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Abstract

Urban Green Spaces (UGS) significantly affect human well-being in growing cities, with
even the sight of greenery enhancing mental productivity and reducing stress-related
health issues. Research suggests that the impact of green spaces varies by type. However,
existing UGS classifications often overlook small and heterogeneous UGS types due to
limited understanding of them, which leads to a substantial portion of urban greenery
being missed.
This thesis addresses gaps in UGS typologies by establishing a comprehensive list of UGS
types present in southern German cities, which we incorporate into a UGS ontology. This
ontology includes seven main UGS types- forest, park, grassland, cemetery, urban agri-
culture, green corridor, and amenity- divided into 28 sub-types. Unlike typologies, our
ontology is extendable and machine-interpretable through its formalization. To support
ontology-based UGS mapping, we further propose a UGS feature properties schema that
is enriched with green space type-relevant semantic information.
We conduct a novel knowledge-based mapping approach that extracts semantic informa-
tion relevant to UGS types using official definitions and legal documentation. By com-
bining GIScience tools with machine learning techniques, we create spatial datasets for
each semantic feature and perform semantics-based identification. Our findings include
detailed semantic characteristics for four UGS types and suggest that while some charac-
teristics effectively map specific green spaces, others require adjustments to enhance their
specificity and geographic applicability. By further using Random Forest (RF) classifi-
cation with Sentinel-2 data and digital orthophotos (DOP), we assess the distribution of
urban green in Augsburg and Wuerzburg, achieving over 90% accuracy. Sentinel-2 with
RF can accurately detect large, homogeneous green areas such as forests. In contrast, for
more precise delineation of green areas, including individual tree crowns, DOP is a better
data choice.
This thesis advances the UGS domain, offering a robust knowledge-based mapping tool
for urban planners and decision makers. We, also identify areas for future research such as
refining the ontology’s feature parameters and extensively testing the developed spatial-
semantic features across different regions to confirm their effectiveness. This can enhance
the ontology’s utility in urban planning, and help to establish new semantic features of
UGSs that better reflect their dynamic nature.
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Zusammenfassung

Städtische Grünflächen (Urban Green Spaces - UGSs) beeinflussen das menschliche
Wohlbefinden in wachsenden Städten erheblich, wobei bereits der Anblick von Grün
die mentale Produktivität steigern und stressbedingte Gesundheitsprobleme reduzieren
kann. Die Forschung legt nahe, dass die Wirkung von Grünflächen je nach Typ variiert.
Bestehende Klassifikationen von UGSs übersehen jedoch häufig kleine und heterogene
Grünflächen-Typen aufgrund unseres begrenzten Verständnisses dieser, was dazu führt,
dass ein erheblicher Teil städtischer Grünflächen unberücksichtigt bleibt.
Diese Dissertation adressiert Lücken in den UGS-Typologien, indem sie eine umfassende
Liste von UGS-Typen erstellt, die in süddeutschen Städten vorhanden sind, und diese
in eine UGS-Ontologie integriert. Diese Ontologie umfasst sieben Haupttypen von UGS-
Wald, Park, Grasland, Friedhof, städtische Landwirtschaft, Grünkorridor und Gemeinbe-
darfsnutzung - unterteilt in 28 Unterarten. Im Gegensatz zu Typologien ist eine Ontologie
erweiterbar und maschineninterpretierbar durch ihre Formalisierung. Zur Unterstützung
der auf Ontologie basierenden Grünflächen-Kartierung schlagen wir darüber hinaus ein
Schema von Merkmalseigenschaften vor, das mit typenspezifischen Informationen angere-
ichert ist.
Wir setzen einen innovativen, wissensbasierten Kartierungsansatz ein, der semantische
Informationen extrahiert, die für die UGS-Typen relevant sind. Dafür verwenden wir of-
fizielle Definitionen und rechtliche Dokumentationen. Durch die Kombination von Geoin-
formatikwerkzeugen mit maschinellen Lernverfahren erstellen wir räumliche Datensätze
für jedes semantische Merkmal und nutzen eine semantikbasierte Identifikation. Unsere
Ergebnisse umfassen detaillierte semantische Merkmale für vier UGS-Typen und deuten
darauf hin, dass einige Merkmale Grünflächen effektiv kartieren, während andere Anpas-
sungen benötigen, um ihre Spezifität und geografische Anwendbarkeit zu erhöhen. Durch
den weiteren Einsatz einer Random-Forest-Klassifikation (RF) mit Sentinel-2-Daten und
digitalen Orthophotos bewerten wir die Verteilung der Grünflächen in Augsburg und
Würzburg und erreichen eine Genauigkeit von über 90%. Sentinel-2 mit RF kann große,
homogene Grünflächen wie Wälder genau identifizieren. Im Gegensatz dazu sind digitale
Orthophotos die bessere Datenbasis für eine präzisere Abgrenzung von Grünflächen, ein-
schließlich einzelner Baumkronen.
Diese Dissertation leistet einen Beitrag in der UGS-Forschung, indem sie Stadtplanern
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Zusammenfassung v

und Entscheidungsträgern ein robustes, wissensbasiertes Kartierungswerkzeug bietet. Wir
identifizieren jedoch auch Bereiche für zukünftige Forschung, wie die Verfeinerung der
Merkmalsparameter der Ontologie und umfangreiche Tests der entwickelten räumlich-
semantischen Merkmale in verschiedenen Regionen, um deren Wirksamkeit zu bestäti-
gen. Dies kann die Nützlichkeit der Ontologie in der Stadtplanung erhöhen, indem neue
semantische Merkmale integriert werden, die die dynamische Natur der UGS besser wider-
spiegeln.
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Chapter 1

On the Importance of Urban Green

Spaces

"Who would want to live in a city made of only concrete?" asks the citizens’ initiative
"Preserve Green Spaces" in Munich1. Meanwhile, the intercultural garden "grow up" in
Augsburg celebrates "our garden stays!"2, as they manage not to fall victim for a re-
planning initiative of the Reese park. Today, over half of the world’s population lives in
urban areas3, even though these areas make up just 2% of the Earth’s land surface [125].
Therefore, facilitating sustainable living conditions for every single human being is more
important than ever before.
UGSs have long been known for their exceptional effect on human well-being. Studies
show, that as little as looking out of a window and seeing green can already enhance
mental productivity and reduce stress-induced adverse health effects [77]. Furthermore,
it is also known, that different types of UGSs can have different well-being effects. For
instance, parks and recreational areas play a significant role in enhancing physical health
as they offer spaces for activities such as walking and jogging, which are instrumental in
reducing obesity and other health problems [73]. Whereas, allotment gardens are asso-
ciated with higher perceived subjective happiness [105]. Gardeners that are involved in
gardening and production activities are also shown to have higher self-esteem and expe-
rience less depression and fatigue [148]. Moreover, community gardens provide excellent
opportunity for social interaction and community engagement, thus facilitation strong
community bonds [73].
However, not only availability but also accessibility appears to have an effect on human

1https://www.gruenflaechen-erhalten.de/ (accessed on 01.2025)
2https://www.growup-augsburg.de/ (accessed on 01.2025)
3https://www.un.org/en/development/desa/population/publications/pdf/urbanization/

WUP2011_Report.pdf (accessed on 01.2025)
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well-being. As such, in the existing literature, proximity and access to UGSs is associ-
ated with higher life satisfaction and perceived quality of life as well as lower anxiety and
depression [56][73]. Inequalities in distribution of UGSs become especially evident in the
times of crisis. For instance, during the COVID-19 pandemics, public UGSs were seen as
"safe haven", where people could relax in fresh air without the fear of getting infected.
This was particularly true for residents who did not own green space, e.g. garden [117].
Further, a study by Korpilo et al. [85] illustrated that during the pandemic, residents
were more likely to visit UGSs close to their homes, and showed a preference for less
crowded natural areas over crowded parks and recreational spaces. In addition, there was
observed a noticeable shift towards exploring new types of UGSs such as agricultural land
and areas with high tree density. Thus, once again, highlighting importance of not only
the quantity but also variety, quality, and accessibility of UGSs.
In order to be able to support the full range of well-being services that UGSs provide,
and to be be able to benefit from these services, it is important to know what type of
UGSs exist, where they are located and who has the access to them. But how much green
space does one person require in order to benefit from its service? Values might differ
by countries. World Health Organization4 sets 9 m2 of green space per capita within 15
minutes of walking distance as a minimum required threshold. In the context of Germany,
for instance, Taubenböck et al. [135] reveal, that green space distribution across german
cities varies immensely. However, even cities with the least amount of green, provide more
green space than the minimum suggested amount by the World Health Organization.
While availability of UGS might be important, only their accessibility by a general public
will determine their service provisioning. Research shows that there are still inequalities
in the access of UGSs by ethnicity, sex, and age. As such, in many European cities,
immigrant communities frequently face restricted access to UGSs when compared to non-
immigrant populations. This lack of access can result in unequal health advantages and
a diminished overall well-being within these communities [30]. Furthermore, children and
elderly are shown to be the groups with the highest demand of UGSs, due to increased
screen time and disconnection from nature for former, and improved longevity and general
health for the latter one [76].
Importance and necessity of UGSs are also mirrored within the Sustainable Development
Goals of the United Nations. The goal 11.7 is particularly dedicated to UGSs, and en-
courages to provide "universal access to safe, inclusive and accessible, green and public
spaces, in particular for women and children, older persons and persons with disabili-
ties" by 20305. Therefore, acknowledging human well-being effects of various types of
UGSs can directly influence urban planning initiatives. In this regard, understanding
what types of green cities store, where they are located, and whether they are capable

4https://www.who.int/docs/default-source/environment-climate-change-and-health/
sustainable-development-indicator-cities.pdf?sfvrsn=c005156b_2 (accessed on 01.2025)

5https://www.un.org/en/development/desa/population/migration/generalassembly/docs/
globalcompact/A_RES_70_1_E.pdf (accessed on 01.2025)

https://www.who.int/docs/default-source/environment-climate-change-and-health/sustainable-development-indicator-cities.pdf?sfvrsn=c005156b_2
https://www.who.int/docs/default-source/environment-climate-change-and-health/sustainable-development-indicator-cities.pdf?sfvrsn=c005156b_2
https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
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to provide expected services (e.g. due to size or spatial configuration) should be part for
every sustainable urban planning activity.

1.1 Problem Statement

Currently, there is no universal agreement of what types of UGSs exist. This makes
development of a common classification framework essential. This is especially vital from
the human well-being perspective. Furthermore, methods for UGS identification can vary
based on the green space type of interest. Disparity between UGS types can clearly be
seen in the existing literature, particularly in common Land Use and Land Cover maps.
As such, majority of studies, either consider overall green without particularly defining
types of green like in Taubenböck et al. [135], or consider only open, public, and large
green areas [127]. It is a common practice, that the overall scope of studies will define
which types of green spaces will be taken into account. For instance, if focus is laid
on hedonic house price estimation [15], selected UGS types will be different than if a
conducted study is more interested in green infrastructure [74].
It is evident, that the choices we make when selecting information to represent on maps,
will ultimately affect the stories we tell [100]. And this is particularly obvious in UGS
maps. In order to understand how much green a city accommodates, where, and what
type of green is there, one would commonly reach to Land Use and Land Cover (LULC)
maps. However, these maps might not always represent the reality at a greater detail,
or be purely only land use or only land cover maps [5]. In order to showcase limitations
of existing LULC datasets in representing UGSs, we further will compare several LULC
datasets in two sample cities, namely Augsburg and Wuerzburg. It is important to note,
that we only focus on classes or sub-classes that clearly mean and represent green, and
avoid e.g. blue spaces.
At the European level, Urban Atlas (UA) of the European Environment Agency provides
users access to detailed LULC maps for 696 cities, in addition to street tree maps, building
block height measurements, and population estimates. UA data relies on satellite imagery
with a 2.5 meter spatial resolution and represents cities at a scale of 1:10000. It considers
20 distinct LULC classes, where green spaces appear under the "green urban area" class.
Green spaces like grasslands can be identified within the "agricultural, semi-natural areas,
and wetlands" category, while some other UGS classes appear under "sports and leisure
facilities" category. UA has a minimum mapping unit (MMU) of 0.25 hectares [101].
The second LULC dataset we choose to investigate is the OpenStreetMap (OSM). It is a
free and collaborative project that invites contributions from everyone to develop a digital
map of the world. It uses a system of keys and values to facilitate searches for various
objects on the map. UGSs are primarily categorized under the ’land use’ key, though
some may also be found under the ’natural’ key. Although the OSM data is free, it is



On the Importance of Urban Green Spaces 4

Table 1.1: Comparison of UGS area in both Augsburg and Wuerzburg based on UA, OSM
and TN datasets.

LULC UGS Classes Augsburg (km2) Wuerzburg (km2)

UA
Green Urban Areas 6.0 4.3

Forest 38.3 18
Herbaceous 0.03 -

Sport and Leisure 5.5 3.8
Total 49.8 26.1

OSM

Park 1.6 2.0
Forest 39.2 16.6

Allotment 2.3 1.5
Cemetery 0.8 0.4

Grass 2.6 1.4
Heath 0.9 0.1

Meadow 4.5 1.9
Recreational Ground 1.5 0.2

Total 53.4 24.1

TN

Green areas 1.7 1.8
Park 0.7 0.6
Forest 38.2 17.7

Gardens 2.5 0.8
Cemetery 0.8 0.4

Heath 0.2 -
Grassland 10.6 3.9

Recreational Ground 0.5 1.2
Total 55.2 26.4

commonly known to have issues such as inconsistencies in mapping and missing data [92].
Majority of UGSs are listed as separate LULC classes (e.g. allotments, forests). However,
some UGSs are subdivided into several parts comprised of forests, meadows and scrubs.
In Bavaria, detailed LU information can be found in the Actual LU data (Tatsächliche
Nutzung, TN). It is organized in two levels: LU classes and detailed sub-classes. Under
the umbrella of four main LU classes: settlement, traffic, vegetation, and water, this level
is further subdivided into nearly 140 different sub-classes such as residential, road traffic,
agriculture, flowing waters and others. The second level serves for providing more detailed
information. For example, the sport and leisure facility class is further subdivided into
botanical garden, parks, allotments and other classes.
Table 1.1 provides a per-class breakdown of various UGS types across three datasets. Here,
we can observe considerable variations in the total UGS areas between the two cities across
all datasets. However, there are even more significant discrepancies in categorization of
UGSs. For example, the ’sport and leisure’ category in UA does not correspond exactly
to the ’recreational ground’ category in the OSM or the TN datasets. In OSM, there is no
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distinct ’botanical garden’ sub-type and is instead included under ’recreational ground.’
Conversely, in the TN dataset, botanical gardens are classified separately and included
in our table along with other gardening areas like allotments. Additionally, while the
OSM dataset records 0.1 km2 of heath in Wuerzburg, the TN dataset does not list heath
separately; it is likely grouped under another category such as grassland. Moreover, these
datasets exclude residential/street level green spaces and green corridors at all.
Consequently, some UGS types, such as heath or grassland, might be small in area, but
their cumulative distribution can change the whole picture of city green. By relying
on common and freely available datasets, we not only overlook substantial green areas
but also perpetuate confusion regarding the categorization and understanding of different
types of UGSs. Therefore, there is a need for establishing a list of UGS types that includes
all possible types of UGSs. This will eliminate underestimation of green in cities. Further,
proposing methods that could help to identify these green spaces, would further reduce
the ambiguity of their representation in LULC maps.

1.2 Knowledge-based Approach to Mapping Urban Green

Spaces

The overarching goal of this dissertation is to address two main challenges currently fac-
ing UGSs, namely 1) absence of unified collection of UGS types and 2) exclusion of green
space type-specific characteristics from common green space mapping procedures due to
predominant use of "black box" approaches.
In order to come to a unified green space type collection, we propose a UGS ontology.
Commonly this problem is addressed by providing a green space typology. Examples of
such typologies are given by Bell et al. [15], Koc et al. [84], and Degerickx et al. [37]. Ty-
pologies organize concepts or terms into groups based on shared characteristics. As such,
Bell et al. [15] organize green space types based on their effect on house price estimation.
Typologies do not set a goal to include all possible green space types that can appear
all around the world. These are topic-specific constructs and are more focused on what
type is relevant for the topic of interest. In contrast, ontologies do not only establish a
foundation for information sharing but also allow collaboration [58]. Unlike typologies,
ontologies require well-defined concepts and constraints as well as represented knowledge
must be universally accepted. This means, that by creating a UGS ontology, we search
for a common UGS vocabulary applicable within the domain of interest. Selected UGS
vocabulary, according to ontology definition rules, should contain all the essential knowl-
edge within the domain [59]. Moreover, ontologies are extendable, meaning that even if
they cover the basics of a domain, they can still be enriched if new classes or cite-specific
categories appear. In contrast to typologies that are created once and do not consider ex-
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tension later within the same typology, ontologies are "living" systems and can be adapted
to new circumstances. Finally, additional advantage of an ontology over a typology is its
formal conceptualization. Formal conceptualization means that an ontology can be com-
prehended by machines. Typologies are only human comprehendible. Conceptualization
of a UGS ontology allows for machine-aided classification tasks. A use case for this can
be ontology-based mapping of forests using e.g. remote sensing imagery.
Under-representation or exclusion of certain UGS types from common LULC maps is
connected either to their size or to our limited understanding of them [127][63]. Mapping
UGSs using machine or deep learning is a highly recognized and rapidly improving ap-
proach. They can manage large number of predictor variables, and can achieve good clas-
sification results [1][130]. The main challenge of these approaches is their interpretability.
Here it is important to differentiate between classifying single pixels (green/non-green)
versus whole objects (e.g. allotment). The early one is a very straightforward procedure
and depending on the utilized model it can mostly be explained. Decision tree-based
classifiers allow for tracing back and identifying particular value ranges or feature values
that lead to the final classification outputs [93]. The latter one is much more complex.
During object detection, high-level feature properties, in a varying order, can be used or
complex descriptive properties can be calculated. These decisions are extremely difficult,
to almost impossible, to trace back and explain [2][137].
The black-box problem in UGS mapping is addressed in this thesis by conducting knowledge-
based mapping procedure. We use the knowledge-based and semantics terms interchange-
ably, with both referring to knowledge of the meanings. Knowledge-based mapping pro-
cedure refers to first understanding what certain UGS types mean. This involves, for in-
stance, examining existing official definitions or regulations. Then, this procedure requires
extracting spatial-semantic characteristics from the examined definitions. By performing
semantics-based mapping, we are able to find answers to questions such as (1) which
predictor variables are unique to the examined type of UGS, (2) what particular value
ranges specifically describe certain type of UGS, (3) to what extend selected variables
and values are reproducible and applicable to other regions. Unlike popular deep learning
approaches, with knowledge-based approach we get more insights about various types of
UGSs, which can lead to their better understanding and acceptance as valuable green
space in urban areas.

1.3 Research Questions and Methodology

By being placed in a junction of geoinformatics, physical geography and informatics,
this work showcases how the domain-specific knowledge can be combined in order to
understand and address certain phenomena, i.e. UGSs. Consequently, we define two
research questions that can lead us to addressing both challenges, described in the previous
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section. The first research question is defined as follows:

RQ 1: To what extent is it possible to develop a unified vocabulary for
urban green spaces to form the basis of an ontology that facilitates

domain-standardized knowledge sharing?

To answer this question, we will explore existing UGS typologies. Furthermore, by synthe-
sizing these application-specific typologies, we will establish a common UGS vocabulary.
This vocabulary will further be enriched and encompassed within a formalized UGS on-
tology.
Our second research question deals with identification of UGS specific semantic charac-
teristics. Therefore, it states:

RQ 2: What unique spatial semantic characteristics of forests, allotments,
peri-urban agriculture, and green corridors can be derived to assist their

identification?

By answering this question, we aim towards identifying whether different types of green
spaces own a special "face" like no other green spaces. Furthermore, are these charac-
teristics quantifiable to an extent that it can be incorporated into mapping procedures
to improve identification accuracy? To answer this question we will implement a mixed
method approach, where we will combine techniques and methods from remote sensing,
machine learning, and geoinformatics.
From the second research question we further derive three specific hypotheses that will
be tested throughout the thesis:

• H1: Integrating the unique spatial semantic characteristics of urban green spaces
into existing mapping methodologies enhances the effective identification of these
spaces within urban areas.

• H2: The selected spatial semantic characteristics remain consistent across different
spatial locations.

• H3: Utilizing freely available high-resolution Sentinel-2 imagery provides a compa-
rable level of accuracy in identifying urban green spaces’ coverage as does using
freely available very-high resolution aerial imagery.

1.4 Contributions of the Research

We define our contributions in two broad directions, namely to Geographic Informa-
tion Science (GIScience) in general and to the UGS domain in particular. This thesis



On the Importance of Urban Green Spaces 8

contributes to GIScience through introducing a novel mapping approach that combines
existing tools in the field. In addition, this work makes a number of contributions for
recognition, understanding, and mapping of UGSs, thus further enhancing the UGS do-
main. Both scientific contributions are detailed hereafter.
Introduction and development of the UGS ontology is one of the main scientific advance-
ment of the thesis. This ontology serves a crucial role by expanding the conventional
categorization of UGSs beyond what is typically represented in LULC maps. Traditional
LULC maps often overlook or oversimplify the variety of green spaces. By introducing a
more nuanced ontology, this thesis highlights the existence and importance of previously
unrecognized or underrepresented green space types. Through acknowledging a broader
range of green space types, the ontology can aid city planners and decision makers in
making informed decisions and influence policies and initiatives. This is particularly rel-
evant if well-being of city dwellers is at stake due to urbanization.
By providing a dedicated UGS ontology, this thesis not only addresses a significant re-
search gap but also demonstrates a practical methodology for creating and enhancing
such an ontology to support machine-aided mapping procedures. This approach involves
a detailed selection of green space object properties and data types, integrating them
within the ontology in a way that is consistent and understandable. Furthermore, by
providing this ontology, we set the stage for further dialogue and communication within
this field. This thesis provides a robust ontological foundation that other researchers can
build upon, whether they seek to refine the existing ontology, extend its application to
other urban areas, or integrate it with other data sources and technologies like Geographic
Information Systems (GIS) and remote sensing.
Our broader contribution encompasses practically showcasing how spatial-semantic infor-
mation can be extracted from the existing legal definitions and how they can be improved
to better suit spatial analysis. Furthermore, the thesis also contributes a step-by-step
methodological framework that leverages the refined semantic information to identify and
classify UGS types. This framework outlines how to systematically use the extracted and
improved semantic information in practical spatial analysis, facilitating more accurate
mapping and assessment of UGSs. In addition, our thesis contributes with practical ex-
amples of how traditional geoinformatics methods can be effectively combined with more
modern approaches, such as machine learning, and reach good identification outcomes.
This thesis further contributes to GIScience by exhibiting the importance of method vali-
dation. We conduct comparative analysis in two study areas using exactly the same UGS
features and asses transferability of these features. Through this procedure we not only
verify feasibility of the proposed methods but also showcase how and which UGS features
could be location-specific. As a consequence, the methodologies developed herein not only
refine existing techniques but also elaborate new dimensions of analysis that are scalable
and adaptable across different geographic contexts.



On the Importance of Urban Green Spaces 9

1.5 Related Publications by the Author

Throughout the development of this manuscript, parts of the implemented methods were
peer-reviewed and published in proceedings of scientific conferences. Based on these
publications, as well as the feedback we received through the publication process, we
amended and improved our methodological approaches, and their final versions built the
cornerstone of our knowledge-based identification workflows. In the following, we will
present every publication as well as describe what part of them were utilized in this
thesis.

Classifying Urban Green Spaces using a combined Sentinel-2 and Random
Forest approach [68].

In this paper we explore pixel-based UGS mapping procedures using spectral bands and
vegetation indices derived from Sentinel-2 data. By developing three various Random For-
est (RF) models we achieve similarly good classification results. The normalized difference
water index and soil-adjusted vegetation indices provide similar insights as the normalized
difference vegetation index. RF model also proves itself to be a straightforward machine
learning procedure to map green vegetation, by achieving over 90% identification accu-
racy. However, further visual validation procedure reveals, that the spatial resolution of
the utilized data falls short in identifying fragmented heterogeneous vegetation in e.g.
allotments or cemeteries. Although being cost effective and performing well with large
homogeneous green areas, we propose to test the same methodology using higher resolu-
tion datasets.
Following suggestions and exploring limitations within this paper, we execute a slightly
different and comparative green space mapping procedure, which is presented in Chapter
6. Here we compare a high resolution digital orthophoto and Sentinel-2 datasets as well
as vegetation indices derived from them. Further, we also include the vegetation height
for better separability of vegetation types. To compare applicability of RF model we
perform transferability analysis and compare identification accuracy of a model trained
with datasets from Augsburg in Wuerzburg.

Towards an Ontology of Urban Green Spaces [70].

This publication sets a starting point for elaborations on the existing gaps in UGS types
and a need for development of an ontology. It presents comparative figures and discussions
on how much of green space we are missing in cities, if we fail to consider all the potential
UGS types. Therefore, content of this paper is further opened up and presented in this
Chapter, under problem statement, whereas a new ontology is presented in Chapter 5. In
the published paper we only explore Bell et al. [15]’s typology. In this thesis we explore
two additional typologies to to acquire a complete list of UGS types. We also propose
and then utilize the Protégé environment to build and formalize a new UGS ontology.
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Semantic Identification of Urban Green Spaces: Forest [69].

Our first publication on the use of semantic information to map UGSs is presented on
the example of forests. In this paper, we perform a rule-based classification in order to
establish thresholds for descriptor variables. As descriptor, we take advantage of vege-
tation height, vegetation index, and textural homogeneity and dissimilarity. Our results
demonstrate, that forests can be identified using a minimal set of parameters closely re-
flecting their semantics. Moreover, some thresholds, like NDVI, may be applicable in new
study areas, but other like homogeneity and heterogeneity are specific to each scene and
cannot be directly transferred to new locations. With slight modifications, such as using
percentile-based thresholding instead of rule-based, we perform forest mapping again and
present the workflow in Chapter 7.
In addition, this paper won the Best Short Paper Award in the Association of Geographic
Information Laboratories in Europe (AGILE) conference in 2023 which was held in Delft,
Netherlands.

Knowledge-Based Identification of Urban Green Spaces: Allotments [71].

This publication is evolving around mapping allotments both in Augsburg and Wuerzburg,
using their semantic features. As semantic features, we define presence, density, and height
of garden huts, proximity to water bodies and railroads, as well as presence of pathways
within the allotment gardens. Using the proposed methodological workflow, we identify
78 percent of allotments in Augsburg and 88 percent in Wuerzburg. Therefore, we build
upon this publication in this thesis. To better assess reproducibility of our approach, we
include percentile-based thresholding of parameters as well as introduce feature sensitivity
analysis.

Identification of Green Corridors as a type of Urban Green Spaces [72].

Commonly green corridors are mapped as ecological corridors. In this paper, for the first
time, we explore potential approaches to map them as urban green corridors for human
well-being. Here, we conduct a pre-trained deep learning approach to identify single
trees and then associate them with nearby roads. After acknowledging limitations of this
method, in this thesis, we execute a different approach. As such, we no longer limit green
corridors to only trees. We also differentiate between various green corridor types and use
existing green corridor rules to classify them both in Augsburg and Wuerzburg.

1.6 Outline of the Thesis

This work is structured as follows: Chapter 2 introduces the current research on the im-
pact of UGSs on human well-being. It discusses the representation of UGSs on common
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land use and land cover maps and explores their limitations. This chapter also explores
geographic information ontologies and their role in enhancing context extraction for re-
mote sensing classifications. Chapter 3 describes the main methods used in our research.
In Chapter 4, we describe two study areas where these methods are applied, as well as
present datasets that are utilized in our studies. In Chapter 5, we present our UGS ontol-
ogy. Our analysis progresses through various computational studies. Therefore, Chapter
6 features a comparative study using two different datasets to map UGSs. Chapters 7
through 10 focus on tailored workflows to identify forests, allotments, peri-urban agricul-
ture, and green corridors, respectively. In each of these chapters, we provide study-specific
discussions and draw conclusions from them. In Chapter 11, we synthesize findings and
discussions from the performed studies and put them into perspective under the umbrella
of the overarching research context. In this chapter, we also present answers to our re-
search questions and hypotheses. We present our conclusions together with an outlook in
Chapter 12. The bibliography complements the work.



Chapter 2

Related work

In this chapter we describe the importance of UGSs for human well-being, as well as
their place in common land cover and land use maps. Following this, we elaborate on
already established UGS typologies and describe geo-information ontologies. Moreover,
we provide an overview of common UGS identification and mapping techniques.

2.1 Urban Green Spaces for Human Well-being

Human well-being is a multifaceted concept that encompasses various dimensions of health
and quality of life within urban settings. In general this term is defined as "a state of
human being that comprises on human (physical, psychological, mental) health, good
social interaction, and overall life satisfaction (subjective well-being)" [73]. According to
the World Health Organization, health is not merely the absence of disease but a state
of complete physical, mental, and social well-being, and UGSs are capable to provide
infrastructure to support that state [116][141]. There are many examples in the existing
literature, where impact of UGS on humans is discussed. It is known, that as simple
as a single view of greenery from a window can increase work performance and prevent
adverse health effects from stressful life events [77]. Nevertheless, it is also important to
categorize these effects of UGSs in terms of what aspects of well-being they affect, as well
as understand if there are any differences between types of UGSs and their well-being
effects.
According to Jabbar et al. [73], human well-being is broadly categorized into physical,
psychological, mental, social, subjective, and environmental well-being. Physical well-
being, for instance, refers to the state of physical health and the absence of disease. In
his term, UGSs contribute significantly by offering areas for exercise, reducing pollution,
and mitigating heat. Parks and recreational areas are particularly notable for their role in

12
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improving physical health, as they provide spaces for activities like walking and jogging.
This can help reduce obesity rates and other health issues. Furthermore, psychological
well-being involves positive self-esteem, personal growth, and happiness. These feelings
are enhanced by UGSs through their restorative environments that reduce stress and en-
hance mood. Moreover findings of Wood et al. [148] reveal that allotment gardeners have
a significantly higher self-esteem, and experience less depression and fatigue.
Jabbar et al. [73] define mental well-being as the ability to cope with stress, work pro-
ductively, and contribute to the community. By providing tranquil environments, UGSs
can hep to lower anxiety and depression. Other studies like Gascon et al. [56] show that
long-term exposure to UGSs significantly reduces symptoms of depression and anxiety,
emphasizing the importance of integrating green spaces into urban planning to support
mental health.
Social well-being, which refers to the ability to interact positively within a community, is
fostered by UGSs as they provide area for social interaction and community activities [73].
Community gardens, for example, encourage social interaction and community engage-
ment, thereby improving social well-being while also offering opportunities for physical
activity and healthy eating. Enssle and Kabisch [46] explore park visitation patterns and
establish that older people with close social networks would attend parks more frequently
than those who are more isolated in their daily lives.
While other types of well-being are important, subjective well-being might be the one that
affects the most our day-to-day life. Proximity to green areas is associated with higher life
satisfaction and perceived quality of life. For instance, an increased frequency of visits to
gardening areas is shown to be positively related with greater subjective happiness [105].
Moreover, if people think that visiting UGSs is good for their health, they would visit
them more frequently [46].
Finally, the last well-being category defined by Jabbar et al. [73], environmental well-
being, considers the health of the natural environment and its capacity to sustain human
life. This is enhanced by UGSs through their contributions to biodiversity and ecological
balance.
Some other studies show, that e.g. cognitive recuperation, i.e., when the brain has a
chance to rest and heal from cognitive fatigue, positively reflects on improving attention,
focus, and overall mental functioning. According to the Attention Restoration Theory
of Kaplan and Kaplan [78], this restoration can be achieved by spending time in inher-
ently fascinating environments. And typically, it is natural environments that provide
these restorative opportunities [79]. A comprehensive review by Beute et al. [17] further
underlines the connection between urban and peri-urban green spaces and human well-
being. This report concludes that visits to UGSs and the countryside are linked with
different components of mental well-being. It highlights that natural environments with
high biodiversity and good quality are particularly effective in promoting psychological
restoration and connectedness to nature.
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The benefits of UGS vary depending on their type and characteristics. Parks and recre-
ational areas are associated with significant improvements in physical, social, and psy-
chological well-being. Urban forests and green corridors are crucial for mental health,
offering serene environments that promote relaxation and reduce stress. The presence of
trees and natural landscapes in urban settings has been linked to lower levels of depression
and anxiety [84].
The role of green spaces in human well-being is also explored through various methodologi-
cal frameworks aimed at assessing their thermal performance and impact on microclimate.
Bartesaghi Koc et al. [13] present a framework combining airborne remote sensing, field
measurements, and numerical modeling to assess the thermal benefits of UGSs. This ap-
proach highlights the cooling effects of green spaces, which not only contribute to physical
comfort but also to environmental well-being by mitigating urban heat island effects.
Additionally, the typology of green infrastructure (GI) plays a crucial role in understand-
ing its benefits. The classification of green infrastructure into categories such as tree
canopy, green open spaces, green roofs, and vertical greenery systems allows for a detailed
analysis of their specific contributions to human well-being. Each type offers unique
benefits: tree canopies provide shade and improve air quality, green open spaces offer
recreational opportunities, green roofs enhance thermal performance and storm water
management, and vertical greenery systems contribute to aesthetic and environmental
benefit [13].

2.2 Urban Green Spaces within Land Use and Land

Cover Datasets

For modeling features on the Earth surface, understanding two concepts is of immense
importance, namely land use and land cover. The term land cover (LC) refers to the
(bio)physical coverage on the Earth Surface [39]. It is the materials that we see, due
to their distinct reflection at different wavelengths and with various frequencies of the
waves in the electromagnetic spectrum [50]. Land use (LU) on the other hand, refers to
the organization, actions, and resources employed by individuals within a particular LC
category to generate, modify, or to sustain it [39]. Consequently, LC is about what is on
the Earth surface, while LU refers to how a particular cover is used or modified by people.
Thus, one reflects bio-physical wheres the other one socio-cultural and economic aspects
of human-nature systems. Therefore, the logical inference is that when interpreting LU,
the primary approach should involve using LC as the main substitute, alongside the image
interpreter’s usual points of reference like patterns, geographic location, or other similar
factors.
In theory these two terms can clearly be distinguished from each other and described
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straightforwardly. However, in practice this is much more complicated as various types and
applications may coexist. Therefore, when observing human-nature systems, clear many-
to-many linkages can be noticed. For instance, a single area covered by forest LC might
also serve as a site for various recreational activities such as hunting, hiking, and even
livestock grazing [50]. However, many-to-many relationship can not always be directly
identified, especially solely using one data source. Hunting, which is usually performed
in a large area, cannot be extracted from LC information and requires supplementary
knowledge of an area presented by e.g. local authorities [5].
An extended discussion of LULC confusion in existing classified products is presented by
e.g. Anderson [5]. According to author, concepts related to LULC activities are closely
connected and, in many instances, have been applied interchangeably. Moreover, there
is no universally fitting categorization for LULC, and it’s impossible that a single ideal
classification could ever be created. The classification process incorporates various per-
spectives, and even when an objective numerical methodology is implemented, the process
will still remain very subjective. Furthermore, in reality, there is no inherent justification
for assuming that a single comprehensive inventory would remain relevant for an extended
period, as LULC represent very dynamic systems. Therefore, each classification is tailored
to fulfill a specific requirement of its intended user, and most users expect an inventory
that adequately addresses the majority of their needs. The author further states, that
challenges of aggregation of LULC information produced by different agencies are not
only due to the differing classification systems and underlying task-specific requirements,
but also due to continuous modifications in definitions of LULC categories.
Mapping the Earth’s surface was and remains a desirable task, as it facilitates under-
standing its dynamics. Moreover, maps are tools used for sustainable planning purposes.
Globally, there is a considerable number of programs that are dedicated for the creation of
detailed and accurate LULC products at various scales. Formally relating different LULC
datasets with inherent differences of class descriptions is highly problematic and there is a
need to understand different LU ontologies. Due to the socio-economic dimension of LU,
it may require connecting linguistic descriptors that carry diverse cultural, political, eco-
nomic, or sociological connotations, in addition to the botanical or ecological definitions
associated with LC [50].
In order to ease the confusion and varying implementations by different agencies, An-
derson [5] proposes a four-level LULC classification approach shown in Table 2.1, that
builds the base of the United States Geological Survey’s classification scheme. The top
two levels in the classification are clearly defined while the level three and four are meant
to be customized by its users. With this approach, the author aims towards enabling the
consolidation of detailed local data into consistent Level 1 and Level 2 land information,
which align with the primary goal: establishing a classification system for LULC that
can be applied in LU planning and management activities. As such, authors differentiate
among urban and built-up, agricultural, rangeland, forest, water, wetland, barren, tun-
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Table 2.1: The LULC classification proposed by Anderson et al., 1976.

Level 1 Level 2

Urban or Built-up Land

Residential
Commercial and Services
Industrial
Transportation, Communications, and Utilities
Industrial and Commercial Complexes
Mixed Urban or Built-up Land
Other Urban or Built-up Land

Agricultural Land

Cropland and Pasture
Orchards, Groves, Vineyards, Nurseries and
Ornamental Horticultural Areas
Confined Feeding Operations
Other Agricultural Land

Rangeland
Herbaceous Rangeland
Shrub and Brush Rangeland
Mixed Rangeland

Forest Land
Deciduous Forest Land
Evergreen Forest Land
Mixed Forest Land

Water

Streams and Canals
Lakes
Reservoirs
Bays and Estuaries

Wetland
Forested Wetland
Nonforested Wetland

Barren Land

Dry Salt Flats
Beaches
Sandy Areas other than Beaches
Bare Exposed Rock
Strip Mines, Quarries, and Gravel Pits
Transitional Areas
Mixed Barren Land

Tundra

Shrub and Brush Tundra
Herbaceous Tundra
Bare Ground Tundra
Wet Tundra
Mixed Tundra

Perennial Snow or Ice
Perennial Snowfields
Glaciers
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Table 2.2: The pan-European CORINE land cover classification.

Level 1 Level 2 Level 3

Artificial Surfaces

Urban fabric Continuous urban fabric
Discontinuous urban fabric

Industrial, commercial and
transport units

Industrial or commercial units

Road and rail networks and associated land
Port areas
Airports

Mine, dump and construction
sites

Mineral extraction sites

Dump sites
Construction sites

Artificial, non-agricultural
vegetated sites

Green urban areas

Sport and leisure facilities

Agricultural areas

Arable land Non-irrigated arable land
Permanently irrigated land
Rice fields

Permanent crops Vineyards
Fruit trees and berry plantations
Olive groves

Pastures Pastures

Heterogeneous agricultural
areas

Annual crops associated with permanent crops

Complex cultivation patterns
Land principally occupied by agriculture, with
significant areas of natural vegetation
Agro-forestry areas

Forest and
semi-natural areas

Forest Broad-leaved forest
Coniferous forest
Mixed forest

Scrub and/or herbaceous veg-
etation associations

Natural grassland

Moors and heathland
Sclerophyllous vegetation
Transitional woodland-scrub

Open space with little or no
vegetation

Batches, dunes, and sands

Bare rocks
Sparsely vegetated areas
Burnt areas
Glaciers and perpetual snow

Wetlands

Inland wetlands Inland marshes
Peat bogs

Maritime wetlands Salt marshes
Salines
Intertidal flats

Water bodies

Inland waters Water courses
Water bodies

Marine waters Coastal lagoons
Estuaries
Sea and ocean
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dra and perennial snow or ice. This classification scheme is adopted by many national
mapping agencies as a base for LULC maps even though the scheme embodies LULC
confusion at all four levels.
At European level, the coordination of information on the environment (CORINE) ini-
tiative provides the most comprehensive LULC classification system that is developed by
the European Environment Agency. The motivation behind the CORINE LC inventory
is articulated as a coordinated information gathering, environmental monitoring, and a
consistent pan-European framework. The primary objectives include, firstly, the provision
of quantitative LC data that is uniform and comparable throughout Europe. Secondly,
it involves the development of an all-encompassing digital LC repository for all the 25
EU member states as well as other nations in Europe and North Africa. The mapping
process adheres to the CORINE nomenclature and interpretation techniques, initially
carried out at a scale of 1:100,000. This nomenclature includes 44 distinct LC categories
organized into three hierarchical levels, with a minimum mapping unit of 25 hectares, as
shown in Table 2.2. Each European Union member state is tasked with generating these
datasets through on-screen interpretation and digitization of Landsat imagery within a
GIS environment. The final European-wide dataset is assembled by merging the consistent
national products into a unified dataset.

Table 2.3: The Urban Atlas nomenclature.

Class code Nomenclature
11100 Continuous Urban Fabric (Sealing Degree > 80%)
11210 Discontinuous Dense Urban Fabric (Sealing Degree 50% - 80%)
11220 Discontinuous Medium Density Urban Fabric (Sealing Degree 30% - 50%)
11230 Discontinuous Low Density Urban Fabric (Sealing Degree 10% - 30%)
11240 Discontinuous Very Low Density Urban Fabric (Sealing Degree < 10 %)
11300 Isolated Structures
12100 Industrial, commercial, public, military and private units
12210 Fast transit roads and associated land
12220 Other roads and associated land
12230 Railways and associated land
12300 Port areas
12400 Airports
13100 Mineral extraction and dump sites
13300 Construction sites
13400 Land without current use
14100 Green urban areas
14200 Sports and leisure facilities
20000 Agricultural, Semi-natural areas, Wetlands
30000 Forests
50000 Water bodies

In the urban context, UA of the European Environment Agency provides users access to
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detailed LC and LU maps for 696 cities across Europe, in addition to street tree maps,
building block height measurements, and population estimates. Thematic classes of UA
are based on CORINE LC nomenclature and are presented in Table 2.3. UA data relies on
satellite imagery with a 2.5 meter spatial resolution, enabling provision of consistent LULC
information for all major European cities and their corresponding larger urban areas, with
population figures exceeding 100,000 residents. The UA dataset represents cities at a scale
of 1:10,000 and covers a total of 20 distinct LC classes. Among these, 17 pertain to urban
environments and have a MMU of 0.25 hectares, while the remaining 3 classes relate
to non-urban areas and are provided at MMU of 1 hectare. The dataset guarantees a
minimum accuracy level of 85% for artificial surfaces and 80% for the remaining LC classes
[101]. Urban areas are distinguished based on their imperviousness, which is derived from
the high-resolution soil sealing layer provided by the Land Monitoring Core Service. This
process combines Computer Aided Photo-interpretation and object-oriented classification
methods.
UGS information can be extracted to a certain extent from all the three LULC products.
Specifically, the CORINE LC dataset incorporates green areas within its third level of
detail, categorized under "artificial and non-agricultural vegetated cities". Similarly, the
UA dataset also includes a class denoted as "Green urban areas". Additionally, green
spaces like grasslands can be identified within the "agricultural, semi-natural areas, and
wetlands" category of the UA. It is worth noting that the level of detail varies depending
on the specific datasets and the MMU.

2.3 Urban Green Space Typologies

Thoughtfully planned, effectively administered, and interconnected green areas carry con-
siderable significance in well-functioning urban areas. Absence of a commonly agreed
classification or topology of UGSs is not only a problem in terms of mapping of UGSs
but also for understanding e.g. urban heat island [14] or biodiversity and ecosystem ser-
vices [103]. Although UGSs have been studied for a very long time, for most of this time
they have been treated as uniform structures [110]. However, UGSs exhibit remarkable
diversity, spanning from urban parks to vertical gardens and rooftop horticulture, to city
woodlands to community gardens. They essentially encompass all forms of vegetation in
urban settings [35]. Given this wide array of green spaces, it is necessary to understand
presence and span of various UGSs in cities and compile an inventory of UGS elements.
In the context of LULC, UGSs can take on both roles. Hence, a forest occurring within an
urban area represents a specific LC type, while an allotment garden is a classic example
of LU, with a mixed function.
Due to growing interest in UGSs and their role in build-up environments, several inven-
tories have been proposed, that organize UGS types into groups or hierarchies based on
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one or another purpose. For instance, Swanwick et al. [134] establishes a UGS typology
consisting of 25 UGS sub-types within four main groups including amenity green spaces,
functional green spaces, semi-natural habitats, and linear green spaces. However, in ma-
jority of instances, UGSs are created to serve certain purposes. Degerickx et al. [37]
propose a functional urban green typology based on the main functions and services pro-
vided by UGSs. They categorize urban green elements into three main categories: trees,
shrubs, and herbaceous plants that are later divided into 23 sub-types like forest, scrub
path, lawn, pasture, flower bed. Moreover, Bell et al. [15] provide one of the broadest clas-
sification of UGSs and define explicit classes of UGSs for hedonic house price valuation.
The authors propose the following UGS classes:

• Gardens and parks

• Natural and semi-natural spaces

• Green corridors

• Outdoor sport facilities

• Provision for children and young people

• Cemeteries and other burial grounds

• Amenity green spaces

• Allotments, community gardens and urban farms

This classification is further enriched with sub-classes such as various types of gardens
and others.
In order to assess the functional linkages between UGSs and ecosystem services and bio-
diversity, Cvejić et al. [35] establish an inventory with a particular green infrastructure-
perspective as compared to existing inventories. According to the authors, no inventory
can ever be considered complete or static. Social initiatives, technological advancements,
increased environmental consciousness, creativity of city planners and urban residents
will always lead to occurrence of new types of UGSs. Typical examples mentioned are
bioswales, guerrilla gardens and others. In their typology, the authors highlight following
eight UGS categories that include:

• Building greens

• Private, commercial, industrial UGSs and UGSs connected to grey

• Riverbank green

• Parks and recreation
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• Allotments and community gardens

• Agricultural land

• Natural, semi-natural and feral areas

• Blue spaces

Moreover, the typology contains 44 sub-categories of UGSs.
Variations in UGS typologies can be observed, even if they are created for very similar
purposes. The typology by Jones et al. [74] include eight classes and 46 sub-classes of both
urban green and blue spaces. The main eight UGS classes are mode of gardens, amenity
areas, other public spaces, linear features/roads, constructed GI on infrastructures, hybrid
GI for water, water bodies, and other non-sealed urban areas. The authors’ main objective
to create such a typology is to explore the ecosystem services provided by the green
spaces. Further, with the proposed typology and multi-functionality matrix, they provide
a valuable evaluation tool for GI types that have received less to no attention in the
existing literature.
Even if the glossary differs, quite many similarities within UGS typologies can be observed.
For instance, while some authors differentiate between linear green and consider riverbank
green as sub-category of linear green [134], others call them straightforwardly "riverbank
green" [35]. Some differentiate between linear green and do not consider riverbank green
as a sub-type of this category [74]. Therefore, there is a potential for further exploration
and unification of UGS types.

2.4 Geographic Information Ontologies

An ontology with its term taken from philosophy, represents an explicit specification of
a conceptualization [58]. Ontologies establish a foundation for information sharing and
collaboration. They clearly define the terminology specific to a particular application
domain. By capturing the essential meanings within this domain, ontologies facilitate
semantic consistency and understanding across different systems [139]. Ontologies are
constructed using a set of representational primitives, with the final aim of modeling do-
main knowledge. These representational primitives typically consist of classes, attributes
of these classes, and relationships among the classes [58]. In order for a conceptualization
to be considered as an ontology it should be explicit, shared and formal. Being "explicit"
entails having well-defined concepts and constraints (e.g. height above 5 meters). A
"shared" conceptualization implies that the knowledge is universally accepted (e.g. com-
mon LULC classification system). And finally, "formal" conceptualization means that it
can be comprehended by machines.
In the context of GIScience, ontologies provide a structured framework for representing,
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categorizing, and interpreting the complex knowledge inherent in this domain. In this
sense, ontologies within GIScience focus on creating effective tools for specific geographi-
cal purposes rather than uncovering the nature of the world. As a result, it aligns more
with engineering than with conventional empirical science [31].
In order to represent a knowledge base, different types of ontologies exist. For instance,
top-level ontologies encompass very broad concepts such as spaces, time, matter, objects,
events, and actions. They are universal and not specific to any one problem or domain
and ideally serve as a shared foundation that can be used by a wide range of people.
Whereas, domain ontologies refer to the specialized vocabulary of a particular field or
domain. They refine the general concepts from the top-level ontologies to make them
relevant to specific areas. Moreover, task ontologies relate to the specific vocabulary used
in particular activities. They adapt the general concepts from the top-level ontologies
to suit specific tasks. Finally, application ontologies merge elements from both domain
and task ontologies. They define concepts that are specific to both a certain field and
a particular activity. These concepts often describe the roles or functions that entities
perform in specific scenarios [60].
GIScience ontologies are created to systematically represent geographic data by defining
the relationships between various geographic entities, thus enabling data sharing and in-
teroperability. Therefore, they can be created at all ontological levels described above.
According to Guarino [59], the ontology creation process involves several critical steps
such as domain specification, concept extraction, hierarchical structuring, and formal-
ization. During the domain specification the scope and boundaries of the domain, that
will be covered by the ontology, need to be defined. Here, identifying the main con-
cepts, entities, and relationships that are relevant within the domain is critical. At the
second stage, relevant concepts and terms from existing literature and databases will be
extracted. This way it is possible to make sure that all significant concepts within the
domain are identified and documented. At stage three, the extracted concepts will be
organized into a hierarchical structure, typically involving a top-level ontology that pro-
vides general concepts such as "entity", "object", and "event", and lower-level ontologies
that specify more detailed domain-specific concepts. Then, the ontology needs to be for-
malized, where formal language will be used to define the relationships and properties of
the concepts. Description Logic or Web Ontology Language (OWL) are only few of the
formal languages. The final, step around ontology creation is validation and refinement.
Authors emphasize that iteratively testing the ontology with real-world data and refining
it based on feedback helps to ensure, that the ontology accurately represents the domain
and is useful for the intended applications [59].
In the fields of LULC classification or remote sensing, task or application level ontolo-
gies appear more often than others. This is not surprising, as commonly the goal of
such ontologies, apart from formalizing concepts, is usability in practical applications.
Arvor et al. [7] emphasize the importance of using formal ontologies to enhance the in-
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terpretation of remote sensing data, which allows for more accurate land classification
and analysis. However, representing geographic concepts in ontologies is connected with
a range of challenges. Geographic entities can carry multiple meanings for different users.
For instance, when mapping a river, one should be aware that it isn’t just a body of
water; it might be a crucial transportation route or a boundary between two countries.
This in turn results in difficulties of semantic interoperability among databases [31]. Nev-
ertheless, unlike traditional remote sensing approaches that focus on numeric data (e.g.,
specific NDVI values for forest classification), ontologies integrate symbolic knowledge
(e.g., "Forest" has "HighNPP" or "HighNDVI" values) with numeric thresholds to en-
hance knowledge representation and sharing [23].
Arvor et al. [8] argue that analyzing satellite images is a complex task involving selecting
relevant data, analyzing image content, and considering user skills. While Geographic
Object-Based Image Analysis (geoOBIA) became more popular in this regards, the rules
and methodologies developed in geoOBIA are often specific to particular datasets or sce-
narios and may not be easily transferable to other contexts. GeoOBIA is somehow similar
to ontology in terms of use of expert knowledge and in aiming to enhance semantic in-
terpretation of images. Nevertheless, only ontologies are capable to and facilitate sharing
and provide a formal, explicit specification of knowledge that encompasses both symbolic
and numeric information and facilitate sharing and reusing of knowledge.

2.5 Urban Green Mapping

Historically, diverse methods have been utilized to gather data regarding UGSs. Field
campaigns, visual interpretation and manual digitization are among the most accurate
as well as the most time and cost intensive methods. Nowadays, remote sensing (RS)
offers a precise, fast, and cost-effective method for extracting information about UGSs,
such as location, vegetation types, and coverage [127]. However, its demands and cost-
effectiveness vary depending on UGS classes and applications, with the balance between
data costs, processing expenses, and application purposes influencing its usability. In
terms of RS data specifications, high-resolution data like hyperspectral and Light Detec-
tion and Ranging (LiDAR) is used for detailed mapping of observations. Less expensive
options like Landsat or Sentinel imagery are often used for overall UGS mapping across
cities [127].
Mapping UGSs presents its unique set of challenges. These stem from the spatial and
spectral diversity and the intricate three-dimensional structure of urban areas. These
challenges include extensive shaded regions, numerous instances of light scattering, and
complexities in geometric aligning of different data sources [108]. Furthermore, parts of
UGSs might be located on private grounds, which would make it difficult to map from
ground, and if their area is too small, it would complicate to map them from satellite im-
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ages [127]. Therefore, attempts were made to understand the effect of spatial resolution
particularly on UGS identification. In this regard, Sun et al. [133] perform up-scaling of
WorldView-2 multi-spectral images from two to up to 40 meters, and explore accuracy
decrease by lowered spatial resolution. Their findings reveal, that UGSs can be accurately
mapped using images with spatial resolutions ranging from two meters to 16 meters, while
imagery of lower resolutions yields less effective outcomes. In contrast, Huang et al. [66]
achieve good UGS mapping accuracy by using images with 30 meter resolution. However,
to maximize the extraction of UGS information, authors delve into sub-pixel rather than
pixel-level analysis.
Due to the increased availability of satellite images, growth in usage of more high reso-
lution Sentinel-2 imagery [27], and very high resolution imagery [63][67] can be observed.
The latter approach appears to be particularly helpful to identify small-scale UGSs. As
such, Haase et al. [63] focus on urban front and backyard green spaces, particularly around
residential buildings on privately owned ground, and implement spectral unmixing tech-
nique. Using very-high resolution RapidEye data they calculate sub-pixel vegetation
fractions for the entire study area. The authors achieve very good classification accuracy
and discover that front and backyards make up to 40% of the UGSs in the study area.
However, they acknowledge that the utilized RapidEye dataset, although providing high
resolution, is not freely accessible and thus transferability of the method to elsewhere with
the same dataset might be a limiting factor.
The complexity of UGSs mapping, it terms of size, within-class heterogeneity, and com-
mon RS data challenges, such as shadows, requires more detailed procedures of fusion
of various data sources with other complementary information [118]. For instance, Deg-
erickx et al. [37] establish an extended typology of UGS first, and then apply a UGS
mapping workflow by using hyper-spectral APEX, Worldview-2 datasets in combination
with Airbone LiDAR datasets. As a complementary information source, authors include
vegetation indices such as the Normalized Difference Vegetation Index (NDVI), Normal-
ized Difference Water Index (NDWI), a grass index highlighting the difference between
trees and lawn and others. Their findings show that incorporation of the LiDAR dataset
substantially increases the UGS identification. However, it also requires additional spec-
tral data, preferably hyper-spectral, for accurately identifying UGSs with high thematic
detail. Furthermore, high spectral similarity among various UGS types and the complex
urban environment interactions, e.g. shadow effects, are the main sources of errors, where
shrub and herbaceous class show the highest misclassification rate. Use of vegetation
indices even with images of limited spectral resolution is shown to be advantageous for
vegetation identification. According to the analysis of Motohka et al. [104], simple green-
red difference index is an effective phenological indicator, because it provides a universal
threshold for detecting leaf green-up and autumn coloring phases, and it distinctly re-
sponds to subtle disturbances and differences in ecosystem types.
Generally, UGS mapping, as any other LULC mapping, involves a spectral image classifi-
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cation procedure. In this approach, each pixel within RS data is rigorously analyzed and
is categorized into a distinct spectral class, which is then linked to a existing real-world
concept. This method assumes that the LC to be mapped exhibit identifiable spectral
characteristics that can be effectively extracted. However, some complications may arise
as certain types of LU exhibit intricate arrangements of LC [127]. Traditional per-pixel
classification methods might encounter challenges when attempting to classify such cases,
primarily due to the inherent spectral diversity associated with a specific LU in question
[119]. Therefore, modern image classification approaches involve machine learning (ML)
or deep learning (DL) techniques [1][130]. Thus, precise methodology and dataset selec-
tion will depend on the final goal of the research and the level of detail required.
In the existing literature, ML methods, such as support vector machine (SVM) and ran-
dom forest (RF) are two of the most frequently used UGS mapping methods. In a study
conducted by Ju et al. [75], the authors use an SVM classifier together with Sentinel-2
imagery to map UGSs across the major Latin American cities and reach 87 % classifica-
tion accuracy. They utilize OSM data as a training data source and therefore note that
the variability and availability of OSM data, especially for smaller cities, is the main lim-
iting factor for automatization of the mapping procedure. Indeed, availability of training,
testing and validation datasets play a crucial role in how well ML/DL methods work [75].
Similar to the previous authors, Chen et al. [27] propose a work around this issue by
utilizing crowd-sourced information for training purposes. As such, they perform UGS
mapping through neural network-based automatic mapping method where they integrate
Sentinel-2 images and crowd-sourced geospatial big data. By achieving over 94% iden-
tification accuracy, the authors successfully showcase the potential of a low-cost UGS
mapping workflow performed on free training samples created from crowd-sourced OSM
data. Similarly, Ludwig et al. [92] identify public UGSs with 95% accuracy, by utilizing
Sentinel-2 as imagery source and OSM data as training data source.
Due to the extensive application of object-based image analysis in the field of computer
vision, its usage in the geospatial context has also significantly increased, particularly
for high-resolution image analysis. Image-objects formed of clustered neighboring pixels
with similar attributes and shared meaning, form the core of geoOBIA. Unlike traditional
per-pixel analysis, geoOBIA focuses on image-objects, created through segmentation, as
a primary unit of analysis [25]. Since segmentation reduces single pixel information by
grouping and forming objects, its use to identify UGSs is obvious. Use of geoOBIA can af-
fect processing times, and be handy if limited resources to process high resolution images
are available [18]. Furthermore, geoOBIA allows introduction of additional descriptive
information, that can in turn improve identification results [61].
Typically, geoOBIA also involves post-segmentation classification using ML methods. As
such, Zylshal et al. [156] extract UGSs in Jakarta, Indonesia using a combination of SVM,
geoOBIA as well as expert knowledge. The implemented technique reaches 86% classi-
fication accuracy. However, the applied classification rule set appears to be limited to
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the selected area, thus requiring further tests for transferability purposes. Furthermore,
Puissant et al. [115] focus on mapping areas covered by urban tree crowns, referred to
as wooded elements, with the help of very high resolution optical images. They perform
geoOBIA in combination with RF classification method and their result illustrate that
RF together with geoOBIA is highly robust for the urban green element classification.
Further examples of accurate UGS classification with geoOBIA include e.g. Labib and
Harris [87]. They implement geoOBIA to identify green infrastructure and compare its
applicability on an example of Sentinel-2 and Landsat 8 images. Their results show, that
this approach yields reliable results in terms of UGS identification. Furthermore, they
observe that geoOBIA performs better with Sentinel-2 images that have slightly higher
spatial resolution than Landsat 8 images. However, the authors also note, that geoOBIA
faces difficulties of identifying GI in areas affected by tree and building shadows.
From the investigated literature it is obvious that there is an increasing trend of use of the
ML and DL methods. This is particularly due to the capability of such models to handle
multidimensional data, learn patterns within it, and interconnections between variables.
However, this opens up a plethora of discussions around the "black box" problem. On
one hand the capabilities of ML methods is difficult to resist. The lack of transparency,
on the other hand, makes it difficult to explain these complex interconnections as well
as why certain results are acquired. Therefore, there is a need for interpretable machine
learning (IML) methods for especially mapping urban vegetation [137]. This is driven by
the complexity of urban landscapes and the necessity of understanding how models make
their predictions [2].

2.6 Detection of Various Urban Green Space Types

In the previous section we describe the state of art in overall green space mapping. How-
ever, further we focus particularly on three types of UGSs, namely forests, urban agricul-
ture, and green corridors. We explore which methods and data are the most used ones in
terms of their detection and what kind of insights authors gained through their utilization.

Forest

It’s widely recognized that forest ecosystems have a profound impact on both humans and
the environment around us, across all scales, including local, regional, continental, and
global [120]. Therefore, a forest inventory is critical due to various reasons including but
not limited to planning, fire management and conservation. Inventorying forest through
mapping could be challenging as forests might exhibit large variability in composition,
volume, quality and topography [81]. Previously, forest mapping hugely relied on manual
digitization of forest boundaries using aerial imagery. Manual forest inventories are time
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consuming and expensive, what makes their repetition at regular intervals very difficult
[40]. With an increase of earth monitoring satellite missions, forest mapping practices
became highly automated and cost efficient. As the literature on UGS mapping shows,
it is the combination of various datasets and extraction techniques that yields the best
mapping results. Therefore, forests are not different in this regard, and are mapped using
various datasets, including but not limited to optical RS images [83], LiDAR datasets
[128] a well as synthetic aperture radar (SAR) imagery [120].
In their work, Simard et al. [128] showcase an innovative use of space-borne LiDAR data
from the Geoscience Laser Altimeter System (GLAS) on board of ICESat to map forest
canopy height on a global scale with 1 kilometer spatial resolution. This study highlights
the potential of LiDAR technology in capturing detailed vertical structures of forests,
which is crucial for understanding biomass distribution, primary productivity, and bio-
diversity. By combining GLAS-derived canopy height data with ancillary variables like
tree cover, elevation, and climatology maps, authors achieve high accuracy despite GLAS
data’s sparse coverage. Validation of their results against field measurements further em-
phasizes LiDAR’s robustness in forest canopy assessment.
In contrast to LiDAR data use, the Global Rain Forest Mapping project, led by the
National Space Development Agency of Japan, represents a pioneering effort in utilizing
SAR technology to produce spatially and temporally contiguous datasets over the tropical
belt. Due to the low L-band frequency sensitivity of the utilized SAR imagery to above-
ground biomass, they are able to detect e.g. standing water beneath the forest canopy.
This sensitivity is shown to be particularly relevant in urban forests, where the ability
to distinguish between different types of vegetation and other LC types can be especially
challenging.
Unlike the previous studies, Sun et al. [132] explore the fusion of LiDAR and SAR data
to enhance biomass estimation by leveraging strengths of both techniques. LiDAR, with
its capability to provide detailed vertical profiles of canopy structure, offers accurate mea-
surements of canopy height, while SAR data, particularly sensitive to canopy volume and
biomass, adds spatial continuity across the landscape.
However, use of tree height information to map trees or forests is showcased to be par-
ticularly practical for forest mapping. As such a study by Kim [83] demonstrate how
a normalized digital surface model (nDSM) derived from stereo photography at 25 cen-
timeter resolution can be utilized to estimate forest stand volume based on crown density
and stand height. This method presents a cost-effective alternative to LiDAR or SAR.
This study further illustrates the capability of RS to provide detailed and actionable
forest metrics beyond mere canopy cover, including tree heights and volume estimates,
essential for urban forestry management. Similarly to Kim [83], Balenović et al. [10] in-
vestigate the application of digital photogrammetry for estimating forest stand heights
using stereo models from color infrared (CIR) digital aerial images. Therefore, they first
create a digital surface model (DSM) from aerial photographs, followed by the extraction



Related work 28

of nDSM to represent tree heights. Furthermore, they explore the importance of high
spatial resolution in the accuracy of photogrammetric estimates. By comparing images
with different resolutions (10 and 30 centimeters), the study demonstrates that higher
resolution images are capable to precisely identify tree tops, which is critical for accurate
height measurement. However, they also indicate, that lower resolution (and thus less ex-
pensive) imagery is sufficient for operational purposes, assuming a high-precision digital
terrain model (DTM) is available.

Urban Agriculture and Urban Gardens

Urban agriculture can be generally defined as growing food in cities [136]. While this
definition includes large agricultural fields that are located in urban areas, it also consid-
ers small-scale gardening in allotments, front and backyard gardens, or even balcony and
rooftop gardens. In large cities agricultural land is not included in the public green space
data, as it is usually not clear how this land will develop [63]. However, in some coun-
tries, it is integrated into urban economic and ecological systems [38]. Urban agriculture
is crucial for enhancing food security, promoting sustainable LU, and supporting local
economies. It also serves social and ecological functions, including recreational spaces,
enhancing biodiversity, and improving urban climate [136].
Mapping urban gardens is critical for understanding the spatial distribution and potential
of these spaces in enhancing urban food systems, biodiversity, and community well-being.
Despite their importance, accurately mapping these areas is challenging. This is primarily
due to varied vegetative cover within the gardens, which complicates classification [127].
One notable effort in this field is conducted by Taylor and Lovell [136], who manually
analyze high-resolution Google Earth imagery to map agricultural sites in Chicago. They
categorize sites by type: residential gardens, community gardens, urban farms, and by
size, from small to very large. Despite achieving high accuracy, they note the process
being exceedingly labor-intensive. Contrasting, Mathieu et al. [95] conduct an geoOBIA
method with Ikonos imagery to map private gardens in New Zealand. The four meter spa-
tial resolution imagery, enhanced with four spectral bands, appears effective in identifying
green spaces. This approach not only differentiates various garden types but also provides
crucial ecological data, highlighting the significance of spatial resolution in revealing de-
tailed characteristics of garden spaces. The method is also highlighted for its efficiency in
generating garden-relevant datasets. Moreover, there is no evident research that focuses
on extracting garden-relevant features, like sheds, using height information. Nevertheless,
the approach of height thresholding is commonly performed for the extraction of residen-
tial buildings. For instance, Vu et al. [143] utilize LiDAR height thresholding of both pre-
and post-event data to identify new constructions or demolitions of buildings. Selected
thresholds are based on the standard deviation from the mean difference, helping to dis-
tinguish height changes from normal variance due to factors like environmental changes.
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The authors note that height thresholding is effective in detecting significant structural
changes, whereas minor extensions or modifications that do not significantly alter build-
ings’ height profile might not be detected. Similarly, Matikainen et al. [96] use height
information obtained from a laser scanner for building detection. They utilize the height
difference between DSM and the DTM to distinguish buildings from other structures or
vegetation, using a 2.5 meter height threshold. Although this method is advantageous
in reducing misclassifications and enhancing accuracy of building detection, it struggles
to identify low-rise buildings or structures with minimal elevation differences from their
surroundings.
The utility of very-high-resolution RS imagery for mapping small, fragmented green spaces
is further evidenced by Haase et al. [63] who achieve a 96% accuracy rate using a 5 meter
spatial resolution Rapideye dataset combined with spectral unmixing techniques. In a
similar vein, Freire et al. [54] utilize a 0.61 meter resolution QuickBird dataset for urban
agriculture mapping. Despite a lower accuracy rate of 52%, attributed to the varying veg-
etation stages within a single site, the semi-automated process marks a significant step
forward in urban agricultural identification. Advancements in garden mapping continue
with the use of unoccupied aerial vehicles (UAVs) and an RF ML method by Wagner
and Egerer [144]. The UAVs, flying at lower altitudes, offer enhanced visibility and pro-
duce highly detailed 5 centimeter resolution images, ideal for calculating spatial metrics
at plot level, a task difficult with larger scale images like those from Sentinel-2. Achiev-
ing an 80% prediction accuracy, this method is deemed highly suitable for urban garden
mapping. However, Abdi [1] executes a combination of aerial and Sentinel-2 imagery to
map urban gardens in Yazd city, Iran. His methodological approach, using vegetation
indices and DSM alongside geoOBIA, achieves over 80% accuracy. The integration of
the SVM method within geoOBIA proves particularly effective in distinguishing urban
gardens from other LUs. This approach not only enhances mapping accuracy but also
reveals vulnerability of smaller gardens due to urban development. Mentioned research
articles make it clear that mapping urban gardens is a complex but critical task, greatly
aided by the availability of high-resolution data to precisely identify these valuable urban
areas.
The process of mapping urban agriculture in general involves similar approaches as with
urban gardening areas, namely combination of GIS, RS, and ML methods. An example
of this is the work by Taylor and Lovell [136], who utilize Google Earth images to map
potential urban agriculture locations, supplemented by data from local non-profits and
food policy councils. Their method involves a combination of RS and manual checks via
Google Earth, categorizing urban agriculture sites based on their visibility and determin-
ing their accessibility and ownership. The accuracy of these maps is largely influenced by
the spatial resolution of the data used, highlighting that manual verification and reliance
on third-party data can introduce bias or errors if the data is outdated or incomplete. To
enhance the reliability of these maps, Delgado [38] employs aerial photographs coupled
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with field surveys, despite its higher cost and time investment, results in significantly
more precise data than that obtained from medium or low resolution satellite imagery
alone. This approach includes field validations to confirm agricultural activity, followed
by integrating these findings with urban maps to analyze the urban-rural gradients and
the impacts of urbanization on farming practices. Although highly accurate, field vali-
dation is noted to be labor-intensive, potentially limiting its applicability for larger-scale
projects or frequent updates.
An alternative to intensive field surveys is the use of very high-resolution RS images, as
demonstrated by Forrest [52]. The author utilizes Quickbird satellite imagery and the
geoOBIA technique to segment and classify urban and peri-urban agricultural areas, of-
fering a better management of the spatial complexity typical for urban settings. However,
this method faces challenges in accurately marking field boundaries due to the fragmented
nature of urban landscapes, and it may struggle to keep up with the dynamic shifts in
urban agriculture without regular data updates. Similarly, combination of multi-spectral
UAV data and OBIA to map agricultural sites is explored by El Hoummaidi et al. [44].
This study utilize DL algorithms to analyze high-resolution drone imagery, achieving no-
table success in vegetation cover classification and crop health assessment. Here, the
authors as well note that the use of UAVs enables capturing of detailed, real-time data,
offering insights into crop health that were previously unattainable with traditional RS
methods. This method proves particularly effective in urban settings where traditional
field surveys are logistically challenging and time-consuming.
Urban agriculture often presents itself differently in imagery; crop fields generally appear
more uniform than smaller gardening areas, making reliance on a single data source in-
adequate. Therefore, to capture the dynamic nature of urban agriculture, involvement of
multi-temporal data is preferred over single-date observations. Such an approach helps in
aligning phenological development with varied crop types and management practices in
crop production systems, thus improving the accuracy of cropland maps. Addressing this,
Blickensdörfer et al. [19] integrate optical and radar data from satellites like Sentinel-2,
Sentinel-1, and Landsat 8 with environmental data that includes topographic and climatic
elements. Using an RF classifier, they analyze dense time series data from these sources
to enhance classification accuracy, particularly under varied weather conditions. While
the integration of multiple data sources broadens the scope of mapping, it also escalates
the complexity and computational demands of the process. This comprehensive approach
depends on the availability of consistent, high-quality time-series data, which may not be
universally accessible or applicable in all regions. Similarly, Forster et al. [53] recognize
that different crops and their phenological stages exhibit distinct spectral, textural, and
morphological characteristics. Therefore, using Quickbird imagery in combination with
OBIA, they map peri-urban agriculture (PUA) in Hanoi, Vietnam. The study demon-
strates that per-field vector segmentation and classification are more effective for mapping
PUA compared to traditional pixel-based methods. However, it also highlights the need
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for advanced segmentation techniques and multi-temporal imagery to improve accuracy
and efficiency.
Perennial crops can sometimes be challenging to identify, as they showcase varying tem-
poral changes compared to annual crops. In order to identify such crops, in particular
vineyards, Simonneaux et al. [129] perform NDVI thresholding to map them in Morocco.
They set 0.15 as a minimum threshold between bare soil and tree-like vegetation while
0.45 as a maximum threshold. Although the authors reach 85% identification accuracy,
they highlight confusions due to overlapping spectral signatures of different crops as well
as underdetection of young tree plantations due to low NDVI values. Peña et al. [112]
use spectro-temporal indices derived from Landsat 8 images to map perennial plants in
Chile. The authors utilize the full spectral range of the used images, as well as NDWI,
and NDVI indices. However, they achieve the best result, by especially utilizing the vis-
ible and Short-wave infrared (SWIR) bands. In contrast, NDVI produces the poorest
outcomes. They further examine the significance of different dates and establish that the
early (greenness) and late (senescence) stages of the growing cycle are the most critical
for differentiation.

Green Corridors

The importance of green corridors from an ecological perspective is well known. Therefore,
they are mainly mapped to understand connectivity of core areas and rarely are mapped
as a part of UGSs. They serve to connect major landscape elements in urbanized regions
[24], thus integrating different LU classes like industrial areas and residential sites. Their
primary role is to maintain a green landscape structure and ensure ecological continuity
[62]. As such, Guneroglu et al. [62] map green corridors in Trabzon and Rize, Turkey.
Using the SVM classification approach with combination of multispectral digital aerial
images, Ikonos, and Quickbird images, the authors identify severe fragmentation of green
spaces in both study areas. In order to understand the fragmentation level as well as
disconnection of green spaces, they utilize metrics such as the Largest Patch Index, Area
Weighted Mean Patch Fractal Dimension and others. Based on the their findings, the
authors propose a network of green corridors for each city and showcase how the proposed
networks can serve as ecological links between fragmented landscapes. They apply three
main rules to design green corridors:

• Connectivity - ensuring that the corridors connect major patches of green spaces

• Continuity - corridors are designed to provide continuous green space, avoiding
interruptions that could hinder their ecological function

• Accessibility - making the green corridors accessible to the public to enhance recre-
ational opportunities while maintaining their ecological integrity
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In the existing literature, there are also other examples of how green corridors are iden-
tified, especially from the urban planning perspective. For instance, Popescu et al. [114]
develop a methodology to identify ecological corridors for large carnivores, specifically the
brown bear, in various Romanian landscapes. With a three step approach, authors first
perform habitat suitability analysis to map core habitat areas of the species of interest.
They utilize DEM and CORINE LC datasets as a base for GIS analysis. They then create
a connectivity model that establishes or adds linear structures at the critical points where
infrastructure disrupts ecological flows. And finally, they explore ecological corridors at
two scales and identify critical areas in the network.
The effects of urban expansion, or changes in urban areas on the pattern of urban green
corridors is further investigated by Wang and Pei [145]. Their study conduct morpholog-
ical spatial pattern analysis techniques and socio-ecological analysis methods to evaluate
the spatial patterns of urban green and blue areas over time. With the selected method,
they categorize green infrastructure into different structural classes like core, edge, and
bridge patterns, which allows for a detailed examination of how urbanization has reshaped
ecological landscape. Using Landsat data and an atlas of urban expansion, they first iden-
tify water, built-up, and other/open space and later fore-and background classes for the
morphological analysis. The findings of the analysis highlight a tension between urban
development and ecological conservation. Therefore, the study advocates for integrating
GI planning in urban development to maintain and enhance ecological networks.
Use of morphological image processing to map ecological corridors is very common tech-
nique among ecologists. As such, Vogt et al. [142], discuss the importance of landscape
corridors for biodiversity conservation and present a method for automated mapping using
morphological image processing and a CORINE LC dataset. They introduce a technique
that differentiates between "line" and "strip" corridors by considering their width and
connectivity, which is crucial for practical conservation efforts [24]. Further, the authors
emphasize that structural connection, does not necessarily imply a functional connection.
However, a knowledge of structural corridors is certainly valuable from a biodiversity as-
sessment viewpoint. The authors also acknowledge limitations of RS data and the need
for ground validation to validate identified corridors.
Various techniques are implemented to identify these corridors, which range from RS im-
agery and ML classification to habitat suitability, network analysis and morphological
image analysis. Zhang et al. [154] seek to improve landscape connectivity through map-
ping of potential green corridors. The authors first identify core patches that consist of
16 parks with more than 12 hectares area. Then they utilize least-cost path technique to
identify the easiest route that wildlife can take from one core area to another. By assigning
suitability scores and weights to LU types (e.g., prioritizing vacant lots with trees), they
create a cost surface map to identify the “easiest” or most feasible routes. This allows the
placement of corridors by calculating paths with minimal ecological “costs” (resistance)
across the landscape. Furthermore, by using a gravity model, they also rank corridors that
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would provide the most significant connections with the least investment. The authors,
however, encounter problems due to the resolution of the utilized data. Therefore, they
emphasize the necessity of high-resolution data for accurately mapping UGSs and vacant
parcels. Assignment of resistance values to different land types and suitability scores for
various LUs is based on expert judgment and existing literature. Therefore, the authors
also acknowledge that this subjectivity in scoring can lead to bias, as it might not fully
represent the true ecological costs of each LC type for all species.
Use of satellite data and GIS for green corridor mapping is a common practice. Cui et al.
[33] focus on constructing and optimizing green space ecological networks in urban fringe
areas. They use a combination of Landsat satellite imagery and GIS to classify LC in the
study area. By dividing green spaces into categories (e.g., parks, protective green spaces,
and regional green spaces), they create a spatial layout of the area’s green network. The
authors utilize the minimum cumulative resistance model to map potential corridors. Re-
sistance values are assigned based on LC, with urban and developed areas presenting
higher resistance and green or natural areas showing lower resistance. The least-cost path
analysis then identifies feasible ecological corridors with the least cumulative resistance.
Similarly to the study of Zhang et al. [154], the authors define subjectivity in assigning
resistance values as a drawback of the applied methodology. Moreno et al. [102] focus on
using RS data to assess and plan green corridors and explore the potential of urban forests
for green corridor development. The authors use Sentinel-2 satellite imagery, specifically
implementing NDVI to assess vegetation health, vigor, and density. Areas with NDVI
values close to or above 0.3 are considered high-quality vegetation zones, characterized by
healthy, vigorous plants and sufficient canopy cover. These high-NDVI areas are identified
as core green spaces that could serve as hubs or anchor points in the green corridor net-
work. This approach provides a detailed picture of green space distribution and quality
across a urban landscape. As a result, they select parks, urban forests, and other large,
public green areas as core areas. They further conduct a detailed assessment of vegeta-
tion in the field, focusing on a street-level vegetation quality within 100 meter transects.
For each 100 meter segment, the authors evaluate health and structural quality of the
vegetation to determine its suitability as a connector within the corridor. They also ac-
knowledge, that due to the satellite’s resolution, some smaller vegetation patches may
not have been captured accurately, potentially leading to underestimations of vegetative
cover.



Chapter 3

Methods

In this chapter, we describe methods executed throughout the thesis. Application of se-
lected methods, or their outputs, across various chapters is depicted in Figure 3.1. In the
following we introduce the Random Forest model, grey-level co-occurrence texture met-
rics, mean-shift segmentation, density-based clustering, and convex hulls. Additionally,
we detail architecture of interpretable machine learning techniques, focusing specifically
on Shapley Additive Explanations, and discuss the one-at-a-time sensitivity analysis ap-
proach.

Figure 3.1: Flowchart depicting utilization of methods across various Chapters.

3.1 Random Forest

In most modern ML approaches, a classifier is produced by a learning algorithm using a
collection of training examples in a set S. The classifier represents a hypothesis about the

34
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true function f . When presented with new x values, it predicts the associated y values
[41]. When preforming a classification task, such as classifying UGSs, we are not only
interested in the most accurate results, but also in uncovering which variables contribute
the most to the classifier. However, many ML techniques, including k-nearest neighbors,
SVM, and neural networks, while excel in classification tasks, offer little understanding
of which variables are most influential in the resulting classifier [6]. Classification trees,
which are structured as binary trees, stand out for their ability to predict an observation’s
class using a wide array of covariates and bring light on which covariates serve as key pre-
dictors. It is, however, observed that classification trees can be unstable regarding the
changes in training sets. Therefore bagging techniques are introduced to reduce and/or
eliminate this instability [41]. Bagging can be represented as follows: in each iteration,
bagging introduces a training set to the classifier that comprises of randomly selected m

training examples from the original set of m items. This sample is known as a bootstrap
replicate of the initial training set, a process referred to as bootstrap aggregation or bag-
ging by Breiman [21]. On average, each bootstrap replicate includes about 63.2% of the
original training set’s examples, with some appearing more than once [41]. Furthermore,
an alternative approach to creating training samples is to form them by excluding sepa-
rate portions of a training data. For instance, this data can be split at random into 10
distinct segments. Subsequently, 10 interlinked training sets can be generated, each time
omitting one of these 10 segments. This method mirrors the one employed for tenfold
cross-validation. As a result, ensembles built using this method are often referred to as
cross-validated committees [41].
RF, introduced by Breiman [22], is a specific instance of bagging [6]. It is also referred to
as an ensemble learning technique. Ensemble classifiers consist of multiple single classi-
fiers whose individual judgments are aggregated to categorize new instances. Experiments
show, that ensembles frequently surpass the accuracy of single classifiers that they are
build on. Therefore, creation of robust ensemble classifiers is a particularly dynamic field
of supervised ML [41]. In order to grow ensembles, random vectors with the previously
described bootstrap sampling technique are created. The procedures of voting for a com-
mon class, based on the generated large number of trees, is called random forests [22].
Consequently, RF can be described as a classifier consisting of tree-structured classifiers
assembly {h(x,Θk), k = 1, . . .}, with {Θk} being independently distributed random vec-
tors, and each tree giving a unit vote for the most popular class at input x [22].
An important procedure incorporated into RF is a feature selection, where the most con-
tributing features can be calculated. Commonly, feature selection techniques shift through
various subsets of features to identify the optimal and the smallest subset out of the po-
tential 2N candidates, based on a specific evaluation metric [36]. Feature selection not
only enhances model performance but also allows for the creation of simpler and more
efficient models through the use of a limited set of features. Additionally, it provides
deeper insights into the data’s underlying processes by concentrating on a chosen subset
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of features [121]. The calculation of variable importance in RF, however, involves assess-
ing the mean decrease in accuracy by utilizing the out-of-bag (OOB) observations. Since
RF is developed from a bootstrapped sample, around one-third of the observations in the
dataset are not used in the development of each tree, and these unused observations are
termed OOB observations for that particular tree [6]. Therefore, these OOB observations
effectively serve as a natural test set for each tree, offering a simpler and less resource-
intensive alternative to the traditional cross-validation method for estimating RF error
rates. Variable importance, otherwise also called permutation importance, is calculated
following three general steps described by Archer and Kimes [6]:
for a series of bootstrap samples indexed by b = 1, . . . , B:

1. Identify the OOB observations, designated as Ob, where Ob is the complement of
the b-th bootstrap sample within the full dataset D;

2. For Ob, utilize the tree Tb to determine class memberships and count the instances
where Tb accurately identifies the correct class;

3. For each predictor variable indexed by j = 1, . . . , p:

(a) Shuffle the values of predictor xj within Ob;

(b) Apply Tb to classify Ob using the shuffled xj, and count the correct classifica-
tions;

(c) The vote difference for the correct class between the shuffled and original OOB
data is computed by Vdiff = Vcorrect, orig − Vcorrect, shuffled.

When the quantity of trees is fixed, a variable that receives higher importance score,
compared to others, is the most important variable for the classification. Hence, instead of
calculating an exact relationship between the independent variables and the outcome, like
in conventional data modeling, measures of variable importance offer a strong statistical
reflection of a variable’s role in the RF classification [6].
Apart from permutation feature importance, it is also common practice to calculate the
Gini impurity measure [21]. Gini impurity explains how "mixed" the classes are in a node.
It ranges from 0 (pure, all samples in the node belong to a single class) to a maximum
value when the classes are evenly mixed. For a node t with K classes, the Gini impurity
is calculated based on Equation 3.1:

G(t) = 1−
K∑
k=1

p2k (3.1)

where pk is the proportion of samples of class k in the node. As the tree is constructed,
the Gini gain for every split will be recorded. Then, for each feature xj, the Gini gain
across all the nodes where the feature is used to split the data in the current tree will be
summed as follows in Equation 3.2:
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Gimportance(xj) =
∑
t∈Tj

∆Gt (3.2)

where Tj is the set of all nodes in the tree where xj was used to split.
Since RF consists of multiple decision trees, the Gini importance will be averaged over all
the trees in the forest as shown in Equation 3.3:

Gforest importance(xj) =
1

B

B∑
b=1

Gimportance,b(xj) (3.3)

where B is the number of trees in the forest.
In order to optimize classification accuracy, RF allows parameter tuning. When building
an RF classifier, two key parameters for classification need to be set: number of variables
used to split a node (mtry) and number of trees grown in the forest (ntree). When
determining number of variables for split, a typical approach is to take a square root
of m, where m represents sum of the number of predictor features. Unlike many other
classifiers, an increase in ntree leads to an improved classification performance [22]. Thus,
this parameter must be adjusted wisely.

3.2 Mean-Shift Segmentation

Mean-Shift segmentation, proposed by Fukunaga and Hostetler [55], is a non parametric
and iterative clustering method designed to detect modes, or peaks, of a dataset’s prob-
ability density function. The algorithm focuses on estimating the gradient of the density
function. By pinpointing areas of highest density, mean shift segmentation effectively di-
vides the dataset into distinct clusters or segments. This method has been widely utilized
across various fields, especially in image processing, for tasks like edge detection, image
segmentation, and analysis of feature spaces [155]. It is used for locating maxima of a
density function given discrete data is sampled from that function [29]. The main advan-
tage of this segmentation technique is its ability to adapt to an actual data distribution,
allowing it to handle arbitrary shapes and numbers of clusters without requiring prior
knowledge of these clusters [55]. This procedure works by iteratively shifting each data
point towards the region of the highest data point density until convergence. Comaniciu
and Meer [29] describe the process of the mean-shift segmentation with the following five
steps:

• Initialization: Each data point xi in the feature space is given a kernel function.
Typically, the Gaussian kernel K(x) is used to weight the influence of surround-
ing points. The bandwidth parameter h of the kernel determines the size of the
neighborhood considered for mean computation.
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• Mean Shift Vector Calculation: The mean shift vector is computed as:

m(x) =

∑n
i=1K

(
x−xi

h

)
xi∑n

i=1K
(
x−xi

h

) − x

where x is the current position, xi are the neighboring data points, K is the kernel
function, and h is the bandwidth. The mean shift vector m(x) points toward the
direction of the maximum increase in the density.

• Shifting the Window: The current position x is shifted by the mean shift vector:

x← x+m(x)

This step moves the data point towards the region of higher density.

• Convergence: The iterations continue until the shift m(x) is smaller than a prede-
fined threshold, indicating that the point has reached a mode of the density function.

• Cluster Formation: Once convergence is achieved, data points that converge to the
same mode are assigned to the same cluster. This results in the segmentation of the
data into clusters.

Mean-shift segmentation has been widely incorporated into various spatial libraries due
to its ease of integration into GIS workflows. The Mean Shift Segmentation tool in Ar-
cGIS Pro not only executes the algorithm but also offers the flexibility to adjust specific
parameters for improved segmentation outcomes. For example, adjusting spectral detail
parameter allows for more refined segmentation, while the spatial detail parameter in-
troduces spatial dependency among grouped pixels. Additionally, defining the minimum
segment size can help better distinguish spatial objects with known dimensions, effectively
managing the separation of large and small patches.

3.3 Density-Based Clustering

Density-based clustering is an approach that identifies clusters within a dataset by looking
at regions of high object density. The core idea is that a cluster is a contiguous region
of high density, separated from other clusters by areas of lower density. Points that lie
in regions of low density are considered noise or outliers [86]. The density of a point
is typically estimated using methods like kernel density estimation or nearest neighbor
density estimation. A density-based cluster is formed by connecting points that have
a higher density than a given threshold and are reachable through a contiguous path.



Methods 39

Consequently, for each point x first the local density p(x) is estimated by means of kernel
or nearest-neighbor approaches. Points are considered connected if they are within a
specified distance ε of each other. Finally, the cluster is formed as the maximal set of
points directly or transitively connected to each other with densities exceeding a given
threshold λ [86].
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the
most well-known density-based clustering algorithms [48]. It identifies clusters by finding
regions in a data space where the density of points exceeds a certain threshold. DBSCAN
is particularly suitable for datasets with clusters of varying shapes and sizes, and it can
help to effectively identify noise and outliers. It uses two key parameters: radius ε and
minimum number of points (minPts). The procedure of DBSCAN can be described as
follows:

• Core Points A point p is classified as a core point if there are at least minPts points
within its ε-radius neighborhood. Formally, the density of a point p is the number
of points within a radius ε around p:

kp = |{x ∈ D | distance(p, x) ≤ ε}|

A point p is a core point if kp ≥ minPts.

• Direct Density Reachability: A point q is directly density-reachable from point p if
q is within the ε-radius of p and p is a core point.

• Density Connectivity: Two points p and q are density-connected if there is a path
through other core points such that each point on the path is directly density-
reachable from the next point. This transitive relation allows DBSCAN to form
clusters of arbitrary shape.

• Cluster Formation: The algorithm starts by selecting an arbitrary point in the
dataset. If this point is a core point, a new cluster is created by adding all points
density-reachable from it. This process is repeated until all points have been as-
signed to a cluster or labeled as noise.

• Noise Identification: Points that do not belong to any cluster are considered as
noise.

While DBSCAN exhibits advantages in distinguishing noise and not requiring number
of clusters as input, its performance still depends on the choice of ε and the minPts.
Furthermore, it might struggle to form clusters of varying densities, as the mentioned
parameters cannot adapt to the differences in density within the same dataset [86].
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3.4 Texture Metrics

In classical RS classification tasks, it is common to consider unique spectral characteris-
tics of objects. Spectral information reflects chemical or biophysical properties of these
objects. However, measuring spatial characteristics of objects can be equally important.
This is especially true as the level of detail improves with increased spatial resolution,
which can also lead to an increase in potential noise. [64].
Texture of objects, similar to color and shape, can be crucial for their identification. While
texture can be described in many ways and can have many forms like ’smooth’ or ’rough’,
for a computer to understand it or be able to represent it, numeric representation of a tex-
ture must be defined and/or provided. There are numerous standard methods for texture
processing. Mostly studies have concentrated on texture measures obtained by sliding
a fixed-size window with an odd number of dimensions across an image and analyzing
various pixel relationships. The grey-level co-occurrence matrix (GLCM), introduced by
Haralick [65] in 1979, is by far the most commonly used technique for deriving texture
measures [28]. Furthermore, it is a method that can provide a numeric, computer under-
standable representation of various textures.
GLCM implements a spatial co-occurrence matrix to calculate relationships between pixel
values, and uses these relationships to derive second-order statistical properties from the
matrices. Features extracted from the GLCM are based on the premise that the texture
information in an image is encapsulated in spatial relationships among the grey levels
of adjacent pixels [57]. Therefore, GLCM examines each pair of pixels separated by a
distance d in a given direction θ and computes how often different combinations of pixel
intensities (gray levels) occur in an image. There are eight texture indices that can be
grouped into 3 main classes, namely statistics, contrast, and orderliness group [149]. The
statistical group provides descriptions of the fundamental statistical variables associated
with the texture’s gray value, and includes texture metrics such as mean, variance, and
correlation. Furthermore, the contrast group quantifies local variations within a patch
and contrasts these with the adjacent pixels, and focuses on metrics such as contrast,
homogeneity, and dissimilarity. Finally, the orderliness group evaluates the regularity
and randomness of pixel values, using measures like angular second moment and entropy
metrics [149]. Short descriptions and equations to calculate some of the most commonly
used GLCM metrics are given in Table 3.1. Even if many attempts to modify or propose
new texture extraction methods were made, GLCM remains the most utilized one. Until
now, the most changes to GLCM were done in terms of improved calculation algorithms,
while the calculation statistics behind it still remains the same [146].
Studies show, that the information extracted by texture analysis from visible and infrared
wavelengths is independent from spectral reflectance values. This in turn, can be an ex-
tremely advantageous information source from RS images whose wavelength distribution
is limited only to visible or infrared part of the spectrum [64]. Consequently, recognizing
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and measuring the variations in texture within an image can aid distinguishing between
types of vegetation. This distinction can, in turn, assist in characterizing different types
of UGSs. This is particularly relevant for species with similar spectral characteristics but
with different spatial patterns [99].

Table 3.1: Equation and short description of commonly used GLCM indices.

GLCM Metrics Equation Description

Dissimilarity
∑N−1

i,j=0 iPi,j|i− j|
Measures the variation of grey level pairs
in an image

Homogeneity
∑N−1

i,j=0
iPi,j

1+(i−j)2

Quantifies the consistency of the
non-zero elements within the GLCM

Contrast
∑N−1

i,j=0 iPi,j(i− j)2
Measures the intensity contrast between
neighboring pixels over the whole image

Entropy
∑N−1

i,j=0 iPi,j(−InPi,j)
Measures the disorder of grey levels
in the image

The selection of the the most appropriate GLCM metrics for UGS characterization can
be challenging. However, from the mentioned indices, the most commonly associated
ones with land cover patches are contrast, dissimilarity, entropy, and variance [64]. These
indices excel in identifying edges, capturing spatial dynamics and exchanging of resources
between various UGSs and their adjacent areas [149].

3.5 Vegetation Indices

In RS, scientists use vegetation indices to assess vegetative covers both qualitatively and
quantitatively through spectral data. These indices help distinguish various types of veg-
etation based on their unique spectral properties compared to the surrounding ground
elements [151]. For example, visible light in the red spectrum (630-690 nm) is absorbed
by chlorophyll, and near-infrared light (760-900 nm) is reflected by the cellular structures
of leaves. The noticeable difference in reflectance between these two wavelengths is indica-
tive of the presence of green vegetation. Specifically, the red spectral response correlates
with chlorophyll levels, while the near-infrared response depends on the leaf area index
and the density of the green vegetation. By analyzing these spectral responses, vegetation
indices enable the differentiation of vegetation from soil and the assessment of photosyn-
thetically active biomass based on vegetative cover density. Overall, these indices provide
a more sensitive measure of vegetation health and biomass than individual spectral bands
[11].
In the Chapter 2 we describe how various authors identify urban green. It is no surprise
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that majority of them utilize vegetation indices as well [37][112]. Therefore, in the fol-
lowing we present how selected vegetation indices can be calculated to assist a vegetation
mapping.
NDVI is one of the most commonly used vegetation indices to highlight vegetation. It is
based on the knowledge that chlorophyll absorbs the red light while the mesophyll leaf
structure scatters near-infrared light (NIR). NDVI values range from -1 to +1, where
positive values represent healthy vegetation and negative values indicate an absence of or
sparse vegetation [106]. It is calculated using red and NIR bands of the Sentinel-2 images
based on Equation 3.4.

NDV I =
NIR−Red

NIR +Red
(3.4)

Vegetation indices are not only calculated from multi-spectral data. Some very-high
resolution aerial images can frequently be provided as only three band image with red,
green, and blue bands. Consequently, to increase an information gain from limited spectral
resolution, RGB-based vegetation indices can be calculated.
Green Leaf Index (GLI) is recognized as one of the most robust RGB-based indices for
areas dominated by vegetation, built-up, or sparse vegetation [3]. It utilizes all three
bands of aerial imagery, with values ranging from -1 to +1. Negative values indicate soil
and non-living features, while positive values represent green leaves and stems [90]. GLI
is calculated using Equation 3.5, where green, red, and blue represent spectral bands of
an aerial imagery.

GLI = (2 ∗ green− red− blue)/(2 ∗ green+ red+ blue) (3.5)

In addition to the GLI index, two common RGB indices are the Red-Green-Blue Vege-
tation Index (RGBVI) as well as the Normalized Green-Red Difference Index (NGRDI).
The idea behind RGBVI index is based on the knowledge, that green vegetation has high
reflectance in the green spectrum (around 540 nm) and the absorption in the red and blue
regions of the visible spectrum (400–700 nm) caused by plant chlorophylls. Therefore, to
account for reflectance differences due to chlorophyll a absorption (420, 490, and 660 nm)
and chlorophyll b absorption (435, 643 nm), Bendig et al. [16] propose the RGBVI index.
The RGBVI is formulated as the normalized difference between the squared green re-
flectance and the product of blue and red reflectance and is calculated based on Equation
3.6.

RGBV I =
(RG×RG)− (RR×RB)

(RG×RG) + (RR×RB)
(3.6)

The NGRDI index is also designed to differentiate green vegetation from other ground
cover types [140]. It is calculated as the normalized difference between green and red
reflectance bands of aerial imagery, based on a straightforward Equation 3.7.
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NGRDI =
RG−RR

RG+RR
(3.7)

It effectively distinguishes between three main ground cover types:

• Green Vegetation: Characterized by higher green reflectance than red, resulting in
positive NGRDI values.

• Soils: Have higher red reflectance than green, leading to negative NGRDI values.

• Water/Snow: Show similar reflectance in both green and red wavelengths, producing
NGRDI values near zero.

NGRDI ranges between -1 and +1, where the value of zero serves as an effective threshold
to separate green vegetation from other types of ground cover. Additionally, changes in
the balance between green and red reflectance can be used to detect phenological events,
such as the timing of leaf green-up and autumn coloring [104].

3.6 Convex Hulls

The convex hull of a set of points in a plane is the smallest convex polygon that can
completely contain all the points in the set. It can be visualized as a shape formed by
stretching a rubber band around the outermost points of a set; when the band is released,
it snaps into the shape of the convex hull [82]. The process of creating a convex hull using
a set of points can be described as follows:

• Start with three non-collinear points to form the initial convex hull. Let’s denote
these points as p1, p2, and p3. These points are arranged such that they form a
counter-clockwise triangle.

• Calculate orientation of these three points to ensure they form a convex polygon.
The orientation of points p, q, and r can be determined using the determinant:

orientation(p, q, r) = sign


det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 px py

1 qx qy

1 rx ry

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


= sign ((qx − px)× (ry − py)− (qy − py)× (rx − px)) .
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If orientation(p1, p2, p3) > 0, the points form a counter-clockwise turn, indicating a
convex shape.

• For each new point r in the set check if r lies inside the current convex hull. A point
r is inside the convex hull if, for every edge (pi, pi+1) of the hull, the orientation of
the triplet (pi, pi+1, r) does not indicate a right turn:

orientation(pi, pi+1, r) ≥ 0.

If r is outside the current hull (i.e., for at least one edge (pi, pi+1), orientation(pi, pi+1, r) <

0), identify the sequence of edges that are visible to r. This involves finding tangents
to the current hull from point r.

• If r is outside the current hull, find the edges of the hull visible from r. This is done
by finding the range of indices [i, j] where:

orientation(pi, pi+1, r) < 0.

• The edges that are weakly visible from r form a consecutive subchain. Let this
subchain be from vertex vi to vj. Replace this subchain with the new point r, thus
creating new edges (vi, r) and (r, vj).

• Find the tangents from point r to the current hull. The tangent lines are determined
by the edges where the orientation changes from positive to non-positive as you
traverse the hull.

• Update the list of vertices that form the convex hull.

A primary challenge in convex hull computation arises when using floating-point arith-
metic. Kettner et al. [82] demonstrate that the result of convex hull algorithms can be
unreliable due to the limited precision of floating-point arithmetic. Especially rounding
errors can lead to misclassification of points, causing the algorithm to miss points that
should be included in the hull or include points incorrectly. Furthermore, the algorithms
rely on geometric properties such as the orientation of points (whether a set of points
forms a left or right turn). Floating point errors can cause these properties to be violated,
resulting in failures like a point outside the convex hull might seeing no edge of the hull,
leading to its incorrect exclusion. Points inside the hull might be erroneously classified
as being able to see an edge, leading to incorrect updates to the hull. In addition, a
computed convex hull may not be truly convex, or in severe cases, the algorithm might
even fail to terminate.
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3.7 Interpretable Machine Learning Techniques

Various approaches to explain ML and DL methods exist. However, Shapley Additive
Explanations (SHAP) by Lundberg [93] is one of the most frequently used one in LULC
related studies. SHAP facilitates to understanding the contributions of each feature to
predictions made by a model. SHAP uses Shapley values, originally developed for coop-
erative games, to allocate the “payout” (in this case, model prediction) among “players”
(input features) according to their contribution. To compute SHAP values, a model is
trained with and without each feature, and differences in the model’s output are cal-
culated to determine that feature’s contribution. SHAP provides both local and global
explanations, which allows to understand both individual predictions and overall model
behavior [93].
Lundberg [93] describes SHAP values as follows. Let f(x) be the prediction model, where
x is a vector of input features. SHAP values represent how much each feature contributes
to the difference between the actual prediction f(x) and the mean prediction E[f(z)]. A
SHAP value for each feature i is computed by taking average of the marginal contribu-
tions of that feature over all possible subsets of features S that do not contain i. SHAP
values ϕi for feature i are calculated based on Equation 3.8 as follows:

ϕi(f, x) =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[
fS∪{i}(x)− fS(x)

]
(3.8)

where F is a set of all features, S is a subset of features excluding i, fS(x) is the model’s
output when only features in set S are known, and fS∪{i}(x) is the model’s output when
feature i is added to the subset S.
Computational complexity of exactly calculating SHAP values for models with many
features could be a limiting factor, since it requires evaluating the model for all possible
subsets of features. Therefore, several approximation methods are used, such as Kernel
SHAP and Tree SHAP. In Kernel SHAP, SHAP values can be estimated by solving a
weighted linear regression problem where the weights are chosen to match the Shapley
values. Loss function for the regression is calculated based on Equation 3.9:

L(f, g, π′
x) =

∑
z′∈Z

[
f(h−1

x (z′))− g(z′)
]2
π′
x(z

′) (3.9)

where π′
x is a weighting kernel based on the size of the subset S, ensuring that the

solution satisfies the Shapley properties.
Calculating SHAP values for tree-based classifiers, as described above, becomes compu-
tationally infeasible. However, when applied specifically to tree-based models like RF,
SHAP values can be computed much more efficiently. This is because tree models have a
structure that can be exploited to avoid directly computing contributions for every possi-
ble feature subset. Instead of brute-force summation over all feature subsets, Tree SHAP
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exploits the structure of decision trees to compute exact SHAP values [94]. Tree SHAP
of the feature i will therefore be calculated based on Equation 3.10:

ϕi(f, x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[fx(S ∪ {i})− fx(S)] (3.10)

where S is a subset of features that does not include i, and N is the set of all features.
This equation calculates weighted marginal contribution of feature i across all possible
feature subsets S.
Consequently, permutation feature importance provides a global importance measure in-
dicating how crucial a feature is across the entire dataset, whereas Gini importance shows
a global importance score summarizing how often and effectively a feature splits a data
across all trees. However, SHAP values offer both local explanations for individual pre-
dictions and global importance by aggregating these local explanations.

3.8 Sensitivity Analysis

Information that is fed into spatial models may contain various forms of uncertainty, such
as measurement errors, insufficient data resolution, absence of information or presence of
out-of-date information. Additionally, models may incorporate conceptual uncertainties,
which include uncertainties in the structure, assumptions, and specifications of the model.
Therefore, mathematical modeling of natural and man-made systems must be accompa-
nied by a sensitivity analysis (SA) [122], in order to increase the confidence in model
itself and its predictions [32][88]. Uncertainty analysis help to associate model behavior
based on the quality of the fed input data and generally tries to answer the question "how
uncertain is the inference". SA tries to find an answer to the question "where the uncer-
tainty is coming from" and thus explains variations in the output due to the variations
in the input data [122]. Both tasks, although they follow different objectives, are usually
combined in practice and are called SA.
SA estimates can be generally categorized into two groups: global and local estimates.
Global SA involves varying all inputs at the same time and performs multi-dimensional
averaging to evaluate the interactions between these inputs. It is based on the premise
that all the included variables are uncertain, and thus it is not adequate to investigate
this system through what-if simulations, altering only one variable at a time [123]. Global
SA is conducted through six methodical steps

• Define objective function of the study

• Identify input variables of interest

• Assign both range and a statistical distribution to these selected inputs
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• Choose and implement a sampling strategy to produce an N-sized sample from the
input distributions

• For each sampled set of input values, compute the model to derive N outcomes for
the objective function

Utilize the findings from step 5 for uncertainty analysis and conduct a sensitivity estima-
tion technique to ascertain the relative significance of the input variables [88]. The Monte
Carlo technique is the most common global SA technique. It relies on conducting nu-
merous assessments of the model using randomly selected input variables. This process,
however, can be computationally very expensive, especially if a large number of input
variables is considered [32].
Another approach to global SA estimation includes variance based estimations. They per-
form sensitivity index generation for a given variable based on the model output’s variance
attributable to this factor [32]. Variance-based approaches can determine sensitivity in-
dices independently of common model assumptions such as linearity or monotonicity [88].
These methods model prediction’s variance V by breaking it down into partial variances.
These partial variances, then, quantify the portion of V , which can be attributed to the
model inputs, whether they are considered individually or in combination, like in Equation
3.11.

V =
∑
i

Vi +
∑
i<j

Vij +
∑

i<j<m

Vijm + . . .+ V12...k (3.11)

where Vi denotes the fraction of the output variance accounted for by the ith model
input and the fraction of the output variance accounted for by the Y to Xi. Vij represents
the fraction of the output variance due to the combined influence of the ith and jth inputs,
indicating the sensitivity of Y to the interaction among Xi and Xj. While the symbol
k corresponds to the total count of model inputs. Therefore, the first-order sensitivity
indices of variables can be written using Equation 3.12.

Si =
Var (E [Y |Xi])

Var(Y )
(3.12)

where Var(Y ) is the total variance of the output and E [Y |Xi] denotes the expected
value of Y given Xi. Methods for estimating Si include the Fourier Amplitude Sensitivity
Test introduced by Cukier et al. [34] in 1973, and Sobol’ method, developed by Sobol’
[131] in 1990.
On the other hand, local SA focuses on quantifying how small changes in the models
inputs affect the models output. The word ’local’ signifies that derivatives are computed
at a specific point, often referred to as the ’baseline’ or ’nominal value’ point, within the
multidimensional space of input variables [122]. The local, one-at-a-time (OAT) type of
SA is probably the most commonly used local SA method [49], even if it s heavily criti-
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cized by various authors. According to Saltelli and Annoni [122], OAT fails to recognize
interactions between factors since such detection requires the variation of multiple factors
at a time. When factors are altered sequentially in the OAT approach, their interaction
remains inactive and thus cannot be detected. This means, it is nearly impossible to
discern if the combined effect of changing both X1 and X2 simultaneously differs from
their individual effects observed by first adjusting X1, returning to the starting point, and
then altering X2. Furthermore, the choice of OAT SA stands strong, only if the model
under analysis is proved to be linear [124].
Although the OAT technique is criticized, there is a clear understanding why it still re-
mains one the most frequently used SA approaches. For natural scientists, a critical
concern involves the concept of a "baseline" - a reference point within the input factor
space where all input factors are set to their optimal estimates, which is known as the
"nominal value". There is a noticeable reluctance to deviate from this baseline, as sta-
tistical sampling methods would commonly suggest, due to its perception as a reliable
anchor. Shifting from this baseline can lead to the model moving into unknown territory,
metaphorically described as "terra incognita" which, in practical terms, means becoming
unreliable or potentially failing when moved away from this established reference point.
Adjusting one factor at a time, as practiced in the OAT method, means that any ob-
served impact on the output, whether it’s an effect or the absence of one, can confidently
be linked to that specific factor [49].



Chapter 4

Study Area and Data

In this chapter, we will be presenting our study areas as well as utilized datasets.

Figure 4.1: A map illustrating both study areas in Bavaria, Germany at a greater detail.

In this thesis, we aim towards knowledge-based mapping of various UGS types by es-
tablishing reproducible workflows. Therefore, we select two study areas: one to develop
methodology on, and the second one to test reproducibility of the proposed methodology.
In defining our study areas, we focus on Bavaria, Germany. To account for possible dif-
ferences as well as to make sure that both areas do contain some similarities, we choose

49
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the cities of Augsburg and Wuerzburg. Figure 4.1 illustrates their location in Bavaria,
Germany as well as provides an overview of both at a greater detail.
Since we are interested in identifying UGSs, we refer to the "greenest city" ranking de-
veloped by Taubenböck et al. [135], to see how the selected cities perform. Their findings
reveal, that all cities in Germany with at least 100.000 inhabitants, provide more than
50 m2 of green space per capita, which is the advised minimum amount by the World
Health Organization. This finding also apply to the selected study areas. However, in
a more detailed ranking, Wuerzburg is noted for providing more green space per capita,
securing the 30th position. In contrast, Augsburg offers less green space per capita and
ranks 50th in this assessment. In the following, we provide a more detailed overview of
historical importance, geographical conditions as well as green space composition of both
study areas.

4.1 Augsburg

Located at the northern foothills of the Alps, the city’s geological, morphological, and
climatic conditions have been greatly influenced by this major mountain range. Situated
in a valley once occupied by the Lech glacier, the city’s landscape is characterized by
sediment deposits from glacial times, which have been further shaped by the Lech and
Wertach rivers. Dominated by lighter brown soils, fertile loams, and reddish-brown rendz-
ina soils, the area’s topography is defined to the west by a mountainous and valley-rich
landscape, while to the east it features rolling hills that have been gradually eroded by
the waterways [80].
With a population of nearly 300,000 inhabitants, it is the third major city in Bavaria.
However, it is most prominent for its historical value, from holding the Roman cultural
heritage to impressive water supply infrastructure in the 13th century. The network of
water infrastructure in Augsburg evolved into a cohesive urban water management system
starting in the 13th century. In the 14th century, towns across central Europe began de-
veloping intricate mechanisms designed to utilize the readily available river water. By the
early 15th century, places like Augsburg had installed waterwheels beneath their bridges
to power piston pumps. These pumps elevated river water to high-rise storage tanks.
Augsburg’s Rotes Tor (Red Gate), constructed in 1416, stands as one of the oldest water
systems in central Europe. It featured reciprocating pumps powered by three waterwheels,
which transferred water to various reservoirs and supplied public fountains. In the 19th
century, as industrialization progressed and cholera outbreaks occurred, the city transi-
tioned from using surface water channels from the Stadtwald (city forest) to extracting
water from deep wells. This shift led to the decommissioning of old water towers and the
construction of the Neubach waterworks in 1879 [42].
Spanning a total area of 146 km2, Augsburg accommodates two major forests in the south-
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east and southwest of the city, which are called the city forest (Stadtwald) and western
forest (Westliche Wälder), respectively. Further woody vegetation is located alongside
the rivers Wertach and Lech and covers approximately 36 km2 of the area of Augsburg.
Nearly 9% of the total area is dedicated to recreational spaces such as parks, gardens,
and sports fields. Agricultural areas, located to the northeast and south of the city, cover
around 38 km2 and further contribute to the city’s green belt. From a biogeographical
standpoint, the limestone dry grasslands spanning parallel to the river Lech are exception-
ally valuable. They serve as crucial links within the Lech valley "corridor," a pathway
of international ecological significance that connects the limestone habitats of the dry
grasslands and forests of the Alps in the south with the Swabian Jura Mountains to the
north. These environments are vital for the sustainability of 80 different species [80].
The most common vegetation species in Augsburg are dominated by grass and herb species
with very high regeneration capacity, such as Common Yarrow, Ground Elder, Mugwort,
and others. A survey conducted in 2004 found that the most common deciduous species
are the Silver Birch, Common Ash, Small-leaved Lime, London Plane, Sycamore Maple,
Field Maple, Hornbeam, Horse Chestnut, Black Locust, and European Beech. In terms of
the conifers, 24 species were identified, with the most prevalent being the Norway Spruce,
followed by the European Yew, Black Pine, Serbian Spruce, and Scots Pine [80].
Augsburg’s average elevation is recorded at 489 meters above sea level. The local climate
is a blend of moderate Atlantic and continental influences, resulting in an average yearly
temperature of 8.1 degrees Celsius and an annual rainfall of 831 millimeters [80].

4.2 Wuerzburg

The city of Wuerzburg encompasses around 88 km2 and is situated along the Main River
in Lower Franconia. Franconia is located in the northern part of Bavaria, Germany. The
town’s center lies on the eastern (right) bank of the river. Its hillside location, climatic
conditions, and other local factors have established Wuerzburg as a distinguished wine-
producing region.
Wuerzburg’s climate is significantly influenced by its topographical features. The average
annual temperatures are at around 10 degrees Celsius, and the average annual precipita-
tion is nearly 757 millimeters. The pronounced basin-like topography enhances the risk
of temperature inversions, which predominantly occur during the winter months in the
area. According to the 2004 Air Quality Plan data, temperature inversions up to 1000
meters above sea level occur on 70% to 80% of days annually. These inversions typically
disperse by mid-morning during the summer months, but in winter, approximately 70%
of all inversions persist until noon. Of the inversions observed during the autumn and
winter months, about 20% to 30% of those detected at night are still present at noon the
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following day1.
On a limestone plateau stands the Nikolausberg, which accommodates Wuerzburg’s high-
est point at 360 meters above sea level. The city’s lowest points, at 166 meters, are located
at Alte Kranen and Neuer Hafen.
The most prominent features of open space in the city include the river Main, the Ring-
park, the botanical garden, and the surrounding vineyards. The Ringpark is a large green
space that encircles the city center. Other UGSs, including gardening areas, parks, sport,
and leisure facilities, make up almost 8% of the total area. To the southwest, large forest
areas contribute to the "greenness" of the city and cover nearly 16% of the area. Agri-
cultural areas that lie outside the built-up city center constitute 27% of the total area of
Wuerzburg. Furthermore, Wuerzburg accommodates approximately 2.5 km2 of vineyards.
The soil type in the area is predominantly dark gray-brown soil with a mulch humus layer.
This soil generally has a good supply of nutrients that are available to plants. However,
there are areas with poor root penetration due to densely packed clay layers. Additionally,
this soil type has low to moderate water storage capacity within the main root zone, which
impacts agricultural practices and plant growth 2. Although soil types slightly differ, the
vegetation composition of Wuerzburg is quite similar to that of Augsburg. The forests
in Wuerzburg are comprised of species like spruce, pine, ash, birch, beech, and oaks3.
However, more exotic tree species can also be found in, e.g., the Ringpark. As such, giant
sequoia, Japanese pagoda tree, sugar maple, Amur cork tree are among others4.

4.3 Data

Mapping UGSs poses a significant challenge due to their potential representation through
a combination of various LU elements and LC types. Selection of datasets for UGS
mapping, therefore, necessitates careful consideration. We take into account three key
aspects when choosing appropriate datasets: (a) whether the resolution of the dataset
permits the identification of even the smallest UGS elements, (b) whether the datasets
have sufficient temporal resolution, and (c) whether the dataset is freely accessible and
allows for the unrestricted sharing of results. Therefore, in the following we describe raster
datasets utilized to map UGSs, as well as vector datasets used to refine the results, and
to produce validation datasets.

1https://www.wuerzburg.de/media/www.wuerzburg.de/org/med_509759/574508_bericht_
klimaplanatlas_wuerzburg_final.pdf (accessed on 01.2025)

2https://www.lwf.bayern.de/boden-klima/umweltmonitoring/104336/index.php (accessed on
01.2025)

3https://www.bmel.de/DE/themen/wald/wald-in-deutschland/waldzustandserhebung.html
(accessed on 01.2025)

4https://www.wuerzburg.de/media/www.wuerzburg.de/org/med_512918/553300_
baumsteckbriefe.pdf (accessed on 01.2025)

https://www.wuerzburg.de/media/www.wuerzburg.de/org/med_509759/574508_bericht_klimaplanatlas_wuerzburg_final.pdf
https://www.wuerzburg.de/media/www.wuerzburg.de/org/med_509759/574508_bericht_klimaplanatlas_wuerzburg_final.pdf
https://www.lwf.bayern.de/boden-klima/umweltmonitoring/104336/index.php
https://www.bmel.de/DE/themen/wald/wald-in-deutschland/waldzustandserhebung.html
https://www.wuerzburg.de/media/www.wuerzburg.de/org/med_512918/553300_baumsteckbriefe.pdf
https://www.wuerzburg.de/media/www.wuerzburg.de/org/med_512918/553300_baumsteckbriefe.pdf
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4.3.1 Earth Observation Imagery

To analyze vegetation cover, observe phenological shifts, and explore their relationships
with specific types of green spaces, we utilize remotely sensed imagery. We differentiate
between two types of images: those that enable us to monitor changes over time, albeit
with a lower spatial resolution, and those that offer higher spatial resolution but lack a
temporal dimension. Since we perform the analysis in two study areas, we ensure to utilize
the same type of datasets. However, data acquisition dates differ due to environmental
conditions present in each study area. For example, as discussed earlier, Wuerzburg is
significantly impacted by temperature inversions, which obstruct the visibility of distant
satellites. Consequently, it is extremely challenging to find cloud-free datasets in this
area. Moreover, aerial image capture missions are typically conducted on a sectional
basis, meaning that different parts of the region are photographed at various times. As
a result, it is impossible to obtain digital orthophotos or digital surface models of both
cities on overlapping dates.

4.3.2 Multi-Spectral Sentinel-2 Data

To map overall green and comprehensively analyze phenological changes in UGSs, we
utilize a sequence of Sentinel-2 multi-spectral images, sourced from both the Sentinel-2A
and Sentinel-2B satellites. These images, classified as Level-2A products as presented in
Table 4.1, are selectively acquired over the course of 2022, aiming for a monthly frequency.
In order to achieve the most accurate depiction of green spaces, a selection criterion is
applied, limiting the selection to images with less than 10% cloud cover. Consequently,
data from January, September, and November are excluded due to prevalent cloudiness
or snow coverage.
We achieve the uniformity in the dataset through the consistent capture of images on
relative orbit 65, a parameter that ensures stable viewing angles and consistent illumina-
tion conditions. Additionally, all images correspond to the geographic tile T32UPU. To
further enhance the data’s applicability and coherence, each image is undergone precise
adjustments to its extents, ensuring alignment with the boundaries of the study area.
Subsequently, the images are reprojected into the ETRS89 / UTM zone 32N coordinate
system. This way we ensure uniformity and comparability across all datasets.
We further produce temporal normalized difference vegetation index (NDVI) using the
acquired datasets. To do so, we follow the Equation 3.4 presented in Chapter 3.
The Sentinel-2 images obtained for Wuerzburg are listed in Table 4.2. Similar to our
approach in Augsburg, we aim to acquire images with less than 10% cloud coverage to
ensure a clearer representation of vegetation. However, due to Wuerzburg’s unique topo-
graphical and climatic conditions, cloud cover is more prevalent here than in Augsburg.
To maximize the number of cloud-free images, we utilize imagery from both Sentinel-



Study Area and Data 54

Table 4.1: Temporal Sentinel-2 datasets acquired for Augsburg.

Date Level Relative Orbit Tile Number

10.02.22 2A R065 T32UPU

27.03.22 2A R065 T32UPU

21.04.22 2A R065 T32UPU

11.05.22 2A R065 T32UPU

15.06.22 2A R065 T32UPU

25.07.22 2A R065 T32UPU

14.08.22 2A R065 T32UPU

18.10.22 2A R065 T32UPU

17.12.22 2A R065 T32UPU

2A and Sentinel-2B sensors. Although they orbit on different relative paths, both sensors
provide bottom-of-atmosphere corrected images, ensuring compatibility between datasets.
Nonetheless, images from January, August, October, and November are excluded from
our analysis due to very high cloud coverage. Moreover, acquired images are undergone
to their extent adjustment and reprojection to the ETRS89 / UTM zone 32N coordinate
system.
Sentinel-2 data is a multi-spectral data. This means that it captures reflectance values at
various parts of the electromagnetic spectrum. However, not all the bands are captured at
the same spatial resolution. As such, Band 2 (Blue), Band 3 (Green), Band 4 (Red), and
Band 8 (NIR) are provided at 10 meters resolution, which is the highest available. Band
5, Band 6, and Band 7, all of which are Vegetation Red Edge bands, as well as Band 8a
(Narrow NIR) and Bands 11 and 12 (both SWIR) are available at 20 meters resolution.
Finally, Band 1 (Coastal Aerosol), Band 9 (Water Vapor), and Band 10 (SWIR - Cirrus)
have the lowest resolution of 60 meters.

4.3.3 Aerial Imagery

To extract finer information than Sentinel-2 allows, we utilize digital orthohotos (DOP)
acquired from the Bavarian State Office for Digitization, Broadband and Surveying web-
page5. The bigger portion of the aerial imagery of Augsburg is captured on the 18th of
June 2022, while a smaller portion of the area of the city in the South is captured on the
14th of June 2022. DOP of Wuerzburg is acquired on the 28th of May 2023. Both images

5https://geodaten.bayern.de/opengeodata/ (accessed on 01.2025)

https://geodaten.bayern.de/opengeodata/
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Table 4.2: Temporal Sentinel-2 datasets acquired for Wuerzburg.

Date Level Relative Orbit Tile Number

28.02.21 L2A R108 T32UNA

07.03.21 L2A R065 T32UNA

26.04.21 L2A R065 T32UNA

31.05.21 L2B R065 T32UNA

13.06.21 L2B R108 T32UNA

18.07.21 L2A R108 T32UNA

03.09.21 L2A R065 T32UNA

20.12.21 L2B R108 T32UNA

are orthorectified and are outcome of the Bavarian biennial aerial surveys. They are freely
available as a three band RGB - imagery with ground pixel size of 20 centimeters. We
pre-process them by setting the right coordinate reference system as well as adjusting the
correct extent.
The spectral resolution of the aerial imagery is limited to only three bands. Therefore, to
enhance the information gain, we calculate indices from these three bands. As mentioned
in the Chapter 3, the GLI, RGBVI, and NGRDI are the most used RGB-based indices
and are capable to provide additional insights into the vegetation cover. Consequently,
we calculate the GLI, RGBVI, and NGRDI using Equations 3.5, 3.6, and 3.7 respectively.

4.3.4 Digital Terrain and Surface Models

In order to understand and utilize height dimension of green spaces in our analysis we
make use of two main datasets: digital terrain model (DTM) and digital surface model
(DSM). DTM represents the Earth’s surface without vegetation and man-made structures
with the help of point clouds of known location and elevation. The data for Bavaria’s
DTM is collected using Airborne Laser Scanning since 1996 and is updated as needed
through new aerial surveys. It comes as a raster dataset at different spatial resolutions.
The highest and freely available resolution is one meter. This dataset is freely available
to download, and is distributed under the CC BY 4.0 license.
The DSM depicts the Earth’s surface, including all objects on it such as vegetation and
buildings, in a grid format. The current grid size is 40 centimeters, which corresponds to
6.25 points per square meter. The basis for calculating the DSM are the aerial images
from the Bavaria aerial survey, which have a ground pixel size of 20 centimeters. It is
generated through dense correlation of the stereo images. Each grid point (XYZ) in the
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DSM calculation is assigned a color value directly derived from the oriented aerial images.
Quality of the DSM is assured through determining the height accuracy at selected areas
and points. DSM with 40 centimeters resolution is not a freely available dataset yet, and
all rights belong to the Bavarian State Office for Digitization, Broadband and Surveying.

Table 4.3: Overview of the datasets derived from row Sentinel-2 and DOP images.

Augsburg Wuerzburg

NDVI - 10.02.22 NDVI - 28.02.21
NDVI - 27.03.22 NDVI - 07.03.21
NDVI - 21.04.22 NDVI - 26.04.21
NDVI - 11.05.22 NDVI - 31.05.21
NDVI - 15.06.22 NDVI - 13.06.21
NDVI - 25.07.22 NDVI - 18.07.21
NDVI - 14.08.22 NDVI - 03.09.21
NDVI - 18.10.22 NDVI - 20.12.21
NDVI - 17.12.22 -
GLI - 18.06.2023 GLI - 28.06.23

RGBVI -18.06.2023 RGBVI - 28.06.23
NGRDI -18.06.2023 NGRDI - 28.06.23

nDSM nDSM

We utilize the DTM and the DSM datasets in order to calculate height of objects above
earth surface. Commonly, the above ground height of objects can be represented with the
normalized digital surface model (nDSM). nDSM is a derivative elevation product, which
we obtain by subtracting DTM from DSM, using Equation 4.1.

nDSM = DSM −DTM (4.1)

Consequently we not only utilize raw RS images, but also produce derivative products
based on these images. An overview of these derivative datasets is given in Table 4.3.
Here, once again acquisition date differences are highlighted, although they cover at least
one date in every season.

4.3.5 Auxiliary and Validation Data

In Bavaria, detailed LU information can be found in the Actual Land Use data (Tatsäch-
liche Nutzung (TN)). It is the distributed under CC BY 4.0 license and can be accessed
and downloaded free of charge. TN dataset is organized in two levels: LU and detailed
designation of these LUs. In other words, it consists of LU classes and sub-classes. Under
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the umbrella of four main LU types, i.e. settlement, traffic, vegetation, and water, this
level is further subdivided into nearly 140 LU classes. These include residential, road
traffic, agriculture, flowing waters and others. The second level provides more detailed
information as what exact sub-types the LUs contain. For example, the sport and leisure
facility LU class is further subdivided into botanical garden, parks, allotments and other
sub-classes. Consequently, there are nearly 50 sub-classes for the main LU types.

Table 4.4: "Tatsächliche Nutzung"(TN) classes containing UGS types.

Land Use Class Sub-class

Agriculture
Arable Land, Tree Nursery

Grassland, Pasture, Orchard

Sports, Leisure and
Recreation Area

Botanical Garden, Zoo

Recreational Area, Leisure Facility

Garden, Allotment Garden

Green Space, Park, Playground

Safari and Wildlife Park

Forest -

Cemetery -

Heath -

Usage areas in the TN dataset must be formed up to a maximum size of 5 hectares and
a maximum length of 1 kilometer. The boundaries of classes are established according
to the actual conditions on site and do not consider cadastral division boundaries. Ad-
ditionally, municipal boundaries are always considered as boundaries between different
types of LU. The TN dataset is regularly updated using a combination of aerial imagery,
data from agricultural and forestry administrations, and on-site surveys conducted during
cadastral surveys. As a result, the dataset is typically no more than three years old, with
urban areas being updated even more frequently. The TN dataset is provided at a scale
of 1:1000. However, it only includes information on state-owned LUs, meaning areas such
as privately owned forest land are generally not represented.
The TN dataset uses a more streamlined classification scheme, which, for example, does
not include a separate category for UGSs. Table 4.4 presents LU classes and their sub-
classes from the TN dataset that are associated with or are representative of UGSs. The
largest mixed class, encompassing 10 different UGS types, is the "Sport, Leisure, and
Recreation" category. This is followed by the "Agriculture" category, which includes four
UGS types. Moreover, the TN dataset also contains distinct classes for forest, cemetery,
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moor, and heath, all of which largely represent UGSs as well.
TN also provides definitions for LU classes and sub-classes. We examine especially the
sub-classes that appear under the sport and leisure facility class. As such, green space des-
ignation refers to a facility with trees, shrubs, lawns, flower beds, and paths that primarily
serves for recreation and the beautification of the cityscape. Park is defined as a land-
scaped green space that serves for representation and recreation. Allotment is considered
to be a facility consisting of garden plots that are managed and leased by associations.
Whereas, garden designation refers to an area used for growing vegetables and fruits that
is not associated with ’residential building area’ and does not include allotment gardens.
Furthermore, this class includes uses that also store green space such as botanical garden
and zoo, recreational and leisure areas, playground, safari and wildlife park.
In this study, the TN dataset serves not only as a reference dataset but also as a validation
dataset. Validation is a standard procedure used to assess the accuracy of utilized meth-
ods. This process involves comparing identified features against a known dataset that
contains these features. Therefore, t is essential for the entire UGS mapping procedure.
In Chapter 2, we acknowledge the absence of accurate UGS maps for the study areas,
which would typically serve as a basis for validation. Therefore, we create a validation
dataset that includes selected classes from the Table 4.4, and is comprised of:

• Forest: forestry operation area

• Sports, recreational, and leisure areas: botanical garden, zoo, green space, grassland,
allotment garden, park

• Agriculture: arable land, tree nursery, orchard, vineyard

• Industrial and commercial areas

• Mixed-use areas

• Cemetery

• Heath

This list of LU classes only slightly differs per study area. For instance, vineyards appear
only in Wuerzburg while Zoo appears only in Augsburg’s validation dataset.
The forest validation dataset contains all polygons from the forest class in the TN dataset,
while the allotment validation dataset includes polygons from the allotment garden sub-
class within the sport, leisure, and recreational area class. Similarly, the validation dataset
for urban agriculture consists of polygons representing all sub-classes within the agricul-
ture class.
Unfortunately, none of the existing TN classes or sub-classes adequately represent urban
green corridors. Therefore, it is impossible to create a validation dataset using the TN
dataset. To validate green corridors we will be utilizing UGS datasets that we will create
using RF classification procedure.



Chapter 5

Urban Green Space Ontology

In the previous chapters we describe limitations of the existing UGS classifications and how
they fail to capture the full spectrum of UGS types. Therefore, in this chapter we propose
a new UGS ontology and describe a procedure to create and formally conceptualize this
ontology.

5.1 Definition of Ontological Classes

Frequently when performing studies on UGSs we are interested in two aspects; what types
of UGSs exist and how can they semantically be described. The first aspect requires es-
tablishing all possible UGS classes in a classification or in a typology. The second aspect
is more descriptive and allows gaining knowledge on UGSs on top of typology or classifi-
cation. This could include, for instance, exploring a particular tree composition, defining
characteristic urban furniture, establishing presence/absence of walking paths or calcu-
lating proportion of vegetated areas to sealed parts. This is particularly relevant if we
want to better understand and plan green spaces for human well-being.
Organization of UGS types in a classification or typology has already been done before.
For example, allotment is a type of UGS and can be placed at various levels in a typology
depending for what propose this typology will be used. However, allotment is a product
of combined natural and anthropogenic factors. As such, allotments contain biotic land
cover (e.g. woody and herbaceous vegetation), abiotic cover (e.g. sheds, paths, pool) and
with it associated land use (e.g. horticultural/ornamental crop production, leisure activ-
ity place). Therefore, we see a need for a conceptual basis in UGS mapping procedure.
Consequently, we avoid providing yet another typology that is limited in scope of its ap-
plication and provide a semantic translation of UGS types on top of UGS classification.
The semantics of ‘things’ (e.g. UGSs) and related expert knowledge can be represented in
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an ontology which we describe in detail in Chapter 2. As extensively presented by Arvor
et al. [8], use of ontologies for RS datasets can tremendously improve the understanding
of concepts as well as enhance mapping procedures. Given, no UGS ontology exists, in
this chapter we propose an extensive UGS ontology.
We define two key factors that we should take into consideration when creating a UGS
ontology. Firstly, we need to know a complete list of UGS types that can exist, if not
globally, then at least in certain regions. Secondly, the created ontology should conform
to basic ontological rules. Therefore, in the following, we first describe how we collect
and assess a full list of UGS types. We then explore main requirements for complete on-
tologies and assess whether our ontology fits these requirements. Finally, we present our
ontology implementation and formalization using the Web Ontology Language (OWL) in
the Protégé software.
Well-designed formal ontologies provide a common vocabulary that is necessary for com-
munication between computer applications as well as between computer applications and
users [58]. Therefore, our aim is to state what exists in terms of UGSs and provide a
common vocabulary for further research and analysis around UGSs. Consequently, to
achieve a comprehensive list of UGS types, we examine existing published literature on
UGS typologies. One drawback of such typologies is that their field of application is
usually limited to certain topics. In this regard, we explore one of the most known UGS
typologies by Bell et al. [15], Jones et al. [74], and Degerickx et al. [37]. Class and sub-
class distribution of all three typologies is shown in Figure 5.1 and is color coded with
yellow lines representing the typology by Jones et al. [74], pink dashed lines representing
the typology by Bell et al. [15], and purple dotted lines representing the typology by
Degerickx et al. [37].
Bell et al. [15]’s typology is broad and its main application field evolves around hedonic
house price estimation. Therefore, it includes all the possible green space types that could
somehow improve livelihood of areas and thus affect house pricing. In this classification,
the authors delineate 9 UGS classes that are further subdivided into 35 sub-classes. Ty-
pology of Jones et al. [74] focuses on GI rather than purely on UGS types. GI is a planned
network of green spaces. Therefore, by exploring GI types we enrich our ontology with
UGS classes that have already been tested to be suitable within urban planning. The
authors divide GI into nine classes which are further subdivided into 45 sub-classes. The
third typology by Degerickx et al. [37] explores yet another aspect of UGSs, namely veg-
etation composition. The authors define three vegetation classes, namely trees, shrubs,
and herbaceous plants. They further categorize 23 UGS types under the umbrella of these
three classes.
We proceed in the creation of a comprehensive UGS type list by examining every single
class composition in all three typologies. For example, Bell et al. [15] classify allotments,
community gardens, city farms, and urban agriculture. Whereas, Jones et al. [74] under
garden class considers only balcony, private and shared common gardens. Allotments are
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Figure 5.1: Mind map of UGS typologies based on works by Bell et al. [15] (pink dashed),
Jones et al. [74] (yellow), and Degerickx et al. [37] (purple dotted).
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classified as other public spaces while crop lands as other non-sealed urban areas. From
over 100 UGS types (including duplicates), we extract class names that appear in all and
then enrich our list by including the ones that appear in one and not all typologies. Fur-
thermore, we perform a re-categorization of the selected classes and establish which types
of UGSs belong together or can be included under the same class. Through this process
we harmonize sub-classes that semantically belong together but are organized differently
in various typologies. Here, we do not try to correct any possible conceptual mistakes
in the existing UGS typologies, but rather have them addressed in the structure of the
proposed ontology.
Following the described procedure we end up with seven UGS classes. These classes in-
clude forest, park, grassland, cemetery, urban agriculture, green corridor, and amenity.
Sub-classes of the selected UGSs are organized as follows. Forest, grassland, and cemetery
are non-complex classes with no further subdivisions. We subdivide amenities into insti-
tutional green, neighborhood green, playground, and sport fields. Green corridors, in our
harmonization, are made of water body corridor (both river and standing water), railroad
corridor, road corridor, pathway corridor, and ecological corridor. The largest subdivision
is happening in terms of urban agriculture. Here, we distinguish between herb garden,
rooftop garden, front yard garden, backyard garden, community garden, allotment, nurs-
eries, orchards, arable land, city farm, and permanent crops. Finally, the park class is
comprised of city park, botanical garden, zoological garden, pocket park, dog park and
skate park. This synthesized list of UGS classes will be building stone of a UGS ontology
in the following section.

5.2 Construction of a Urban Green Space Ontology

To build a UGS ontology, we follow steps proposed by Guarino [59], and start by domain
specification, where we define scope and purpose of our ontology. The proposed ontology
is placed within the domain of UGSs and the primary aim of this ontology is to facilitate
mapping and classification of various types of UGSs. The scope of the proposed ontology
is geographically focused on southern German cities. This means that the ontology is
tailored to address specific characteristics, or types of UGSs that are relevant or unique
in the given geographic location.
The second requirement of the ontology development is that it should include core concepts
of a domain. Yet, ontologies should be extendable [58]. When selecting UGS classes
and sub-classes we try to stay as neutral as possible and be as inclusive as possible.
However, the overarching purpose of the created ontology as well as UGS mapping in
this dissertation is human well-being. Thus, we do use a "human well-being filter" when
viewing the selected classes in the ontology. Consequently, by using established seven
UGS classes and 28 sub-classes, we provide a foundational model that can be extended
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into a more specific or task-oriented ontology if needed.
Ontologies express what is there. This also includes relationships in between. Therefore,
we define hierarchies and connections between our ontological classes. There are several
approaches for this, that are usually domain dependent. We choose to perform a top-down
approach to organize the entities into hierarchies.
During the organization of the hierarchical structure, entities must be connected with
objects. Depending on which entities we connect and for what purpose, varying properties
can be established. For instance, if we say forest consist of woody vegetation and want
to connect these two together, then e.g. "hasCharacteristics" could be used. However,
for the first part of the ontology creation we choose to use the "is-a" property, denoting
that one entity has an object (or class has a sub-class). Figure 5.2 illustrates intermediary
results of the first two ontology creation steps, where UGS is defined as and OWL thing,
and "is-a" property is used to connect it with the selected UGS classes.

Figure 5.2: Figure of hierarchical organization of the selected UGS classes using "is-a"
connector property.

We further add our selected sub-classes into the ontology as another hierarchical level.
Visually, this step is presented in Figure 5.3. As it can be seen here, cemetery, grassland,
and forest remain as a single level class, while the other classes are extended with their
corresponding sub-classes. All the sub-classes are connected with classes using the same
"is-a" object connector.
At the beginning of this chapter, we state that we are not only interested in providing
yet another UGS typology but are also interested in semantic translation of the selected
UGS types. Given semantic translation helps to uniquely describe green spaces, this can
also facilitate RS image analysis using ontology as a classification tool. Consequently, we
integrate these concepts by enhancing our ontology with precise object property specifica-
tions. Such specifications are essential for describing hierarchical relationships within the
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Figure 5.3: Figure of hierarchical organization of all UGS classes in Web Ontology Language.
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ontology. We illustrate this detailed decomposition of the ontology’s hierarchical structure
through object properties in Figure 5.4. Although shown here separately, these descriptive
entities are part of the UGS ontology.

Figure 5.4: Illustration of detailed object properties that are incorporated into the UGS
ontology.

The idea behind object property enrichment is that we can use property instances to
characterize a single UGS type, and later use the content of the matching instances to
identify UGSs. We enrich the ontology with four principal object properties: geometry,
texture, position, and thematic aspects. These properties are then augmented with spe-
cific characteristics to provide a detailed description. Geometry includes attributes such
as height and shape, with further subdivisions of the shape into circularity and rectan-
gularity. Furthermore, texture property describes texture metrics. In our example, we
encompass Haralick [65]’s (GLCM) texture metrics. Here, we specifically include dissim-
ilarity and homogeneity metrics from this matrix. Position property, defined broadly as
proximity, indicates the relative closeness of various features.
A detailed distinction of object properties is done within the thematic property class.
Here, we start by differentiating between anthropogenic and natural properties. We then
define paths, paved areas, recreational facilities and urban furniture as elements of the
anthropogenic properties. Further refinement is done to paved areas by distinguishing
terraces. Recreational areas are enriched with pool and umbrellas, whereas urban furni-
ture contains fences and sheds. Natural object properties are comprised of vegetation,



Urban Green Space Ontology 66

water body, and soil types. Here, we follow the same logic to refine the object properties.
As such, vegetation property contains elements such as tree cover, NDVI, and GLI.
In our ontology, we structure relationships among object property classes using the "is-a"
relationship, which defines each class as a subtype of a more general class, ultimately link-
ing back to the root class, "Thing". This hierarchy allows a clear and logical classification
system. The object property hierarchy follows the same ontological rules, as it should be
extendable. This means, that here we only capture object properties that we will further
be using for green space mapping. However, the ontology can be extended with further
features, to accommodate other use cases. For example, here we include only GLCM
texture metrics. If needed, another texture metrics class such as Fourier transform can be
used and added to the ontology. Similarly, we only utilize circularity and rectangularity
shape measures. But if needed, one could extent the ontology with e.g. aspect ratio,
compactness or convexity. During object property creation we follow the same rule as for
the ontology. This means, that we select only four properties and some sub-properties,
that are also used throughout the dissertation. However, these properties can further be
extended in order to better fit other use cases.
Beyond this "is-a" hierarchical structure, we introduce specific relationships that connect
our defined classes to various UGS types through specialized object properties. These
relationships are crucial for detailing the characteristics of each UGS type and are defined
by properties such as "hasFeature", "hasGeometry", "hasProximity", and "hasTexture".
The "hasFeature" property allows us to link UGS types such as allotments, to specific
features they contain. These could include sheds, paths, and other thematic elements,
thus contextualizing allotments within the ontology. "hasGeometry" is used to associate
physical shapes with UGS types. This is relevant, for instance, when describing crop
fields as rectangular with a specific rectangularity value. Finally, "hasProximity" details
the closeness of various features or elements relative to each other within the UGS. This
is a useful characterization in case of e.g. allotments, that commonly appear nearby rail
tracks. These connections illustrate a complex network of relationships within the UGS
ontology. An example of two connections, namely "hasFeature" and "hasTexture" can
be seen in Figure 5.5. While this complexity may be challenging for human interpreta-
tion, it is suited for machine processing. The structured format of the ontology allows
for advanced querying capabilities. Such queries are particularly useful in tasks like im-
age classification, where specific characteristics of UGS types are identified and analyzed
based on these relational properties.
In this ontology, certain object properties are quantifiable, allowing for precise measure-
ment and representation. For example, NDVI and GLI are numerical indices that range
from -1 to +1. Further, height and proximity are also numeric values measured in me-
ters. To effectively incorporate such quantitative data into our ontology, we include data
properties that capture specific values. Here we use two primary types of data properties,
namely "v_measurement" and "v_logical". The former property is defined as a float
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Figure 5.5: Graph showcasing connected feature properties, like hasFeature(red), hasTexture
(yellow) within the UGS ontology.
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type and is versatile enough to represent various numerical indices and measurements,
such as distance or height. The latter property is utilized for binary logical values, stored
in string format. It is particularly useful for verifying the presence or absence of features,
such as determining whether fences exist or if paths are present. These data properties
enable us to maintain straightforward yet powerful data representations within our ontol-
ogy, facilitating accurate and efficient queries.
The final step in developing our ontology involves its formalization [58]. This process
considers using a formal language to clearly define the relationships and properties of the
concepts within our ontology. For this purpose, we execute the OWL in Protégé version
5.5.0. This allows us to create a structured, well-defined UGS ontology that can be used
effectively in semantic web applications.
In this thesis, we develop and introduce the UGS ontology. However, we do not perform
ontology-based UGS mapping. To map UGSs, we use a knowledge-based approach. Nev-
ertheless, insights gained from the further performed procedures can be used to update
and extend this ontology to bring it to a complete, ontology-based mapping, format.



Chapter 6

Mapping Urban Green with

Sentinel-2 and Aerial Imagery

In the previous chapters we already describe the potential difficulties of mapping UGSs.
Particularly the size of UGS patches as well as complex urban settings with similar look-
ing and fragmented objects are the most challenging aspects of UGS identification [127].
However, accurate UGSs maps are utterly important, because they play a crucial role for
data-driven decision making in the context of sustainable urban planning. The long his-
tory of LULC mapping gives us insights in terms of general requirements for LULC map-
ping such as necessity of adequate spatial and spectral resolution of the utilized datasets.
Nevertheless, in the context of UGSs, there have not yet been any systematical compar-
isons done among datasets to identify what particular characteristics of these datasets
might yield the best identification outcomes. However, the implementation of ML and
DL methods, in hopes of overcoming the spatial and spectral limitations of datasets, has
grown significantly over the past decade. These approaches have their own limitations,
with the ’black box’ problem being one of them. While such models enhance predic-
tion accuracy, they often obscure the relationships between the predicted results and the
variables used in the process [137]. This is suboptimal, as understanding the underlying
relationships is essential for making informed decisions, reducing feature overload in future
model designs, and ultimately saving both time and computational resources. Here, it is
important to distinguish between identifying single pixels and classifying whole objects.
As we describe in Chapter 3, one way of shedding light on these "black boxes", is the
usage of IML techniques. This is particularly relevant in the case of pixel-based mapping
as the process is much more straightforward.
Consequently, in an attempt to fill this research gap, we conduct a comparative study
showcasing advantages and disadvantages of various datasets for UGS mapping, and strive
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to answer two research questions: (1) to what extent the spatial and spectral resolution of
the selected datasets influences the accurate identification of greens in urban areas, and
(2) how effective is the transfer of trained models to different study areas. In addition to
producing accurate UGS maps, we are also interested in exploring whether saving certain
intermediate steps in the ML process can yield results comparable to a more complete
workflow. To achieve this, we compare datasets with varying spatial and spectral resolu-
tions, i.e., a high spatial but lower spectral resolution digital orthophoto versus Sentinel-2
imagery, which has lower spatial but higher spectral resolution. By following data fu-
sion and ML techniques, we explore different derivative features and derive key statistical
metrics that allow us to compare both and create accurate UGS maps of the study areas.
Furthermore, we test a RF model trained in Augsburg on Wuerzburg, to establish the
precision of the trained model as well as assess importance and necessity of unique, study
area-tailored training datasets.
In the following sections, we describe steps of the proposed identification workflow in
detail. We then apply the proposed workflows to two study areas, present their results,
discuss these results, and draw conclusions from them.

6.1 Modeling Approach

To identify UGSs, we follow the exactly same procedure in both cities to ensure the
comparability of the results. To do so, we follow the mapping workflow given in Figure
6.1.

Figure 6.1: Workflow to identify UGSs using two different data sources.
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We start the procedure, as described in Figure 6.1, with digital orthophoto (DOP) data
preparation. These aerial datasets are three band images with 20 centimeters ground
resolution and are collected on the 14th, 18th of June 2022, and the 28th of May 2023 in
Augsburg and Wuerzburg, respectively. These images include only red, green, and blue
spectral bands. In order to enhance green space relevant information, we utilize a num-
ber of vegetation indices i.e. GLI, RGBVI, and NGRDI calculated based on Equations
3.5, 3.6, 3.7 accordingly. Similar to NDVI, RGB-indices are based on the premise, that
vegetation reflects the most in the green band, while absorbs in the red and blue band.
Consequently, these should facilitate for vegetation to stand out more than any other
non-green object on the urban scenes.
Apart from DOP we also Use Sentinel-2 images. Spectral bands of Sentinel-2 data, de-
scribed in Chapter 4, have varying spatial resolution, ranging between 10-60 meters.
Therefore, we choose to use only four spectral bands with the highest resolution: red,
green, blue, and near-infrared. It is known, that chlorophyll absorbs the red light while
the mesophyll leaf structure scatters NIR [151]. Therefore, especially these two bands
must be advantageous to identify UGSs. Used Sentinel-2 images of Augsburg are cap-
tured on the 10th of February, 27th of March, 21th of April, 11th of May, 15th of June,
25th of July, and 17th of December 2022. Whereas, images of Wuerzburg are collected
on the 28th of February, 7th of March, 26th of April, 31th of May, 13th of June, 18th
of July and the 20th of December 2021. Exact details of the utilized imagery have pre-
viously been provided in Chapter 4. Due to the atmospheric conditions, it is generally
difficult to acquire images taken on exactly same dates with e.g. similar cloud cover, over
different locations. In addition to single spectral bands, we also make use of a vegetation
index (VI), namely NDVI. Since VIs are mathematical combinations of spectral bands,
they help to enhance vegetation information by reducing soil and atmospheric effects. We
choose to use NDVI, because it is the most commonly used VI in terms of LULC and
UGS mapping. NDVI is calculated based on the Equation 3.4, and ranges from -1 to 1,
with healthy and dense vegetation values being close to 1.
In addition to spectral information, we also utilize height information to distinguish greens
from the rest. The height dataset, that we use, is the nDSM data calculated in Chap-
ter 4, based on DSM and DTM. Since this dataset comes in 40 centimeters resolution,
we resample it once to 20 centimeters to fit the DOP, as well as to 10 meters to fit the
Sentinel-2 datasets.
The overall aim of this workflow is to precisely identify green. Therefore, we lay focus on
different green space classes, while generally ignoring how well e.g. buildings are differen-
tiated from roads. Consequently, we perform a binary classification task with two target
classes i.e. green and non-green. To achieve this goal, we choose to conduct RF classi-
fication described in detail in Chapter 3. This classification approach requires training
data, that is a dataset that contains a representative distribution of predicted variables.
Furthermore, it also requires a testing dataset that will be used to evaluate how well the
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classification task performs and to what extent the developed model manages to capture
patterns and relationships between predictor and predicted variables. Training data col-
lection is a manual procedure, where a point shapefile is created by collecting data from
both green and non-green locations. The quantity and quality of training data is defined
as a crucial factor for the classification process and can significantly influence the actual
classification accuracy [98]. Yet, there is no fixed rule as of how many training points
need to be collected to achieve the best results. Thus, we collect approximately 900 pure
training points for each class in each study area, making in total 1800 training points per
study area. When collecting training data, we ensure that our training samples encompass
all possible types of greenery, such as deciduous and coniferous trees or herbaceous plants.
Following the recommendations of Millard and Richardson [98], we randomly distribute
the training points across the study areas.
In Chapter 3 we describe that there are different ways of implementing training and test-
ing an RF model. Here, we choose to perform train/test instead of cross validation. We
split the collected training data into two parts in 70 to 30 proportion. The 70% of the
dataset is utilized to train the RF model and the 30% is used to assess how well the trained
model performs. Furthermore, hyperparameter tuning is an essential step in building re-
liable ML models. This process includes, among others, finding optimal number of trees
to grow in the forest (ntree) and setting number of variables that will be randomly se-
lected at each node to split that node (mtry). However, this step is an iterative procedure
and repetitively testing values might be time-intensive. We provide specifications of the
created models in Table 6.1.

Table 6.1: Specifications of utilized parameters settings to evaluate goodness of the built
RF models

Training Data 1800 points

Train/Test Splits 70/30

Number of Trees (ntree) 700-1000

Number of Predictor Variables (mtry) 1; 3; 5;

Sentinel- 2 predictor variables Red, Green, Blue, NIR, NDVI, Height

DOP predictor variables Red, Green, Blue, GLI, RGBVI, NGRDI, Height

In Rstudio, the default number of trees grown by the RF is 500. However, it might be
that the number of training samples and the number of utilized predictor variables could
be explained with less, or slightly more trees than 500. Moreover, our final aim is to make
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predictions to the whole study area. From this perspective it is advantageous to build a
simple model as possible to reduce the processing time during predictions. Thus, we first
train our RF model with 1000 trees and one predictor variable. We then assess the error
rate of this model. Based on the error rate we modify the number of trees accordingly.
Once we set the number of trees, we then explore if increasing the number of mtry would
improve the classification accuracy. For this purpose we test three and five mtrys.
The performance of the RF classifier is evaluated using overall classification accuracy,
OOB error rate, sensitivity, and specificity measures. These measures are described in
detail in Chapter 3. The OOB error represents internal error rate of tested sub-samples,
whereas the sensitivity expresses accuracy of predicting positive class (green). The speci-
ficity describes accuracy of the negative class (non-green) prediction. Furthermore, we also
explore which of the chosen predictor variables play the most important role to identify
green areas. This can be done in two ways; first looking into overall feature importance
based on the mean decrease in accuracy and/or decrease in Gini impurity. It is also
possible to look into the influence of predictor variables on single features, which is done
using SHAP values. Details of both approaches are presented and elaborated in Chapter
3. Once we identify the most optimal model parameters using train/test datasets, we
make predictions over the whole study areas. The described RF classification procedure
is applied to both Sentinel-2 as well as the aerial imagery. Exactly same training and
testing datasets are utilized in both cases to ensure the consistency in the workflow.
To address the second research question regarding the transferability of RF models, we
introduce an additional step in our workflow. After training the RF model using DOP and
Sentinel-2 data from Augsburg, we apply the model to predict green areas in Wuerzburg.
Complete modeling workflow is conducted using RStudio version 4.3.1.
Based on the final predictions, we calculate the total amount of greenery identified through
the RF classification. Crucial part of RF classification is result validation. Validation is
a procedure when identified results are compared to known results to derive performance
statistics. Known results in this sense could be already existing green space maps cre-
ated by local authorities, or LULC maps that contain detailed green space categories.
However, there are currently no UGS maps of the study areas. Consequently, we rely on
the TN dataset. We extract the following classes from the TN datasets in order to form
a validation dataset: forest, parks, botanical garden, garden, grassland, arable land as
well as permanent crops (orchards, vineyards). We use this dataset to validate results of
classification with both Sentinel-2 and DOP datasets. We then compare results of classi-
fication in Wuerzburg once using RF model trained on training data from Wuerzburg and
once trained on Augsburg. This helps us to establish the transferability of the trained
model to different study areas. However, we acknowledge, that this dataset while helping
to validate our results can also cause over- or under-estimation of the greenery.
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6.2 Results

In this section we provide results of the performed RF classification, using both Sentinel-2
and aerial imagery. To identify UGSs in two study areas, we use red, green, blue and NIR
bands with 10 meter resolution as well as temporal NDVI datasets derived from them.
Furthermore, we use red, green, and blue bands of the DOP images with 20 centimeters
resolution and the GLI, RGBVI, and NGRDI indices derived from them for both study
areas. To highlight vegetation height, we additionally use the nDSM dataset. Further,
we separately present results of both classification models.

6.2.1 Random Forest Classification using DOP

We start the procedure by determining the optimal number of trees to grow in the forest.
Figure 6.2 showcases that in Augsburg, after developing around 400 trees, the OOB error
begin to remain stable at around 0.005 and 0.10. We therefore search for the best mtry
using only 400 trees in the forest.

Table 6.2: RF accuracy results in Augsburg, based on DOP and various hyperparameters.

ID split_ratio ntree mtry OOB_error Accuracy Sensitivity Specificity

1 0.7 700 1 0.48 0.98 0.98 0.98
2 0.7 400 1 0.56 0.98 0.98 0.98
3 0.7 400 3 0.63 0.98 0.98 0.98
4 0.7 400 5 0.79 0.98 0.98 0.98

An overview of the results for all possible combinations is given in Table 6.2. For all the
combinations, the RF model reaches a classification accuracy higher than 98%, making
nearly perfect predictions. Although very minimal changes in OOB error take place,
these do not affect the final overall prediction accuracy. Furthermore, the prediction rate
of true positives (sensitivity) and negatives (specificity) is 98%, meaning both classes are
identified at a similar rate. Therefore, we select the best model based mainly on possible
prediction time over the study area. Training and prediction time using training/testing
samples in Augsburg is less than a minute. However, the area of Augsburg is large.
Consequently, we select the model with one mtry and 400 trees (ID 3) as the most suitable
for large area predictions.
We explore the feature importance of the selected model, to establish which variables
are the most influential predictors. It turns out, as shown in Figure 6.3, that GLI and
Height are the most important predictor variables affecting the overall prediction results.
Furthermore, GLI is also the most important variable to decrease the Gini impurity,
meaning observations in each group after the split at node are more homogeneous. The
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Figure 6.2: Plot illustrating decrease in OOB Error rate, based on the DOP in Augsburg, as
the number of trees increase.

Figure 6.3: Variable importance plot of RF prediction in Augsburg using DOP dataset.
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Figure 6.4: SHAP feature importance of RF prediction in Augsburg calculated using DOP
dataset.

second most important variable for Gini impurity is the NGRDI index.
Yet, we are also interested in exploring how single features in the dataset are predicted.
Therefore, we use SHAP values presented in Figure 6.4 to describe the co-dependencies.
The color gradient from purple to yellow indicates the actual value of the feature, with
purple representing low values and yellow representing high values. This allows us to see
not only the impact of the feature but also how common different values are. According
to the figure, GLI shows a broad spread of SHAP values, mostly on the positive side, in-
dicating it generally increases the likelihood of a location being classified as urban green.
Furthermore, blue, red, and green bands show varying degrees of influence with both pos-
itive and negative SHAP values, indicating these features can either increase or decrease
the likelihood of positive class classification depending on their values. The NGRDI and
RGBVI indices show a mixture of positive and negative influences, with NGRDI having
a smaller impact compared to RGBVI, which shows a significant positive influence par-
ticularly at higher values. Finally, height predominantly shows negative SHAP values,
suggesting higher values of height decrease the likelihood of an area being classified as
urban green.
By using aerial imagery and predictor variables derived from it, we classify total of 75.1
km2 of urban green in Augsburg. Distribution of identified urban green as well as com-
parative distribution of green spaces in the TN dataset is shown in Figure 6.5. Moreover,
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Figure 6.5: Comparative map of identified UGSs using aerial imagery and RF against TN
dataset in Augsburg.

we calculate the area of identified UGSs that overlap those in the TN dataset. This val-
idation procedure establishes that 67 km2 of UGSs overlap in both datasets. There is a
cut line visible on the south of Augsburg in Figure 6.5. This problem originates from the
original DOP. Largest part of Augsburg was captured on the 18th of June, while this tiny
part in the South was captured on the 14th of June. Due to different lighting condition,
reflectance values here appear slightly lower. Therefore, RF fails to delineate tree crowns
as well as it does in the rest of the area. We observe here shadows also being classified as
urban green.
Using the DOP dataset we perform exactly the same RF classification procedure in
Wuerzburg. Similarly to Augsburg, we first test the minimum number of trees required to
achieve adequate results. We then test whether mtrys do affect the prediction accuracy.
Decrease in the OOB error based on the number of trees is shown in Figure 6.6. As it can
be seen on the figure, after 200 trees are grown, OOB error rate drops to almost 0.0 and
remains stable afterwards. Consequently, we test usefulness of increasing the number of
random variables to split nodes, using 200 trees.
The accuracy values for all the model parameter combinations are given in Table 6.3. As
it can be seen in this table, OOB error remains exactly the same over all the tested com-
binations. Furthermore, prediction accuracy for all the tests is above 97%. In comparison
to Augsburg, the area of Wuerzburg is not as large. Nevertheless, we select the optimum
hyperparameters exactly the same way: minimum number of ntree and mtry. Thus, the
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Figure 6.6: Plot showcasing decrease in OOB Error rate, based on the DOP in Wuerzburg,
as the number of trees increase.

Table 6.3: RF accuracy results in Wuerzburg, based on DOP and different hyperparameters.

ID split_ratio ntree mtry OOB_error Accuracy Sensitivity Specificity

1 0.7 700 1 0.36 1 1 1
2 0.7 200 1 0.36 0.99 1 0.99
3 0.7 200 3 0.36 0.98 0.97 0.98
4 0.7 200 5 0.36 0.98 0.97 0.99

Figure 6.7: Variable importance plot of RF prediction in Wuerzburg using DOP dataset.
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Figure 6.8: SHAP feature importance of RF prediction in Wuerzburg calculated using DOP
dataset.

RF model that uses 200 trees and single random variable to split nodes is the most suit-
able RF model. This model reaches 99% prediction accuracy, and it can perfectly identify
the green class (sensitivity) in comparison to the non-green class (specificity).
We further explore the variable importance as well as the SHAP values of this model. The
variable importance plot given in Figure 6.7 illustrates, that GLI is yet again the most
influential factor for improving overall accuracy as well as decrease the Gini impurity.
However, unlike in Augsburg, the blue band is the second most important predictor vari-
able, followed by the red band for overall accuracy, and NGRDI for Gini impurity. Figure
6.8 illustrates the importance of predictor variables on single features in the dataset. The
GLI mainly shows positive SHAP values, especially for higher feature values, confirming
its strong positive influence in predicting urban green. Both blue and red bands exhibit
both positive and negative SHAP values, indicating a complex influence on the model’s
prediction. The Green band exhibits a significant spread of SHAP values but tends to
show more positive influence, particularly at higher feature values, which supports predic-
tions of an area being urban green. The RGBVI index shows a strong negative influence
when the feature values are low and a positive influence at higher values. This dual in-
fluence suggests that RGBVI’s high values support the classification of an area as urban
green, while low values discourage it. NGRDI primarily shows positive SHAP values, es-
pecially at higher feature values, indicating that higher NGRDI values strongly push the
model towards predicting urban green. Whereas, height mostly exhibits negative SHAP
values, suggesting that higher heights generally decrease the likelihood of an area being
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classified as urban green.

Figure 6.9: Comparative map of identified UGSs using aerial imagery and RF with TN
dataset in Wuerzburg.

Figure 6.9 illustrates both green identified using aerial image as well as UGSs within the
TN dataset. In total, we identify 43.8 km2 of UGSs. 38 km2 of the identified green areas
overlap those in the validation dataset. As in case of Augsburg, here we also establish,
that much more green is identified than the TN dataset accommodates. Furthermore,
when examined at a grater detail like in Figure 6.18, we establish that street level green
is identified with a high precision, that does not appear in TN dataset and thus cannot
be validated.

6.2.2 Random Forest Classification using Sentinel-2

To identify UGSs using Sentinel-2 imagery, we implement the same RF classification
procedure as with DOP imagery. Here, we use the red, green, blue and NIR bands with 10
meter resolution, as well as NDVI datasets derived from them. Following the workflow, we
first identify which hyperpyrameter settings of RF can yield the most reliable classification
results. We first explore prediction performance using 1000 trees and one mtry. Change
of OOB error for this model is given in Figure 6.10. It can clearly be seen, that 400 trees
is a cut point, until which the model learns and produces the OOB error. After growing
400 trees, the OOB error remains stable at 0.01.
We then test whether a change in mtry would affect the prediction accuracy. For this, we
present all accuracy values of the RF classification in Augsburg in Table 6.4. Here, we
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Figure 6.10: Plot illustrating decrease in OOB Error rate, based on the Sentinel-2 data in
Augsburg, as the number of trees increase.

observe a similar picture as with DOP. The OOB error changes slightly depending on the
selected mtry, but remains quite low. Accuracy values are all above 98%, with prediction
of non-green class reaching 100% for models 3 and 4. Therefore, we select model 2 with
400 trees and 1 mtry as the most optimal model for making a prediction for the whole
study area.

Table 6.4: RF performance metrics in Augsburg, using Sentinel-2 imagery and NDVI.

ID split_ratio ntree mtry OOB_error Accuracy Sensitivity Specificity

1 0.7 1000 1 0.63 0.99 0.98 0.99
2 0.7 400 1 0.56 0.99 0.98 0.99
3 0.7 400 3 0.48 0.99 0.98 1
4 0.7 400 5 0.56 0.99 0.98 1

We assess importance of each variable using two metrics: Mean Decrease in Accuracy
and Mean Decrease in Gini as shown in Figure 6.11. This helps us to understand how
crucial these variables are in the overall classification process. NIR band of June imagery
(Jun_B08) as well as green band of June imagery (Jun_B04) rank highest, suggesting
they are the most critical predictor variables for accurate prediction of urban green. The
subsequent most important variables are NIR band of May (May_B08), NDVI of June
and May (NDVI_06 and NDVI_05). The Mean Decrease Gini chart focuses on how
each feature contributes to the homogeneity of the nodes in the trees. However, NDVI
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Figure 6.11: Feature importance graph of the utilized Sentinel-2 imagery and predictor
variables to map UGSs in Augsburg.
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Figure 6.12: SHAP feature importance of RF prediction in Augsburg calculated using
Sentinel-2 datasets and their derivatives.
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of June imagery appears to have the highest contribution, followed by blue band of June
(Jun_B02). This indicates that they are influential in defining node splits that lead to
more homogeneous subgroups. The next three important variables for node homogeneity
are red band of June (Jun_B04), blue (May_B02) and red band of May (May_B04).
The SHAP plot in Figure 6.12 provides insights into the magnitude and direction of the
impact each variable has on predicting green class. Here as well, red band of June imagery
has a substantial influence on the model predictions. This band shows a prominent spread
of SHAP values. Lower red band values typically correlate with positive SHAP values,
suggesting that areas with less red light absorption (which could correspond to denser
green vegetation) are strong predictors for identifying green. The NDVI index created
from June imagery follows closely in importance, with higher NDVI values consistently
showing positive SHAP impacts. This aligns with the expectation that higher NDVI
values, indicating more vigorous vegetation, push the model towards predicting green
class. Although less influential than the red bands or NDVI indices, lower values in
this band, which may indicate less absorption by non-vegetative surfaces, have a positive
impact on model predictions. Finally, higher NDVI values in May correlate with positive
SHAP values, pushing the model towards predicting urban green. This underlines the
importance of vegetation vigor in May for predicting green areas. Starting from the blue
band of May, all the following variables show a very similar and limited spread in SHAP
values and rather cluster around zero. Except, the opposite is true for the NIR band.
For all months, the NIR band shows the strongest spread of higher values within positive
SHAP range. This indicates that in all cases high NIR band values will be a strong
predictor of urban green.
Although the sensitivity and specificity values and overall accuracy express to what extend
the utilized training dataset is capable to predict each class, we further visually investi-
gate the outcome of the classification. In addition to the visual inspection, we use the
enriched TN validation dataset, described in Chapter 4, to understand the performance
of our classification. Figure 6.13 illustrates the comparison between identified and TN
UGSs. The performed RF classification identifies around 85.9 km2 of green. 80.3 km2 of
this area overlaps with the area of UGS in the validation dataset. While a majority of
the areas between identified and TN dataset overlap, additional green appears in the RF
classification. These areas are particularly street-level green between residential areas, or
open areas that look green and have fine grass coverage.
In Wuerzburg, we perform exactly the same procedure to select best performing hyperpa-
rameters for RF. We explore 36 predictor variables, that include single temporal Sentinel-2
bands, NDVI indices derived from them as well as vegetation height. Accuracy results
over various hyperparameters options are given in Table 6.5. We follow the same model
selection approach as previously. In the given set up, the OOB error of model predictions
reaches its lowest at around 150 trees and remains stable afterwards. This can clearly be
seen in Figure 6.14.
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Figure 6.13: Comparative map of identified UGSs using Sentinel-2 and RF with TN dataset
in Augsburg.

Figure 6.14: Plot illustrating decrease in OOB Error rate, based on the Sentinel-2 data in
Wuerzburg, as the number of trees increase.
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Table 6.5: RF performance metrics in Wuerzburg, using Sentinel-2 imagery and temporal
NDVI.

ID split_ratio ntree mtry OOB_error Accuracy Sensitivity Specificity

1 0.7 700 1 0.36 1 1 1
2 0.7 150 1 0.36 1 1 1
3 0.7 150 3 0.36 1 1 1
4 0.7 150 5 0.12 1 1 1

Considering the overall aim of making predictions over the whole area of Wuerzburg, we
select 150 trees and 1 mtry as the most appropriate model parameters.
We further examine variable importance in the build RF setup. Therefore, we once again
explore the impact of each variable on the model’s overall accuracy (mean decrease in
accuracy), variable contribution to node splits in the decision tree (decrease in Gini), as
well as direction and magnitude of influence for each variable (SHAP). We first present
the results of the overall feature importance in Figure 6.15.
The NDVI variable derived from the June imagery is the highest-ranked variable in terms
of mean decrease in accuracy. Removing this variable has the greatest negative effect
on model accuracy. It is also the second most important variable for Gini, showing it
is used in many tree splits and contributes to pure decision making. NDVI of May is
the second most important variable affecting overall accuracy, and the most important
variable resulting in decrease of Gini impurity. This suggests that NDVI in May is a
key for distinguishing between green and non-green labels. Interestingly, NDVI of July is
important for overall accuracy as for Gini impurity, although ranked slightly lower than
the previous two variables. For both overall importance and Gini importance, this trend
of modest influence is followed by the red bands of June and July images.
The SHAP values for the selected RF classification are presented in Figure 6.16. Here,
we can also establish more dominant influences of certain variables to predict the class
1, which is the green class. Consequently, higher NDVI values in May, June, and July
(yellow points) consistently have positive SHAP values, indicating that higher values of
these variable push the model to predict the green class. Contrary, lower values of red
band of both July and June images impact the RF model to predict urban green. The red
band of the June imagery, and several bands afterwards, illustrate double spikes either in
negative or positive SHAP values. For the rest of predictor variables, there is clustering
of SHAP values around 0, indicating these variables will not substantially contribute,
neither positively nor negatively, for a pixel being classified as green or non-green.
Apart from examining the statistical measures of identifying green/non-green labels, we
also explore to what extent the values represent the reality. Therefore, we utilize the TN
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Figure 6.15: Feature importance graph of the utilized Sentinel-2 predictor variables to map
UGSs in Wuerzburg
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Figure 6.16: SHAP value graph of the utilized Sentinel-2 imagery and predictor variables to
map UGSs in Wuerzburg.
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Figure 6.17: Comparative map of identified UGSs using Sentinel-2 and RF with TN dataset
in Wuerzburg.

dataset to validate our results. By utilizing the best performing RF settings, we identify
48.9 km2 of green in the city. 46.2 km2 of the identified urban green overlap the TN
validation dataset. A comparative map of identified green with RF as well as green space
distribution based on the TN dataset is shown in Figure 6.17. Similarly to Augsburg, we
also identify intermediate green areas like street trees or grassy areas that do not typically
appear in the TN dataset.
In addition, we visually compare how well singular features are identified based on different
data sources. Hence, we present a snippet of an area in Figure 6.18 to illustrate to what
extent spatial resolution affects precise green identification. It can clearly be seen on this
figure, that with 20 centimeters resolution street level greenery is identified with much
higher precision than with 10 meters resolution. This is even more striking, given that
Sentinel-2 contains NIR band, which is advantageous for highlighting green vegetation.
Finally, we asses how well green is identified in Wuerzburg using the RF model that
was trained in Augsburg. We first examine the precision of using DOP and Sentinel-2
imagery. When the RF model is trained on 1800 training points in Augsburg and predicted
on the DOP imagery of Wuerzburg, it identifies 51 km2 of greenery in Wuerzburg. This
number is nearly 8 km2 more than when we train and predict an RF model using training
dataset collected from Wuerzburg. We also examine whether there is an overlap between
over-predicted areas and the TN validation dataset. It turns out that 24.5 km2 of green
areas predicted by transfer learning technique actually overlap the TN dataset. A visual
comparison between predicted urban green in Wuerzburg is given in Figure 6.19. Here it
is clearly seen that the majority of overlaps appear within agricultural production areas.
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Figure 6.18: Comparative map illustrating visual differences in UGS identification, between
DOP (upper) and Sentinel-2 (lower) imagery, due to spatial resolution differences.

The other source of over-prediction is in the outlines of green areas. As such, when DOP
is trained on the Wuerzburg dataset, it can precisely distinguish outlines of urban green,
such as crowns. However, the transfer learning approach predicts slightly larger areas
around e.g. crowns also as green.
Our examination of the results of transfer learning using Sentinel-2 dataset reveals, that
it identifies 57.4 km2 of green in Wuerzburg. This number is almost 9 km2 higher than
when we train the RF model with training data from Wuerzburg itself. 35.7 km2 of the
predicted green overlap with the TN validation dataset. Moreover, nearly 3 km2 from the
over-predicted green (9 km2) appears in the TN validation dataset. A comparative map
of predicted green using RF trained on the training data from Wuerzburg (left) and RF
model trained on the training data from Augsburg (middle) is presented in Figure 6.20.
The right map in this figure illustrates the areas that do not overlap in the predictions of
two models.
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Figure 6.19: Comparative map that illustrates the differences of urban green predictions
using RF model trained on DOP data from Wuerzburg (left), RF model trained on DOP data
from Augsburg (middle), as well as detailed areas that do not overlap between predictions
(right).

Figure 6.20: Comparative map that illustrates the differences of urban green predictions using
RF model trained on Sentinel-2 data from Wuerzburg (left), RF model trained on Sentinel-2
data from Augsburg (middle), as well as detailed areas that do not overlap between predictions
(right).

6.3 Discussion and Conclusions

Acquiring accurate maps of UGSs is challenging due to the inherent confusion surround-
ing different types of UGSs and the level of generalization in existing LULC maps. In
this computational experiment, we use a combined approach of RF and RS to identify
UGSs, demonstrating that cities contain far more green than what is typically represented
in LULC maps. Recognizing that different types of UGSs exist and that some may be



Mapping Urban Green with Sentinel-2 and Aerial Imagery 92

too small to be detected in RS imagery, we compare high-resolution Sentinel-2 data with
very-high-resolution aerial imagery. Moreover, we test the transferability of the trained
RF models to new study areas. To ensure the comparability of results, we apply the
exact same procedure to both datasets, using identical training and validation sets. This
approach is consistent across both study areas.
The first question that arises is whether it is possible to determine which selected data
sources and their derivative products can aid in identifying UGSs. To explore this, we
focus on vegetation indices, which have already been shown to be valuable in green space
mapping [104][1]. Moreover, Abdi [1] illustrates, that temporal datasets can facilitate
vegetation identification. Therefore, to capture and utilize changing phenological charac-
teristics of vegetation, we also utilize temporal Sentinel-2 datasets.
The first challenge in comparing selected data sources between two cities is the difficulty
of obtaining data for the exact same time period. Sentinel-2 provides freely available data
with a revisit time of five days, making it generally possible to capture images for both
locations on the same or nearly the same date. However, cloud coverage presents signif-
icant challenges due to the altitude at which these satellite constellations fly. Therefore,
we only select Sentinel-2 images per month throughout a year with less than 10% cloud
coverage. This results only in seven images for both Augsburg and Wuerzburg (January,
August, September, October, and November are excluded). While it is possible to get
imagery for some extra months in Augsburg, it is challenging to do so in Wuerzburg.
This is mainly determined by the topography of the two study areas. Wuerzburg’s center
is surrounded by hills. This means that fog would typically remain in the valley, thus
making the area underneath invisible for satellites. Conversely, imaging authorities that
provide DOPs have a better control over the acquisition date. It means, that these im-
ages will be taken on the clearest days to allow visibility of all the objects on the surface.
One major problem could be that parts of cities are captured on different days and dif-
ferent pre-processing steps are applied to combine images. This might not only affect
how the images look, but also result in differences of reflectance values. However, DOPs
are captured near-annually around the same time each year, making monthly DOPs too
expensive to obtain and therefore unavailable for the study areas.
Apart from the temporal factor, spectral qualities of images are also important for green
space mapping. Sentinel-2 images provide much wider spectral resolution, whereas DOPs
contain only three visible bands. In contrast, DOPs have extremely high spatial resolution
of 20 centimeters, while spatial resolution of Sentinel-2 data ranges from 10 to 60 meters
depending on the bands used. Consequently, when comparing identified urban green, we
do take into consideration all the possible differences inherent to the selected datasets.
Many ML methods exist that can be utilized for RS image classification, where RF is
among the most frequently used ones [27][115]. Therefore, we choose to implement RF
classification by Breiman [22]. Determining factors of goodness of the classification are
how well utilized dataset represents objects of interest and how good is the training data
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that will be used to identify these objects. Moreover, model engineering steps can also
play a crucial role in avoiding e.g. overfitting of the model. This could include the train
and test split, number of trees as well as the number of variables to split nodes. Conse-
quently, we choose to test some of the variables in a changing order to observe the accuracy
change. In case of both datasets, we split training data into 70/30 train/test proportions,
and choose to grow only as many trees as absolutely necessary for adequate classification.
However, depending one the dataset and the indices derived from them, we test between
one and five variables to split the nodes. Unlike to many other examples in the existing
literature, we achieve both for Sentinel-2 and DOP classification extremely high accuracy,
that is constantly above 95%. In a similar set up of using Sentinel-2 for UGS mapping,
Chen et al. [27] achieve 94% accuracy, whereas Abdi [1] reaches 80%. Furthermore, in
a study of using 5 centimeters resolution DOP in combination with RF, Wagner and
Egerer [144] achieve 80% prediction accuracy. While all the mentioned studies have dif-
ferent focus ranging from UGS mapping to LULC mapping to more specific urban garden
mapping, all of them utilize either DOP or Sentinel-2 data and build RF classification
workflows. Considering our exceptionally high classification accuracy, we further explore
the possibility of overfitting. The out-of-bag (OOB) error, an internal measure of accu-
racy, uses sub-samples of data to evaluate both training and testing performance. The
consistently low OOB error across all hyperparameter tuning combinations indicates that
the likelihood of overfitting is very minimal.
RF classification can be time-intensive, especially with the very high resolution of the
DOP datasets, which impacts the selection of hyperparameters. If similarly good results
can be achieved with only 500 trees, it is more cost-effective to avoid growing, for ex-
ample, 1500 trees. The same principle applies to the number of predictor variables: if
using just one predictor variable per split yields the same accuracy as using all seven, it
is more efficient and meaningful to use only one. Looking at our results, we find that
equally good classification outcomes for both Sentinel-2 and DOP data in both cities can
be achieved using under 500 trees. This can be explained by the straightforwardness of
the decision making. In the example of an eight bit DOP image there are only 256 values
available to describe every pixel. Given green areas represent unique portions of these
values, RF does not need to build too many decision trees to come to a clear outcome.
The same, to a certain extent, applies to the Sentinel-2 datasets. Although they represent
reflectance intensities with a wider range of values, NDVI derived from them is limited to
a range between -1 and 1. Our results clearly show that in most cases NDVI values are
the determinant variables, therefore RF can easily distinguish green in this small NDVI
range.
Here, it is also important to note the precision of the training dataset. Quality of train-
ing data is a widely discussed aspect in ML classifications. The principle of "rubbish in
and rubbish out" is understandable, since ML can only learn from the data that we pro-
vide. Therefore, we pay extra attention to collect pure, green area representative training
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points. This improves the pattern recognition of the RF model substantially, since it does
not require extra effort to delineate noise from the actual data. This is also reflected in
how well true positive and negative labels are recognized.
We observe differences in the predictor variables used for node splitting, as they vary
depending on the dataset. Unfortunately, RF does not provide a straightforward way to
identify the exact variable used to split a specific node, since this information is spread
across many trees in the forest. Nevertheless, variable importance can be used as an in-
direct method to infer which variables are most frequently chosen for splits. When DOPs
and their derivative indices are used, the GLI index consistently emerges as the most
important variable for RF predictions, which likely contributes to the model’s high accu-
racy. For Sentinel-2 datasets, there is some variation in the ranking of important variables
across study areas. However, in both cities, the NDVI values from June, July, and May,
along with the red and NIR bands from June consistently rank among the top five most
important variables. The NDVI index is specifically designed to highlight healthy vege-
tation, so its prominence as the most important variable is not surprising. This finding
aligns with existing literature, such as Degerickx et al. [37], Simonneaux et al. [129], and
Abdi [1]. There are, however, some exceptions, such as the publication by Peña et al.
[112], where the use of NDVI does not yield significant contributions. It is worth noting
that the authors use Landsat-8 data with a 30 meter resolution, which could be an under-
lying reason for the unsatisfactory results. Additionally, the relatively high importance of
red band values for identifying green spaces can also be easily explained by the expected
behavior of chlorophyll, which strongly absorbs red light in healthy vegetation [106].
DOP images, as previously described, contain only three bands, that potentially could be
not enough for identifying green areas. However, some studies, such as by Agapiou [3],
utilize RGB indices to identify various vegetation types. This analysis reveals that GLI is
capable to outperform across all vegetation types. Furthermore, NGRDI index of Motohka
et al. [104] is similarly shown to be profiting for the vegetation delineation, if only three
band information is available. Our results are also in line with the existing literature,
as GLI turns out to be the most important variable in both study areas. Furthermore,
NGRDI is the second most important band in Augsburg. However, in Wuerzburg, the
blue band appears to influence more than the NGRDI index. NGRDI already includes
red and green band information, therefore its importance to a certain degree is expected.
Although first appearing controversial, chlorophyll also absorbs in blue band, and like the
red band, the blue band will show low reflectance in areas with healthy, green vegetation.
Other indices and bands we use appear to have minimal to no influence, which may be
because individual red and green bands do not contribute much to RF classification unless
combined in indices.
What we expected to be important but did not turned out to be, is the vegetation height.
Only in the trial of RF classification using DOP in Augsburg, height variable appears to
have slightly higher importance, which is still much lower than the importance of GLI.
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In all other set ups the importance of the height variable is extremely low. It could be,
that GLI is highly representative of vegetation and thus it is repeatedly used as a vari-
able to split the nodes. But it could also be that there is a very large variation between
height values for different vegetation, i.e. tall trees in forests and low grass vegetation.
Consequently, RF can not establish patterns based on this variable and therefore does
not consider it during decision making.
Variable importances from the trained RF models provide valuable insights into which
variables are most significant in a given context. However, it is also useful to examine
how the distribution of variable values influences RF accuracy. This is referred to as an
IML approach, and in this study, we utilize SHAP values from Lundberg et al. [94]. Our
analysis confirms that, for DOP images, the GLI increases the likelihood of a location
being classified as green. The higher the GLI value (closer to 1), the greater the prob-
ability that a pixel will be classified as green. Consistent with our earlier discussion on
chlorophyll absorption of blue light, SHAP values show that lower values in both the blue
and red bands increase the chances of a pixel being identified as green. These findings
hold true for both Augsburg and Wuerzburg. For Sentinel-2 data, higher NDVI values
from May, June, and July drive the model to predict urban green. Similar to the DOP
data, lower values in the red band also indicate a higher probability that a pixel will be
classified as green.
Interestingly, in Wuerzburg, the SHAP values for some variables illustrate more than two
peaks in value distribution. These are obvious for variables, such as red band of June,
NDVI of February, NIR of May and others. This suggests that the mentioned variables
have two different value ranges that contribute to positive or negative predictions. This
phenomenon could be attributed to the training dataset. For instance, if the training data
includes sparse or less healthy vegetation, the red light may not have been absorbed as
effectively as in healthy vegetation. Consequently, the model identifies two distinct value
ranges for the red band that represent green space. This behavior, stemming from the
training dataset, can also be attributed to other variables with several value peaks.
When we express that our classification yields high accuracy, we rely only on the model
statistical measures. Since study areas are much larger that the size of the training data,
to be able to conclude on the precision of the classification, a validation procedure is a
must. Nevertheless, the absence of accurate UGS maps makes the validation procedure
almost impossible. In order to counteract this disadvantage, we do create validation map
from the TN dataset. Yet, this dataset is missing privately owned green areas, such as
private forests. Moreover, none of the existing datasets captures back and front yard
green, or street level trees and grasses.
Based on the acquired results, we observe considerable differences not only in terms of
how much green is identified, but also in how well certain green spaces are identified. As
such, in Augsburg we identify 75.1 km2 of green using DOP and 85.9 km2 of green using
Sentinel-2 imagery. Moreover, based on the green space validation dataset, that is com-
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prised of various green space types from the TN dataset, the area of green in Augsburg
constitutes 79 km2. The RF classification encounters slight problems due to a mismatch
occurring in the DOP image. A very small part in the south of Augsburg was captured
on different dates. Due to the varying lighting conditions, reflectance values here appear
slightly lower than in the rest of the DOP. Therefore, we suspect that variations between
e.g. vegetated pixels and pixels that represent shadows is not high enough. Therefore,
some shadows of trees are classified as green. In the rest of Augsburg, we do not encounter
such issues. It is important to note, that the validation dataset is not as detailed as the
classified image. This means, that in the area of the DOP tile mismatch, RF failed to
delineate single tree crows (as RF did elsewhere) and classified shadows as green. But
when comparing to the TN dataset and looking at the total identified area, RF did not
over-predict vegetation.
In Wuerzburg, predicted values equal to 43.8 km2 and 48.9 km2 of green identified using
DOP and Sentinel-2 data respectively. In comparison, the TN validation dataset ac-
commodates 40.7 km2 of green in Wuerzburg. Although identified values differ from the
TN dataset, we identify a considerable amount of small-scale green that is not captured
elsewhere. Especially when examining the Figure 6.18 at a greater detail, we can see dif-
ferences in identified UGSs based on Sentinel-2 and aerial image. It is clear that fine green
information cannot be captured as precisely with 10 meters resolution, like it could be
with 20 centimeters resolution. However, it is also important to note, that at such a fine
scale, open areas with no particular purpose, that visually appear green, are also classified
as UGS. In the existing literature, there are hints that the classical per-pixel classification
techniques might be less advantageous to identify green areas, than e.g. OBIA, due to
spectral diversity associated with a specific LU in question [119]. Consequently, combina-
tion of pixel and object based classification can counteract the over-identification in some
areas and reduce effects associated with the absence of e.g. NIR band in the DOPs.
Based on the acquired results, we consider some optimization options. Firstly, we col-
lect 1800 training points, with a special emphasis on including all possible types of green
spaces. A training dataset of a similar size utilized by Abdi [1] was adequate to achieve
good classification output. However, collection of pure training points in two study areas
is a manual and time consuming process. It is possible to acquire training data from
others sources, like Chen et al. [27] use crowd-source information for training purposes,
or Weigand et al. [147] uses LUCAS data points as a training dataset. However, none of
these approaches can provide as detailed green space information as we require for the
purpose of creating detailed green space maps. Thus, this makes collection of training
data manually our only option. Secondly, we consider different processing requirements
as it determines the feasibility of performing an ML classification. Number of collected
training data, especially when divided into 70/30 proportion is not as time-intensive. Nev-
ertheless, making prediction on huge study areas is computationally heavy. Considering
these aspects, it would be wise to train such a model that can make accurate predictions
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in new study areas. This is called transfer learning, when a trained model is applied to a
totally new area. Furthermore, parameters of this model need to be repeatedly tested so
that they are generalizable to other spatial contexts.
Our results show, that the RF model trained with under 500 trees and only one mtry
in Augsburg, has great potential for predicting green areas in Wuerzburg. However, we
do observe differences in total predicted areas. Under a detailed examination, these dif-
ferences appear particularly in agricultural areas as well as in tree crowns. When RF is
trained on the training data from Wuerzburg, it is much more capable to delineate single
crowns. However it fails to do so, when RF is trained on the Augsburg data. We assume,
that the pixels surrounding crowns or shadows have similar reflectance as some green
areas in Augsburg. Similar behavior can also be observed alongside the river. Here as
well, reflectance values could be very similar to some green areas in the training dataset.
Spatial resolution of Sentinel-2 datasets appear to have even more influence during trans-
fer learning. We notice these especially in its complete disability to separate e.g. shadows
from green. However, we also establish that forest areas do not have as high overestima-
tion as build up areas. This is probably because forests are homogeneous areas with even
distribution of green intensities. It contrast, build up areas are very heterogeneous with
sparse tree distribution in between. In could be that sometimes a 10 meter sized pixel
includes green space, sometimes does not. Such abrupt changes from green to non-green
might make it difficult for the RF model that learned slightly different values in Augsburg,
to make proper predictions.
In conclusion, this study aims to address challenges in accurately mapping UGSs due to
the limitations of existing LULC maps and the diverse nature of UGS types. By combining
RF classification and RS data from Sentinel-2 and very-high-resolution aerial imagery, we
demonstrate that urban areas contain significantly more green than LULC maps typically
represent. Our comparison of Sentinel-2 and DOP imagery highlights variations in UGS
detection accuracy between these data sources, with high-resolution imagery identifying
smaller green that lower-resolution data often misses. Our findings reveal that vegeta-
tion indices, particularly NDVI and GLI, play a crucial role in detecting green, with high
accuracy rates achieved for both Sentinel-2 and aerial imagery classifications. However,
cloud coverage and the limited temporal availability of aerial imagery present challenges
in data acquisition, particularly in maintaining seasonal consistency across different lo-
cations. Additionally, RF classification’s sensitivity to spatial resolution emphasizes the
importance of balancing spectral and spatial qualities in UGS mapping.
This study also demonstrates that transfer learning can reduce the time required to create
training data in new study areas. However, usefulness of transfer learning depends on the
specific research questions. For example, if the goal is to produce a UGS map showing
the general distribution of various green without needing precise boundary delineation,
DOP imagery with a transfer RF model could be used. This map would appear similar to
generalized TN maps but would also include street-level greenery. On the other hand, if
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the objective is to delineate green areas more precisely including individual tree crowns,
training data specific to the study area for classifying DOP data is essential. The use of
Sentinel-2 with RF can accurately identify large, homogeneous green areas such as forests,
though it struggles to identify scattered green spaces. Therefore, for mapping large green
areas, Sentinel-2 and RF may be a more time-efficient choice. Overall, DOP imagery with
RF produces the most precise green distribution maps, but it is a cost-intensive proce-
dure.
The main limitation of this study is the lack of an accurate UGS validation dataset. While
we demonstrate the methodology’s applicability statistically, our ability to validate the
results is limited. Creating accurate validation datasets, which would likely involve a
manual digitization process, is essential for future research. Improving the transfer learn-
ing approach could facilitate a scalable solution to UGS mapping. Although this study
shows that the proposed approach is promising, it does not fully explore tuning opportu-
nities. Furthermore, combining pixel-based and object-based classification methods could
mitigate over-identification in open green areas while improving the detection of specific
UGS types - an area that also requires further exploration.



Chapter 7

Urban Forest

Starting from this chapter, we present our approach to knowledge-based UGS mapping.
Therefore, we first present how forests are described in the existing local and global
definitions. Moreover, we synthesize presented forest definitions to create one that makes
it more suitable for spatial analysis. We then conduct a workflow to showcase how urban
forests can be identified using their unique semantic characteristics. To asses efficacy of the
proposed approach, we conduct an analysis in two study areas, and describe transferability
of the proposed workflow.

7.1 Definition of Urban Forest

What is a forest? How do we define it? While the questions are clear, answers to them
are not always straightforward. From a botanical perspective, forest is characterized as a
vegetation dominated by trees, covering an area large enough to enable development of a
forest climate1. This distinguishes forests from, for example, tree-lined avenues, parks or
tree nurseries. In order to understand the complexity of defining forest, we present two
different forest definitions: one at a more general and the other one at a national level.
The Food and Agriculture Organization (FAO) of the United Nations defines forest as a
land area larger than 0.5 hectares, populated with trees surpassing height of five meters
and possessing a canopy coverage exceeding 10 percent, or having the potential to meet
these criteria in situ. This definition specifically excludes areas primarily used for agri-
cultural or urban purposes, emphasizing importance of tree presence and the exclusion of
dominant alternative LUs. It encompasses regions where young trees have yet to grow,
but are anticipated to reach the expected canopy cover and tree height. Additionally, it

1hhttps://www.bundeswaldinventur.de/vierte-bundeswaldinventur-2022/
hintergrundinformationen (accessed on 01.2025)

99

hhttps://www.bundeswaldinventur.de/vierte-bundeswaldinventur-2022/hintergrundinformationen
hhttps://www.bundeswaldinventur.de/vierte-bundeswaldinventur-2022/hintergrundinformationen
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accounts for areas temporarily devoid of trees due to forest management activities like
clear-cutting or natural calamities, with the expectation of regeneration within five years.
Though local circumstances may support an extension of this period.
The FAO definition further covers forest infrastructure such as roads and firebreaks, as
well as small clearings, and extends to forests within protected areas like national parks
and reserves that hold particular environmental, scientific, historical, cultural, or spir-
itual value. It includes linear tree formations like windbreaks and shelterbelts if they
cover an area larger than 0.5 hectares and wider than 20 meters, as well as abandoned
lands from shifting cultivation practices showing signs of tree regeneration meeting the
specified canopy and height criteria. Moreover, it recognizes forests outside legally desig-
nated areas that satisfy the forest criteria. However, it distinctly excludes tree stands in
agricultural production systems like fruit trees, oil palm plantations, olive orchards, and
certain agroforestry systems where crops are cultivated under tree cover2.
Under German forest legislation, forest is broadly defined to encompass any land area
populated with forest plants. This definition extends beyond merely tree-covered areas
to include lands that have undergone clear-cutting or thinning, forest pathways, strips
designated for forest division and protection, clearings, glades, meadows within forests,
areas for wildlife feeding, places used for wood storage, and other lands linked to and
serving the purposes of the forest. An area is only classified as a forest, if it is at least 0.1
hectares in size and 10 meters wide.
However, certain areas do not qualify as forest according to this law. These exclusions
include lands where trees are planted with the intention of swift timber removal, partic-
ularly if such stands are managed on a cycle of no more than 20 years, known as short
rotation plantations. Agroforestry lands, which combine tree cultivation with agricultural
production, are also excluded. Small plots within open fields or urban areas, if they are
populated with scattered trees, tree lines, hedges, or are utilized as nurseries, also do
not meet the forest criteria under this law. Similarly, lands populated with forest plants
but located on or adjacent to railway paths - including those within service facilities and
extending to a specific width alongside the tracks - are also not classified as forests.
Furthermore, this legislation provides flexibility for states to adapt these definitions by
potentially including additional lands as forests or excluding certain types of cultivated
areas, such as Christmas tree farms as well as parks linked to residential zones, from
the forest definition. This nuanced approach allows for a degree of customization in how
forest land is categorized, reflecting the diverse nature of LU and management practices
across different regions3.

2https://openknowledge.fao.org/server/api/core/bitstreams/531a9e1b-596d-4b07-b9fd-3103fb4d0e72/
content (accessed on 01.2025)

3https://www.gesetze-im-internet.de/bwaldg/BJNR010370975.html (accessed on 01.2025)

https://openknowledge.fao.org/server/api/core/bitstreams/531a9e1b-596d-4b07-b9fd-3103fb4d0e72/content
https://openknowledge.fao.org/server/api/core/bitstreams/531a9e1b-596d-4b07-b9fd-3103fb4d0e72/content
https://www.gesetze-im-internet.de/bwaldg/BJNR010370975.html
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7.2 Semantic Features of Forests

In previous section we present the FAO as well as the German national definition of
forest. As our focus is on mapping forested areas, it is important to note that these
definitions are intricate, encompassing details that may not be entirely quantifiable or
depictable through spatial datasets. Consequently, to enable mapping of forests based
on these definitions, we synthesize elements from both the FAO and German definitions.
This synthesis helps highlighting fundamental features of forests that shape their semantic
essence and contribute to their semantic profile while facilitating their identification. In
this work, forests are:

• Areas populated with tree species.

• Areas larger than 0.5 hectares.

• Areas populated with trees with height higher than five meters.

• Areas not covered by other LUs, e.g. agriculture and urban LU.

• Areas where young trees have yet to achieve expected tree height.

• Areas covered with tree stands that are not in agricultural production systems like
olive orchards or vineyards.

• Areas covered with woody vegetation that do not follow scattered tree, tree lines,
and hedges pattern.

• Areas covered with forest plants that are not adjacent to railway paths.

• Areas covered with linear tree formations like windbreaks and shelterbelts with an
area greater than 0.5 hectares and wider than 20 meters .

We pay attention to incorporate a comprehensive range of elements from the existing
definitions into our analysis, carefully choosing or redefining aspects that can be quantified
or recognized through spatial datasets. Consequently, in the following we describe how
exactly we derive representations of forest semantics from spatial datasets and how we
combine them together to create final forest areas.

7.3 Forest Modeling

Upon establishing criteria for an area to be identified as a forest, our next step involves
generating spatial features that facilitate its mapping. This process demands the acquisi-
tion of datasets that can accurately capture the vertical extent of spatial elements, ensure
a uniform distribution of these elements (specifically trees), and distinguish forested areas
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from non-forested LUs like agriculture. The process of identifying forests within the des-
ignated study areas adheres to the methodology depicted in Figure 7.1. We first test the
workflow in the city of Augsburg. Afterwards, we use thresholds for the most important
variables, identified through the SA, to map forests in Wuerzburg.

Figure 7.1: Forest identification workflow in both study areas.

The forest definition we propose indicates that the trees in a forest should be taller than
five meters. Therefore, the first parameter to be identified is tree height. In order to
achieve this we utilize the nDSM dataset, as outlined in Chapter 4. Urban scene can be
very complex since it hosts various features that might exceed five meters in height, not
limited to trees alone. Furthermore, forests are living habitats, where older trees might be
cut, while younger trees are yet to grow and reach five meters. Hence, it’s crucial to grasp
the general variations in height within forested regions, as a singular height measurement
is insufficient for distinguishing trees from other objects or including younger trees within
the same forest. Therefore, we first determine the variations of heights within known
forest locations. These known forest locations are extracted from the TN dataset. TN
captures all the publicly owned LUs, including forests. While the private forests are not
included into this dataset, the area of public forests is large enough to understand height
variations.
The process of identifying forest height distribution involves extracting pixel by pixel
height value from the nDSM dataset within each forest polygon. The nDSM dataset is a
product of DSM and DTM datasets with varying spatial resolutions. Thus, there might
be inherent uncertainties in the height information. In order to exclude outliers from the
extracted dataset and encapsulate the central 90% of the height variations, we cut off
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the dataset below the 5th and above the 95th percentiles. This way we produce a binary
height dataset, for both study areas, that is thresholded using the values above 5th and
below 95th percentiles.
In addition to the pre-defined height range, the proposed forest definition also states that
forests are areas covered with tree species and are larger than 0.5 hectares. This means
that forests appear as patches with similar tree coverage. It is known to us that the forests
in both study areas are mostly mixed forest of both deciduous and coniferous species. As
a result, these regions exhibit distinct textural features, characterized by the intermin-
gling of large deciduous tree crowns with the slimmer crowns of coniferous trees. Textural
characteristics of spatial objects can be described using the GLCM method proposed by
Haralick [65] and described in Chapter 3. In this work, main usage of the GLCM is in un-
derstanding forest area. Forests, especially those with a mix of coniferous and deciduous
trees, exhibit significant texture variability due to the differences in tree canopy structure
and density. Coniferous trees tend to have a more uniform texture compared to the varied
texture of deciduous forests. Therefore, from the existing texture metrics, we select the
dissimilarity as the texture metric to understand the change of grey levels in forest areas.
GLCM metrics are typically derived from gray scale images. Frequently, images depicting
a variety of vegetation indices are used, particularly for UGS analysis [149]. However,
we argue that vegetation indices like NDVI are calculated from spectral bands and con-
sequently represent a condensed form of information. Additionally, their value typically
range from -1 to 1, which further limits the variations in the data. To capture more
detailed gray scale levels beyond what vegetation indices can offer, we utilize raw spectral
bands. Forest, as any other vegetated area, undergoes phenological changes throughout
the seasons. However, mixed forests demonstrate even more peculiar changes due to the
mixture of evergreen and deciduous vegetation. To be able to adequately capture these
changes, we utilize temporal Sentinel-2 imagery in both cities.
In order to include sufficient amount of information, yet to reduce the amount of data and
processing time, we use one image from each spring, summer, and winter season. Conse-
quently, for Augsburg, we select Sentinel-2 images captured on the 27th of March, 15th
of June, and 17th of December of 2022. We produce exactly the same datasets also for
the second study area. Here, we use as well the Sentinel-2 images from the 7th of March,
13th of June and 20th of December 2021. A detailed description of all included Sentinel-2
images is given in Chapter 4 in Table 4.1 and 4.2 for Augsburg and Wuerzburg respec-
tively. Moreover, we calculate GLCM only on bands two and three. This is because both
of these bands have 10 meters resolution and allow a higher information gain. Further,
these bands are not part of vegetation indices that we included into the analysis. This
way we reduce the possible correlation between the bands and indices. Therefore, similar
to our approach with the height dataset, we generate binary dissimilarity datasets for
three dates utilizing a thresholding method. We establish the lower and upper thresholds
at the 5th and 95th percentiles of dissimilarity values that occur solely within forested
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areas. To achieve this, we first extract dissimilarity values for forest polygons and then
calculate the percentile values and use them as thresholds.
Other than the choice of grey scale image, size of the moving window to calculate GLCM
must be carefully selected. Size of the window matters, as it should be able to capture
fine grey level changes within the window, yet be able to ignore the present noise. Com-
monly, the size of the moving window will be set similar to the utilized image resolution
[149]. Nevertheless we utilize a 3x3 window size, the smallest possible in most modern,
GLCM implemented, software. With the selected window size we try to compensate on
the 10 meters resolution of the utilized images. It is also important to note, that texture
analysis is based on descriptive statistics that varies across different contexts, and can be
influenced by changes in image scale and window size [64]. In order for the analysis to
be comparable across both study areas, we perform regional GLCM analysis [149]. We
implement in RStudio software version 4.2.2.
Tree height and density significantly distinguish forests, yet presence of vegetation in these
areas is a primary identifier. Therefore, it is vital to emphasize areas that are genuinely
"green" and further meet specific criteria for height and homogeneity. To accentuate
vegetation in our study areas, we choose the NDVI index and compute it following Equa-
tion 3.4. Similar to the approach taken with the GLCM index, we incorporate temporal
NDVI analysis into our study. We calculate NDVI for more than three dates, which is an
extension of our previous approach with the dissimilarity index. This enhances our under-
standing of the overall vegetation status and its changes over nearly a year in the study
areas. Hence, for Augsburg, we calculate NDVI indices using Sentinel-2 images captured
on the 10th of February, 27th of March, 21th of April, 11th of May, 15th of June, 25th
of July, and 17th of December 2022. For Wuerzburg, we calculate NDVI indices using
images captured on the 28th of February, 7th of March, 26th of April, 31th of May, 13th of
June, 18th of July and the 20th of December 2021. The slight temporal differences occur
due to the availability of the cloudless datasets in both study areas. Here, once again,
we produce binary NDVI datasets using exactly the same approach as for the nDSM and
dissimilarity datasets. We first extract NDVI values of each date under forest polygons,
calculate the 5th and 95th percentiles, and finally use these values as the lower and higher
thresholds to reclassify the initial NDVI datasets in both cities.
We proceed in the forest identification workflow by combining the reclassified binary
nDSm, NDVI, and dissimilarity datasets. Since our final goal is to identify forest and
non-forest areas, we produce a multiplication product of the selected layers. This product
serves as a base to create final forest polygons. However, this procedure produces a pixel
by pixel binary image and it is necessary to group these pixels into forest objects. There-
fore we create forest objects using Mean-Shift Segmentation by Fukunaga and Hostetler
[55], which is describe in detail in Chapter 3. We use ArcGIS Pro Version 2.3 to carry out
the segmentation. Through a process of trial and error, we identify the most appropriate
values for the segmentation parameters. We determine that a spectral detail of 15.5, a
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spatial detail of 15, and a minimum segment size of 20 produce the most accurate results,
especially, in terms of eliminating small non-forest pixels.
The next step of the post-processing is to identify polygons that meet the 0.5 hectares
criteria. Thus, we select every polygon that does not meet this criterion and exclude it
from the forest dataset. In order to establish whether further forest rules are met, namely
presence of agricultural production systems on identified forest areas, presence of woody
coverage that follow scattered tree, tree lines, and hedges pattern as well as adjacency
of forest polygons to railway paths, we perform three additional steps. We first identify
the proportion of forest polygons laying over the agricultural polygons by erasing non
overlapping polygon parts. Here we use the TN agriculture dataset as a base for overlay
operations. We further calculate how many forest polygons are located in at least 100
meter proximity to railroads. And finally, we describe the forest polygons’ shape using
the circularity index given in Equation 7.1.

Circularity =
4π × Area
Perimeter2

(7.1)

Circularity values span from 0.0 to 1.0, with values near one indicating a shape that is
more circular. Conversely, values approaching 0 indicate that the shape is more elongated.
In order to improve the appearance of the resulted forest polygons we smooth out their
borders using 100 meters smoothing tolerance. We also close possible holes within the
forest polygons by dissolving them with their adjacent polygons.
What we identify using the knowledge-based approach, is forest objects. However, just
like in case of TN polygons, these objects do not express how much green they store, but
rather how large areas they cover. Consequently, we use the urban green map created in
Chapter 6 using DOP, and calculate the amount of green stored within identified forest
polygons.
Aforementioned processes, including binary raster merging and subsequent result refine-
ment, are initially carried out only in Augsburg. Upon determining the most important
variables, we apply established thresholds to detect forested areas in Wuerzburg. There-
fore, we create binary datasets in Wuerzburg by only utilizing thresholds from Augsburg.
Consequently, we perform transferability analysis and assess the potential of the proposed
workflow to map forests in two different cities.

7.4 Feature Importance Determination

We describe and select a number of variables to identify forests. Especially, we include
temporal information into the analysis to ensure the highest information gain. However,
this produces a large number of variables that may or may not improve the identification
accuracy. Therefore, we perform a local feature SA in order to identify which of the
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selected variables have the highest impact on the identification accuracy. We perform SA
separately first for dissimilarity indices and then for vegetation indices. We keep nDSM
as a constant variable in both groups, as vegetation height is the most prominent forest
indicator.
We calculate sensitivity of each selected variable following the OAT feature selection
approach. In Chapter 3 we already described various possibilities of feature importance
determination. Here, we examine the deviation of the model’s accuracy from the actual
accuracy observed in the validation dataset as a result of excluding variables from the
model one-at-a-time. The procedure is set up as following: Let each raster be represented
as Ri, where i equals the number of rasters. The first step involves creating a composite
product P−i by multiplying all the rasters except Ri, following Equation 7.2.

P−i =
n∏

j=1
j ̸=i

Rj (7.2)

where n is the total number of variables and j represents the index of these variables
while making sure that all rasters except the i-th one are included in the multiplication.
Furthermore, for each P−i the identification accuracy A−i is calculated and evaluated
against the accuracy of the validation dataset, denoted by V . Unlike the ML methods
where only 100% accuracy can be reached, this task may result in overestimation or
underestimation of forest identification accuracy. In order to account for bidirectional
accuracy changes relative to V, we derive percentage deviations of A−i from V. This
method enables us to quantify the extent to which accuracy diverges from V, when one or
more variables are excluded from the analysis. Consequently, the percentage deviation,
Di of A−i from V is calculated using Equation 7.3.

Di = (
|A−i − V |

V
)× 100 (7.3)

We use the TN forest dataset as a reference for accuracy assessment. Consequently V,
that we use to assess accuracy deviation, is the area of forests in this dataset. Based
on the deviation calculation, we define those variables whose exclusion from the analysis
results in the largest deviation, as the most influential variables.

7.5 Results

We identify forests in Augsburg by combining height, texture, and vegetation indices along
with their derived thresholds. Additionally, through the use of the OAT SA, we determine
the most influential variables for forest mapping. By utilizing thresholds, derived from
datasets of Augsburg, we extract forest areas in Wuerzburg and assess the transferability
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of the proposed workflow.
To derive thresholds, we utilize TN forest dataset as reference data. This data is comprised
of approximately 600 polygons in total with an area of nearly 35 km2. As a minimum
and maximum threshold, we extract the 5th and 95th percentiles accordingly. Our re-
sults, shown in Table 7.1, present a comprehensive overview of minimum and maximum
thresholds across all the utilized predictor variables.

Table 7.1: Threshold values of all the utilized predictor variables in Augsburg, extracted
using the 5th and 95th percentiles.

Variables Minimum Threshold Maximum Threshold

nDSM 0.712 28.935

March B2 dissimilarity 0 0.333

March B3 dissimilarity 0 0.556

June B2 dissimilarity 0 0.333

June B3 dissimilarity 0 0.555

December B2 dissimilarity 0 1.333

December B3 dissimilarity 0 1.445

NDVI 02 0.176 0.451

NDVI 03 0.188 0.415

NDVI 04 0.226 0.433

NDVI 05 0.332 0.606

NDVI 06 0.340 0.655

NDVI 07 0.378 0.612

NDVI 12 0.047 0.180

We first explore the height dataset and establish, that the height distribution over the
existing forests in Augsburg is between 0.08 and almost 30 meters. This wide range show-
cases the significant variability in forest canopy heights within Augsburg, highlighting the
diverse forest structures ranging from young to mature wooded areas.
Textural dissimilarity in the green and blue bands during March, June, and December
shows a uniform minimum threshold of 0 across all instances, indicating a baseline tex-
tural similarity in forested areas. Furthermore, the maximum thresholds of March and
June constitute to 0.333 and 0.555 for band two and band three, respectively. In contrast,
December’s maximum thresholds reach up to 1.333 and 1.445 for band two and band
three accordingly. This suggests a significant textural deviation in forested areas during



Urban Forest 108

this month, in comparison to other examined months, potentially due to seasonal changes
affecting leaf-off conditions in deciduous forests.
NDVI, a critical index for assessing vegetation health and coverage, presents thresholds
that progressively increase from February (NDVI 02) through June (NDVI 06), with min-
imum values gradually rising from 0.176 to 0.047 and maximum values stretching from
0.415 to 0.655. This trend indicates a growing vegetation density and health leading into
the summer months. The slight decrease in May (NDVI 05) and July (NDVI 07) to a
maximum threshold of 0.606 and 0.612, followed by a drop to 0.180 by December (NDVI
12) highlights the phenological characteristics of vegetation growth within the study area.

Figure 7.2: A star-plot illustrating variable importance of temporal dissimilarity indices as
well as nDSM, derived using OAT technique in Augsburg.

We conduct a SA using the OAT technique to determine the impact of excluding individual
variables on the identification accuracy. We use the TN dataset to establish how much
accuracy will deviate from the TN’s accuracy, if one of the variables is dropped. We
first evaluate the effect of excluding height (nDSM) and dissimilarity texture metrics for
bands two and three, which is illustrated in Figure 7.2. We observe that the omission of
the nDSM variable results in the most significant deviation, with an estimated change of
approximately 60% from the TN forest areas. This is indicates that the nDSM variable
plays a critical role in the forest area estimation.
Following this, the exclusion of the December band 2 and band 3 variables shows a
moderate impact on the results, with deviations around 10-15%. The sensitivity of the
estimations of the June and March variables is lower, suggesting a lower influence of these
temporal metrics on the final forest area estimations.
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Figure 7.3: A star-plot showing variable importance of temporal NDVI indices as well as
nDSM, derived using OAT technique in Augsburg.

Figure 7.4: Map of the identified forest in Augsburg with nDSM variable dropped.

Furthermore, we investigate the impact of temporal NDVI indices on the forest identifi-
cation accuracy, given in Figure 7.3. Here, we also include the nDSM variable to explore
to what extent its influence remains if vegetation indices are incorporated. Similar to the
case with texture metrics, the nDSM variable once again holds the highest sensitivity,



Urban Forest 110

Identified Forest

TN Forest

AOI ¯3km

Figure 7.5: A comparative map of the results of forest identification workflow versus the TN
forest polygons in Augsburg.

Figure 7.6: An explorative map of sample identified forest polygons as well as TN agriculture
polygons in Augsburg.

indicating a potential deviation of around 60%. Among the NDVI variables, NDVI of
July and March indicate higher sensitivity, with deviations exceeding 20% and 15%, re-
spectively. The other NDVI values show variations for July and March variables, though
this variation is negligible.
The importance of the nDSM variable is visually represented in Figure 7.4. In this partic-
ular example we drop the nDSM variable and utilize the remaining temporal NDVI indices
to map the forest areas. As the figure suggests, a considerable amount of false predictions
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is made. However, we observe a trend in the misclassification concerning agricultural ar-
eas. All the false predictions in the North-East as well as Southern areas of Augsburg are
crop fields, that visually appear very similar to forest areas, despite being much lower in
height. Therefore, particularly when summer season indices are used, height is the most
distinguishing parameter between green vegetated areas and forests.
We establish that nDSM, dissimilarity metrics of bands two and three for December, as
well as NDVI values of July are the most influential variables to identify forests. Using
these variables as forest identifiers, we identify and calculate approximately 37.8 km2 of
forest area in Augsburg as shown in Figure 7.5. The map on the left showcases distri-
bution of forests based on the performed analysis. while the map on the right illustrates
forest distribution according to the TN dataset. We identify a moderately larger forest
area compared to the TN dataset, totaling 35.43 km2.
Our forest definition states, that forests should not be in agricultural production systems
or be covered with woody vegetation that follows scattered trees, tree lines, and hedge
patterns as well as be adjusted to railway paths. Consequently, the results of the prox-
imity analysis reveal that there are only four forest polygons in Augsburg that emerge in
lees than 100 meters closeness to local railroads. Since we already filter forest polygons
with less than 0.5 hectares area, none of these four polygons show scattered tree patterns
but are rather areas with densely growing trees.
In addition, we use the circularity index to describe how elongated or circular forest
polygon shapes are. The circularity indices of the four polygons span from 0.13 to 0.37,
indicating that the shapes are not circular but are also not exclusively elongated. This
also eliminates the forest criteria of classified areas being windbreaks or shelterbelts as
such areas represent tree formations planted in rows and having elongated form.
Our analysis reveal that approximately 0.4 km2 of identified forest areas are overlapped
by agricultural production areas. By further visually investigating we reveal that most
of the overlapping areas are designated grasslands in the TN datasets. Sample areas of
such overlap are illustrated in Figure 7.6. As shown in the figure, such misclassifications
appear in areas either with gaps within the forests or in areas that are indeed covered
with woody vegetation but classified as grassland in TN. Lastly, using the urban green
map from Chapter 6, we calculate approximately 22 km2 of green stored within identified
forest polygons.
Finally, we utilize variables selected as important for Augsburg, and their threshold val-
ues, and apply them to Wuerzburg. In order to establish to what extend the threshold
values are transferable to the new area, we use the TN forest datasets of Wuerzburg as
a validation dataset. A comparative map of Wuerzburg, showing identified forests and
forest distribution in TN dataset, is given in Figure 7.7. Consequently, using the nDSM,
the dissimilarity texture index of bands two and three of December, as well as the NDVI
values from July, we identify 19.6 km2 of forest in Wuerzburg. In the TN dataset the
forest area in Wuerzburg equals to 13.7 km2.
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Figure 7.7: Map illustrating comparison of identified forest polygons with TN forest polygons
in Wuerzburg.

In Wuerzburg, we also explore how close the identified forests are to railroads, how elon-
gated these polygons appear, and whether some agricultural production sites are falsely
identified as forests. Consequently, from the 126 identified forest polygons, only 16 are
located in 100 meter proximity to local railroads. The circularity of these polygons ranges
from 0.13 to 0.89, indicating shapes are in a middle range, not exactly elongated but
also not circular. From the identified forests, nearly 1.5 km2 of identified forest polygons
overlap agricultural production sites.

Figure 7.8: Map of the misclassified forest polygons at a greater detail in Wuerzburg.

After a detailed examination, we observe that a great number of polygons are falsely
classified as forests. Upon visual examination, we establish that a majority of these false
classifications appears in agricultural production sites, particularly in vineyards. Figure
7.8 represents a snippet of vineyards that are classified as forests while clearly being
crop production cites. Forest-like appearance of viticulture, as well as a broad range of
height threshold values make it challenging to eliminate such false classifications. When
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compared to the urban green map produced in Chapter 6, identified forest polygons in
Wuerzburg accommodate nearly 11 km2 of urban green.

7.6 Discussion and Conclusions

In this chapter, our aim is to identify forests as a specific type of UGSs, executing spatial
and semantic features derived from established forest definitions. To achieve this, we
begin by combining two pre-existing definitions of forests into a singular, more spatial
analysis-oriented definition. This newly synthesized definition then guides us in the cre-
ation of spatial datasets for each forest descriptor, enabling us to map forests within our
selected study areas.
We conceptualize forests as regions populated by tree species that achieve a minimum
height of five meters. This definition is inclusive of areas where trees have not yet reached
this height but are anticipated to do so. Considering the significant height variation,
from completely barren areas to those with trees surpassing five meters, it is impor-
tant to first extract the height variations in existing forests and use these thresholds to
map forests. While Airborne LiDAR systems represent the forefront in measuring forest
height distributions [128][132], digital photogrammetry offers a more cost-efficient alter-
native [107][10]. Consequently, due to its availability and cost efficiency, we utilize the
nDSM dataset to monitor height variations within existing forests in Augsburg. Our
findings reveal a broad range of height variations in these forest locations, spanning from
as low as 0.7 meters to nearly 29 meters. A comparative study, conducted by Balen-
ović et al. [10], examines to what extent tree height can be adequately predicted using
photogrammetric stereo-measurements and evaluates their results with the help of field
measurements. For tree species that can also commonly occur in the southern German
forests, e.g. sessile oak, European beech, wild cherry, and European aspen, tree height is
in a range between around 19-22 meters. It is critical to note that this study measures
heights of individual trees rather than an entire forest area, as our study does. Despite
the challenges in identifying individual trees using aerial images with a 30 centimeters
spatial resolution, the study successfully predicts trunk heights. Given that our nDSM
dataset incorporates DSM data acquired through similar photogrammetric methods, and
by checking predicted tree height at random locations, we state that the nDSM dataset
makes realistic predictions of tree heights.
In addition to adequately representing tree heights in forests, based on the OAT feature
selection, nDSM showcases the highest importance among all the predictor variables. This
is particularly relevant when distinguishing forest from other green homogeneous areas
such as agricultural fields. A clear example of such a confusion is illustrated in Figure
7.4. Here we can observe, that every single crop field which is vegetated throughout the
selected temporal span, is misclassified as a forest once the nDSM variable is dropped.
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Therefore we can clearly state that, in the implemented setup, removing the nDSM layer
will drastically reduce the identification accuracy and will lead to a great confusion of
forests with other UGSs.
Furthermore, we utilize NDVI as a primary metric for assessing "greenness". Observations
of temporal NDVI value changes in forests, from 0.4 in February to 0.65 in June, followed
by a decrease to 0.18 in December, demonstrate a clear alignment with seasonal greenness
variations. Which in turn reflects mixed species composition of the forests. Furthermore,
Aryal et al. [9] highlight that NDVI values between 0.19 - 0.5 represent sparse or shrubby
vegetation, whereas values above 0.5 are allocated for tree species. Therefore, we can
explain our NDVI values of around 0.18 - 0.4 with the leaf-shedding season in deciduous
forests from fall to winter. Moreover, summer NDVI values of approximately 0.6 are also
inline with existing literature, clearly representing tree species in the forests.
The SA of temporal NDVI datasets suggests that the NDVI data from July plays a more
significant role in identifying forests compared to other months. However, upon examining
the feature importance in Figure 7.3, we find that the differences in importance among the
NDVI data from different times are minimal. We attribute these negligible differences to
the diverse composition of tree species within forests. Mixed forests consist of coniferous
trees, which usually have narrower crowns, and deciduous trees, which have larger crowns.
As a result, even when deciduous trees shed their leaves in winter, the coniferous trees
do not occupy enough space to significantly alter NDVI values during the colder months.
Consequently, single NDVI readings (e.g. 5th percentile) for a large forested area remain
relatively stable and homogeneous across seasons, showing higher values in summer and
lower values in winter.
Our definition of a forest states that the area must be at least 0.5 hectares in size, should
not be comprised of isolated individual trees, and must not be characterized by linear for-
mations. This means that visually forests appear as homogeneous and large polygons with
more of a rounded form than a linear shape. Therefore, by taking into account mixed
forest composition and homogeneous distribution of trees, we represent these semantic
nuances with the help of texture metrics. Dissimilarity is one of the common texture
metrics used to understand LC patches and is superior in expressing spatial dynamics
within UGSs [149]. The minimum threshold we derive for dissimilarity is 0 meaning they
have a completely uniform texture where all pixel pairs have the same intensity. The
maximum threshold spans from 0.3 to 1.4. The maximum value typically depends on the
type of the grey image utilized. However, closeness to 0, once again, indicates more ho-
mogeneous areas. According to Park and Guldmann [111], presence of large, dense forests
with complex shapes leads to higher dissimilarity values, especially along the peripheries.
Thus, the increase of the dissimilarity value in December to 1.4 from 0.3 in March and
June, can be attributed to the foliage change that affects forest outlines.
The SA outputs, that dissimilarity indices calculated for December have higher informa-
tion gain than of June and March. We can explain this phenomenon by the visual and
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textural appearance of forests in December. Once the deciduous trees loose their foliage,
the visibility and distinguishability of the forest structure can be enhanced. This can
make it easier to identify forests based on the structural differences rather than on the
color or density of foliage that might be more evident in other months.
The workflow we define is complex but it mirrors the complexity of the forest definition.
As a result, we undertake an initial selection of descriptive variables for use in the analysis.
Despite reducing variable count, the remaining 14 descriptors still represent a significant
quantity, potentially leading to longer processing times and difficulties in replicating the
analysis in different study areas. Consequently, we perform a feature selection procedure
based on the SA in order to further cut down the number of predictor variables. This
process helps us to identify a minimal yet effective set of variables for forest mapping,
including the nDSM, dissimilarity indices of bands two and three from December, and
the NDVI index for July. Therefore, we use the selected four variables and replicate the
forest identification workflow in Wuerzburg.
While being located in the same state and nearly similar climatic belt as Augsburg,
Wuerzburg has varying topographic differences. This is the reason why we choose to test
the proposed workflow in Wuerzburg in the first place. It allows us to observe how well
the similarities can be captured while tolerating the differences. Since we use exactly
the same threshold values as in Augsburg, the only transferability assessment is calcu-
lating the identification accuracy in comparison to the TN dataset. In Augsburg, we
calculate very close figures for both identified forest and forest in the TN dataset, with
37.8 and 35.43 km2 respectively. However, our workflow overestimates the forest area in
Wuerzburg by nearly 7 km2. During a detailed visual examination we discover that some
of the identified forest polygons are designated as "green space" or park. However, these
areas fit our forest description, such as densely growing trees, low textural dissimilarity,
and absence of agricultural production. Moreover, we establish that two viticulture poly-
gons are identified as forests although being categorized as a agricultural class in the TN.
Another closely located vine growing site is however correctly classified as a non-forest.
This indicates that the selected threshold values, even if being capable to identify most of
the forest areas, might require some fine tuning in order to be applicable in Wuerzburg.
In addition, the utilized datasets might also have shortcomings in terms of identification
precision. The TN dataset, chosen for its open access and relatively high ground resolu-
tion, omits privately owned LUs. This exclusion is particularly significant in Wuerzburg,
where large forested areas in the South-West are situated on private properties, thus ab-
sent from the TN dataset. Given these constraints, it is challenging to assess the efficacy
of our methodology. Identifying forest areas and comparing them to the TN dataset,
does not conclusively determine the inadequacy of our applied methods. To make real-
istic evaluations of the effectiveness of our workflow, we see a necessity to utilize a more
comprehensive LU dataset or manually digitize all forest polygons.
Fluctuations in the identification of forest polygons from the TN dataset, particularly in
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Wuerzburg, may also stem from the post-processing steps. To transition from a pixel-
by-pixel representation of forests to more coherent forest objects, we perform a segmen-
tation process. This process involves grouping individual pixels into larger units known
as superpixels, where the choice of parameters is crucial. In this instance, we use de-
fault parameters for segmentation. One of the known downsides of segmentation is the
parametrization, which is often difficult and highly case-sensitive [108]. However, differ-
ences in the final maps might be a result of parametrization settings and for the purpose of
enhancing transferability to different urban settings, it might be beneficial to adjust these
parameters to better suit other cities. Similarly, the smoothing of polygons to achieve
a final forest representation involves setting specific parameters, such as distance. We
use a 100 meter distance, which may lead to the unintended merging of some polygon
parts, and thus results in false overlaps with other LUs. Such overlaps we experience, for
instance, in areas where agricultural fields and forests share a common border.
Our aim in this study is not only to create a methodological workflow that allows us to
precisely identify forests, but also to make this workflow transferable. In order to include
all unique characteristics of forests it is necessary to select a multistage workflow. Al-
though this workflow produces reliable results, it is very time and cost intensive. This is
especially true for the feature selection procedure. The intensity of the OAT SA has many
times been suggested by e.g. Saltelli et al. [124]. We first hand experience this intensity
as for all the 14 variables nearly 10 spatial analysis steps are performed. Therefore, for
future use of OAT, application of it on only selected features might be more appropriate
to choose.
In conclusion, this study introduces a robust methodology for identifying urban forests by
integrating spatial and semantic features tailored from synthesized forest definitions. By
using the nDSM dataset, we achieve reliable tree height estimations that, coupled with
NDVI and texture metrics, allow us to accurately distinguish forests from other types
of UGSs. Feature selection and sensitivity analyses highlight the significance of nDSM
and seasonal NDVI, which are vital for improving classification accuracy across differ-
ent temporal conditions. Testing the methodology in Wuerzburg, however, reveals some
limitations, especially in areas with privately owned lands that are omitted from the TN
dataset and in topographical differences that impact threshold transferability. In total,
selected semantic features are representative of forests and allow their identification with
good precision. However, overestimation in Wuerzburg indicates a need for threshold
fine-tuning and consideration of alternative segmentation parameters to improve trans-
ferability. Therefore, in the future work, it is important to focus on refining the feature
selection process by conducting optimized sensitivity analyses on key steps, potentially
making the process less resource-intensive. Additionally, using a more accurate and inclu-
sive LU dataset may further enhance accuracy and applicability of this workflow to diverse
urban settings, supporting urban planners in mapping green spaces more effectively.
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Allotment Gardens

In this chapter, we present the semantic mapping procedure of allotment gardens. There-
fore, we first start by exploring existing allotment laws and definitions. We then establish
representative semantic characteristics of allotments and further present a methodological
workflow to map them. In order to assess the reproducibility of the proposed workflow,
we develop and test it first in Augsburg and then apply it to Wuerzburg.

8.1 Definition of Urban Gardens

Urban gardens, also known as allotment gardens, have over a hundred years history and
a heterogeneous development pattern stretching from the pre- and post-war initiatives in
Northern Europe to post-economic crisis action plans in Southern Europe. Urban gardens
have not always been a part of spatial planning activities but are reaction to the estab-
lished political, social and economic conditions. Throughout Europe and until short after
World War II, historical development of allotment gardens had a lot of similarities to each
other. However, after the 1945 urban garden development pattern split into two major
directions: loss of interest and negligence of allotment gardens in the West and becoming
a major part of a food program to alleviate starvation in the East (e.g. Poland, USSR)
[43]. Post-war urbanization trends have also affected development of allotment gardens.
In Ireland, due to post war city development actions, centrally located gardening areas
were turned into private housing areas. This lead to a dramatic decline in the interest in
allotment gardens [52].
In Germany, despite having over 200 years of history, the booming of allotment gardens
started as a response to the post-industrialisation unemployment rise. The first "Schre-
bergarten" was established in the 1860es by a school teacher and named after Moritz
Schreber. The main goal of this gardening practice was to establish a communication
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and cooperation between parents and students and to provide a playground for children
of factory workers. However, the following two World Wars would turn these gardens
into critical areas to produce desperately needed food. Moreover, The Goettingen gar-
dens were established in 1996 when the local government allocated a piece of land to a
group of female refugees from Bosnia for cultivation. Members were offered on-site basic
German language lessons, or helped to obtain e.g. driver’s licenses. Consequently, these
gardens evolved into a hub for building social capital through educational initiatives and
this model has since inspired most intercultural gardens in Germany [97].
According to the memorandum by the Department of the Environment Transport and
the Regions of the United Kingdom, the term "allotment" is described in the Allotments
Act 1925 as an "allotment garden" or a land parcel not larger than five acres, intended
for cultivation either entirely as a garden farm or partly garden farm and partly farm.
The Allotments Act 1922 specifies "allotment garden" as a plot no bigger than 40 poles
(or 1,000 m2) primarily used by the occupiers to grow fruit and vegetables for their own
family consumption. The term allotment garden refers to a larger agglomeration of single
allotments. This definition is consistent across various statutes1.
In Germany, the federal law of allotment gardens was adopted in 19832. According to this
act, an allotment garden is a garden that is dedicated for non-commercial production of
horticultural products for personal use, and for recreation. Furthermore, for an area to
be called allotment garden, it must fulfill two man criteria: a garden must be used for
gardening purposes, and it must be a part of a complex that includes multiple individual
gardens and communal facilities such as a clubhouse, play areas, and pathways. The
jurisprudence of the Federal Court of Justice in 2005 mandates that an allotment garden,
in addition to communal facilities, must contain at least five individual gardens (verdict
from the 27.10.2005– Az.: III ZR 31/05).
The size of an allotment garden is also regulated by this federal law. According to it, an
allotment garden must not exceed 400 m2 in size. In addition to specifying the size of
allotment gardens, the same law sets regulations also for garden sheds. A garden shed
may have a maximum size of 24 m2. However, this limit applies only to the shed itself;
terraces or covered seating areas are not included in this measurement. The regulation
concerning the size of garden sheds has been in effect since April 1, 1983. Consequently,
sheds built before this date may exceed the maximum size of 24 m2. Furthermore, per-
manent residency is not permitted in allotment gardens, which is why garden sheds must
not be equipped to allow permanent living.
There are further specifications on the exact usage of single allotments. As such, this
regulation requires that at least one-third of the area in an allotment garden is dedicated
to growing garden produce for personal use, like fruits and vegetables. Another third

1https://publications.parliament.uk/pa/cm199798/cmselect/cmenvtra/560-iii/560iii02.
htm (accessed on 01.2025)

2https://www.gesetze-im-internet.de/bkleingg/BJNR002100983.html (accessed on 01.2025)

https://publications.parliament.uk/pa/cm199798/cmselect/cmenvtra/560-iii/560iii02.htm
https://publications.parliament.uk/pa/cm199798/cmselect/cmenvtra/560-iii/560iii02.htm
https://www.gesetze-im-internet.de/bkleingg/BJNR002100983.html
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of gardens should be allocated for pathways, garden sheds, and terraces. The remaining
third of a garden area is intended for landscape design, ornamental plants, and lawn.

8.2 Semantic Features of Allotments

In both selected study regions different types of gardening areas are present. These
gardening spaces share certain similarities while also display distinct differences in both
their appearance and functional purposes. For instance, community gardens showcase
a collective spirit, typically featuring a mosaic of vegetable patches, communal compost
bins, and occasionally several shared sheds for storing gardening tools. These spaces
are not just for cultivating produce; they also act as center for community engagement.
In contrast, herb gardens are often situated in public spaces like parks and are primarily
focus on cultivating a variety of herbs. These gardens serve both culinary and educational
purpose. Balcony or rooftop gardens are usually comprised of individual pots or small
vegetable beds placed on balconies or roof terraces. Despite these distinct visual elements,
translating such varied semantic data into a spatial analysis framework is challenging.
Therefore, we focus only on allotment gardens.
In order to derive allotment semantics, we rely on the official allotment garden law in
Germany. Here, it is crucial to note, that when we further talk about allotment garden, we
consider the whole agglomeration of single allotments. When looking at allotment gardens
from a bird’s-eye view perspective, as illustrated in Figure 8.1, certain key features become
evident: each allotment contains one, nearly uniformly sized shed within individual plots
throughout the entire cluster; notably larger facility management buildings are situated
at the primary entrance; a network of unpaved trails originates from this main access
point, providing connectivity to every plot. When exploring overall spatial locations of
allotment gardens in both study areas, it is notable that many gardens are positioned
adjacent to railways or near rivers. In visual comparison, these plots tend to be smaller
or more elongated near these features, whereas allotment gardens located further from
rivers and railways are generally larger and more square or rectangular in shape.
The characteristics outlined can be traced back to historical developments and current
national regulations governing allotment gardens. Historically, allotment gardens were
allocated to railway workers for cultivating produce, leading to their frequent placement
near rail tracks. Nowadays, these plots are available for rental by the general public,
which has led to the emergence of more allotment gardens within urban areas. Addition-
ally, under the "small garden" law, allotment gardens are restricted to 400 m2 with at
least five single allotments within it, and garden huts not exceeding 24 m2 in floor area.
Although there are no exact height restrictions for these huts, those constructed without
an official permit typically must not exceed 3.5 meters.
Consequently, we establish the following semantic characteristics, essential for the map-
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Figure 8.1: Sample allotment garden in Wuerzburg, Germany.

ping and identification process of allotment gardens:

• Shed presence: Every allotment should contain at least one garden shed.

• Shed size: The area of garden sheds must not exceed 24 m2.

• Shed cluster: There should be at least five garden sheds within an allotment garden,
indicating five separate allotments.

• Shed height: The height of garden huts should not exceed 3.5 meters.

• Path network: There should be a network of intersecting paths present.

• Road intersection: Allotment gardens should not be intersected by major roads.

• Proximity: The majority of allotment gardens should be located in close proximity
to railroads and/or water bodies.

8.3 Allotment Garden Modeling

We map allotment gardens using the previously defined semantic criteria. In order to
adequately capture all the fine details in small allotment gardens, we only utilize very-
high resolution datasets and a three step identification workflow shown in Figure 8.2.
The workflow begins by initially thresholding images of garden sheds and enhancing these
thresholded regions using a map of green spaces. In the second stage, we apply techniques
for delineating areas to identify the boundaries of allotment gardens. The final part of the
model is focused on knowledge transfer, where we test our methodology in Wuerzburg.



Allotment Gardens 121

Figure 8.2: Methodological workflow to map allotment gardens.

To analyze the general height variations in allotment gardens, we manually collect ap-
proximately 200 hut centroids and extract height data from the nDSM dataset created in
Chapter 4. We then calculate various percentiles for the minimum and maximum thresh-
olds.
To effectively identify sheds, we examine four different sets of percentile thresholds: the
5th, 25th, 75th, and 95th percentiles. We conduct four testing attempts to analyze how
sensitive our results are to different threshold settings:

• In the first test, we use the 5th percentile as the lower threshold and the 95th
percentile as the upper threshold.

• In the second test, we set the 25th percentile as the lower threshold and the 75th
percentile as the upper threshold.

• In the third test, we apply the 5th percentile for the lower threshold and the 75th
percentile for the upper threshold.

• In the fourth test, we use the 25th percentile as the lower threshold and the 95th
percentile as the upper threshold.

We apply all the subsequent steps in the workflow to all four test sets and explore allotment
garden identification accuracy to determine the best performing threshold combination.
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It is generally difficult to extract pure garden sheds by using two threshold values, be-
cause in urban settings there could be many more objects falling within the same thresh-
olds. Therefore, we utilize supplementary datasets to improve the thresholding outcomes.
These datasets include the urban green dataset created in Chapter 6 and the TN dataset.
Importantly, we exclude the sport and leisure class from the latter dataset to prevent un-
necessary elimination of garden objects. Additionally, we remove any thresholded objects
that overlap with infrastructure elements like railroads, rivers, and roads, and building
footprints. Finally, we eliminate all the remaining objects that are larger than 24 m2 as
per the allotment garden definition.
In the second stage, we refine selected "shed" objects by determining their spatial clus-
tering. Initially, we identify sheds that have at least one other shed within a 15 meter
radius. Therefore, we create buffers around them and eliminate those with an area less
than 707 m2, which is the area of a single buffer. We determine the 15 meter radius
based on the findings of how close garden sheds are to each other in few gardening areas
in Augsburg. For the remaining garden sheds, we use the DBSCAN algorithm. This
technique is particularly effective for clustering spatial points, especially with noisy data
as discussed in Chapter 3. However, specific parameters must be set before use to ensure
an adequate clustering output. Since the allotment garden law stipulates a minimum of
five allotments, we use this figure as our base for creating shed clusters. Additionally, we
use a 50 meter cluster search radius, based on our observations of allotment gardens in
Augsburg.
Once we have identified clusters of sheds, we draw minimum enclosing convex hulls around
these clusters and add an additional one meter buffer to expand the hulls. This buffering
process is based on the understanding that garden sheds tend to be positioned closer to
the inner parts of the allotments. As a result, created convex hulls may be smaller than
actual boundaries of allotment gardens.
According to the semantic criteria we define, the identified allotment gardens should be
intersected by paths but not by main roads, and they should primarily be located near
railroads and water bodies. To determine if the identified gardens meet these criteria, we
use road, railroad, and water body datasets from the TN database. By performing spatial
selection techniques, we filter out allotment gardens that either lack a path network or are
intersected by main roads. Given, that the smallest allotment garden must host at least
five gardens, we define the path network as a network with at least five paths. We check
presence of a path network, using the TN path dataset. As this dataset lacks precision, we
manually digitize missing paths within known allotment garden locations. Additionally,
we use proximity analysis to determine the closeness of identified allotment gardens to
railroads and water bodies.
In order to test the applicability of the proposed workflow and the identified thresholds in
other study areas, we test our methodology in Wuerzburg. We utilize the nDSM dataset
and the TN dataset of Wuerzburg, described in Chapter 4, and the urban green map
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created in Chapter 6 using DOP and RF, to perform thresholding, refine the results and
create allotment garden polygons.
We evaluate the accuracy of the proposed methodology by using the "small garden" sub-
class in the TN dataset. This assessment focuses on two key aspects: (1) the proportion
of existing allotment gardens that are successfully identified, and (2) the accuracy with
which the outlines of allotment polygons are delineated. We use both of these parameters
to calculate the overall accuracy using Equation 8.1.

Accuracy =
Identified Area
Validation Area

(8.1)

where identified area excludes false positives, as well as portions of polygons that do
not overlap with actual polygons.
As we explore four different test cases, we perform an accuracy assessment for each one
and select the test with the best-performing threshold for further transferability analysis.
Finally we also explore how much green is stored within each identified allotment area.
To do so, we utilize the urban green map from Chapter 6.

8.4 Results

We develop our identification workflow centered around garden sheds, starting by exam-
ining height variations of shed centroids. For this, we utilize the 5th, 25th, 75th, and
95th percentiles. Our findings reveal that shed heights at these percentiles equal to 1.93
meters, 2.22 meters, 2.62 meters, and 2.98 meters, respectively. Subsequently, we con-
duct four test trials to explore different percentile thresholds: Test 1 uses the 5th and
95th percentiles, Test 2 uses the 25th and 75th percentiles, Test 3 uses the 5th and 75th
percentiles, and Test 4 uses the 25th and 95th percentiles.
With test 1 we identify 1.59 km2 of allotment garden area in Augsburg. Area of allotment
gardens in the TN dataset is nearly 1.7 km2. Of the area identified, 0.5 km2 falls into
the false positive category, meaning this area is incorrectly identified as allotment when
there is none. Our analysis reveals a nearly 0.8 km2 discrepancy between the actual al-
lotment polygons and those identified with the proposed workflow. Furthermore, 57% of
the identified allotment gardens are not crossed by a path network, previously defined as
a mandatory semantic criteria. Test 2 identifies 1.4 km2 of allotment area in Augsburg,
with 0.3 km2 being false positives. We also note a 0.7 km2 mismatch between the TN
polygons and identified polygons. Within the identified allotment gardens in test 2, 37%
are not intersecting a path network.
In a more detailed exploration of test 3, we identify 1.8 km2 of allotment gardens in Augs-
burg. Of this, 0.35 km2 are classified as false positives. Our analysis shows a 0.4 km2

difference, or border mismatch, between the spatially overlapping true positive polygons.



Allotment Gardens 124

For this test scenario, we also explore how many of the identified allotment gardens are
crossed by paths. Our results reveal, that 52% of the identified allotment gardens are
not crossed by a path network. Finally, test 4 results in the identification of 1.9 km2 of
allotment gardens in the study area. Of this total, 0.4 km2 are false positives. Moreover,
there is a 0.6 km2 mismatch between the validation and the identified allotment polygons.
From all the identified polygons in this test case, 47% are not intersected by a path net-
work.
Using the aforementioned figures, we calculate the identification accuracy for all four test
sets and represent it in a star plot in Figure 8.3.

Figure 8.3: A star-plot illustrating the accuracy of four implemented threshold test cases to
identify allotment gardens in Augsburg.

Test case three, which uses the 5th and 75th percentiles as the minimum and maximum
thresholds, achieves the highest accuracy at 66%. In contrast, test case one attains only
15% accuracy. Test cases two and four make the second and third positions, achieving
25% and 44% accuracy, respectively. Based on the accuracy assessment, we determine
that shed heights in the study area range between 1.93 and 2.62 meters. This range proves
to be the most accurate for their identification. Consequently, these height values serve
as a base of allotment shed thresholding in both study areas.
Apart from the statistical validation, we also perform visual confirmation. As such, we
pay attention to how well linear allotment gardens are identified, as well as how well the
minimum convex hulls perform. In Figure 8.4 we present sample allotment gardens in
Augsburg, and compare identified against actual TN-allotment gardens. We can see that
linear allotment gardens are identified well, although in some cases two or more polygons
are drawn instead of a single allotment. Furthermore, we also observe that the proposed
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Figure 8.4: Figure showcasing various sample areas with identified and actual allotment
polygons in Augsburg.

Figure 8.5: Figure illustrating various sample areas with identified and actual allotment
polygons with a focus on overlapping borders in Augsburg.

methodology identifies allotment gardens that are not classified as allotment in the TN
dataset. Some similar areas appear as just garden or are missing totally in the TN dataset.
For the selected test trial, the area of such false positives is 0.4 km2. However, as it can
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be seen on the figure, some of the false positive polygons are indeed allotment gardens,
just do not appear as such in the TN dataset.
In addition, we explore how well borders of identified and actual allotment gardens overlap.
This can particularly be seen in in the middle of Figure 8.5, that actually includes three
single allotment gardens from the TN dataset.
Based on the calculated statistics as well as the visual inspection, we determine test
three as the best performing thresholding scenario. Therefore, we check the results of
this scenario for their proximity to railroads and rivers. From all the identified allotment
gardens, 56 are closer than 50 meters to water bodies, and five are located in a distance
between 50 to 100 meters to water bodies. The remaining 29 allotment gardens are located
further than 100 meters from water bodies. Moreover, 30 of the identified allotment
gardens are situated in less than 50 meters proximity to railroads, whereas 17 are located
in a proximity between 50 to 100 meters. The remaining allotment gardens are located
further than 100 meters. Based on the urban green map, we calculate almost one km2 of
green stored within identified allotment gardens in Augsburg.
Using the exact threshold values as of the test 3 in Augsburg, we identify allotment
gardens in Wuerzburg.

Figure 8.6: Figure showcasing various sample areas with identified and actual allotment
polygons in Wuerzburg.

According to the TN dataset there are nearly 0.5 km2 of allotment gardens in the city of
Wuerzburg. Based on the threshold transfer, we identify 0.42 km2 of allotment gardens
in Wuerzburg. Example of some identified areas in Wuerzburg are illustrated in Figure
8.6. The area of false positive polygons in Wuerzburg equals to 0.13 km2. Furthermore,
we establish 0.18 km2 of areal mismatch between identified and TN allotment gardens.
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Moreover, 38% of the identified allotment gardens are not crossed by a path network.
Application of the thresholds, established for Augsburg, in Wuerzburg, yields 65% of
identification accuracy. However, the quality of the drawn convex hulls is much lower
than in case of Augsburg.
Similar to Augsburg, we calculate how close the identified allotment gardens are located to
railroads and water bodies. As such, 14 out of 31 identified allotment gardens are located
closer than 50 meters to water bodies and two are located in a proximity of 50 to 100
meters. Additionally, 14 are situated in a distance of less that 50 meters to railroads while
three of them are located in a proximity of 50 to 100 meters. In Wuerzburg, identified
allotment gardens store nearly 0.7 km2 of green.

8.5 Discussion and Conclusions

In this section, we utilize a semantic mapping procedure for allotment gardens. Initially,
we examine the existing legislation on allotment gardens and conduct visual inspections
using aerial imagery. These examinations aim to identify unique semantic characteristics
that distinguish allotment gardens from other types of UGSs. We determine that the
most distinctive feature of allotment gardens is the presence of sheds within each allot-
ment. Unlike backyard and front yard gardens, where sheds are also common, sheds in
allotment gardens are typically clustered in a larger area without any adjacent private
housing. Furthermore, size and height of sheds are also unique determining characteristics
as they must not exceed 24 m2 in area and 3.5 meters in height.
To extract huts in the study areas, we chose to conduct height thresholding technique.
While there are no examples specifically for shed thresholding, this method is commonly
used for extracting residential buildings. For instance, Matikainen et al. [96] set a 2.5 me-
ter height threshold to distinguish buildings from surrounding features like vegetation. In
contrast, we test various thresholds to identify the most suitable minimum and maximum
values. Our results indicate that the 5th and 75th percentiles, extracted from sample
garden shed heights, equal to 1.93 and 2.62 meters. These height values appear to be the
most promising threshold values. These figures closely align with the height thresholds
utilized by Matikainen et al. [96]. Additionally, the maximum height of 2.62 meters is
also consistent with the semantic criteria derived from the allotment legislation.
Another dominant characteristic of allotment gardens is presence of a path network within
a large allotment area. We test whether identified allotment gardens are indeed intersected
by paths. It turns out that nearly 52% of the identified allotment gardens, despite meeting
the criteria for shed presence, height, and size, are not intersected by a network of paths.
An example of such misclassification can be seen in Figure 8.5 on the right-hand side.
This area is part of the Zoo and Botanical Garden in Augsburg, where small structures
such as glasshouses or seating areas with umbrellas appear. Similar false positives also
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occur in camping areas in Augsburg, where stationary campers are located, and along
the riverside in Wuerzburg, where summer events take place and beaches are present.
We can attribute this high rate of false positives to the temporal factor of the utilized
datasets. The DSM dataset is derived from the DOP, which is taken on June 14th and
18th in Augsburg and May 28th in Wuerzburg. During the warm spring-summer months
the number of objects that match the height range of the utilized shed threshold can
significantly increase, leading to false shed detection and thus decreasing the overall iden-
tification accuracy. Therefore, the availability of a winter-time dataset, when broad-leaf
trees have lost their foliage and umbrellas, campers, or other seasonal objects are not
present, might considerably improve the identification rate. However, by incorporating
other allotment-specific criteria, such as path presence, we can eliminate the majority of
false positives and thus enhance the overall identification accuracy.
While misclassifications due to shed heights can be addressed using path networks, we
find that the fixed shed size poses an even greater challenge. According to allotment
legislation, the size of a garden shed must not exceed 24 m2. This limit applies solely
to the shed itself, excluding any additional terraces or covered seating areas from this
measurement. Moreover, this size restriction has only been in effect since April 1, 1983,
meaning older allotment gardens might still feature much larger garden sheds. When
applying the 24 m2 size criterion, we observe elimination of quite a few shed objects. This
is due to the nDSM imagery used, where large tree crowns might cover parts of sheds, or
terraces attached to sheds might be at the same height and thus be misclassified as one
object. While shed eliminations due to the challenges of distinguishing between shed roofs
and terraces reduce the number of potential sheds for clustering, even more significant
mismatches arise in delineating borders of allotment gardens. This phenomenon can be
clearly observed in Figure 8.5, where three TN allotment gardens are marked as a single
allotment based on our analysis. During the refinement process, some huts close to the
allotment borders are eliminated due to vegetation coverage or the size limit, and conse-
quently, the convex hull is snapped to the next possible hut centroid in the neighboring
allotment area.
In addition to uncertainties in border delineation due to hut elimination, we clearly ob-
serve mismatches between "spatial borders" and "actual borders". This means that in
some cases, we identify a single allotment polygon while there are separate allotment
gardens per the TN dataset. We define shed clusters based on a distance of 15 meters.
Therefore, in areas where the actual borders of two allotment gardens are very close, we
falsely identify them as a single allotment area. A good example of such a mismatch be-
tween spatial and actual borders can be seen in Figure 8.5, particularly in the allotment
gardens located in the central-lower area.
Considering potential mismatches in the identified allotment borders, we incorporate these
mismatches into our accuracy assessment procedure. For instance, test scenario three,
which we identify as performing better, actually identifies many more false positives com-
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pared to the other scenarios. However, the borders of allotment gardens identified in this
scenario are much more precisely demarcated and are much closer to the actual, natural
borders of allotment gardens. Thus, we include these results in the accuracy assessment,
which leads to scenario three being comparatively better performing.
Nonetheless, we state that using the TN dataset for overall accuracy estimation is not
very suitable. In Chapter 4, we describe that TN does not include privately owned LUs,
and the distinction of small gardens in the dataset is also inconsistent. For example, in
Figure 8.4, we can clearly see three nearly perfectly identified allotment gardens that lack
corresponding TN allotment polygons. Although these polygons exist in the TN dataset,
they are not labeled as small gardens but rather as general gardens, which can include
herb gardens, botanical gardens, and others.
Manual digitization of urban gardens has been implemented in numerous studies. For
instance, Taylor and Lovell [136] implement this approach to map gardens in Chicago
and report that the procedure is highly time-intensive yet also reliable. Similarly, Math-
ieu et al. [95] note that while automated approaches like geoOBIA for mapping gardens
require initial manual adjustments, these become less time-consuming and more feasible
over large areas once automated methods are applied. Based on our results and im-
plementation procedures, we agree that manually creating a validation dataset is not a
cost-effective method. However, we do not perform any manual improvement on the out-
lines of identified allotment gardens, as that is not the aim of this study. However, we
keep in mind during the validation procedure, that the TN dataset is originally digitized
manually based on ground surveys and therefore our results can not exactly match in all
areas. Furthermore, we expect the identified accuracy of 66% to drastically increase once
manual adjustments are made.
The proximity of allotment gardens to railroads and water bodies is a semantic feature
we define, based on the historical development and value of these areas rather than on
regulations or laws. We were interested in exploring whether the historical pattern of
using unused rail-side areas for extra food production by railroad workers has persisted
or changed. Through proximity analysis, we find that in Augsburg, only 52% of the
identified allotment gardens are located less than 100 meters from railroads, and 67% are
less than 100 meters from water bodies. This observation may indicate that due to high
demand, more open spaces were allocated for allotment gardens by the city, especially in
areas along the Wertach river.
One of the main goals of this work is to define semantic features of allotment gardens that
are universal for at least southern Germany. Therefore, the transferability of the findings
to a new study area is a way to validate defined rules. We test the proposed methodology
in Wuerzburg, because even though both cities have similar green space coverage, there
are peculiarities that could lead to misinterpretations of the rules. To identify allotment
gardens in Wuerzburg, we use the same shed height thresholds as in Augsburg, namely
1.93 and 2.62 meters for the minimum and maximum thresholds, respectively. Here, we
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also refine our findings by testing whether the identified polygons are intersected by a path
network and eliminate those that are not. Unlike Augsburg, only 38% of the mapped al-
lotment gardens in Wuerzburg are false positives, meaning they are not intersected by
paths. However, we observe even poorer border delineation of allotment gardens than in
Augsburg, leading to lower identification accuracy despite fewer incorrect polygons iden-
tified. This phenomenon may be explained by the datasets used, as the DSM is taken at
the end of May when the deciduous forest is already green, and large crowns might cover
parts of the garden sheds. An example of poor-quality border delineation can be seen in
Figure 8.6, in the upper-right polygons located in a generally forested area with densely
populated woody vegetation. Therefore, sheds underneath the crowns, if thresholded, are
eliminated during the post-processing stage.
In Wuerzburg, we find that 56% of the identified allotment gardens are located closer
than 100 meters to railroads and 52% are closer than 100 meters to water bodies. This
observation suggests that this city has also likely dedicated more areas for allotment gar-
dening that were initially only alongside rail tracks.
The proposed methodology shows that using shed height thresholds to identify locations
of allotment gardens is promising. However, it encounters challenges with the quality of
the utilized dataset, especially concerning temporal and spatial resolution. The datasets
we use have a 40 centimeters spatial resolution and produce reliable results. However,
with even higher resolution, it might be easier to distinguish between garden sheds and
terraces, which could improve overall accuracy. Furthermore, we also observe that the
transferability of the thresholds, selected based on local SA, is highly promising. How-
ever, for areas where allotment gardens might look visually different, or for gardening
areas that do not display the same visual-semantic features, new threshold values might
be necessary. Moreover, incorporating geoOBIA techniques to perform semantic segmen-
tation, as Mathieu et al. [95] do, or sub-pixel analysis as Haase et al. [63] do, might be
beneficial. With the help of segmentation, rectangle-like allotment gardens might be eas-
ier to identify. However, segmentation procedures can also be time-consuming, and for
the post-classification stage of geoOBIA, new training data for each new study area must
be collected. Furthermore, sub-pixel level analysis might help to reduce the information
stored in a 40 centimeters large pixel to only shed-relevant information. Yet, utilizing only
height data might not be sufficient for such an approach, and a need for multi-spectral
high-resolution data might arise. With the approach we propose, shed size and height
will generally remain consistent due to existing legislation that is valid across each state
of Germany. Thus, with the thresholding approach, we eliminate the need to create new
training data for each new study area, making the approach easier to reproduce in other
study areas.
In conclusion, the semantic mapping procedure for identifying allotment gardens demon-
strates promising results, though it faces challenges with dataset quality and urban feature
variability. The proposed methodology effectively identifies sheds within allotment gar-
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dens by applying height thresholds, which align well with both legislative criteria for
garden shed dimensions and the 5th and 75th height percentiles from sample data. While
these thresholds work well in Augsburg, they produce false positives in non-allotment
areas like parks and seasonal structures, such as camper parking. We highlight the im-
portance of the data acquisition timeframe, as using a winter dataset could help mitigate
seasonal misclassifications by excluding objects that would not meet the height threshold.
Winter data could also reduce underestimation of sheds, which may be obscured by dense
vegetation crowns in summer seasons.
Testing in Wuerzburg reveals the methodology’s transferability, though local adaptations
are necessary due to differences in visual-semantic features and proximity to urban ele-
ments like railroads. Improved spatial resolution and segmentation techniques could also
improve accuracy by allowing more precise shed identification. Although the thresholding
approach is not without flaws, it offers a reproducible method for allotment identifica-
tion, particularly when supplemented with minor local adjustments and refined datasets.
Selected semantic features are capable to delineate allotment gardens. In addition, our
workflow confirms, that allotment gardens in both study areas store a substantial amount
of green spaces, which is otherwise missed if allotment gardens are not recognized as UGS
type. The main limitation of the proposed semantic mapping approach remains the accu-
racy of the available data. Future work should thus prioritize enhancing dataset precision
and testing the methodology in new study areas where allotment gardens may exhibit
entirely different visual characteristics.



Chapter 9

Urban Agriculture

This chapter deals with semantic-based identification of urban agriculture as a type of
UGSs. Therefore, we start by defining urban agriculture using examples from the existing
literature. We then, establish spatial-semantic characteristics of urban agriculture that
follow the existing definitions and that can be used for their identification. Similarly
to the previous investigations, we test the proposed methodological framework both in
Augsburg and Wuerzburg.

9.1 Definition of Urban Agriculture

Agriculture is the systematic production of food, fuel, fibers, and fodder, contrasting with
nomadic and hunter-gatherer lifestyles. It is typically organized within an economic unit
known as a farm, which may be privately or publicly owned and operated individually or
collectively. Despite its diversity, all forms of agriculture share common elements includ-
ing reliance on land and biological processes, human labor, and investments in production
facilities [89].
"Green space is not only beautiful but also socially and economically productive" [138].
Especially, throughout the twentieth century, public green spaces have been utilized for
food production during periods of crisis [152]. Therefore, urban agriculture is that type
of "productive green space". Urban agriculture can take many forms, especially based
on the spatial allocation. At the core of various definitions, the fundamental idea is that
urban agriculture refers to cultivating food in urban settings. This broad concept uses
the term "agriculture" to encompass the types of farming and gardening traditionally
associated with rural areas. Peri-Urban Agriculture (PUA) represents a type of farming
occurring at the edges of cities. These regions are often characterized as a transitional
zone where urban and rural features overlap, with lower population densities and fewer
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infrastructural developments than cities, thus not being fully "urban" [109].
A distinction of types of practices and production scales within urban agriculture and
PUA is also done by FAO. In their definition, urban agriculture is referred to the practice
of cultivating food within city limits. This includes growing produce in various urban
spaces such as backyards, rooftops, community gardens, and both vacant and public ar-
eas. It is typically characterized by smaller, decentralized operations spread throughout
the city. PUA also involves practices that produce food and other agricultural products
as well as supply their processing and distribution. In contrast to urban agriculture, PUA
is commonly a more intensive variety of rural agriculture and is characterized by short
food-supply chains1. The latter ones are also refereed to as urban farming [89]. Urban
agriculture, based on FAO definition, is more community bounding and education ori-
ented, whereas urban farming is more profit oriented [89].
Urban agriculture often faces displacement and loss due to urban development, expansion
of city outskirts, rezoning of agricultural land, green gentrification, and industrialization
of food systems [153]. This not only results in the loss of valuable agricultural land but
also the loss of local, embedded knowledge. Therefore, more and more urban agriculture
is occurring on a LU that is not particularly zoned as such [109]. Frequently, urban agri-
culture would occur in parks, sport and leisure facility areas, public parks or backyard
gardens. Thus, for urban agriculture to be an impactful and integral part of cities’ green
and blue infrastructures, it needs to be strategically incorporated through planning and
design processes [153]. In contrast, PUA takes place on a distinct LU category, usually
called agriculture, that has been used for the same purpose for decades [109].
Lohrberg et al. [89] describe different types of urban agriculture as well as PUA. As
such, they distinguish between allotment gardens, educational gardens, therapeutic gar-
dens, community gardens, and squatter gardens. Based on their definitions allotment
gardens are areas divided into plots rented under a tenancy agreement, often managed
by a group or association, whereas educational gardens are located in schools or other
educational institutions and serve as a practical learning environment for teaching about
food production and environmental sustainability. Moreover, therapeutic gardens are
found within healthcare facilities to aid in the treatment of various physical and mental
health conditions through horticultural therapy. They are designed to be accessible and
engaging to stimulate sensory experiences and emotional well-being. Community gardens
are collectively maintained spaces that focus on social engagement, education, and or-
ganic production. They are often found in urban settings and emphasize inclusivity and
community development. Finally, squatter gardens are utilized by individuals or families
who occupy unused land to grow food, often without formal authorization. The authors
further highlight a urban farm class that is closely associated with more extensive op-
erations that might include a variety of agricultural activities such as crop production,
livestock, and direct sales to consumers. Urban farms adapt to urban demands and often

1https://www.fao.org/unfao/bodies/coag/coag15/x0076e.htm (accessed on 01.2025)
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incorporate elements of social and environmental sustainability.
Apart from making distinctions between various urban agriculture types, Lohrberg et al.
[89] also acknowledge the global spatial context of their development and persistence. As
such, they note that while the main focus in northern European countries, in terms of
urban agriculture, is on preservation and development of green spaces, in southern Europe
urban agriculture typically addresses issues such as food insecurity, poverty, and social
exclusion. While the societal and environmental benefits of urban agriculture practices
are known, there is still a limited understanding of economic dimensions of urban agricul-
ture. Effectively managed urban farms have the potential to become "hidden champions"
of urban green development strategies [89].
PUA plays a significant role in shaping the overall landscape of urban vegetation. Fur-
thermore, unlike any other UGSs, PUA can demonstrate multiple growing seasons along
a year [20]. The changing seasons of PUA can lead to fluctuations of the total amount
of UGSs; increase during in-season and decrease during off-season [91]. Characteristic
phenological variations can also be observed with woody perennial crops such as fruit
orchards, vineyards, or olive groves. Unlike annual crops that complete their life cycle
within one growing season, perennials live and produce over multiple years, undergoing
dormancy in winter. In addition to cyclic phenological changes, some PUA sites also
exhibit temporal transformations. In this regard, permanent grasslands are of particular
interest. Being a type of agricultural use, they are areas dedicated for an extended period
to growing herbaceous fodder, forage, or energy crops, whether cultivated or naturally
occurring, and not included in the farm’s crop rotation. For a crop area left for renat-
uration and being accepted as a permanent grassland, it should not be cultivated for at
least five years. Since 2015, the principle of permanent grassland conservation has been
enforced as part of the ’greening’ initiative in Germany, with the aim to achieve positive
impacts on biodiversity and protection of water, climate, and soil in agricultural land-
scapes2. Consequently, although being referred to as grasslands, these areas are still part
of agricultural systems, and serve urban greening purposes.

9.2 Semantic Features of Urban Agriculture

In this work, under PUA we consider arable lands, nurseries, permanent crops as well as
orchard lands. Here, we do not include grasslands as a type of PUA, even if it appears
as such in the TN dataset. In our ontology, grasslands are represented as a separate
UGS type. Selected PUA classes are agricultural production sites, meaning they are
actively used for gaining produce for various applications. Furthermore, these classes
also constitute to the agriculture category of the TN dataset, which we will later use for

2https://www.umweltbundesamt.de/en/monitoring-on-das/cluster/soil/bo-r-2/indicator#
bo-r-2-permanent-grassland (accessed on 01.2025)

https://www.umweltbundesamt.de/en/monitoring-on-das/cluster/soil/bo-r-2/indicator##bo-r-2-permanent-grassland
https://www.umweltbundesamt.de/en/monitoring-on-das/cluster/soil/bo-r-2/indicator##bo-r-2-permanent-grassland
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validation of our results. In the following we describe unique semantic characteristics of
PUA agriculture that can facilitate to their identification and distinction from other UGS
types.
Apart from what PUA refers to, that we previously presented, there are no particular
regulations concerning them. This means, that there are no fixed minimum size, or spatial
configuration or other requirements specified. Instead, existing definitions mainly focus on
how intensive a field can be utilized or what types of vegetation should mainly be planted.
Therefore, in order to extract PUA relevant contextual information, we mainly rely on
aerial photography and describe them using the most outstanding features. We further
utilize the TN dataset in order to extract more specific rules defining PUA. Example of
four different PUA classes is illustrated on Figure 9.1.

Figure 9.1: Sample area illustrating different types of investigated PUA.

Based on the TN dataset examination, we define the following semantic characteristics of
PUA:

• PUA exhibits a predominantly near-rectangular or regular-shaped plot structure,
often delineated by clear boundaries such as roads, hedges, or irrigation channels.

• PUA shows very low field heterogeneity as only one crop type dominates in each
plot.

• PUA displays distinct, typically three-step, phenological changes throughout the
growing season. For annual crops, this includes stages such as seedling emergence,
full plant growth, and harvest. For permanent crops, phenological changes include
stages such as flowering, fruiting, and harvest cycles.
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• PUA demonstrates consistent spatial patterns, such as evenly spaced planting rows
or uniform planting density.

• PUA is frequently accompanied by agricultural infrastructure such as irrigation
systems, farm buildings, machinery tracks, and access roads, which are indicative
of active farming operations.

9.3 Peri-Urban Agriculture modeling

The identification workflow of PUA is based on the insights gained through the mapping
of forests in Chapter 7. There, during feature SA, we observe that the utilized texture
metrics, height information as well as NDVI highlight either forest or PUA, if different
thresholds are set. Consequently, we use all three variables to map PUA. Yet, we modify
the procedure in order to better fit the nature of PUA.
Following the workflow depicted in Figure 9.2, we first create temporal vegetation indices.
Existing literature, particularly Simonneaux et al. [129], highlights the usefulness of NDVI
indices for mapping temporal changes and vegetation status of PUA. Therefore, as a first
step, we calculate the NDVI index for each available Sentinel-2 timestamps. For Augsburg,
we create NDVI datasets for the following dates in 2022: February 10th, March 27th, April
21st, May 11th, June 15th, July 25th, and December 17th. Furthermore, for Wuerzburg,
we calculate NDVI indices for February 28th, March 7th, April 26th, May 31st, June
13th, July 18th, and December 20th of 2021. These datasets were previously calculated
for forest mapping, based on Equation 3.4, and already used in Chapter 7.
As noted in the previous section, PUA exhibits phenological changes, with at least three
phases within one growing season. By utilizing temporal NDVI data, we create binary
change datasets that illustrate pixels where NDVI values change at least three times dur-
ing the observed time span. To account for even minimal vegetation changes, we define
the change threshold for an NDVI dataset as 0.1.
PUA, similarly to forest, showcases low within-field heterogeneity and appears as homo-
geneous areas in heterogeneous urban fabric. To incorporate this characteristic into the
analysis, we implement GLCM-based heterogeneity metrics. Due to observed good pre-
dictive results in forest identification, we use the same heterogeneity datasets produced
for band two and three of Sentinel-2 imagery from December.
In addition to detecting general PUA, we aim to identify permanent crops such as vine-
yards and orchards. To achieve this, we utilize nDSM datasets to extract vegetation
height, enabling us to distinguish these crops from, for example, forests. The combi-
nation of temporal NDVI data and nDSM datasets allows for capturing both seasonal
dynamics and structural characteristics. Consequently, we follow a similar procedure as
for forests and allotment gardens: observing height variations within known TN polygons
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Figure 9.2: Proposed workflow to identify PUA.

and performing percentile-based thresholding. We test four scenarios with different per-
centile thresholds: 5-95, 5-75, 25-95, and 25-75 percentiles.
The next step in the workflow involves combining the change raster with thresholded
height rasters. Our ultimate goal is to identify PUA and non-PUA areas, so we create a
multiplication product of the selected layers. This product serves as a basis for creating
final PUA polygons. Raster manipulations can often result in patchy and fragmented out-
puts that do not accurately reflect our description of PUA. To address this, we perform
a smoothing operation to improve field boundaries and close any gaps within the fields.
In the previous section, we hypothesize that PUA areas are more rectangular and have
roads or hedges at their boundaries. Therefore, we calculate the rectangularity of the
fields by dividing area of each polygon by the area of its minimum bounding rectangle, as
shown in Equation 9.1.

Rectangularity =
Area

Area of MBR
(9.1)

Rectangularity values close to 1 indicate that a polygon closely resembles a rectangle,



Urban Agriculture 138

while values less than 1 indicate it is less similar to a rectangle. Additionally, we calculate
proximity of the identified fields to roads to establish spatial relationships between fields
and roads. To determine this, we utilize road polygons from the TN dataset. Although we
mention hedges and irrigation channels as other boundary delineating features, currently
such datasets do not exist. Consequently, we are not able to include both of the features
into our analysis.
Due to the use of four different percentiles to create minimum and maximum thresholds,
we perform an accuracy assessment to identify which thresholds produce the most realistic
results. For validation, we rely on the TN dataset, which includes a LU class called
"agriculture" that encompasses all the PUA sub-classes we intend to identify. Accuracy
assessment is performed based on Equation 8.1. Here, we first eliminate the false positive
polygons and then calculate the ratio of true positives against the reference dataset. Apart
from calculating and comparing identified PUA agriculture, we also examine how much
of urban green these areas store. In order to be able to calculate this, we utilize the urban
green map produced using DOP imagery in Chapter 6.
Since we aim to produce a reproducible workflow, we transfer the change detection analysis
and nDSM thresholding to Wuerzburg. Unlike Augsburg, Wuerzburg has a considerable
amount of permanent vineyards. The height variation of vineyards can differ from that of
annual crops and orchards, potentially complicating transferability of the selected height
threshold to the new study area. Furthermore, acquiring cloud-free Sentinel-2 datasets on
the exact same dates for both cities is extremely challenging. Nevertheless, we use at least
one image per season to capture the phenological changes. Additionally, the minimum
number of changes and the minimum amount of vegetation change that we use to create
a change raster for Augsburg is very low, implying it should be adequately representative
for Wuerzburg as well.
As in the case of Augsburg, we calculate the accuracy of the identified PUA in Wuerzburg
using the TN dataset. We also examine the extent to which identified polygons are
rectangular, as per our PUA definition, and check their spatial relationship to roads. We
do not examine proximity to hedges and irrigation channels, since such datasets do not
exist for Wuerzburg as well. Finally, we calculate the amount of green stored within
identified areas, similarly using the urban green map from Chapter 6.

9.4 Results

We identify PUA in two study areas by first performing a change detection analysis. We
set minimum of three-time changes of at least 0.1 as a requirement for a pixel to be
counted as changed. The change raster produced based on the temporal change detection
visually highlights the PUA areas. However, we further incorporate dissimilarity texture
metrics. The maximum threshold values used to reclassify the dissimilarity index of
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December is 1.333 and 1.445 for band two and band three accordingly. The minimum
threshold for both bands is 0. As we described in Chapter 7, these values suggest a
significant textural deviation in vegetation areas during this month, potentially due to
seasonal changes affecting leaf-off conditions.

Figure 9.3: A star-plot illustrating accuracy of four implemented threshold settings of height
variations.

In order to form the contextual characterization of PUA, we incorporate height informa-
tion. To observe the height variations, we utilize the known PUA locations from the TN
dataset and extract height values using nDSM and various percentiles. Consequently, the
5th percentile of PUA height corresponds to 0.12, whereas the 95th percentiles equals
to 1.38 meters. Furthermore, the 25th and 75th percentiles constitute to 0.05 and 0.67
meters respectively. In test one we set the 5th and 95th percentiles as minimum and max-
imum thresholds, similarly to the 5th and 75th percentiles in test 2. Moreover, in test
three we use the 25th and 75th and in test 4 the 75th and 95th percentiles as minimum
and maximum thresholds accordingly.
To understand which combination of height, change raster, and texture index produces
the most accurate representation of PUA, we perform local SA by exchanging the height
layer in each iteration. The accuracy change based on the height threshold iteration is
illustrated in Figure 9.3. Consequently, our results show that the height variation based
on the 5th and the 95th percentiles, produce the highest identification accuracy. The
precision of the identification reduces to nearly 54.43 % for test four, 54.15 % for test 3,
and finally 35.39 % for test two. We validate our results using the TN validation dataset,
comprised of all four PUA types of interest. The map, illustrating a comparison of the
identified PUA against the TN dataset is shown in Figure 9.4.
According to the semantic features we defined previously, PUA consist of nearly rectan-
gular plots. Therefore, we confirm the geometric shape of identified polygons based on
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Figure 9.4: Comparative map that illustrates identified PUA as well as PUA in the TN
dataset in Augsburg.

the rectangularity equation. It turns out, that the shape of around 88 % of the mapped
polygons is very close to rectangular, with shape values being higher than 0.5. Further-
more, the shape of 3% of the identified PUA polygons is nearly perfectly rectangular,
with shape measures higher than 0.9.
Further semantic characteristics of PUA indicate, that there are roads present at the
boundaries of the polygons. In Augsburg, only 36% of the identified polygons have spa-
tial relationships to roads, by either intersection or boundary touch. In total, the area of
PUA in Augsburg based on the TN dataset equals to nearly 37 km2. By implementing
the proposed workflow, PUA covers around 28 km2. When we examine how much urban
green the identified areas store, we calculate approximately 19.5 km2 of green.
Based on the evaluation, we select PUA height variations from test 1 as the most accurate
representation of PUA areas. Thus, we transfer its threshold values to Wuerzburg. As
defined for Augsburg, the maximum dissimilarity threshold of December in Wuerzburg
for band 2 equals to 1.333. The maximum threshold of band 3 equals to 1.445. For both
bands in December, the minimum threshold is set to 0. To produce a binary change raster
of NDVI images, we apply the same rule of minimum of three changes of 0.1. Based on
the created datasets of Wuerzburg, we produce a multiplication product and apply the
same boundary smoothing and gap filling techniques as post-processing steps.
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Figure 9.5: Comparative map that illustrates identified PUA as well as PUA in the TN
dataset in Wuerzburg.

Following the established workflow in Augsburg, we identify 78 % of PUA in Wuerzburg.
The area of PUA in the TN dataset constitutes to 20 km2. Using the knowledge-based
approach that we propose, we also identify nearly 20 km2 of PUA. A comparative map of
TN and identified PUA is shown in Figure 9.5.
From the extracted PUA polygons 78% are near-rectangular, while none of the identified
polygons being perfectly rectangular with shape values higher than 0.9. Moreover, 94%
of the identified PUA areas have a spatial relationship to roads, in a way of intersection
or boundary touch. Furthermore, using the urban green map produced from the DOP
imagery, we calculate the amount of actual green available within the identified polygons.
It turns out, that the nearly 20 km2 PUA areal accommodates around 10 km2 of urban
green.

9.5 Discussion and Conclusions

In this chapter, we conduct a workflow to identify PUA areas in Augsburg and test trans-
ferability of this approach in Wuerzburg. Based on visual examination, we establish that
PUA areas exhibit near-rectangular or regular-shaped plot structures, often delineated by
clear boundaries such as roads, hedges, or irrigation channels. These areas typically show
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very low within-field heterogeneity, as usually only one type of crop is present within
each field. The most dominant characteristic of these areas appears to be phenologi-
cal changes occurring in both annual and perennial crops, although they might progress
through slightly different stages. Consequently, we delineate these areas using vegetation
change, vegetation height, and vegetation homogeneity features.
To identify areas with vegetation change, we establish that for the same area (or pixel),
there should be at least three significant changes, representing three main phases of plant
phenology: emergence of seedlings, full plant growth, and harvest. However, it is difficult
to establish how drastic these changes are reflected in NDVI values. Thus, we define a
slight change as 0.1, which is sufficient to observe vegetation change. This change raster,
however, highlights not only PUA areas but also all other vegetation-dominant areas
where changes have occurred. This phenomenon is also highlighted by Simonneaux et al.
[129], where the authors emphasize that even with set thresholds to delineate vegetation
and bare soil, they observe confusions due to overlapping spectral signatures of different
crops as well as under-detection of young tree plantations due to low NDVI values. We
do not perform SA to identify which change threshold would be the most representative
of agricultural fields, as this procedure would be time-intensive and the absence of high-
quality validation datasets would always result in high uncertainties. However, another
reason for choosing such a low threshold is due to the requirements of the transferability
application. Since we are unaware about the extent of seasonal changes in Wuerzburg,
setting a low threshold potentially helps to minimize the risk of accidentally excluding
relevant data.
To improve results of the change detection, we incorporate texture metrics. The two
suitable GLCM texture metrics for this purpose are homogeneity and dissimilarity. Our
previous analysis in Chapter 7 illustrates that homogeneity is not capable of highlight-
ing forest areas. Visually and texture-wise, forests appear very similar to crop fields.
Therefore, we chose to use the dissimilarity index. Commonly, the lower the dissimilarity
value, the higher the homogeneity. The highest dissimilarity value we utilize is nearly 1.4.
Although this value is comparatively high for forests, it still adequately represents PUA.
Moreover, we only use the dissimilarity index of bands two and three for the month of
December. We find December appropriate because it is the leaf-off season in the temper-
ate zone where the study areas are located, which enhances the dissimilarity index and
reduces any noise present during the summer months. However, we do not test the tem-
poral change of dissimilarity, as this would require high processing power and time, while
we are interested in the most optimal delineation. In addition to the month, we limit
texture metric calculations to two Sentinel-2 bands. Bands two, three, four, and eight
have the highest resolution (10 meters). Since bands four and eight are already involved
in NDVI calculation, we aim to add extra information using bands two and three. Other
spectral bands might also be useful for understanding the vegetation health status. Full
spectral bands together with NDVI are used by Peña et al. [112], who establish that all the
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bands used together gives the best results in terms of identifying PUA. Particularly, the
short-wave infrared band can assist in understanding water status of plants and identify
drought-stressed crops. However, this band has a resolution lower than 10 meters, so we
chose not to include it in the analysis.
While using phenological change of vegetation together with texture metrics is a commonly
used technique in urban agriculture, using vegetation height is less common. Neverthe-
less, when mapping forests, we perform a SA where we eliminate height information and
observe that crop fields are highlighted. Consequently, we use vegetation height as one
of the unique identifiers of PUA, but with different thresholds than for forests. Our re-
sults show that the general height variation of PUA in Augsburg lies between 0.12 and
1.38 meters, as these values in combination with other features produce the most realistic
results. Although we expect these values to be challenging in terms of transferability, vi-
sual inspection of PUA results in Wuerzburg show otherwise. For instance, vineyards can
reach up to 1.8-2.7 meters [113], which could presumably lead to the underestimation of
these areas due to the 1.38 meter cut-off. Such underestimation of height could originate
from the limited temporal resolution of the nDSM datasets. These are calculated from
DSM and DTM datasets that are taken on one single date. Therefore, height of only
those crops that were present at the time of image capture are evaluated during height
thresholding. However, limited identification of vineyards occurs only partially in some
areas. We could explain this by the fact that the use of other explanatory variables, such
as dissimilarity and change factors, balances the effect of the height. Yet, we acknowledge
that the transferability of the height variable might be limited, and further analysis might
be needed in Wuerzburg to understand the actual vegetation height distribution.
Phenology, homogeneity, and vegetation change are factors that can be conceptualized,
and crisp values or rules can be established. We also refer to the geometric form of PUA
and its spatial association with elements such as roads, irrigation channels, and others.
These, in turn, are not so easy to characterize using spatial data. Therefore, we calculate
the rectangularity of identified polygons. However, in many cases, we are not able to
extract single polygons but rather larger areas consisting of a group of polygons. This
means that only in areas where single plots are extracted the rectangularity measure is
representative. For other areas where a large number of PUA plots occur side by side,
this measure does not adequately describe rectangularity. Furthermore, to build spatial
associations, such as roads within identified PUA, quality of the utilized road network
dataset and the precision of extracted polygons are determining factors. However, the
TN dataset does not contain all types of roads. In areas where arable lands are clustered,
commonly no roads pass through, but rather biking lanes or walking paths. Therefore,
quantitatively defining how many of the identified polygons are associated with the road
network while using an incomplete dataset is nearly impossible.
By utilizing the proposed mapping procedure, especially in Wuerzburg, we achieve good
PUA identification results. Although these areas do not always overlap, the total amount
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of the PUA, nearly 20 km2, matches the TN dataset. In Augsburg, however, we identify
much less PUA as the area of it in the TN dataset. We relate these differences to the
quality of the utilized data as well as the selected thresholds. Augsburg stores much larger
PUA, especially various types of it. However, only NDVI images from one date in some
months, or nDSM data from only one date from the whole year are used. Thus, a lot
of phenological and structural nuances are lost. Similarly, 20 km2 of PUA in Wuerzburg
stores only 10 km2 of urban green. This is again due to the temporal factor of the DOP
image used for producing the urban green map. Consequently, for adequate translation of
all the semantic characteristics of PUA, availability of temporal datasets for all selected
features is a must.
Finally, in both study areas, we delineate sub-classes of PUA by referring to the TN
dataset. However, the proposed extraction procedure does not allow distinctions between
the selected classes. Consequently, some PUA classes might be identified better than
others, though we are only able to assess the overall picture.
In this study we develop a workflow to identify Potential PUA areas in Augsburg, assess-
ing its transferability to Wuerzburg. Our key findings suggest that PUA regions tend to
be near-rectangular with distinct boundaries, minimal internal variability, and seasonal
vegetation changes. Using NDVI to track plant phenology, texture metrics to enhance
delineation accuracy, and vegetation height to distinguish PUA from other vegetation
types proves to be effective. However, thresholds for NDVI and texture values introduce
uncertainty. Similarly, using dissimilarity indices only for December captures PUA more
effectively due to reduced vegetation noise but may limit insights into temporal vegetation
changes. Another important distinction is the limitation of the road network data, which,
by excluding smaller paths, prevents comprehensive spatial associations for all PUA poly-
gons.
We acknowledge, that this approach has limitations, including the lack of SA on NDVI
thresholds, which may affect transferability across different agricultural landscapes. Ad-
ditionally, rectangularity and association with road networks do not apply well in areas
where plots cluster, limiting detailed spatial characterization. Therefore, future work
should focus on optimizing thresholds for NDVI and texture metrics, particularly in di-
verse agricultural settings. Furthermore, refining road network datasets could improve
PUA identification, while testing the influence of temporal dissimilarity changes might
enhance detection stability. Utilizing temporal height data or a urban green map that
accounts for temporal changes would be beneficial for accurate PUA mapping. These im-
provements could allow for more robust, scalable approaches to PUA identification across
varied urban regions.
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Urban Green Corridors

In this Chapter we present a practical and systematic approach for mapping urban green
corridors in two study areas. We first present the definition of green corridors in the
existing literature. However, we only focus on green corridors beneficial for human well-
being and allowing human mobility. In the following section, we provide a semantic
definition of green corridors as well as present results and discussions of the practical
mapping procedure.

10.1 Definition of Urban Green Corridors

For UGSs to provide full range of services, their thorough planning and maintenance is
a must. According to the climate adaptation plan of the EU, the creation of a city-wide
network of green spaces with interconnected corridors should be prioritized and valued as
a fundamental LU type, alongside other essential LU sectors1. This statement underlines,
that interconnectedness of UGSs is as valuable as the UGSs themselves. Active urban-
ization is causing rapid habitat fragmentation, and maintaining landscape connectivity is
essential for ecosystem health and biodiversity conservation [154]. Urban areas, although
comprising a small fraction of land, house significant amounts of various animal species,
requiring integrated conservation strategies within urban planning [26].
Although the concept of a green corridor exists for a long time, this term itself is rela-
tively new. Ahern [4] summarizes terms that are used for describing the same concept in
both Europe and America. These include ecological network, habitat network, greenways,
greenbelts, environmental corridors, and wildlife corridors among others. He also provides
a definition of what greenways are, by describing them as "networks of land containing

1https://climate-adapt.eea.europa.eu/en/metadata/adaptation-options/
green-spaces-and-corridors-in-urban-areas(accessed on 01.2025)
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linear elements that are planned, designed and managed for multiple purposes including
ecological, recreational, cultural, aesthetic, or other purposes compatible with the concept
of sustainable LU". Consequently, the concept of greenways stands at a core of ecological
studies, and seeks to provide a solution for increasing habitat fragmentation due to rapid
urbanization [4].
However, green corridors are not only important from the ecological perspective, but also
from a human-nature interactions perspective. Recreative, cultural, and aesthetic func-
tions are among many more services that green corridors provide [102]. Green corridors
are placed at a similar level with parks and recreation areas, as they could offer park-like
experiences to community residents [126]. Research shows, that green alley projects can
foster positive connections between people and places and improve resilience of commu-
nities to shocks and stresses, while they help to reduce noise pollution, and generally
enhance human well-being [51]. Consequently, from a human well-being, ecological and
sustainability perspective, green corridors provide a multitude of functions. They provide
safer and more accessible routes for pedestrians, cyclists, and vehicles; foster connections
between people and nature; enhance public health; improve air quality; contribute to ur-
ban development; promote environmental education; and strengthen a community’s sense
of place [47].
Interconnectedness among core green areas is also a widely discussed topic in implemen-
tation of GI [74], especially in the context of nature-based solutions [76]. Green corridors
are defined as linear natural features, like trees and vegetation, that connect various green
and open spaces to create an interconnected urban green network [102]. Therefore, green
corridors are the key elements of urban landscapes that can enable this connectedness,
that is urged for in nature-based solutions for sustainable urban development.
When it comes to specific criteria of green corridor creation, this will vary based on the
species of interest. From an ecological perspective, there are some generalizable steps:
taking habitat patches as nodes and potential movement paths between these patches as
edges, and creating a simplified network of movement between habitat areas [26]. Further
modifications on size of patches or characteristics of edges will depend on the particu-
lar species. However, green corridor criteria, especially benefiting human movement and
well-being, are not as well established. Types of green corridors in cities is yet another,
relatively unattended, aspect of green corridor establishment.
One of only few detailed descriptions of green corridor types is given by Yan [150]. The
author delineates among green road, green river, and green ribbon corridors. Green
road corridors include greenery along urban roads, and are subdivided into main road,
secondary road, and railway green corridors. Green river corridors are comprised of veg-
etation along riverbanks and associated floodplains, dykes, and highlands. Lastly, green
ribbon corridors are presented as wide, continuous strips of green space that can be hun-
dreds of meters to kilometers wide, and are typically located on urban outskirts or between
urban zones.
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Apart from a detailed typology of green corridors, concrete criteria for their identifi-
cation are as important. By taking human mobility as a key aspect of green corridor
design, Moreno et al. [102] provide solid criteria for green corridor mapping. The authors
highlight, that the interconnected green spaces can improve urban mobility, particularly
pedestrian movement, by linking parks, squares, and green roads. This way their aim
is to facilitate easier, safer, and more sustainable pedestrian access across urban areas.
Furthermore, they summarize key requirements of green corridor creation for the given
purpose as follows:

• Green corridors connect core areas with a minimum size of 2 hectares.

• Core areas are comprised of vegetation, mainly trees (over 50% cover).

• Distance between core areas should not exceed 2 kilometers.

• Green spaces should have surface more than 0.1 hectares.

• Distance between the green spaces must be under 300 meters.

In this definition, core areas refer to large green spaces. Although not exactly specified
by the authors, core areas with the given size could be e.g. forests, parks, and cemeteries.
Furthermore, the authors refer to green patches along streets and public pathways as
green spaces. For allowing better connectedness, the authors require a maximum distance
between green patches 300 meters. However, the authors, assess quality of vegetation and
from it following connectedness, within 100 meter transects.
This detailed definition of green corridor criteria is one of the very few definitions, espe-
cially concerning human movement. Therefore, in our work we will rely on these criteria
in order to identify green corridors in the selected study areas.

10.2 Semantic Features of Green Corridors

In order to identify existing green corridors in our study areas, we slightly modify the def-
inition of the Moreno et al. [102] that states: green corridors are linear natural features,
like trees and vegetation, that connect various green and open spaces to create an inter-
connected urban green network. We exclude open spaces from this definition, because the
TN dataset includes mixed areas under the "open" class. This class includes open mining
areas or open abandoned industrial areas. Consequently, we do not consider such areas as
core areas that need to be connected using a network of green corridors. Furthermore, we
also make a distinction between green transport and green water body corridors. While
transport corridors could be beneficial for human mobility, water corridors can also be
important for urban biodiversity. Therefore, by synthesizing and extending the existing
green corridor definition, we establish the following semantic identification criteria:
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• Green corridors are networks that connect green core areas:

– Core areas should have a minimum size of 2 hectares

– Core areas are vegetated areas and are comprised of mainly tree coverage (over
30% cover)

– Distance between core areas should not exceed 2 kilometers

• Green corridors can be of transport type:

– Main road corridors

– Path corridors

– Railway corridors

• Green corridors can be of water body type:

– Green corridors along riverbanks

– Green corridors around lakes

• Green corridors should be comprised of vegetation with an area more than 0.1
hectares per 100 meters

We set 30% tree coverage for core areas, instead of 50% given in the existing literature,
because of the structure of UGSs in the study areas. A high tree coverage filter would
eliminate many UGSs, that have mixed vegetation coverage, i.e. parks or allotments.
However, we are interested in keeping such LUs as core areas due to their importance
for human well-being. Excluding those from the core areas might represent only partial
connectivity required for human use. Thus, a lower tree coverage threshold would more
adequately represent core areas in both cities. Moreover, we expect at least 0.1 hectares
of vegetation per 100 meters, for segments to be considered as a corridor. While such
criteria do not explicitly exist in the literature, it synthesizes distance and amount of
green utilized by Moreno et al. [102].

10.3 Green Corridor Modeling

To identify green corridors, we follow the procedure presented in Figure 10.1. We first
select green core areas, which will serve as anchor points for defining green corridors.
During the initial selection of potential core areas, we consider the accessibility of green
spaces, opting to exclude those with limited public access. For instance, tree nurseries
may appear as large green spaces with nearly 100% tree coverage, fitting our criteria for
core areas. Yet, tree nurseries serve commercial purposes rather than recreational use. In
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Figure 10.1: Workflow to identify UGSs using two different data sources.

contrast, botanical gardens offer also limited access, only during the opening hours. Yet,
these are large green spaces that people attend during opening hours for mostly leisure
activity purposes.
Consequently, we refer to the TN dataset and extract all LU classes that we would further
asses in terms of their suitability as core areas. The list of classes we extract is given in
Table 10.1. While most of the selected classes appear in both cities, vineyards exist only
in Wuerzburg, and Zoo only in Augsburg.
We then explore each of the selected classes in terms of their satisfaction of the green
corridor criteria. Consequently, we test whether the area of the selected polygons is larger
than 2 hectares and whether they are located in maximum 2 kilometers distance from
each other. We further take the green space map produced in Chapter 6 and explore the
height of vegetation under the remaining polygons. To do so, we extract height values
from the nDSM raster for each vegetation polygon within core areas. The nDSM layer
was previously produced in Chapter 4, using DSM and DTM rasters. Here, we are aiming
for tree-like vegetation composition of more than 30%. There is no exact information
as to what height tees in the study area constitute. Nevertheless, in Chapter 7 we use
the same nDSM layer to extract the vegetation height under forest areas. Given forest
in both study areas are made of coniferous and deciduous trees, we use the same height
thresholds as for forest mapping. Consequently, the minimum height threshold of trees
in green core areas is set to 0.712 meters. To check whether the selected core areas meet
the final criteria, we create a distance table using the Create Near Table tool in ArcGIS
pro. This allows us to asses if there are any polygons that are located further than 2
kilometers from at least one other core polygon.
After selection of the core areas, we examine routes that could serve as potential corridors.
Therefore, from the TN dataset we extract roads, path, railroads, rivers, and standing
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Table 10.1: Initial selection of UGSs to be used as green core areas.

Land Use Type
Cemetery
Forest

Designation

Crop Fields
Botanical Garden
Zoo
Recreation Area
Leisure Facility
Garden
Grassland
Allotment Garden
Orchard
Park
Children’s Playground
Vineyard

waters. For networks to be considered green, there should be at least 0.1 hectares of green
within 100 meters. TN polygons are already split into sections, especially at the road in-
tersections. However, we further split them in order to obtain 100 meter long transects.
This process, is however, cost-intensive as selected datasets are quite large.
Similarly to core areas, we apply the same height threshold to vegetation around the net-
works. This ensures that we do not falsely classify segments as green corridors, although
there is only low, grass vegetation around it. We then reclassify every section of the net-
work into green or non-green corridors based on the amount of green stored in it. Here,
we also utilize a buffering approach in order to extract immediate green spaces alongside
the network. Consequently, we apply a 5 meters buffer around roads and paths, as well
as a 10 meters buffer around railroads and rivers.
We then combine green corridors of all types and examine the connectivity of the core
areas with these corridors. This allows to express whether the identified green corridors
form continuum within the study areas as per definition. For this, we select all the corridor
segments that can connect the majority of the core area continuously. We then identify
which of the core areas are isolated and are not connected by any of the identified green
corridors.
Here, we do not perform transferability analysis, as we did in the previous chapters. The
reason is, that we select green corridor defining criteria from the existing literature. Con-
sequently, we apply the same criteria in both study areas and assess the independent
accuracy.
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10.4 Results

Green corridors are defined as linear green formations that connect core areas. Therefore,
we first identify these core areas. In Augsburg, we select LUs defined in table 10.1, that
could potentially serve as core areas. In total we identify 2240 polygons belonging to the
defined green space classes. We further narrow down this number by applying core area
criteria. Consequently, there remain 218 polygons that are at least 2 hectares large, are
closer than 2 kilometers to each other and contain over 30% tree coverage. Differences
between originally selected and filtered core areas are shown in Figure 10.2.

Figure 10.2: Comparative map of selected core areas as well filtered core areas in Augsburg.

The majority of the eliminated core areas belong to crop lands, grasslands, green areas,
and gardens. As such, there remain 25 allotment, one botanical garden and one zoo, 9
cemetery, 90 crop field, 58 forest, four garden, five grassland, 15 green area, one leisure
facility, two orchard, four park, and 3 recreational area polygons. The total area of these
core polygons makes up to 47 km2.
Furthermore, we identify four types of green corridors, namely path, road, railroad, and
water body corridors. For these linear objects to be considered as green corridor, they
should store at least 0.1 hectares of green per 100 meters. The TN dataset provides
these objects in a polygon geometry, which not consistently covers the whole area of
these objects. However, we add buffers around them to even up these inconsistencies,
as well as include vegetation that also appears on both sides of pavements. Selected
vegetation with the defined buffers go through a filtering process, where vegetation less
than 70 centimeters in height is eliminated. This process excludes lower grass and sparse
vegetation on bare soils. Consequently, with five meters buffer around roads we identify
4 km2 of green vegetation, whereas around paths of the same buffer size we identify 4.7
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km2. Through recalculation of the minimum required vegetation amount per 100 meters,
we identify that 38% of all road segments fit the green corridor criteria, while this number
equals 57% for path segments. Using a 10 meter buffer around water bodies and railroads
we identify 2.8 and 0.7 km2 of green, respectively. Based on the acquired vegetation
amount as well as the segment size, 84% of water body and 72% of railroad segments
appear to fit the green corridor criteria accordingly. Spatial distribution of all four types
of green corridors in Augsburg is illustrated in Figure 10.3.

Figure 10.3: Map that illustrates spatial distribution of road, path, water body, and railroad
green corridors in Augsburg.

The inherent idea behind green corridors is serving connectivity of core areas. Although
originating in ecology, connectivity of green areas also serves for human well-being by
allowing safe and pleasant movement of people. Therefore, we examine to what extent
selected core areas are connected to each other. It turns out, in Augsburg, 65 of the core
area polygons are isolated from the rest of the core areas and cannot be connected through
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Figure 10.4: Map of the identified green corridor network, made of all four corridor types,
that uninterruptedly connects majority of core areas in Augsburg.
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the identified corridors. The largest group of core areas, that is isolated, is comprised of
43 crop field polygons. This figure is followed by six allotments and six cemeteries. From
the remaining core area classes there are consistently one or two polygons isolated. More-
over, from the two orchard polygons, that were initially selected, none are connected to
the rest of the core areas. By following through the green corridor segments of all four
types, we establish a route that connects all the 65 core area polygons. Results of the
identified corridor route are presented in Figure 10.4. The identified connecting corridor
spans in north-south axes and splits into east-west direction in Wolfzahnau, which is a
landscape protection area. Main branches of the selected corridor span mainly alongside
the Wertach and Lech rivers. From the corridor along the Wertach river another branch
splits and connects the forest in the west (westliche wälder) to the rest of the core areas.
This connecting corridor is comprised of nearly the same number of road and path seg-
ments which make up 42% of the all corridor segments. Furthermore, railroad green
corridor segments are on the third place and make 10% of the total corridor segments.
Only 6% of the connector corridor segments are made of river segments.

Figure 10.5: Map that illustrates difference between selected and filtered core areas in
Wuerzburg.

The identification of green corridors in Wuerzburg follows the same procedure as in Augs-
burg. Initially, we select 453 polygons from the TN dataset that belong to green space
classes defined in Table 10.1. However, here we also filter core polygons based on the size,
proximity and tree density. Due to these elimination criteria, we continue our analysis
with only 221 UGS polygons from 453 of pre-selected. The largest UGS class that is elim-
inated, belongs to crop lands. From 201 polygons of crop lands, only 27 fit the set core
area criteria. The outcome of the pre and post-selected core areas can be seen in Figure
10.5. We proceeded with the analysis using 146 forest, 27 crop land, seven recreational,
one leisure, three cemetery, 12 green space, six grassland, seven allotment, 11 park and
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one botanical garden polygons. From 23 selected vineyard polygons, none passed through
the filtering criteria and are eliminated from the final core area list. In total, filtered core
areas constitute nearly 16.6 km2 of green space.

Figure 10.6: Map that illustrates spatial distribution of road, path, water body, and railroad
green corridors in Wuerzburg.

To examine the amount of green present alongside the four network types, we utilize
buffers around these objects. Consequently, along the existing path network in Wuerzburg
and a 5 meter buffer around it, we identify nearly 4.5 km2 of green that fits the set height
threshold. Adjacent to the road segments and a 5 meter buffer around them, we identify 3
km2 of green. The given number of path segments exceeds the number of road segments by
almost 350 segments, there is considerably less green present around paths. Furthermore,
parallel to rail network with their 10 meter buffer, there appear 0.3 km2 of green fulfilling
the vegetation height thresholds. These figures constitute 0.2 km2 of green along the river
network and 10 meter buffer around it.
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Figure 10.7: Map of the identified green corridor network, made of path, road, and railroad
corridor segments, that uninterruptedly connects majority of core areas in Wuerzburg.

In Figure 10.6 we present the identified connector corridors. These corridors are a product
of selection of route segments that contain at least 0.1 hectares of green per 100 meters.
Consequently, we identify that only 34% of all the road segments within the TN dataset
are classified as green corridors. This number constitutes 67% in case of path segments
and 46% for the water body segments. From all the railroad segments, 47% fit the green
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corridor criteria. During the careful visual inspection we reveal that none of the four cor-
ridor types can connect core areas uninterruptedly. Furthermore, there is a remarkable
insufficiency of green corridors in the central, densely buildup areas of Wuerzburg which
can be seen in Figure 10.6. Furthermore, we observe a tendency, that green path corridors
mostly appear in places that are already close to other green areas, such as forests and
crop fields.
Following the proposed corridor example in Augsburg, we identify a corridor network in
Wuerzburg, that is comprised of different green corridor types, and can allow for contin-
uous connection of core areas. The result of this procedure is illustrated in Figure 10.7.
It turns out, that utilizing pre-classified green corridor segments, it is not possible to
connect core areas located in the northern part of the city with the southern core areas.
Moreover, the identified corridors also do not alow a connection of all the core areas in
the north. Therefore, we establish three separate green corridor branches that can con-
nect the majority of core areas without interruption. As such, two of such corridors are
located in the north and connect mainly two separate clusters of forest and crop field
polygons. The third branch of connecting corridors spans from north-west to south-east
and connects mainly forest polygons as well. In Wuerzburg we observe better connection
of smaller core areas like allotments, recreational areas, cemeteries etc. than in Augsburg.
However, parks just like in Augsburg, are the main isolated core type and are followed
by green areas. Further isolated core areas, that cannot be connected to any other core
areas, are five crop field polygons, one cemetery, two recreational area, two grassland, and
three allotment polygons.
Consequently, our results show, that if we rely on only one type of corridor, there is nearly
no connection between core areas on both north-south and west-east axes. Therefore, our
proposed connecting corridor network with three separate branches, is comprised of 80%
of road segments, 19% of path segments, and 1% of railroad segments. The selected
connectors are suitable for biodiversity movement, however, within restricted areas. For
human mobility, none of the identified green corridors form a continuous green network,
by particularly limited distribution within the center of Wuerzburg.

10.5 Discussion and Conclusions

In the existing literature, green corridors are shown to be as important for human well-
being as parks and recreational areas. This is because green corridors can provide park-like
experiences to community residents [126], can foster positive connections between people
and places [51], and provide aesthetic, safe and accessible routes for pedestrians, cyclists,
and vehicles [47]. In the light of all the services green corridors provide, they are still not
a common green space type that is included in LULC maps.
Identification of green corridors is a straightforward task. In ecological studies, there are
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two main steps involved into corridor mapping: first perform habitat suitability analysis
to identify core habitat areas of the species of interest; then create a connectivity model
that establishes or adds linear structures at the critical points that connect the identified
core areas [114]. However, mapping green corridors from human perspective is not as
frequently performed task and thus there are no hard rules for corridor creation.
In our ontology we differentiate green corridors as a separate UGS type and here perform
knowledge-based mapping of them. Therefore, we first define what green corridors mean
to us and then implement a workflow to map them. According to our definition, green
corridors are networks that connect green core areas. We therefore select potential green
spaces in the study areas that can serve as anchor core areas. Moreno et al. [102] in a
similar study look for core areas, where more than a half of the areas are covered by
trees. However, in both Augsburg and Wuerzburg, there are quite mixed composition
green areas ranging from woody forest, to open parks, allotments and grasslands. We
therefore, set the threshold of woodiness to 30% to be more inclusive. Our results show,
that indeed most of the crop lands and grasslands are eliminated in both cities. This
is understandable, as these areas do not have any tree coverage. In contrast, the fact
that there are still remaining crop lands after the filter application, could indicate that
these areas were covered with high crop vegetation during the time the height dataset was
acquired. Croplands exhibit temporal vegetation variations. The nDSM dataset, however,
only represents one day, the acquisition date. Therefore, crop fields are dynamic core areas
and might change based on the height dataset used. What is however interesting, is that
in Wuerzburg none of the allotments are filtered out with only a quarter of allotments
remaining in Augsburg. The 30% tree coverage therefore might be location and LU
practice dependent.
At the beginning of the analysis we state that we are mainly interested in green corridors
for human mobility. Therefore, path and road green corridors are the most relevant
corridors from this perspective. Transport green corridors are a very common corridor
type extracted in many existing studies. However, similarly to Yan [150], we further
delineate railway and water body corridors. It is, however, important to mention, that if
there is a possibility to move along the rivers or railroads, then this can be mainly done by
using paths or roads. Given path and road datasets are not totally complete, we hope to
compensate through using railroad and water body corridors. From the sustainable urban
development viewpoint, both human and biodiversity require good living circumstances.
Therefore, those sections of rivers and railways that are not accessible to humans, might
still be usable for animals.
To identify how much green is stored adjacent to the selected movement network, we use
the green space map that we create in Chapter 6. There are many data sources used for
this purposes in the existing literate. This list ranges from CORINE LC [24], to Landsat
imagery [33]. Both Moreno et al. [102] and Zhang et al. [154] experience under-detection
of green spaces due to the datasets’ spatial resolution. The authors conclude that smaller
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vegetation patches might not have been captured accurately. Our green space map is
created using 20 centimeters DOP. Consequently, it is highly detailed and includes all the
types of vegetation (trees, grass, bushes) with a high precision. In contrast, our dataset
might even include shadows of green spaces, which might result in over-estimation of
actual greenness alongside the transport networks. The accuracy of the utilized dataset
has already been discussed in Chapter 6 and it has not been validated entirely due to the
absence of accurate validation datasets.
What does not seem to be a drawback in other green corridor studies, is the amount of
greenness expected per 100 meters. Our results show that there are two main frequent
issues around network segments. Firstly, the TN dataset is not consistent in digitizing the
full width of all four types of networks. As it can be seen in Figure 10.8(a), one segment
of a railroad is digitized by following the actual width of the road, whereas the second
section is digitized much larger. LU in the TN dataset does not only consider the actual
use but also its ownership. As such, it might be in that section, that area around the
railway also belongs to the same owner as the tracks themselves. But it might also be
just an error in the digitization. Railway tracks in both cities are not as complex as path
and road networks. Therefore, it is feasible to correct railroad and water body polygons,
yet extremely time consuming to improve road and path networks.

Figure 10.8: Figure illustrating inconsistencies in network digitization in the TN dataset (a),
as well as false positive green corridor identification (b) in Augsburg.

Mentioned inconsistencies lead to the fact that some segments of the same network count
for more green that the others (narrow digitized ones) which is directly linked to under-
and overestimation of vegetation. We attempt to compensate for these differences by
improving as many network segments as possible, as well as by creating buffers around
the segments. Nevertheless, we still observe that in areas with low digitization accuracy,
buffers contribute to overestimation of vegetation. Consequently, for optimal greenness
judgment alongside transport networks, the accuracy of the underlying datasets is crucial.
Secondly, our results indicate, that the availability of 0.1 hectares of vegetation per 100
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meters can be a very sensitive threshold. In Figure 10.8(b) we highlight in red three
path segments that are identified as non-green corridors. However, also from the figure,
it is obvious, that these segments pass through a densely vegetated riverside. During
detailed examination, we observe that there is missing only around 0.0005 hectares for
these segments to be classified as a green corridor. Moreno et al. [102] set a requirement of
0.1 hectares of green spaces within 300 meter proximity. This approach requires slightly
less vegetation per 100 meters. However, reducing minimum required vegetation amount
per 100 meters, might again result in overestimation in areas with sparse vegetation and
might again lead to missclassifications. Therefore, it is extremely important to validate
the outcome and maybe utilize location-based thresholding. Furthermore, existing studies
do not differentiate between sides of the roads. Given the same example, for large roads
considering every side separately might help to represent the reality more adequately.
Carver et al. [24] differentiate between "line" and "strip" corridors by considering their
width and connectivity, which they find significant for conservation efforts. Thus involving
width of network segments might result in a totally different picture of green corridors.
What we do not consider in this analysis, but is done previously and might be important
to explore as well, is the quality of vegetation on the road segments. Moreno et al. [102]
utilize NDVI derived thresholds in order to assess the quality of vegetation. However, the
DOP dataset used to create the urban green map contains only three spectral bands. Yet,
we use the GLI index during urban green map creation, which can be used as a substitute
for NDVI. Therefore, we do not further analyze the state of vegetation.
Our analysis, especially around road and path networks, indicates a considerable amount
of qualified green corridors. Yet their distribution is uneven, with significant gaps partic-
ularly in city centers. This highlights a common urbanization issue where green spaces
appear more fragmented or sparse in highly urbanized areas, affecting the continuity of
green corridors [154]. This discontinuity of green corridors not only prevents ecological
connectivity but also limits the corridors’ effectiveness in providing ecosystem services to
more densely populated urban areas. The fact that in both cities, only around 40% of
road segments, and less than 70% of path segments are green corridors, further empha-
sizes the challenge of integrating GI into existing urban settings. Moreover, the spatial
distribution of these green segments further complicates connectivity throughout buildup
city centers.
We however, still try to trace, whether there are any potential, already existing green
corridors. From the human perspective, it is questionable whether green corridors should
always aim to connect large green core areas. For pedestrian movement or cycling, the
question would potentially be if the route between point A and point B is a green corridor,
where it is nicer to cycle. However, if we consider climate change effects such as hotter
and drier summers, availability of ways with green provided shadows, might immensely
improve day-to-day life in hectic cities. This would, of course, indirectly also facilitate
for stronger ecological connectivity. As such, we conclude that in Augsburg it is still
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possible to highlight continuous corridor networks that connect a majority of core areas.
In Wuerzburg, however, there is an immense fragmentation of green corridors. There
are three dominant core area clusters that show some sort of within cluster connectivity.
Nevertheless, they are not connected with each other. This could be due to the large river
crossing the city of Wuerzburg that further disables connectivity. In contrast, two rivers
in Augsburg rather facilitate connectivity that disabling it. Although the approach we
take to assess connectivity is used on an example of core areas, it can still be implemented
in other settings, for connecting different anchor points too.
In conclusion, while the intent to map and connect green corridors for enhancing urban
livability and biodiversity is clear, the approach is impaired by poor data quality, inap-
propriate or vague parameter settings, and a lack of comprehensive validation datasets.
We initially state that urban areas contain much more green space than is included into
LULC maps. We also pinpoint in the previous chapters, that some of the "unknown"
green is street level green. With the performed analysis, we can confirm, that portions
of this unnamed vegetation belong to green corridors. Particularly in Augsburg the area
of vegetation along corridors equals nearly 13 km2 while in Wuerzburg around 8 km2.
Consecutively, if we continue excluding green corridors from LULC maps, then we are
indeed missing a substantial amount of green that cities store. Nonetheless, at its current
state, the identified green corridors fall short in connecting fragmented green core areas.
Therefore, future research should focus on improving underlying data quality as well as
establishing more robust thresholds for green corridor identification. Further exploring
vegetation composition of selected corridors can help to build a better picture as to what
extent these corridors support human well-being and biodiversity.



Chapter 11

Synthesis

Throughout the thesis, we perform knowledge-based identification workflows to map urban
forests, allotment gardens, peri-urban agriculture, and green corridors. For all performed
analyses, we also present their results as well as provide discussions and conclusions for
them. In this chapter, however, we address the key points we establish through the anal-
ysis and elaborate on them from an overarching perspective of the thesis. These include
the usability of the created ontology, particularly in populating its feature properties.
Furthermore, we elaborate on the identified semantic characteristics of UGSs and assess
the extent to which they supported green space mapping. Additional discussion points
include quality requirements for the utilized spatial datasets and the methodologies se-
lected. We conclude this chapter by answering research questions and addressing our
hypotheses.

11.1 Conceptual Implementation

In everyday life of bustling cities, human well-being can be compromised. Above average
hot summers and scarce shadow opportunities, extreme flooding due to highly sealed
surfaces, fragmented natural habitats as a result of intensive constructions are only few
of the adverse effects of city life [45][12]. With urban populations on the rise, these
challenges are further intensified1. Only nature can help nature, can it? A solution to
the majority of listed problems is indeed seen in nature itself. That is why the concept of
nature-based solutions is popular as never before. This includes establishing green roofs
and rain gardens, or construction of wetlands can minimize damaging runoff by absorbing
storm water, reducing flood risks and others. Altered city structures and systems make

1https://www.un.org/en/development/desa/population/publications/pdf/urbanization/
WUP2011_Report.pdf (accessed on 01.2025)
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it, however, not easy to implement [76].
UGSs serve as breaths of fresh air in congested urban areas. Their importance for human
well-being is undeniable. Parks and recreational areas significantly enhance physical and
social well-being by providing spaces for physical activities such as walking and jogging,
which help to reduce the obesity rates and other health issues, and foster social interactions
through community engagement and activities [73]. Urban forests and green corridors
contribute notably to mental well-being by offering serene environments that help to
reduce stress and anxiety, promote relaxation, support cognitive recuperation, and allow
the brain to rest [77][116][148]. Moreover, community gardens enhance subjective well-
being by increasing life satisfaction and personal happiness through frequent visits and
interactions, which also promote physical activity and healthy eating, thereby supporting
overall quality of life [105][46]. The relevance of UGSs is amplified at times of crisis. The
COVID-19 pandemic was almost a proof of concept, since UGSs were seen as safe places
to attend without the fear of getting infected [117].
However, we establish, that there is still a misunderstanding of types of green spaces and
their importance. How would it be even possible to make informed decisions, if there
is no knowledge of how much green a city accommodates? We also identify, that the
confusion of types of green spaces originates from a long discussed question on what is
LU and what is LC [50], as well as what is the smallest size of an object that we can
represented on LULC maps. Some UGSs represent LC e.g. forest. Others represent
LU, e.g. allotment. Given there are no maps that represent purely LU or only LC [5],
shouldn’t then UGSs appear on them? Most of the maps utilize a minimum mapping
unit to represent information. However, some green spaces can be simply too small to be
included into such maps. These include, for instance, street level trees or back and front
yard gardens. The latter ones are privately owned areas, which adds on an additional
level of exclusion criteria. Furthermore, another reason why certain UGS types are not
considered as such, is due to limited understanding of them [127]. If we acknowledge, that
LULC maps are the most common data sources to perform various urban analyses, their
precision might directly impact decisions made based on them.

11.1.1 Towards a Urban Green Space Ontology

Numerous attempts have been made to establish a common typology of UGSs. However,
this commonality is limited only to the topic of interest. Thus, UGS typologies are de-
veloped to serve specific purposes. For instance, Degerickx et al. [37] propose a green
typology that highlights the services provided by these spaces, Bell et al. [15] suggest
a typology of UGSs suitable for hedonic house price estimation, and Cvejić et al. [35]
develop a typology to understand the functional linkages between UGSs and ecosystem
services as well as biodiversity.
Purpose-oriented typologies are useful for highlighting specific features within a domain
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that might otherwise be overlooked. Yet, no such typology exists for enhancing hu-
man well-being, making the development of a common classification framework essential.
Without this, new typologies are continually proposed, however none of which cover all
relevant UGSs comprehensively. Therefore, we consider geographic information ontologies
as a reasonable solution for avoiding yet another typology or classification.
Ontologies provide a structured framework that enhances information sharing and col-
laboration by defining domain-specific terminology. They capture key meanings within a
domain and promote semantic consistency across various systems [139]. Therefore, in this
work, we propose developing a UGS ontology rather than a typology. Effective ontolo-
gies should include the core vocabulary of the domain but also be capable of extension
[58]. This feature of ontologies eliminates the need to create a new UGS classification
from scratch each time, allowing for adjustments based on specific needs. In contrast,
typologies do not aim to define core, universal concepts, and terms can vary based on ap-
plications, for example "riverbank green" and "linear green" can be used interchangeably.
Moreover, unlike typologies, ontologies are formalized into a machine-understandable for-
mat, which simplifies access to the structure of the UGS ontology for various applications
without the need to provide the same information repeatedly.
In order to define a common UGS vocabulary, we explore existing UGS typologies and
identify the most commonly occurring UGS classes. We also add classes that may ap-
pear in one typology but not in another, yet still represent a relevant and distinguishable
UGS class. Our domain ontology consists of 7 classes including forest, park, grassland,
cemetery, urban agriculture, green corridor, and amenity, each further subdivided into
corresponding hierarchical subclasses. From these, only forest, park, and grassland are
commonly represented in LULC maps. Urban agriculture, referred to as intensive crop
production sites in and around cities, is never marked as UGS in existing maps. Never-
theless, there are many subclasses that represent a significant amount of green and are
proven beneficial for human well-being.
As an example, we define allotment gardens as a subclass of urban agriculture. Our
analysis reveals that in Augsburg they encompass almost one km2 of green, whereas in
Wuerzburg nearly 0.7 km2. Furthermore, green corridors also do not appear as a subclass
of UGSs. Yet, in almost every city such linear green spaces exist. Only in Wuerzburg,
based on our analysis, green corridors encompass nearly 17 km2 of green, which consti-
tutes about 40% of total green spaces. Consequently, we consider the proposed ontology
an important tool that can help to name different types of green spaces, but also helps
to estimate the actual green space status of cities. Furthermore, this ontology is adapted
to UGSs in southern German cities. Yet, if applied to a different geographic area, it can
be extended. For instance, one could add mangroves if the analysis is performed in a
Southeast-Asian city. This will not change the structure of the ontology, but rather make
it more complete for different geographic locations.
Defining classes and subclasses of UGSs is only one part of the proposed ontology. What
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makes this ontology distinguishable from typologies, is that it also provides object prop-
erty specifications. There are examples of attempts to perform ontology-based classifica-
tion of RS data [7]. While existing RS data classification approaches focus on numeric
data, ontologies integrate symbolic knowledge (e.g., "Forest" has "HighNPP" or "High-
NDVI" values) with numeric thresholds to enhance knowledge representation and sharing
[23]. Consequently, the object property, that we attach to the UGS ontology, supports
exactly that knowledge representation with additional numeric information. Since our
overall goal is UGS mapping, we define geometry, texture, position, and thematic prop-
erties of UGSs. This could further hold values for e.g., texture metrics, form, height, and
others. Moreover, the properties can be extended as well in order to more accurately
describe UGSs in certain locations.

11.1.2 Integrating Semantic Characteristics

To enrich the proposed ontology with very specific, green space relevant, object properties,
we perform four UGS mapping studies. We choose forests, allotments, green corridors,
and peri-urban agriculture from our ontology as example green spaces. These, apart
from being underrepresented in LULC maps, also exhibit additional characteristics such
as temporal dynamics, heterogeneousness, and in some cases small size. In the existing
literature, there are not many examples of finding exact thresholds for certain UGS char-
acteristics. Our analysis exhibits that it is indeed extremely challenging to establish one
single threshold for a certain property which would remain consistent over different spatial
locations. For example, we explore the height property of trees in a forest. The threshold
we derive based on the samples in Augsburg shows that the height ranges between 70
centimeters to nearly 29 meters. However, we do not acquire as accurate results when
these values are transferred to another city. In contrast, NDVI values of summer months
of around 0.6 are in line with the existing literature [9] and clearly represent tree species in
forests. Yet, we acquire totally different winter NDVI values as in the existing literature,
which again makes it difficult to set certain NDVI values as a crisp identifier of forests
both in summer and winter. It could, however, also be that for some properties it is simply
not possible to establish exact thresholds at all. While we expect that woody vegetation
in general constitutes to NDVI values of 0.6, this can fluctuate by weather conditions,
solar illumination, altitude, and others. At its current state, the proposed ontology, even
if formalized, cannot be directly used for ontology-based classification because we do not
populate this ontology with exact values for their properties. We see the need for these
factors to be tested in many different study areas before exact threshold values can be
fixed. Alternatively, location-specific properties can be established and applied to the
UGS ontology without the need of defining such properties uniquely for all locations and
for all circumstances.
Ontologies represent semantic information. To determine if certain green spaces have
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unique semantic characteristics, we conduct separate studies for four UGS classes. First,
we identify and describe their unique "faces" or identifiable features, that is suitable for
spatial analysis. Then, we test whether these characteristics are distinct across different
study areas.
Forest
To define selected UGSs, we heavily rely on existing literature, which is critical because
it builds upon tested methodologies. However, definitions related to green spaces can be
too vague for direct implementation in spatial analysis. For example, the FAO definition
of a forest suggests that forest canopy coverage should exceed 10%, or have the potential
to meet these criteria in situ. This highlights the importance of an area’s natural capacity
to support a forest ecosystem under local environmental conditions, without the need for
human-driven restoration or alteration. While calculating canopy coverage is feasible, in-
corporating in situ predictions adds a layer of complexity. This process not only requires
high-quality data but also local knowledge about the forest regeneration potential in spe-
cific areas. Such conditions might vary significantly not just from region to region, but
also from city to city, complicating the development of a universally applicable method-
ology. Consequently, we select semantic features of forests that might not include all the
required criteria by FAO, yet are better suited for spatial analysis. However, to prove
that the selected features are adequate, we validate our results using TN forest data.
Our results illustrate that some semantic features, validated through OAT SA, provide
consistent results in both locations, while others demonstrate varying degrees of effec-
tiveness. Specifically, our analysis shows that the height data (nDSM) and the NDVI
values are highly influential across both study areas, confirming their robustness and
transferability. However, the textural dissimilarity indices, especially those derived dur-
ing the leaf-off season in December, are less consistent between the two study areas. In
Wuerzburg, these indices do not perform as effectively as in Augsburg, possibly due to
different forest compositions or phenological patterns influenced by the local climate and
ecological conditions.
Consequently, semantic criteria, which include the presence of tree species, minimum area
requirements, tree height, and absence of agricultural or urban LU, among others, are
indeed very forest-specific and identifiable using nDSM, NDVI, and TN datasets in both
cities. However, some characteristics such as the pattern of tree distribution and proxim-
ity to non-forest areas (e.g., agricultural lands) pose challenges in certain cases, indicating
that while the semantic definitions are generally specific, it would be beneficial to adjust
them based on local ecological and geographical variations.
Allotment
When defining semantic criteria for allotments, we face several challenges. The concept of
allotments is clear, and there is even a national law on allotments in Germany. Yet, these
mostly describe regulations concerning the use of allotments. Therefore, we utilize the
concepts defined within the legislative framework but also include visual observation in-
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puts. In contrast to forests, no global definition of allotment gardens exists. Historically,
they developed differently in every part of the world, in Europe being an act of coun-
teracting post-war famine [43][52]. Thus, we acknowledge from the beginning that the
semantic features of allotments we select are specific to southern Germany. Our feature
extraction approach centers around garden sheds as primary indicators, but also considers
other features like shed presence, size, height, clustering, and their relationship with other
landscape elements such as path networks and proximity to major roads and water bodies.
Reflecting on the defined criteria and analyzing the outcomes of our studies, the results
confirm that using defined criteria, it is possible with considerable accuracy, to identify
allotment gardens in Augsburg. However, the experiment also reveals the variability in
the transferability of these features to different areas.
The height thresholds established from the Augsburg data (between 1.93 and 2.62 meters)
are somewhat effective in Wuerzburg. Yet there are also discrepancies in accuracy and
the prevalence of false positives. Moreover, our results also reveal challenges in meeting
one of our key criteria - the presence of path networks. A significant number of the allot-
ment gardens identified in each test does not have intersecting paths, despite this being
an essential feature in our allotment definition. Here, we do not observe limitations of
selected semantic features, but rather limitations in the utilized datasets to confirm the
semantic features. Although selected semantic features of allotment gardens are specific
enough to facilitate effective mapping, they still require careful adjustment and validation
when applied to different urban settings.
Peri-urban Agriculture
PUA represents a type of "productive" green space primarily characterized as a transi-
tional zone from urban to rural. Due to lower population densities and fewer infrastruc-
tural developments, these areas are also seen as not fully "urban" [109]. Similar to forests,
the FAO provides a global definition of PUA, referring to it as the practice of cultivat-
ing food within city limits. Unlike allotments, where food can also be grown, PUA is a
more intensive food production system2. We characterize PUA by its near-rectangular
plot structures delineated by distinct boundaries, low within-field heterogeneity with a
single crop type dominating, and observable phenological changes throughout the growing
season. Additionally, consistent spatial patterns and the presence of agricultural infras-
tructure are key indicators. To test the derived semantic criteria, we perform a change
detection approach, setting a threshold to recognize changes in vegetation cover. This
analysis is enhanced by incorporating texture metrics that help to refine our identifica-
tion based on the distinct textural properties of agricultural fields, especially during the
leaf-off season. The height data derived from nDSM further refines our ability to differen-
tiate between various types of vegetation and confirm the agricultural use of the identified
plots.
However, here we also encounter challenges in aligning all identified PUA plots with the

2https://www.fao.org/unfao/bodies/coag/coag15/x0076e.htm (accessed on 01.2025)

https://www.fao.org/unfao/bodies/coag/coag15/x0076e.htm
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full range of semantic characteristics. For instance, while a significant number of plots
closely matches the near-rectangular shape criteria, fewer plots show the expected proxim-
ity to roads or other specified boundaries. Additionally, selected change thresholds might
be too sensitive to the smallest changes, thus overestimating overall temporal changes.
This suggests that while the overall semantic model is effective, certain aspects such
as spatial relationships may require adjustments. Moreover, we observe a good level of
transferability between two cities, indicating that the selected semantic characteristics are
specific and effective. Yet, we again highlight the necessity for local calibration, especially
in terms of infrastructure elements and plot arrangements, which may differ significantly
between regions.
Green Corridors
Defining semantic characteristics and mapping green corridors is the most challenging
among the selected UGSs due to the limited availability of ground truth data. While
some ground truth data exists to prove the robustness of the defined criteria to a certain
extent, green corridors have never been mapped for the selected study areas, leaving no
data for validation. Moreover, green corridors designed for human mobility in cities are
rare, as they commonly serve biodiversity objectives, aiming to connect green areas frag-
mented by urbanization. We base our green corridor definition on Moreno et al. [102],
but modify it to better represent green corridors in our areas of interest. Our semantic
characteristics for green corridors include defining corridors as connectors of core green
areas, which must be at least 2 hectares in size, have more than 30% tree coverage, and
be spaced no more than 2 kilometers apart. Additionally, we categorize corridors by their
association with transport routes like main roads, paths, railways, and water bodies such
as riverbanks and lakes. At a more detailed level, there should be at least 0.1 hectares of
green space per every 100 meters. We establish a non-typical list of core areas compared
to existing literature. While parks and forests are the most common green spaces in cities,
we also consider allotments, grasslands, botanical gardens, zoos, crop fields, cemeteries,
and even children’s playgrounds as core areas. These spaces not only provide shelter for
animals and serve as anchor points for ecological corridors, but are also actively used by
people for their relaxing properties.
Based on our established workflow, we observe that in urban centers and along railway
segments, the amount of green is often insufficient to qualify as corridors, leading to gaps
in connectivity. This is particularly evident in central Wuerzburg, where urban density
reduces the continuity of green corridors. Additionally, we experience variations due to
insufficient vegetation between selected corridor types. While path and water body corri-
dors generally meet selected criteria well and demonstrate higher connectivity, road and
railway corridors often do not. Urban infrastructure is identified as another probable
cause of disconnectedness, along with vegetation quantity. We do not perform a transfer-
ability analysis of green corridors because the semantic criteria primarily originate from
existing literature and are thus the same for both study areas. The selected semantic



Synthesis 169

characteristics prove to be good identifiers of green corridors, especially for human mobil-
ity. Nevertheless, we find that 0.1 hectares of green vegetation per 100 meters is relatively
low, particularly for wider primary roads and railroads. To confirm this, the proposed
workflow must be tested in more study areas.
By undertaking knowledge-based mapping, we are able to confirm that selected UGS
types indeed possess unique characteristics that make them distinguishable and identi-
fiable within complex urban environments. Looking ahead, the precision in identifying
these green space types could be optimized by modifying several aspects. Firstly, ac-
quiring more comprehensive datasets that better represent green spaces. This includes
utilizing measurements of temporal vegetation height or incorporating Sentinel-2 datasets
spanning multiple years. Since currently no better sources for validation datasets are
available apart from TN, manually creating such a dataset could be an alternative way
to go. Secondly, revisiting the results of performed analyses and enhancing the feature
properties in the ontology could be advantageous. We acknowledge that our ontology is
currently incomplete in a sense that it is not directly applicable for ontology-based map-
ping. However, we do not perform further analysis to complete ontological properties.
Nonetheless, through repeated applications of the mapping procedures in various spatial
contexts and consistently updating stable feature properties in the ontology, its utility
can be significantly enhanced. This iterative refinement can ensure that the proposed
ontology becomes genuinely useful, rather than being just another forgotten framework.
Consequently, taking into consideration these two points could be a starting point for
possible future research in the field.

11.2 Technical Implementation

The importance and challenges of the technical implementation within our analysis evolves
around several key aspects of data and methods, which are generally applicable across all
identified UGS types.
Data
Regardless of the type of green space we aim to identify, spatial, temporal, and spectral
resolution emerge as the main determining factors. This is, however, already known in
the existing literature [127]. Sun et al. [133] note that UGSs can be effectively mapped
using data with resolutions as fine as two meters and up to 16 meters, beyond which
effectiveness diminishes. However, Huang et al. [66] state that adequate results can be
achieved even with a 30 meter resolution if a sub-pixel approach is taken. These studies
generally focus on large common green spaces and do not provide an elaborated discussion
of classification rates per UGS classes. We perform green space mapping using Sentinel-2
data, with visible and NIR bands having 10 meter resolution, which literature confirms
is within a suitable range for green space mapping. Nevertheless, we derive two major
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outcomes from using this dataset. Firstly, it is suitable for mapping green spaces that are
large enough to be accurately captured with a 10 meter resolution, such as forests, crop
fields, and grasslands. Secondly, given the resolution is suitable in terms of processing
time intensity; even if the analysis is performed for two cities as well as temporal bands
and vegetation indices are used, the data processing time remains under 24 hours. How-
ever, we identify a major disadvantage of using Sentinel-2 data for green space mapping.
Vegetation in areas like allotments or front- and backyard gardens cannot be identified
precisely, because within a 10 by 10 meters area, there could be a tree crown, part of
a garden shed, pavement, and a crop plot. Since the reflectance of all these objects is
different, it is challenging to pinpoint a spectral signature in such small areas. The res-
olution of Sentinel-2 data also appears to be inadequate for recognizing single trees at
street level. It could be that by adopting the sub-pixel approach of Huang et al. [66], it
would be possible to extract more detail from mixed pixels. Alternatively, it is fair to say
that a 10 meter resolution is only suitable for mapping large homogeneous UGSs. For
other green spaces, which do not form a continuous green surface and are heterogeneous,
different data sources should be used, if available.
In the existing literature, e.g., Haase et al. [63] and Huerta et al. [67] explore capabil-
ities of very high-resolution data in capturing detailed green space characteristics that
are often overlooked by coarser satellite imagery. Therefore, we also test a very high-
resolution DOP dataset. We observe that this dataset can identify urban green within
all the UGS classes defined in our ontology, especially those that Sentinel-2 failed to
identify. DOP with 20 centimeters resolution is capable of not only identifying green or
non-green areas but also allows for precise delineation of tree crowns. This is true for
both homogeneous forest areas and street level vegetation, where single standing trees are
present. It also proves useful in areas where tree shadows appear very similar to some dark
green vegetation. However, the major drawback of using this dataset is the processing
time. Performing straightforward binary classification of green/non-green areas requires
over 24 hours in Augsburg. In Wuerzburg, this number is slightly lower since the area
of Wuerzburg is smaller than that of Augsburg. Consequently, based on our results, we
understand that the choice of data resolution should be in accordance with the question
of interest. If the aim is to map large green areas like forests, cemeteries, or parks, or if
the exact delineation of green space boundaries is not of relevance, then Sentinel-2 data
is a better choice. However, if the focus is to exactly delineate every type of green space,
or to delineate only trees or sparse vegetation in gardening areas, then a DOP with 20
centimeters resolution could be a more suitable choice.
Green vegetation, unlike other objects on the earth’s surface, has distinguishing spectral
characteristics. Chlorophyll in the leaves absorbs blue and red light, while the mesophyll
leaf structure scatters NIR [151]. Therefore, utilizing vegetation indices that highlight
these characteristics can be beneficial for vegetation detection. Many studies use NDVI
alongside the spectral bands to maximize information gain [37][104]. However, to calculate
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vegetation indices, especially NDVI, NIR or other non-visible spectral bands are required.
Sentinel-2 provides a wide range of spectral bands, but only red, green, blue, and NIR
bands have 10 meters resolution. Our analysis of urban green mapping illustrates that
NDVI is indeed a key predictor variable. There are, however, other vegetation indices that
could help highlight, for example, water stress in plants or reduce soil background effects
in reflectance values. Based on the results of our analysis, including those vegetation
indices might not necessarily improve the outcomes. If a 10 meter resolution is already
too low for some green spaces, using bands with 20 or 60 meters resolution, which are
needed for other indices, might deteriorate the results even more.
A disadvantage of using DOP is that it only contains visible light information. Agapiou
[3] illustrates that indices like GLI and NGRDI, derived from the basic RGB bands, can
effectively differentiate various forms of vegetation. Based on our analysis, we can state
that GLI is one of the most influential predictors of green vegetation. Therefore, we can
confirm that even though DOP offers limited spectral resolution, using the GLI index can
produce much better results than Sentinel-2 data, which has many more spectral bands.
Apart from the reflective and absorption properties of green vegetation, in the temper-
ate climate zone they also exhibit phenological changes. This is particularly true for
herbaceous and deciduous vegetation. Vegetation in both study areas comprises a mix
of deciduous and coniferous types, so some seasonal changes in plant appearance are
expected. Therefore, temporal data is critical for capturing phenological changes that
can significantly influence the classification accuracy of UGSs [1]. We utilize temporal
Sentinel-2 data for several purposes: to improve classification gain when mapping overall
green spaces, and to map forests as well as PUA. We observe that the use of multi-
temporal NDVI effectively captures seasonal dynamics of vegetation, and therefore, even
with lower spatial resolution, it can identify a majority of green spaces. Moreover, tempo-
ral Sentinel-2 datasets appear to be the key identifier of agricultural fields in the case of
PUA analysis. Through the use of change detection approaches, we are able to accurately
establish which areas illustrate vegetation change at least three times per year. The DOP
dataset does not provide seasonal information. Its acquisition is costly and therefore is
commonly done only once per year.
The temporal factor of the utilized datasets extends beyond DOP and Sentinel-2 data.
In all our studies, we use vegetation height as a semantic indicator. Utilizing Airborne
Lidar datasets in conjunction with NDVI and spectral bands has proven advantageous
for vegetation delineation [37]. However, point cloud datasets can be very expensive to
acquire. Therefore, we opt for the more cost-effective nDSM dataset. By using DTM
and DSM models, nDSM represents the height of objects above the ground. As a result,
nDSM is used more often for vegetation detection than Lidar data [10][83]. Nevertheless,
we observe that nDSM, due to its limited temporal resolution, can be more of a limiting
than an improving factor. For instance, when performing forest identification, nDSM ap-
pears to be a key parameter that helps to distinguish between forests and crop fields. In



Synthesis 172

contrast, when mapping crop fields, we observe that some fields are incorrectly eliminated
due to the height factor. This should not have been the case, but the height information
from a single date fails to recognize this. Consequently, we see here an improvement
potential for all the performed analyses, to include temporal nDSM and DOP datasets.
Availability of datasets is another significant decision factor, alongside resolution. The
Sentinel-2 dataset is freely available and can be utilized at no cost. In Bavaria, the DOP
dataset is also freely available and can be acquired in 40 and 20 centimeters resolutions.
However, nDSM is not a readily available product. We calculate it using DTM and DSM
datasets. While DTM is available at a 1 meter resolution for free, DSM is not free of
charge at the time of performing the practical analysis. The free availability of selected
datasets is crucial for conducting transferability analysis. We were able to perform this
analysis for two study areas because we acquired the DSM dataset. However, for future
knowledge-based mapping efforts, the availability of these selected datasets could become
a limitation that should be considered in advance.
Validation of results is an essential step in mapping procedures. We utilize the TN dataset
for validation purposes; however, due to inherent inaccuracies within the TN dataset and
its failure to recognize some UGSs as green areas, we achieve only partial validation of
our findings. Consequently, enhancing the accuracy of validation datasets or utilizing
alternative validation methods, such as through DL applications, could provide deeper
insights into the final results.
Methods
Besides data resolution, it is crucial to consider the methods used or applicable for such
datasets. ML methods are increasingly utilized for mapping UGSs, due to their capac-
ity to handle large datasets and complex classification tasks. RF and SVM are two of
the most popular choices for their robustness and accuracy in classifying LULC types
in general [75][27]. Another established approach for such tasks is geoOBIA [18]. We
chose to use RF in combination with Sentinel-2 and DOP data, as it has proven to be
very promising in achieving good classification outcomes [147]. Availability of training
and validation data is a primary requirement for assessing the quality of a classification.
We collect these manually, as there are currently no accurate training datasets available
for the study areas. Looking at the results and processing steps, we can also confirm
that RF is a suitable ML method for urban green detection. However, we observe that
in the followed set up, RF does not require building more than 500 trees to achieve very
accurate results. This suggests that the classification task we perform is relatively simple
and straightforward. Especially when using DOP data, where only values between 0 and
255 are possible, RF does not require many trees to learn the green space pattern. Here,
the use of the RF model can be argued. However, in previous research, we also test a
simple rule-based classification approach [69]. Although we generally reach good results
for mapping forests, we find this approach not very suitable for transferability analysis.
Contrary, RF trained using training data from one study area, can be utilized for other
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geographic contexts. Therefore, we find the RF model superior to other techniques, espe-
cially under consideration of transparency in ML mapping procedures.
To eliminate the possibility of over-fitting, where the model learns the data instead of
the pattern, we assess OOB accuracies. These clearly indicate that the RF model is not
over-fitting. To further prove that the model can recognize green areas under new circum-
stances, we apply models trained in Augsburg to predict green vegetation in Wuerzburg.
When using Sentinel-2 data and the RF model from Augsburg, we classify 9 km2 more
green space in Wuerzburg than if we were to train the model directly with data from
Wuerzburg. However, using the DOP and RF model, we identify nearly 8 km2 more
green space than with the model trained in Wuerzburg. Given that Sentinel-2 generally
fails to adequately identify all green spaces, 9 km2 of over-prediction is actually a high
number. What the DOP and RF model combination fails to recognize are tree shadows,
especially in forests. Consequently, we confirm that our model is not over-fitting, but we
also establish that for more accurate transfer-learning results, models should be trained
with training data from the study area of application.
Additional Techniques
In addition to the RF model, we face challenges with many of the techniques we use.
For instance, GLCM matrices prove sensitive to gray levels in different study areas, ne-
cessitating further exploration of their parameters. Similarly, clustering of garden sheds
and defining optimal cluster parameters is similar to the challenges observed with GLCM.
We select clustering parameters based on available evidence. For example, the minimum
number of clusters for shed clustering is set based on our knowledge of the number of plots
in the smallest allotment garden in both cities. However, the distance between sheds is
measured in some sample gardening areas. Consequently, when discussing quality of the
derived semantic features and their transferability to other cities, it is important to con-
sider that it may not be the features themselves, but rather the parameter settings in
intermediate steps that affect the final outcome.
From the methodological perspective, the provided ontology at its current state does not
support ontology-based mapping procedures. We formally conceptualize it by presenting
it in OWL language through the Protégé software. This means, that it is already in a
machine-comprehendible form. Nevertheless, we do not populate feature properties that
can be used for mapping actions. Therefore, we see a tremendous need for reapplication
of the proposed method, so that the feature properties can be confirmed and entered
into our ontology. By exploring only two study areas and the minimum adequate list of
semantic features, the ontology-based mapping goal is out-of-scope of this thesis.
In addition, our ontology contains seven UGS types, four of which we detect in this thesis.
The proposed knowledge-based mapping can be applied to the other three classes as well.
For this, existing regulations and definitions of these UGS types need to be examined and
relevant semantic information should be extracted. Especially identifying types that are
not recognized as green space, the majority of which appears under the agricultural and
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amenity class, is crucial for human well-being as well as for sustainable city development
under climate change.
The techniques and results presented in this work serve as valuable references for urban
planners and decision makers. Our experience and insights confirm that this approach
is not only promising but also a useful supplementary tool for both understanding and
managing UGSs.

11.3 Answer to the Research Questions

Hereafter, based on the performed analysis we answer our research questions. Further-
more, here we also address our hypotheses.

RQ 1: To what extent is it possible to develop a unified vocabulary for
urban green spaces to form the basis of an ontology that facilitates

domain-standardized knowledge sharing?

Many UGS typologies exist, but they do not always overlap because they are developed
for various use cases. When these classes are combined, a large variety of UGS vocabulary
can be created. However, regional differences may appear, as the type of green spaces
is closely related to climatic and soil conditions. Therefore, based on our synthesis of
existing typologies, we can state that it is possible to develop a common vocabulary for a
domain-specific ontology. Its span is however limited to southern Germany. Nevertheless,
the ontology we provide aligns with the requirements for ontology development, meaning
it can easily be extended, if needed, to different spatial locations.

RQ 2: What unique spatial semantic characteristics of forests, allotments,
peri-urban agriculture, and green corridors can be derived to assist their

identification?

We examine four types of UGSs and develop their unique spatial semantic characteristics.
These types include forests, allotment gardens, PUA, and green corridors. Below, we will
detail the semantic characteristics we use for their identification.
A forest is defined primarily by its vegetation, consisting of tree species that cover areas
larger than 0.5 hectares and typically exceed 5 meters in height. These areas must not
overlap with other LUs such as agriculture or urban environments. Forests may also in-
clude younger tree populations that have not yet reached the expected heights but are
anticipated to do so. Additionally, these spaces might temporarily lack trees; however,
natural regeneration is expected within five years. The definition specifically excludes
agricultural production systems like olive orchards or vineyards, as well as woody vege-
tation patterns such as scattered trees, tree lines, or hedges, to distinguish forests from
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agricultural or ornamental landscapes. Forests are also not located adjacent to railway
paths. Moreover, areas covered with linear tree formations such as windbreaks and shel-
terbelts are considered as part of forests if they cover an area greater than 0.5 hectares
and are wider than 20 meters.
An allotment garden is characterized by specific structural and locational features that
support its designation and functionality. Each allotment garden is defined by the pres-
ence of garden sheds, with every allotment containing at least one shed. These sheds
are restricted in size to not exceed 24 square meters and have a maximum height of 3.5
meters. Organizationally, an allotment should feature a cluster of at least five garden
sheds, indicating the presence of minimum five separate allotment plots within the gar-
den. The allotments are designed with a network of intersecting paths to facilitate access
and mobility within the area, enhancing the functionality of the space. Locationally, al-
lotment gardens are typically situated away from major roads but are often found close
to railroads and/or water bodies.
PUA is a unique type of UGSs that integrates agricultural productivity within an ur-
ban environment. The plot structures in PUA areas are predominantly near-rectangular
or regularly shaped, usually demarcated by clear and precise boundaries such as roads,
hedges, or irrigation channels. Within these plots, there is very low heterogeneity, as
typically only one type of crop dominates each field. PUA exhibits distinct phenological
changes throughout the growing season, which are essential for crop management. For
annual crops, these stages include seedling emergence, full plant growth, and harvest,
while permanent crops go through phases such as flowering, fruiting, and subsequent
harvest cycles. Spatially, PUA is characterized by consistent patterns, such as evenly
spaced planting rows or uniform planting densities. Additional distinctive features of
PUA include the presence of agricultural infrastructure, such as irrigation systems, farm
buildings, machinery tracks, and access roads.
Green corridors function as networks that enhance connectivity between larger green
spaces, referred to as core areas, within urban landscapes. These corridors primarily
serve to link core areas that are each at least 2 hectares in size and substantially vege-
tated, with tree coverage exceeding 30%. Furthermore, the distance between any two core
areas does not exceed 2 kilometers. Green corridors manifest in various forms, including
green transport and green water body types. The green transport type includes main road
corridors, path road corridors, and railway green corridors. Green water body corridors
encompass those along riverbanks and around lakes. To qualify as green corridors, every
100 meter segment of the network must encompass more than 0.1 hectares of vegetation.

• H1: Integrating the unique spatial semantic characteristics of urban green spaces
into existing mapping methodologies enhances the effective identification of these
spaces within urban areas.

To be able to prove this hypothesis we perform four studies, where we combine semantic



Synthesis 176

characteristics with the existing methods. While the selected semantic characteristics help
to enhance one or another aspect during the identification process, these do not result in
a 100% identification accuracy. Therefore, we establish that the selected characteristics
are useful for highlighting certain aspects of green spaces that otherwise would be lost or
ignored if traditional mapping procedures are used. Nevertheless, they do no allow very
precise identification without a need of further improvement. Therefore, we reject this
hypothesis.

• H2: The selected spatial semantic characteristics remain consistent across different
spatial locations.

We test selected semantic characteristics in two cities, Augsburg and Wuerzburg. We
identify that some of the selected features are consistent in both cities. These are mostly
structural characteristics like shed or vegetation height, form of fields and others. How-
ever, semantic features that describe the vegetation itself or dataset, frequently failed dur-
ing the transferability analysis. For instance NDVI values, texture metrics, and phenology
are highly location, weather condition and acquisition time sensitive. Consequently, we re-
ject this hypothesis, as selected semantic characteristics are not consistent through spatial
locations.

• H3: Utilizing freely available high-resolution Sentinel-2 imagery provides a compa-
rable level of accuracy in identifying urban green spaces’ coverage as does using
freely available very-high resolution aerial imagery.

To prove this hypothesis, we perform a comparative study of green space mapping using
Sentinel-2 data and DOP data. If we consider all the green spaces that appear in our on-
tology, then we observe substantial differences in the classification results. DOP provides
much higher definition of green spaces, thus the produced product has higher level of de-
tail. This is particularly relevant in areas where only scattered trees appear, like sidewalks
or allotments. Sentinel-2 data fails to represent such fine information. Although, using
Sentinel-2 it is possible to acquire good detection results of larger and more homogeneous
green spaces. While we are only partially able to validate the results, it still allows us to
conclude that Sentinel-2 and DOP data provide different classification outcomes. Thus,
we reject this hypothesis.
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Conclusions and Outlook

Today there are more people living in cities than ever before. In bustling urban centers,
UGSs provide unique opportunities for human well-being. Allowing cognitive restoration,
reducing stress-induced adverse health effects, enhancing mental productivity, providing
areas for recreation, physical activity, and social interaction are only fractions of services
provided by UGSs. However, we identify that there is no universal agreement of what
types of UGSs exist. Due to the persistent trend of exploration of large homogeneous green
areas, smaller or fragmented green areas are frequently overlooked. Underrepresentation
or exclusion of some types of UGSs is frequently connected either to their size or to our
limited understanding of them. Yet, by excluding such green spaces from spatial analysis,
we are missing on a considerable amount of green that exists in cites. Moreover, methods
for their identification can vary depending on the type of UGS. However, current trends
in UGS mapping predominantly implement machine or deep learning techniques. These
methods achieve good identification outcomes. Nevertheless, they are highly cost-intensive
and difficult to interpret. To overcome discussed issues, in this thesis, we propose two
solutions and use conceptual and applied examples to illustrate their feasibility.

12.0.1 Urban Green Space Ontology

Types of UGSs are commonly organized in typologies. However, in order to organize
UGS types, we propose a UGS ontology. By doing so, we also seek an answer to our first
research question that asks to what extent it is possible to develop a unified vocabulary
for UGSs to form the basis of an ontology that facilitates domain-standardized knowledge
sharing.
Unlike typologies, ontologies are extendable and usable by machines due to their formal-
ization. We further enrich the UGS ontology though object properties. These properties
contain descriptive information, such as height, distance, that can be used to uniquely
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identify various UGS types. However, our analysis indicate that it is not easy to establish
crisp feature ranges that could be applicable at various spatial locations. While we are ca-
pable to identify ranges of values for some features, others are nearly impossible to narrow
down. For instance, NDVI values of around 0.6 can accurately describe woody vegeta-
tion. This is stated in the existing literature, and is also confirmed throughout our forest
identification procedure. Yet, other properties, such as texture metrics are highly image
quality dependent and their values are extremely challenging to transfer to new study
areas. In contrast, non-numeric features, such as presence of sheds and path networks in
allotments, can be accurately identified and confirmed, as well as can be fixed within the
ontology. Consequently, our study confirms the possibility of developing a unified vocab-
ulary for a domain-specific ontology to facilitate standardized knowledge sharing among
UGSs. Moreover, our ontology also allows for organizing UGS classes into a common
hierarchy. Through the definition of seven main UGS types and 28 sub-types, we capture
all possible UGS types southern German cities can accommodate. These classes, defined
under consideration of human well-being, consider not only common large UGSs, but also
commonly neglected smaller green spaces. The ontology we develop is adaptable and can
be extended to different geographical locations, though initially it is tailored for southern
Germany. However, the difficulty of establishing crisp properties makes this ontology not
yet ready for ontology-based classifications.

12.0.2 Knowledge-Based Mapping of Urban Green Spaces

Given the underrepresentation of some UGS types is related to our limited understanding
of them, we recognize machine and deep learning approaches for UGSs mapping as poorly
suitable due to their limited interpretability. In this regard, we propose knowledge-based
mapping of UGSs. Through performing this novel green space identification procedure, we
also aim to find answers to our second research question, namely what unique spatial se-
mantic characteristics of UGSs can be derived to assist their identification. This approach
considers first understanding the semantics of various types of green spaces. We achieve
this by exploring existing official definitions as well as investigating legal regulations. We
then extract spatial-semantic characteristics that we further use for their identification.
To establish to what extent the proposed identification approach is suitable, we test it in
a new study area.
In this thesis, we identify four types of green spaces, namely forests, allotments, peri-
urban agriculture, and green corridors. Overall, we determine, that some of the defined
semantic characteristics are specific enough to effectively map selected green space types.
Parameters such as tree height and NDVI are examples of transferable parameters across
two study areas. For most of the other features like texture measures, we experience a
need for adjustments to improve their specificity and applicability in varying geographic
contexts. Moreover, from a parameter definition perspective, we also experience some
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limitations. As such, the definition of sensitivity thresholds, or spatial proximity thresh-
olds influences final identification results. Therefore, we see a need for adjustments in
spatial relationships and sensitivity settings to ensure the criteria are fully applicable and
effective in various urban contexts.
Our findings emphasize a need for a flexible application of selected semantic criteria. This
means, that during semantic feature selection process in new study areas, it should always
be accounted for regional differences, because these differences can significantly affect the
identification accuracy. An example of such accountability could be considering different
crop production and harvest cycles or temporal precipitation fluctuations. In addition,
investigating local regulations can further help to refine semantic characteristics. For in-
stance, height of sheds in allotments, or minimum and maximum height of trees in forests
could be locally regulated. Therefore, identifying such fixed features can diminish vague-
ness in threshold selection and increase final mapping accuracy.
Semantic-feature based mapping, in our experience, can be time intensive, especially when
considering that the required feature sets as well as tailored spatial datasets must be
created beforehand. Furthermore, it requires different techniques to identify different se-
mantic features. Consequently, incorporating more traditional, e.g. geoOBIA techniques
might reduce some intermediate steps. The availability of pre-calculated datasets, such
as nDSM, NDVI, could also facilitate cutting down the processing costs. Consequently,
in terms of the research question, we do identify various semantic characteristics for all
four selected UGS types. However, their applicability in other regions requires further
investigation.
In order to be able to communicate how much green is stored within various UGS types,
we perform an RF-based classification procedure. Here we also explore to what extend the
spatial, spectral, and temporal resolution of datasets affect final classification accuracy.
While there are suggestions in the existing literature, there are no precise definitions as
at what scale of the datasets which types of UGSs can be mapped. We identify, that the
choice of datasets should be based on the final goal. We establish, that DOP provides
the most accurate results, in comparison to Sentinel-2 datasets. This is especially evident
across heterogeneous and small green space types. However, it requires much higher pro-
cessing capabilities and is extremely cost intensive. In contrast, Sentinel-2 can achieve
similarly good results, but only for large homogeneous green spaces. Consequently, if the
final goal of analysis is to identify large green space types, like forests, then Sentinel-2
can be a more suitable solution. Yet, if the goal is to explore the vegetation composition
of e.g. allotments, a DOP with 20 centimeters spatial resolution can more adequately
represent green areas. In addition, if seasonal changes are unique characteristics of UGS
types, then DOP images can fall short. Nevertheless, this limitation can be compensated
using additional datasets, such as vegetation height.
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12.0.3 Results of Hypothesis Tests

In this thesis, we test three hypotheses. We first test whether integrating the unique spa-
tial semantic characteristics of UGSs into existing mapping methodologies enhances the
effective identification of these spaces within urban areas. In this work, we observe mixed
results. While some characteristics enhance the identification process of UGS, they do not
achieve 100% identification accuracy and require further refinement. Consequently, this
hypothesis is rejected, indicating the need for improvements in how these characteristics
are implemented within mapping methodologies. We further test our second hypothesis
stating that the selected spatial semantic characteristics remain consistent across different
spatial locations. Testing in Augsburg and Wuerzburg reveals that structural characteris-
tics like vegetation height and form remain consistent, but other semantic features related
to the vegetation itself show variability due to location-specific factors like climate and
acquisition time. This leads to the rejection of this hypothesis, suggesting that seman-
tic features need to be adaptable to local conditions for effective transferability. Finally,
our third hypothesis states that utilizing freely available high-resolution Sentinel-2 im-
agery provides a comparable level of accuracy in identifying UGS coverage as does using
freely available very-high resolution aerial imagery. However, our comparative study of
green space mapping with Sentinel-2 and high-resolution DOP imagery indicates signif-
icant differences in classification results. DOP provides more detailed identification of
green spaces, particularly in complex urban settings with scattered trees and smaller
green patches. Sentinel-2, while effective for larger, more homogeneous green spaces, does
not match DOP in detail. This hypothesis is therefore also rejected, underscoring the
limitations of freely available high-resolution satellite imagery for detailed green space
mapping.

12.0.4 Contributions

This thesis represents a significant advancement in GIScience, starting with its demon-
stration of the critical importance of establishing a common vocabulary for UGSs. Our
work successfully develops and introduces a comprehensive UGS ontology and sets a
foundational framework for further exploration. Furthermore, we provide and showcase
an approach for organizing UGS classes that has not been attempted previously. By doing
so, we illustrate that UGS classes can vary depending on spatial locations and thus require
organizational techniques that allow for modifications and adjustments. Additionally, by
establishing the UGS ontology, we demonstrate how UGS features could be organized and
associated to enable machine-aided detection of these spaces in the future.
We significantly advance the field by demonstrating the effective utilization of unique
semantic characteristics of UGSs to enhance their identification. Our research reveals
that existing definitions of UGSs are not immediately suitable for identification purposes.
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However, with minor modifications, these definitions can facilitate the extraction of se-
mantic information and improve the detection of these spaces. We show that forests can
be precisely identified using area and height information, as well as spatial relationships
to other land uses, such as agricultural areas and railroads. Allotment gardens, with
their distinctive features including the presence of sheds, their area and height, and a
network of intersecting paths, also offer unique characteristics that aid in their detection.
Additionally, PUA can be characterized and identified through phenological vegetation
changes, within-field textural variability, and field shape. Finally, green corridors are dis-
tinguishable by their linear shape, the presence of 0.1 hectares of vegetation every 100
meters, and their role in connecting large green areas.
This study takes an innovative step by integrating traditional geoinformatics tools with
modern machine learning techniques within our identification workflows, thereby enrich-
ing the methodological toolkit available for UGS mapping. Moreover, by testing our
methodological approaches in two distinct study areas, this thesis not only contributes
to the GIScience community but also significantly impacts the domain of UGSs. These
tests confirm the essential role of methodological testing and validation, ensuring that our
contributions are both practical and theoretically robust. Through the established UGS
identification approach, we open new dimensions for leveraging existing analytical tools
as well as enhancing their utility in the dynamic field of UGS mapping.

12.0.5 Future Research

Results of this thesis might concern city planners as well as decision makers at various
scales, because it can equip them with a robust, knowledge-based mapping tool that en-
ables more effective monitoring and management of UGSs. With this approach, planners
can proactively oversee developments within these areas and implement necessary changes
in a timely manner. Nevertheless, this study also opens up several avenues for further re-
search. Future investigations should aim to refine the feature parameters of our ontology
to ensure its applicability across broader regions. This step is essential for the ontology
to reach its full potential in supporting ontology-aided identification of UGSs. Moreover,
the spatial-semantic features developed here must undergo extensive testing in various
regions to validate their effectiveness and adaptability. Beyond mere testing, there is a
pressing need to explore and define new semantic features that more accurately describe
the evolving dynamics of UGSs. Identifying and integrating such features will be pivotal
in enhancing the livability and relevance of the proposed UGS ontology, ultimately rein-
forcing its utility in urban planning and development.
From a practical standpoint, optimizing parameter settings and enhancing the quality
and quantity of training data for the RF model represents a crucial advancement. Such
refinements are essential for developing more precise and transferable models. In our tests,
the transfer model utilizing RF does not perform as anticipated, highlighting the need
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for further development in this area. By focusing on improving transfer models, we can
achieve more spatially generalizable models, which in turn will significantly lower both
production and implementation costs. Additionally, conducting a comprehensive SA on
all selected semantic features will greatly enhance the reliability of our approach. Fu-
ture efforts should therefore include detailed sensitivity analyses across all features, and
more rigorous testing of defined threshold values. This will also facilitate more accurate
knowledge sharing, and will not only refine our current methodologies but also set a new
standard for precision in the field.
We have undertaken a thorough and comprehensive analysis of UGSs, acknowledging their
vital role in enhancing human well-being. Given their significant impact, it is crucial that
our findings are carefully assessed from the lenses of urban planning and strategic decision-
making. Such an evaluation is crucial to ensure that our insights and recommendations
can drive transformative changes in urban planning practices across selected study ar-
eas. This research serves as a foundation upon which future urban environments can be
designed to be more sustainable and resilient to serve well-being.
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