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A SIMPLE COLLOCATION-TYPE APPROACH TO NUMERICAL
STOCHASTIC HOMOGENIZATION\ast 

MORITZ HAUCK\dagger , HANNAH MOHR\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} DANIEL PETERSEIM\ddagger \S 

Abstract. This paper proposes a novel collocation-type numerical stochastic homogenization
method for prototypical stochastic homogenization problems with random coefficient fields of small
correlation lengths. The presented method is based on a recently introduced localization technique
that enforces a super-exponential decay of the basis functions relative to the underlying coarse mesh,
resulting in considerable computational savings during the sampling phase. More generally, the
collocation-type structure offers a particularly simple and computationally efficient construction in
the stochastic setting with minimized communication between the patches where the basis functions
of the method are computed. An error analysis that bridges numerical homogenization and the
quantitative theory of stochastic homogenization is performed. In a series of numerical experiments,
we study the effect of the correlation length and the discretization parameters on the approximation
quality of the method.

Key words. numerical homogenization, stochastic homogenization, super-localization, quanti-
tative theory, error estimates, uncertainty
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1. Introduction. This paper presents a novel numerical stochastic homogeniza-
tion method for the prototypical random diffusion problem

 - div(\bfitA \nabla \bfitu ) = f

subject to homogeneous Dirichlet boundary conditions. Microscopic features of the
problem are encapsulated in the random diffusion coefficient \bfitA . In this paper, we are
particularly interested in coefficients with small correlation lengths.

For deterministic coefficients, numerical homogenization techniques have been
studied extensively in the last decades. For recent monographs and reviews on this
topic, we refer to [CEH23, BLB23, AHP21, MP20, OS19]. The random case has not
received similar attention. However, there are several numerical approaches. Let us
mention, for example, MsFEM-based numerical stochastic homogenization methods
that assume so-called weakly random coefficients; see [ACB+11] for an overview. A
popular approach to approximate the effective coefficient in stochastic homogeniza-
tion is the so-called representative volume element (RVE) method. Its theoretical
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NUMERICAL STOCHASTIC HOMOGENIZATION 375

analysis was first achieved in [Glo12] in the discrete random setting and generalized
in [GNO14, GN16, GH16]; see also the works [BP04, CELS15, Mou18, Fis19, KKO20].
Closely related to the present work is the numerical stochastic homogenization method
proposed and analyzed in [GP19, FGP21]. This method is based on the localized or-
thogonal decomposition (LOD) introduced in [MP14, HP13]; see also [MP20, AHP21]
for an overview. More precisely, using a reformulation of the LOD for deterministic
problems based on a quasi-local discrete integral operator, as discussed in [GP17], one
can derive an effective model of the problem at hand by taking the expectation. This
effective model is deterministic, and its solution gives an accurate coarse scale approx-
imation to the expected value of the solution. However, the method is strongly tied to
linear finite elements on simplicial meshes (with piecewise constant gradients), which
seems to be an artificial limitation and practically unfavorable, especially since struc-
tured deterministic and random diffusion coefficients are often based on Cartesian
meshes.

In addition to this technical shortcoming, the localization technique underlying
the LOD framework has recently been improved, evolving into the super-localized
orthogonal decomposition (SLOD) introduced in [HP22b] (see also [FHP24, BHP24,
BFP24, FHKP23, HM24]). While the LOD has exponentially decaying basis functions
that lead to an exponentially decaying localization error with respect to the diameter
of the basis supports relative to the underlying mesh, the localization error of the
SLOD actually decays super-exponentially; cf. [HP22b]. This results in smaller local
fine-scale problems when computing the basis functions and increased sparsity for a
given tolerance.

In this paper, we propose a computationally simple and efficient numerical sto-
chastic homogenization method based on a special collocation-type formulation of the
SLOD. This collocation-type formulation leads to a coarse stiffness-type matrix that
can be assembled without any communication between the basis functions defined
on the patches of the coarse mesh. This allows each patch to be considered sepa-
rately for sampling, allowing for improved parallelization and a significant speed-up
of the method's assembly process. Furthermore, the favorable localization properties
of the SLOD allow for a computationally efficient sampling procedure. In the case
of a random diffusion coefficient with a small correlation length and under standard
assumptions of quantitative stochastic homogenization, this paper provides an error
estimate for the coarse scale approximation of the proposed method, where certain
SLOD-specific quantities contribute in an a posteriori manner. The proof of this error
estimate is based on the theory of quantitative stochastic homogenization; see, e.g.,
[GO11, GO12, GNO14, GNO20]. Classical LOD techniques [MP14, HP13, AHP21]
are used to further evaluate these SLOD-specific quantities, and a worst-case a pri-
ori error analysis is conducted for one of them. Several numerical experiments are
performed to quantitatively study the effect of the correlation length and other dis-
cretization parameters on the accuracy of the approximation.

This manuscript is structured as follows. First, in section 2 we state the model
problem in weak form. Then, in section 3, we introduce the novel numerical stochastic
homogenization method. An a posteriori error analysis of the method is performed in
section 4. Section 5 derives a worst-case estimate for the quantity appearing in the a
posteriori error bound. Practical aspects of implementation are addressed in section
6. Finally, section 7 provides numerical experiments that underline the theoretical
results of this paper.
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376 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

2. Model problem. We consider the model problem\Biggl\{ 
 - div(\bfitA (\omega )(x)\nabla \bfitu (\omega )(x)) = f(x), x\in D

\bfitu (\omega )(x) = 0, x\in \partial D

\Biggr\} 
for almost all \omega \in \Omega ,(2.1)

where (\Omega ,\scrF ,\BbbP ) denotes the underlying probability space, f \in L2(D) is a determin-
istic right-hand side, and D is a d-dimensional bounded Lipschitz polytope with
d \in \{ 1,2,3\} . Without loss of generality, we assume that D is scaled to unit size.
Suppose that \bfitA is an \BbbR d\times d-valued pointwise symmetric Bochner measurable func-
tion, which is uniformly elliptic and bounded, i.e., there exist 0 < \alpha \leq \beta < \infty such
that for almost all \omega \in \Omega 

\alpha | \xi | 2 \leq \langle \xi ,\bfitA (\omega )(x)\xi \rangle \leq \beta | \xi | 2(2.2)

holds for all \xi \in \BbbR d and almost all x \in \BbbR d, where \langle \cdot , \cdot \rangle denotes the Euclidean inner
product of \BbbR d and | \cdot | its induced norm. Note that the above symmetry assumption
on \bfitA is made for the sake of simplicity. In fact, we expect that the construction of
the proposed method and the corresponding proofs can be easily generalized to the
nonsymmetric case.

The weak formulation of the model problem (2.1) seeks an H1
0 (D)-valued random

field \bfitu such that for almost all \omega \in \Omega it holds that

\bfita \omega (\bfitu (\omega ), v) := (\bfitA (\omega )\nabla \bfitu (\omega ) , \nabla v)L2(D) = (f , v)L2(D) for all v \in H1
0 (D).(2.3)

Here, (\cdot , \cdot )L2(D) denotes the inner product on L2(D) or (L2(D))d.
Subsequently, we introduce a shorthand notation for norms and inner products of

Bochner spaces. Let X be a Hilbert space equipped with the inner product (\cdot , \cdot )X . In
this case, the Bochner space L2(\Omega ;X), denoting the space of X-valued random fields
with finite second moments, is also a Hilbert space with the inner product

(\bfitv ,\bfitw )L2(\Omega ;X) :=\BbbE 
\bigl[ 
(\bfitv (\omega ),\bfitw (\omega ))X

\bigr] 
.

We write \| \cdot \| 2L2(\Omega ;X) := (\cdot , \cdot )L2(\Omega ;X) for the induced norm of this inner product.
Under the given assumptions, the bilinear from \bfita \omega depends continuously on \bfitA 

and, in particular, is measurable as a function of \omega . Hence, the above problem can
be reformulated in the Hilbert space L2(\Omega ;H1

0 (D)). The Lax--Milgram theorem then
proves its well-posedness, i.e., there exists a unique solution \bfitu \in L2(\Omega ;H1

0 (D)) satis-
fying

\| \nabla \bfitu \| L2(\Omega ;L2(D)) \leq \alpha  - 1C\mathrm{F}\| f\| L2(D),(2.4)

where \| \cdot \| L2(D) denotes the L2(D)-norm and CF is the Friedrichs constant of D.

3. Numerical stochastic homogenization method. The construction of the
novel stochastic homogenization method is based on ideas of the SLOD introduced in
[HP22b]. In the deterministic setting, the SLOD identifies an almost local basis of the
space obtained by applying the solution operator to \BbbP 0(\scrT H), the space of piecewise
constants with respect to some coarse mesh \scrT H of the domain D. This is achieved by
identifying piecewise constant right-hand sides supported on patches of the mesh \scrT H
such that their responses under the corresponding localized solution operator have a
minimal conormal derivative. These localized responses are then used as the basis
functions of the SLOD. In the stochastic setting, an adaptation of this approach is
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NUMERICAL STOCHASTIC HOMOGENIZATION 377

required, which involves identifying deterministic local source terms such that the
conormal derivative of the localized responses is small in expectation.

In the following we assume that the considered family of meshes \{ \scrT H\} H is quasi-
uniform and consists of meshes with closed, convex, and shape-regular elements. The
parameter H > 0 specifies the maximal element diameter of the mesh \scrT H . We denote
by \Pi H :L2(D)\rightarrow \BbbP 0(\scrT H) the L2-orthogonal projection onto \BbbP 0(\scrT H). Let us also give
a precise definition of the concept of patches with respect to \scrT H . The first-order patch
\sansN (S) =\sansN 1(S) of S \subset D, where S is a union of elements of \scrT H , is defined by

\sansN 1(S) :=
\bigcup 

\{ T \in \scrT H : T \cap S \not = \emptyset \} .

For any \ell = 2,3,4, . . . , the \ell th-order patch \sansN \ell (T ) of T is then given recursively by

\sansN \ell (T ) :=\sansN 1(\sansN \ell  - 1(T )).(3.1)

The following derivation of the basis functions considers a fixed element T \in \scrT H
and oversampling parameter \ell \in \BbbN , where we assume that the patch DT := \sansN \ell (T )
does not coincide with the whole domain. We denote the deterministic source term
corresponding to T by gT \in \BbbP 0(\scrT H,DT

) with the submesh \scrT H,DT
:= \{ K \in \scrT H : K \subset 

DT \} . Note that in the following we do not distinguish between locally defined L2- or
H1

0 -functions and their extensions by zero to the whole domain. The global response
\bfitvarphi T \in L2(\Omega ;H1

0 (D)) to gT is then defined for almost all \omega \in \Omega by

\bfita \omega (\bfitvarphi T (\omega ), v) = (gT , v)L2(D) for all v \in H1
0 (D).(3.2)

Its localized version \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T \in L2(\Omega ;H1

0 (DT )) is for almost all \omega \in \Omega defined by

\bfita \omega (\bfitvarphi 
\mathrm{l}\mathrm{o}\mathrm{c}
T (\omega ), v) = (gT , v)L2(DT ) for all v \in H1

0 (DT ).(3.3)

From now on, the dependence of stochastic variables is only indicated by a bold
symbol for better readability.

To define the conormal derivative of the localized basis function \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T , we need to

introduce some preliminaries on traces and extensions. We denote by H1
\Gamma (DT ) the

complete subspace of H1(DT ) consisting of functions with trace zero at the boundary
segment \Gamma := \partial DT \cap \partial D. Furthermore, let

tr :H1
\Gamma (DT )\rightarrow X := imtr\subset H1/2(\partial DT )

denote the classical trace operator restricted to H1
\Gamma (DT ). As an extension oper-

ator, we henceforth consider the \bfitA -harmonic extension operator tr - 1 : L2(\Omega ;X) \rightarrow 
L2(\Omega ;H1

\Gamma (DT )) defined as follows: For almost all \omega \in \Omega and for any given \bfitb \in L2(\Omega ;X),
we set (trtr - 1\bfitb )(\omega ) = \bfitb (\omega ) and demand that

\bfita (tr - 1\bfitb , v) = 0 for all v \in H1
0 (DT ).(3.4)

The space of locally \bfitA -harmonic functions satisfying homogeneous Dirichlet boundary
conditions on \Gamma can then be defined as

\bfitY := tr - 1L2(\Omega ;X)\subset L2(\Omega ;H1
\Gamma (DT )).

For more details on trace and extension operators we refer, e.g., to [LM72].
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378 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

Combining (3.3) and (3.4) yields for almost all \omega \in \Omega and all \bfitv \in L2(\Omega ;H1
0 (D))

the identity

\bfita (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,\bfitv ) = \bfita (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,\bfitv  - tr - 1tr\bfitv ) = (gT ,\bfitv  - tr - 1tr\bfitv )L2(DT ),

where we used that (\bfitv  - tr - 1tr\bfitv )| DT
\in L2(\Omega ;H1

0 (DT )). With this identity, the defi-
nition of \bfitvarphi T in (3.2), and supp gT \subset DT , it follows that

\bfita (\bfitvarphi T  - \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,\bfitv ) = (gT ,\bfitv )L2(DT )  - \bfita (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,\bfitv ) = (gT , tr
 - 1tr\bfitv )L2(DT ).

Taking the expectation, we obtain for any \bfitv \in L2(\Omega ;H1
0 (D)) that

\BbbE 
\bigl[ 
\bfita (\bfitvarphi T  - \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,\bfitv )
\bigr] 
=\BbbE 

\bigl[ 
(gT , tr

 - 1tr\bfitv )L2(DT )

\bigr] 
=
\bigl( 
gT ,\Pi H,DT

\BbbE [tr - 1tr\bfitv ]
\bigr) 
L2(DT )

.

(3.5)

As a consequence, the (almost) L2-orthogonality of gT to the space \BbbE [\bfitY ]\subset H1
\Gamma (DT )

leads to a small expected localization error for the basis function \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T .

Therefore, we can obtain an optimal choice of gT by performing a singular value
decomposition (SVD) of the compact operator (\Pi H,DT

\circ \BbbE )| \bfitY : \bfitY \rightarrow \BbbP 0(\scrT H,DT
) re-

stricted to the complete subspace Y. Note that the rank of (\Pi H,DT
\circ \BbbE )| \bfitY is less than

or equal to N :=\#\scrT H,DT
. Hence, the SVD is given by

(\Pi H,DT
\circ \BbbE )| \bfitY \bfitv =

N\sum 
k=1

\sigma k(\bfitv ,\bfitw k)L2(\Omega ;H1(DT ))gk(3.6)

with singular values \sigma 1 \geq \cdot \cdot \cdot \geq \sigma N \geq 0, L2(\Omega ;H1(DT ))-orthonormal right singular
vectors \bfitw 1, . . . ,\bfitw N , and L2(DT )-orthonormal left singular vectors g1, . . . , gN . The
choice gT = gN as the left singular vector corresponding to the smallest singular value
\sigma N is optimal in the sense that

gN \in argmin
g\in \BbbP 0(\scrT H,DT

) : \| g\| L2(DT )=1

sup
\bfitv \in \bfitY : \| \bfitv \| L2(\Omega ;H1(DT ))=1

(g,\BbbE [\bfitv ])L2(DT ).

The corresponding smallest singular value \sigma N is a measure of the (quasi-)orthogonality
between gT and \BbbE [\bfitY ]. We hence define

\sigma T (H,\varepsilon , \ell ) := \sigma N = sup
\bfitv \in \bfitY : \| \bfitv \| L2(\Omega ;H1(DT ))=1

(gN ,\BbbE [\bfitv ])L2(DT ),(3.7)

where the parameter \varepsilon > 0 denotes the correlation length of the random coefficient
\bfitA , which will be rigorously introduced in Assumption 4.1 below.

We emphasize that the practical implementation of the SVD in (3.6) is difficult
due to the stochasticity involved; for a practical implementation based on sampling,
see section 6. For the error analysis in the following section, we introduce the quantity

\sigma := \sigma (H,\varepsilon , \ell ) := max
T\in \scrT H

\sigma T (H,\varepsilon , \ell ),(3.8)

which is an indicator for the overall localization error.
Given that, in expectation, \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T closely approximates the response of the global
solution operator applied to gT , it is reasonable to define the approximation of a
non-Galerkin, collocation-type numerical stochastic homogenization method by

\=uH,\ell :=
\sum 

T\in \scrT H

cT\Pi H\BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ],(3.9)
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NUMERICAL STOCHASTIC HOMOGENIZATION 379

Fig. 3.1. Illustration of the localized basis functions \BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}] obtained by the novel stochastic
homogenization method on successively refined meshes for a piecewise constant random coefficient
with a correlation length of \varepsilon = 2 - 7 in two spatial dimensions. Various values of the oversampling
parameter are depicted with \ell = 1 (left), \ell = 2 (middle), and \ell = 3 (right). The corresponding
right-hand sides g are shown in green.

where (cT )T\in \scrT H
are the coefficients of the expansion of \Pi Hf in terms of the basis

functions \{ gT : T \in \scrT H\} . An illustration of the deterministic basis functions \BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ]

can be found in Figure 3.1. Error estimates for this method are derived in the following
sections.

4. Error analysis. In this section, we perform an error analysis of the proposed
stochastic homogenization method based on results from the theory of quantitative
stochastic homogenization. This theory requires structural conditions on the ran-
domness of the coefficient field \bfitA . For simplicity, the conditions are formulated for
coefficient fields defined on \BbbR d. Hence, the following assumptions implicitly assume
that the coefficient field is defined on the full space \BbbR d. A random field defined on
the bounded domain D can be obtained by restriction.

Assumption 4.1 (stationarity and decorrelation). Assume that the random coeffi-
cient field \bfitA is

\bullet stationary, i.e., the law of the shifted coefficient field \bfitA (\omega )(\cdot + x) coincides
with the law of \bfitA (\omega )(\cdot ) for all x\in \BbbR d,

\bullet quantitatively decorrelated on scales larger than \varepsilon in the sense of the spectral
gap inequality with correlation length \varepsilon > 0, i.e., there exists a constant
\rho > 0 such that for any Fr\'echet differentiable random variable F = F (\bfitA ) the
estimate

\BbbE 
\bigl[ 
| F  - \BbbE [F ]| 2

\bigr] 
\leq \varepsilon d

\rho 
\BbbE 

\Biggl[ \int 
\BbbR d

\biggl(  
B\varepsilon (x)

\bigm| \bigm| \bigm| \bigm| \partial F\partial \bfitA (\~x)

\bigm| \bigm| \bigm| \bigm| d\~x\biggr) 2

dx

\Biggr] 
(4.1)

holds.

For an introduction to the notion of Fr\'echet derivatives, we refer the reader ex-
emplarily to [Dei85, Chap. 2]; see also [JO22, sect. 3.1] for a definition in the present
context. We emphasize that the conditions in Assumption 4.1 on the random coef-
ficient \bfitA are standard in the theory of quantitative stochastic homogenization; see,
e.g., the work [GNO20].

The error bound presented in this section is an a posteriori bound including
the constant \sigma from (3.8) and the Riesz stability constant of the local source terms
\{ gT : T \in \scrT H\} , which quantifies their linear independence. Both constants can be
computed a posteriori as outlined in section 6. Additionally, we provide a worst-case
a priori upper bound on \sigma in section 5. Note that in a practical implementation, the
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380 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

Riesz stability of the local source terms can be ensured as outlined in section 6 or
[HP22b, App. B].

Assumption 4.2 (Riesz stability). The set \{ gT : T \in \scrT H\} is a Riesz basis of \BbbP 0(\scrT H),
i.e., there exists C\mathrm{r}\mathrm{b}(H,\ell ) > 0 such that for all possible choices of (cT )T\in \scrT H

it holds
that

C - 1
\mathrm{r}\mathrm{b} (H,\ell )

\sum 
T\in \scrT H

c2T \leq 
\bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT gT

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(D)

,

where C\mathrm{r}\mathrm{b}(H,\ell ) depends polynomially on H - 1 and \ell .

To handle the stochasticity in the error analysis, we need to estimate the variance
of the random variables (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K) for any T,K \in \scrT H , where 1K denotes the
indicator function of the element K. To achieve this, we employ the spectral gap
inequality (4.1) from Assumption 4.1. The following lemma provides a representation
of the Fr\'echet derivative of (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K), a crucial element for this particular step.

Lemma 4.3 (L2-representation of Fr\'echet derivative). Let \bfitv \in L2(\Omega ;H1
0 (DT )) for

almost all \omega \in \Omega be defined as the weak solution to\biggl\{ 
 - div(\bfitA \nabla \bfitv ) = 1K in DT ,

\bfitv = 0 on \partial DT .
(4.2)

The L2-representation of the Fr\'echet derivative of (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,1K)L2(K) is then given by

\partial 

\partial \bfitA 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K) = - \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T \otimes \nabla \bfitv ,

where \otimes :\BbbR d \times \BbbR d \rightarrow \BbbR d\times d denotes the outer product.

Proof. Let \omega \in \Omega be fixed. We rewrite the Fr\'echet derivative of (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,1K)L2(K)

with respect to L2(\BbbR d;\BbbR d\times d) as

\partial 

\partial \bfitA 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K)(\delta \bfitA ) =

\biggl( 
\partial \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T

\partial \bfitA 
(\delta \bfitA ),1K

\biggr) 
L2(K)

=

\int 
DT

(\bfitA \nabla \bfitv ) \cdot \nabla \partial \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T

\partial \bfitA 
(\delta \bfitA )dx,

where we tested the weak formulation of (4.2) with
\partial \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T

\partial \bfitA (\delta \bfitA )(\omega ) \in H1
0 (DT ). To

further simplify the expression on the right-hand side, we differentiate (3.3) with
respect to \bfitA using the product rule. This gives for any w \in H1

0 (DT ) that\int 
DT

\bigl( 
\delta \bfitA \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T

\bigr) 
\cdot \nabla w dx+

\int 
DT

\bfitA \nabla \partial \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T

\partial \bfitA 
(\delta \bfitA ) \cdot \nabla w dx= 0.

Using the test function w= \bfitv (\omega )\in H1
0 (DT ) and combining the previous two identities,

we get

\partial 

\partial \bfitA 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K)(\delta \bfitA ) = - 
\int 
DT

\bigl( 
\delta \bfitA \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T

\bigr) 
\cdot \nabla \bfitv dx.

This expression directly characterizes the L2-representation of the Fr\'echet derivative
of (\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K), and therefore yields the assertion.

Another ingredient in the error analysis is the following regularity result for the
localized basis functions. The result is needed to further estimate the term we get after
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NUMERICAL STOCHASTIC HOMOGENIZATION 381

applying the spectral gap inequality. The proof of this result relies on the condition
that the patches take the form of d-dimensional bricks; cf. Lemma A.1. This condition
can be guaranteed, for example, by considering a brick-shaped domain equipped with
a Cartesian mesh.

Remark 4.4 (tilde notation). In the following, we will write a \lesssim b or b \gtrsim a if
it holds that a \leq Cb or a \geq Cb, respectively, where C > 0 is a constant that may
depend on the domain, the shape of the elements, and the bounds \alpha ,\beta of \bfitA , but is
independent of the discretization parameters H, \ell and the variations of \bfitA .

Lemma 4.5 (L4-regularity of localized basis functions). Let \bfitA be a random coef-
ficient field subject to Assumption 4.1. Then, assuming that the patches DT take the
form of bricks, the localized basis functions \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T satisfy that

\int 
DT

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T | 2 d\~x

\Biggr) 2
\right]  dx\lesssim (\ell H)

4 - d
.

Proof. In order to apply Lemma A.1, we need to construct a function bT such
that the localized basis function \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T is the weak solution to

 - \nabla \cdot (\bfitA \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ) =\nabla \cdot bT on DT

subject to homogeneous Dirichlet boundary conditions on \partial DT . To this end, one may
choose bT :=\nabla r for r solving the Laplace problem \Delta r = gT subject to homogeneous
Dirichlet boundary conditions on \partial DT . With Lemma A.1 we then obtain that

\int 
DT

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T | 2 d\~x

\Biggr) 2
\right]  dx\lesssim | DT | 1 - 4/q

\biggl( \int 
DT

| bT | q dx
\biggr) 4/q

for any 4< q <\infty . Using standard elliptic regularity on convex domains yields that

\| \nabla bT \| L2(DT ) = \| D2r\| L2(DT ) \lesssim \| gT \| L2(DT ) = 1,

since gT is L2-normalized. Using the Cauchy--Schwarz inequality and Friedrichs' in-
equality on DT for r \in H1

0 (DT ), we get that

\| \nabla r\| 2L2(DT ) = (gT , r)L2(DT ) \leq \| gT \| L2(DT )\| r\| L2(DT ) \lesssim \ell H\| gT \| L2(DT )\| \nabla r\| L2(DT ).

With the definition of bT it follows directly that

\| bT \| L2(DT ) \lesssim \ell H\| gT \| L2(DT ) = \ell H.

Applying the Sobolev embedding (q= 6 is the critical exponent for d= 3) and a scaling
argument (the embedding constant scales with the diameter of DT ), we obtain that\int 
DT

| bT | q dx\lesssim (\ell H)d - qd/2\| bT \| qL2(DT ) + (\ell H)d+q(2 - d)/2\| \nabla bT \| qL2(DT ) \lesssim (\ell H)d+q(2 - d)/2.

Combining the previous inequalities and setting q= 5 gives the assertion.

The following theorem encapsulates the main result of this work, giving an a
posteriori error bound for the proposed numerical stochastic homogenization method.
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382 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

Theorem 4.6 (a posteriori error bound). Let \bfitA be a random coefficient field
subject to Assumption 4.1. Then, if Assumption 4.2 is satisfied, the solution (3.9) of
the proposed numerical stochastic homogenization method satisfies for any f \in L2(D)
that

\| \bfitu  - \=uH,\ell \| L2(\Omega ,L2(D)) \lesssim 
\bigl( 
H +C

1/2
\mathrm{r}\mathrm{b} (H,\ell )\ell d/2

\bigl( 
\sigma (H,\varepsilon , \ell ) + \varepsilon d/2\ell 2H(4 - d)/2

\bigr) \bigr) 
\| f\| L2(D)

with C\mathrm{r}\mathrm{b} from Assumption 4.2.

Proof. For the error analysis, we introduce the function

\bfitu H,\ell :=
\sum 

T\in \scrT H

cT\bfitvarphi 
\mathrm{l}\mathrm{o}\mathrm{c}
T ,(4.3)

where (cT )T\in \scrT H
are the coefficients of the representation of \Pi Hf in terms of the local

source terms \{ gT : T \in \scrT H\} . Using the triangle inequality, we obtain that

\| \bfitu  - \=uH,\ell \| L2(\Omega ,L2(D)) \leq \| \bfitu  - \Pi H\bfitu \| L2(\Omega ,L2(D))

+ \| \Pi H(\bfitu  - \bfitu H,\ell )\| L2(\Omega ,L2(D)) + \| \Pi H\bfitu H,\ell  - \=uH,\ell \| L2(\Omega ,L2(D))

=: \Xi 1 +\Xi 2 +\Xi 3.

In the subsequent analysis, we will estimate the terms \Xi 1, \Xi 2, and \Xi 3 separately. Prior
to this, we mention the following approximation result for \Pi H , the L2-orthogonal
projection onto \scrT H -piecewise constants: It holds that

\| v - \Pi Hv\| L2(T ) \lesssim H\| \nabla v\| L2(T ), v \in H1(T ), T \in \scrT H ;(4.4)

see, e.g., [PW60, Beb03]. For the term \Xi 1, we obtain using the approximation result
(4.4) and the stability estimate (2.4) that

\Xi 2
1 =\BbbE 

\bigl[ 
\| \bfitu  - \Pi H\bfitu \| 2L2(D)

\bigr] 
\lesssim H2\BbbE 

\bigl[ 
\| \nabla \bfitu \| 2L2(D)

\bigr] 
\lesssim H2\| f\| 2L2(D).

For estimating the term \Xi 2, we first apply the L2-stability of \Pi H and Friedrichs'
inequality. Then, following the lines of the convergence proof of the SLOD in the
deterministic setting (cf. [HP22b, Thm. 6.1]), we obtain that

\Xi 2 \leq C\mathrm{F}\| \nabla (\bfitu  - \bfitu H,\ell )\| L2(\Omega ,L2(D)) \lesssim (H +C
1/2
\mathrm{r}\mathrm{b} (H,\ell )\ell d/2\sigma (H,\varepsilon , \ell ))\| f\| L2(D).

In order to estimate term \Xi 3, we recall definitions (3.9) and (4.3) and use the
Cauchy--Schwarz inequality to obtain that

\Xi 2
3 =

\sum 
T\in \scrT H

cT \BbbE 
\Bigl[ \bigl( 
\Pi H\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T  - \Pi H\BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ],\Pi H\bfitu H,\ell  - \=uH,\ell 

\bigr) 
L2(DT )

\Bigr] 
\leq 
\sum 

T\in \scrT H

| cT | \| \Pi H\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T  - \Pi H\BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ]\| L2(\Omega ,L2(DT ))\| \Pi H\bfitu H,\ell  - \=uH,\ell \| L2(\Omega ,L2(DT )).

(4.5)

Algebraic manipulations then yield for the first term of each summand on the right-
hand side of the previous inequality that

\| \Pi H\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T  - \Pi H\BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ]\| 2L2(\Omega ,L2(DT ))

=\BbbE 

\Biggl[ \int 
DT

\Biggl( \sum 
K\subset DT

\bigl( 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K)  - \BbbE [(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,1K)L2(K)]

\bigr) 
| K|  - 11K

\Biggr) 2

dx

\Biggr] 
=
\sum 

K\subset DT

| K|  - 1 \BbbE 
\Bigl[ \bigl( 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K)  - \BbbE [(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,1K)L2(K)]

\bigr) 2\Bigr] 
.

(4.6)

Applying the spectral gap inequality (4.1) and using the L2-representation of the
Fr\'echet derivative from Lemma 4.3, we obtain that
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NUMERICAL STOCHASTIC HOMOGENIZATION 383

\BbbE 
\Bigl[ \bigl( 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K)  - \BbbE [(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,1K)L2(K)]

\bigr) 2\Bigr] 
\lesssim \varepsilon d \BbbE 

\left[  \int 
DT

\Biggl(  
B\varepsilon (x)

\bigm| \bigm| \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T \otimes \nabla \bfitv 

\bigm| \bigm| d\~x\Biggr) 2

dx

\right]  
\leq \varepsilon d

\left(  \int 
DT

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T | 2d\~x

\Biggr) 2
\right]  dx

\right)  1/2

\times 

\left(  \int 
DT

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfitv | 2d\~x

\Biggr) 2
\right]  dx

\right)  1/2

,

where we used the Cauchy--Schwarz inequality. Lemma 4.5 can be employed to bound
the first factor on the right-hand side of the preceding inequality. For estimating
the second factor, we note that problem (4.2) for \bfitv \in L2(\Omega ;H1

0 (DT )) has the same
structure as problem (3.3) for the localized basis functions. Consequently, a result
analogous to Lemma 4.5 also holds for \bfitv , leading to\int 

DT

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfitv | 2d\~x

\Biggr) 2
\right]  dx\lesssim (\ell H)4 - d\| 1K\| 4L2(DT ).

Inserting the estimates for \bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T and \bfitv , we get that

\BbbE 
\Bigl[ \bigl( 
(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ,1K)L2(K)  - \BbbE [(\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T ,1K)L2(K)]

\bigr) 2\Bigr] 
\lesssim \varepsilon d(\ell H)4 - d\| 1K\| 2L2(DT ) = \varepsilon d(\ell H)4 - d| K| .

Using this, we continue to estimate (4.6) as follows:

\| \Pi H\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}
T  - \Pi H\BbbE [\bfitvarphi \mathrm{l}\mathrm{o}\mathrm{c}

T ]\| 2L2(\Omega ,L2(DT )) \lesssim \varepsilon d\ell 4H4 - d.

Inserting this estimate into (4.5), applying the Cauchy--Schwarz inequality, recalling
the finite overlap of the patches, and utilizing Assumption 4.2, we finally obtain for
\Xi 3 that

\Xi 2
3 \lesssim \varepsilon d/2\ell 2H(4 - d)/2

\sqrt{} \sum 
T\in \scrT H

c2T

\sqrt{} \sum 
T\in \scrT H

\| \Pi H\bfitu H,\ell  - \=uH,\ell \| 2L2(\Omega ,L2(DT ))

\lesssim \varepsilon d/2\ell 2+d/2H(4 - d)/2C
1/2
\mathrm{r}\mathrm{b} (H,\ell )\| f\| L2(D)\Xi 3.

The assertion follows immediately after combining the estimates for \Xi 1, \Xi 2,
and \Xi 3.

5. Error analysis using LOD techniques. This section utilizes LOD theory
to derive an upper bound for the quantity \sigma that appears in the error estimate from
Theorem 4.6. We further estimate C\mathrm{r}\mathrm{b} for the choice of LOD basis functions made
for the upper bound on \sigma .

5.1. Localization error indicator. We first derive an upper bound for the
localization error \sigma defined in (3.8). The bound is based on the lowest-order LOD from
[Mai21, HP22a, DHM23], whose construction uses nonnegative bubbles \{ bT : T \in \scrT H\} ;
see also [FP20]. The bubble function bT \in H1

0 (T ) is chosen such that \Pi HbT = 1T and

\| bT \| L2(T ) \lesssim H\| \nabla bT \| L2(T ) \lesssim 
\sqrt{} 
| T | (5.1)
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384 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

holds. Recalling the abbreviation DT = \sansN \ell (T ) for the \ell th order patch around T (cf.
(3.1)), we introduce the space of fine-scale functions supported on DT by \scrW T,\ell :=
\{ w \in H1

0 (DT ) : \Pi H,DT
w= 0\} . The LOD basis function corresponding to the element

T \in \scrT H is then defined by

\bfitvarphi \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell := (1 - \bfscrC T,\ell )bT \in L2(\Omega ;H1

0 (DT )),(5.2)

where \bfscrC T,\ell bT \in L2(\Omega ;\scrW T,\ell ) denotes the fine-scale correction of the bubble bT , which
is defined for almost all \omega \in \Omega by

\bfita (\bfscrC T,\ell bT ,w) = \bfita (bT ,w) for all w \in \scrW T,\ell .(5.3)

Note that the well-posedness of the operator \bfscrC T,\ell is a consequence of the Lax--Milgram
theorem, recalling that \scrW T,\ell is a closed subspace of H1

0 (DT ).
In the following lemma we derive an upper bound on \sigma , based on the observation

that the LOD basis function \bfitvarphi \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell possesses a \scrT H -piecewise constant source term

\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell := - div\bfitA \nabla \bfitvarphi \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell \in L2(\Omega ;\BbbP 0(\scrT H,DT
));

see, e.g., [HP22b, Lem. A.2].

Lemma 5.1 (upper bound on \sigma ). Choosing an L2-normalized version of gT :=
\BbbE [\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ] in (3.7) yields the upper bound

\sigma \lesssim \ell 2H - 1 exp( - C\mathrm{d}\ell ) + \ell 4
\Bigl( \varepsilon 

H

\Bigr) d/2
(5.4)

with C\mathrm{d} > 0 independent of H and \ell , provided that \varepsilon satisfies the smallness assumption

\varepsilon d \lesssim \ell  - 8Hd.(5.5)

Proof. For all \bfitv \in \bfitY \subset L2(\Omega ;H1
\Gamma (DT )) it holds that \BbbE [tr - 1tr\bfitv ] =\BbbE [\bfitv ]. Hence, by

inserting gT =\BbbE [\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ] into (3.7), we obtain that

\sigma T (H,\varepsilon , \ell )\leq 1

\| gT \| L2(DT )
sup

\bfitv \in L2(\Omega ;H1
\Gamma (DT ))

\| \bfitv \| L2(\Omega ;H1(DT ))=1

(gT ,\BbbE [tr - 1tr\bfitv ])L2(DT ).

Note that by dividing by the norm of gT , we account for the fact that gT may not be
normalized. We denote by \bfscrA  - 1

T,\ell : L
2(\Omega ;L2(DT ))\rightarrow L2(\Omega ;H1

0 (DT )) the local solution
operator defined on the patch DT , which satisfies the following stability estimate:

\| \nabla \bfscrA  - 1
T,\ell \bfitg \| L2(\Omega ,L2(DT )) \lesssim \| \bfitg \| L2(\Omega ,L2(DT )).(5.6)

Therefore, we obtain for any \bfitv \in L2(\Omega ;H1
\Gamma (DT )) that

(gT ,\BbbE [tr - 1tr\bfitv ])L2(DT ) =\BbbE [(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,\bfitv )L2(DT )  - \bfita (\bfscrA  - 1

T,\ell \bfitg 
\mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,\bfitv )]

+\BbbE [(gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,\bfitv )L2(DT )  - \bfita (\bfscrA  - 1

T,\ell (gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ),\bfitv )]

=: \Xi 1 +\Xi 2.

To estimate the term \Xi 1, we apply the deterministic result [HP22b, Lem. 6.4] for
any \omega \in \Omega and use the Cauchy--Schwarz inequality to get that

\Xi 1 \lesssim H - 1 exp( - C\mathrm{d}\ell )\| \bfitv \| L2(\Omega ,H1(DT )) \| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(\Omega ,L2(DT )),
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NUMERICAL STOCHASTIC HOMOGENIZATION 385

where C\mathrm{d} > 0 is independent of H and \ell . Using the estimate

\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(\Omega ,L2(DT )) \lesssim Hd/2 - 2,(5.7)

which can be derived by taking the expectation of the corresponding deterministic
identity from [HP22b, Lem. A.2], yields that

\Xi 1 \lesssim Hd/2 - 3 exp( - C\mathrm{d}\ell )\| \bfitv \| L2(\Omega ,H1(DT )).

For the term \Xi 2, we obtain using (5.6) and the Cauchy--Schwarz inequality that

\Xi 2 \lesssim \| gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(\Omega ,L2(DT ))\| \bfitv \| L2(\Omega ,H1(DT )).

In order to estimate the first factor on the right-hand side, we proceed similarly as in
the proof of Theorem 4.6 to obtain that

\| gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| 2L2(\Omega ,L2(DT ))=

\sum 
K\subset DT

| K|  - 1 \BbbE 
\Bigl[ \bigl( 
(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ,1K)L2(K) - \BbbE 
\bigl[ 
(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ,1K)L2(K)

\bigr] \bigr) 2\Bigr] 
.

Using the spectral gap inequality (4.1), we obtain for each summand that

\BbbE 
\Bigl[ \bigl( 
(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ,1K)L2(K)  - \BbbE [(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,1K)L2(K)]

\bigr) 2\Bigr] 
\lesssim \varepsilon d \BbbE 

\biggl[ \int 
\BbbR d

\Biggl(  
B\varepsilon (x)

\bigm| \bigm| \bigm| \bigm| \bigm| \partial (\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,1K)L2(K)

\partial \bfitA 
(\~x)

\bigm| \bigm| \bigm| \bigm| \bigm| d\~x
\Biggr) 2

dx

\biggr] 
.

(5.8)

The L2-representation of the Fr\'echet derivative of (\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,1K)L2(K) is derived in

Lemma A.2. It consists of a sum of outer products of the gradients of combina-
tions of bT , bK , \bfscrC T,\ell bT , and \bfscrC T,\ell bK . To estimate the summands involving bubble
functions, we utilize the property (5.1) for all K \subset DT and derive the estimate\int 

DT

\Biggl(  
B\varepsilon (x)

| \nabla bK | 2 d\~x

\Biggr) 2

dx\lesssim Hd - 4.(5.9)

To proceed with the estimation of (5.8), we need to estimate the four terms resulting
from the summands of the Fr\'echet derivative; cf. Lemma A.2. In the following,
we present the estimate for the second term, noting that all other estimates follow
analogously. By employing the regularity result from Lemma A.3 and (5.9), we obtain
that

\BbbE 

\left[  \int 
DT

\Biggl(  
B\varepsilon (x)

| \nabla \bfscrC T,\ell bT \otimes \nabla bK | d\~x

\Biggr) 2

dx

\right]  
\leq 

\left(  \int 
DT

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfscrC T,\ell bT | 2 d\~x

\Biggr) 2
\right]  dx

\right)  1/2\left(  \int 
DT

\Biggl(  
B\varepsilon (x)

| \nabla bK | 2 d\~x

\Biggr) 2

dx

\right)  1/2

\lesssim \ell 2 - d/2Hd - 4,

where we used the Cauchy--Schwarz inequality. Note that all four terms can be ma-
jorized by \ell 4 - dHd - 4, which results from estimating the last summand. The combi-
nation of the previous estimates yields that

\| gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(\Omega ,L2(DT )) \lesssim 

\Biggl( \sum 
K\subset DT

| K|  - 1 \varepsilon d\ell 4 - dHd - 4

\Biggr) 1/2

\lesssim \varepsilon d/2\ell 2H - 2.(5.10)
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386 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

Using the estimate

\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(\Omega ,L2(DT )) \gtrsim \ell  - 2Hd/2 - 2,

which can be derived by taking the expectation of the corresponding deterministic
identity from [HP22b, Lem. A.2], we can derive the following lower bound for the
L2-norm of gT :

\| gT \| 2L2(DT ) = \| gT \| 2L2(\Omega ,L2(DT ))

\geq 1

2
\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell \| 2L2(\Omega ,L2(DT ))  - \| gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| 2L2(\Omega ,L2(DT ))

\gtrsim 
1

2
\ell  - 4Hd - 4  - \ell 4H - 4\varepsilon d \gtrsim \ell  - 4Hd - 4.

(5.11)

Here, we used the reverse triangle inequality, the weighted Young's inequality for
showing that for a, b \geq 0 it holds that | a  - b| 2 \geq a2

2  - b2, as well as the smallness
assumption (5.5). Finally, combining all estimates leads to

\sigma T \lesssim 
1

\| gT \| L2(DT )

\bigl( 
Hd/2 - 3 exp( - C\mathrm{d}\ell ) + \ell 2H - 2\varepsilon d/2

\bigr) 
\lesssim \ell 2H - 1 exp( - C\mathrm{d}\ell ) + \ell 4

\Bigl( \varepsilon 

H

\Bigr) d/2
.

The assertion follows directly when taking the maximum over all T \in \scrT H .

Combining this a priori result for \sigma with Theorem 4.6 yields the error estimate
given in the following corollary. The Riesz constant C\mathrm{r}\mathrm{b} can be computed a posteriori;
cf. section 6.

Corollary 5.2 (combined error bound). Suppose that the assumptions of The-
orem 4.6 and Lemma 5.1 are fulfilled and that \ell \gtrsim | logH| holds. Then, the solution
(3.9) of the proposed numerical stochastic homogenization method satisfies, for any
f \in L2(D), that

\| \bfitu  - \=uH,\ell \| L2(\Omega ,L2(D)) \lesssim 
\Bigl( 
H +C

1/2
\mathrm{r}\mathrm{b} (H,\ell )\ell 4+d/2

\Bigl( \varepsilon 

H

\Bigr) d/2 \Bigr) 
\| f\| L2(D).

5.2. Riesz stability. In a next step, we show that the local source terms corre-
sponding to the LOD basis functions (5.2) are Riesz stable in the sense of Assump-
tion 4.2.

Lemma 5.3 (Riesz stability of LOD source terms). Suppose that \ell is chosen such
that \ell \gtrsim | log(H)| and that \varepsilon satisfies the smallness assumption

\varepsilon d \lesssim \ell  - (8+d)H4+d.(5.12)

Then, for the local source terms gT =\BbbE [\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ] it holds for all (cT )T\in \scrT H

that

H4
\sum 

T\in \scrT H

c2T \lesssim 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT
gT

\| gT \| L2(DT )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(D)

.(5.13)

Proof. We begin the proof by noting that applying the weighted Young inequality
twice gives the elementary estimate | a - b - c| 2 \geq 1

4 | a| 
2  - | b| 2  - | c| 2 for any a, b, c\geq 0.

Combining this with the inverse triangle inequality, we obtain that
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NUMERICAL STOCHASTIC HOMOGENIZATION 387\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT
gT

\| gT \| L2(DT )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(D)

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT
gT

\| gT \| L2(DT )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega ,L2(D))

\geq 1

4

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT
\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell 

\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(DT )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega ,L2(D))

 - 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT
gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell 

\| gT \| L2(DT )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega ,L2(D))

 - 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT

\biggl( 
\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell 

\| gT \| L2(DT )
 - 

\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell 

\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(DT )

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega ,L2(D))

=:
1

4
\Xi 1  - \Xi 2  - \Xi 3.

For estimating the term \Xi 1 from below, we use the corresponding deterministic result
from [HP22b, Lem. 6.4] and take the expectation, which yields that

\Xi 1 \gtrsim H4
\sum 

T\in \scrT H

c2T .

To estimate the term \Xi 2 from above, we use the finite overlap of the patches DT as
well as estimates (5.10) and (5.11) to get that

\Xi 2 \lesssim \ell 4+dH4 - d
\sum 

T\in \scrT H

c2T \| gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| 2L2(\Omega ,L2(DT )) \lesssim \ell 8+d\varepsilon dH - d

\sum 
T\in \scrT H

c2T .

The estimate for \Xi 3 can be derived similarly using again the finite overlap of the
patches DT , the reverse triangle inequality, (5.10), and (5.11). We obtain that

\Xi 3 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
T\in \scrT H

cT
\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell (\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell \| L2(DT )  - \| gT \| L2(DT ))

\| gT \| L2(DT )\| \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell \| L2(DT )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega ,L2(D))

\lesssim \ell d
\sum 

T\in \scrT H

c2T \BbbE 

\Biggl[ 
\| gT  - \bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell \| 2L2(DT )

\| gT \| 2L2(DT )

\Biggr] 
\lesssim \ell 8+d\varepsilon dH - d

\sum 
T\in \scrT H

c2T .

Combining the previous estimates and using the smallness assumption (5.12) yields
the assertion.

6. Practical implementation. To effectively implement the proposed numer-
ical stochastic homogenization method, it is crucial to employ an efficient sampling
strategy for the space \bfitY and ensure that the local source terms \{ gT : T \in \scrT H\} 
form a stable basis of \BbbP 0(\scrT H). These aspects will be addressed in the following two
subsections.

6.1. Sampling of the space \bfitY . We consider an arbitrary patch DT and denote
the number of coarse elements in this patch by N := \#\scrT H,DT

. In a practical imple-
mentation, all local infinite-dimensional problems that appear in the derivation of the
basis functions must be replaced by finite-dimensional counterparts. To obtain these
finite-dimensional counterparts, we perform a discretization using the \scrQ 1-finite ele-
ment method with respect to the fine mesh \scrT h,DT

constructed by uniform refinements
of \scrT H,DT

. The number of elements of \scrT h,DT
is denoted by n.

To handle the stochasticity in the definition of \bfitY , our implementation draws
M samples of the random coefficient \bfitA and, for each sample, closely follows the
methodology outlined in [HP22b, App. B] for the deterministic case. Specifically,
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388 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

we generate a matrix Si \in \BbbR n\times m for i = 1, . . . ,M , whose columns represent the
coordinate vectors of the discrete \bfitA (\omega i)-harmonic extensions of m \in \BbbN samples of
random boundary data on \partial DT \setminus \partial D. Then we compute the matrices Pi \in \BbbR N\times m by
applying the L2-orthogonal projection onto the characteristic functions \{ 1K : K \in 
\scrT H,DT

\} column by column to Si. Finally, the SVD of the matrix X := [P1, . . . ,PM ]
is computed, yielding coordinate vectors of potential right-hand sides gT . For details
on the practical realization of this SVD, we refer to [HP22b, App. B]. Finally, the
localized deterministic basis functions are computed as empirical means, again using
M samples of the random coefficient. In the numerical experiments performed in
section 7, the number of random boundary samples is set to m= 3N . For the number
of random coefficient samples, we use M = 5000.

6.2. Stable local source terms. Next, we discuss how the stability of the
local source terms \{ gT : T \in \scrT H\} can be ensured in a practical implementation. Our
implementation achieves stability by an additional optimization step, similar to the
one used in [BFP24]. Given the singular values \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma N \geq 0 of the matrix
X associated with the patch DT , we consider all indices 1\leq i\leq N such that

\sigma i

\sigma 1
\leq max

\Bigl\{ \Bigl( \sigma N

\sigma 1

\Bigr) 1/p
,10 - 10

\Bigr\} 
and denote the resulting set of indices by \scrI . Each index in the set \scrI corresponds to
a potential candidate for a local source term. For the choice p= 1 only the smallest
singular value is considered. Since our optimization problem is meaningful whenever
multiple functions are considered, we restrict ourselves to the choices p > 1.

Among these candidate functions, we choose the one that maximizes a weighted
L2(DT )-norm under the unit mass constraint. The weighted L2(DT )-norm is defined
using a piecewise constant weighting function that is zero in the central element T
and grows polynomially as the distance from the center increases. This enforces a
concentration of mass in the center of each patch, resulting in linearly independent
local source terms \{ gT : T \in \scrT H\} in practice. More specifically, we introduce the
distance function dist(T,K) between the elements T,K \in \scrT H as

dist(T,K) :=H - 1| mK  - mT | \in \BbbN d,

where mT ,mK \in \BbbR d are the midpoints of the elements T and K, respectively. The
weighting function is then defined for each element K \in \scrT H,DT

as

wT (K) :=
\bigm| \bigm| dist(T,K)

\bigm| \bigm| r
\infty 

for a parameter r\geq 1, where | \cdot | \infty denotes the infinity norm on \BbbR d. Figure 6.1 provides
an illustration of this weighting function in two spatial dimensions. In our numerical
experiments in section 7, we use p= 1.5 and r= 6.

Remark 6.1 (computation of C\mathrm{r}\mathrm{b}). Given the local source terms \{ gTi
: i =

1, . . . ,\#\scrT H\} , the Riesz stability constant C\mathrm{r}\mathrm{b} appearing in Corollary 5.2 equals the
reciprocal of the smallest eigenvalue of the matrix G\in \BbbR \#\scrT H\times \#\scrT H with entries given
by Gij = (gTi , gTj )L2(D).

Remark 6.2 (uniform Cartesian meshes). Note that in the case of uniform Carte-
sian meshes, the computational complexity of the method can be significantly reduced
when utilizing the stationarity of the coefficient \bfitA ; cf. Assumption 4.1. In fact, only
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64 64 64 64 64

64 1 1 1 64

64 1 0 1 64

64 1 1 1 64

64 64 64 64 64

Fig. 6.1. Piecewise constant weighting function wT for an interior element T with \ell = 2 in two
spatial dimensions.

\scrO (\ell d) reference patches need to be considered for the computation of the basis func-
tions and local source terms of the method. All other basis functions and local source
terms can then be obtained by translation; see, e.g., [GP15].

7. Numerical experiments. The following numerical experiments are intended
to demonstrate the effectiveness of the proposed numerical homogenization method.
In our implementation, we consider uniform Cartesian meshes of the domain D =
(0,1)d with d \in \{ 1,2\} . Note that from now on we use H to denote the side length of
the elements instead of their diameter. For the solution of the local patch problems
and the computation of the reference solution \bfitu h we employ the \scrQ 1-finite element
method on the fine mesh \scrT h with h = 2 - 10. We denote by \=uH,h,\ell the fully discrete
numerical approximation to \BbbE [\bfitu ]. In the following all expected values are replaced by
appropriate empirical means.

The random coefficients \bfitA that are considered in the following numerical ex-
periments are piecewise constant with respect to the uniform Cartesian meshes \scrT \varepsilon 
with mesh sizes \varepsilon \in \{ 2 - 5,2 - 6,2 - 7,2 - 8,2 - 9\} . These coefficients take independent and
identically distributed element values in the interval [0.1,1]. We further consider the
sequence of coarse meshes \scrT H with mesh sizes H \in \{ 2 - 3,2 - 4,2 - 5,2 - 6\} . Note that
we only consider coarse mesh sizes H > \varepsilon for which the coarse mesh does not resolve
the minimal length scale of the random coefficient. We also exclude combinations
of H and \ell for which a patch coincides with the whole domain D. To calculate the
reference solution, we employ M = 5000 samples, which is consistent with the number
used for the local patch problems. The samples are obtained by a quasi--Monte Carlo
sampling strategy in one spatial dimension and a Monte Carlo sampling strategy in
two spatial dimensions.

Numerical investigation of \bfitsigma and \bfitC \bfr \bfb . We first examine the behavior of
the localization error indicator \sigma as a function of the coarse mesh size H and the
correlation length \varepsilon . For this, we consider the case d = 2 and utilize the sequences
of coarse meshes and correlation lengths mentioned above. Figure 7.1 visualizes the
values of \sigma for a fixed correlation length \varepsilon and varying mesh sizes H (left) and for
fixed H and varying \varepsilon (right). In both cases one observes a scaling like \varepsilon 

H , which
numerically validates the upper bound for \sigma from Lemma 5.1 in the case d= 2. Note
that the stochastic errors dominate, and consequently, the first term in (5.4), which
decays exponentially in \ell , is not visible. Plotting \sigma as a function of \ell would give a
scaling like \ell  - 1/2.
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Fig. 7.1. Depiction of \sigma for a \scrT \varepsilon -piecewise constant random coefficient in two spatial dimen-
sions. Left: in dependence of the coarse mesh size H for \varepsilon = 2 - 8. Right: in dependence of the
correlation length \varepsilon for H = 2 - 4.
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Fig. 7.2. Depiction of the Riesz stability constant C\mathrm{r}\mathrm{b} of the stochastic SLOD as a function of
the coarse mesh size H for a \scrT \varepsilon -piecewise constant random coefficient with \varepsilon = 2 - 8 in two spatial
dimensions.

Next we examine the behavior of the Riesz stability constant C\mathrm{r}\mathrm{b} of the local
SLOD source terms as a function of H. In Figure 7.2 we observe that C\mathrm{r}\mathrm{b} scales like
H - 4, which is consistent with the results for the stochastically averaged LOD source
terms proved in Lemma 5.3. Our numerical experiments indicate no dependency of
the Riesz stability constant on \varepsilon or \ell , which is also in line with the findings from
Lemma 5.3.

Numerical validation of convergence. To numerically verify the convergence
of the proposed numerical stochastic homogenization method, we consider the source
terms
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Fig. 7.3. Plot of the relative L2-errors \| \Pi H\bfitu h  - \=uH,h,\ell \| L2(\Omega ;L2(D)) of the proposed SLOD
method for a \scrT \varepsilon -piecewise constant random coefficient in one spatial dimension. Left: errors as
functions of the coarse mesh size H for fixed \varepsilon = 2 - 8 and several oversampling parameters \ell . Right:
errors in dependency of the correlation length \varepsilon for fixed H = 2 - 4 and several values of \ell .
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Fig. 7.4. Plot of the relative L2-errors \| \Pi H\bfitu h  - \=uH,h,\ell \| L2(\Omega ;L2(D)) of the proposed SLOD
method for a \scrT \varepsilon -piecewise constant random coefficient in two spatial dimensions. Left: errors as
functions of the coarse mesh size H for fixed \varepsilon = 2 - 8 and several oversampling parameters \ell . Right:
errors as functions of the correlation length \varepsilon for fixed H = 2 - 4 and several \ell .

f(x) = 2\pi 2 sin(x), f(x, y) = 2\pi 2 sin(x) sin(y)

in one and two spatial dimensions, respectively. Figures 7.3 and 7.4 show the resulting
relative L2-errors computed using the reference solution \bfitu h. For fixedH and varying \varepsilon 
we observe the rate \varepsilon d/2, which is in agreement with Corollary 5.2. When considering
the converse case, we have to distinguish between one and two spatial dimensions.
In one dimension, the expected negative power of H does not manifest itself, and
in our numerical experiments the error remains relatively constant with respect to H
(provided the coarse mesh is sufficiently coarse compared to \varepsilon ). In the two-dimensional
case, we observe a negative dependence on H, which is much weaker than the H - 2

predicted by Corollary 5.2. The error rather seems to scale like H - 1/3.
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392 MORITZ HAUCK, HANNAH MOHR, AND DANIEL PETERSEIM

Appendix A. Auxiliary results. The error analysis of the proposed numerical
stochastic homogenization method is based on the so-called Calderon--Zygmund esti-
mates, which are a popular tool in the theory of quantitative stochastic homogeniza-
tion. Such estimates were established for an equation on the full space \BbbR d in [DO20],
extending earlier results from [AD16, DGO20]. For annealed Calderon--Zygmund esti-
mates we refer to [JO22, WX24], where the latter work considers the case of Lipschitz
domains. Contrary to the Calderon--Zygmund estimate given below, these annealed
estimates involve only a loss in stochastic integrability and not in spatial integrability.
Since such annealed estimates only lead to better (hidden) constants in the final error
bounds, we will henceforth stick to a suboptimal Calderon--Zygmund estimate similar
to [FGP21, Lem. 4.8], where an a priori error analysis for a related numerical stochas-
tic homogenization method is performed. The proof of the following estimate, which
is beyond the scope of this manuscript, is analogous to the full-space case [DO20,
Thm. 6.1] and uses the boundary regularity theory of [FR17, JRS24] as well as a
classical regularity theory at edges and corners.

Lemma A.1 (annealed large-scale Lp regularity). Let d \in \{ 2,3\} , and let \bfitA be a
random coefficient field subject to (2.2) and Assumption 4.1. Let Q\subset \BbbR d be a box, let
\bfitb \in L2(\Omega ;L2(Q)), and let \bfitu \in L2(\Omega ;H1

0 (Q)) be a solution to the linear elliptic PDE

 - \nabla \cdot (\bfitA \nabla \bfitu ) =\nabla \cdot \bfitb on Q,

\bfitu \equiv 0 on \partial Q.

Then for any 2 \leq p < \infty and any p < q < \infty there holds a regularity estimate of the
form

 
Q

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \nabla \bfitu | 2 d\~x

\Biggr) p/2
\right]  \mathrm{d}x\leq C(\lambda ,\Lambda , \rho , p, q)

\left(   
Q

\BbbE 

\left[  \Biggl(  
B\varepsilon (x)

| \bfitb | 2 d\~x

\Biggr) q/2
\right]  \mathrm{d}x

\right)  p/q

.

In the following, we present two results used in the proof of Lemma 5.1. The
first result provides an L2-representation of the Fr\'echet derivative, which is needed
to apply the spectral gap inequality.

Lemma A.2 (Fr\'echet derivative of LOD right-hand sides). The L2-representation
of the Fr\'echet derivative of (\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ,1K)L2(K) is given by

\partial 

\partial \bfitA 
(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ,1K)L2(K) =\nabla bT \otimes \nabla bK  - \nabla \bfscrC T,\ell bT \otimes \nabla bK  - \nabla bT \otimes \nabla \bfscrC T,\ell bK

+\nabla \bfscrC T,\ell bT \otimes \nabla \bfscrC T,\ell bK .

Proof. Since \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell is piecewise constant and by the definition of \bfitvarphi \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell , we obtain
that

(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,1K)L2(K) = (\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell , bK)L2(K) = \bfita (\bfitvarphi \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell , bK) = \bfita ((1 - \bfscrC T,\ell )bT , bK).

Hence, the Fr\'echet derivative of (\bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell ,1K)L2(K) equals

\partial 

\partial \bfitA 
(\bfitg \mathrm{L}\mathrm{O}\mathrm{D}

T,\ell ,1K)L2(K)(\delta \bfitA ) =
\partial 

\partial \bfitA 
\bfita (bT , bK)(\delta \bfitA ) - \partial 

\partial \bfitA 
\bfita (\bfscrC T,\ell bT , bK)(\delta \bfitA ).

The first term is easily calculated, yielding

\partial \bfita (bT , bK)

\partial \bfitA 
(\delta \bfitA ) =

\int 
DT

\delta \bfitA \nabla bT \cdot \nabla bK dx.
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For the second term, we obtain with the product rule that

\partial \bfita (\bfscrC T,\ell bT , bK)

\partial \bfitA 
(\delta \bfitA ) =

\int 
DT

\delta \bfitA \nabla \bfscrC T,\ell bT \cdot \nabla bK dx+

\int 
DT

\bfitA \nabla \partial \bfscrC T,\ell bT
\partial \bfitA 

(\delta \bfitA ) \cdot \nabla bK dx.

Using (5.3), the fact that
\partial \bfscrC T,\ell bT

\partial \bfitA (\delta \bfitA )\in \scrW T,\ell , and the symmetry of \bfitA yields that\int 
DT

\bfitA \nabla \partial \bfscrC T,\ell bT
\partial \bfitA 

(\delta \bfitA ) \cdot \nabla bK dx=

\int 
DT

\bfitA \nabla \partial \bfscrC T,\ell bT
\partial \bfitA 

(\delta \bfitA ) \cdot \nabla \bfscrC T,\ell bK dx.(A.1)

Furthermore, by differentiating (5.3), we get for any w \in \scrW T,\ell that

\int 
DT

\delta \bfitA \nabla bT \cdot \nabla w dx=

\int 
DT

\delta \bfitA \nabla \bfscrC T,\ell bT \cdot \nabla w dx+

\int 
DT

\bfitA \nabla \partial \bfscrC T,\ell bT
\partial \bfitA 

(\delta \bfitA ) \cdot \nabla w dx.

(A.2)

Using (A.1) and (A.2) for w= \bfscrC T,\ell bK , we obtain for the Fr\'echet derivative that

\partial \bfita (\bfscrC T,\ell bT , bK)

\partial \bfitA 
(\delta \bfitA ) =

\int 
DT

\delta \bfitA \nabla \bfscrC T,\ell bT \cdot \nabla bK dx+

\int 
DT

\delta \bfitA \nabla bT \cdot \nabla \bfscrC T,\ell bK dx

 - 
\int 
DT

\delta \bfitA \nabla \bfscrC T,\ell bT \cdot \nabla \bfscrC T,\ell bK dx.

The L2-representation of the Fr\'echet derivative of \bfita (\bfscrC T,\ell bT , bK) is therefore given by

\partial 

\partial \bfitA 
\bfita (\bfscrC T,\ell bT , bK) =\nabla \bfscrC T,\ell bT \otimes \nabla bK +\nabla bT \otimes \nabla \bfscrC T,\ell bK  - \nabla \bfscrC T,\ell bT \otimes \nabla \bfscrC T,\ell bK .

The combination of the above results yields the assertion.

The following result is needed to estimate the terms appearing after applying the
spectral gap inequality in the proof of Lemma 5.1.

Lemma A.3 (L4-regularity estimate for LOD correction operators). Let \bfitA be a
random coefficient field subject to Assumption 4.1. Then, the correction of the bubble
functions \bfscrC T,\ell bT satisfies the following regularity estimate:\int 

DT

\BbbE 

\Biggl[ \biggl(  
B\varepsilon (x)

| \nabla \bfscrC T,\ell bT | 2 d\~x
\biggr) 2
\Biggr] 
dx\lesssim 

\biggl( 
\ell 

H

\biggr) 4 - d

.

Proof. First, let \omega \in \Omega be arbitrary but fixed. In order to apply Lemma A.1, we
need to establish the appropriate right-hand side, which results in the equation for
\bfscrC T,\ell bT taking the form as in Lemma A.1. Naturally, \bfscrC T,\ell bT solves, together with the
Lagrange multiplier \bfitp T,\ell , the saddle-point problem\biggl( 

\bfscrA T,\ell \scrB T

\scrB 0

\biggr) \biggl( 
\bfscrC T,\ell bT
\bfitp T,\ell 

\biggr) 
=

\biggl( 
\bfscrA T,\ell bT

0

\biggr) 
(A.3)

with the patch-local operators \bfscrA T,\ell : H1
0 (DT ) \rightarrow H - 1(DT ), u \mapsto \rightarrow  - \nabla \cdot (\bfitA \nabla u), \scrB :

H1
0 (DT )\rightarrow \BbbP 0(\scrT H,DT

), v \mapsto \rightarrow \Pi H | DT
v, and its transpose defined by \scrB T : \BbbP 0(\scrT H,DT

)\rightarrow 
H - 1(DT ), p \mapsto \rightarrow \{ v \in H1

0 (DT ) \mapsto \rightarrow 
\int 
DT

pv dx\} .
It is a direct consequence that \bfscrC T,\ell bT solves

\nabla \cdot (\bfitA \nabla \bfscrC T,\ell bT ) =\nabla \cdot (\bfitA \nabla bT ) +\scrB T\bfitp T,\ell ,
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which, for some \bfitq T,\ell \in L2(DT ), can be rewritten as

\nabla \cdot (\bfitA \nabla \bfscrC T,\ell bT ) =\nabla \cdot (\bfitA \nabla bT + \bfitq T,\ell ).

To see this, we set \bfitq T,\ell :=\nabla v, where v solves \Delta v = \bfitp T,\ell with homogeneous Dirichlet
boundary conditions in a ball of radius C\ell H, where the constant C > 0 is chosen such
that the ball contains DT .

Furthermore, the local LOD source terms satisfy \bfitg \mathrm{L}\mathrm{O}\mathrm{D}
T,\ell = \bfitp T,\ell ; see [HP22b].

Hence, using (5.7) and following the proofs of [FGP21, Lem. 4.9] and Lemma 4.5
yields that \int 

DT

| \nabla \bfitq T,\ell | 2 dx=

\int 
DT

| D2v| 2 dx\lesssim 
\int 
DT

| \bfitp T,\ell | 2 dx\lesssim Hd - 4,

as well as \| \bfitq T,\ell \| L2(DT ) \lesssim \ell H\| \bfitp T,\ell \| L2(DT ), leading to
\int 
DT

| \bfitq T,\ell | q dx\lesssim \ell d+q(2 - d)/2Hd - q.

Moreover, using \| \nabla bT \| L\infty \approx H - 1 we obtain that
\int 
T
| \bfitA \nabla bT | q dx\lesssim Hd - q. Therefore,

applying Lemma A.1 for Q=DT , p= 4 and \bfitb =\bfitA \nabla bT  - \bfitq T,\ell yields that\int 
DT

\BbbE 

\Biggl[ \biggl(  
B\varepsilon (x)

| \nabla \bfscrC T,\ell bT | 2 d\~x
\biggr) 2
\Biggr] 
dx

\lesssim | DT | (q - 4)/q

\biggl( 
\BbbE 
\biggl[ \int 

DT

| \bfitA \nabla bT | q dx+

\int 
DT

| \bfitq T,\ell | q dx
\biggr] \biggr) 4/q

\lesssim 

\biggl( 
\ell 

H

\biggr) 4 - d

,

which is the assertion.
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