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Abstract. This paper proposes a novel collocation-type numerical stochastic homogenization
method for prototypical stochastic homogenization problems with random coefficient fields of small
correlation lengths. The presented method is based on a recently introduced localization technique
that enforces a super-exponential decay of the basis functions relative to the underlying coarse mesh,
resulting in considerable computational savings during the sampling phase. More generally, the
collocation-type structure offers a particularly simple and computationally efficient construction in
the stochastic setting with minimized communication between the patches where the basis functions
of the method are computed. An error analysis that bridges numerical homogenization and the
quantitative theory of stochastic homogenization is performed. In a series of numerical experiments,
we study the effect of the correlation length and the discretization parameters on the approximation
quality of the method.
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1. Introduction. This paper presents a novel numerical stochastic homogeniza-
tion method for the prototypical random diffusion problem

—div(AVu) = f

subject to homogeneous Dirichlet boundary conditions. Microscopic features of the
problem are encapsulated in the random diffusion coefficient A. In this paper, we are
particularly interested in coefficients with small correlation lengths.

For deterministic coefficients, numerical homogenization techniques have been
studied extensively in the last decades. For recent monographs and reviews on this
topic, we refer to [CEH23, BLB23, AHP21, MP20, OS19]. The random case has not
received similar attention. However, there are several numerical approaches. Let us
mention, for example, MsFEM-based numerical stochastic homogenization methods
that assume so-called weakly random coefficients; see [ACBY11] for an overview. A
popular approach to approximate the effective coefficient in stochastic homogeniza-
tion is the so-called representative volume element (RVE) method. Its theoretical
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analysis was first achieved in [Glo12] in the discrete random setting and generalized
in [GNO14, GN16, GH16]; see also the works [BP04, CELS15, Moul8, Fis19, KKO20].
Closely related to the present work is the numerical stochastic homogenization method
proposed and analyzed in [GP19, FGP21]. This method is based on the localized or-
thogonal decomposition (LOD) introduced in [MP14, HP13]; see also [MP20, AHP21]
for an overview. More precisely, using a reformulation of the LOD for deterministic
problems based on a quasi-local discrete integral operator, as discussed in [GP17], one
can derive an effective model of the problem at hand by taking the expectation. This
effective model is deterministic, and its solution gives an accurate coarse scale approx-
imation to the expected value of the solution. However, the method is strongly tied to
linear finite elements on simplicial meshes (with piecewise constant gradients), which
seems to be an artificial limitation and practically unfavorable, especially since struc-
tured deterministic and random diffusion coefficients are often based on Cartesian
meshes.

In addition to this technical shortcoming, the localization technique underlying
the LOD framework has recently been improved, evolving into the super-localized
orthogonal decomposition (SLOD) introduced in [HP22b] (see also [FHP24, BHP24,
BFP24, FHKP23, HM24]). While the LOD has exponentially decaying basis functions
that lead to an exponentially decaying localization error with respect to the diameter
of the basis supports relative to the underlying mesh, the localization error of the
SLOD actually decays super-exponentially; cf. [HP22b]. This results in smaller local
fine-scale problems when computing the basis functions and increased sparsity for a
given tolerance.

In this paper, we propose a computationally simple and efficient numerical sto-
chastic homogenization method based on a special collocation-type formulation of the
SLOD. This collocation-type formulation leads to a coarse stiffness-type matrix that
can be assembled without any communication between the basis functions defined
on the patches of the coarse mesh. This allows each patch to be considered sepa-
rately for sampling, allowing for improved parallelization and a significant speed-up
of the method’s assembly process. Furthermore, the favorable localization properties
of the SLOD allow for a computationally efficient sampling procedure. In the case
of a random diffusion coefficient with a small correlation length and under standard
assumptions of quantitative stochastic homogenization, this paper provides an error
estimate for the coarse scale approximation of the proposed method, where certain
SLOD-specific quantities contribute in an a posteriori manner. The proof of this error
estimate is based on the theory of quantitative stochastic homogenization; see, e.g.,
[GO11, GO12, GNO14, GNO20]. Classical LOD techniques [MP14, HP13, AHP21|
are used to further evaluate these SLOD-specific quantities, and a worst-case a pri-
ori error analysis is conducted for one of them. Several numerical experiments are
performed to quantitatively study the effect of the correlation length and other dis-
cretization parameters on the accuracy of the approximation.

This manuscript is structured as follows. First, in section 2 we state the model
problem in weak form. Then, in section 3, we introduce the novel numerical stochastic
homogenization method. An a posteriori error analysis of the method is performed in
section 4. Section 5 derives a worst-case estimate for the quantity appearing in the a
posteriori error bound. Practical aspects of implementation are addressed in section
6. Finally, section 7 provides numerical experiments that underline the theoretical
results of this paper.
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2. Model problem. We consider the model problem

—div(A(w)(z)Vu(w)(z)) = f(x), xze€D
@1) { u(w)(z) =0, x €D

} for almost all w € Q,

where (Q,F,P) denotes the underlying probability space, f € L?(D) is a determin-
istic right-hand side, and D is a d-dimensional bounded Lipschitz polytope with
d € {1,2,3}. Without loss of generality, we assume that D is scaled to unit size.
Suppose that A is an R%*%-valued pointwise symmetric Bochner measurable func-
tion, which is uniformly elliptic and bounded, i.e., there exist 0 < o < 8 < oo such
that for almost all w e Q)

(2.2) alg? < (6 Aw)(x)€) < BlEP?
holds for all £ € R? and almost all x € RY, where (-,-) denotes the Euclidean inner
product of R? and | - | its induced norm. Note that the above symmetry assumption

on A is made for the sake of simplicity. In fact, we expect that the construction of
the proposed method and the corresponding proofs can be easily generalized to the
nonsymmetric case.

The weak formulation of the model problem (2.1) seeks an Hg (D)-valued random
field w such that for almost all w € Q it holds that

(2.3)  aw(u(w),v) = (Aw)Vu(w), Vv)2py=(f,v)p2p) forallve H}(D).

Here, (-, ) 2(p) denotes the inner product on L*(D) or (L*(D))%.

Subsequently, we introduce a shorthand notation for norms and inner products of
Bochner spaces. Let X be a Hilbert space equipped with the inner product (-,-)x. In
this case, the Bochner space L?(£2; X), denoting the space of X-valued random fields
with finite second moments, is also a Hilbert space with the inner product

(v,0) 205 = E[(v(w), w(w))x].

We write | - ||%2(Q;X) = (+,-)2(;x) for the induced norm of this inner product.
Under the given assumptions, the bilinear from a, depends continuously on A
and, in particular, is measurable as a function of w. Hence, the above problem can
be reformulated in the Hilbert space L?(Q; Hi(D)). The Lax-Milgram theorem then
proves its well-posedness, i.e., there exists a unique solution u € L?(Q; H}(D)) satis-

fying
(24) IVullrz@r2m)) < a™ Crllfllc2 (),
where ||+ || 2(p) denotes the L?(D)-norm and CF is the Friedrichs constant of D.

3. Numerical stochastic homogenization method. The construction of the
novel stochastic homogenization method is based on ideas of the SLOD introduced in
[HP22b)]. In the deterministic setting, the SLOD identifies an almost local basis of the
space obtained by applying the solution operator to PY(7z), the space of piecewise
constants with respect to some coarse mesh 7y of the domain D. This is achieved by
identifying piecewise constant right-hand sides supported on patches of the mesh Ty
such that their responses under the corresponding localized solution operator have a
minimal conormal derivative. These localized responses are then used as the basis
functions of the SLOD. In the stochastic setting, an adaptation of this approach is
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required, which involves identifying deterministic local source terms such that the
conormal derivative of the localized responses is small in expectation.

In the following we assume that the considered family of meshes {7} g is quasi-
uniform and consists of meshes with closed, convex, and shape-regular elements. The
parameter H > 0 specifies the maximal element diameter of the mesh Ty. We denote
by I : L?(D) — P°(Ty) the L2-orthogonal projection onto PO(7g). Let us also give
a precise definition of the concept of patches with respect to Tg. The first-order patch
N(S)=N!(S) of S C D, where S is a union of elements of Ty, is defined by

N'(S) = {T €T : TN S#0}.
For any ¢ =2,3,4,..., the fth-order patch N*(T") of T is then given recursively by
(3.1) NY(T) := NY (N H(T)).

The following derivation of the basis functions considers a fixed element T € Ty
and oversampling parameter ¢ € N, where we assume that the patch Dp := N(T)
does not coincide with the whole domain. We denote the deterministic source term
corresponding to T by gr € P*(Ty p,) with the submesh Ty p, :={K € Ty : K C
Dr}. Note that in the following we do not distinguish between locally defined L?- or
H}-functions and their extensions by zero to the whole domain. The global response
pr € L*(Q; HY (D)) to gr is then defined for almost all w € Q by

(3.2) ay(pr(w),v) = (97, v)p2(py forallve H; (D).
Its localized version ¢ € L2(Q; HY(D7)) is for almost all w € Q defined by
(3.3) a, (@R (w),v) = (97, V)r2(pyy forallve Hy(Dr).

From now on, the dependence of stochastic variables is only indicated by a bold
symbol for better readability.

To define the conormal derivative of the localized basis function (!¢, we need to
introduce some preliminaries on traces and extensions. We denote by H} (D7) the
complete subspace of H'(Dz) consisting of functions with trace zero at the boundary
segment I' := D N JD. Furthermore, let

tr: H:(Dp) — X :=imtr ¢ H/?(0Dy)
denote the classical trace operator restricted to HE(Dr). As an extension oper-
ator, we henceforth consider the A-harmonic extension operator tr—! : L2(); X) —
L2(Q; HE (D)) defined as follows: For almost all w € © and for any given b € L*(Q; X),
we set (trtr~1b)(w) = b(w) and demand that
(3.4) a(tr—'b,v)=0 for all v€ Hy(Dr).

The space of locally A-harmonic functions satisfying homogeneous Dirichlet boundary
conditions on I" can then be defined as

Y :=tr 'L X) € L3(Q; HE(Dr)).

For more details on trace and extension operators we refer, e.g., to [LM72].
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Combining (3.3) and (3.4) yields for almost all w € Q and all v € L?(Q; H}(D))
the identity

a(pRC,v) = a(p®,v — tr 'trv) = (gr,v — tr~ M trv) r2(pyy,
where we used that (v — tr~'trv)|p, € L3(Q; HY(Dr)). With this identity, the defi-
nition of ¢4 in (3.2), and supp gr C D, it follows that

a(pp — 90119Cav) =(97,v)L2(Dy) — a(‘qugCa’U) = (QT,tl‘fltw)H(DTy
Taking the expectation, we obtain for any v € L2(Q; H}(D)) that

(3.5)
E[a((PT - Qolig)cav)] = E[(9T7tr_1trv)L2(DT)} = (gTvnH,DT E[tr_ltr’vDLz(DT) .

As a consequence, the (almost) L2-orthogonality of g7 to the space E[Y] C HE(Dr)
leads to a small expected localization error for the basis function ¢le¢.

Therefore, we can obtain an optimal choice of g7 by performing a singular value
decomposition (SVD) of the compact operator (Ilg,p, o E)ly : Y — P*(Ty p,) re-
stricted to the complete subspace Y. Note that the rank of (Il p, oE)|y is less than

or equal to N :=#7Ty p,. Hence, the SVD is given by

N

(3.6) (Ia,pr o E)ly 'U:Zak(vawk)L2(Q;H1(DT))gk
k=1

with singular values o1 > -+ > on > 0, L?(; H*(Dr))-orthonormal right singular
vectors wy,...,wy, and L?(Dr)-orthonormal left singular vectors gi,...,gn. The
choice gr = gn as the left singular vector corresponding to the smallest singular value
on is optimal in the sense that

gn € argmin sup (9. E[v])r2(Dr)-
9EP(Tu,pp) ”gHL2(DT):1 veY : HUHLZ(Q;HI(DT)):l

The corresponding smallest singular value oy is a measure of the (quasi-)orthogonality
between gr and E[Y]. We hence define

(3.7) or(H,e l):=0on = sup (9N, E[v])12(Dy)s
veY : HUHLz(Q;Hl(DT)):l
where the parameter € > 0 denotes the correlation length of the random coefficient
A, which will be rigorously introduced in Assumption 4.1 below.
We emphasize that the practical implementation of the SVD in (3.6) is difficult
due to the stochasticity involved; for a practical implementation based on sampling,
see section 6. For the error analysis in the following section, we introduce the quantity

3.8 =0(H,e,l):= H, et
(38) 05= a(H,2,0) = max or(H,2,0),

which is an indicator for the overall localization error.
Given that, in expectation, (¢ closely approximates the response of the global
solution operator applied to gr, it is reasonable to define the approximation of a

non-Galerkin, collocation-type numerical stochastic homogenization method by

(3.9) U=y crlgE[Re],
TeTH
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FIG. 3.1. Illustration of the localized basis functions E[@'°°] obtained by the movel stochastic
homogenization method on successively refined meshes for a piecewise constant random coefficient
with a correlation length of € =277 in two spatial dimensions. Various values of the oversampling
parameter are depicted with £ = 1 (left), £ = 2 (middle), and £ = 3 (right). The corresponding
right-hand sides g are shown in green.

where (cr)rer;, are the coefficients of the expansion of Iy f in terms of the basis
functions {gr : T € Tg}. An illustration of the deterministic basis functions E[¢@'°]
can be found in Figure 3.1. Error estimates for this method are derived in the following
sections.

4. Error analysis. In this section, we perform an error analysis of the proposed
stochastic homogenization method based on results from the theory of quantitative
stochastic homogenization. This theory requires structural conditions on the ran-
domness of the coefficient field A. For simplicity, the conditions are formulated for
coefficient fields defined on R?. Hence, the following assumptions implicitly assume
that the coefficient field is defined on the full space R%. A random field defined on
the bounded domain D can be obtained by restriction.

Assumption 4.1 (stationarity and decorrelation). Assume that the random coeffi-
cient field A is
e stationary, i.e., the law of the shifted coefficient field A(w)(- + ) coincides
with the law of A(w)(:) for all x € RY,
o quantitatively decorrelated on scales larger than € in the sense of the spectral
gap inequality with correlation length £ > 0, i.e., there exists a constant
p >0 such that for any Fréchet differentiable random variable F' = F(A) the

estimate

01 _ €% oF _|.\°
(4.1) ]E[|F—E[F]| ]g;E /Rd ]i( : 8—A(x) dz | dz
holds.

For an introduction to the notion of Fréchet derivatives, we refer the reader ex-
emplarily to [Dei85, Chap. 2]; see also [JO22, sect. 3.1] for a definition in the present
context. We emphasize that the conditions in Assumption 4.1 on the random coef-
ficient A are standard in the theory of quantitative stochastic homogenization; see,
e.g., the work [GNO20].

The error bound presented in this section is an a posteriori bound including
the constant o from (3.8) and the Riesz stability constant of the local source terms
{97 : T € Tu}, which quantifies their linear independence. Both constants can be
computed a posteriori as outlined in section 6. Additionally, we provide a worst-case
a priori upper bound on o in section 5. Note that in a practical implementation, the
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Riesz stability of the local source terms can be ensured as outlined in section 6 or
[HP22b, App. B].

Assumption 4.2 (Riesz stability). The set {gr : T € Ty} is a Riesz basis of P*(Ty),
i.e., there exists Cy,(H,£) > 0 such that for all possible choices of (¢r)rer;, it holds
that

2

Copl(H0) Y <

TETH

Z crgr

TETH

)

L*(D)

where Ci,(H, /) depends polynomially on H~! and /.

To handle the stochasticity in the error analysis, we need to estimate the variance
of the random variables ((plﬁc,lK)Lz(K) for any T, K € Ty, where 1i denotes the
indicator function of the element K. To achieve this, we employ the spectral gap
inequality (4.1) from Assumption 4.1. The following lemma provides a representation
of the Fréchet derivative of (¢, 1) L2(K), a crucial element for this particular step.

LEMMA 4.3 (L2-representation of Fréchet derivative). Let v € L?(Q; H}(Dr)) for
almost all w € Q) be defined as the weak solution to

(4.2)

—diV(AV’U) = 1}( m DT,
v =0 on 0Dr.

The L?-representation of the Fréchet derivative of (golqgc, 1k)12(k) i then given by

0
87A(<P1TOC, 1k) 2 (k) = — Vit @ Vo,

where @ : R x R — R4 denotes the outer product.

Proof. Let w € Q be fixed. We rewrite the Fréchet derivative of (¢'2°, k)2 (k)
with respect to L?(R%; R*?) as

loc

0 0
solT‘“,lK)Lz(K)(éA):( L (6A>,1K) - / (AVo) - VL (54)da,
L2(x) JDr

0
74!

where we tested the weak formulation of (4.2) with 8;’EC (6A)(w) € HY(Dr). To
further simplify the expression on the right-hand side, we differentiate (3.3) with

respect to A using the product rule. This gives for any w € H}(Dr) that

loc

/ (6AV ) - Vwdz + AV 8;02 (6A) - Vwdz =0.
DT DT

Using the test function w = v(w) € Hg (D7) and combining the previous two identities,
we get

B
7(‘P179C71K)L2(K)(5A):—/ (6AV ) - Vo da.
0A .

This expression directly characterizes the L?-representation of the Fréchet derivative
of (e, 1x)r2(k), and therefore yields the assertion. d

Another ingredient in the error analysis is the following regularity result for the
localized basis functions. The result is needed to further estimate the term we get after
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applying the spectral gap inequality. The proof of this result relies on the condition
that the patches take the form of d-dimensional bricks; ¢f. Lemma A.1. This condition
can be guaranteed, for example, by considering a brick-shaped domain equipped with
a Cartesian mesh.

Remark 4.4 (tilde notation). In the following, we will write a < b or b 2 a if
it holds that a < Cb or a > Cb, respectively, where C' > 0 is a constant that may
depend on the domain, the shape of the elements, and the bounds «, 8 of A, but is
independent of the discretization parameters H, ¢ and the variations of A.

LEMMA 4.5 (L*-regularity of localized basis functions). Let A be a random coef-
ficient field subject to Assumption 4.1. Then, assuming that the patches Dp take the
form of bricks, the localized basis functions @'2° satisfy that

2
/ E (7[ |VgolT°C2d55> dz < (CH)'.
DT Bs(z)

Proof. In order to apply Lemma A.1, we need to construct a function by such

that the localized basis function %€ is the weak solution to

—V-(AV@R)=V-br on Dr

subject to homogeneous Dirichlet boundary conditions on dDr. To this end, one may
choose by := Vr for r solving the Laplace problem Ar = gr subject to homogeneous
Dirichlet boundary conditions on dDp. With Lemma A.1 we then obtain that

2 4/q
/ E ][ Ve 2dz | | de < Dy (/ |qudx>
Dr Bs(z) Dt

for any 4 < ¢ < co. Using standard elliptic regularity on convex domains yields that

IVbrllL2(pry = 1D?r |l 2(pry S lorlli2(pry =1,

since gr is L?-normalized. Using the Cauchy-Schwarz inequality and Friedrichs’ in-
equality on Dy for r € H} (D), we get that

IVrZ2(pp) = 977 22y < Nl97ll2(0) 171l 22Dy S CH 97|22 (02 V7| 22D -
With the definition of by it follows directly that
107 L2(Dry SEH 97| 22(D7) = CH.

Applying the Sobolev embedding (¢ = 6 is the critical exponent for d = 3) and a scaling
argument (the embedding constant scales with the diameter of Dr), we obtain that

/D |br|? dz S (CH) 12 |[br |4, ) + (CH) 12| [Wbe |4, ) S (CH) 07072,
T

~

Combining the previous inequalities and setting ¢ =5 gives the assertion. ]

The following theorem encapsulates the main result of this work, giving an a
posteriori error bound for the proposed numerical stochastic homogenization method.
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THEOREM 4.6 (a posteriori error bound). Let A be a random coefficient field
subject to Assumption 4.1. Then, if Assumption 4.2 is satisfied, the solution (3.9) of
the proposed numerical stochastic homogenization method satisfies for any f € L*(D)
that

= tasz,ell 20,2 (0)) S (H + G (H, O (0 (He,0) 4+ e CHED)) | 12y
with Cyp from Assumption 4.2.

Proof. For the error analysis, we introduce the function
(4.3) Up o= Z cr PRl
TeETH
where (¢r)reT;, are the coefficients of the representation of Iy f in terms of the local
source terms {gr : T € Ty }. Using the triangle inequality, we obtain that
lw—tmellrzo,r2(p)) < llw—yulr2,r2(p))
+ Mg (w —wm )l L2 ,02(p)) + 1TlawEe — Um0l
=5 +Ep + E3.
In the subsequent analysis, we will estimate the terms =1, Z5, and Z3 separately. Prior

to this, we mention the following approximation result for I, the L2-orthogonal
projection onto Ty-piecewise constants: It holds that

(4.4) v —Tgollrery S H|IVol 2y, veHN(T), T € Tu;

see, e.g., [PW60, Beb03]. For the term =, we obtain using the approximation result
(4.4) and the stability estimate (2.4) that

E1=E[lu - Tgu|?zp)] S HE[|Vul7:p)] S H?f172(0):

L2(Q,L2(D))

For estimating the term =g, we first apply the L2-stability of I and Friedrichs’
inequality. Then, following the lines of the convergence proof of the SLOD in the
deterministic setting (cf. [HP22b, Thm. 6.1]), we obtain that

By <Cr|V(u —ume)ll L2020y S (H + Y (H, 0026 (H,e,0))|| fll L2 (p)-

In order to estimate term Z3, we recall definitions (3.9) and (4.3) and use the
Cauchy—Schwarz inequality to obtain that

(4.5)

Eg = Z cr E[(HH(,OITQC - HHE[cpIT‘?C},HHuH,g - ﬂH»Z)LQ(DT)}
TETH

loc

< lerl M@k = MaBpR | 120,22 (D) T e — Ta el L2 (2,02 (D1) -
TeTH
Algebraic manipulations then yield for the first term of each summand on the right-
hand side of the previous inequality that

loc

MR = MaEIPR T2 0. 12 (D))

/D (Z ((90179071K)L2(K)—E[(<P59C71K)L2(K)])K|_11K> dx]

KCDr

=E

(4.6)

=Y |K|_1E[((<P17(‘)071K)L2(K)_E[(wlTOCle)LZ(K)Dz]'
KCDr

Applying the spectral gap inequality (4.1) and using the L2-representation of the
Fréchet derivative from Lemma 4.3, we obtain that
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E [((‘PITOCa 1k)r2cr) — El(0F°, 1K)L2(K)])2}

2
5sdﬂz/ ][ |V ® Voldz | d
DT BE(I)
B 2
<el / E ][ |Vpke2di | | dx
D Be ()

1/2

1/2

B 2
X / E ][ |Vo2dz | | da ,
DT BE(I)

where we used the Cauchy—Schwarz inequality. Lemma 4.5 can be employed to bound
the first factor on the right-hand side of the preceding inequality. For estimating
the second factor, we note that problem (4.2) for v € L?(Q; H}(D7)) has the same
structure as problem (3.3) for the localized basis functions. Consequently, a result
analogous to Lemma 4.5 also holds for v, leading to

2
/IE (7[ Vu|2dgz> de S (CH)* 1kl 72 (py)-
DT Be(x)

Inserting the estimates for <p1T°C and v, we get that

ocC ocC 2 _ —
E[ (4. 15) 2200 ~ BUOE 1x)0200)))] S e (CHY0kl3a(p, = £ (CH) K],
Using this, we continue to estimate (4.6) as follows:
TR — MaE[pr] H%2(Q,L2(DT)) SelttH

Inserting this estimate into (4.5), applying the Cauchy—Schwarz inequality, recalling
the finite overlap of the patches, and utilizing Assumption 4.2, we finally obtain for
Eg that

Z3SePeHODR NG IS Tawime — @l 3o, 12(pp)
TET TET

S22+ U2 2 (H 0)| £l 120y S5

The assertion follows immediately after combining the estimates for =i, =a,
and =3. 0

5. Error analysis using LOD techniques. This section utilizes LOD theory
to derive an upper bound for the quantity o that appears in the error estimate from
Theorem 4.6. We further estimate C,, for the choice of LOD basis functions made
for the upper bound on o.

5.1. Localization error indicator. We first derive an upper bound for the
localization error o defined in (3.8). The bound is based on the lowest-order LOD from
[Mai21, HP22a, DHM23|, whose construction uses nonnegative bubbles {br : T'€ Ty };
see also [FP20]. The bubble function by € Hi(T) is chosen such that I1br = 17 and

(5.1) Norll2ry S HIIVbrl L2y S VT
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holds. Recalling the abbreviation Dy = N¢(T') for the ¢th order patch around T' (cf.
(3.1)), we introduce the space of fine-scale functions supported on Dy by Wy, =
{w€ H} (D7) : g p,w=0}. The LOD basis function corresponding to the element
T € Ty is then defined by

(5.2) 019” == (1= Cr)br € L*(Q Hy (Dr)),

where Cr by € L? (€ Wr ) denotes the fine-scale correction of the bubble by, which
is defined for almost all w € € by

(53) a(CT,ng,w) = a(bT,w) for all w e WTJ.

Note that the well-posedness of the operator Cr ¢ is a consequence of the Lax-Milgram
theorem, recalling that Wr is a closed subspace of H}(Dr).
In the following lemma we derive an upper bound on o, based on the observation
that the LOD basis function go%f%D possesses a Ty-piecewise constant source term
g%&D = 7diVAV<pr2D € LA(Q;P°(Tu.py));
see, e.g., [HP22b, Lem. A.2].

LEMMA 5.1 (upper bound on o). Choosing an L*-normalized version of gr =

E[g%f%D} in (3.7) yields the upper bound

/2
< 2771 _ 4 (€
(5.4) o <CH exp(—Cal) + ¢ (H)

with Cq > 0 independent of H and ¢, provided that € satisfies the smallness assumption
(5.5) et <8,

Proof. For allv € Y C L?(Q; HL(Dr)) it holds that E[tr~'trv] = E[v]. Hence, by

inserting gr = ]E[g%,CzD] into (3.7), we obtain that

1 —
or(Hye ) < ———— sup (97, E[tr~"trv]) 12(py)-
lgzllL2(pr) vel?(Q;HLE(Dr))

”v“LQ(Q;Hl(DT)):l

Note that by dividing by the norm of gy, we account for the fact that gr may not be
normalized. We denote by .A%le : L2(Q; L*(Dr)) — L?(Q; H} (D)) the local solution
operator defined on the patch Dr, which satisfies the following stability estimate:

(5.6) IVAZL g 2,20y S 191 20,02 (D))
Therefore, we obtain for any v € L?(Q; Hi(Dr)) that
(g7, Eltr " trv]) L2 (py) = E[(GF0°, 0) 12 (Dr) — A(AL1970",v)]

+E[(9r — 9797, v) 12(Ds) — a( AL (97 — g79°),v)]
=:Z1 + Zo.

To estimate the term =1, we apply the deterministic result [HP22b, Lem. 6.4] for
any w € ) and use the Cauchy—Schwarz inequality to get that

E1 S H  exp(—Cal) 0] 20,1 (D) 1979° | 12(9, 12D ))
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where Cy4 > 0 is independent of H and ¢. Using the estimate

(5.7) ||g]f“,OZD||L2(Q,L2(DT)) SHY?2

which can be derived by taking the expectation of the corresponding deterministic
identity from [HP22b, Lem. A.2], yields that

21 S HY? P exp(=Cal) [l 120,51 (D) -
For the term =3, we obtain using (5.6) and the Cauchy—Schwarz inequality that
Z2 S llar — 979° 20,20 10| L2 (0,10 (D)) -

In order to estimate the first factor on the right-hand side, we proceed similarly as in
the proof of Theorem 4.6 to obtain that

_ 2
lgr — g7 120,12 (Dr)) = Z K| IE[((QI%%DJK)B(K)—E (979", 1) 12 (x0)] ) }
KCDr

Using the spectral gap inequality (4.1), we obtain for each summand that

2
E {((QI:F,%Da 1k)r2(r) — El(979°, 1) r2(r0)]) }
2
d5c> dw}

SadIE[/ ][
Rt \JB. ()

The L2-representation of the Fréchet derivative of (g%’OZD,lK) r2(k) is derived in
Lemma A.2. It consists of a sum of outer products of the gradients of combina-
tions of by, bx, Cr by, and Crebx. To estimate the summands involving bubble
functions, we utilize the property (5.1) for all K C Dy and derive the estimate

2
(5.9) / <][ |VbK|2di:> de < HH,
DT BE(I)

To proceed with the estimation of (5.8), we need to estimate the four terms resulting
from the summands of the Fréchet derivative; c¢f. Lemma A.2. In the following,
we present the estimate for the second term, noting that all other estimates follow
analogously. By employing the regularity result from Lemma A.3 and (5.9), we obtain
that

2
E / <][ |VCT7sz ® VbK| d.i‘) dx
DT Bs(x)
1/2 ) 1/2

2
< / E f |VCrbr|?dz | | da / f |Vbg|?dz | dx
Dr Bs(w) Dr BE(ZL’)

< p2—d/2 ppd—4

(5.8) (g, 1) L2 ()

where we used the Cauchy—Schwarz inequality. Note that all four terms can be ma-
jorized by ¢4~?H%* which results from estimating the last summand. The combi-
nation of the previous estimates yields that

1/2
(5.10) ||9T_g%“,OZDL2(Q,L2(DT))§< > |K|_1€d€4_de_4> SePePH,
KCDr
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Using the estimate
LOD —27r7d/2—2
lgre llz2,2(Dpyy 26" H /22,

which can be derived by taking the expectation of the corresponding deterministic
identity from [HP22b, Lem. A.2], we can derive the following lower bound for the
L?-norm of gr:

||9TH%2(DT) = ||9TH%2(Q,L2(DT))
1

(5.11) > HQ%%DH%Z(Q,H(DT)) = llgr *Q%%DH%Z(Q,L‘Z(DT))

Vv
DN =N

€_4Hd_4 _ €4H_4€d z €_4Hd_4.

Here, we used the reverse triangle inequality, the x;veighted Young’s inequality for
showing that for a,b > 0 it holds that |a — b|* > %~ — b?, as well as the smallness
assumption (5.5). Finally, combining all estimates leads to

1

d/2
or < 7(Hd/2_3 exp(—Cql) + €2H_2€d/2) SOPH  exp(—Cgl) + ¢4 (i) .
lgzllL2(pr)

H

The assertion follows directly when taking the maximum over all T' € Tg. ]

Combining this a priori result for o with Theorem 4.6 yields the error estimate
given in the following corollary. The Riesz constant Cyy, can be computed a posteriori;
cf. section 6.

COROLLARY 5.2 (combined error bound). Suppose that the assumptions of The-
orem 4.6 and Lemma 5.1 are fulfilled and that ¢ 2 |log H| holds. Then, the solution
(3.9) of the proposed numerical stochastic homogenization method satisfies, for any
feL?*D), that

_ €\ 4/2
lw =t ellz2Q,02(0)) S (H + Crlk{Q(HJ)EMd/Q (ﬁ) )||f||L2(D)-

5.2. Riesz stability. In a next step, we show that the local source terms corre-
sponding to the LOD basis functions (5.2) are Riesz stable in the sense of Assump-
tion 4.2.

LEMMA 5.3 (Riesz stability of LOD source terms). Suppose that £ is chosen such
that £ 2 |log(H)| and that € satisfies the smallness assumption

(5.12) g? < g~ (B+d) patd,

Then, for the local source terms gr =E[gyQP] it holds for all (cr)rery, that

2

Z er gr

(5.13) H* <
Z T TeTs ||9T||L2(DT)

TETH

L?(D)

Proof. We begin the proof by noting that applying the weighted Young inequality
twice gives the elementary estimate |a —b— c[> > ¥|a|? — [b|> — |¢|? for any a,b,c > 0.
Combining this with the inverse triangle inequality, we obtain that
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Z er ar

972 (Dr)

2 2

Z er ar

rery  Morleon|, i, L2(,L2(D))
2 2
ghop gr — 919"
12 TPl 2 lorlion
TETu PliLz,r2(py)  NTETH L2(Q,L%(D))
2
g% 9%‘?
> e
TeTh 97l 2 (1) Hg (Dr) L2(Q,L2(D))
— L = = =
=: 4~—41 —2 —3-

For estimating the term =; from below, we use the corresponding deterministic result
from [HP22b, Lem. 6.4] and take the expectation, which yields that

= 4 2
=12 H E cp.
TeTH

To estimate the term Z5 from above, we use the finite overlap of the patches Dr as
well as estimates (5.10) and (5.11) to get that

25 §€4+dH4_d Z C?r llgr — g7 ZDHL?(Q L2(Dr)) S (St Z CT
TeTu TeTu

The estimate for =3 can be derived similarly using again the finite overlap of the
patches D, the reverse triangle inequality, (5.10), and (5.11). We obtain that

=X . HP UG Ia20r) ~ lgrllacom)
D
TeTy lgrllz2(Dr) ||9Te IL2(D1) L2(2,12(D))
d 9 lgr — gTeD”Lz (D7) 8+d d pr—d
Sty GE ST N
TeTe ||9T||L2 Dr) TeTy

Combining the previous estimates and using the smallness assumption (5.12) yields
the assertion. |

6. Practical implementation. To effectively implement the proposed numer-
ical stochastic homogenization method, it is crucial to employ an efficient sampling
strategy for the space Y and ensure that the local source terms {gr : T € Ty}
form a stable basis of P?(7z). These aspects will be addressed in the following two
subsections.

6.1. Sampling of the space Y. We consider an arbitrary patch Dr and denote
the number of coarse elements in this patch by N := #7y p,. In a practical imple-
mentation, all local infinite-dimensional problems that appear in the derivation of the
basis functions must be replaced by finite-dimensional counterparts. To obtain these
finite-dimensional counterparts, we perform a discretization using the Q'-finite ele-
ment method with respect to the fine mesh 7}, p, constructed by uniform refinements
of Tu,py. The number of elements of 7 p, is denoted by n.

To handle the stochasticity in the definition of Y, our implementation draws
M samples of the random coefficient A and, for each sample, closely follows the
methodology outlined in [HP22b, App. B] for the deterministic case. Specifically,
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we generate a matrix S; € R™ ™ for ¢ = 1,...,M, whose columns represent the
coordinate vectors of the discrete A(w;)-harmonic extensions of m € N samples of
random boundary data on dD7\dD. Then we compute the matrices P; € RV*™ by
applying the L2-orthogonal projection onto the characteristic functions {1x : K €
Ta, Dy} column by column to S;. Finally, the SVD of the matrix X := [P1,...,Py]
is computed, yielding coordinate vectors of potential right-hand sides gr. For details
on the practical realization of this SVD, we refer to [HP22b, App. B]. Finally, the
localized deterministic basis functions are computed as empirical means, again using
M samples of the random coefficient. In the numerical experiments performed in
section 7, the number of random boundary samples is set to m = 3N. For the number
of random coefficient samples, we use M = 5000.

6.2. Stable local source terms. Next, we discuss how the stability of the
local source terms {gr : T € Ty} can be ensured in a practical implementation. Our
implementation achieves stability by an additional optimization step, similar to the
one used in [BFP24]. Given the singular values o1 > 09 > -+ > oy > 0 of the matrix
X associated with the patch Dp, we consider all indices 1 <7 < N such that

. 1/
gi < max { (U—N) p, 10_10}

g1 g1

and denote the resulting set of indices by Z. Each index in the set Z corresponds to
a potential candidate for a local source term. For the choice p =1 only the smallest
singular value is considered. Since our optimization problem is meaningful whenever
multiple functions are considered, we restrict ourselves to the choices p > 1.

Among these candidate functions, we choose the one that maximizes a weighted
L?(Dr)-norm under the unit mass constraint. The weighted L?(Dr)-norm is defined
using a piecewise constant weighting function that is zero in the central element T
and grows polynomially as the distance from the center increases. This enforces a
concentration of mass in the center of each patch, resulting in linearly independent
local source terms {gr : T € Ty} in practice. More specifically, we introduce the
distance function dist(7, K) between the elements T, K € Ty as

dist(7T, K) := H ' |myg —mp| € N¢,

where mp, myg € R? are the midpoints of the elements T and K, respectively. The
weighting function is then defined for each element K € Ty p, as

wr(K) = |dist(T, K)|_
for a parameter > 1, where ||, denotes the infinity norm on R?. Figure 6.1 provides

an illustration of this weighting function in two spatial dimensions. In our numerical
experiments in section 7, we use p = 1.5 and r =6.

Remark 6.1 (computation of Cyp,). Given the local source terms {gr, : i =
1,...,#Tu}, the Riesz stability constant Ci;, appearing in Corollary 5.2 equals the
reciprocal of the smallest eigenvalue of the matrix G € R#7#>#7H with entries given

by Gij = (gT£7gTj)L2(D)'

Remark 6.2 (uniform Cartesian meshes). Note that in the case of uniform Carte-
sian meshes, the computational complexity of the method can be significantly reduced
when utilizing the stationarity of the coefficient A; cf. Assumption 4.1. In fact, only
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64 | 64 | 64 | 64 | 64

64 1 1 1 64

64 1 0 1 64

64 1 1 1 64

64 | 64 | 64 | 64 | 64

Fi1G. 6.1. Piecewise constant weighting function wp for an interior element T with £ =2 in two
spatial dimensions.

O(¢?%) reference patches need to be considered for the computation of the basis func-
tions and local source terms of the method. All other basis functions and local source
terms can then be obtained by translation; see, e.g., [GP15].

7. Numerical experiments. The following numerical experiments are intended
to demonstrate the effectiveness of the proposed numerical homogenization method.
In our implementation, we consider uniform Cartesian meshes of the domain D =
(0,1)? with d € {1,2}. Note that from now on we use H to denote the side length of
the elements instead of their diameter. For the solution of the local patch problems
and the computation of the reference solution u; we employ the Q;-finite element
method on the fine mesh 7;, with A = 27'°. We denote by Up,p,e the fully discrete
numerical approximation to E[u]. In the following all expected values are replaced by
appropriate empirical means.

The random coeflicients A that are considered in the following numerical ex-
periments are piecewise constant with respect to the uniform Cartesian meshes 7
with mesh sizes ¢ € {27°,276,277 278 2791 These coefficients take independent and
identically distributed element values in the interval [0.1,1]. We further consider the
sequence of coarse meshes Tz with mesh sizes H € {273,274,275 276}, Note that
we only consider coarse mesh sizes H > ¢ for which the coarse mesh does not resolve
the minimal length scale of the random coefficient. We also exclude combinations
of H and ¢ for which a patch coincides with the whole domain D. To calculate the
reference solution, we employ M = 5000 samples, which is consistent with the number
used for the local patch problems. The samples are obtained by a quasi-Monte Carlo
sampling strategy in one spatial dimension and a Monte Carlo sampling strategy in
two spatial dimensions.

Numerical investigation of o and C,,. We first examine the behavior of
the localization error indicator ¢ as a function of the coarse mesh size H and the
correlation length . For this, we consider the case d = 2 and utilize the sequences
of coarse meshes and correlation lengths mentioned above. Figure 7.1 visualizes the
values of o for a fixed correlation length £ and varying mesh sizes H (left) and for
fixed H and varying e (right). In both cases one observes a scaling like &, which
numerically validates the upper bound for o from Lemma 5.1 in the case d =2. Note
that the stochastic errors dominate, and consequently, the first term in (5.4), which
decays exponentially in ¢, is not visible. Plotting ¢ as a function of £ would give a
scaling like £—1/2.
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10!

96 95 ot 23

Fic. 7.1. Depiction of o for a Te-piecewise constant random coefficient in two spatial dimen-
sions. Left: in dependence of the coarse mesh size H for e = 278. Right: in dependence of the
correlation length € for H=2"%.

10t & L I ’
96 25 91 23

H

F1G. 7.2. Depiction of the Riesz stability constant Cyy, of the stochastic SLOD as a function of
the coarse mesh size H for a Tz-piecewise constant random coefficient with € = 278 in two spatial
dimensions.

Next we examine the behavior of the Riesz stability constant Cy, of the local
SLOD source terms as a function of H. In Figure 7.2 we observe that C}y, scales like
H~*, which is consistent with the results for the stochastically averaged LOD source
terms proved in Lemma 5.3. Our numerical experiments indicate no dependency of
the Riesz stability constant on € or ¢, which is also in line with the findings from
Lemma 5.3.

Numerical validation of convergence. To numerically verify the convergence
of the proposed numerical stochastic homogenization method, we consider the source
terms
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FIG. 7.3. Plot of the relative L?-errors |[TTguj, — Ap,h.ellL2(:L2(py) of the proposed SLOD
method for a Te-piecewise constant random coefficient in one spatial dimension. Left: errors as
functions of the coarse mesh size H for fized e =28 and several oversampling parameters €. Right:
errors in dependency of the correlation length ¢ for fivted H=2"* and several values of £.

1071

10718 (=3 1

-«- O(H-1/3)

10-23 |- Sl

3 I I I
26 25 ot o3 10 29 98 P o6 95

H €

FIG. 7.4. Plot of the relative L?-errors |TIguy, — Upn.ellL2(;2(py) of the proposed SLOD
method for a Te-piecewise constant random coefficient in two spatial dimensions. Left: errors as
functions of the coarse mesh size H for fized € =28 and several oversampling parameters €. Right:
errors as functions of the correlation length e for fized H=2"* and several £.

f(z)=2n%sin(x), f(z,y)=27r2sin(x)sin(y)

in one and two spatial dimensions, respectively. Figures 7.3 and 7.4 show the resulting
relative L2-errors computed using the reference solution uy. For fixed H and varying e
we observe the rate ¢%/2, which is in agreement with Corollary 5.2. When considering
the converse case, we have to distinguish between one and two spatial dimensions.
In one dimension, the expected negative power of H does not manifest itself, and
in our numerical experiments the error remains relatively constant with respect to H
(provided the coarse mesh is sufficiently coarse compared to ). In the two-dimensional
case, we observe a negative dependence on H, which is much weaker than the H 2
predicted by Corollary 5.2. The error rather seems to scale like H~1/3.
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Appendix A. Auxiliary results. The error analysis of the proposed numerical
stochastic homogenization method is based on the so-called Calderon-Zygmund esti-
mates, which are a popular tool in the theory of quantitative stochastic homogeniza-
tion. Such estimates were established for an equation on the full space R? in [DO20],
extending earlier results from [AD16, DGO20]. For annealed Calderon—Zygmund esti-
mates we refer to [JO22, WX24], where the latter work considers the case of Lipschitz
domains. Contrary to the Calderon—Zygmund estimate given below, these annealed
estimates involve only a loss in stochastic integrability and not in spatial integrability.
Since such annealed estimates only lead to better (hidden) constants in the final error
bounds, we will henceforth stick to a suboptimal Calderon—Zygmund estimate similar
to [FGP21, Lem. 4.8], where an a priori error analysis for a related numerical stochas-
tic homogenization method is performed. The proof of the following estimate, which
is beyond the scope of this manuscript, is analogous to the full-space case [DO20,
Thm. 6.1] and uses the boundary regularity theory of [FR17, JRS24] as well as a
classical regularity theory at edges and corners.

LEMMA A.1 (annealed large-scale LP regularity). Let d € {2,3}, and let A be a
random coefficient field subject to (2.2) and Assumption 4.1. Let Q CR? be a box, let
be L3(Q;L%(Q)), and let uw € L*(Q; HY(Q)) be a solution to the linear elliptic PDE

—V-(AVu)=V-b on Q,
u=0 on 0Q.

Then for any 2 < p < oo and any p < g < oo there holds a reqularity estimate of the
form

p/2 q/2
][E (][ |Vu|2d5c> dz < C(\ A, p,p,q) ][IE <][ |b|2daz> dz
Q Be(x) /Q B.(x)

In the following, we present two results used in the proof of Lemma 5.1. The
first result provides an L2-representation of the Fréchet derivative, which is needed
to apply the spectral gap inequality.

r/q

LEMMA A.2 (Fréchet derivative of LOD right-hand sides). The L?-representation
of the Fréchet derivative of (glff%D, 1x)r2(K) 18 given by

0

ﬁ(g%,czD,lK)L%K) =Vbr ® Vbg — VCrpbr @ Vb — Vbr @ VCr bk

+ VCT’ng & VCT’gbK.

Proof. Since g:I;f%D is piecewise constant and by the definition of goIfféD, we obtain

that
(979, 1k) 2 (i) = (G i) L2 (i) = al@7" b ) = a((1 — Cr0)br, bic).

Hence, the Fréchet derivative of (979, 1x)r>(x) equals

0] 0] 0
aj(ng%D, k)2 k) (0A) = aja(bTabK)(§A) - ﬂa(CT,EbT»bK)((SA)'
The first term is easily calculated, yielding
%(6A) = [ S5AVbr- Vbg dz.
Dt
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For the second term, we obtain with the product rule that

8G(CT7ng,bK) 8cT,ébT

A)= A : A A)- .
A ((5 ) . ) VCT)ng Vbg dz + o A\ DA ((5 ) Vbk dz
Using (5.3), the fact that acgiﬁbT((SA) € Wr, and the symmetry of A yields that
(A.1) Ay Kb (6A)-Vbgdz= [ AV OCr.br (5A)-VCrp by dz.
Dy 0A Dy 0A ’

Furthermore, by differentiating (5.3), we get for any w € Wy, that
(A.2)

§AVby -Vwdz= [ SAVCy by -Vwdz+ [ AV OCr.ebr

0A)-Vwdz.
Dt Dr Dt 8A ( )

Using (A.1) and (A.2) for w = Cr ¢bk, we obtain for the Fréchet derivative that

W(M) — [ 6AVCr b Vigdet | 6AVbr - VCriby do
DT DT

- (SAchij . VCT7(bK dz.
Dt

The L%-representation of the Fréchet derivative of a(Cr ¢br,br) is therefore given by

0
ﬂa(CT,ng, br) = VCr.br ® Vbg +Vbor @ VCr b — VCr b ® VCr obk .

The combination of the above results yields the assertion. 0

The following result is needed to estimate the terms appearing after applying the
spectral gap inequality in the proof of Lemma 5.1.

LEMMA A.3 (L*-regularity estimate for LOD correction operators). Let A be a
random coefficient field subject to Assumption 4.1. Then, the correction of the bubble
functions Cr ¢br satisfies the following reqularity estimate:

2 2 4—d
/ E (][ VCT,ngFdi;) dr < () .
DT BE(I) H

Proof. First, let w € Q) be arbitrary but fixed. In order to apply Lemma A.1, we
need to establish the appropriate right-hand side, which results in the equation for
Cr ¢br taking the form as in Lemma A.1. Naturally, Cr (b7 solves, together with the
Lagrange multiplier py , the saddle-point problem

Arg BT\ (Crebr\  (Aribr
(A3) ( a5 ) () = (4
with the patch-local operators Az, : HY(Dr) — H=Y(Dr),u — —V - (AVu), B :
H(Dr) = P°(Tu.p,), v 1g|p,v, and its transpose defined by BT : P*(Tx p,) —

H=Y(Dr),p={ve€ Hy(Dr)~ [, pvdz}.
It is a direct consequence that Cr ¢br solves

V- (AVCrbr) =V - (AVbr) + B pr,
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which, for some qr, € L?(Dr), can be rewritten as
V- (AVCT,ng) =V- (AVbT + qT,l)'

To see this, we set qr , := Vv, where v solves Av = py , with homogeneous Dirichlet
boundary conditions in a ball of radius C/H, where the constant C' > 0 is chosen such
that the ball contains D.

Furthermore, the local LOD source terms satisfy g%,CzD = pry; see [HP22b].
Hence, using (5.7) and following the proofs of [FGP21, Lem. 4.9] and Lemma 4.5
yields that

| WaPao= [ prpacs [Pt
Dt ' Dr ’

Dr

aswell as ||qr ol 2(py) SCH P 4ll2 (D1, leading to fDT lgr |9 dr S (d+a2=d)/2 prd=q,
Moreover, using ||Vbr |z~ ~ H~! we obtain that [.|AVbr|?dz < H? 7. Therefore,
applying Lemma A.1 for Q@ = Dr, p=4 and b= AVbr — q1, yields that

2
/E <][ |VCT7ng|2d5;) dz
Dr B.(z)
4/q
§DT<q4>/Q<E[/ |AVbT|qu+/ |qquz]>
Dr Dr

4—d
(L
~\H
which is the assertion. 0
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