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Approaching Principles of XAI:
A SYSTEMATIZATION

Raphael Ronge, Bernhard Bauer, and Benjamin Rathgeber

Abstract—Today’s Explainable Artificial Intelligence (XAI)
landscape is the product of a long history of ever-changing
Artificial Intelligence (AI) research and attempts to explain it.
It can be vast and confusing. Our historical reconstruction of
XAI developments relates AI improvements to their inevitable
impact on explanation research. The reconstruction provides the
basis for an analysis of the state of XAI and for discussing
its future developments in our paper and in general. We then
propose a new taxonomy based on this historical reconstruction
and current XAI approaches. It is a balanced mixture of detail
and general applicability. It is therefore intended to be useful in
a wide variety of contexts. The flowchart inspired nature of our
taxonomy relates its dimensions not only to the XAI development
process, but also to each other, creating an additional layer of
structure. Given the historical reconstruction and our taxonomy,
we are able to propose three principles: Computing Edges,
Dimensionality Reduction, and Traceability/Blaming. These are
capable of structuring the debate in a new way, as they are
not intended to be just ideas that current approaches adhere to.
We also propose two new principles for the future (Embedment
and Scientific Testing) that XAI approaches should adhere to
in order to improve their explanations. Our findings provide
a structured approach to the analysis and development of
XAI methodologies. By integrating historical perspectives with
state-of-the-art approaches, our research provides a basis for
stimulating discussion about the principles that XAI follows and
should follow in the future.

Impact Statement—The lack of transparency of modern Ma-
chine Learning solutions has led to a proliferation of Explainable
Artificial Intelligence (XAI) approaches and, by now, various
taxonomies of these approaches. This paper is a meaningful
addition to these taxonomies, not only by descriptively listing
XAI papers, but also by contextualising the state-of-the-art with
a historical reconstruction and an analysis of the overarching
principles of current research. Through this comprehensive
approach, our paper is able to provide a better understanding
of the prospects and challenges of XAI and to help systematise
new approaches. In doing so, it serves as a basis for discussion
of XAI approaches and for future analyses of XAI beyond its
technical foundation.

Index Terms—Explainable Artificial Intelligence, Interpretable
Artificial Intelligence, Interpretable Machine Learning, Explana-
tion
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I. INTRODUCTION

The current landscape of Explainable Artificial Intelligence
(XAI) is vast and can be confusing. There are a variety of XAI
approaches [1]–[11] that are diverse and difficult to compare.
Although the basic goal - to explain artificial intelligence - is
common to all approaches, the means to achieve this goal are
not homogeneous. For this reason, there are also a variety of
taxonomies [12]–[16] that list these approaches and try to sort
them into categories in order to bring some order to the field
of Explainable Artificial Intelligence. All in all, much is left
to be desired, as researchers find it difficult to sort through
and search existing XAI solutions to find suitable candidates.

The aim of our paper is to provide a broader view of
existing approaches, leaving the technical, functional domain
and including a historical reconstruction as well as an analysis
of the state-of-the-art using principles that we define (see
figure 1). Through this broader analysis we aim to provide a
better understanding of the prospects and challenges of XAI.

Starting with a historical reconstruction of XAI (see chapter
II), we are able to pinpoint the source of the diversity of XAI
approaches. We show that Explainable Artificial Intelligence
is as old as AI research itself. While the goals of explanation
were not originally synonymous with those of XAI today,
it is important to understand XAI’s close connection to AI
even at its birth. In the face of ever-changing AI algorithms,
explanations had to be adapted, leading to a variety of XAI
approaches, which in turn instantiated different principles (see
figure 1), resulting in the vast landscape of today. Given
its chequered past, it is impossible to give a full account
of XAI’s history in this paper. Instead, we will outline the
main lines of development and illustrate them with the most
important examples. With this historical knowledge, we are
able to develop a broad taxonomy that includes a wide range
of dimensions (see chapter III-A), some of which have been
proposed by others, while others are new. We illustrate our
dimensions with meaningful XAI examples. An important
difference between our taxonomy and many others are the
non-technical dimensions (goal and target group), which again
deepen the understanding of the XAI landscape and enable
analysis of XAI beyond implementation differences. We do not
want to limit XAI research to a small number of dimensions,
but to show the variety and help to illustrate the possibilities
of XAI. The shortcomings, on the other hand, are outlined
in the chapter on paths through our taxonomy (see chapter
III-C). In line with the rest of our paper, we do not attempt
to be exhaustive - an endeavour doomed to failure in this
rapidly changing field of research. Instead, we select the
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Fig. 1. Principles of XAI throughout history.

most telling examples to illustrate our taxonomy, as well as
the most prominent shortcomings of current XAI research.
The combination of historical reconstruction and our detailed
analysis of our own taxonomy allows us to envisage principles
that contemporary XAI already follows (see chapter IV) and
those that might be helpful for future research (see chapter V).
We do not claim our principles to be complete, but rather to
provide a basis for discussion of future developments, which
we mention in our conclusion (see chapter VI).

II. HISTORY OF XAI

While the term ‘Explainable Artificial Intelligence’ (XAI)
is relatively new, the concept is not. As long as Artificial In-
telligence (AI) has existed, researchers have been interested in
explaining the inner workings of AI and the concepts captured
by AI models. The history of XAI is closely linked to the
history of AI itself. Each new XAI era has been ushered in by
a change in AI research. We are not able to give an exhaustive
recollection of the history of XAI approaches. We refer the
interested reader to the paper of Mueller et al. for a more
detailed overview [17]. Our selected key XAI development
strands show that XAI is by no means a phenomenon of the
21st century. The following historical reconstruction is aimed
at the chapters on XAI principles (sections IV, V). There,
we discuss principles of XAI history and state-of-the-art (see
figure 1), as well as their relevance today.

A. The Beginning (1940s – early 1970s)

The birth of AI is inextricably linked to the birth of
Explainable AI, long before that term was coined. However,
the angle of attack of early explanations was very different
from today. Frank Rosenblatt, the inventor of the perceptron,
writes: “A perceptron is first and foremost a brain model, not
an invention for pattern recognition” [18, p. viii]. This quote
shows that explainability was of interest to early AI researchers
in a very different way from today: “[The perceptron] is by no
means a ‘complete’ model, [...] but it is, at least, an analysable

model” [18, p. viii]. There was no problem with a black-box
nature of AI models: AI was specifically designed to be a
model of the brain and an explanation for brain processes
that were otherwise too complex to understand. Regardless of
the specific technical functionality, AI did not need additional
explanations because it was built as an explanation of the
human brain and its inner workings. This changed with the
advent of Expert Systems.

B. Expert Systems Explanations (late 1970s – mid 1990s)
The symbiosis between explanations and AI models

changed with the first AI winter, which ended in the late 1970s.
AI research could not live up to its lofty claims, which led to
the demise of research and ten quiet years [19, cf. e.g.]. After
this period, AI research found its new application in practical
models for the industry: Expert Systems (ES). These systems
did not attempt to model the human brain, but relied on hand-
crafted rules and used knowledge bases to solve specific tasks
in their domain. With this new type of AI model, the need for
explanations soon arose. Their development can be divided
into the following two generations [17].

1) First Generation Expert Systems Explanations: The first
Expert Systems were mainly used as (e.g., medical) advisors.
One of the first “successful demonstration of scientific ca-
pability” [20, p. 19] of ES is DENDRAL, developed since
1965 at Stanford University [20]. However, it quickly became
clear, that systems without a minimum of insight would not
be of much use, as users would reject their results [17, pp.
44-45]. In this way, Edward Shortliffe’s MYCIN became one
of the most influential ES of the first generation [21]. Its “task
[was] to assist with the decisions involved in the selection of
appropriate therapy for patients with infections” [21, p. xiii].
MYCIN features an explanation component that is able to
answer questions about its own knowledge base and specific
consultation outcomes. Developing this question-answering
process is a fairly straightforward task, as it involves only
translating code rules (e.g., LISP commands) into human-
readable text. There is an important caveat, however, which
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means that these “[systems,] which were developed to fulfil the
need of end-users, may [often] have ended up being of greater
value to developers” [17, p. 46]. Moore and Swartout called
this caveat: “recap as explanation myth” [22, p. 11]. What
they mean is that these systems “could not justify inference”
[17, p. 47]. They simply recapitulated the rules used, without
considering how humans (experts) might infer results, what
knowledge they might already have and what rules they would
normally use. This realization led to the emergence of the
second generation of ES explanations [17, p. 49].

2) Second Generation: The Tutoring Approach: The flawed
explanations of the first generation led the field of explanation
in the very different direction [17, pp. 49-52] of so-called
intelligent tutoring systems [23, p. 58]. Although they overall
were solving problems that are not comparable to today’s
XAI challenges, some very interesting ideas were implemented
that improved on first generation ES explanations. Tutoring
systems were no longer stand-alone Expert Systems, e.g., for
medical diagnosis, with an optional explanation component.
They were intended to help train doctors to improve their
diagnostic skills [17, pp. 49-52]. This new focus led to the cre-
ation of user-models. Second generation system explanations
“accounted for the student’s recent behaviors and claims” [17,
p. 52] and “often focused on making explanations context-
sensitive” [17, p. 52]. William Clancey implemented these
ideas in 1982 with GUIDON, an ES that uses the knowledge
base of MYCIN and has an additional 200 separate tutoring
rules [24, p. 8]. These tutoring rules implement a student
model that keeps track of the MYCIN rules that a student
knows, is likely to be able to use for a given case, or has
already applied [24, pp. 10-11]. Having a student model is
of paramount importance, as “simply representing in an ideal
way what to teach the student is not a trivial, solved problem”
[24, p. 14].

In addition to the focus on user interaction, the second
generation of explanations explored the rules themselves.
XPLAIN by Swartout combats the “recap as explanation
myth” [22, p. 11], with meta-rule-learning [25]. It works by
defining a domain model (i.e., textbook facts) and domain
principles (i.e. domain heuristics/rules) and then using an
automatic programmer to create the rules of the ES, thus
making them context-sensitive [25, p. 287].

A third important concept, developed for the second gener-
ation is counterfactual explanations [26, cf. e.g.]. They were
found to be “features needed in generating an acceptable
explanation” [27, p. 19] and were therefore used in BLAH
from 1980 by J. L. Weiner. Even today, authors argue –
similarly to Weiner – that when a user asks ‘Why?’ what is
often meant is ‘Why X instead of Y?’ [28, p. 16], which makes
counterfactuals a good option for answering these questions.

Of course, these concepts are not the only ones in the second
generation of ES explanations, but they are the most promising
ones to be transported into today’s XAI research (see section
V).

C. Rebirth of Explanations with Neural Networks (early 2010s
– today)

The second AI winter with its collapse of the ES market
was followed by a much longer “Explainability Winter” [17,
p. 60] (late 1990s – early 2010s) with little to no research
into new explanation methods for a decade. It was only after
the comeback of AI in the form of Neural Networks (NNs) in
the early 2010s that explainability research was reinvigorated.
Newly adapted training algorithms and ever-increasing com-
puting power made this new era of AI performance possible.
NNs became the workhorses of today’s AI research, but since
the rebirth a wide variety of AI solutions have evolved.

These new developments, however, had transparency draw-
backs that had to be addressed by new research into explain-
ability. While the first AI approaches were designed to be
understandable models of our complex brains (section II-A),
and ES worked with humanly understandable concepts or rules
(section II-B), today’s ML models achieve the highest per-
formances because of their massively parallelized structures.
As they are self-learning, human insight is already minimal.
And with larger models, the insight only gets smaller and
smaller, and today, even developers are unable to achieve
previous levels of understanding. The current XAI problem
is no longer one of translating and representing rules, but of
finding and extracting them. These difficulties have led to a
new strengthening of explainability research, the coining of
the term XAI since the 2010s, and the crystallization of XAI
as a new research area [17, pp. 62-66].

III. STATE OF EXPLAINABILITY RESEARCH

Compared to earlier phases of XAI, today’s challenges are
fundamentally different. In the past, the training of an AI
model was minimal – if present at all. While the rules of an
ES were created by humans and ‘only’ needed to be translated
into English, NNs, for example, only implicitly retain these
rules. Finding and extracting rules from AI models is not an
easy task. That is why, until recently, XAI has focused mainly
on the models themselves and less on human interaction with
explanations.

Based on the historical reconstruction in the chapter above,
we can use the analysis of the state-of-the-art in the following
to get a clear understanding of XAI’s prospects and challenges.

Today, XAI has an immensely diverse ecosystem. This is
due to two main factors. First, it is based on a wide variety
of AI models with many different data types and multiple
learning algorithms. In earlier AI models, the input data was
textual or numerical. Today, AI models can also handle visual
and auditory data. This presents new challenges, but also new
opportunities for presenting explanations to users. Second,
the diversification is encouraged by the current development
method: new explanations are developed on a case-by-case
basis, e.g., for a specific model, use-case, or user and often
don’t take into account larger methodological considerations.

The following sections analyse the XAI landscape in two
ways. First, approaches are categorized along different di-
mensions of goals, technical applications and user interaction
(section III-A). By systematizing the landscape, it becomes
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possible to discern approaches and to identify their common-
alities. Second, four XAI examples and their taxonomy paths
are given to hone the taxonomy and to highlight some key
shortcomings of today’s XAI (section III-C). The results lead
to the definition of principles in the next section (section IV),
to help find common features as well as gaps in XAI, that
might be important for future research.

A. Taxonomy

The taxonomy below (figure 2) features a kind of flow
pattern to illustrate the different steps taken by an XAI method
or during its development. This leads to a hierarchy of di-
mensions: from start to finish, the dimensions are sorted from
foundations to computational methods to output modalities.
Each XAI instantiates a path through the dimensions and
categories. Since categories are not always exclusive, an XAI
can incorporate multiple.

The myriad of XAI approaches leads to a variety of different
ways to taxonomize them. After presenting our taxonomy in
the following, we will give an overview of other taxonomies
and compare them to our approach.

While goal and target group are preliminary dimensions and
can be decided outside of a specific technical implementation,
integration stage, applicability, methodology, and scope con-
cern the nuts and bolts of an XAI approach. The last three
dimensions - result modality, result format, and presentation
format - categorize the results of XAI approaches.

1) Goal: The most fundamental dimension of an XAI
approach is its goal. Every other dimension depends on it
in one way or another. XAI goals are the translation of either
intrinsic desires or external constraints. Intrinsic desires can
be human curiosity, societal acceptance of an AI model or
knowledge extraction, while legal compliance, security, and
debugging of the models are external constraints that require
the use of XAI. The goals of an XAI given by authors of XAI
approaches are regularly very broad, mentioned in passing and
not followed up on. This is due, at least in part, to the difficulty
of proving goal fulfilment, which can be a very domain-
and application-specific endeavour. A second important reason
why stated goals often remain vague, is a mismatch between
the supposed embedding of a goal and the actual results of an
XAI. XAI papers typically do not define the term ‘explanation’
[9], [29, cf. e.g.]. When they do, it is a working definition for
themselves, which lacks theoretical grounding [12]. Given the
goals that many researchers name, their working definition of
‘explanation’ seems to rely solely on human interaction. The
only way to prove goal fulfilment would be empirical studies
showing that an XAI can fulfil a claimed goal for a given user.
Instead, the researchers rely on our imagination to perceive
goal fulfilment simply by understanding the mechanics behind
the XAI.

2) Target Group: An XAI approach must meet different
requirements, depending on the target group it is aimed at.
Target groups can be distinguished by their domain knowledge
of AI and its application domain, as well as their use of
explanations. The following target groups are an adapted
version of the human-centred taxonomy by Langer et al. [30].

While the subject (someone who is affected by the output
of an AI) typically has neither ML knowledge nor domain
knowledge, a developer has a large knowledge base in ML,
just as a deployer knows the ins and outs of his domain.
Given these differences in prior knowledge, explanations need
to provide different levels of detail. Especially because these
explanations will be used either to improve an AI model
(developer), to get insight-driven explanations for AI results
(user), to assess performance (deployer), or to get a knowledge
base on which to decide if an AI model is fair (regulator,
subject). These five target groups are not set in stone, and in
some application cases, multiple groups may be embodied by
a single person.

3) Integration Stage: The first technical dimension to group
XAI approaches by is integration stage. Either an AI model is
developed in such a way that explanations can be obtained di-
rectly from it (ante-hoc), or an already existing opaque model
needs some kind of addition making it explainable (post-hoc).
For post-hoc methods, the performance and interpretability of
an AI model is a more flexible two-step process. Typically,
models in the first group are so-called transparent models (e.g.,
decision trees (DT)), for which the computational process is
relatively simple and semantically meaningful. While there are
applications where it is useful to rely on this method instead
of building more complex models [31, p. 5], it is by no means
a solution for all cases. A transparent model is not necessarily
understandable for two reasons. To be understandable the
input features must be meaningful to humans, and the model
must not be too large, otherwise the AI model’s decision
process cannot be followed by a human [32], even if it is
semantically meaningful. Ante-hoc methods exist only with a
specific AI model, as it is built in a way that requires no further
explanation. Therefore, a categorization by applicability and
methodology is only meaningful for post-hoc models.

4) Applicability: Post-hoc explanations are the more com-
mon solution because they can be used on already existing AI
models. They can either have a broad range like SCOUTER
[33] because they are data-oriented, or they are more de-
pendent on the AI model structure itself and therefore have
a narrow range like DeConvNet, which is only applicable
to Convolutional Neural Networks (CNNs) [34]. The two
extremes of this dimension are model-agnostic and model-
specific, but most approaches lie on a spectrum in between.
Post-hoc approaches that are completely model-agnostic, are,
e.g., LIME [9] and SHAP [35], which only alter input data to
measure a difference in output. However, the connotation of
model (in)dependence is multifaceted. Does ‘(in)dependence’
mean that an XAI is applicable to every AI or to every AI of a
specific type? Is it usable only with knowledge about or access
to the inner computations, or without it? Does it require an
alteration of the structure of the AI model or not? This shows
that the groups in this dimension are not as clear-cut as in
others, and the categorization is more of a broad direction.

5) Methodology: The dimension of methodology is inter-
connected with the applicability dimension above. Different
methods have a narrow or broad application range based
on their functionality out of four different methods. First,
there are XAI approaches that modify [36] or add to the
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Fig. 2. Taxonomy: XAI State-of-the-Art

structure of an AI model [37] (architecture modification /
addition). Second, structure leveraging methods often use the
gradient information of a NN to determine the importance
of an input feature for the AI model’s output [38]. Some
methods exploit the structure of AI models by visualizing data
at network nodes, e.g., DeepVix [2]. Third, input perturbation
approaches are typically found in model-agnostic XAI. Input
data is altered, and the output is observed to gain information
about the input-output-relation of the AI model [9]. Fourth,
XAI methods can work through model extraction. A second
– interpretable – model is trained to mimic the results of the
first opaque model, with the expectation that it learns the same
decision boundaries [39].

6) Scope: The dimension of Scope is frequently utilized
in XAI taxonomies [40]. At this point it is also meaningful
to reintroduce ante-hoc methods. The two categories describe
whether an XAI approach explains individual instances (local)
or the entire model (global). Post-hoc approaches usually fall
exclusively in one of the two. However, some local methods
can be expanded to approximate global ones [9]. A transparent
ante-hoc model always exposes its structure. The size of which
determines whether it can be understood as a whole or only
in terms of instances’ paths.

7) Result Modality: As demonstrated previously, XAI can
be classified based on their goals and technical configuration.
Additionally, various types of it results and result presentations
can be distinguished.

There are two result modalities: an XAI can either explain
through feature relevance or by providing insights into the AI
model’s computation. Feature relevance explanations aim to
highlight the significant parts of the input for a given output
[29]. Model computation approaches aim to explain a model’s
function by focusing on its inner computations, without ref-
erencing a single instance. For example, Springenberg et al.
visualize different layers in a Convolutional Neural Network
(CNN) to achieve this [41].

8) Result Format: XAI with both modalities can present
results in different result formats. It can explain either by
using examples drawn from the training data set [42, cf.
e.g.], by visually highlighting parts of input data (images,

tabular data, or text) [38, cf. e.g.], by displaying (parts of)
the model [43, cf. e.g.], or by creating a surrogate model
that is transparent [44, cf. e.g.]. Feature relevance approaches
typically use highlighting, while model display or even a full
surrogate model are more effective to explain an AI model’s
computation.

9) Presentation Format: The final dimension by which XAI
approaches can be grouped is their presentation format. The
choices of format heavily dependents on the earlier dimen-
sions, as well as the AI model and data type. For instance,
visual explanations are typical for XAI approaches that try
to locally explain the feature relevance by highlighting the
input of an image classification algorithm [29], [33], [45,
cf. e.g.]. However, some use visual presentations to provide
explanations by displaying surrogate models globally [46, cf.
e.g.]. Textual explanations are used to explain the ‘reasoning’
of AI in sentences to make them as easily understandable as
possible [47]. The numerical presentation format is commonly
used for XAI approaches aimed at developers. This format can
provide a more nuanced result, but may only be understandable
by someone with prior knowledge [48].

B. Literature Review

In the following, we present some other taxonomies that
are relevant to our approach. This will give an overview of
the state-of-the-art and further motivate our own approach.

As mentioned above, most of the dimensions are not new,
but some are more widely used than others. For example,
Lipton in 2018 [32] and Tomsett et al. in 2018 [49], while
not being explicit taxonomies, mention different dimensions in
their descriptions of the research field. Lipton first analyses the
notion of transparency, distinguishing between simulatability,
decomposability and algorithmic transparency [32, p. 40]. Ba-
sically, we are splitting our category of ante-hoc approaches.
Lipton distinguishes another type, post-hoc approaches, which
he further subdivides into textual and visual explanations and
explanations by examples. [32, pp. 40-42]. Both categories
are regularly mentioned by researchers. Tomsett’s paper, on
the other hand, is one of the few examples that analyses our
dimension of target group. They identify six target groups:
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creator (organisation that owns the model as well as the
developer, in our approach developer and deployer), operator
(person who works with the model and provides its inputs, in
our approach user), executor (person who acts on the outputs
of the model), in our approach also user), decision-subject
(person affected by the output of the model, in our approach
also subject), data-subject (person whose personal data was
used to train a model, in our approach also subject), examiner
(e. g., auditors, in our approach regulator) [49, pp. 9-10].

One taxonomy that names a variety of categories that are
present in other taxonomies and are also included in our
approach is that of Arrieta et al. from 2020 [50]. They mention
the distinction between model-specific and model-agnostic
approaches. They further distinguish model-agnostic expla-
nation by simplification (which partly overlaps with model
extraction of our taxonomy), feature relevance explanation,
local explanation and visual explanation [50, pp. 92-94]. While
these are all valid categories of model-agnostic approaches, in
our taxonomy they fall into different dimensions. Our flow-
like taxonomy helps us to distinguish between the different
qualities of the categories and saves us from juxtaposing
them. This becomes even clearer when looking at the tree-
structured overview of Arrieta et al. [50, p. 93]. One can see
the mentioned categories at different levels of the tree for both
model-agnostic and model-specific approaches. While this is a
correct assessment, it is not particularly good for clarity.

A more technically focused taxonomy can be found in
the paper by Guidotti et al. [51]. They review the state-
of-the-art and divide it into four categories: model explana-
tion, outcome explanation, model inspection, and transparent
box design. Model explanations are what we call global in
scope and stick to model extraction as their methodology.
Outcome explanations are simply all local explanations. Model
inspection describes post-hoc approaches and transparent box
design ante-hoc approaches respectively [51]. Again, these
four categories have different levels of detail (and belong to
different dimensions in our taxonomy). Additionally, they give
examples of XAI for each category and define the features
that these examples could have. Related to our taxonomy, they
propose the feature of generality, which corresponds to our di-
mension of applicability, and randomness, which we describe
by the category of input perturbation. Again, discussing these
in a comparative way seems somewhat confusing. However,
Guidotti et al. supplement these features with others that are
explicitly aimed at computer scientists. They mention the exact
ML-model as well as the data modality. And they go on to
say whether an approach gives specific examples and whether
it has an accessible code base and dataset. This could help
computer scientists to choose an XAI approach that suits their
purpose.

A taxonomy with a specific research area, namely clinical
applications, as its background is Antoniadi et al. in 2021
[52]. They review a variety of XAI approaches in medicine
and discuss them in the context of clinical decision support
systems. In the end, they sort them into three dimensions
that overlap with ours: model-agnostic/specific (our dimen-
sion of applicability), ante-hoc/post-hoc (integration stage),
local/global (scope) [52, p.13]. Although they do not name

their dimensions in the same way, they are very similar to
those proposed in this paper. In addition to dividing the field
into many more dimensions, we analyse the dimension of
applicability in more detail, as we find a binary distinction
too restrictive.

Timo Speith in 2022 [40] and Gesina Schwalbe and Bettina
Finzel in 2023 [15] attempted to unify the taxonomy land-
scape. While Schwalbe and Finzel devise a taxonomy that
incorporates different approaches, Speith extends a taxonomy
with an XAI database and the idea of a guiding decision tree.
Speith focuses on the technical application of his approach. It
is designed to assist researchers in selecting an XAI approach.
Schwalbe and Finzel, on the other hand, attempt a meta-
categorisation. At the highest level, they distinguish three
aspects of XAI methods: problem definition, explanator, and
metrics [15]. While they mention their chronological order,
they later present them collocated. This in turn obscures the
order of the subcategories of all three aspects. The resulting
taxonomy by Speith is similarly extensive, but mainly men-
tions the technical aspects of XAI approaches [40, p. 2246].
Consequently, the clusters mentioned by Speith overlap signifi-
cantly with ours (but lack the flow-like structure): stage (in our
approach integration stage), scope, functioning (methodology),
result (result format), output format (presentation format) [40].
For Schwalbe and Finzel, the subcategories of the explanator
aspect in particular overlap with our dimensions [15]. As both
taxonomy surveys focus on the technical functioning of XAI
approaches, our first two dimensions goal and target group
are missing in both resulting taxonomies.

To illustrate the advantages of our approach, we will now
explain our taxonomy, its dimensions and categories, and its
flow-like structure by incorporating some XAI examples into
our taxonomy.

C. Taxonomy Paths

The previous section provided an overview of all XAI
dimensions and their categories. The taxonomy provides an
effective way to conceptualize the current XAI landscape,
although new developments may require adaptation. However,
the wide variety of XAI approaches makes it difficult to
develop a precise understanding of the categories and their
meanings for each approach. To improve this, and to enable the
identification of current overarching issues, missing principles,
and potential solutions, the following three sections illustrate
the structure and meaning of the taxonomy by tracing the
paths of four selected XAI approaches through it. The different
paths highlight not only differences but also commonalities of
approaches similar to the archetypal examples selected below.

1) ’Why Should I Trust You?’ by Ribeiro et al.: One of
the best known XAI algorithms is LIME (Local Interpretable
Model-agnostic Explanations) by Ribeiro et al. [9]. The path
through the taxonomy is shown in the figure 3. LIME creates
new (pseudo) instances by perturbing the input in the region of
the original instance. By observing the changes in the output,
a linear approximation is computed with the created instances
weighted by their closeness to the original instance. In this
way, it is completely independent of the model itself and
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model-agnostic. The coefficients of this linear approximation
are then used as an input importance measure for the output
at the given instance [9, pp. 3-4]. Ribeiro’s paper is one of the
few that also scientifically address the first two dimensions of
goal and target group. Several user studies are conducted to
verify that users are able to extract knowledge and combat
faults (improve the model) based on LIME [9, pp. 7-9].
However, they prove their main goal to enhance trust, only
by conducting a simulated user study (with positive results).
The possible target groups of LIME are not clear. Based on
the wording and studies conducted, one can infer that LIME is
aimed at deployers, developers, or users. On the technical side,
since LIME can be applied to any existing model, it is a post-
hoc approach. The technical description of LIME above shows
that it is model agnostic, which is achieved through its strict
use of input perturbations. The normal mode of operation of
LIME is to produce local explanations (see [9, pp. 5-6] for a
possible extension). The results then display the importance of
individual input features (feature relevance, input highlighting.
This is done either by highlighting so-called super-pixels in
images (visual) or by presenting a bar chart of the importance
(e.g., of words) to the user (numerical).

2) ’XAI for Transformers’ by Ali et al.: A relatively recent
XAI approach comes from Ali et al. in 2022 [38]. They
adapt the LRP method [45] for transformers. They found that
transformers, unlike, e.g., feed-forward NNs, cannot satisfy
the propagation constraints required by known relevance ap-
proaches. The Ali et al. path shows a different type of XAI
(see figure 4). It also presents some problems that many XAI
papers have. First, goal and target group are not as clear as
before and much less empirically verified, as they focus only
on technical aspects of their approach. They claim a “fairly
intuitive explanation method” [38, p. 1] and based on the
nature of their results, it is inferable that the method could be
either used by regulators, developers, or users. The suitability
for regulators also stems from the fact that Ali et al. want to
be able to “verify whether the model makes fair decisions and
does not discriminate protected classes” [38, p. 1]. Therefore,
it seems to be reasonable that regulation and evaluation is their
goal. Their post-hoc explanation method has narrow range. It
is possible to use it on more than one specific model, but it
is specifically designed for the transformer model class. The
method employed is structure leveraging. It is an extension of
LRP, which itself uses the structure of a Neural Network to
assign higher layer relevance to lower layer neurons. This is
done to obtain a feature relevance measure for a single input
image (local). The relevance is then displayed as a heat map
over the original input image to highlight the important areas
(input highlighting, visual).

3) ’Generating Visual Explanations’ by Hendricks et al.:
Another typical example of XAI research papers following a
different path is the explanation by Hendricks et al. [53] (see
figure 5 for path). They start with an opaque CNN and add
a Long-Short-Term-Memory (LSTM) extension [53, pp. 3-4].
They design a new loss to retrain this combination correctly.
After retraining, the CNN is used to process an image and
predict its class, while the LSTM produces a natural language
explanation of the image features that led to the classification

at hand [53, pp. 7-9]. Again, there is little information about
goal and target group. On the one hand, they mention that they
want to be able to “understand network mistakes and provide
feedback to improve classifers” [53, p. 3]. However, they claim
that their approach is “useful for non-experts” [53, p. 4]. In
addition, “understanding and interacting with AI systems” [53,
p. 3] should be encouraged by their explanation. All in all,
it might be possible to claim that knowledge extraction and
combating faults are the goals of Hendricks et al. and their
target groups are either users, subjects, or developers. None of
their claims are supported by any kind of user study. Hendricks
et al. only check their generated sentences theoretically [53,
p. 11-16]. As Hendricks et al. start with an opaque CNN it
is a post-hoc approach. The specific structure of the CNN
is irrelevant, which makes it a narrow range approach. The
methodology they follow to achieve their explanations is, as
explained above, an architecture addition (adding an LSTM
to an existing CNN). The LSTM than produces local feature
relevance measures that highlight parts of the input (input
highlighting) as textual output.

4) ’Interpreting Blackbox Models via Model Extraction’ by
Bastani et al.: The model extraction algorithm by Bastani et
al. [46] is a good example to showcase a very different path
through the taxonomy (see figure 6) that still has some of the
problems as the two examples above. Their proposed algorithm
extracts a (greedy) decision trees from an existing model by
sampling input data based on the training set distribution. First,
they explicitly state that their focus is to ”enable data scientists
[(developers)] familiar with machine learning to understand
and validate the complex model [(extract knowledge)]” [46, p.
5]. Second, as the tree building algorithm is used on the out-
puts of existing models and only uses the input-output relation,
it is, like LIME, a post-hoc, model-agnostic XAI. As Bastani et
al. state in the title, they propose a model extraction algorithm.
Building a transparent model that mimics the behaviour of the
original tries to explain global model computation. Finally,
while they could present their results in multiple ways, they
select to display the extracted model (a surrogate model) either
whole visually or its corresponding rules textually. However,
their claims are only partially substantiated. While they show
that people are able to interpret the resulting decision trees,
they do not show how this helps to understand and validate
the underlying models. Furthermore, while the decision tree
approximates the best greedy decision tree, this is no guarantee
that the underlying model works in the same way.

IV. PRINCIPLES

The last two sections have highlighted the chequered history
of Explainable AI and the current diversity of approaches. The
following section now analyses the commonalities and gives
them a firm grounding in three principles.

The notion of principles is very helpful at this point. As
mentioned earlier, XAI research is diverse not only because of
a multitude of AI models but also because of its development
procedures, which often have no common ground. This leads
to a field of research whose taxonomy has multiple dimensions
and many more subcategories. Principles help us to abstract
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Fig. 3. Taxonomy Path: LIME

Fig. 4. Taxonomy Path: XAI for Transformers

Fig. 5. Taxonomy Path: Visual Explanations
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Fig. 6. Taxonomy Path: Model Extraction

from the purely technical level and to find common concepts
between approaches across dimensions. Moreover, principles
create a system at a higher level allows analysis of the em-
bedment of approaches in different notions of explainability.

The principles below represent some of the defining strands
of XAI today. However, linking the principles back to earlier
research will help to find principles that are underrepresented
in or missing in contemporary XAI. The principles are nei-
ther exclusive nor a complete picture. They are intended to
stimulate discussion and provide an important perspective on
the development of XAI. Similar to Buchholz (2023) [54], our
analysis is two-sided. On the one hand, our taxonomy chapter
in particular is descriptive. The following principles have the
same function and describe the field of XAI research. On the
other hand, we argue why XAI necessarily conforms to these
principles and should conform to the principles proposed in
the next chapter (chapter V). We show how all the different
paths through the taxonomy necessarily adopt one or more
of the following principles, and why our proposed principles
would improve XAI research.

A. Computing Edges

Most XAI approaches try to compute some kind of edge.
This is partly due to the fact that most XAI is intended for
classification models. The idea is to use the distinction be-
tween decision regions to either explicitly or implicitly explain
a result compared to a possible alternative. This fits quite well
with a finding by Tim Miller. He analysed explanations from
a social science perspective and found that AI explanations
should be contrastive [28, p. 6].

1) Presence in History: Throughout the history of XAI
there have been approaches that have followed this principle.
As Expert Systems use decision rules, explanations in the first
and second generation consisted, at least in part, of translating
these rules into text, to explain the decision boundary embod-
ied in the rules. A novelty of current XAI, however, is that
these rules must first be approximated.

2) Decision Boundary: All ante-hoc (see integration stage
in section III-A3) and model extraction (see methodology
in section III-A5) explanations basically do some kind of

decision boundary detection, as a transparent model (e.g.,
a decision tree) shows the switch points of a model. The
best example would be a linear model, whose visualization
is typically just the decision boundary. Other XAI methods do
not necessarily display the decision boundary, but still use it
to compute their explanation. For example, input perturbation
methods implicitly rely on a crossing of the decision boundary,
as they use the information about the change in the prediction
due to a perturbation (see, e.g., LIME [9]). Independent of
integration stage, applicability, and methodology, XAI based
on counterfactuals depends differently on the decision bound-
ary. A counterfactual is a (synthetic) instance with changed
values for some features to show what (and how) features of
an original instance need to be changed to produce a different
result. This is basically moving an instance to the other side
of a decision boundary.

B. Dimensionality Reduction

A second defining principle is dimensionality reduction, or
simplification. Today’s ML models are so complex, that it is
necessary to reduce their complexity. This principle is directly
at work in post-hoc explanations while ante-hoc models have
to follow it during the design process. The different ways of
achieving this reduction are explained below.

1) Presence in History: This principle was already present
in the very first AI models. However, as explained above
(Chapter II-A), explanations worked the other way around.
The first AI models were explanations of the brain itself, and
they tried to do this by simplifying the way the brain worked
immensely. Later, the failure of the first generation of ES ex-
planations can be partly attributed to their failure to follow the
principle of dimensionality reduction. Simply recapitulation
decision rules could lead to overly long explanations paths,
cluttered with implementation details and of little help to the
user. [22, p. 12]

2) Scope Reduction: Each XAI approach must perform at
least one type of reduction: If the global model computation
is explained, necessarily the influence of single instances
is omitted and vice versa for local explanations. However,
there are drawbacks to be aware of. For example, a global
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model approximation can lead to low fidelity and a local
approximation is only valid for its neighbourhood.

3) Model Reduction: The reduction of dimensionality for
model computation is already somewhat present in the com-
puting edges principle. Focusing on the edge of a class is
a simplification because it omits computational differences
between instances of a class. Instead, it focuses on the
important classification differences between classes and is a
simplification of the input-output relation. With model extrac-
tion algorithms, a complex model is simplified by replacing
it with a transparent one with nearly identical behaviour.
The new model operates with fewer steps compared to the
layers in a Neural Network, for instance. It also reduces the
computational load (less parallelization of a Neural Network
or a random forest). This goes hand in hand with a better
traceability (see the next principle IV-C).

4) Input Reduction: In addition to reducing in model com-
putation, it is also possible to reduce the input or feature space.
Feature relevance approaches add a lot of information about
the importance of different features. However, in the end they
divide input data into positive and negative influence groups.
This is an example of simplification, as it does not require the
user to deal with a large number of input features and allows
them to focus on the most influential ones.

An XAI approach that combines several reduction methods
is counterfactuals. The first method is model reduction, as a
counterfactual focuses on the decision boundary rather than
the full range of a class. It also simplifies through its implicit
feature relevance. Simplification occurs because the influence
of most features is not shown to the user, as they only
have access to a few modified ones. The final dimensionality
reduction method that is implemented by counterfactuals is, by
their very nature, examples. Examples use the human ability
to recognise patterns as a basis for explanation. A few class
examples that are representative of the whole class (reducing
the input space) do not need an explicit proximity measure.
Their explanation is based on the fact that humans can detect
similarities and differences fairly easily and are able to identify
the defining characteristics.

C. Traceability, Blaming

If the focus of an XAI approach is model computation, this
last principle can be called traceability, otherwise blaming,
if it is a feature relevance approach. In both cases the goal
of the explanation is to attribute importance (blame) for a
result to parts of the model or input. At their core, traceability
approaches attempt to solve the explanatory relevance problem
of well-known scientific explanation models [55, cf. e.g.].
Although this task is easier to solve in the confined space
of a ML model, it is not a trivial task.

1) Presence in History: Traceability was the overriding
principle that guided the explanations of the first generation
of ES. Their main aim was to translate the rules by which
an input was processed into human-readable language. They
provided traceability by showing the steps taken.

2) Model Traceability: The difficulty of achieving full
traceability increases with the size of the model. A transparent

ante-hoc model can have traceability built in. It is simple and
small enough to be able to follow a path through the entire
model. However, an AI model can be so large that tracing one
path would be meaningless. XAI methods, therefore, use snap-
shots at critical points in the network to gain understanding.
This is true for all the methods that visualize Convolutional
Neural Network filters [41, cf. e.g.]. Structure leveraging XAI
bridges traceability and blaming. LRP [45] and its derivatives
[38, cf. e.g.] trace paths through a network, but display their
results only as heatmaps of the input image, which is the
working mode of feature blaming.

3) Feature Blaming: The way input perturbation methods
follow this principle is not by tracing a path from input to
output, but by attributing blame to input features based on
their influence in shifting the output. In this way, they identify
the most important input-output relationships. This is also true
for counterfactuals and their feature blaming mechanism for
moving an instance to another class.

V. FUTURE PRINCIPLES

Explainable Artificial Intelligence has changed several times
in the course of its development (see section II). Often new
AI models were the trigger for this development. However,
the change from first to second generation explanations for ES
was mainly due to the shortcomings of the explanations. This
points to the question, if a similar shift might be fruitful today?
Current XAI research consists of a wide variety of approaches.
The taxonomy in section III-A establishes categories to sort
this vast landscape.

The flow-structured taxonomy, together with our recon-
struction of the history of XAI, led us to our selection of
proposed principles. The principles can help to analyse XAI
research by embodying a higher-level structure. The fact that
our principles are based not only on the current state-of-the-art,
but also on our analysis of the past, gives them the necessary
foundation in this fast-developing field of research. However,
the different paths in section III-C show that current XAI
approaches already follow a variety of paths. A taxonomy with
some claim to generality cannot cover every possible edge case
without becoming arbitrary. As a consequence, our principles
may miss some (current or future) XAI approaches. In what
follows, therefore, we propose two additional principles that
we believe could help future developments of XAI. They are
an attempt to bridge the gap between current principles, to
capture more XAI approaches, and to stimulate discussion
about future XAI developments.

A. Embedment

The main principle discovered to be necessary for the
second generation of ES explanations was, best described
as Embedment. The problems of the first generation were
labeled by Moore and Swartout as the “recap as explanation
myth” [22, p. 11]. It was combated in two ways: second
generation explanations began to “[account] for the student’s
recent behaviors and claims” [17, p. 52] and became “context-
sensitive” [17, p. 52].
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1) user interaction: Clancey’s GUIDON specifically incor-
porated Embedment for user interaction and attempted to solve
the problems of MYCIN [24]. Clancey used a system that
kept track of a student’s knowledge and allowed the system to
tailor its explanations to the user and his prior knowledge.
This shows the importance of defining a target group for
an XAI approach. Target groups are differentiated by their
desires and their prior knowledge of ML and application
domains. Designing an XAI for a specific target group enables
leveraging prior knowledge. The realization that explanations
need to be more than a list of rules has led to the development
of systems that incorporate knowledge that was previously
implicit. Neches and Swartout use procedural and declarative
knowledge about a domain in their ‘Explainable Expert Sys-
tem’ [56]. Their idea was to make available the knowledge
that went into development. Today, this would mean using
knowledge that was implicitly learned by the model during
training. In practice, one would have to at least document
the training procedure, its steps, and data. The interaction
mechanisms developed for second generation explanations
were later summarized by NUCES [57]. The user interaction
mechanisms it applied consisted of a multimodal knowledge
graph that was accessible to the user, incorporating visual,
textual, and numerical information. Today, unlike the first
generation ES, we are already able to produce visual, textual,
and numerical explanations. There are even some frameworks
that incorporate multiple XAI approaches [58], [59, cf. e.g.].
In the future, we need to deploy more multimodal explanations
that structure different modalities in a meaningful way.

2) Context Sensitivity: In addition to user interaction,
NUCES is also context sensitive. The reason why the second
generation of ES explanations followed context sensitivity is
due to the fact that they were tutoring systems and their
explanations had to be linked by their very nature to the
context of their models. Today there are decidedly model-
agnostic XAI approaches [9, cf. e.g.], and even those with
a more narrow range are intended to be applied to a variety
of models [38, cf. e.g.]. Context sensitivity is not an option for
these approaches. However, even for today’s XAI there exist
some research regarding the importance of context-sensitivity
[60, cf. e.g.]. Stieler et al. developed a domain-specific ap-
proach that takes into account the important factors for skin
cancer classification. The context sensitivity of NUCES also
applies to the available data, as it is possible to explore
the entire knowledge tree. For today’s AI models, this is no
longer possible due to the training done during development.
Typically, one does not have access to that information during
deployment. Without the knowledge about what the models
had access to, a grounding to ground truth is not possible:
“[How] can we evaluate the importance of someone’s salary to
a loan decision, if the classifier can only evaluate people with
valid salaries” [61, p. 282]? A context sensitive explanation
would make it easier to identify possible knowledge gaps in
the model’s reasoning.

B. Scientific Testing
Interestingly, there is one principle that is often missing

from today’s XAI, as well as, second generation ES

explanations: Scientific Testing. This is a principle that is
not directly related to the functioning or results of an XAI,
but to its overall development. Section III-C mentions that
many approaches are not scientifically tested. Even if they
are, there is no generally accepted measure of ‘explanation
goodness’. In addition, the tests are only performed for the
specific use case of the authors (case-by-case development)
and not on a collective data set. The combination of these
issues leads to undefined performance and, in the worst
case, XAI approaches that do not work as they should. For
example, Adebayo et al. showed in 2018 that some structure
leveraging feature relevance approaches either act only as
edge detectors and are invariant to higher-level NN weights
[62]. Lack of validation also led to the failure of the first
generation of ES explanations. Approaches developed by
computer scientists as research tools looked reasonable to
an outside observer, but were never really implemented in
the real world because domain experts did not find them
useful [22, pp. 1-2]. In the future, XAI approaches need to
be validated and tested on users to ensure that they work as
expected and to provide a reasonable basis for further research.

Both principles proposed are not completely new. As men-
tioned earlier, Embedment was at the bottom of the shift from
first to second generation ES explanations. Scientific testing
is considered for some time in the XAI debate [62]–[64]. We
were again able to show why that is a good thing and how
Scientific Testing is an important principle to consider in the
future. Both principles are not just a suggestion for the future,
but an important tool - together with the other principles - to
analyse state-of-the-art approaches.

VI. CONCLUSION

Our paper analysed the current state of XAI from several
perspectives. First, we provided a historical reconstruction
of XAI developments. It relates AI improvements to their
inevitable impact on explanatory research throughout history.
The reconstruction provides the basis for a meaningful analysis
of the state of XAI. It is the basis for discussing future
developments of XAI for our paper and in general. Second, we
proposed a new taxonomy based on this historical reconstruc-
tion and state-of-the-art XAI approaches. Our taxonomy has a
flowchart inspired structure. By relating the dimensions of the
taxonomy not only to the XAI development process, but also
to each other, this flow architecture creates an additional layer
of structure that is missing in other taxonomies. It enables
a deeper analysis of XAI approaches and their benefits and
shortcomings. As our taxonomy is a combination of detailed
categories and broadly applicable dimensions, it is suitable
for a wide variety of contexts. Third, using the historical
reconstruction and our flowchart inspired taxonomy, we were
then able to propose three overarching principles of XAI
research: Computing Edges, Dimensionality Reduction, and
Traceability/Blaming. These are capable of structuring the
debate in a new way. Our principles are not only meant
to describe the current state of XAI and propose ideas that
approaches currently adhere to. We also propose two new
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principles that XAI approaches should follow in the future
to improve their explanations. The future XAI principles are
Embedment and Scientific Testing. As shown in the previous
sections, the current state of XAI research requires a more pre-
cise definition of its objectives and methods (Scientific Testing)
to meet the demands of the future. In addition, researchers
should improve user interaction and context sensitivity to
ensure user acceptance of explanations (Embedment). Our
structured analysis of the history and state-of-the-art of Ex-
plainable Artificial Intelligence provides a basis for a fruitful
discussion on XAI. By integrating historical perspectives with
state-of-the-art approaches, our research stimulates discussion
about the principles that XAI follows and should follow in
the future. A more systematic approach would benefit the field
in the long run, allowing for more efficient development and
potentially opening it up to researchers from other disciplines
in the future.
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rnn model explanations via model extraction.” [Online]. Available:
http://arxiv.org/pdf/2012.06954v1

[40] T. Speith, “A review of taxonomies of explainable artificial intelligence
(xai) methods,” in 2022 ACM Conference on Fairness, Accountability,
and Transparency, ser. ACM Digital Library. New York,NY,United
States: Association for Computing Machinery, 2022, pp. 2239–2250.

[41] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net.” [Online]. Available:
http://arxiv.org/pdf/1412.6806v3

[42] A. Adhikari, D. M. J. TaxTax, R. Satta, and M. Faeth, “Leafage:
Example-based and feature importance-based explanations for black-
box ml models,” in 2019 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), IEEE, Ed., 2019, pp. 1–7. [Online]. Available:
https://ieeexplore.ieee.org/document/8858846

[43] G. Alain and Y. Bengio, “Understanding intermediate layers using linear
classifier probes.” [Online]. Available: https://arxiv.org/abs/1610.01644

[44] H. Tan and H. Kotthaus, “Surrogate model-based explainability methods
for point cloud nns,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), IEEE, Ed., 2022, pp. 2239–
2248.

[45] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation,” PLOS ONE, vol. 10,
no. 7, p. e0130140, 2015. [Online]. Available: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0130140

[46] O. Bastani, C. Kim, and H. Bastani, “Interpreting blackbox models via
model extraction.”

[47] U. Ehsan, B. Harrison, L. Chan, and M. O. Riedl, “Rationalization:
A neural machine translation approach to generating natural language
explanations,” in Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society, J. Furman, G. Marchant, H. Price, and F. Rossi,
Eds. New York, NY, USA: ACM, 2018, pp. 81–87.

[48] J. Ribeiro, L. Cardoso, R. Silva, V. Cirilo, N. Carneiro, and R. Alves,
“Global explanation of tree-ensembles models based on item response
theory.” [Online]. Available: http://arxiv.org/pdf/2210.09933v1

[49] R. Tomsett, D. Braines, D. Harborne, A. Preece, and S. Chakraborty,
“Interpretable to whom? a role-based model for analyzing interpretable
machine learning systems,” ICML Workshop on Human Interpretability
in Machine Learning (WHI 2018), 2018. [Online]. Available:
http://arxiv.org/pdf/1806.07552

[50] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[51] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Computing Surveys, vol. 51, no. 5, pp. 1–42, 2019.

[52] A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker,
and C. Mooney, “Current challenges and future opportunities for xai in
machine learning-based clinical decision support systems: A systematic
review,” Applied Sciences, vol. 11, no. 11, p. 5088, 2021. [Online].
Available: https://www.mdpi.com/2076-3417/11/11/5088

[53] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and
T. Darrell, “Generating visual explanations,” in Computer Vision – ECCV
2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 3–19.

[54] O. Buchholz, “A means-end account of explainable artificial intelli-

gence,” Synthese, vol. 202, no. 2, pp. 1–23, 2023. [Online]. Available:
https://link.springer.com/article/10.1007/s11229-023-04260-w

[55] C. G. Hempel, “Laws and their role in scientific explanation,” in The
philosophy of science, ser. A Bradford book, R. Boyd, P. Gasper, and
J. D. Trout, Eds. Cambridge, Mass.: MIT Press, 1991, pp. 299–315.

[56] R. Neches, W. Swartout, and J. D. Moore, “Explainable (and
maintainable) expert systems,” in Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, A. Joshi, Ed. Los
Altos, Calif.: Morgan Kaufmann, 1985. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:1376515
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