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TO THE EDITOR:
Follicular lymphoma (FL) and diffuse large B-cell lymphoma
(DLBCL) are the most common lymphomas, both exhibiting
features of germinal center-derived B-cells (gcBCs). DLBCL can
arise de novo or through transformation of a low-grade
lymphoma like FL. FL and DLBCL are heterogeneous with regard
to clinical outcome as well as morphologic, immunophenotypic,
genetic, transcriptomic and other biological aspects [1]. Besides
classic FL harboring the IGH::BCL2 translocation, several subtypes
with varying morphologic and genetic features exist [1]. Regarding
DLBCL, cell-of-origin (COO) gene expression signatures classify
them into germinal center B-cell-like (GCB) and activated B-cell-
like (ABC) subtypes [2]. Additionally, several groups have identified
clusters of DLBCL based on the mutational landscape and linked
to clinical outcome [3–8].
While DNA methylation (DNAme) has emerged as biomarker for

tumor classification, e.g. in brain tumors or sarcomas [9, 10], its use for
the subtyping of gcBC lymphomas, including FL and DLBCL, is still
lagging behind. Therefore, we performed BeadChip array-based
DNAme analysis on DNA extracted from 177 molecularly well-
characterized cases of gcBC lymphomas included in the ICGC MMML-
Seq consortium. These comprised cryo-preserved tumor cell-rich tissues
of 85 FL, 75 DLBCL, and 17 FL-DLBCL (Supplementary Table S1), as
presented by Hübschmann and colleagues [8]. In standard clustering
and dimension-reduction analyses of the 10,000 most variable CpGs of
this dataset, FL and DLBCL appear as a continuum or cloud of cases,

mostly organized by the amount of DNAme of the investigated CpGs
(Supplementary Fig. S1). To nevertheless identify potential subgroups of
these lymphomas, we applied the Phenotype-GenotypeMany-to-Many
Relations Analysis (PGMRA) algorithm to the data [11]. The PGMRA
algorithm is an unsupervised machine learning method that employs a
fuzzy non-negative matrix factorization method to identify significant
biclusters of features (e.g. CpG loci) and cases. For this approach, we first
selected the 10,000 most variable CpGs based on standard deviation
and applied k-means clustering to organize them into 1000 clusters. By
selecting representative CpGs from each cluster, we reduced the CpG
set to 1938 CpGs. These CpGs were then analyzed using PGMRA to
identify significant biclusters, i.e. clusters of both CpGs and lymphoma
samples (Supplementary methods). PGMRA identified 300 significant
CpGs across 119 significant samples. We applied k-means clustering to
organize the 300 CpGs and 177 samples (Fig. 1A). This analysis revealed
four CpG modules (M1: 68 CpGs, M2: 50 CpGs, M3: 94 CpGs, M4: 88
CpGs, Supplementary Table S2), which organized the lymphomas into
seven distinct methylation patterns (MP1-MP7, Supplementary Fig. S2).
By correlating the methylation patterns (MPs) with the recently

published epidemiologic, histopathologic, transcriptomic and genetic
aberration characteristics of these lymphomas [8], we unraveled
strong, though non-perfect, association with the histopathologic
diagnoses, with two MPs mainly containing FL, four MPs mostly
containing DLBCL, leaving one intermediate MP (Fig. 1B).
In particular, MP1 and MP2 are predominantly composed of FL

cases (MP1: 37/41 [90%]; MP2: 24/36 [67%]), with MP2 showing a
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higher age at diagnosis compared to MP1 (median [range] age:
MP2: 70 [44–78] years vs. MP1: 60 [33–80] years; p= 0.047)
(Fig. 1C). Additionally, MP2 displays a higher proliferation history,
calculated using the mitotic clock epiCMIT [12], compared to MP1
(median [range]: MP2: 0.7 [0.6–0.9] vs. MP1: 0.6 [0.4–0.7]; p < 0.001)
and a higher mutational load of single nucleotide variants (median

[range]: MP2: 8439 [4512–31,343] vs. MP1: 4658 [1335–12,417];
p < 0.001) (Supplementary Fig. S3). Both MP1 and MP2 exhibit a
high frequency of cases with BCL2 rearrangement (MP1: 36/41
[88%]; MP2: 36/36 [100%]) and GCB subtype (MP1: 32/41 [78%];
MP2: 28/36 [78%]), in line with the enrichment of FL. Intriguingly,
while our DNAme analysis revealed distinct patterns related with
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clinical characteristics for MP1 and MP2, these differences were
not reflected in the RNA expression profiles. MP3 comprises a
mixture of FL (13/22 [59%]), DLBCL (8/22 [36%]) and FL-DLBCL (1/
22 [5%]) cases. It is characterized by fewer cases with BCL2
rearrangement (11/22 [50%]) compared to MP1 and MP2
(p < 0.001), while similarly showing a predominance of the GCB
subtype (17/22 [77%]).
The remaining MPs, i.e. MP4-7, consist in the majority of DLBCL

cases (MP4: 20/28 [71%]; MP5: 17/26 [65%]; MP6: 10/11 [91%],
MP7: 11/13 [85%]). Among these, MP4 and MP5 mainly contain
cases of GCB subtype (MP4: 21/28 [82%]; MP5: 16/26 [62%]), while
MP6 and MP7 are associated with the ABC subtype (MP6: 10/11
[91%]; MP7: 7/13 [54%]) (Supplementary Table S3). Using the
mutational clusters identified by Hübschmann et al. for the whole
set of cases as well as for the DLBCL subset [8], we found that MP4
exhibits the highest proportion of cases belonging to the PIM1-like
mutational cluster derived from clustering of the entire dataset
(OR= 6.1, p= 0.001). Furthermore, MP6 shows an enrichment of
cases of the mutational cluster containing MYD88 and/or CD79B
mutation as hallmark (entire dataset: OR= 26.0, p < 0.001), thus
reflecting the so-called C5/MCD cluster [3, 4]. This is in line with
the ABC subtype enrichment (OR= 78.6, p < 0.001) and absence of
BCL2 rearrangements (0/11 [0%]) in MP6. While nodal involvement
was higher in MP1 (p= 0.014) likely due to the enrichment of FL
cases, we observed no significant differences between the MPs in
clinical parameters like stage or International Prognostic Index,
given the low power of the analyses relying on small sample sizes
(Supplementary Fig. S4).
To elucidate whether the DNAme clustering might be driven by

tumor or bystander cells, we evaluated the tumor cell content
(TCC) using whole genome sequencing data and several DNAme-
based purity parameters (Supplementary Fig. S5). The lowest
median TCC was detected in MP3 (30%) and MP4 (40%).
Remarkably, MP4 and MP5 exhibit similarities in the DNAme for
the CpG modules M1–M3, besides these CpGs are less methylated
in MP4 as compared to MP5 cases (median [range] beta-value for
M1-3: MP4: 0.41 [0.09–0.51] vs. MP5: 0.61 [0.50–0.85]; p < 0.001)
(Supplementary Fig. S6). This lower DNAme, coupled with a
significantly lower proliferation history (p < 0.001), B-cell presence
(p < 0.001), and TCC (p < 0.001) as compared to MP5, correlates
with a higher predicted proportion of bystander cells within MP4
cases (CD4+ T-cells p < 0.001).
We next conducted a Uniform Manifold Approximation and

Projection (UMAP) analysis based on the 300 CpGs (Fig. 2,
Supplementary Fig. S7). Notably, UMAP1 (x-axis) stratifies samples
according to their histopathologic diagnoses while UMAP2 (y-axis)
correlates with the median DNAme levels. Furthermore, although
a continuum is still present within this sample distribution,
discernible clustering tendencies emerge, which expectedly align
well with the seven MPs previously identified through k-means
clustering.
To elucidate how the 300 CpGs perform on other common

mature B-cell lymphomas derived from gcBCs, we included into
the UMAP additional array-based DNAme data from cryo-

preserved tissues of 31 sporadic EBV-negative Burkitt lymphomas
(BL), 7 high-grade B-cell lymphomas with 11q aberration (HGBCL-
11q) and 7 nodal marginal zone lymphomas (nMZL) from the
MMML cohorts (Supplementary Fig. S8) [13–15]. BL segregated
clearly apart as separate cluster from DLBCL, FL and also HGBCL-
11q, suggesting that the selected CpGs might also be able to
differentiate BL and HGBCL-11q. Notably, nMZL cases showed
heterogeneous methylation profiles and, thus, clustered into the
areas of several MPs, probably due to lower TCC or diverse
biological backgrounds. To validate our findings, we analyzed
publicly available datasets of DLBCLs (n= 69) and primary central
nervous system lymphomas (PCNSLs; Carlund et al.: n= 8, Vogt
et al.: n= 26) [16, 17]. DLBCLs were mainly distributed across MP4-
6 similarly to the DLBCL of the ICGC MMML-Seq cohort. In
contrast, the PCNSLs known to mostly belong to the MCD/C5
group, predominantly clustered with cases in MP7 (33/34 [97%])
enriched for DLBCL of the MYD88 subgroup within the ICGC
MMML-Seq cohort (Supplementary Fig. S9). By displaying the CpG
modules to non-malignant (pre-)B-cell subpopulations, we found
that the DNAme levels of these 300 CpGs are remarkably uniform,
with low DNAme in M1-3 (median [range] beta-value: M1: 0.05
[0.03–0.22]; M2: 0.05 [0.03–0.18]; M3: 0.06 [0.03–0.29]) and mostly
high DNAme in M4 (median [range] beta-value: 0.86 [0.69–0.91])
(Supplementary Fig. S10).
Finally, we aimed at investigating the 300 CpGs in more detail

though they were not selected for biologic function (Supplemen-
tary Fig. S11). Modules M1-3, showing varying DNAme levels
across the seven MPs, are significantly enriched within CpG islands
(M1–3: p < 0.001), in poised promoter regions defined in gcBCs
(M2-3: p < 0.001), and in bivalent transcription start sites defined in
a human embryonic stem cell line (M2-3: p < 0.001). They belong
predominantly to module 20 (M1: 75%; M2: 100%, M3: 83%) of the
dynamically methylated CpGs during B-cell development
described by Kulis et al. [18] (Supplementary Table S5). The
increase in DNAme levels particularly in M3 in part correlates with
the number of cell cycles the tumor cells had experienced within
the germinal center (Supplementary Fig. S12). Conversely, CpGs in
M4 are located in enhancer, transcription, and heterochromatic
regions, not linked to CpG islands. Despite their predominately
high methylation (median [range] beta-value: 0.66 [0.24–0.88]) in
M4 they contribute to the MP structure and, thus, potentially hold
significant value as biomarkers for diagnostic and prognostic
applications in lymphoid malignancies.
DNAme-based classification of several solid tumor types has

entered clinical practice and DNAme studies of predominately
leukemic haematologic neoplasms including B- and T-cell leukemias
have shown clear subgroups based on the lineages and maturation
stages of the tumor cells [18]. Despite this progress, DNAme-based
grouping of the most commonmature B-cell lymphomas, i.e. FL and
DLBCL, has been challenging and mostly revealed an amorphic
crowd of cases with a continuum of DNAme levels (Supplementary
Fig. S1). Here, the use of unsupervised fuzzy non-negative matrix
factorization methods, identified 300 CpGs in DNA from cryo-
preserved FL and DLBCL that categorize these lymphomas into

Fig. 1 DNA methylation profiling and characterization of germinal center-derived B-cell lymphomas. Using PGMRA on DNA methylation
array data from germinal center-derived B-cell lymphomas (FL, DLBCL, FL-DLBCL), we identified 300 CpGs, which were subsequently
organized into four modules (M1-M4) and seven methylation patterns (MPs) through k-means clustering. A Heatmap depicting DNA
methylation levels of the 300 CpGs differentiating seven MPs (MP1-7). Sample features are annotated at the top of the heatmap. The mutation
clusters were calculated for the entire dataset and DLBCL cases separately as described by Hübschmann et al. [8]. The TCC was calculated
based on WGS data. Rows represent individual CpGs, and columns represent samples. CpG sites and samples are organized according to the
k-mean clustering. B Radar plots illustrate the key defining features of each MP, including lymphoma classification, patient age, cell-of-origin
(COO), BCL2 or BCL6 rearrangements, and mutational clusters identified by Hübschmann et al. C Boxplots display the distribution of biological
age, Horvath’s epigenetic age, Ki-67 expression, and proliferation history (based on the epiCMIT package) across MPs. For statistical testing a
pairwise Wilcoxon rank sum test with Bonferroni correction was applied (see Supplementary Tables S3 and S4). FL Follicular lymphoma, DLBCL
Diffuse large B-cell lymphoma, ABC activated B-cell-like, GCB germinal center B-cell-like, TCC tumor cell content, WGS whole genome
sequencing, r rearranged, n. a. not applicable.
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subgroups. These subgroups correlate with known mutational
groups but also reflect biological features like age at diagnosis and
proliferation history. Thus, they provide subgrouping information
orthogonal to current systems using morphology, transcriptomics,
or genetic alterations. Though not designed for this aim, we show
that the selected CpG modules and DNAme profiles also have the
potential to differentiate other gcBC lymphomas, like BL, as well as
non-malignant (pre-)B-cell populations. Both the underlying PGMRA
approach as well as the presented set of CpGs, if validated in
independent cohorts, might in the future contribute to the
application of DNAme biomarkers in common lymphomas similar
to other tumor entities.

DATA AVAILABILITY
DNA methylome data produced in this study are available at GEO under accession
number GSE276853.

REFERENCES
1. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IB de O, Berti E,

et al. The 5th edition of the World Health Organization Classification of Hae-
matolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–48.

2. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct
types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature. 2000;403:503–11.

3. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al.
Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med.
2018;378:1396–407.

4. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular
subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic
mechanisms and outcomes. Nat Med. 2018;24:679–90.

5. Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, et al. A
Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell
Lymphoma with Therapeutic Implications. Cancer Cell. 2020;37:551–568.e14.

6. Lacy SE, Barrans SL, Beer PA, Painter D, Smith AG, Roman E, et al. Targeted
sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological
Malignancy Research Network report. Blood. 2020;135:1759–71.

7. Runge HFP, Lacy S, Barrans S, Beer PA, Painter D, Smith A, et al. Application of the
LymphGen classification tool to 928 clinically and genetically‐characterised cases
of diffuse large B cell lymphoma (DLBCL). Br J Haematol. 2021;192:216–20.

8. Hübschmann D, Kleinheinz K, Wagener R, Bernhart SH, López C, Toprak UH, et al.
Mutational mechanisms shaping the coding and noncoding genome of germinal
center derived B-cell lymphomas. Leukemia. 2021;35:2002–16.

9. Rodriguez FJ. The WHO classification of tumors of the central nervous system-
finally here, and welcome! Brain Pathol. 2022;32:e13077.

10. Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, et al. Sarcoma
classification by DNA methylation profiling. Nat Commun. 2021;12:498.

11. Arnedo J, Del Val C, De Erausquin GA, Romero-Zaliz R, Svrakic D, Cloninger CR,
et al. PGMRA: a web server for (phenotype x genotype) many-to-many relation
analysis in GWAS. Nucleic Acids Res. 2013;41:W142–9.

12. Duran-Ferrer M, Clot G, Nadeu F, Beekman R, Baumann T, Nordlund J, et al. The
proliferative history shapes the DNA methylome of B-cell tumors and predicts
clinical outcome. Nat Cancer. 2020;1:1066–81.

Median DNA methylation

-2

0

2

-2 -1 0 1 2
UMAP1

U
M

AP
2

Classification

-2

0

2

-2 -1 0 1 2
UMAP1

U
M

AP
2 DLBCL

FL
FL-DLBCL

0.2

0.4

0.6

0.8

Methylation pattern

-2

0

2

-2 -1 0 1 2
UMAP1

U
M

AP
2

MP1
MP2
MP3
MP4
MP5
MP6
MP7

Tumor cell content 

-2

0

2

-2 -1 0 1 2
UMAP1

U
M

AP
2

0.2

0.4

0.6

0.8

Fig. 2 UMAP analysis of the 300 CpGs in germinal center-derived B-cell lymphomas. UMAP analysis based on 300 CpGs identified by
PGMRA, using Manhattan distance and 15 neighbors. The UMAP plots are colored according to various features: lymphoma classification,
median DNA methylation levels, methylation patterns (MPs) and tumor cell content based on whole genome sequencing. FL Follicular
lymphoma, DLBCL Diffuse large B-cell lymphoma.

S. Glaser et al.

4

Leukemia



13. López C, Kleinheinz K, Aukema SM, Rohde M, Bernhart SH, Hübschmann D, et al.
Genomic and transcriptomic changes complement each other in the patho-
genesis of sporadic Burkitt lymphoma. Nat Commun. 2019;10:1459.

14. Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA, Bergmann AK, et al.
DNA methylome analysis in Burkitt and follicular lymphomas identifies differ-
entially methylated regions linked to somatic mutation and transcriptional con-
trol. Nat Genet. 2015;47:1316–25.

15. Loeffler-Wirth H, Kreuz M, Schmidt M, Ott G, Siebert R, Binder H. Classifying
Germinal Center Derived Lymphomas—Navigate a Complex Transcriptional
Landscape. Cancers. 2022;14:3434.

16. Carlund O, Thörn E, Osterman P, Fors M, Dernstedt A, Forsell MNE, et al. Semi-
methylation is a feature of diffuse large B-cell lymphoma, and subgroups with
poor prognosis are characterized by global hypomethylation and short telomere
length. Clin Epigenet. 2024;16:68.

17. Vogt J, Wagener R, Montesinos-Rongen M, Ammerpohl O, Paulus W, Deckert M,
et al. Array-based profiling of the lymphoma cell DNA methylome does not
unequivocally distinguish primary lymphomas of the central nervous system
from non-CNS diffuse large B-cell lymphomas. Genes Chromosomes Cancer.
2019;58:66–9.

18. Kulis M, Merkel A, Heath S, Queirós AC, Schuyler RP, Castellano G, et al. Whole-
genome fingerprint of the DNA methylome during human B cell differentiation.
Nat Genet. 2015;47:746–56.

ACKNOWLEDGEMENTS
This study has been supported by grants of the German Research Foundation (DFG)
in the framework of the Collaborative Research Centre SFB 1074 (B9) and the German
Ministry of Science and Education (BMBF) in the framework of the ICGC MMML-Seq
project (01KU1002A-J), the MMML-MYC-SYS project (036166B) and the project ICGC
DE-MINING (01KU1505E). CVM was supported by the Spanish Ministry of Science and
Technology project RTI2018-098983-B-100. The authors thank the members of the
tumor genetic and epigenetic laboratories of the Institutes of Human Genetics in Kiel
and Ulm, particularly Lorena Valles, Ute Jacobsen and Jana Gutwein, for technical
assistance with the array analyses.

AUTHOR CONTRIBUTIONS
AR, GO, LT, SS, BB and WK provided tumor samples and clinical data. MH, MS and WK
stained and reviewed cryomaterial, prepared and performed quality control. WK and
MH coordinated extraction of analytes. AR, GO, MH and WK performed pathology
review. RK provided normal B-cell samples. OA, PL, CV and RS designed and
coordinated the DNA methylation study. CL, RW, OA and JK, collected and
interpreted experimental data. SG, AF, MK, MR, DH, MS, HK, JMM, IZ and CV
performed bioinformatic analyses and provided results of bioinformatic analyses. OA,
BR and PL coordinated WP7 of the ICGC MMML-Seq project conducting the DNA
methylation analyses. SG and CV performed PGMRA analyses. SG, AF, CV, OA and RS
interpreted data and wrote the manuscript. All authors read and approved the final
manuscript.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL
The MMML and ICGC MMML-Seq studies have been approved by the Institutional
Review Board of the Medical Faculties of the University of Kiel (403/05 and A150/10),
Ulm (349/11 for ICGC MMML-Seq) and of the recruiting centers. Informed consent
from the patients or their legal guardians was obtained in accordance with the
respective regulations of the institutional review boards. All methods were performed
in accordance with the relevant guidelines and regulations.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41375-025-02533-6.

Correspondence and requests for materials should be addressed to Reiner Siebert.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

S. Glaser et al.

5

Leukemia

https://doi.org/10.1038/s41375-025-02533-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Subgrouping germinal center-derived B-cell lymphomas based on machine learning-deduced DNA methylation modules
	To the Editor:
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Ethics approval
	ADDITIONAL INFORMATION




