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• The habitat suitability of Aedes albo
pictus increased by 5 % between 2000 
and 2020

• The applied method allows for identi
fying the reasons for change.

• On large scale, climate has a greater 
impact on changes in habitat suitability.

• Key drivers for change are temperature 
seasonality and precipitation intensity.

• Land-use factors for general habitat 
suitability differ from those driving 
changes.
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A B S T R A C T

The Asian tiger mosquito, Aedes albopictus, is one of the world's most invasive species and is responsible for the 
transmission of several vector-borne diseases, including chikungunya, dengue, and Zika. Aedes albopictus has 
been established in southern Europe since the 1990s and has been spreading to other regions in recent years. The 
present study examines changes in the habitat suitability of Aedes albopictus over the period 2000–2020 using a 
multi-model ensemble (MME) of maximum entropy (MaxEnt) models.

An initial set of 38 climatic and 14 land-use predictors was considered for model setup. The model was built 
using Aedes albopictus distribution data for 2020. We included 19 bioclimatic variables, absolute humidity, and 
18 extreme climate variables which are tailored to species specific thresholds based on expert knowledge. By 
means of statistical methods, predictor selection was performed. To assign changes to climate or land-use, we ran 
all habitat suitability models on varying climate with constant and varying land-use. Differences between both 
approaches indicate causes of change.

Land-use changes are an important factor until 2015, contributing at least as much as climate change to 
changes in the habitat suitability area of Aedes albopictus (HSA). In the following years, changes in the HSA are 
mainly shaped by climate change. In 2020, the MME shows an average 4.5 % increase in HSA compared to 2000, 
with decreasing habitat suitability in the south and increasing suitability in the north. Land use change accounts 
for 16–51 % of HSA change, but only 3.3 % of land use change is spatially consistent across the MME. In contrast, 
changes in the HSA due to climate change has a spatial consistency of 54.2 % across the MME. The overall 
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increase in HSA between 2000 and 2020 also increases the risk of vector-borne disease infections, but land-use 
changes can counteract some of the climate-induced changes.

1. Introduction

Despite centuries of control efforts, the fight against mosquito-borne 
diseases (MBDs) is a challenge of huge public health importance (Tolle, 
2009; Benelli and Mehlhorn, 2016). Although mosquitos and MBDs are 
commonly associated with tropical and subtropical regions, mosquitos 
are found beyond these regions and MBDs are flourishing worldwide 
(Tolle, 2009; Solomon et al., 2012). Thus, over 80 % of humanity are 
exposed to (Franklinos et al., 2019), and >700.000 deaths a year can be 
attributed to MBDs (Pan American Health Organization, 2020; Anoop
kumar and Aneesh, 2022), making it the world's deadliest animal.

In the Mediterranean area, Aedes species are one of the most 
important transmitters of MBDs, causing, e.g., Chikungunya (CHIK), 
Dengue (DEN), Yellow Fever or Zika (Medlock et al., 2012; World Health 
Organization, 2020). The first records of Aedes albopictus date back to 
1979 in Albania (Adhami and Reiter, 1998) and 1990 in northern Italy 
(Cunze et al., 2016b) and, thus, only allochthonous MBDs depending on 
this species were registered before. The second invasion led to a per
manent establishment of Aedes albopictus in the northern and central 
parts of Italy (Dalla Pozza and Majori, 1992) and an ongoing spread can 
be observed across the Mediterranean (Fischer et al., 2011). This 
resulted in the first outbreak of CHIK within Europe in Italy 2007 (Rezza 
et al., 2007; Di Luca et al., 2017), followed by several isolated cases of 
DEN and CHIK in France and Croatia, where Aedes albopictus was proved 
to be the primary vector for transmission (La Ruche et al., 2010; Gje
nero-Margan et al., 2011).

Globally, mosquitoes and MBDs are expected to increase in 
geographic distribution and abundance (Franklinos et al., 2019). There 
are several reasons for the invasion into new areas and the re-emergence 
of previously eradicated areas: mosquito dispersal depends mainly on 
high mobility, international trade, and globalization (Becker, 2008), 
while life cycle dynamics, survival and reproduction rates depend more 
on climate (Negev et al., 2015), land-use (Norris, 2004) and host 
availability (Cebrián-Camisón et al., 2020). Since we are interested in 
the long-term ecological habitat suitability rather than on the transient 
expansion of Aedes albopictus in the extended Mediterranean, we 
neglected dispersal factors and only analyzed factors that prevent or 
facilitate permanent establishment. In this study, the emphasis is placed 
on the climatological and land-use characteristics of the Mediterranean, 
while host availability is assumed to be sufficient throughout the study 
area. Aedes albopictus is an opportunistic forager with mainly anthro
pophilic feeding habits (Bertola et al., 2022). Therefore, a high popu
lation density, a high tourist attractiveness (Tovar-Sánchez et al., 2019), 
and an agricultural sector where livestock production is still an impor
tant factor (Bernués et al., 2011) should not pose limitations in terms of 
host availability across Europe. Thus, the habitat suitability of Aedes 
albopictus (HSA) represents the area, where climatic and land-use con
ditions are suitable for the establishment of the species. The HSA in our 
study does not represent the actual occupied habitat, but the potential 
habitat of the species within the extended Mediterranean area.

Mosquitoes are directly affected by weather and climate and there
fore require temperature and precipitation above certain thresholds for 
adult activity and immature stage development (Waldock et al., 2013). 
Due to the strong ecological plasticity, Aedes albopictus, which originates 
from Southeast Asia, rapidly adapts to a very wide range of habitats 
(Paupy et al., 2009) and, thus, gets also used to the Mediterranean 
climate. Thresholds for different life cycle stages with respect to tem
perature and precipitation are mainly derived from climate chamber 
experiments (Cunze et al., 2016b). For example, Thomas et al. (2012)
states that the eggs of Aedes albopictus survive temperatures of down to 
−12 ◦C for at least 1 h and temperatures of −10 ◦C for 12–24 h. In 

contrast, the critical upper threshold for survival is approximately 40 ◦C 
for adults (Brady et al., 2013) but only temperatures below 37 ◦C allow 
the development during the pupae stages (Waldock et al., 2013). For 
precipitation, a general threshold of at least 500 mm annual precipita
tion is accepted by many studies (e.g. Caminade et al., 2012; Medlock 
et al., 2015), but Waldock et al. (2013) point out that the survival of 
Aedes albopictus is also observed in regions with <300 mm annual pre
cipitation. Therefore, the mean Mediterranean climate according to 
Koeppen-Geiger with minimum monthly mean temperatures >0 ◦C, >4 
months with mean temperatures >10 ◦C (Alessandri et al., 2014) and 
annual precipitation amounts of 400–1500 mm in large parts of the 
Mediterranean provides a suitable environment for the further spread 
and establishment of Aedes albopictus.

However, mean changes are not the only important factor to deter
mine impacts (Mearns and Washington, 2001). Franklin (2009) pointed 
out that the distribution of species depends more on climate variability 
and extremes than on annual mean values, and Bailey and van de Pol 
(2016) assume that changes to frequency and magnitude of extremes 
promote more drastic shifts in species distribution than changes in mean 
climate. Especially in the fringes of the distribution area, extremes 
provide significant additional improvements in model performance 
compared to the baseline climate alone (Stewart et al., 2021). Since the 
Mediterranean is a region, whose climate is particularly sensitive to 
global change, as evidenced by a strong decrease in mean annual pre
cipitation and an increase in precipitation variability within the summer 
season (Giorgi, 2006), both means and extremes should be considered 
when assessing the spread of Aedes albopictus.

As mentioned above, thresholds are the result of climate chamber 
experiments and are biologically true (Waldock et al., 2013), but in 
anthropogenically influenced ecosystems these thresholds become 
blurred. In particular, land-use changes such as urbanization, irrigation, 
and deforestation have a major impact on MBD (Franklinos et al., 2019), 
causing changes that affect the niche, community composition, 
behavior/movement, and spatial distribution of vectors (Gottdenker 
et al., 2014). For example, in the absence of suitable climatic conditions, 
irrigation practices have been observed to increase the number of 
breeding sites (Patz et al., 2004) and extend the disease transmission 
season (Ijumba and Lindsay, 2001). Habitat suitability for mosquitoes, 
particularly reproduction, abundance, and species composition (Norris, 
2004), is also affected by deforestation because it alters local environ
mental and climatic conditions (Gottwalt, 2013). In contrast, both 
retreat and spread of mosquitoes and MBDs can be observed due to 
urbanization (Franklinos et al., 2019). On the one hand, daily mean 
temperatures in urban areas are generally higher than in rural sur
roundings (Oke, 2002). Compared to natural environments, the so- 
called urban heat island effect smoothens the diurnal temperature 
range (LaDeau et al., 2015), which favors mosquito survival (Waldock 
et al., 2013). On the other hand, urbanization is also thought to reduce 
MBDs and the mosquito occurrence due to improved health care, edu
cation, and employment compared to rural areas (Wood et al., 2017). 
The same effect is assigned to the higher proportion of sealed areas and 
only little or no vegetation (Waldock et al., 2013). Kilpatrick and Ran
dolph (2012) found that MBDs are highly sensitive to climate, but past 
and future changes in land-use are expected to affect MBDs more than 
climate change. This also includes indirect factors like the density, 
behavior and population dynamics of non-human hosts which are 
partially shaped by landscape features (Lambin et al., 2010). Therefore, 
to adequately assess the HSA, land-use categories should be considered 
in addition to climatic variables.

In the present study, we assessed the recent change in HSA for the 
extended Mediterranean area between 2000 and 2020 using a Maximum 
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Entropy Model (MaxEnt Version 3.4.3, Phillips et al., 2022) with 
climatological and fractional land cover variables. We checked different 
approaches for the background selection as well as different statistical 
predictor selection methods. Although some studies emphasize that 
machine learning tools can handle correlated predictors (e.g. Fourcade 
et al., 2018), we additionally follow the principle of Ockham's razor that 
enhances the probability of overfitting within future periods due to too 
many (correlated) predictors. By means of the time series and scenarios 
with fixed land-use, we were able to address the drivers of HSA changes. 
Many studies used machine learning tools such as Maximum Entropy (e. 
g. Fischer et al., 2011; Cunze et al., 2016b) or Random Forests 
(Ducheyne et al., 2018) as well as mechanistic models (e.g. Caminade 
et al., 2012) to assess the recent and future species distributions or HSA 
for Europe or subregions. However, all these studies are based on 
climatological variables only. Studies that include land-use variables as 
predictors for HSA either refer to regions outside of Europe (e.g. Hop
perstad et al., 2021), use only one categorical land-use predictor (e.g. 
Khan et al., 2020), or assess only the recent distribution without 
considering changes over time (e.g. Medley, 2010).

The present study provides new insights into environmental de
pendencies and how climate and land-use changes affect the HSA. We 
present analyses that address changes in the HSA of Aedes albopictus, 
whether due to climate or land-use change, and identify the main drivers 
of these changes. In addition to the established bioclimatic variables, we 
also include a set of 18 extreme variables (EXVs) based on expert 
knowledge. A stepwise elimination of predictors by means of statistical 
methods is then used to identify significant climatological predictors. 
Identifying the interactions between climate and land-use and the main 
drivers helps to establish efficient monitoring programs and enables to 
locate regions where landscape shaping actions can reverse the estab
lishment of Aedes albopictus to reduce the risk of MBDs. To our knowl
edge, the present study is the first that 1) includes EXVs based on expert 
knowledge, 2) addresses changes of the HSA to specific predictor groups 
(climate or land-use) and 3) identifies the most important predictors for 
the establishment/change within the larger European-Mediterranean 
area.

2. Data and methods

2.1. Data

2.1.1. Study area
Since the HSA is assumed to expand northward under expected 

climate change, we have extended the Mediterranean region to the area 
from 10 W to 45E and 27 N to 55 N. With a spatial resolution of 0.1◦ ×

0.1◦ (~90 km2 per grid box), the region comprises 154,000 grid boxes 
with 113,054 grid boxes over land areas. All data sets used in this study 
have been interpolated to the respective grid using the first-order con
servative remapping algorithm of the Climate Data Operator (CDO, 
Schulzweida, 2022) where necessary.

The Mediterranean area is characterized by a warm climate with dry 
summer and humid winter seasons (Cs-climate according to the Köppen- 
Geiger classification). The adjacent regions to the north represent 
temperate oceanic climate (Cfb) in the western and warm-summer 
humid continental climate (Dfb) in the eastern parts of Europe. Over
all, the Mediterranean area exhibits a high population density of 63.3 
inhabitants per square kilometer but with much higher densities along 
the coasts. In addition, with over 300 million tourists per year (Tovar- 
Sánchez et al., 2019), the human density significantly increases espe
cially along the coast during the summer season. Besides tourism, the 
agricultural sector is an important economic factor within the Medi
terranean area. 237.6 million ha of the area of the Mediterranean 
countries is assigned as agricultural land (World Bank Group, 2023; 
Food and Agriculture Organization of the United Nations, 2021). A 
central feature of agriculture within the Mediterranean area is irrigation 
and all states have invested massively in large-scale dams, inter-basin 

transfers, and public irrigation schemes during the second half of the 
20th century (Molle and Sanchis-Ibor, 2019). In the meantime, over 10 
% of the agricultural areas are irrigated (World Bank Group, 2023; Food 
and Agriculture Organization of the United Nations, 2021). But also 
grazing-based livestock farming is still an important economic factor 
within the agricultural sector of the Mediterranean area (Bernués et al., 
2011).

2.1.2. Observational dataset
Observations of Aedes albopictus are obtained from the European 

Centre for Disease Prevention and Control (ECDC, 2023) and the Global 
Biodiversity Information Facility (GBIF, 2022) for the period 
2000–2020. Unless otherwise noted, all data with a status of ‘estab
lished’ or ‘introduced’ were reported as present, while data with a status 
of ‘absent’, ‘no data’ or ‘unknown’ were assumed to be absent.

2.1.3. Climatological dataset
Hourly climatological data were downloaded from the Copernicus 

Climate Data Store (CCDS). In this study, we used the ERA5-Land 
reanalysis dataset from 1970 to 2020 (Copernicus Climate Change Ser
vice, 2022; Muñoz Sabater, 2019). We calculated the first 19 bioclimatic 
variables (BIOs) according to the BIOCLIM program of Nix (1986). In the 
1990s, the BIOs dataset was expanded to 35 variables (Booth et al., 
2014; Xu and Hutchinson, 2011), but the most popular datasets only 
include the first 19 BIOs (e.g., WorldClim). Because Aedes albopictus is a 
mobile species that can hide in houses or barns and move to regions with 
moderate weather when local conditions are temporarily unsuitable, we 
calculated mean BIOs over 31-year periods (see the climatological 
approach in Merkenschlager et al., 2023) to represent long-term 
climatological conditions, as these are more important for the estab
lishment of Aedes albopictus than annually aggregated values. The 
bioclimatic variables used in this study are listed in the Table 1.

In addition, based on expert knowledge, we aggregated 18 EXVs 
based on temperature and precipitation that represent thresholds of 
different life cycle stages of Aedes albopictus. Thus, we included the 
number of days (EXV-1) as well as the longest period (EXV-3) with 
minimum temperatures (TMIN) below −10 ◦C, because Aedes albopictus 
eggs tolerate long-term exposure to −2 ◦C and only temperatures below 
−10 ◦C for 12 to 24 h ensure egg destruction (Thomas et al., 2012). In 
contrast, the upper threshold of the maximum temperature (TMAX) was 
set at 37 ◦C because this temperature represents the survival threshold 
for Aedes albopictus during the pupal stage (Waldock et al., 2013). 
However, we also included EXVs, which represent a comfort zone for 
Aedes albopictus. Delatte et al. (2009) found that optimal development of 
the immature stage of Aedes albopictus occurs at temperatures between 

Table 1 
Bioclimatic variables.

Variable Definition

BIO-1 Annual TMEAN
BIO-2 Mean diurnal temperature range
BIO-3 Isothermality
BIO-4 Temperature seasonality
BIO-5 TMAX of the warmest month
BIO-6 TMIN of the coldest month
BIO-7 Temperature annual range
BIO-8 TMEAN of the wettest quarter
BIO-9 TMEAN of the driest quarter
BIO-10 TMEAN of the warmest quarter
BIO-11 TMEAN of the coldest quarter
BIO-12 Annual PRE
BIO-13 PRE of the wettest month
BIO-14 PRE of the driest month
BIO-15 PRE seasonality
BIO-16 PRE of the wettest quarter
BIO-17 PRE of the driest quarter
BIO-18 PRE of the warmest quarter
BIO-19 PRE of the coldest quarter
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25 ◦C and 30 ◦C. Therefore, we also include the number of days (EXV-6) 
and the longest period (EXV-8) when the mean temperatures (TMEAN) 
are above 25 ◦C. In addition, we included climatological thresholds of 
0 ◦C for all temperature variables and 20 ◦C for TMIN. The 0 ◦C threshold 
represents the threshold between frozen and liquid water that affects the 
aquatic stage of Aedes albopictus. The 20 ◦C threshold for TMIN defines 
tropical nights. Since Aedes albopictus is originally a subtropical species, 
a relationship between threshold and HSA may be possible. Regarding 
precipitation, there are no real thresholds based on expert knowledge. In 
general, extreme precipitation is thought to be more detrimental to the 
survival of Aedes albopictus than long periods of drought. Waldock et al. 
(2013) observed eggs surviving 243 days of desiccation and a loss of 
2–10 % of immature stages of Aedes albopictus when exposed to light 
precipitation. In the absence of species-specific rainfall thresholds, we 
applied climatological thresholds of extreme rainfall and drought events 
(see Table 2). In accordance with the BIOs, the EXVs are calculated per 
year and averaged over a 31-year period.

The set of climatological variables is completed by absolute humidity 
(AHUM). AHUM is not directly downloadable from CCDS but can be 
approximated using TMEAN and dew point temperature, both of which 
are provided by CCDS. Fischer et al. (2011) state that moisture directly 
controls the availability of breeding sites, and that relative humidity is 
an important factor in egg survival. Since relative humidity is temper
ature dependent and therefore does not provide information on the true 
moisture content of the air, we used absolute humidity. According to 
Dickens et al. (2018), AHUM is one of the most important covariates for 
modeling the HSA, especially in arid areas and along the coast.

Overall, the set of climatological predictors consists of 38 variables, 
including 19 BIOs, 18EXVs and AHUM. In the following, we always used 
the last year of the specific periods as reference, i.e., when we assess the 
HSA of 2020, the model depends on the 31-year period from 1990 to 
2020.

2.1.4. Land-use dataset
Historical land-use and land cover data sets for the period 

2000–2020 were obtained from the Land Use and Coverage Area frame 
Survey (LUCAS) historical/future land-use and land cover change 
dataset, Version 1.0 (Hoffmann et al., 2021a, 2021b), provided by the 
World Data Center for Climate (WDCC) at the German Climate 
Computing Center (DKRZ). Annual values are provided for the period 
1950–2015 (historical) and 2016–2100 of the shared socioeconomic 
pathways SSP119 (future) on a 0.1◦ × 0.1◦ grid covering the area be
tween 56 W to 84E and 16 N to 79 N. The dataset includes the fraction of 
16 different land cover classes, but our study area contains only 14 
classes because tropical classes do not occur in the extended 

Mediterranean area. In the following, we always consider the respective 
year for modeling, i.e., if we want to model the HSA of 2020, we only use 
the annual fractional land cover of 2020. All land-use variables used in 
this study are listed in Table 3.

2.2. Method

2.2.1. Maximum Entropy Model
Since Aedes albopictus is an invasive species in the Mediterranean 

area, not all climatological and ecological suitable regions are occupied. 
Consequently, presence and absence data do not represent the real po
tential distribution area. Therefore, we decided to use the Maximum 
Entropy Modeling of Species Geographic Distribution Version 3.4.3 
(MaxEnt, Phillips et al., 2022) embedded in R version 4.3.2 (R Core 
Team, 2023) to assess the HSA since MaxEnt does not rely on real 
absence points.

The model setup for assessing the HSA was as follows: The models 
were established by means of the year 2020 as it is assumed to represent 
the HSA which is closest to the real potential distribution. We used 
10,000 presence and 10,000 background points as sample data. For 
background selection we compared different selection methods: random 
and block selection as well as weighted, unweighted and hybrid selec
tion methods. Results for the background point selection are given in S1. 
The block method divides the study area into four spatial blocks with an 
approximately equal number of presence points. From each block the 
same number of background points was selected. The random selection 
has no limitations. The weighted approach assesses the density of 
presence points by means of a two-dimensional kernel density estima
tion (kde2d) provided by the MASS R-package (Ripley et al., 2023). 
Densities were then used as weights for background point extraction, i. 
e., the closer an absence grid box is to a presence point, the higher the 
probability that the grid box will be selected as a background point. The 
hybrid model preferentially selects background points near and far from 
the known range of the species. Near points were included because they 
represent areas with species-specific thresholds between presence and 
absence. Additionally, these points represent suitable habitats that 
remain unoccupied due to the constraints of invasion speed. Distant 
background points were chosen because they are assumed to represent 
unsuitable conditions for the species and to encompass the entire 
climatology of the study area. The unweighted approach treats all grid 
boxes of our study area equally. For the establishment of the MaxEnt 
model we furthermore checked five different regularization modifiers (1 
to 5) with six feature class combinations (Linear, L-Quadratic, Hinge, 
LQH, LQH-Product, LQHP-Threshold). Finally, we evaluate all methods 
to define the best setup which was used in a 10-fold model calibration 
setup.

2.2.2. Model evaluation
To determine the best setup for the assessment of the HSA by means 

Table 2 
Extreme variables.

Variable Definition

EXV-1 N days with TMIN < −10 ◦C
EXV-2 N days with TMIN >20 ◦C
EXV-3 Longest period with TMIN < −10 ◦C
EXV-4 Longest period with TMIN >20 ◦C
EXV-5 N days with TMEAN <0 ◦C
EXV-6 N days with TMEAN >25 ◦C
EXV-7 Longest period with TMEAN <0 ◦C
EXV-8 Longest period with TMEAN >25 ◦C
EXV-9 N days with TMAX <0 ◦C
EXV-10 N days with TMAX >37 ◦C
EXV-11 Longest period with TMAX <0 ◦C
EXV-12 Longest period with TMAX >37 ◦C
EXV-13 N days with PRE < 1 mm
EXV-14 N days with PRE > 20 mm
EXV-15 Longest period with PRE > 20 mm
EXV-16 Longest dry spell
EXV-17 Longest precipitation spell
EXV-18 Precipitation intensity (Annual precipitation amount / Number of rainy 

days per year)

Table 3 
LUCAS Land-use classes.

Variable Definition

TBET Temperate broadleaf evergreen trees
TDT Temperate deciduous trees
ECT Evergreen coniferous trees
DCT Deciduous coniferous trees
CS Coniferous shrubs
DS Deciduous shrubs
C3 C3 grass
C4 C4 grass
T Tundra
S Swamp
NIC Non-irrigated crops
IC Irrigated crops
U Urban
B Bare
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of MaxEnt, we use different skills with respect to model quality and 
transferability to new times and spaces. As Aedes albopictus is an invasive 
species and the actual distribution does not represent the potential 
distribution, the skill of the models can hardly be estimated. Thus, we 
evaluate the quality of the setup by using three different measures of 
skill and one for applicability to new times and spaces. The three skills 
are targeting three different aspects of the MaxEnt model. The size- 
corrected Akaike Information Criterion (AICc) obtained by the ENMe
valuate function of the ENMeval R package (Kass et al., 2023) was used 
to assess the regularization modifiers and best feature class combina
tions. The model with delta-AICc = 0 is assumed to represent the best 
setup for modeling the ENAA. The True Skill Statistics (TSS) was used to 
determine the threshold between presence and absence of Aedes albo
pictus within the study area. The threshold used was the probability with 
the highest TSS. A weighted Brier Skill Score (wBSS) was used to assess 
the quality of the assessments. The BSS is a common measure used to 
assess the ability of dichotomous variables. As different thresholds were 
obtained for the different model setups, we do not use the probabilities 
to calculate the wBSS since the same probability may be present in one 
model and absent in another. Instead, we used the presence (1) absence 
(0) output of the models. To consider the characteristics of invasive 
species, weights have been included that reduce the impact of points 
close to presences in favor of presence points and points far away that 
are assumed to be definitely absent. Since all skills address different 
aspects of the model setup, we average and adjust all skills into an 
overall skill score, with 1 representing a perfect model and negative 
values or values near 0 representing low performing models.

The dissimilarity index (DI) and the area of applicability (AoA) of 
Meyer and Pebesma (2021) were used to assess the transferability of the 
models to new time and space constellations. The DI is based on the 
distances of the standardized predictors weighted by their importance 
within the model. The threshold of the DI is calculated using the nearest 
training data point that is not in the same fold. The outlier-removed 
maximum represents the threshold for AoA, i.e., if a new data point is 
below the threshold, the model is transferable to new times or spaces. 
Finally, the overall skill is calculated by taking the mean of the 
normalized AICc, the weighted BSS and the TSS and adding the AoA to 
calculate the overall score.

2.2.3. Predictor selection
Selecting the right set of predictors is a challenging task. On the one 

hand, developers of species distribution or ecological niche models 
recommend that predictors should be selected using expert knowledge 
(if available) and statistical methods (e.g. Bradie and Leung, 2017; 
Porfirio et al., 2014; Synes and Osborne, 2011), as arbitrary choices can 
affect assessments and introduce uncertainty (Synes and Osborne, 
2011). On the other hand, a larger set of predictors also increases the 
likelihood of detecting predictors that are critical for the presence or 
absence of species (Title and Bemmels, 2018; Braunisch et al., 2013). 
Fourcade et al. (2018) suggest a relatively relaxed selection of predictors 
when the goal of the study is to model ecological niches or habitat 
suitability, rather than the real distribution of the species. However, 
MaxEnt is well suited to handle many predictors, and the inclusion of a 
larger number of variables improves MaxEnt's ability to accurately es
timate variable importance (Bradie and Leung, 2017). Therefore, we 
decided to include a large number of climatological predictors, some of 
which are based on expert knowledge (e.g., EXVs), and to eliminate 
predictors using statistical methods. In total, the initial model includes 
52 predictors, 38 (bio)climatological variables and the fraction of 14 
land-use classes. In the following, we describe the elimination of pre
dictors using statistical methods. As we are also interested in how land- 
use changes affect the HSA, land-use classes are excluded from the 
elimination.

We first run the initial model with all predictors and then eliminate 
predictors based on their contribution and importance. Because MaxEnt 
considers all predictors separately during the model-building process, it 

provides a stable ranking of the importance and contribution of vari
ables (Bradie and Leung, 2017). Therefore, the average contribution and 
importance over all realizations were considered as well as the contri
bution and importance per realization. Three different selection criteria 
were applied to the predictor set: the loose and moderate selections are 
based on the mean of all model runs, while the strict selection considers 
each realization separately. The loose selection retains all predictors 
with a mean contribution OR mean importance >1 %. The moderate 
selection retains all predictors with a mean contribution AND mean 
importance >1 %. The 1 % threshold is in line with Tran et al. (2013), 
who also only retain parameters that contribute to >1 % of the output 
variance. The strict selection eliminates all predictors that have a 
contribution or importance of 0 % in any of the realizations.

A second selection step is included to address collinearity and cor
relation issues. Correlation and collinearity are not the same, but a high 
correlation coefficient also indicates a higher linear relationship be
tween variables (Dormann et al., 2013). Especially when models are 
transferred to new space or time, it can be problematic if correlation 
patterns change (Braunisch et al., 2013). Title and Bemmels (2018)
point out that there is a high degree of collinearity when all predictors 
are considered, but Bradie and Leung (2017) emphasize that important 
predictors may be missed when predictors will be eliminated due to 
correlation issues. Therefore, Dormann et al. (2013) suggest excluding 
one of the correlated predictors when the correlation coefficient |r| >
0.7. Under consideration of the rankings with respect to importance or 
contribution, we eliminate these predictors which exhibit a correlation 
coefficient |r| > 0.7 with a higher ranked predictor. Since machine 
learning algorithms consider correlated variables separately and in 
interaction (Araujo et al., 2005), and the inclusion of multiple climate 
variables in ambiguous situations may even outweigh possible collin
earity problems (Braunisch et al., 2013), we also evaluate models 
without selection by correlations.

In total, we use 10 different model configurations to estimate the 
HSA, each applied to 10 realizations, resulting in total of 100 model 
runs. These result from three selection options based on importance and 
contribution (loose – moderate -strict), three selection options consid
ering correlations (importance – contribution – none) and one model 
considering the entire predictor set. All predictor selection methods 
were tested under consideration of the six different setups for selecting 
presence and background points. Results for the different models are 
given in the Tables S2.1–S2.3.

2.2.4. Identification of drivers of habitat suitability area shifts
To determine whether climate or land-use changes are responsible 

for the changes within the HSA, we run each established model twice, 
one with constant (CLU, 2000 land-use), one with varying land-use 
(VLU). The results of both time series are compared to the ones of the 
reference year 2000 (REF). For example, if all the three REF, CLU and 
VLU show presence (1), Aedes albopictus is considered established (see 
Table 4). If REF and CLU show absence, but VLU shows presence, 
changes in climate are not sufficient to change the status from absence to 
presence and changes in the HSA are attributed to land-use changes (0| 
0|1). The status of “remains present due to land-use change” (1|0|1) is 
represented by presence within the reference period, but absence in the 

Table 4 
Categories of changes for the habitat suitability. 1 = presence; 0 = absence.

N REF CLU VLU Category

1 1 1 1 Present
2 0 0 0 Absent
3 0 1 1 Change to Present due to Climate Change
4 1 0 0 Change to Absent due to Climate Change
5 0 0 1 Change to Present due to Land-Use Change
6 1 1 0 Change to Absent due to Land-Use Change
7 1 0 1 Remain Present due to Land-Use Change
8 0 1 0 Remain Absent due to Land-Use Change
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CLU model. Thus, if land-use were unchanged, climate change would 
change the status from present to absent. But land-use changes have a 
stronger signal compared to climate change, so the status remains pre
sent. We are aware that in some cases both effects lead to status changes, 
and changes in only climate or land-use alone would not lead to status 
changes. However, in these cases, we assume land-use changes as the 
trigger for status changes. Since climate is a global issue and mitigation 
efforts will only be successful if the entire global community pulls 
together, our analysis focuses on land-use changes as triggers because 
they can be implemented regionally and the effects of changes can be 
seen relatively quickly.

The results of each model setup and run are first evaluated sepa
rately, and finally aggregated to obtain a Multi-Model-Ensemble (MME). 
In some cases, when we want to show effects of different model setups, 
the aggregation of results is restricted to the respective setup. All results 
are related to the assessed HSA of the reference year 2000 (R-HSA; not 
the study domain or the land area), i.e., the habitat of the reference 
always represents 100 %. Results separated by model run as well as for 
the MME are given in Table S2.4.

2.2.5. Identification of the most important predictor (MIP)
The identification of the MIP is based on three different factors: 

importance, contribution, and range of response. Contribution and 
importance are extracted from the model output statistics, and the range 
of response is determined from the response curves of each predictor, i. 
e., we check what changes could be observed in the predictor variable 
between the beginning of the time series and the year of interest and 
whether the model responses to these changes. All factors are then 
normalized and averaged across all models. The product of these vari
ables is the index used to identify the MIP. The higher the index, the 
more important is the predictor for changes in the status of Aedes albo
pictus. The product of the factors ensures that it is zero if there are no 
observed changes, or the predictor is not important. The analysis of the 
MIP is performed separately for the climate and land-use variables.

3. Results

The results reported here are based on a random selection of back
ground points without further constraints, as it guarantees the trans
ferability of the established models into new times and spaces without 
losing skill. Furthermore, analyses are restricted to the random k-fold 
selection for model establishment, where nine folds were used for 
training and one for validation. With respect to model skill and trans
ferability, all results of the evaluation of different background selection 
methods and a comparison of random k-fold versus block method are 
presented in S1. In the following, we use the term “model” to refer to the 
assessment of the parameters and “habitat suitability model (HSM)” 
when we want to refer explicitly to the assessment of the HSA.

3.1. Model evaluation

In addition to the models that consider all predictors, the other 
models based on different selection methods consider 4–17 BIOs and 
3–13 EXVs climatic predictor variables. Due to correlation issues, 11.1 % 
of the combinations of BIOs and 20.9 % of the combinations of EXVs 
cannot be considered when correlation is a selection criterion, and 
additional combinations can be eliminated when correlations between 
BIOs and EXVs are considered (not shown). Only 4 BIOs are included in 
all models: Mean diurnal temperature range (BIO-2), Isothermality 
(BIO-3), temperature seasonality (BIO-4) and temperature annual range 
(BIO-7; Table S2.1). For EXV, only two predictors are taken into account 
in each model: Longest period with TMAX <0 ◦C (EXV-11) and precip
itation intensity (EXV-18). In terms of importance and contribution, 
BIO-4 is the predictor that represents the BIO with the highest values, 
followed by BIO-2. The main EXV in any model setup is EXV-18 
(Table S2.2). When considering the combined set of climate predictor 

variables, BIO-4 represents the most important predictor, while EXV-18 
represents the predictor with the highest contribution. In terms of land- 
use, Bare represents in 99 % of all cases the land-use category with the 
highest values for importance and contribution and only one run is 
represented by NIC (Table S2.3). Therefore, whether or not Aedes albo
pictus becomes established mainly depends on the Bare fraction.

According to the overall skill score, the model ensemble based on the 
loose first order selection criteria are better than the moderate and strict 
criteria (Fig. S2.1). With respect to the second order selection criteria, no 
further selection is better than eliminating predictors by correlations 
under consideration of importance or contribution rankings (Fig. S2.2). 
Overall, the single model with strict selection and without further se
lection (strict-none) achieves the highest skills and scores, followed by 
the model which considers all predictors (Table S2.4). It represents the 
model with the largest number of predictors after selection (only 7 
climatological variables excluded) and correlated variables are 
included. In terms of transferability, all models achieve an AoA of over 
99 %, i.e. all models are transferable to new times and spaces as the 
climatological predictors used for model calibration cover most of the 
climatic conditions of the study area.

Fig. 1 shows the results of the MME for the year 2020, where the 
HSMs were trained and validated. The upper left Fig. (A) represents the 
observations from CEG dataset with a total of four categories with “No 
Data” summarizing the ECDC categories “No Data”, “Unknown” and 
“Outside Scope”. The upper right Fig. (B) shows the agreement of the 
MME with respect to the presence status of Aedes albopictus. Dark red 
colors indicate that all HSMs agree with the presence status of Aedes 
albopictus, while dark green colors indicate exclusive absence. At the 
bottom of Fig. 1, we highlight these areas where Aedes albopictus is 
established or introduced (C), is not established or introduced (D), and 
where it is observed absent (E). It shows that all HSMs are generally able 
to reproduce the areas where Aedes albopictus is present, but with some 
limitations for areas with the introduced status. Especially in the 
northeastern edge between central Germany and Slovakia, and in some 
areas of Spain and Turkey, the HSMs mainly show an absence for areas 
where Aedes albopictus has been introduced (C). With respect to the re
gions where no observational data are available, along the coastlines 
between Morocco and Tunisia, south and east of the Black Sea, and the 
Levant the HSMs generally agree that these areas are suitable for the 
establishment of Aedes albopictus (D). In addition, the HSA is also given 
in the border area between Portugal and Spain, the Basque province, 
Northern France, Switzerland, Austria, Southern and Western Germany, 
Southeastern Europe and the coastal areas of the Turkish Mediterranean 
(E), although the status of these regions is observed absence.

3.2. Changes in habitat suitability area for Aedes albopictus between 
2000 and 2020

Overall, all HSMs predict an increase of the HSA between 2000 and 
2020, but the magnitude of changes vary considerably (Fig. 2A). The 
most defensive HSM shows an increase of the HSA of 1.87 % in 2020, 
while the most offensive HSM assesses an increase of 12.35 %. The 
median of the MME is 3.87 % and the interquartile range comprises the 
range between 2.96 % - 5.42 % increase of the HSA. Large areas where 
the HSMs show changes from absence to presence can be found in the 
north like France, the Benelux countries, Germany, and the Czech Re
public. Also, Portugal, Turkey and the coast of Morocco in the south 
have large areas where many HSMs show an expansion of the HSA 
(Fig. 2B). In contrast, some parts of Central Spain, Austria, Romania, 
Western Turkey and the coasts of Algeria and Tunisia show a decrease of 
the HSA.

In terms of first order predictor selection, the moderate selection 
represents the most defensive HSMs with its maximum increase around 
+2.6 %, while the strict selection is the most offensive approach (MAX: 
+3.7 %). In addition, the moderate selection shows a narrower range of 
estimated increase in HSA with values consistently below 10 % (Fig. 2C). 
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With respect to the second order predictor selection, the most conser
vative changes in the HSA are obtained when no further selection is 
performed (+2.4 %), and the greatest changes are observed with fine 
selection is based on contribution (+4.0 %). In comparison to the second 
order selection based on importance or contribution, the larger number 
of predictors, when no further selection is performed, provides a more 
consistent assessment of the HSA change (Fig. 2D).

3.3. Drivers responsible for habitat suitability area shifts of Aedes 
albopictus

Fig. 3 shows that both climate and land-use changes contribute to the 
spread of Aedes albopictus in the wider Mediterranean region. The mean 
expansion of the HSA due to climate change is 3.4 % (Fig. 3B), while the 
mean expansion due to land-use change is 1.3 % (Fig. 3C). 3.8 % of the 
R-HSA is climatologically unsuitable in 2020, but the HSA of 2020 also 
gains 7.2 % of the area that was considered unsuitable in the reference 
(Fig. 3A). With respect to land-use changes, a loss of 0.4 % of the HSA is 
compensated by a gain of 1.7 %. It also shows that the net land-use 
changes have a greater impact on the expansion of the HSA by 2014 
than climate change, although the share of present or absent due to 
climate change is larger than that due to land-use changes. In the 
following years, the overall share of land-use changes stagnates, while 
the share of climate changes increases because of smaller changes in 
areas absent due to climate change. Looking at changes of the HSA due 
to climate and land-use separately, the MME estimates changes due to 
climate in the range of +1.3 % to +8.8 % and those due to land-use in 
the range of +0.4 % to +3.2 % by 2020. By 2015, some HSMs of the 
MME even predict a decrease in HSA due to climate change (Fig. 3B), 
while land-use change consistently promotes an increase in HSA 
(Fig. 3C).

The maps in Fig. 4 show the agreement of the MME with respect to 

changes in the status of Aedes albopictus due to climate and land-use 
change for the year 2020. The agreement between the HSMs is gener
ally higher for climate than for land-use change. Up to 100 % of the 
HSMs show a high agreement that the former climatologically suitable 
conditions in the central parts of Spain, along the coastal region between 
Turkey and Israel, along the coastal region of Algeria and in the southern 
parts of Romania became unfavorable in 2020. In contrast, the region 
between northern France and the Czech Republic in the north and 
Portugal, the coastal regions of the Straits of Gibraltar and the eastern 
parts of Turkey in the south turn into climatologically suitable areas 
(maximum agreement: 97 %). Overall, most HSMs agree on the presence 
or absence due to climate change. On average, 60.8 % (44.2 %) of the 
grid boxes assigned to presence (absence) due to climate change by each 
model run are also represented by the MME. Much less agreement is 
observed for changes in status due to land-use change. Higher agree
ments with respect to presence due to land-use change (maximum 
agreement 48 %) is observed in Spain, the eastern parts of Turkey, 
southern Romania, the border area of Romania, Hungary, and Ukraine 
and in southern parts of Poland. All HSMs show the greatest disagree
ment in terms of absence due to land-use change. Only in Germany, the 
Czech Republic, Great Britain, and Romania an agreement of up to 36 % 
can be observed. Overall, the MME agrees for only 17 grid boxes (3.3 %) 
with the status presence due to land-use change in 2020, but none with 
the status absence due to land-use change.

3.4. Evaluation of the most important predictors

Fig. 5 shows the MIPs for the status of Aedes albopictus for the climate 
(top) and land-use (bottom) predictors. The most important climate 
predictors are temperature seasonality (BIO-4, 23.6 %) and precipitation 
intensity (EXV-18, 68.5 %), followed by mean diurnal temperature 
range (BIO-2, 2.7 %) and isothermality (BIO-3, 2.5 %). EXV-18 is 

Fig. 1. Spatial distribution of Aedes albopictus: (A) Observation, (B) multi-model presence in terms of the HSA, both for the year 2020. The figures at the bottom 
highlight the multi-model presence for (C) regions of observed presences, (D) regions with no observed presences, and (E) regions with observed absences.
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widespread throughout the study area, but mountainous regions (e.g., 
Alps, the Dinaric Alps, the Carpathians) and western coasts (e.g., 
Morocco, Portugal, Spain, France, United Kingdom) are dominated by 
BIO-4. The response curves show that EXV-18 is positively correlated 
with the HSA while BIO-4 has a plateau between 500 and 750 ◦C*100 
where suitability is most pronounced. BIO-2 is assigned as the main 
predictor in parts of France, Morocco, along the Libyan/Egyptian coast 
and in the Levant region. South of 39

◦

latitude, the longest period with 
TMEAN >25 ◦C (EXV-8) is also substantial for the establishment of Aedes 
albopictus. Both, BIO-2 and EXV-8 are negatively correlated with HSA.

Deciduous shrubs are the main land-use predictor for 38.8 % of the 
study area, followed by non-irrigated crops (22.9 %). In general, the 
further north, the more important deciduous shrubs are for the estab
lishment of Aedes albopictus, while non-irrigated crops are more 
important along the Mediterranean coast, in the Alpine region and in 
Ireland. A higher fraction of deciduous shrubs promotes the spread of 
Aedes albopictus whereas a small fraction of <5 % of non-irrigated crops 
is more favorable than higher fractions. In Algeria, Slovenia, south
eastern France and southern Belgium, urban structures (2.3 % of the 
study area, positively correlated to the HSA) favor the establishment of 
Aedes albopictus, and evergreen coniferous trees are relevant (9.1 %, 
negatively correlated to HSA when fraction >1 %) in central Portugal, 
France, the western parts of the United Kingdom, Romania and Slovakia, 
and the eastern parts of the Ukraine. However, 26.3 % do not show any 
substantial changes (NSC) in the response of the predictors. These 

regions are exclusively located in the arid regions of North Africa and 
the Levant, away from the coast.

3.4.1. MIPs for regions with status changes
We analyzed separately the regions where the MME shows high 

concordance with respect to absence or presence due to climate change 
and presence due to land-use change. For areas with the status presence 
due to climate change (Fig. 6 top) 81.5 % have EXV-18 as MIP, followed 
by BIO-4 with 16.4 %. The figure on the left shows all grid boxes with the 
status present due to climate change and EXV-18 as MIP (dark red) and 
with other MIPs (red). Especially in the northern regions of the study 
area EXV-18 is responsible for status changes. The middle figure shows 
the absolute change of EXV-18 over the period 2000–2020 for grid boxes 
assigned presence due to climate change. Precipitation intensity in
creases slightly on average from 5.33 mm to 5.46 mm precipitation per 
rainy day (Fig. 6 top middle) which increases the probability of presence 
by 2 %. In terms of climate-induced absence (Fig. 6 middle), 30.9 % of 
the area has EXV-18 as MIP, followed by BIO-4 with 29.9 %. In partic
ular, Romania and the southwestern coast of Turkey have BIO-4 as MIP 
(Fig. 6 middle left), while EXV-18 is the MIP along the coastal regions of 
Tunisia and Algeria and Spain (not shown). The increase of BIO-4 from 
760.3 to 780.2 ◦C*100 (Fig. 6 center) results in a 2 % decrease in 
probability (Fig. 6 center right).

With respect to land-use change, we only analyzed the grid boxes 
with the status present due to land-use change (Fig. 6 bottom), as the 

Fig. 2. Changes in the habitat suitability of Aedes albopictus between 2000 and 2020. The time series (A) show the results of all model runs (gray lines), the median of 
change for the MME (dark green line), the interquartile range (green shaded area) and the range between the 5th and 95th percentiles (light green shaded area). The 
map (B) shows the proportion of HSMs that show a change in the status of Aedes albopictus between 2000 and 2020. Dark red (green) colors indicate that most HSMs 
changed status from absent (present) to present (absent), and beige colors indicate no status change. The figures at the bottom show the density of projected change 
by different model configurations. The bars always represent the entire MME, and the shaded areas represent the respective setup. Results are shown for the first (C) 
and second (D) order predictor selection.
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MME shows only little agreement across the other land-use categories. 
The region where an increase of evergreen coniferous trees from 0 to 0.5 
% promotes the establishment of Aedes albopictus is in Romania and the 
Hungarian/Ukrainian border area. An increase of only 0.5 % has the 
same effect on the suitability of the ENAA as the changes observed 
within the climatic predictor variables.

3.4.2. Changes in the most suitable areas with respect to the main climatic 
predictors between 2000 and 2020

The change in response of the main climate predictors and the 
climatologically most suitable areas are shown in Fig. 7. As the responses 
of the predictors are not linear, we do not consider absolute changes in 
the predictor variables, but changes in the response. The range of 
response is divided into ten classes with equal spacing from unsuitable 
(blue, 0–10) to suitable (red 90–100; Fig. 7, left). With respect to BIO-4, 
large parts of the study area are at least suitable (50+) for the estab
lishment of Aedes albopictus, with only Ireland, the west coast of the 
United Kingdom, northwestern Spain and the eastern parts of the study 
area which are away from the coast providing mainly unsuitable con
ditions. Overall, suitable conditions decreased between 2000 and 2020, 
especially north of the Black Sea and in some parts of Algeria, the United 
Kingdom, Spain, and Turkey. Changes favoring the establishment of 
Aedes albopictus are observed only along the Atlantic coasts of Morocco, 
Portugal, and Spain and, at a lower level, in the easternmost parts of the 
study area as well as in Belarus and Russia.

With respect to EXV-18, only the central parts of the study area have 
large areas of suitable conditions while areas north and south have lower 
precipitation intensities and thus smaller responses. The greatest 

increase in suitability is observed in the border area of Morocco and 
Algeria and in Iraq, but slight increases are also observed in the northern 
parts of the study area.

In combination of the main climate predictors, most of the areas 
provide suitable conditions (70+) in 2000 and 2020. Only the north
eastern parts of Turkey away from the coast have values below 40. Thus, 
other factors not included in the two main climatic predictors play a 
critical role in the establishment of Aedes albopictus. In contrast, the 
study area also contains regions where both predictors show a high 
suitability but Aedes albopictus is absent. In particular, Morocco and 
Tunisia, as well as the adjacent regions northeast of the HSA, have 
values of 80+, but other factors still prevent further spread.

4. Discussion

4.1. Background selection

Regarding the selection of background points, the use of the random 
selection method outperforms the block selection method. In particular, 
the overall model skill score (OMSS) for random selection is much 
higher than for block selection, while the block selection models have 
slightly higher AoA values on average. Title and Bemmels (2018) argue 
that the block selection method leads to a more realistic and less biased 
assessment of the ecological niches, especially when the model is 
transferred to new spaces or times. However, in our analysis, both 
methods have high AoA values, but the OMSS of random selection (on 
average: 0.76) outweighs block selection (0.60) so that random selection 
is preferred. In terms of introducing a weighting scheme on the 

Fig. 3. Time series of MME changes categorized by their attribution to land-use change (present: light green, absent: dark green) and climate change (present: light 
blue, absent: dark blue) between 2000 and 2020 (A). Areas with expanding Aedes albopictus have a red background, while those with retreating population are green. 
Bars represent the median change within each category with error bars showing the interquartile range of the MME. Colored dots represent the mean change due 
solely to land-use (green) or climate (blue) change, and the black line represents the overall mean change. The Box-Whisker plots on the right (B: climate, C: land-use) 
represent aggregated changes over time. The box represents the interquartile range, and the whiskers the range between the minimum and maximum.
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background data, the best results are obtained with an unweighted 
background selection. Both OMSS and AoA are significantly higher for 
random and hybrid background selection than for weighted background 
selection. Furthermore, OMSS is significantly higher for random selec
tion than for hybrid selection, while AoA is only slightly improved for 
random selection. We think that weighting in favor of points close to 
presence could improve OMSS when species reach their ecological 
equilibrium, but for invasive species, random selection is more prom
ising. With respect to the AoA, we assume that weighting reduces 
transferability, especially when the study area is much larger than the 
presence area.

4.2. Predictor selection

The temperature related bioclimatic variables that are most impor
tant for the modeling of the HSA in the extended Mediterranean area all 
describe diurnal or seasonal variations (BIO-2, BIO-3, BIO-4, BIO-7) 
which supports the theory of Franklin (2009) that the distribution of 
species depends more on variability and extremes than on annual 
means. However, this contrasts with many studies that have modeled the 
habitat suitability for Aedes albopictus in Europe or parts of Europe (e.g. 
Cunze et al., 2016a, 2016b; Koch et al., 2016; Ibáñez-Justicia et al., 
2020; Roiz et al., 2011). Only Cunze et al. (2018) highlight BIO-4 which 
is the main bioclimatic variable in our study. All authors refer to the 
selection of predictors based on expert knowledge, which is perfectly 
understandable since we know that life cycle stages of Aedes albopictus 
are linked to specific temperature thresholds. It is a logical conclusion to 
include minimum temperature of the coldest month (BIO-6) or mean 
temperature of the coldest quarter (BIO-11) when it is known that cold 
temperatures prevent the development of Aedes albopictus. In this study, 
BIO-6 and/or BIO-11 are replaced by the longest period with TMAX 
below 0 ◦C (EXV-11), which supports the findings of Stewart et al. 
(2021) that extremes provide significant additional improvements in 

model performance compared to baseline climate. Furthermore, Bailey 
and van de Pol (2016) assume that changes to frequency and magnitude 
of extremes promote more drastic shifts in species distribution than 
changes in mean climate. In addition, the temperature threshold of 25 ◦C 
for TMEAN seems to be substantial for the modeling of the HSA. Based 
on the second selection criteria, either the longest period with TMEAN 
>25 ◦C (EXV-8, Importance) or the number of days with TMEAN >25 ◦C 
(EXV-6, Contribution) was considered. Like the temperature related 
variables, the two main precipitation predictors (EXV-18 and BIO-15) 
represent measures of precipitation variability. In comparison to the 
other studies, only Cunze et al. (2016a) include precipitation seasonality 
while most studies include annual precipitation or precipitation of the 
warmest quarter (BIO-18). It is interesting to note that both Waldock 
et al. (2013) as well as Dieng et al. (2012) have shown in experiments 
that flushing from aquatic environments by heavy precipitation nega
tively affects the survival of Aedes albopictus. Here, the number of days 
and the longest period with precipitation >20 mm is not an inhibiting 
factor, and the probability of establishment increases with higher values 
of EXV-18, since water availability seems to play a more important role 
than flood risk.

The number of temperature and precipitation related predictors, 
their contribution and importance support findings of other studies that 
highlight the greater importance of temperature related predictors for 
modeling of the HSA (e.g. Cunze et al., 2016a, 2016b; Tran et al., 2013). 
On the one hand, this can be attributed to the sufficient water supply 
within the study area. Although experts recommend a threshold of 500 
mm for annual mean precipitation, Kuhlisch et al. (2018) state that 250- 
500 mm is enough for the establishment of Aedes albopictus in Europe 
and Koch et al. (2016) modeled presences even for areas with 160 mm. 
Ducheyne et al. (2018) assume that precipitation predictors are more 
important in arid areas with shortages in water supply. In our study area, 
only parts of Africa and the Arabian Peninsula away from the coast have 
<160 mm of annual precipitation, and only a few areas within Europe 

Fig. 4. Multi-Model-Ensemble agreement with respect to absence of Aedes albopictus due to climate change (top left), presence due to climate change (top right), 
absence due to land-use change (bottom left) and presence due to land-use change (bottom right) for the year 2020.
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Fig. 5. The most important predictor with respect to climate (top) and land-use (bottom) change. No changes (NSC) are displayed in black.
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have <250 mm. Thus, the annual rainfall in the Mediterranean and 
Europe does not limit the establishment of Aedes albopictus. On the other 
hand, some authors assume that human water supply and artificial 
containers independent of rainfall are even more important for the 
population dynamics of Aedes albopictus than precipitation (e.g. Roiz 
et al., 2011; Cunze et al., 2016b; Waldock et al., 2013).

4.3. HSA modeling

The results of the HSMs show great agreement with other studies. 
The main HSA represents the Mediterranean countries, but there is 
already a further spread to northern countries. Depending on the year of 
publication and the reference period, the studies observed a more or less 
pronounced northward expansion. In general, the earlier the study or 
reference, the more the HSA is restricted to the coastal regions of the 
Mediterranean (c.f. Caminade et al., 2012). More recent studies have 
observed the spread of the HSA in northern and eastern direction as 
confirmed in our study (c.f. Oliveira et al., 2021; Pasquali et al., 2020). 
The main reason for these differences could be the underlying observed 
presences for model training. The Alps have long served as a dispersal 
barrier between the established populations of the Mediterranean and 
the northern neighbors (Kraemer et al., 2019). Until the middle of the 
last decade, only few observations of Aedes albopictus were made north 
of the Alps (ECDC, 2023; GBIF, 2022). Kuhlisch et al. (2018) mention 
that in the second half of the last decade, Aedes albopictus was able to 
reproduce and overwinter for the first time. Kraemer et al. (2019) found 
that the barrier effect of the Alps had reduced the rate of spread of Aedes 

albopictus in Europe by this time. Once the barrier has been overcome, 
the authors noticed an increased rate of spread. Thus, the more time that 
has elapsed since the barrier was crossed, the more time Aedes albopictus 
has had to expand into its habitat north of the Alps. Since our model was 
calibrated to the 2020 distribution, the HSA already shows a northward 
and eastward expansion compared to the HSA of previous studies. With 
respect to regional studies, our MME is also able to cover most of the 
suitable habitats on the fringes of the HSA. The MME covers the pres
ences of Kuhlisch et al. (2018) in the German federal state of Thuringia, 
but with a lower agreement. The suitable habitat of Kozynenko and 
Tytar (2020) in the southern and western parts of the Ukraine is also 
well represented, but to a lesser extent, whereas the HSA in the 
Netherlands described by Ibáñez-Justicia et al. (2020) is over
represented. The predicted probability of Aedes albopictus matches the 
occurrence of Ducheyne et al. (2018) in the eastern parts of the Medi
terranean and along the North African coast, but with some limitations 
in the Nile Delta. Furthermore, our HSMs also represents the HSA in the 
southeastern parts of the United Kingdom which is described in several 
studies (e.g. Oliveira et al., 2021; Fischer et al., 2014; Caminade et al., 
2012). Only in mountainous regions like the Alps and the Pyrenees our 
HSMs show high agreements with respect to the HSA while other studies 
exclude these regions (e.g. Oliveira et al., 2021). However, Roiz et al. 
(2011) mention that there is an ongoing spread of Aedes albopictus in the 
valleys of the Italian Alps since 1996. Under the assumption that this 
spread is not limited to the Italian Alps, the coarser resolution of our 
study region, and the fact that presences are assigned to territorial units 
rather than coordinates, it is understandable that these regions were 

Fig. 6. Area of change (left), time series of absolute predictor variables (middle), and model response (right) for the predictors primarily responsible for status 
changes: presence due to climate change (top), absence due to climate change (middle), and presence due to land-use change (bottom).
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considered suitable for the establishment of Aedes albopictus. Thus, our 
MME works well for both the main region and the edges of the habitat 
suitability.

4.4. Changes in the HSA and the drivers of the shifts

The greatest changes of the HSA between 2000 and 2020 can be 
observed in the northern parts of the study area. Since we include 
different predictors, a comparison with other studies can rather be 
made. In terms of climate change, EXV-18 is the main predictor favoring 
northward expansion, especially since 2015. Most of the areas that are 
assigned to presence due to climate change show an increasing precip
itation intensity between 2000 and 2020, but not necessarily an increase 
of annual precipitation. Only 49 % of the respective grid boxes show an 
increase in both EXV-18 and BIO-12. Especially the northernmost areas 
(Netherlands, northern Germany) and the border triangle of Austria, 
Czech Republic and Slovakia show an increase of both variables, while 
Spain, northern France, central Germany, and Romania show an oppo
site development. In Turkey, only the northeastern parts show an in
crease of both variables, but mainly an opposite development can be 
observed. This suggests that it is not necessarily the annual rainfall that 
is a limiting factor for Aedes albopictus in Europe, but the amount of 
rainfall per rain event. Increasing EXV-18, combined with decreasing 
BIO-12, favors more intense precipitation events that sufficiently fill 
natural or artificial reservoirs. Subsequently, longer dry spells and, due 
to the lack of clouds, higher incoming solar radiation and thus solar 
heating of the reservoirs lead to perfect environmental conditions for the 
immature stages of Aedes albopictus. The higher initial rainfall is suffi
cient to maintain the aquatic habitat during the immature stages. In 
contrast, in retreat areas where EXV-18 is the main predictor, 77 % of 
the cases show decreasing precipitation intensities. In areas with 

increasing precipitation intensity and EXV-18 as the main predictor, it is 
predominantly associated with decreasing annual precipitation amounts 
(BIO-12). Here, BIO-12 is either below the 500 mm threshold recom
mended by experts (58 %), or far above the threshold. If EXV-18 in
creases and BIO-12 is below the threshold, we assume that either the dry 
periods between rain events may be too long to ensure a permanent life 
cycle dynamic, or that the reservoirs are not fully filled during the entire 
aquatic phase. If EXV-18 increases and BIO-12 is far above the threshold, 
occasional heavy rainfall events can flush out the reservoirs, hindering 
the development of Aedes albopictus during the immature stages 
(Waldock et al., 2013; Dieng et al., 2012).

The optimal range of the standard deviation of the monthly mean 
temperature (BIO-4) is between 5.5 ◦C and 7.5 ◦C. This range covers 
much of Western and Central Europe and the European Mediterranean 
coastlines. The European Atlantic coasts and the northern coast of Africa 
are below the optimal range, while central Spain, the Po Valley, Eastern 
Europe, Turkey, the Levant, and much of the Maghreb region are above 
the optimal range. Unfavorable conditions with respect to BIO-4 are 
found only in the northwesternmost parts of Spain and France, Ireland, 
the west coast of the UK and in the easternmost parts of the study area. 
Partly, these findings agree with other studies. Fischer et al. (2011) as
sume a continental gradient of habitat suitability and Pasquali et al. 
(2020) assume that habitat suitability is positively influenced by the 
proximity of the Atlantic. This is also supported by the findings that the 
impact of BIO-7 on the HSA is less pronounced compared to BIO-4, 
although it carries similar information. In contrast to BIO-4 that repre
sents a degree of continentality, BIO-7 is more of a latitudinal gradient. 
For Western and Central Europe, the differences are rather small, but for 
Eastern Europe (BIO-4 maximum) and North Africa (BIO-7 maximum) 
the differences are substantial. The increasing continental gradient leads 
to higher temperature seasonality with temperatures well below zero 

Fig. 7. Changes in the most suitable areas for Aedes albopictus between 2000 and 2020 with respect to the response of the two main climatic predictors. The response 
curves (left) are classified into 10 categories (unsuitable (0−10) – suitable (90–100)). The regional classification for 2000 and 2020 is shown in the middle for BIO4 
(top), EXV18 (middle) and for the combined predictors (bottom). Full colors represent the suitable habitat of Aedes albopictus, transparent colors represent areas 
where Aedes albopictus is not established. Response changes of the predictor variables are shown on the right.
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during the winter month. Cold winter temperatures have been identified 
as the most limiting factor within Eastern Europe by Cunze et al. 
(2016b). Furthermore, Kraemer et al. (2019) observed an increasing 
trend of aridity in Eastern Europe. The combination of both effects can 
explain habitat unsuitability in Eastern Europe. In contrast, the prox
imity to the Atlantic should favor habitat suitability, but the response of 
BIO-4 decreases with decreasing temperature seasonality. This contra
dicts Oliveira et al. (2021), who found a high consensus of habitat 
suitability for the northwestern Iberian Peninsula. Other studies also 
highlight the suitability of the western parts of the Iberian Peninsula (e. 
g. Caminade et al., 2012; Fischer et al., 2011; Kraemer et al., 2015). Our 
HSMs also predict habitat suitability for the French Atlantic coasts, but 
not for the Atlantic coasts of the Iberian Peninsula. We hypothesize that 
either other confounding factors prevent the expansion of the HSA in 
these regions or the model cannot assign these environmental conditions 
to the HSA due to lack of presences in these regions. However, with 
respect to a decrease in HSA due to climate change, over 98 % are above 
the optimal range and 96 % show increasing values for BIO-4. Thus, a 
logical connection between the retreat of the HSA and increasing BIO-4 
can be observed.

Regarding land-use, it is difficult to draw conclusions. On the one 
hand, we have strong indications that land-use has a significant impact 
on the HSA. The HSM with the largest changes due to land-use shows an 
increase in the HSA by 4.4 %, and a decrease by 1.2 %. Overall, land-use 
accounts for 16.1–51.9 % of changes in the HSA, but in contrast to 
climate change, we only have little spatial agreement. Only 19 grid 
boxes of the MME indicate changes due to land-use change. At first sight, 
these results contradict Lambin et al. (2010) who postulate that land-use 
change may be the most important driver of the recent global spread of 
mosquitoes and MBDs. However, if we compare the maximum flight 
distance of the species (Verdonschot and Besse-Lototskaya, 2014) with 
the spatial resolution of our data, we see that the maximum flight dis
tance is substantially lower than the grid resolution. Thus, with the 
current spatial resolution, we are not able to adequately resolve land-use 
changes that are important for the establishment of the species. We can 
only assume that the overall composition of the grid boxes is favorable 
or unfavorable, always considering that within each grid box there are 
favorable and unfavorable biotopes for the establishment of Aedes 
albopictus. When we evaluate the studies that postulate that land-use is 
the crucial factor for establishment, we see that they all provide a higher 
spatial resolution (e.g. Lambin et al., 2010; Rakotoarinia et al., 2022, 
2023). Thus, we conclude that the importance of land-use depends on 
the spatial resolution. The higher the resolution, the more important 
characteristics of the species' habitat can be captured.

The most important land-use category is represented by Bare that has 
the highest model importance and contribution. The MME response 
curves (Supplementary S3) show that the higher the Bare fraction, the 
lower the suitability of the HSA. This represents a logical relationship 
since the higher the Bare fraction, the lower the fraction of vegetation 
and, thus, the lower the fraction of hosts. In addition, Bare mainly 
represents regions with low precipitation. However, with respect to 
changes due to land-use change, Bare represents only a subordinate 
variable. Considering the response range in combination with model 
importance and contribution, deciduous shrubs (39 % of the study area) 
and non-irrigated crops (23 % of the study area) are the most important 
land use variables for changes in the HSA. On average, deciduous shrubs 
increase by 0.4 % while non-irrigated crops decrease by 2.6 %. Both 
changes mainly occur in the range where the response of the model is 
greatest and favor the establishment of Aedes albopictus. Deciduous 
shrubs are often associated with gardening and thus with host avail
ability and water supply. A fraction of 15 % is sufficient to reach a 
comfortable level of habitat suitability. A further increase in the pro
portion of deciduous shrubs has little effect on the HSA. A possible 
explanation could be that 15 % represents a kind of threshold between 
wild-growing and managed cultivation. With respect to Non-irrigated 
Crops (NIC), the maximum response is reached at 4 %, followed by a 

steady decrease. We assume that an increasing fraction of NIC is asso
ciated with an increasing use of insecticides that has direct effects on 
Aedes albopictus as well as indirect effects on host availability. In inter
action with a lack of water supply, a high proportion of NIC has negative 
impacts on the HSA.

5. Conclusions

The present study makes an important contribution to the under
standing of habitat suitability area for Aedes albopictus and provides the 
basis for investigating the spread of vector-borne diseases in Europe 
under climate and land-use change. For the first time, climate and land- 
use changes have been analyzed separately over the Mediterranean and 
Central Europe, in order to attribute changes in suitability to either 
climate or land-use changes. However, the suitability of the habitat of 
the vector does not necessarily mean that viruses or the mosquito will 
arrive or become established in the concerned areas (Santos and Men
eses, 2017; Messina et al., 2016), but the possibility for vector estab
lishment within these regions certainly increases the probability for 
infections. Further investigations are necessary to investigate the suit
ability for respective viruses.

Although land-use has a lower impact on the HSA than climate, we 
identified land-use categories that at least hamper the establishment of 
Aedes albopictus. These findings are very interesting especially with 
respect to landscaping. For example, the transition from irrigated to non- 
irrigated crops provides less breeding sites for mosquitoes and, thus, 
reduces the HSA and the risk for MBDs. However, the ongoing transition 
from non-irrigated to irrigated crops between 2000 and 2020 favors the 
establishment of Aedes albopictus, especially in Euro-Mediterranean 
countries and in northern parts of Iraq. Here, a return to non-irrigated 
crops or the use of modern irrigation techniques such as drip irriga
tion, which avoids puddles of standing water, can reduce the HSA. 
Targeted irrigation systems also reduce water wastage, which will 
become increasingly important as climate change is expected to reduce 
water availability in the Mediterranean region. Changes in the Ever
green Coniferous Trees within the range where the response is greatest 
can be found, for example, in the northern parts of Italy, Romania and in 
some regions of the Iberian Peninsula. It is therefore not surprising that 
Northern Italy is the origin of the European spread of Aedes albopictus, as 
it offers perfect climatic and land use conditions. The Po Valley, with 
extensive areas of IC and the establishment of ECT on the neighboring 
hillsides, corresponds to the land use conditions preferred by Aedes 
albopictus. With respect to deciduous shrubs, the most important land- 
use predictor in the northern parts of the study area, changes favor 
the establishment of Aedes albopictus especially in eastern Europe. The 
identified regions are those regions where countermeasures should be 
considered to reduce the HSA. However, countermeasures should be 
carefully evaluated, as in some cases they may counteract efforts to 
reduce climate change. Thus, countermeasures that reduce the HSA due 
to land-use may lead to more favorable conditions due to climate. Since 
climate has the greater impact on HSA, these countermeasures may be 
counterproductive. Further research should also be conducted on these 
positive and negative feedbacks between climate and land-use in both 
directions.

Our results identify unfavorable land-use class compositions and 
provide an opportunity to establish countermeasures within the affected 
regions. Preparations, monitoring programs and, if necessary, counter
measures can also be implemented in regions where Aedes albopictus 
recently finds suitable habitats, but the species has not yet been re
ported. Kraemer et al. (2019) assume that the potential habitat of Aedes 
albopictus will be saturated between 2030 and 2050. In some regions, 
there is hence enough time to act.
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