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1. INTRODUCTION

Numerical models are a cornerstone of modern engineer-
ing, facilitating design optimization, reducing development
costs, and minimizing material usage. One of the most
prominent methods for such models is finite element (FE)
analysis. FE models enable accurate simulations of various
physical phenomena for any geometry and scale, ranging
from microchips to cruise ships. Accurate predictions of a
device’s behavior render FE analysis indispensable, par-
ticularly when models are well-calibrated to experimental
data. However, this level of accuracy comes at high com-
putational costs as resulting models are commonly of high
dimension. This major drawback prevents applications in,
e.g., system-level simulation or feedback control.

An elegant method to bridge this gap is found in
projection-based model order reduction (MOR) as compre-
hensively described by Antoulas (2005). Based on the orig-
inal system, MOR constructs a low-dimensional yet highly
accurate surrogate model, also referred to as a reduced or-
der model (ROM). After its offline construction, the ROM
provides significant speed-up during online deployment.

⋆ This research is part of the project Adaptive Optics for THz
(ADOPT) within the priority program Cooperative Multistage Mul-
tistable Microactuator Systems (KOMMMA) and was funded by
Deutsche Forschungsgemeinschaft (German Research Foundation)
grant number 424616052.

MOR synergizes well with FE models, can be interpreted
in physical terms, and maintains the same mathematical
structure. However, as described by Baur et al. (2014),
this methodology is well-established for linear systems, but
requires additional methods to handle nonlinearities.

Such methods are referred to as hyperreduction. The state
of the art is defined by the discrete empirical interpolation
method by Chaturantabut and Sorensen (2010) or the
energy conserving mesh sampling and weighting method
by Farhat et al. (2014). These methods evaluate a small
subset of the nonlinear terms for their approximation.
Therefore, these methods require the specific nonlinear
expressions. This poses a significant restriction for non-
academic software as its solvers act as black boxes that
can only be sampled. An alternative method exclusively
built from easily accessible data is the trajectory piecewise
linear approximation (TPWL) by Rewieński (2003). It
approximates nonlinear terms with a weighted sum of their
linearizations sampled around several states. TPWL and
FE form a natural combination as nonlinear solvers are
based on iterative linearizations. Therefore, all required
data such as Jacobians and residuals are readily available
as demonstrated in our previous work in Schütz et al.
(2023). Note that TPWL’s interpolation-based nature
limits its approximation quality to trajectories in the
vicinity of sampled data.
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A control scheme well-suited for both automatic controller
design and TPWL is found in gain-scheduling. As de-
scribed by Leith and Leithead (2000), the key idea is to
linearize a nonlinear model at several operating points
and to design a linear controller for each of these models.
These controllers are then interpolated during operation
based on so-called scheduling variables such as outputs or
states. Hence, the concepts of TPWL and gain-scheduling
are strongly related and use the same data. Tonkens
et al. (2021) have successfully demonstrated this combined
methodology based on an FE model to control a soft robot.
This paper introduces another numerical case study in
form of a bi-axially actuated tunable prism for microscopy
using an industry-standard FE tool.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the tunable prism, which serves as a nu-
merical case study for this work. Section 3 guides through
the modeling process, including the FE model, nonlinear
MOR via TPWL, and an evaluation of the ROM’s perfor-
mance. Section 4 describes the design and evaluation of
a corresponding controller using gain-scheduling. Finally,
Section 5 summarizes the work and suggests future re-
search directions.

2. NUMERICAL CASE STUDY: PRISM ACTUATOR

Fig. 1. The prism as proposed by Weber et al. (2021b).
The relevant degrees of freedom (DOFs) and outputs
of later models are the upper glass plate’s vertical
position and its rotation along the y-axis and x-axis.

Confocal microscopes offer excellent optical resolution.
The overall image is assembled point by point, as only
a small part of the sample is in focus. Therefore, the
process deploys scanning patterns to capture the three-
dimensional specimen. The required motion is convention-
ally achieved by translational positioning stages, movable
lenses, mirrors, or some combination thereof. In addition,
further elements might be necessary to correct imaging er-
rors. Consequently, corresponding microscopes are bulky,
susceptible to environmental influences, and limited by
inertia, potentially introducing motion artifacts.

A promising alternative are bi-axial tunable prisms as pro-
posed by Lemke et al. (2019), leading to higher resolution,
faster scans, more compact designs, and increased robust-
ness due to less moving components. Recently, Weber et al.
(2021a,b) presented a novel design relying on magnetic
actuation instead of brittle piezoelectric elements, further
improving robustness. In addition, the low-cost design fea-
tures inherent self-sensing capabilities as studied by Weber
et al. (2023). Fig. 1 shows the prism’s composition, which
is available in more detail in the original work by Weber

et al. (2021b). A rubber membrane mounted on a circular
glass substrate is sealed with a glass window on top. The
paraffin oil inside controls optical properties. Four magnets
attached to the glass window interact with coils below (not
shown) for vertical motion and tilting.

3. MATHEMATICAL MODELING

The modeling process consists of three stages and an
evaluation: in Subsection 3.1, an FE model establishes
the reference solution and creates data for subsequent
steps. Subsection 3.2 introduces projection-based MOR.
Finally, Subsection 3.3 adds TPWL to achieve efficient
hyperreduction, resulting in the final ROM. Subsection 3.4
evaluates the ROM’s performance in a representative load
case with respect to the original FE model.

All FE analyses are conducted using Ansys® Academic
Research Mechanical, Release 2022 R2. MOR and TPWL
use Model Reduction inside Ansys and Python, particu-
larly NumPy and SciPy.

3.1 Finite Element Model

Fig. 2. FE mesh of the simplified prism. The geometric dis-
cretization error is lower than implied as the quadratic
elements are displayed as flat quadrilaterals.

The design in Fig. 1 is slightly simplified to enable an
efficient FE representation as shown in Fig. 2. A total of
160 quadratic shell elements represents the basic structure
of membrane and glass. Four point masses capture the
magnets’ inertias. Designated fluid elements incorporate
the effects of the incompressible parrafin oil inside. This
efficient representation results in an FE model of only
1543 DOFs. The low order proves particularly useful for
developing numerical workflows, as small file sizes and low-
dimensional calculations provide almost instant feedback.
Material properties are simplified to be linear, but large
deformations and the incompressible fluid are considered,
rendering the analysis nonlinear. The electromagnetic ac-
tuation is decoupled from this model. Instead, the relation
between force, magnet position, and coil current is char-
acterized by additional FE analyses not presented here.

Mathematically, the FE model corresponds to a large-
scale system of n = 1543 nonlinear second-order ordinary
differential equations

Σ =

{
M (x) ẍ+E (x) ẋ+ f (x) = Bu

y = C x
, (1)

where x ∈ Rn is the state vector and f (x) ∈ Rn

are the nonlinear restoring forces. The state-dependent
matrices for inertia and damping are denoted as M (x)
and E (x) ∈ Rn×n, respectively. The output matrix C ∈
Rq×n assembles the user-defined outputs y ∈ Rq.
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To capture the prism’s behavior, q = 3 outputs are
chosen, comprising the glass plate’s vertical position and
its rotations along the two horizontal axes. Note that these
quantities can be converted to polar angle and azimuth
angle or the four magnets’ vertical positions, e.g., for a
seamless connection with magnetic force characteristics.
The input matrix B ∈ Rn×p distributes the p inputs in
u. These inputs are determined by currents of the four
coils, but are implemented as a vertical force and tilting
moments acting on the glass plate. Conversions similar to
the outputs are possible.

3.2 Model Order Reduction

Projection-based MOR aims to produce a low-dimensional
model that retains a high degree of accuracy. The key idea
is to identify a subspace of significantly smaller dimension
that captures most of the original state’s dynamics. Using
a projection matrix V ∈ Rn×r which columns span this
subspace, the original state x can be approximated as

x ≈ V xr , (2)

where xr ∈ Rr is the reduced state vector. The most
prominent method to find an appropriate subspace for
nonlinear models is the proper orthogonal decomposition
(POD). First, the original system is sampled, i.e., simu-
lated for anticipated trajectories. Corresponding solutions
for the state vector are referred to as snapshots and are
collected as columns of a snapshot matrix. A singular value
decomposition then reveals an appropriate subspace in
form of left singular vectors. Reducing the original model’s
order additionally requires projecting the system onto the
same subspace. These two steps lead to a ROM given by

Σr =



V ⊤ M (V xr) ẍr + V ⊤ E (V xr) ẋr

+ V ⊤ f (V xr) = Br u .

y = Cr xr

(3)

All matrices with subscript r indicate reduced versions
of their high-dimensional counterparts and summarize
products of projection matrices and original system ma-
trices. Exceptions are input and output, which remain
unchanged. However, the nonlinearities gained complex-
ity: evaluating nonlinear terms at reduced level requires
expanding the reduced state xr back to its original dimen-
sion, evaluating the nonlinearity, and finally, projecting it
back to the reduced space. Methods to evaluate such terms
more efficiently are referred to as hyperreduction, which is
achieved by TPWL in the next subsection.

3.3 Trajectory Piecewise Linear Approximation

The basic idea is to approximate nonlinear terms by
weighted sums of their respective linearizations. Hence, the
nonlinearity is linearized around several states, typically
along representative trajectories. These linearizations can
be sampled on the fly, as suggested by Rewieński (2003), or
by pruning an extensive set of sampled data, as described
by Tiwary and Rutenbar (2005). A weighted summation
of these linearized quantities approximates the global
nonlinearity. Finally, this approximation is incorporated
into the dynamical system. The weights are typically
based on the (reduced) state to schedule linearizations.
Mohseni et al. (2016) demonstrate alternatives such as
technically meaningful outputs. Further note that TPWL

is commonly combined with MOR, but may also be
deployed on its own. Advantages of TPWL include its
robustness and its non-intrusive nature, i.e., the fact that
only easily obtainable data rather than detailed analytic
descriptions are required. Furthermore, the initial set of
linearizations can be incrementally updated with new
data to some extent without the need to repeat the
whole workflow. However, its approximation quality tends
to degrade when trajectories deviate significantly from
sampled ones. Depending on the choice of interpolation
scheme and sampling density, rapid switching between
different linearized models might cause chattering model
selection during simulation.

In mathematical terms, TPWL first linearizes nonlineari-
ties around N states xi from the system’s trajectory as

f (x)

xi

≈ f (x)

xi  

fi

+
∂f (x)

∂x


xi  

Ki

(x− xi)

= fi −Ki xi  
f̂i

+Ki x ,
(4)

where fi ∈ Rn is the nonlinear function evaluated at
xi and Ki ∈ Rn×n its Jacobian, i.e., a constant force
vector and a stiffness matrix. A weighted sum of these
linearizations forms the global approximation

f (x) ≈
N
i=1

wi(x) f̂i +

N
i=1

wi(x) Ki x . (5)

The state-dependent matrices M (x) and E (x) are ap-
proximated similarly but without derivative information,
i.e., as a weighted sum of sampled values. The weights
wi(x) are computed according to Algorithm 1 in Ap-
pendix A. As the state-dependent weights are dynamically
evaluated during simulation, the TPWL-approximated
model remains nonlinear. Denoting the weights as wi for
readability and substituting (5) into (1) results in

N
i=1


wi Mi


ẍ+

N
i=1


wi Ei


ẋ

+
N
i=1


wi Ki


x+

N
i=1


wi f̂i


= Bu . (6)

All components are compatible to projection-based MOR
and can be reduced using the same global projection for
all systems leading to the ROM

N
i=1


wi Mi,r


ẍr +

N
i=1


wi Ei,r


ẋr

+

N
i=1


wi Ki,r


xr +

N
i=1


wi f̂i,r


= Br u, (7)

which is deployed in this form. The weights wi for a ROM
are commonly based on the reduced state xr, but this work
relies on the output y instead. All these steps to generate
the ROM and their associated computational costs are
offline, i.e., before online deployment in an application.
Please note that the linearized systems might be reduced
with individual projections instead of a global one as
proposed by Lohmann and Eid (2009) to decrease the
overall order.
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3.4 Reduced Order Model Evaluation

The original FE model is simulated to generate data for
MOR and TPWL. Static analyses suffice for sampling
as all nonlinearities only depend on the state and not
on its derivatives. Compared to transient analyses, static
analyses are associated with less computational costs and
avoid building up numerical error. Inspired by the original
work by Weber et al. (2021b), samples are chosen to
capture typical system states, i.e., to cover the glass plate
tilted in several angles to all sides. This grid of polar
angle and azimuthal angle is sampled for 1 ◦ - 5 ◦ in steps
of 1 ◦ and a full revolution in steps of 45 ◦, respectively.
The forces and torques required for these orientations are
determined by a set of additional displacement-driven FE
analyses. Together with the prism’s resting position, a
total of 41 static loadcases is analyzed, resulting in the
same number of sampled linearized systems for TPWL.
Each loadcase comprises 10 substeps with ramped loads,
creating 410 samples for the state vector and constitute the
snapshot matrix for POD. A singular value decomposition
identifies dominant patterns ranked by their respective
singular value. ROMs of dimensions 5 − 25 have been
created for later studies in Subsection 4.2.

The ROM of dimension 20 is compared against the FE
reference model with a transient analysis covering the
sampled range. A spiral motion with a duration of 0.5 s
is analyzed in time steps of 0.5ms with the input

u(t) =


Fz(t)
Mx(t)
My(t)


=




0

M̂ · sin (ω · t) · t
M̂ · cos (ω · t) · t


 , (8)

where the torque has an amplitude of M̂ = 15N ·mm and
an angular frequency of ω = 2π/0.05 s−1. Fig. 3 presents
the results for the two angular outputs computed by
both models. The plot additionally provides the absolute
error, which is well-suited to assess approximation quality
despite numerous zeros. In general, the ROM provides
accurate results as its error does not surpass 0.075 ◦.
However, the error accumulates over time. In terms of
computational effort, the ROM solves in 3.77 s compared
to the original model’s 549.48 s, achieving a speed-up of
more than two orders of magnitude.

Fig. 3. Result comparison and absolute error between
the reference FE model and the ROM using TPWL.
Rotation axes are indicated in Fig. 1.

4. TPWL-BASED CONTROL

The composition of the ROM from linear subsystems offers
the advantage of a feedback controller design using linear
control theory. In the following, we describe a control
strategy that can largely be automated. Its suitability is
then shown in a simulative study.

4.1 Control Design

Similar to the approximation of the nonlinear dynamics
by a set of linearized subsystems, we can design controllers
for each of these individual models. The system input then
results from the interpolation of the respective controller
outputs according to Algorithm 1, i.e., in the same way as
used for the simulation. This approach is known as gain-
scheduling.

For this purpose, we extend the second-order dynamics
of each linearized system in (7) to a system of first order
differential equations with the extended state vector ξ =
[x⊤

r , ẋ
⊤
r ]

⊤. The i-th state space equation is then given by

ξ̇ = Fi ξ +Gi u+ hi (9)

with the matrices

Fi =


0 I

−M−1
i,r Ki,r −M−1

i,r Ei,r


, Gi =


0

M−1
i,r Br


,

hi =


0

−M−1
i,r fi,r


. (10)

A suitable control strategy for systems with multiple
inputs and outputs is given by a state feedback controller
with control law

ui = Ki (ξref − ξ) , (11)

with controller gain matrixKi and reference state ξref. For
each of the linearized systems of the TPWL-approximated
model, the gain matrix can be obtained offline by the linear
quadratic regulator (LQR) approach, which minimizes the
cost function

J =

 ∞

0

(ξref − ξ)⊤Q (ξref − ξ) + u⊤
i Rui dt . (12)

The weighting matrices Q and R penalize state devia-
tions and the input effort, respectively, and can be chosen
depending on the requirements. In this case, the control
goal is defined by the reference state instead of the output
reference yref. This can pose a challenge, since in general
the full state leading to the desired output is not known
exactly. Tonkens et al. (2021) solve this issue by optimal
trajectory planning, in which the input and state trajec-
tories are computed by minimizing a cost function over
a predefined prediction horizon. While the obtained state
trajectory is used as reference ξref, the optimal input is
additionally applied in a feedforward manner.

In this work, we propose an alternative method, which only
requires the desired output trajectory. The control law is
chosen as

ui = Si yref −Ki ξ + gi , (13)
with the additional static prefilter matrix Si and a com-
pensation term gi for the affine part hi within the dy-
namics (9). These are designed to improve steady-state
accuracy, i.e., to ensure the condition

lim
t→∞

y(t) = yref . (14)
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To obtain the prefilter and compensation terms, we insert
control law (13) into the model equations (9), resulting in

ξ̇ = (Fi −GiKi)ξ +GiSiyref +Gigi + hi . (15)

Since we are interested in the steady state, we set (15) to
zero, solve for ξ, and calculate the steady-state output,
which is then given by

lim
t→∞

y = Cξ
∣∣
ξ̇→0

(16)

= −C(Fi −GiKi)
−1 (GiSiyref +Gigi + hi) .

To fulfill the steady-state condition (14), we can choose Si

and gi as:

Si = −
(
C(Fi −GiKi)

−1Gi

)−1
(17)

gi = −G+
i hi . (18)

Here, the superscript (·)+ denotes the pseudo inverse. The
matrices Si, Ki and the vector gi are computed offline
based on the linearized models. The overall control output
can then be computed online as the weighted sum of all
individual outputs

u =

N∑
i=1

wi ui . (19)

Note that this corresponds to an interpolation of the indi-
vidual controller outputs and its smoothness depends on
how the weighting coefficients wi are calculated. The pro-
posed strategy corresponds to a state-feedback controller
for which the reduced system states need to be available.
In general, however, these cannot be measured. Instead,
the states need to be estimated online from the output
trajectory. For this, we use the state estimator given in
Tonkens et al. (2021), which corresponds to weighted linear
Luenberger observers for each submodel.

4.2 Controller Evaluation

The order and accuracy of the ROM are critical for
successful feedback control. On the one hand, the ROM
must be sufficiently small to allow its evaluation within the
sampling time. On the other hand, its accuracy influences
the control quality, and a system that is controlled based
on an inaccurate model may even become unstable. In this
section, we therefore evaluate the controller performance
in simulation depending on the dimension of the ROM.

As control goal, we define a reference trajectory yref

that covers a large part of the working area. Here, we
concentrate on the rotational degrees of freedom, for
which a spiral-shaped motion is chosen, while the vertical
displacement should remain at its initial zero-position.

The controller performance is evaluated in terms of the
tracking control error regarding the rotation angles. The
root mean squared error (RMSE) of the deviation between
the controlled motion and the reference as well as the
average time needed for a single evaluation of the con-
troller depending on the ROM dimension are illustrated
in Fig. 4. For a better interpretation of the results, the
time sequences of the marked dimensions are visualized in
Fig. 5. Note that for the simulations we used the ROM of
dimension 25 as approximation of the original system to
be controlled, and the lower dimensional ROMs were used
for the controller design.

In this case, the ROM requires at least dimension 10
to achieve stable feedback control. Moreover, sufficiently
small control errors require dimension 13 and higher. It
should be mentioned, however, that the suitability of the
ROM’s dimension also depends on the chosen control
approach. Lower dimensions may thus still be appropriate
to control the prism actuator in case of alternative control
methods such as robust control.

Fig. 4. Tracking control RMSE and average time needed
for a single controller evaluation, both vs. dimension
of the ROM the controller was designed with.

Fig. 5. Reference trajectory and results for the ROMs
marked in Fig. 4.

5. CONCLUSION

This paper has presented a convenient workflow to derive
low-dimensional yet accurate surrogate models from non-
linear FE models and to design appropriate controllers. All
required data are easily obtainable from the FE solution
process, even with commercial FE software. Creating a
model does not require specialist knowledge or high-level
access to the FE code. Designing a corresponding con-
troller based on gain-scheduling preserves the ease of use
and the potential for automatization. A numerical study
has demonstrated the quality of controllers obtained from
ROMs applied to a higher-dimensional model.

Aspects for future work are refining TPWL in terms of
more efficient sampling, pruning sampled data, indicating
range of validity, and investigating weighting schemes. To
ensure precise control, approaches focused on robustness
yield mentionable potential. In addition, experimental
work to deploy the control scheme on hardware is planned.
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DATA AVAILABILITY

Part of the code allowing to reproduce Fig. 3 is provided on
GitLab at https://gitlab.gwdg.de/jade-hochschule/
fms/2025-mathmod. Corresponding files include the AN-
SYS APDL script to create the FE model and to simulate
the load case in (8). Furthermore, all files for TPWL-
approximated ROMs of dimension 5, 10, and 20 as well as
the python script for their simulation are supplied. Further
data and code is provided upon reasonable request.
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an alternative and relies on weights based on the output
y. The weights take values between zero and one and
thus, samples are interpolated to obtain the quantity of
interest. The weighting scheme basically corresponds to
nearest-neighbor interpolation with continuous but sharp
transitions. This approximately piecewise linear procedure
is the source of the method’s name. The parameter β
defines the sharpness of transition and is set to β = 25
as suggested in the original work by Rewieński (2003). A
vanishingly small numerical offset ε avoids division by zero.

Algorithm 1 Weighting scheme for TPWL.

Input: xr

Output: w1,...,N

for i = 1, . . . , N do
di = ∥xr − xr,i∥

m = mini=1,..,N di + ε
for i = 1, . . . , N do

ŵi = exp(−β di/m)

S =
∑N

i ŵi

for i = 1, . . . , N do
wi = ŵi/S


