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Abstract
In recent decades, percutaneous ablation procedures have evolved into a recognized treatment option for renal cell
carcinoma (RCC). Thermal ablation techniques, including radiofrequency ablation (RFA), microwave ablation (MWA),
and cryoablation (CA) are now incorporated in most treatment guidelines as a viable alternative, and in some cases,
deemed equivalent to nephron-sparing surgery (NSS) or other surgical methods, especially for small renal masses
(SRM) up to 4 cm. This review offers an overview of the most prevalent ablation techniques used to treat localized RCC.
Additionally, it compares the oncological and clinical outcomes of these techniques with those of surgical options.
Finally, it provides an assessment of the role that ablation treatment occupies in current guidelines. In conclusion, the
use and incorporation of image-guided minimally invasive treatment options for RCC is on the rise. Existing data
suggest that thermal ablation procedures (RFA, MWA, and CA) and partial nephrectomy yield comparable oncologic
and clinical outcomes. Despite the data available, the recommendations for thermal ablations vary significantly across
national and international guidelines.

Key Points
● Question Despite growing evidence and integration in international guidelines, recommendations for ablative procedures in
localized small renal cell cancer vary considerably.

● Findings Existing, mostly retrospective, data suggest that thermal ablation and partial nephrectomy yield comparable
clinical results for small tumors.

● Clinical relevance Based on the current literature, thermal ablation of renal cell cancer up to 4 cm in size can be offered to
patients as an alternative to surgery.

Keywords Renal cell carcinoma, Radiofrequency Ablation, Microwave ablation, Cryoablation, Partial nephrectomy

Introduction
Renal cell carcinoma (RCC) is one of the most common
malignancies worldwide, according to the Global Cancer
Observatory [1]. Each year, more than 300,000 individuals
are diagnosed with kidney cancer [2–4]. Recent technical
advances in cross-sectional imaging modalities have led to
a significant increase in the diagnosis of RCC and espe-
cially the detection of small renal masses (SRMs), which
are defined as lesions less than 4 cm in size [3]. The

strategies available to manage patients with an SRM
suspected to be RCC include active surveillance, ablation
therapy, and surgery [3]. Most current guidelines prior-
itize nephron-sparing surgery (NSS), like partial
nephrectomy (PN), for SRM management whenever
technically feasible [3].
Over the past few decades though, percutaneous ablation

procedures have developed into a well-established further
treatment option for RCC localized to the kidney. Thermal
ablation techniques are now incorporated in most guide-
lines as a viable alternative or even equivalent to NSS or
other surgical approaches [3, 5–8]. The most commonly
used ablative procedures include radiofrequency ablation
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(RFA) and microwave ablation (MWA). As a hypothermal
technique, cryoablation (CA) offers some advantages over
RFA andMWA including superior visualization of its effect
during the procedure and a lower risk of thermal damage at
the edges of the ablation zone [9]. This may translate into
advantages in the treatment of centrally or near the hilum
and the ureter-located SRMs, which generally pose a
challenge for NSS. However, based on the current literature
MWA, RFA and CA seem to perform equally well in SRMs
[10–12].
Aside from thermal procedures, there are other intri-

guing local ablative treatment options for RCC. Radiation-
based techniques, such as Stereotactic ablative body
radiotherapy (SABR) and image-guided high-dose-rate
(HDR) brachytherapy, are gaining interest in the field of
local ablation procedures [13]. Additionally, irreversible
electroporation (IRE) is another nonthermal method for
treating tumors that are characterized by a low risk to
surrounding tissue and critical structures. However, while
thermal procedures are widely accessible and straight-
forward to perform, radiation-based techniques and IRE
typically require a high degree of local expertise [14].
Although there is a substantial body of evidence indi-

cating that ablation procedures and surgical resection are
similar in terms of outcome and safety in treating small
and exophytic renal tumors, national and international
guidelines for thermal ablation and treatment protocols
vary significantly, and some guidelines do not even pro-
vide recommendations for cancers larger than 3 cm or
4 cm [3, 5, 6]. This review provides an overview of the
most common ablation techniques for treating localized
RCC. In addition, it compares oncological and clinical
outcomes with those of surgical options. Finally, we cri-
tically review the role assigned to ablation treatment in
current guidelines.

Materials and methods
A thorough review was undertaken by systematically
exploring a variety of academic databases, including
PubMed, Embase, and the Cochrane Library. This extensive
search encompassed a wide range of publications, ensuring
the inclusion of relevant studies and data available up until
August 2024. This methodical process allowed a robust
synthesis of existing knowledge, integrating key findings
from diverse sources, and presenting a comprehensive
overview of the topic under investigation. Data extraction
was meticulously carried out by two independent authors
(T.A.A. and Y.U.). In instances where discrepancies arose
during extraction, a third author (F.C.) was consulted. This
consultative and collaborative approach was implemented
to ensure that all data were scrutinized with the utmost
rigor. The involvement of a third reviewer to achieve con-
sensus not only strengthened the accuracy and integrity of

the extracted data but also bolstered the overall reliability
and validity of the findings included in the review. The
extracted data are summarized in Tables S1 and S2 in the
supplementary material.

Ablation techniques
Thermal procedures (Table 1)
RFA (Fig. 1)
RFA is the most widely used and accepted ablation
technique and was first introduced for RCC in 1997 [15].
The procedure entails inserting one or more radio-
frequency electrodes (usually using a multipolar umbrella
design) into the tumor tissue using imaging guidance [16].
These electrodes work by delivering an electrical current
that induces ionic agitation within the tumor tissue. This
process generates heat, raising the temperature of the
targeted area to above 60 °C. At such high temperatures,
the heat causes proteins and cellular structures to dena-
ture, leading to cell death through a process known as
coagulative necrosis. Allowing for different device-specific
protocols, a common technique for RFA typically begins
with an initial electrical power setting of 30–40W. The
power is then gradually increased at a rate of 10W/min.
Power delivery is interrupted briefly twice, known as
breaks or roll-offs, to ensure optimal energy delivery and
tissue destruction while minimizing the risk of over-
heating or damage to surrounding tissues [16–18].
Research has demonstrated that RFA offers excellent
overall survival (OS), 5-year cancer-specific (CSS), local
recurrence-free survival (LRFS), and metastasis-free sur-
vival (MFS) rates of 75.8%, 97.9%, 93.5%, and 87.7%, in
lesions with a mean size of 2.9 cm, respectively [19].
The primary limitations of RFA are due to the inherent

physics of the procedure. One key issue is the dissipation
of heat to nearby blood vessels, known as the “heat-sink
effect”, which can alter the shape and size of the ablation
zone. As a result, treating lesions that are 3 cm or larger
becomes challenging. Furthermore, this effect also pro-
longs the treatment time, potentially increasing the risk of
complications. Additionally, RFA typically creates sphe-
rical ablation zones, which may not be ideal for all tumor
shapes. Another limitation of RFA is poorer intraproce-
dural visualization compared with other techniques such
as CA. Additionally, the proximity of risk structures, such
as the bowel, further restricts the procedure’s applicability
[16, 17, 20].

MWA (Fig. 2)
Like RFA, MWA is a heat-based procedure and has a
similar effect grade; however, MWA has been available as
an interventional ablation method for a significantly
shorter period, having been introduced in 2008 [21].
MWA uses electromagnetic waves to produce heat and
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cause cell death through hyperthermal injury. A needle-
like probe, or antenna, is inserted into the tumor, emitting
microwave energy to create an electromagnetic field. This
field generates frictional heating, raising temperatures to
over 100 °C [17, 22]. MWA is particularly effective in
heating larger tumor volumes because, unlike RFA, where
the active heating zone is confined to a few millimeters
around the electrode, MWA can heat tissues up to 2 cm
away from the antenna [23, 24]. While, as a thermal
method, MWA faces similar limitations as RFA (proxi-
mity of risk structure), its heat-sink effect is generally
considered to be less of an issue because of the higher and
faster energy transfer of MWA. Nevertheless, these higher
energy levels and temperatures theoretically increase the

risk of complications and damage to surrounding struc-
tures, such as vessels [17, 23, 24]. Nonetheless, similar
limitations regarding size exist, and the results presented
in the literature are therefore comparable. MWA has
reported outcomes of survival and recurrence-free survi-
val (RFS) rates of up to 97–98%, comparable to the out-
comes of PN in T1a and T1b tumors up to 7 cm [25, 26].

CA (Table 2 and Figs. 3, and 4)
CA is a technique that utilizes argon or liquid nitrogen-
based cryoprobes to reduce the temperature within the
tumor to below −40 °C. The procedure generally involves
two freeze-thaw cycles, typically consisting of 10 min of
freezing followed by variable times of active and passive

Fig. 1 A, B Shows the contrast-enhanced CT in the weeks before the ablation and the native sonogram of a 36-mm papillary RCC at the lower pole of
the left kidney. C Shows the intraprocedural cone-beam CT during RFA with ablation for 12 min and hydrodissection. D Shows the CT as a control scan
with good local tumor control
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thawing. However, different freeze-thaw cycles have been
proposed [27, 28]. The key advantage of CA is its out-
standing periprocedural visualization. The ice ball that
forms around the needles is easily visible on both CT and
MRI scans, and to a lesser extent also on ultrasound.
Scans acquired during the freezing cycles can help

monitor and control the size of the ice ball, and therefore
the ablation zone. Additionally, using multiple needles
enables the creation of ablation zones of various shapes
and sizes leading to the ability to treat larger tumors,
including T1b lesions. Although CA is considered a
relatively new thermal procedure, reliable long-term

Fig. 2 Seventy-nine-year-old female patient who presented for a second opinion. Initially, the patient was offered a resection of the upper third of the
kidney. A Pre-interventional axial MRI slice with a 12 mm exophytic lesion suspicious for RCC in the upper pole of the kidney. Due to its size and location,
the patient was offered MWA and diagnostic puncture for histologic confirmation in one session in analgosedation (fentanyl and midazolam). B Planning
scan in the prone position and arterial phase (lesion indicated by white arrowhead). C Peri-interventional fluoroscopy CT scan with the position of the
MWA antenna in the center of the lesion (white arrowhead). D Postinterventional scan obtained directly after ablation, indicating sufficient coverage of
the lesion by ablation. The white arrowhead is pointing at the post-ablation area. Histology confirmed the diagnosis of clear cell RCC
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experience has been gained by some centers [29, 30].
Bhagavatula et al reported intermediate- to long-term
outcomes in 307 patients with a 10-year and 15-year
disease-specific survival (DSS) of 88% [30].

Radiation-based procedures
Radiation-based treatments for localized RCC are not very
common or well-established. This is partly because
effective local ablative alternatives are available, and also
because these techniques are typically only accessible at
larger hospitals or specialized clinics. However, similar to
the trend seen with HCC, radiation-based procedures are
gaining increasing significance [31].

Stereotactic body radiotherapy
SABR is an innovative, noninvasive curative treatment for
patients with primary renal cell cancer. Unlike thermal
ablation, SABR is suitable for both T1a and T1b or larger
tumors. [13]. In 2022, Siva et al concluded through meta-
analyses that SABR is a safe and effective long-term
treatment for patients with primary RCC. While single-
fraction SABR may result in lower local failure rates
compared to multifractional treatments, additional

evidence from randomized trials is needed to determine
the optimal treatment regimen. These mature findings
further support the use of renal SABR as a treatment
option for patients who are either unwilling or unfit for
surgery [32]. The abovementioned data was already
incorporated into the latest guideline of the European
Society of Medical Oncology (ESMO) [7]. In a recent
phase 2 trial also published by Siva et al SABR demon-
strated a 100% CSS survival and no local failures at 43-
month follow-up. However, adverse events were notable,
with 10% experiencing grade ≥ 3 toxicity and 74% grade
1–2 toxicity [33]. Another phase 2 trial reported a sig-
nificant decline in renal function post-SABR. Additionally,
biopsies performed one year after treatment occasionally
revealed viable tumor cells, raising questions about long-
term efficacy [34].

CT-guided HDR brachytherapy (Fig. 5)
CT-guided HDR brachytherapy is an interstitial radio-
ablative technique that involves temporarily placing an
iridium-192 source into the target lesion through a
catheter utilizing image guidance. The effectiveness of
CT-guided HDR brachytherapy is not affected by the

Table 2 Overview of the current guidelines on the management of RCC and the role of local ablation techniques

Guidelines Role of ablation techniques Remarks

German National Practice

Guideline (S3)

Recommend TA as an option only for patients with renal

cancers < 4 cm and with significant comorbidities, a limited life

expectancy, or contraindications to general anesthesia

Recommend surgery whenever feasible

No recommendation for T1b tumors

European Association of Urology

(EAU)

No significant difference in overall complication rates between PN

and CA

Patients with lesions up to 4 cm treated with TA had a shorter

average length of hospital stay

Panel concluded that the current data were inadequate to reach

conclusions regarding the clinical effectiveness of CA vs PN

Given these uncertainties regarding the guideline panel decided to

recommend CA can only for frail and/or comorbid patients with

SRMs

For T1b lesions, local tumor control rates

drop significantly

European Society of Oncology

(ESMO)

TA and SBRT are non-surgical options, particularly in patients with

small cortical tumors

Especially appropriate for patients who are frail, present a high

surgical risk, have a solitary kidney, compromised renal function,

hereditary RCC or multiple bilateral tumors

Recommendations include T1 tumors up to

7 cm, thus T1a and b

National Comprehensive Cancer

Network (NCCN)

Ablative techniques are among the primary treatments for T1a

tumors

Ablative techniques are not among the

primary treatments for T1b tumors

American Urology Association

(AUA)

Clinicians should prioritize PN for SRM management when

intervention is indicated clinicians should consider thermal ablation

as an alternate approach in all patients with tumors < 3 cm in size,

where oncologic outcomes are comparable for thermal ablation and

PN

Prioritized for lesions up to 3 cm
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cooling effect of nearby large vessels, and the size of the
tumor does not pose a limitation [31]. Moreover, struc-
tures like the ureter are not considered at risk, while
rapidly dividing cell structures, such as the intestinal
mucosa, are. As the treatment does not take place in the
CT but in the radiation room, hydrodissection is not
possible. Despite this, brachytherapy remains a highly
controllable ablation technique. However, published data
on HDR brachytherapy for RCC are scarce and limited to
individual studies [35].

Non-thermal non-radiation-based procedure
IRE
IRE, is a nonthermal ablation technique used for local
cancer treatment. Unlike traditional thermal ablation
methods, which use heat or cold to destroy cancerous

cells, IRE relies on electrical pulses to disrupt cell mem-
branes. This disruption causes permanent damage to the
cells, leading to cell death without significantly affecting
surrounding healthy tissues. The collagen-sparing prop-
erties of IRE allow the preservation of vital structures like
the ureter, collecting system, and vessels [36]. The main
advantage of IRE compared to thermal methods is that it
does not rely on high temperatures, which minimizes the
risk of collateral damage. As a result, IRE is regarded as
the safest option for treating cancers located close to large
vessels [37]. One drawback is the need for symmetrical
needle placement, which can occasionally be challenging
for the interventionalist. Although IRE is a cutting-edge
technique, long-term data are already available for specific
organs, like the prostate [38]. Wah et al evaluated the
safety and efficacy of CT-guided IRE of clinical T1a (cT1a)

Fig. 3 Sixty-four-year-old patient with suspected RCC. A (axial), B (coronar) Lesion measuring approx. 2.2 cm in the middle third of the kidney (white
arrowhead) with an exophytic portion and growth towards the hilus. As the bowel is also closed (white arrow), the decision was made to perform CA (in
analgosedation) with hydrodissection of the bowel. C CT-fluoroscopy image after 2 min, at the beginning of the 1st freezing cycle. The cranial of two
needles is in the middle of the lesion (white arrowhead), while the white arrow is pointing at the fluid collection. The bowel was easily mobilized using
22 G needles and NaCl. D, E Control scan obtained after 5 min, in the second freezing cycle. The white arrowheads point to the clearly visible ice ball, and
the parallel needle positions and the geometric shape of the visible ice ball can be seen in the sagittal and coronal slice guides angled onto the needles.
F Complete ablation in the control area scan after 6 months in the MRI (T1 contrast-enhanced fat sat sequence). The histologic specimen yielded the
diagnosis of papillary RCC
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RCCs close to vital structures and to assess factors that
may influence the technical success and early oncological
durability. The technical success rate was 73.3%. he
overall 2- and 3-year cancer-free, local-recurrence-free,
and MFS rates are 89%, 96%, 91% and 87%. The authors
concluded that CT-guided IRE in cT1a RCC is safe with
acceptable complications. Notably seven residual diseases
were successfully ablated with CA, achieving an overall
technical success rate of 97% [39]. Overall, data for IRE in
RCC is still limited but the technique represents a
problem-solving option in critical cases [17].

Histotripsy
Histotripsy is a type of therapeutic-focused ultrasound
designed to destroy targeted tumors and cancerous tissue—
initially focused on liver tumors—without requiring invasive
incisions, needle penetration, or thermal intervention. This
novel, non-thermal, ultrasound-based technique induces
mechanical cavitation, leading to precise cellular destruc-
tion. The ongoing CAIN trial (NCT05432232) and the
#HOPE4Kidney trial are investigating its potential, sug-
gesting that histotripsy could become a transformative
advancement in RCC management.

Fig. 4 Eighty-eight-year-old female patient with a strongly arterially hypervascularized RCC measuring 6 cm (white arrowhead) and the duodenum as an
adjacent risk structure (A). Since the patient was in good general health and declined anesthesia, a CA was chosen. Due to the significant arterial
hypervascularization, the lesion was angiographically transarterially embolized the day before the ablation (with alcohol and lipiodol). B Final DSA (digital
subtraction angiography) and a strong lipiodol deposition in the tumor (black asterisk), while the kidney is well perfused. C Shows the control scan after
5 min, in the first freeze cycle. The strong lipiodol deposition in the tumor impairs visualization of the ice ball and the seven needles positioned for
treatment. To the right of the tumor, there is a small 22 G needle for hydrodissection. D Intraprocedural image obtained during the freeze cycle. The
patient underwent the procedure without significant pain and remained hemodynamically stable. E Control MRI was performed after 3 months,
demonstrating complete devascularization of the lesion (white asterisk). F Scar formation 8 months after the ablation (white asterisk). Histology of the
sample taken at the beginning of the intervention confirmed the diagnosis of clear cell RCC
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Table 1 summarizes the different ablations techniques,
their principles, advantages and disadvantages, and the
most important literature (Table 1).

Comparative oncologic outcomes
The classical thermal ablation methods (RFA, MWA,
and CA) yield effective and safe outcomes in patients
with SRM. While some authors highlight the benefits of
MWA regarding tumor control, other authors favor CA
due to factors like improved intraprocedural visualiza-
tion. Nevertheless, particularly concerning safety, there
are currently no well-structured studies that demon-
strate a benefit for a technique in lesions smaller than
3 cm [9, 10, 19, 40]. In SRM management, the key
consideration is not finding a superior option among
the different thermal ablation techniques, but rather
comparing them to surgical approaches like PN in order
to identify subgroups of patients who will benefit from
either PN or ablation. Despite promising results,

thermal ablation techniques are only mentioned by
some guidelines for the treatment of T1b stage RCCs
[3, 27, 28]. Although especially effective when com-
bined with transarterial embolization, reports in the
literature support CA for RCCs up to 10 cm in size
[41–43]. Nevertheless, the risk of complications and
recurrences rises with lesion size. Therefore, thermal
ablation methods should only be considered as an
alternative after surgery in lesions < 4 cm [5, 41, 42].
Initial data on SRMs reveal no significant differences

between thermal ablation techniques and PN but reliable
long-term data is still scarce. In their study of 2022, Chan
et al evaluated the long-term outcomes of image-guided
ablation and PN for T1 tumors, concluding both proce-
dures to be equally effective while highlighting the posi-
tive impact on kidney function when ablation techniques
are used [44]. Chlorogiannis et al retrospectively com-
pared long-term oncologic outcomes of CT-guided MWA
and robot-assisted partial nephrectomy (RAPN) in

Fig. 5 Seventy-one-year-old patient with a histologically confirmed clear cell RCC after prior treatment by transarterial embolization the day before the
ablation. A The 4.1 cm lesion is located in the central anterior third of the kidney (white asterisk). The patient was referred for CT-guided HDR
brachytherapy in analgosedation. B Intraprocedural control scan and one of three brachytherapy catheters within the lesion (white arrowhead).
C Radiation plan. The blue line encircles the complete tumor volume with the surrounding red line indicating the 20 Gy isodose line. D Control MRI scan
obtained after 6 months, demonstrating complete ablation with local tumor control
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patients with T1 RCC [26]. After propensity score
matching, 71 patients underwent percutaneous MWA
and 71 underwent RAPN. At 8-year follow-up, the esti-
mated survival rates for the MWA subgroup were 98% for
OS, 97% for RFS, and 97% for MFS. The matched sub-
group that underwent RAPN demonstrated survival rates
of 100% for OS, 98% for RFS, and 98% for MFS. Log-rank
testing revealed no significant differences between these
rates, with p-values of 0.44, 0.67, and 0.67, respectively.
Similar to Chan et al, the authors concluded that MWA
and RAPN are equally effective in terms of oncologic
outcome [26, 44]. Interestingly and contradictory to cur-
rent guidelines, the study populations investigated by both
Chan et al and Chlorogiannis et al included a relevant
portion of T1b RCCs up to 7 cm [3, 5, 6, 26, 44].
The study findings of Chan et al indicate that the

oncologic outcomes of the classical thermal ablation
techniques and PN appear to be comparable [44]. How-
ever, beyond oncologic results, considering factors such as
complications and the impact on kidney function, it is
important to question, from a scientific perspective,
whether the patient groups compared are truly equivalent.
There is a significant lack of high-quality evidence
regarding the management of SRMs, as previous tradi-
tional randomized controlled trials were unable to achieve
their target enrollment numbers [45]. Neves and collea-
gues investigated the feasibility of recruitment to a
cohort-embedded RCT comparing CA and robotic partial
nephrectomy (RPN). A total of 200 participants were
recruited to the cohort, of whom 50 were enrolled in the
RCT. In the CA intervention arm, 84% of patients con-
sented and 76% underwent CA; in the control arm, 100%
of patients underwent RPN. The retention rate was 90% at
6 months. In the RPN group, 2/25 (8%) were intrao-
peratively converted to radical nephrectomy. Post-
operative complications (Clavien–Dindo grades 1–2)
occurred in 12% of the CA group and 29% of the RPN
group. The median length of hospital stay was shorter for
CA (1 vs 2 d; p= 0.019). At six months, the mean change
in renal function was −5.0 mL/min/1.73 m2 after CA and
−5.8 mL/min/1.73 m2 after RPN [45]. The authors con-
cluded that this feasibility study met its primary endpoint
and demonstrated the feasibility of recruitment to an
open-label RCT [45]. The data strongly emphasize the
comparability of ablative techniques, with a particular
focus on CA, when measured against contemporary renal
parenchyma-sparing surgical procedures. This evidence
highlights that CA, as an ablative method, achieves clin-
ical outcomes that are closely aligned with those of state-
of-the-art nephron-sparing surgeries, thereby corrobor-
ating its potential as a viable minimally invasive alter-
native. The findings suggest that CA, alongside other
ablative modalities, offers a comparable efficacy in

preserving renal function while maintaining oncologic
control, thus positioning it as a valuable treatment option
within the spectrum of renal preservation strategies
[45, 46]. Alongside this data, Abu-Ghanem et al con-
cluded in a systematic review of the European Association
of Urology Renal Cell Cancer Guideline Panel that TA
could cautiously be offered as an option due to many
remaining uncertainties regarding its effectiveness [47].
Another innovation in both increasing the oncological
precision of tumor ablation and reducing complications is
the technique of stereotactic RFA. However, to date, only
larger data on the ablation of liver tumors and only case
studies on kidney tumors exist [48].

Complications
Regarding complication rates and adverse events, Junker
et al prospectively compared complications and read-
missions after PN and percutaneous CA of T1 RCCs
[49]. The study population included 86 partial
nephrectomies and 104 CA. The complication rate
within 90 days was 23% after PN and CA (p= 0.98), with
major complication rates of 3% after PN and 10% after
CA (p= 0.15). The readmission rates were 14% and 11%
after PN and CA, respectively (p= 0.48) [49]. The
authors conclude that PN and CA are comparable
regarding complications within 90 days after treatment.
Another more comprehensive overview offers a sys-
tematic review and meta-analysis from Deng et al [50]
including 17 retrospective studies [50]. Beyond the
comparability of complication rates and the shorter
hospital stays of patients undergoing ablation, some
authors propose that ablative techniques may also offer
superior cost-effectiveness compared with surgical
approaches [49, 51].

Guidelines and future perspectives
Despite their good oncologic and clinical results, the
classic thermal ablative techniques (RFA, MWA, and
CA) are underrepresented in most guidelines, and
recommendations do not adequately reflect the results
(Table 2) [5–7]. For instance, the German National
RCC guidelines recommend RFA and CA as options
only for patients with renal cancers < 4 cm and with
significant comorbidities, a limited life expectancy, or
contraindications to general anesthesia, favoring sur-
gery for these lesions whenever feasible [6]. There is no
recommendation for T1b tumors [6]. In contrast, the
European guideline of the European Association of
Urology (EAU) takes a more favorable stance on abla-
tive techniques, noting that comparative studies found
no significant difference in overall complication rates
between PN and percutaneous CA, while patients with
lesions up to 4 cm treated with the percutaneous
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technique had a shorter average length of hospital stay
[5, 52–54]. However, for T1b lesions, local tumor
control rates drop significantly. On multivariable ana-
lysis, CA of T1b tumors was associated with a 2.5-fold
increased risk of death from RCC compared with PN
[5, 55]. Nevertheless, the panel concluded that the
current data were inadequate to reach conclusions
regarding the clinical effectiveness of CA vs PN. Given
these uncertainties in the presence of only low-quality
evidence, the guideline panel decided to recommend
CA only for frail and/or comorbid patients with SRMs.
Therefore, the recommendation is to offer surgery to
achieve a cure for localized RCC [5]. While the EAU
guidelines are similar to those of ESMO, both guide-
lines broaden the range of indications for patients with
hereditary conditions, multiple or bilateral tumors, and
impaired kidney function [5, 7]. The guidelines of the
American Urological Association take a far more open
position towards ablative procedures, more in line with
currently available data and similar to the National
Comprehensive Cancer Network (NCCN) guidelines
[3, 8]. While the AUA guidelines state that clinicians
should prioritize PN for SRM management when
intervention is indicated clinicians should consider
thermal ablation as an alternate approach in all patients
with tumors < 3 cm in size, where oncologic outcomes
are comparable for thermal ablation and PN [3]. It
remains speculative whether the differences in recom-
mendations may be attributable to the fact that, in the
USA, both interventional radiologists and urologists
perform thermal ablations. All guidelines concur on at
least one aspect: a lesion suspected of being RCC must
be histologically confirmed prior to or during image-
guided ablation (Table 2). Studies like the EuRECA
registry have already influenced the EAU guidelines to
advocate for biopsies prior to IGA (rather than during
IGA). However, no such guidance exists for PN, which
skews oncological outcomes due to undiagnosed benign
lesions (30% of SRM). [3, 5–7, 56]. Iezzi et al also report
current proceedings from an international consensus
meeting on ablation in urogenital diseases including
ablation strategies in RCC [57].

Conclusion
In conclusion, the use and incorporation of image-
guided minimally invasive treatment options for RCC is
on the rise. Existing data suggest that thermal ablation
procedures (RFA, MWA, and CA) and PN yield
comparable oncologic and clinical outcomes.
Despite the data available, the recommendations for
thermal ablations vary significantly across national and
international guidelines, a discrepancy that will hope-
fully be corrected.

Abbreviations
CA Cryoablation
CSS Cancer-specific
ESMO European Society of Medical Oncology
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IRE Irreversible electroporation
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NSS Nephron-sparing surgery
OS Overall survival
PN Partial nephrectomy
RAPN Robot-assisted partial nephrectomy
RCC Renal cell carcinoma
RFA Radiofrequency ablation
RPN Robotic partial nephrectomy
SABR Stereotactic ablative body radiotherapy
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