þ
X
e2E

X
s2Se

Ce;ske;s ð1Þ

s.t.
X
e2E

X
s2Se

Ae;i;ske;s þ yi ¼ 1; 8i 2 M ð2Þ

X
e2E

X
s2Se

Ae;j;ske;s þ yM j ¼ 1; 8j 2 H ð3Þ

X
s2Se

ke;s ¼ 1; 8e 2 E ð4Þ

X
e2E

X
s2Se

Te;i;ske;s ¼
X
e2E

X
s2Se

Te;j;ske;s; 8 i; jð Þ 2 P ð5Þ

yi 2 0; 1f g; 8i 2 M ð6Þ

ke;s 2 0; 1f g; 8e 2 E; s 2 Se ð7Þ

Sets and indices

e 2 E Set of therapist employees

s 2 Se Set of potential schedules of a therapist e 2 E

M Set of lead visits available for the day

H Set of support visits necessary for patients with synchronization needs

ði; jÞ 2 P Set of visit combinations for patients with synchronization with i 2 M and j 2 H

V ¼ M [H Set of all patient visits for the day

M j Index for a lead visit corresponding to a support visit j 2 H

Parameters

M j Index for the lead patient visit associated with a support visit j

Ce;s Preference cost of a schedule s 2 Se of the therapist e 2 E

Ae;i;s 1, if visit i 2 V is covered in schedule s 2 Se of therapist e 2 E,

0 otherwise

Te;i;s Start period of visit i 2 V in schedule s 2 Se of therapist e 2 E

Zi Cost of missing an appointment i 2 M

wMissed Objective function weight for the term for missed appointments
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continued

Decision variables

ke;s 1, if therapist e is assigned to s 2 Se

0, otherwise

yi 1, if an appointment i 2 M is not covered within its time window,

0, otherwise

Objective function (1) minimizes the weighted sum of penalties for missed
appointments according to priority in the first term. We use weight wMissed to
emphasize the first objective function term in relation to the second. The second term
considers the sum of preference costs of the chosen schedules (columns). We do not
include a weight for preference costs in the second term because each schedule is
weighted accordingly in Ce;s (see Sect. 4.1). Cost Ce;s consists of the sum of
weighted preference penalties for leading or supporting individual appointments
within schedule s 2 Se, where e defines individual therapists e 2 E. Constraints (2)
guarantee that a lead visit i 2 M is either covered by a schedule or it is missed.
Constraints (3) ensure that a support visit j 2 H with synchronization can only be
assigned if the corresponding lead visit i ¼ M j is scheduled (i.e., yi ¼ yM j ¼ 0Þ. On
the other side, the constraints (3) assure that if a lead visit is missed then the
corresponding support visit cannot be assigned (i.e., yi ¼ yM j ¼ 1Þ. Constraints (4)
ensure that each therapist works one schedule. Constraints (5) ensure synchronization
of lead and support visits in case of a patient with synchronization needs. Decision
variable domains are defined in (6) and ð7Þ. Please note, the binary condition in ð6Þ is
not needed.

To directly solve the introduced extensive formulation, all possible schedules
s 2 Se for therapists e 2 E would have to be enumerated. However, there are many
combinatorial possibilities for schedules and generating all of them is impossible in a
reasonable amount of time. Next, we introduce our decomposition idea which is
based on a branch-and-price framework including column generation to price out
additional columns. Branch-and-price is a well-known approach to solve VRPTWs
efficiently (Desaulniers et al. 2014) and it is well suited when dealing with
synchronization requirements (Drexl 2012).

4 Branch-and-price procedure

In this section, we introduce the building blocks for our branch-and-price algorithm.
First, we relax the synchronization constraints (5) and integrality in (6) and (7) and
handle both during branching (see Sects. 4.2.1 and 4.2.2). The remaining constraints
(2) to (4) and the objective function form the restricted master problem (RMP). In
each main iteration of the column generation approach the RMP is solved to LP
optimality. Once the RMP is solved, the dual solution is used to find additional
columns (i.e., new schedules). We define vi � 0 as the dual variables corresponding
to constraints (2) in the RMP. Dual variables for constraints (3) and (4) are defined by
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wj and xe. Using the dual solution, we can then define the generic reduced cost of a
column in the RMP as follows.

ce;s ¼ Ce;s �
X
8i2M

Ae;i;svi �
X
8j2H

Ae;j;swj � xe ð8aÞ

Dual feasibility is achieved when all columns in the RMP have non-negative
reduced costs and no columns with negative reduced costs can be found given the
solution values for vi, wj, and xe for all i 2 M , j 2 H , and e 2 E. To verify that no
ce;s\0 for all e 2 E, s 2 Se exists, we minimize the objective function of the
subproblem (SP, also called pricing problem) for each therapist to find new schedules
(i.e., the most promising columns with negative reduced costs). The generic SP is
defined in Sect. 4.1. Columns with negative reduced costs are added to the RMP for
the next iteration. Here, we add all generated columns with negative reduced costs to
the RMP. If no columns with negative reduced costs are found, then the LP relaxation
of the respective node is solved. Branching then guarantees feasibility, including
constraints (5) to (7). Implementation details, such as the high-level architecture,
speed-up approaches with the use of a heuristic and visit clustering to further speed
up solution retrieval are discussed in Sects. 4.2 and 4.3.

4.1 Pricing problem

The purpose of the pricing subproblem is to find non-basic feasible schedules
(columns) for a therapist with negative reduced cost. These schedules account for
therapist preferences for lead and support tasks. Therapists have different preference
costs for patients. Therefore, a SP is necessary for each distinct therapist. We use the
following notation to develop the generic SP eð Þ for therapist e 2 E. To ensure better
readability, we omit index e on all parameters and decision variables. We define a
generic SP formulation for all pricing problems. Since the problem is modeled as a
VRP, index 0 (n) defines the start (end) node of a given therapist e 2 E. We consider
different shift times and lunch breaks. Therefore V SP � V is the set of visits which
can be scheduled within the schedule of a therapist (if necessary, including a lunch
break visit). Lunch breaks are enforced in the individual schedules by giving break
visits a high negative penalty score in the individual SP, if required. Between any two
appointments i; j 2 V SP, we consider deterministic travel times Di;j (given in time
periods). Each appointment i has a time window. Parameter Bi is the start period of a
time window while Fi is the end period of a time window. Li is the deterministic

treatment duration. Parameter PLeadi PSupporti

� �
defines the preference cost to handle

lead (support) appointment i 2 M Hð Þ. As outlined earlier, a patient visit can be
beneficial, neutral, or detrimental for a therapist’s motivation. We model this for both
preference cost with a value of �1 for beneficial visits, 0 for neutral visits, and 1 for
detrimental visits. Using a negative value for desirable visits and a value of zero for a
visit which does not considerably affect a therapist’s motivation simplifies branching
significantly as shown in Rasmussen et al. (2012). Enabling management to prioritize
the two preference cost terms depending on the needs for leadership training and
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basic employee development as well as to include a possibility to better manage
personnel in case of absences, we introduce the two additional objective function
weights wLead and wSupport. Weight wLead defines the importance for lead preferences
while weight wSupport reflects the importance of support preferences. Binary decision
variable xi;j ¼ 1 if visit j is directly scheduled after visit i. Auxiliary binary decision
variable zLeadi ¼ 1 if a lead visit i 2 M is scheduled. The same is true for auxiliary

binary variable zSupporti : Finally, we use the decision variable ti for the start period of a
visit i 2 V SP.

min
X

i2M\V SP

wLeadPLeadi � vi
� �

zLeadi þ
X

i2H\V SP

wSupportPSupport
i � wi

� �
zSupporti � x

ð8bÞ
s.t.

X
j2V SP[ nf g

xi;j ¼ zLeadi ; 8i 2 M \ V SP ð9Þ

X
j2V SP[ nf g

xi;j ¼ zSupporti ; 8i 2 H \ V SP ð10Þ

X
j2V SP

xi;j � 1; 8i 2 V SP ð11Þ

X
j2V SP[ nf g

x0;j ¼ 1 ð12Þ

X
i2V SP[ 0f g

xi;n ¼ 1 ð13Þ

X
i2V SP[ 0f g

xi;k �
X

j2V SP[n
xk;j ¼ 0; 8k 2 V SP ð14Þ

Bi

X
j2V SP[ nf g

xi;j � ti8i 2 V SP [ 0f g ð15Þ

ti �Fi

X
j2V SP[ nf g

xi;j8i 2 V SP [ 0f g ð16Þ

B0 � t0 ð17Þ

tn �Fn ð18Þ

ti þ Li � 1þ Di;j

� �
xi;j � tj þ Fi 1� xi;j

� �
; 8i 2 V SP [ 0; j 2 V SP [ nf g ð19Þ
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zLeadi þ zSupportj � 1; 8 i; jð Þ 2 P ð20Þ

zLeadi 2 0; 1f g; 8i 2 M; zSupporti 2 0; 1f g; 8i 2 H; ti 2 N; 8i 2 VSP ð21Þ

Additional sets and indices

V SP Set of possible visits within a SP (with lunch break visit)

0 Source node

n Sink node

Parameters

Bi Begin time window for a visit i 2 V SP , i.e., earliest possible start of a visit

Fi End time window for a visit i 2 V SP, i.e., latest possible start of a visit

Di;j Travel time between visits i 2 V SP and j 2 V SP in periods

Li Duration in periods for visit i 2 V SP

PLeadi
Lead preference cost for visit i 2 M

PSupporti
Support preference cost for visit i 2 H

wLead Cost weight for lead preferences

wSupport Cost weight for support preferences

Dual RMP values

vi Dual value corresponding to constraints ð2Þ
wj Dual value corresponding to constraints ð3Þ
x Dual value corresponding to constraints ð4Þ
Decision variables

xi;j 1, if visit j 2 V SP is directly scheduled after visit i 2 V SP,

0, otherwise

zLeadi 1, if lead visit i 2 M is scheduled,

0, otherwise

zSupporti
1, support visit i 2 H is scheduled,

0, otherwise

ti Start period of a visit i 2 V

Objective function (8b) determines the generic reduced costs for a column in SPðeÞ
in subproblem notation. It is derived from (8a) Constraints (9) and (10) connect

auxiliary variables zLeadi or zSupporti with decision variable xi;j. If visit i is scheduled, i.

e., xi;j ¼ 1, then zLeadi ¼ 1 or zSupporti ¼ 1, respectively. Remember, lead visits i 2 M
and support visits i 2 H are part of two disjunct subsets. Constraints (11) ensure a
visit can at most be left once. Constraints (12) and (13) ensure that the tour starts in
node 0 and ends in node n. For any other node, constraints (14) guarantee flow
balance. Constraints (15) and (16) model the time windows for appointments. If
xi;j ¼ 1 (i.e., visit i takes place), then ti must be between Bi and Fi. Constraints (17)
and (18) enforce the shift start and end periods while constraints (19) consider the
feasible sequence of appointments within a schedule. If visit j directly follows visit i
xi;j ¼ 1
� �

, then the start period tj must be later then the finishing period of i (i.e.,

123

Rehabilitation therapy scheduling accounting



ti þ Li) plus the travel time Di;j between i and j. If visit j does not follow visit i
xi;j ¼ 0
� �

, then the corresponding constraint is not binding. Constraints (20) ensure a
therapist cannot handle a lead and a support visit in the same schedule. Including this
restriction reduces the number of generated columns. Note, synchronization is not
handled directly in the SPs which would forbid the joint assignment. Constraints (21)
define the domains of the decision variables.

The resulting problem is an elementary shortest path problem with time windows
(ESPPTW). We solve this ESPPTW by extending a label correcting algorithm by
Feillet et al. (2004) with a randomized greedy heuristic and adapt it to our problem
setting. The next section describes our branching scheme which handles the omitted
constraints (5) to (6) for synchronization and integrality and other building blocks of
our solution approach such as the tailored label correcting algorithm.

4.2 Building blocks of the solution approach

In this section, we describe the two branching schemes necessary to reach feasible
solutions. We describe how the SPs are solved using a randomized greedy heuristic
and a label correcting algorithm. Different visit clustering approaches are also
described in this section. These are used to reduce the set of possible visits for very
broadly qualified therapists to speed up solving the corresponding SP.

4.2.1 Branching to achieve synchronization

Infeasibility due to missed synchronization can only appear for partner visits
ði; jÞ 2 P. Partner visits ði; jÞ 2 P have the same start and end periods to their
respective time windows, i.e., Bi ¼ Bj and Fi ¼ Fj. Figure 1 shows an example
where six partial schedules (ke;s [ 0 in RMP) are shown which include one pair of
partner visits ði; jÞ 2 P. Since the start times of the two visits are not synchronized
due to six different start times, branching is necessary. Lead visit i (labeled with a
circle) is assigned to schedules 1, 3, and 5 while matching support visit j (labeled
with a square) takes place in schedules 2, 4, and 6. For simplicity, let the six
schedules represent schedules of six different therapists e 2 E. The time window is
given from the left to the right and each visit per schedule 1 to 6 is mapped to it. For
simplicity, we assume the time window starts at period 1 and ends at period 9 for the

Fig. 1 Start periods of partner visits within six different schedules
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lead/partner visits. It is not enough that the lead visit in Schedule 1 and the support
visit in Schedule 2 start at the same time period Ti ¼ Tj ¼ 2. Note, not all six
potential start periods are synchronized, i.e., the treatment start period is not the exact
same across all six schedules meaning there is no adherence to constraints (5).

We branch on time windows using the fact that Bi ¼ Bj and Fi ¼ Fj. Time
window branching was shown to be a good possibility for synchronization and
temporal dependencies in Dohn et al. (2009), Dohn et al. (2011), and Rasmussen
et al. (2012). Let si be the split period, where we split the original time window
Bi;Fi½ � into two distinct time windows Bi; si � 1½ � and si;Fi½ � at the midway point
between the earliest and the latest start time of two partner visits i; jð Þ 2 P for the two
branches. For partner visits i; jð Þ 2 P, we calculate the split time si as:

si ¼
min

e2E;s2Se ke;sj i0
Te;i;s; Te;j;s
� �þ max

e2E;s2Se ke;sj i0
Te;i;s; Te;j;s
� �

2
8 i; jð Þ 2 P:

For the given example, si ¼ dminð2,2Þþmaxð8,7Þ
2 e ¼ 5, time windows in the two

branches then become 1; 4½ � and 5; 8½ � for i; jð Þ 2 P.
Ranking the time window branching candidates, we use a similar approach as

Dohn et al. (2009). We define Se
i (S

e
j Þ as the subset of therapist schedules containing

a visit i ðjÞ from ði; jÞ 2 P, and we define G�
i as the sum of schedule variables

containing a partner visit i or j in ði; jÞ 2 P, where the respective visit is scheduled
before the split period.

G�
i ¼

X
e2E;s2Se

i [Se
j ke;sj i0_Te;i;s\si_Te;j;s\si

ke;s8 i; jð Þ 2 P

The branching candidate is chosen as the pairði; jÞ 2 P, where visits are spread
most evenly before and after the split period. We only include schedules where
solution values forke;s [ 0. Partner visits i; jð Þ 2 P cannot be scheduled in the same
schedule. Constraints (2) and (3) ensure

P
e2E;s2Se

i[Se
j ke;sj i0

ke;s ¼ 28 i; jð Þ 2 P which

results in the following formula for the branching candidate i; jð Þ�.

i; jð Þ�¼ argmin
i;jð Þ2P

G�
i

2
� 0:5

����
����

In the worst case, time windows must be split until only the treatment periods of a
visit fit, i.e., there is no potential slack in the time window anymore. When
determining a candidate, time windows of i; jð Þ 2 P are split for both partner visits
simultaneously.

After branching, modifications in the child nodes are necessary for the RMP and
all SPs. In the RMP, we delete all schedules that include i or j with starting periods
outside the modified time window. In SPs, potential start periods of the partner visits
are restricted to the modified time window of the corresponding child. It has been
shown in literature that time window branching is beneficial for achieving integrality
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enforced by constraints (6) and (7) (Gélinas et al. 1995). However, it is not sufficient.
Therefore, a second branching scheme is necessary.

4.2.2 Branching for integer feasibility

Several different integer branching schemes are known for achieving integrality. The
most common is to force that any visit can only be done by one therapist e. In one
branching node, a visit must be removed as possibility from the chosen candidate
therapist. In the second node, the visit is removed as possibility from all other
available therapists, accordingly, it can only be fulfilled by the candidate therapist or
not at all. We modify RMP and all SPs by removing/adding columns in RMP and
enforcing/forbidding visits in SPs. To achieve a balanced branching tree, we choose
the branching candidate that is the most fractional. Let Qe

i be the sum of schedules
where a therapist takes visit i 2 V .

Qe
i ¼

X
s2Se

i

ke;s8e 2 E; i 2 V

e; ið Þ�¼ argmin
e;ið Þ2E�V j0\Qe

i\1
Qe

i � 0:5
�� ��

We then formally define e; ið Þ� as the most fractional branching candidate. In our
implementation, we prefer to choose branching on time windows whenever possible.

4.2.3 Label correcting algorithm

Our pricing SP is an ESPPTW. To solve the problem, we adapt the algorithm by
Feillet et al. (2004). The algorithm finds the path from a source to a sink by extending
labels, i.e., resource information connected to partial paths to each considered node,
while abiding to resource constraints. Note, not all labels from the start node through
several nodes to the considered node must be extended since some partial paths are
pareto-dominated by other partial paths. Therefore, the algorithm can be solved to
optimality in pseudo polynomial time. For detailed information concerning the
algorithm and the dominance rules, we refer the reader to Feillet et al. (2004). Please
note, partner visits ði; jÞ 2 P must be scheduled at the same periods (see constraints
(20)), i.e., they cannot be in the same schedule of a therapist. Once one of the two
partner visits is part of a partial path, the partner visit is added to the vector of
unreachable nodes for the respective labels, i.e., it cannot be visited by the (partial)
path anymore.

In general, each therapist can be assigned to any visit. For realistically large
problem instances, this leads to large networks of potential visits and a lot of
processing time for the label correcting algorithm, which is a main bottleneck for our
implementation. To speed up solution times of the SP, we introduce a randomized
greedy heuristic. We use it before the label correcting algorithm.
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4.2.4 Randomized greedy heuristic

The randomized greedy heuristic finds additional columns fast compared to the
(exact) label correcting algorithm. The randomized heuristic tries to insert a visit
from a restricted candidate list into a therapist’s schedule at the earliest possible
position. Initially, the therapist’s schedule only consists of the therapists’ start and
end visits. The visit is randomly drawn from the restricted candidate list consisting of
several (unscheduled) visits with the most negative objective function contribution, i.

e., wLeadPLeadi � vi
� �

for lead visits i 2 M or wSupportPSupporti � wi

� �
for support visits

i 2 H . From the second iteration onwards, already scheduled visits move forward in
time after an insertion takes place. In other words, we schedule a candidate i at the
earliest possible period (i.e., start of time window or after the predecessor).
Additionally, we need to check feasibility (time windows of visits and the shift end
period of therapist e) for all successor visits (e.g., j and k in Fig. 2 when i is
scheduled at Position 1). If an insertion is not possible at the current position, we
move to the next possible position. If we reach the last position and candidate i
cannot be scheduled, then the visit is left unscheduled and is discarded from
consideration. After a successful insertion, we rebuild the restricted candidate list (i.
e., three visits with the most negative objective function contribution) and try to add
additional visits to the current schedule.

In Fig. 2, we give a visual example.
While building the schedule with candidates, we add all found columns with

negative reduced costs to the RMP. If a candidate could not be scheduled, or we
found a schedule without negative reduced costs, the process is restarted with the
initially empty schedule until SP eð Þ added several columns to the RMP or no
additional columns with negative reduced costs are found. A pseudo-code of the
algorithm can be seen in Appendix A.

To ensure optimality in each column generation iteration, the label correcting
algorithm must be run at least once for each SP, when the randomized greedy
heuristic does not find additional columns anymore. Solving the SP therefore remains
a bottleneck. To further speed up solving the SP, we apply visit clustering which was
introduced by Rasmussen et al. (2012).

Fig. 2 Insertion testing of randomized greedy heuristic
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4.2.5 Visit clustering and extension

Rasmussen et al. (2012) introduced visit clustering to restrict the number of visits in
the individual visit pools of a care worker. They divide the pool of possible visits
between the workers in a preprocessing step, i.e., the set of possible visits in V SP is
restricted to reduce the size of the individual ESPPTW in a SP. Please remember, V SP

is therapist specific. As a result, feasible solutions for larger and more complex
problem instances become retrievable. On the other hand, clustering renders the
algorithm heuristic. Therefore, for comparison, we implement different clustering
approaches for determining V SP.

Our problem includes comparable characteristics as Rasmussen et al. (2012),
namely preferences for patients and the possibility of missing visits by accounting for
their priority. For one of the approaches (PREF), we therefore follow ideas proposed
by the authors. In a good solution, it is likely that a therapist mostly treats patients
with high preference adherence. We therefore choose potential visits randomly from
the list of visits which are not part of a cluster yet. Therapists are then ordered in non-
increasing order according to preference adherence, i.e., therapists with a high
preference for the chosen visit are considered first. If the first therapist in the list did
not reach the desired cluster size yet and a potential partner visit is not in the cluster,
the visit is clustered to the therapist. Then the visit is removed from the list of
remaining visits to be clustered. Otherwise, the second therapist in the list is
considered. If all therapists have reached the desired cluster size and some visits are
not clustered yet, all remaining visits are added to all therapists equally. Using a
defined cluster size for adding visits to therapist visits according to preferences gives
several advantages from a managerial point of view. First, the scheduler has input on
how many visits should be in a cluster depending on the daily ratio between visits
and therapists. Second, preferences are usually not divided equally among all
therapists, i.e., while one therapist has many visits, other therapists might have only a
few visits which they truly prefer. Here, control over the cluster size might increase
fairness and workload balancing aspects.

The first clustering approach only focuses on preferences. However, patient
priority plays an important role for the problem setting. Omitting consideration of
priorities when clustering might lead to situations where many appointments with
high priority might be clustered to the same therapists due to high preferences. To
avoid this behavior, we introduce a second clustering approach (PRIO). We first sort
the available visits accounting for their priority in non-increasing order, i.e., we
consider the most important visits first. Support visits get the same priority as their
lead visit. For each considered visit, we order the therapists first according to the
number of visits already in their cluster and second according to non-increasing order
of preference adherence. We therefore treat the potential therapists in a round-robin
fashion where therapists with the biggest difference between already scheduled visits
and cluster size are considered first and ties are broken with preference adherence. If
a visit is clustered to a therapist, the visit cannot be clustered to a second therapist. A
visit cannot be clustered to a therapist if the partner visit is already in the cluster, or
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the therapist reached the desired cluster size. If all therapists reached the cluster size,
remaining visits are clustered to all therapists equally.

To compare the two problem specific clustering approaches, a third clustering
approach (RAND) schedules visits to therapists randomly (unless a partner visit is in
the cluster), without consideration of preferences or priorities. After all therapists
reached the cluster size, all remaining visits are added to all clusters equally.

After the root node is solved, some visits might not be scheduled, simply due to
the cluster they were assigned to not because it is optimal. To improve results,
Rasmussen et al. (2012) introduce the concept of cluster expansion. Once a visit is
missed, i.e.,

P
e2E

P
s2Se Ae;i;ske;s ¼ 0 for a visit in the RMP, the visit is added to all

therapists’ clusters. To get a predictable behavior in the branching, we apply cluster
extension only in the root node.

4.3 Implementation

Figure 3 shows the high-level architecture of the branch-and-price procedure. Before
running the algorithm, we first apply one of the introduced visit clustering
approaches to restrict the possible visits for each therapist. Clustering is therefore
utilized regardless of how the SP is solved (i.e., with algorithmic approaches or
commercial solver). We start the algorithm with an initial solution, where each
therapist e 2 E only visits their respective start visit 0 and end visit n. After we solve
the RMP, we first use a randomized greedy heuristic to find new schedules with

Fig. 3 High-level architecture of the branch-and-price algorithm
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negative reduced costs for the next RMP iteration. If the heuristic is unable to find
additional schedules for a therapist e, a label correcting algorithm is run to potentially
find more schedules for the therapist. Adding several columns to the RMP instead of
only the column with the most negative reduced cost, populates the column pool fast
and leads to shorter overall processing times (Tanoumand and Ünlüyurt 2021). If the
label correcting algorithm does not find additional schedules with negative reduced
costs for any of the therapists, we need to determine if the achieved solution of the
RMP in the root node is feasible regarding constraints (5) to (7). If that is the case, we
derive the (integer) solution. Otherwise, we branch on time windows or apply a 0=1
branching on combinations between a therapist and a visit. We prefer time window
branching to 0=1 branching if a suitable branching candidate exists. If nodes with
potentially better lower bounds exist, we continue branching. We branch until all
nodes are checked for better solutions or pruned.

5 Experimental study

The branch-and-price algorithm was built using Python 3.8, and experiments were
run on a virtual machine with an Intel Xeon Gold 5218 CPU @ 2.30 GHz processor
and 16 GB RAM. The restricted master problem and an implementation of the
subproblem as MILP model for comparison are solved with Gurobi 10.0 (Gurobi
Optimization 2022). In Sect. 5.1, we describe the data for the experiments.
Section 5.2 solves a small problem instance to optimality. Section 5.3 discusses the
performance of the label correcting algorithm and the additional benefits of the
randomized greedy heuristic compared to an implementation of the subproblem as
MILP in Gurobi. Section 5.4 shows the benefits of PRIO compared to PREF
clustering and RAND clustering. Finally, Sect. 5.5 discusses effects of different levels
of teaming requirements.

5.1 Data

For the experiments, we use input data from a German university hospital. Available
data includes the different shift types and working times of physical therapists. Some
therapists work part-time while other therapists work full-time and require a lunch
break. Therapists in the hospital work in four large teams according to different
wards and their treatment requirements. A team working in the neurology ward,
where synchronization is required, consists of up to ten physical therapists. Up to 100
daily patients might be treated. The university hospital is a maximum care provider.
To test the algorithm for different smaller care settings and situations, we vary the
number of available therapists and patients in several different instances. We have
access to the patient prioritization rules of the hospital. Additionally, we have access
to the different duration rules of potential treatments. Between five percent and 15
percent of patients need treatments with teaming requirements. We divide the day
into 5-min periods, where time period 1 equals the start time of the earliest time
window. Patient availability ranges from very short time windows in the morning,
before a patient is discharged, to time windows spanning the whole day, when no
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physician visits are planned. We assume for all instances that preference adherence
for lead and support visits is equally important. Therefore, we set
wLead ¼ wSupport ¼ 1. Usually, in a hospital setting, treating patients is seen as more
important than adhering to therapist preferences. Therefore, we set wMissed ¼ Vj j for
the different instances.

5.2 Optimal solution on exemplary data using the branch-and price approach

To further improve the understanding of the problem setting, we show input data and
results for a small example instance we solved to optimality using the branch-and-
price without clustering.

Table 2 shows the patient data, for the test instance with 30 patients and three
therapists. Time windows and treatment durations are given in periods. The first four
patients have the same time window and treatment durations. Given the three
therapists, only three of the four patients can be scheduled, with the first patient
remaining unscheduled due to the low priority. Three patients require teaming for
their treatment. All three therapists are available from period zero to period 99 with a
lunch break from period 54 to 59 which is modelled as a visit in VSP . Time windows
and treatment durations allow for all patients, but the first patient, to be scheduled.
Since patient priority is more important than preference adherence, all seven
remaining patients with a low priority must be scheduled in an optimal schedule. For
preference adherence, 3 Therapists � 33 Visits ¼ 99 Possibilities for scheduling are
generated randomly. Of these 99 possibilities, 35 combinations are beneficial, 35
combinations are neutral, and 29 combinations are detrimental.

Figure 4 shows the resulting optimal schedule for the three therapists T1, T2, and
T3 and time periods in steps of 5. Visits for patients 5, 13, and 23 are completely
synchronized, as required for all our instances. While no travel time is necessary for
some patients (e.g., patients 5 and 7), as they are situated in the same wardroom,
usually a travel time between one to three periods is necessary. Larger gaps than three
periods are due to time window restrictions or potential slack. No detrimental visit
must be scheduled for any of the therapists. Most visits are beneficial for therapist
satisfaction in their therapist schedule. However, nine visits are neutral for
satisfaction in the optimal result. Neither of the neutral visits has a therapist
available for whom the respective visits would be beneficial.

In the next section, we test and discuss the performance of the label correcting
algorithm and the randomized greedy heuristic compared to an implementation of the
SP as MILP.

5.3 Performance of the label correcting algorithm and the randomized
greedy heuristic

Experiments are performed with six different instances ranging from 50 patients and
five therapists up to 100 patients and ten therapists. All instances in this section
include teaming requirements for ten percent of the patients. For performance
comparisons, we solve the problems until we reach the lower bound in the root node.
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We set a runtime limit of two hours. To compare the label correcting algorithm and
the randomized greedy heuristic, we implemented the pricing problem as a MILP in
Gurobi and solved all individual SPs to optimality. PREF visit clustering, which is
known from literature, is used in this section. For all solution methods, i.e.,
implementation as a MILP, label correcting algorithm and label correcting algorithm
in combination with the randomized greedy heuristic, we set the cluster size to ten. A
cluster size of ten showed the best tradeoff between solution quality and runtime in
preliminary testing. Larger cluster sizes might lead to disjunct sets for some instances
while smaller cluster sizes lead to more visits which are added to all therapists, which
increases processing times again.

Table 3 shows the performance results for the different SP methods (M), i.e., the
MILP formulation (IP), using the label correcting algorithm (LA) alone, and using the
label correcting algorithm and the randomized greedy heuristic in combination (GR).
Ej j/ Tj j/ Vj j gives the number of therapists/patients/visits. SUM is the total runtime
until the root node is solved. TOT informs about the total runtime for collective SPs.
AVG, MIN, and MAX give the average per subproblem and iteration, minimum and
maximum times of the SPs. All processing times are given in seconds. The number of
column generation iterations, i.e., how often subproblems were used to generate new
columns, is given by ITER. COL(GR) shows how many columns were generated for
the different approaches. For the combination between randomized greedy heuristic
and label correcting algorithm, the number in brackets shows how many columns
were generated by the randomized greedy heuristic.

Time spent generating columns in all instances nearly equals the total processing
time, i.e., the RMP is not a bottleneck for the problem. The MILP formulation is
unable to reach the lower bound of the root node for the four largest instances. The
label correcting algorithm is faster than the MILP implementation. It reaches LB in
all tested instances. Combining the randomized greedy heuristic and the label
correcting algorithm improves processing times substantially. The label correcting
algorithm alone and in combination with the randomized greedy heuristic produce
significantly more columns, compared to the MILP (for instances where the MILP
reaches the lower bound). Usually, using the randomized greedy heuristic with the
label correcting algorithm leads to more SP iterations. For the combination of the two
algorithms, the randomized greedy heuristic generates the (vast) majority of columns
for all instances. The label correcting algorithm is mainly necessary to prove
optimality. This explains the difference in total processing times and the maximum
observed time for individual SPs. The label correcting algorithm requires the most

Fig. 4 Optimal schedule for the example instance
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time when many partial schedules which are not pareto-dominated must be extended.
The randomized greedy heuristic is most helpful for early pricing problems. For later
pricing problem runs, fewer possibilities for new schedules exist, reducing the
processing times for the label correcting algorithm. This can be seen by comparing
the maximum SP runtime for the label correcting algorithm alone and the
combination with the randomized greedy heuristic. MAX for LA exceeds MAX for
GR for most instances.

5.4 Comparison of clustering approaches

Next, we compare PREF visit clustering from literature with PRIO visit clustering
and RAND visit clustering. We assume teaming requirements for ten percent of the
patients and use a cluster size of ten. We use the best performing method to solve the
SP, i.e., randomized greedy heuristic followed by the label correcting algorithm. We
run the instances without time limits until the final solution is reached. Table 4 shows
the results. The second column shows the clustering method (M), The next three
columns show the objective function value (OBJ), the number of unscheduled visits
(US) and the total preference penalty (TP). The next six columns have similar names
as the headings in Table 3. The last three columns show the number of branched

Table 3 Performance comparisons between MILP, label correcting algorithm and randomized greedy
heuristic

Ej j/ Tj j/ Vj j M LB SUM TOT AVG MIN MAX ITER COL(GR)

5/50/55 IP 6789 33.04 32.93 0.47 0.02 9.11 14 65

LA 6789 4.44 4.40 0.40 0.33 0.51 11 380

GR 6789 3.69 3.61 0.24 0.09 0.46 15 595(558)

6/60/66 IP 4710 2188.01 2187.56 14.02 0.05 526.03 26 146

LA 4710 58.87 58.67 1.73 1.01 5.05 34 735

GR 4710 34.22 33.97 1.10 0.08 1.77 31 935(616)

7/70/77 IP – >7200 >7200 >7,200 >7200 >7200 – 0

LA 6258 697.18 696.83 31.67 9.51 74.96 22 1,289

GR 6258 505.74 505.30 16.30 0.17 91.57 31 1,500
(1118)

8/80/88 IP – >7200 >7200 – 12.41 >7200 – 0

LA 10,319 2263.97 2263.57 133.15 26.96 462.01 17 1164

GR 10,319 1204.23 1203.73 42.99 0.14 42.99 28 1235(961)

9/90/99 IP – >7200 >7200 – 48.96 >7200 – 0

LA 12,995 2559.25 2558.43 159.90 45.73 748.59 16 1308

GR 12,995 380.47 379.93 17.27 0.22 56.13 22 1673(1308)

10/100/
110

IP – >7200 >7200 51.83 0.06 2480.48 17 158

LA 19,833 531.48 531.03 24.14 14.98 136.29 22 1006

GR 19,833 436.14 435.45 10.62 0.17 21.50 41 1475(1176)
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nodes (BN), Nodes with time window branching (TW) and the depth of the final
solution in the branching tree (SD).

The randomized greedy heuristic provides most of the columns added to the RMP
for all three clustering methods. No pattern between the three clustering methods can
be detected comparing the number of generated columns, necessary GC iterations,
necessary branching nodes, solution depth and processing times for pricing problems
or total processing times. There is a general tendency that larger instances require
more processing time and more branching nodes for all three visit clustering
approaches. However, instance 10/100/110 requires less processing time for all three
tested clustering approaches than 9/90/99. This means necessary processing times is
not only dependent on the number of patients and therapists, but also on the pattern
of schedules in pricing problems. Combined with visit clustering, time window
branching (TW) is very effective. For most instances TW equals BN, i.e., only time
window branching was necessary to arrive at the optimal solution. Minor exceptions
can be seen for PREF in instance 5/50/55 and RAND in instance 6/60/66 where 0=1
branching is necessary once. A more significant exception is instance 9/90/99. Here
several 0=1 branches are necessary. Comparing solution quality of the three
clustering approaches, RAND is not suitable for preference adherence. For preference
penalty score TP, a negative value is better than a positive value. RAND is
outperformed substantially by PRIO and PREF. For the instance 6/60/66, RAND
provides a total preference score which equals a detrimental result for therapist
satisfaction. For preference adherence PREF outperforms PRIO. However, PRIO still
provides very good results for preference adherence. For the objective function value
OBJ and the number of unscheduled visits US, PRIO delivers consistently good
results and a low number of unscheduled visits. PREF and RAND show high
variation compared to the OBJ of PRIO. To summarize, PRIO is the most consistent
clustering approach for the combined objective of minimizing unscheduled visits
accounting for priority and minimizing preference adherence penalties. PREF might
be favored if preference adherence is the most important objective.

5.5 Effects of different levels of synchronization

In this section, effects of different realistic teaming requirement levels are examined.
We use PRIO visit clustering, as it showed the best results, considering both
objectives, in Sect. 5.4. In previous sections, teaming requirements for ten percent of
the patients were assumed. In this section results for the same instance sizes are
compared to teaming requirements of five percent and 15 percent. If the exact
percentage of the teaming requirement level is not integer, we round up to the next
integer value for the number of visits. SPs are solved with the randomized greedy
heuristic and the label correcting algorithm. No runtime limit was specified. Table 5
shows the results. Ej j/ Tj j/ Vj j/ S shows the number of therapists/patients/visits/
synchronization level. Other column headings are the same as for Table 4, except for
UT. UT shows the number of unscheduled appointments with teaming requirements.

For most tested instances, a higher teaming requirement level leads to a higher
total processing time SUM. Here, most time is spent in the pricing problems.
Exceptions are the instances with 60 patients, where five percent synchronization
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requires more time than ten percent synchronization and 90 patients where ten
percent synchronization requires more time than 15 percent synchronization. This
can be explained by schedule patterns, where the randomized greedy heuristic has
more difficulties to find additional columns and the label correcting algorithm
provides many columns. However, 15 percent synchronization for 80 patients shows
that even when few runs of the label correcting algorithm are necessary, processing
times can be extensive, if one individual SP has many non-dominated partial paths.
Higher levels of synchronization usually require more SP runs and leads to more
generated columns. It also leads to larger branching trees and an increase in depth in
the branching tree for the optimal solution. While time window branching remains
very effective, it is not enough to guarantee feasible solutions for most of the tested
instances with 15 percent synchronization. Here, integer branching is necessary.

For OBJ, slight increases with higher levels of teaming requirement can be
observed. It is possible that results with a higher level of synchronization are better
than results with lower levels of synchronization. This can be explained by the visit
clustering and more unclustered visits which are assigned to all therapists after each
therapist received ten cluster visits, i.e., more scheduling flexibility. An example is
the instance 5/50/53 with three support visits, i.e., five percent synchronization
compared to 5/50/55 with ten percent synchronization, i.e., five visits. The latter
instance yields the lower, i.e., the better objective function value. In the tested
instances, patients with teaming requirements are spread across all different treatment
priority classes. Lead and support visits represent all possible preference adherence
classes. UT shows that most patients with teaming requirements are scheduled for all
instances. The total number of unscheduled patients does also not change, with
increasing teaming requirements. There are differences for preference adherence. For
all instance sizes but two, a higher level of synchronization leads to better preference
adherence scores. For instances with 50 patients and with 100 patients, a higher level
of synchronization leads to a worse preference adherence score. However, here OBJ
is better with a higher synchronization level. Scheduling patients accounting for
priority is the main objective, minimizing preference adherence penalties is the
secondary objective. Therefore, a worse preference adherence score is not
unexpected for these two instances.

6 Summary and outlook

We describe the challenging workforce situation of physical therapy departments and
the resulting difficulties of treating patients accounting for their priority while
adhering to therapist satisfaction objectives. We derive a complex operational
planning problem that is not considered in the literature yet. We propose a VRPTW
with synchronization constraints which minimizes penalties for missing visits
accounting for their priority and minimizes preference scores for lead and support
tasks. In the model, it is impossible to enumerate all possible schedules for all
therapists. Therefore, we develop a branch-and-price approach where pricing
problems add promising schedules to an RMP. A randomized greedy heuristic is
developed to speed up processing times. Additionally, a visit clustering approach
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from literature is included and compared to a more problem specific priority-based
clustering approach and a random clustering. Experiments show the high effective-
ness of the randomized greedy heuristic for the processing time and the number of
generated columns. We also show that the more problem specific priority-based
clustering procedure outperforms the clustering known from literature and random
clustering. Analyzing different levels of teaming requirements, i.e., synchronization,
we show that clustering is very effective in reducing the number of necessary 0=1-
branches and we show clustering and the randomized greedy heuristic in the
subproblems remain effective even when more visits must be synchronized.

Based on this contribution, future research possibilities can be derived. We are the
first paper to focus on workforce shortages and therapist satisfaction in rehabilitation
therapy while including preferences for lead and support tasks. Similar problem
settings might be necessary in different industries and sectors where individual
employees, while generally on the same hierarchy level, might take responsibility for
a task while others handle support tasks. Examples are agile project management (e.
g., in software development) or task management (e.g., in police departments). In our
problem setting, we had access to deterministic treatment time information and fixed
treatment time windows. In future research, stochastic settings might be considered,
e.g., stochastic treatment times or uncertain patient availability time windows.
Another possibility to model preferences for lead or support tasks might be to assume
therapist-specific treatment times, e.g., depending on the experience of the lead
therapist. Further, different therapist qualifications, additional fairness aspects or
additional resources might be necessary in other problem settings. Finally, meta-
heuristics for larger problem sizes or improvements to parts of the branch-and-price
might be future research directions.
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Appendix Appendix A: Pseudocode for the randomized greedy heuristic
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Appendix B: Pseudocode for the clustering approaches
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