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Abstract
Purpose: Pediatric low-grade gliomas (pLGG) are the most common brain tumour in children, and the molecular diagnosis 
of pLGG enables targeted treatment. We use MRI-based Convolutional Neural Networks (CNNs) for molecular subtype 
identification of pLGG and augment the models using tumour location probability maps. Materials and Methods: MRI FLAIR 
sequences of 214 patients (110 male, mean age of 8.54 years, 143 BRAF fused and 71 BRAF V600E mutated pLGG tumours) 
from January 2000 to December 2018 were included in this retrospective REB-approved study. Tumour segmentations 
(volumes of interest—VOIs) were provided by a pediatric neuroradiology fellow and verified by a pediatric neuroradiologist. 
Patients were randomly split into development and test sets with an 80/20 ratio. The 3D binary VOI masks for each class 
in the development set were combined to derive the probability density functions of tumour location. Three pipelines for 
molecular diagnosis of pLGG were developed: location-based, CNN-based, and hybrid. The experiment was repeated 100 
times each with different model initializations and data splits, and the Areas Under the Receiver Operating Characteristic 
Curve (AUROC) was calculated, and Student’s t-test was conducted. Results: The location-based classifier achieved an 
AUROC of 77.9, 95% confidence interval (CI) (76.8, 79.0). CNN-based classifiers achieved an AUROC of 86.1, 95% CI (85.0, 
87.3), while the tumour-location-guided CNNs outperformed the other classifiers with an average AUROC of 88.64, 95% CI 
(87.6, 89.7), which was statistically significant (P-value .0018). Conclusion: Incorporating tumour location probability maps 
into CNN models led to significant improvements for molecular subtype identification of pLGG.

Résumé
Objectif : Le gliome de bas grade est le type de tumeur au cerveau le plus courant chez l’enfant. Son diagnostic moléculaire 
permet un traitement ciblé. Nous avons recours à des réseaux neuronaux convolutifs (CNN) afin de déterminer le sous-type 
moléculaire de gliome à partir d’une IRM, et nous améliorons les modèles au moyen de cartes de probabilité de localisation des 
tumeurs. Matériel et méthodes : Des séquences d’IRM de type FLAIR (fluid-attenuated inversion recovery) de 214 patients (110 
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hommes, âge moyen de 8,54 ans; 143 gliomes porteurs d’une fusion de BRAF et 71 gliomes porteurs d’une mutation V600E 
de BRAF), prises entre janvier 2000 et décembre 2018, ont été utilisées dans le cadre de cette étude rétrospective approuvée 
par le CÉR. Les segmentations des tumeurs (volumes d’intérêts, VOI) ont été fournies par un fellow en neuroradiologie 
pédiatrique, et vérifiées par un neuroradiologiste spécialisé en pédiatrie. Les patients ont été divisés de façon aléatoire en deux 
ensembles : « développement » et « test », selon un ratio de 80/20. Les masquages 3D binaire des VOI de chaque classe de 
l’ensemble « développement » ont été combinés afin d’obtenir des fonctions de probabilité d’emplacement des tumeurs liée 
à la densité. Trois pipelines de diagnostic moléculaire de gliome de bas grade chez l’enfant ont été mis au point : diagnostic 
fondé sur l’emplacement, diagnostic fondé sur les CNN, et diagnostic hybride. L’expérience a été répétée 100 fois, chacune 
au moyen de modèles d’initialisation et de divisions des données différentes. L’aire sous la courbe de fonction d’efficacité du 
récepteur (AUROC) a été calculée, et le test de Student a été réalisé. Résultats : Le trieur fondé sur l’emplacement a obtenu 
une AUROC de 77,9 et un intervalle de confiance (IC) de 95 % (76,8 - 79,0). Le trieur fondé sur les CNN a obtenu une 
AUROC de 86,1 et un IC de 95 % (85,0 - 87,3). Le trieur hybride a surpassé les autres trieurs; son AUROC moyenne était de 
88,64, avec un IC de 95 % (87,6 - 89,7), ce qui est significatif sur le plan statistique (P = 0,0018). Conclusion : L’incorporation 
de cartes de probabilité d’emplacement des tumeurs dans des modèles de CNN a permis d’améliorer de manière significative 
la détermination des sous-types moléculaires des gliomes de bas grades chez l’enfant.
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Introduction

Brain tumours are the most common solid cancer among chil-
dren, with pediatric Low-Grade Glioma (pLGG) being the most 
frequent.1-3 The advent of targeted therapies such as BRAF 
proto-oncogene, serine/threonine kinase (BRAF) inhibitors4,5 
has improved therapeutic outcomes of pLGG, but successful 
treatment planning for pLGG is governed by identifying tumour 
type and molecular subtype.6,7 Currently, the standard of care 
for molecular subtype identification of pLGG is tissue diagnosis 
through biopsy or surgery, which carries inherent risks, and 
sometimes is not feasible due to a tumour’s location.8-11

While MRI visualizes the tumour in its entirety and could 
represent a non-invasive alternative to biopsy for tumour clas-
sification, determining the molecular subtype of a tumour 
based on MRI remains a challenging task.12 The feasibility of 
Machine Learning (ML) algorithms to identify genetic markers 
of pLGG has been demonstrated,13 but there remain important 
gaps and opportunities warranting further improvement. The 
performance of MRI-based pLGG subtype identification pipe-
lines in the literature is currently suboptimal and tumour loca-
tion has been shown to be a significant predictor.14,15

We, therefore, aimed to establish a tumour-location—and 
a Convolutional Neural Network (CNN) based pipeline and a 
merged CNN pipeline with tumour location probability maps, 
and to evaluate their respective performance to identify 
molecular subtypes of pLGG based on MRI. The motivation 
for the proposed tumour-location-guided CNN algorithm was 
using regions outside the manual segmentation to improve the 
classification performance.

Materials and Methods

Dataset

The local institutional research ethics board approved this retro-
spective study waiving the need for informed consent. The inter-
nal dataset from The Hospital for Sick Children (Toronto, Ontario, 

Canada) included MR images of patients with the 2 most com-
mon molecular subtypes of pLGG, BRAF fusion and BRAF 
p.V600E mutation. Patients were identified using the electronic 
health record (EHR) database of the hospital from January 2000 
to December 2018. Inclusion criteria were an age of 0 to 18 years, 
histopathological/molecular confirmation of BRAF gene status, 
and a diagnosis of BRAF fusion or BRAF p.V600E mutation. 
Exclusion criteria were imaging artifacts precluding assessment, 
absence of an axial FLAIR sequence, and a molecular diagnosis 
other than BRAF fusion or BRAF p.V600E mutation.

All patients underwent MRI of the brain at field strengths of 
1.5 T or 3 T, using MRI scanners from various vendors (Signa, 
GE Healthcare; Achieva, Philips Healthcare; Magnetom Skyra, 
Siemens Healthineers). We only used the axial FLAIR sequence 
(3-5 mm slice thickness; 0-2 mm gap) in order to maximize the 
sample size. Segmentation of volumes of interest (VOIs) was 
performed by a neuroradiology fellow using a semi-automated 
approach on FLAIR images with the Level-Tracing-Effect tool 
in the 3D Slicer library (Version 4.10.2, https://www.slicer.
org/). In terms of reproducibility and robustness, the semi-auto-
matic process has been confirmed to surpass multi-user manual 
delineation.16 The final VOIs were confirmed by a pediatric 
neuroradiology fellowship-trained and board-certified radiolo-
gist with 7 years of neuroradiology research experience.

The preprocessing pipeline included labelling, resampling, 
normalization, skull stripping, bias correction, and registration to 
the SRI2417 atlas for each image volume. SRI24 is an MRI atlas 
based on normal adult human brain anatomy, which is a well-
known option for preprocessing brain MRI.18 It should be high-
lighted that registration is a key step in the preprocessing pipeline. 
Without proper registration, tumour location may become impre-
cise, and thus, not useful for the pLGG molecular diagnosis.

Location-Based Analysis

The proposed location-based pipeline only uses the manual 
segmentation mask of pLGG tumours, ignoring the rest of the 
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images. In contrast to previous work where tumour location 
was used as a binary variable,13,19 we used tumour location 
probability density functions (PDF) to achieve voxel-level 
granularity. Tumour location PDFs of BRAF p.V600E muta-
tion and BRAF fusion were defined through summing and 
normalizing the 3D binary (manual) segmentation masks in 
FLAIR images for each class in the development dataset (ie, 
the union of training and validation datasets). In the test 
cohort, the probabilities of belonging to each class ( )pc  were 
calculated by summation of a voxel-wise multiplication of the 
binary (manual) segmentation mask of the test case 
( segmentation)  and the 3D PDF of the corresponding class 
( )pdfC  in the development dataset (equation (1)).

p segmentation pdf C fusion mutationc C� ��( ) | { , }    (1)

To facilitate Receiver Operating Characteristic Curve (ROC) 
analysis and address the issue where the sum of probabilities 
for fusion and mutation classes does not equal one, equation (2) 
was utilized to calculate predicted probabilities for each patient.
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Figure 1 illustrates the projections of the PDFs in axial, coro-
nal, and sagittal planes. We repeated the data split (80/20 for 

validation and test) 100 times and calculated the Area Under 
the ROC (AUROC) for each run.

CNN-Based Analysis

We used off-the-shelf CNN models such as 3D ResNet,20 as 
well as an in-house developed shallow CNN architecture 
described in Appendix A. The codes for defining the mod-
els, deriving PDFs and conducting location-based classifi-
cation are publicly available (https://github.com/IMICSLab/
TumorLocationPDF). The input to the CNNs were VOIs 
formed through element-wise multiplication of the manual 
segmentations and images. To train the models, we chose a 
batch size of 8, maximum number of epochs of 10, learning 
rate of 0.1, Cross Entropy (CE) as the loss function, and 
stochastic gradient descent (SGD)21 as the optimizer. The 
models were implemented using PyTorch 1.10.2, in a Python 
3.9.7 environment with cuda 11.3. We utilized 2 GeForce 
RTX 3090 Ti GPUs on a Lambda Vector GPU workstation.

Tumour-Location-Guided CNN Analysis

The motivation behind the proposed CNN algorithm, 
guided by tumour location, was to enhance classification 
accuracy by utilizing areas beyond the manually segmented 

Figure 1.  Projections of the tumour location PDFs in axial, coronal, and sagittal planes.
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regions. In contrast to the CNN-based pipeline where VOIs 
were created through element-wise multiplication of man-
ual segmentations and images, 2 revisions were applied to 
design the tumour-location-guided CNN: (a) when multi-
plied by the image, an offset scalar was added to the binary 
segmentation mask to avoid eliminating the image areas 
where the mask elements are zero, (b) the 2 PDFs were 
weighted based on their probability for a given image (pc, 
according to equation (1)) and summed up, and the result 
was used as a mask to dim image areas where tumour pres-
ence was unlikely.

In the tumour-location-guided CNN algorithm, the loca-
tion PDFs are applied to each image according to equation 
(3), where offset is a scalar to help retain regions outside of 
the segmentation.

input offset segmentation image p pdf
C

C C� �� �� � ��
	 | { , }C fusion mutation∈ 	 (3)

The setting for the tumour-location-guided CNN analysis 
was identical to how the CNN pipeline was developed 
except for the maximum number of epochs which was 
increased to 20 based on observations on the first 5 experi-
ments. Figure 2 illustrates the 3 approaches we used to iden-
tify pLGG molecular subtype. A Monte Carlo random data 
splitting approach was used to evaluate the pipeline over 
100 experiments, similar to the OpenRadiomics protocol.22 
In each experiment, the dataset was randomly split into 
development/test sets with an 80/20 ratio. The development 
set was further split into train/validation sets using a 75/25 
ratio, randomly.

Statistical Analysis

The Monte Carlo method for data splitting and model initial-
ization (repetitive train/validation/test splits with different 
model initializations) enabled the acquisition of 100 test 
AUROC results across 3 models: location-only, CNN-only, 
and location-guided CNN. To assess the significance of per-
formance enhancements among these models, we applied the 
Student’s t-test. This rigorous statistical approach provided a 
framework for evaluating the efficacy of incorporating loca-
tion information into CNN models, thereby allowing for a 
detailed comparison of their predictive capabilities.

Results

After initial screening, 397 patients were identified for the 
study. Absence of FLAIR and non-NRAF fusion or p.V600E 
mutation subtype resulted in exclusion of 168 patients. 
Additionally, 15 patients were excluded due to motion-
degraded FLAIR images, as illustrated in Figure 3. The 
internal dataset, described in Table 1, included MR images 
from 214 patients with the 2 predominant molecular sub-
types of pLGG: 143 with BRAF fusion (mean age 7.64 years, 
70 male patients) and 71 with BRAF p.V600E mutation 
(mean age 10.36 years, 40 male patients).

In our initial experiments, the shallow CNN was faster (58.5 
vs 12.2 minutes run time), while marginally outperforming 3D 
ResNet20 (mean AUROC of 86.0 vs 85.3 on 5 runs), and thus we 
used the shallow architecture throughout the remainder of the 
study (Table 2). Additionally, we used 3D ResNet models pre-
trained on Kinetics 400 dataset,23 which did not surpass the 
shallow model (mean AUROC 85.4 on 5 runs).

Figure 2.  Location-based pLGG molecular biomarker identification pipelines: (1) location-only, (2) CNN-only, (3) location-augmented CNN.
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We repeated the experiments 100 times and unified the 
data splits for the 3 pipelines (ie, the same patients were dedi-
cated to training, validation, and test cohorts across the pipe-
lines). The location-based classifiers achieved an AUROC of 
77.9, 95% CI (76.7, 79.0). CNN-based classifiers resulted in 
AUROC of 86.1, 95% CI (85.0, 87.3), and the tumour-loca-
tion-guided CNNs surpassed the other 2 models with an aver-
age AUROC of 88.6, 95% CI (87.6, 89.7). Figure 4 shows the 
results for the 3 pLGG subtype identification methods.

We varied the offset parameter as delineated in equation 
(3), monitoring its impact on the validation performance. 
Although the performance was not sensitive to the offset 
value, we determined an optimal value to be 0.2.

Figure 5 highlights 2 examples of how the 3D tumour-
location PDFs allow the CNN to investigate regions beyond 
the manual segmentations. The top and bottom rows depict 
MR images in the axial plane for a patient with a BRAF 
fusion and a BRAF mutation, respectively. The BRAF fusion 
slice is at z = 36 (infratentorial) and the BRAF mutation slice 
is at z = 56 (supratentorial). The preprocessed MRI scans in 
the axial plane have 155 slices. In each row, the first column 
displays the MR image, the second column shows the manual 
segmentation of the tumour, and the third column illustrates 
the corresponding tumour location PDF. It is important to 
note that the third column does not represent the model’s 
attention map, and rather, the probability of tumour location 
based on the training dataset. Thus, the PDF and the manual 
segmentation are not expected to align perfectly. The tumour 
location PDF modifies the input, enabling the CNN to con-
sider brain regions that extend beyond but are adjacent to the 
boundaries of the segmentation mask.

In terms of utilizing tumour location in the CNN pipeline, 
we tried different approaches for incorporating tumour loca-
tion information into the CNNs. The architectures that were 
tried are included in the code repository (https://github.com/
IMICSLab/TumorLocationPDF). Injecting location-based 
probabilities into different layers of the CNN architecture, 
and ensemble of the CNN and location-based models were 
among the methods that were tested. However, we achieve 
marginal or no improvement in terms of average AUROC 
compared with the proposed pipeline. Using a binary variable 
(supra-/infratentorial tumour location) instead of the location-
based probabilities did not improve the average AUROC.

Using Yuden’s J point,24 we evaluated the models in terms 
of sensitivity, specificity, and accuracy. As shown in Table 3, 
the proposed tumour-location-guided model achieved a sensi-
tivity, specificity, and accuracy of 0.851 (95% CI [0.817, 
0.885]), 0.847 (95% CI [0.812, 0.883]), 0.850 (95% CI 
[0.826, 0.873]), respectively.

Discussion

In this study, we developed multiple ML-based non-invasive 
pipelines to identify molecular subtypes of pLGG tumours 
using MR images. First, a tumour-location-only pipeline based 
on the 3D PDFs of BRAF fusion and BRAF p.V600E tumours 
was implemented and achieved a mean AUROC of 77.9. 
Traditionally, tumour location has been used as a binary vari-
able to improve the molecular subtype classification of 
pLGG.13,19 To test the hypothesis that a tumour-location-only 
pipeline based on the 3D PDFs is superior to the traditional 
approach, we used a Random Forest (RF)-based pipeline with 

Figure 3.  Inclusion/exclusion flowchart for the dataset.
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the same settings (ie, random training/test splits with 80/20 
ratio and 100 repeats) to compare tumour location as a binary 
variable (supra- vs infratentorial) with the 3D PDFs that 
resulted in a mean AUROC of 75.8, 95% CI (74.8, 76.7), which 
was significantly lower than the proposed 3D PDFs 
(P-value = .0089). The hyperparameters and grid search setting 
for the experiment was similar to that proposed in a previous 
work.25 Second, a 3D CNN-based pipeline was trained and 
evaluated to classify FLAIR VOIs and significantly improved 

Table 1.  Patient Demographics.

Demographics and Clinical Features Whole dataset (n = 214) BRAF fusion (n = 143) BRAF p.V600E (n = 71)

Mean age (SD) 8.54 (4.97) 7.64 (4.77) 10.36 (4.91)
Gender
  Male (%) 51.40 (110

214
) 48.95 ( 70

143
) 56.34 ( 40

71
)

  Female (%) 48.60 (104
214

) 51.05 ( 73
143

) 43.66 (31
71

)

Tumour location
  Infratentorial 50.93% (109

214
) 70.63% (

101
143

) 11.27% (
8
71

)

  Supratentorial 49.07% (105
214

) 29.37% ( 42
143

) 88.73% ( 63
71

)

Pathology
  Pilocytic astrocytoma 54.67% (117

214
) 76.92% (110

143
) 9.86% ( 7

71
)

  Low grade astrocytoma 14.95% ( 32
214

) 9.09% ( 13
143

) 26.76% (19
71

)

  Ganglioglioma 13.08% ( 28
214

) 4.20% ( 6
143

) 30.99% ( 22
71

)

  Diffuse astrocytoma 5.61% ( 12
214

) 2.10% ( 3
143

) 12.68% ( 9
71

)

  Pilomyxoid astrocytoma 4.21% ( 9
214

) 5.59% ( 8
143

) 1.41% ( 1
71

)

  Pleomorphic xanthoastrocytoma 2.80% ( 6
214

) 8.45% ( 6
71

)

  Dysembryoplastic neuroepithelial 
tumour

0.93% ( 2
214

) 2.82% ( 2
71

)

  Neurocytoma 0.93% ( 2
214

) 1.40% (
2

143
)  

  Oligodendroglioma 0.93% ( 2
214

) 2.82% ( 2
71

)

  Mixed tumour components 0.93% ( 2
214

) 0.70% ( 1
143

) 1.41% ( 1
71

)

  Gangliocytoma 0.47% ( 1
214

) 1.41% ( 1
71

)

  Glioneuronal tumour 0.47% ( 1
214

) 1.41% ( 1
71

)

Table 2.  Comparing 3D ResNet and the In-House Shallow 3D 
CNN.

Architecture
Average AUROC (on 5 
random experiments)

Average run time per 
experiment (min)

3D ResNet 85.3 58.5
Pretrained 3D 
ResNet

85.4 57.8

Shallow 3D CNN 86.0 12.2

Figure 4.  AUROC performance of the classification algorithms 
on test cohorts.
Note. The plot illustrates ranges of AUROCs, not CIs.
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the performance to 86.1 (P-value <.001). Lastly, the CNN-
based pipeline was augmented by applying the 3D tumour 
location PDFs to the MR images and achieved a mean AUROC 
of 88.6, which showed a significant improvement (P-value 
.0018). We observed wider CI ranges for mean test sensitivity, 
specificity, and accuracy. This highlights the higher variance 
(ie, significantly low or high values across the experiments) of 
these metrics compared with AUROC. Thus, more advanced 
calibration of the models (ie, beyond using Yuden’s J point) and 
ensemble methods should be investigated in future research to 
improve the parametric performance metrics of the models (eg, 
sensitivity and specificity). Our contributions include (a) using 
tumour location as an independent modality, as opposed to the 

conventional approach of using tumour location as a categori-
cal variable, (b) improving performance and explainability of 
CNN pipelines through the utilization of tumour location, and 
(c) utilizing Monte Carlo data splitting and a repetitive evalua-
tion approach to measure randomness of CNN pipelines for 
pLGG molecular diagnosis.

In equation (3), offset introduces an additional hyperparam-
eter to the pipeline, which can be optimized using grid search. 
After evaluating offset values of 0.1, 0.2, 0.3, 0.4, and 0.5, no 
significant difference in validation AUROC was observed, and 
an offset of 0.2 was selected for the experiments. The value of 
offset is not a decisive hyperparameter because it is added to the 
segmentation mask rather than multiplied. Any value of off-
set  allows the CNN to explore the entire image according to 
equation (3), with the summation of the PDFs acting as the pri-
mary mechanism to restrict unrelated regions. However, larger 
offset values increase the voxel intensity in the model’s input. 
Given that CNN inputs are typically normalized with a bounded 
norm,26 smaller offset values are generally preferable to main-
tain consistency with standard normalization practices.

Segmentation-free pLGG subtype identification using MR 
images is a challenging task that has not yet been addressed in 
the literature. We initially conducted experiments without seg-
mentation masks, but the CNNs failed to converge. It should be 
highlighted that the offset is not an indicator of reliance on 

Figure 5.  Axial plane slices showing the application of 3D tumour-location PDFs. Top row: BRAF fusion patient slice at z = 36 
(infratentorial). Bottom row: BRAF mutation patient slice at z = 56 (supratentorial). Columns represent (left) MR image, (middle) manual 
segmentation, and (right) corresponding tumour location PDF. The PDFs, distinct from the model’s attention map, modify model’s input 
and allow considering regions beyond the manual segmentation boundaries.

Table 3.  Sensitivity, Specificity, and Accuracy of the Proposed 
Tumour-Location-Guided Model.

Metric
Performance 

level 95% CI

Sensitivity 85.1 [81.7, 88.5]
Specificity 84.7 [81.2, 88.3]
Accuracy 85.0 [82.6, 87.3]
Baseline accuracy (proportion of 

the largest class to sample size)
66.8 —
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manual segmentation, and no value of offset can result in a truly 
segmentation-free approach since the offset is summed with the 
segmentation mask. Even assuming that a large offset does not 
significantly impact the norm of the CNN’s input and can be 
processed by the network, zeros in the PDFs will continue to 
exclude irrelevant areas of the image. Given that the PDFs are 
derived from the segmentation masks, the process would not be 
considered segmentation-free. Additionally, CNNs are sensitive 
to patterns rather than absolute values. Thus, adding a large off-
set to the segmentation still preserves the underlying tumour 
boundary patterns. Similarly, small offset values would still 
reflect the segmentation patterns. A special case occurs when 
the offset is set to zero. Although this scenario emphasizes the 
segmentation mask, the results are different from the CNN-
based analysis due to the influence of the PDFs. We conducted 
an experiment with an offset of zero and achieved a mean 
AUROC of 86.0, 95% CI (85.0, 87.2), which was not signifi-
cantly different from the CNN-based analysis.

Radiomics and CNNs form the 2 established branches of ML, 
applicable to pLGG molecular subtype identification.27 Unlike 
radiomics, CNNs learn to extract the features and are not limited 
to predefined formulas for pattern recognition. Thus, CNNs have 
the potential to outperform radiomics-based models28 which 
motivates why we focused on CNNs in this study. In conven-
tional CNNs, feature extraction is done by sequential convolu-
tion layers, and fully connected (FC) layers classify the features. 
Deep learning (DL) uses CNNs with a high number of convolu-
tional layers, and deep models are state-of-the-art on multiple 
large-scale datasets.29 However, on small datasets where no pre-
trained model is available, deeper models may not improve per-
formance.30 In our experiments, the shallow CNN outperformed 
3D ResNet and enabled us to lower the computational load and 
increase the data split repetitions.

The importance of tumour location for MRI-based pLGG 
molecular subtype identification has been highlighted in sev-
eral studies. Bag et al identified 5 genetic profiles, location, age 
at presentation, and histology as the decisive features for pLGG 
phenotype risk assessment and emphasized the differences in 
tumour location between BRAF fusion and BRAF V600E 
mutation.31 In their study, 75% of tumours with BRAF fusion 
were located in the cerebellum, while 56% of tumours with 
BRAF V600E mutation were found in the cerebral hemi-
spheres. Wagner et al used radiomics to differentiate BRAF-
mutated and BRAF-fused tumours based on pre-therapeutic 
FLAIR images.13 In their bi-institutional retrospective study of 
115 pediatric patients, they achieved an average AUROC of 
0.75 on the internal cohort and 0.85 on the external cohort. 
Location (supratentorial vs infratentorial) and age were signifi-
cant clinical predictors of BRAF status and the average 
AUROC increased to 0.77 on their internal cohort when age 
and location were added to the radiomics features. Haldar et al 
retrospectively studied a dataset of 157 patients with pLGG 
from the Children’s Hospital of Philadelphia using a conven-
tional unsupervised ML algorithm.32 They employed Principal 
Component Analysis (PCA) followed by a K-means algorithm 
to assign patient images into 3 subgroups; a subsequent 
Kruskal-Wallis test demonstrated the distribution of tumour 

histology and location to be different between the 3 imaging 
clusters. Xu et al analyzed a dataset of 113 patients with pLGG 
(43 with BRAF V600E mutations vs 70 with other subtypes) 
using radiomics features to identify BRAF mutations.33 Tumour 
location (supratentorial vs infratentorial) was a significant pre-
dictor of BRAF mutation and when combined with radiomics, 
improved the average training AUROC to 0.754 and the test 
AUROC to 0.934. Laterality of tumour location (left vs right) 
was not a significant predictor of BRAF mutation.

Dataset size is another crucial factor for reliability of any ML 
model. In a study on a larger bi-institutional dataset of 251 
patients with pLGGs, Wagner et al conducted a dataset size sen-
sitivity analysis.25 They showed that data splits and model ini-
tialization impose randomness on the performance of the ML 
classifiers which impacts the results in 2 aspects: average 
AUROC and variance of the AUROCs. The study confirmed 
that the dataset size was sufficient to train robust pipelines, as 
evidenced by acceptable mean performance with bounded vari-
ance. However, it was observed that an individual global model 
could exhibit bias, indicated by a performance drop on the 
external dataset and an increase in variance. With only 60% 
( 132

220
) of the training data, they achieved comparable results to 

those of models that used the entire training set (average 
AUROC of 0.83 compared to 0.85). We therefore consider the 
size of the dataset of our study to be reliable and the Monte 
Carlo method to be appropriate for data splitting.

There are multiple sources of variability impacting general-
izability and reproducibility of ML pipelines.34 Classifiers are 
sensitive to any form of change in input, including differences 
in imaging protocols, sequences parameters, models and manu-
facturers of MRI scanners, tumour segmentations, and image 
normalization. We employ the repetitive approach proposed in 
OpenRadiomics22 for reproducible ML research on relatively 
small datasets. With a limited sample size, outliers might 
impact the fairness of data splits.35 Hence, creating a single 
reproducible model becomes infeasible and the focus should be 
on training repeatable pipelines.

A limitation of our study is that the predictive significance 
of tumour location PDFs may diminish as additional pLGG 
subtypes are incorporated into the dataset. However, recent 
work by Tak et al has demonstrated that a sequential classifica-
tion approach among different classes can be effective.36 In 
such a scenario, location PDFs can enhance the differentiation 
between BRAF Fusion and p.V600E mutation subtypes. 
While the utility of location PDFs may vary with the complex-
ity of the dataset, they can still provide valuable insights in 
specific classification tasks.

While the experiments showed that a rough supra-/
infratentorial tumour segmentation was not helpful, using 
rough tumour segmentation needs to be tested in future work 
to eliminate the need for tedious manual segmentations. 
Bounding boxes of the tumours can be used as alternatives to 
the manual segmentation.

In our experiments, the shallow architecture marginally out-
performed the randomly initialized and pre-trained 3D ResNet. 
We believe the higher number of learnable parameters results in 
overfitting with the 3D ResNet. However, transfer learning is 
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shown to be promising in medical image classification35 and 
needs to be investigated in more detail. Pre-training on a brain 
MRI dataset instead of Kinetics 400, which includes human vid-
eos, would have a higher potential for improving the results and 
should be explored in future research. Nevertheless, shallower 
architectures remain computationally favourable.

Heterogeneity of the dataset remains a major concern that 
might induce bias to the model. We employed a comprehensive 
preprocessing pipeline including resampling, bias correction, 
and registration. However, the model and the dataset should be 
evaluated to ensure resolution, scanner vendor, and settings are 
not confounding. This requires additional pieces of information 
from the MR images which should be curated for future studies.

Conclusion

Incorporating tumour location probability maps into CNN 
models led to statistically significant improvements for 
molecular subtype identification of pLGG. These results sug-
gest that conventional CNNs using manual segmentations 
may not be optimal as location information is lost.

Appendix A

The CNN architecture is visualized in Figure A1, which 
is generated using the PyTorchViz Python library (https://
github.com/szagoruyko/pytorchviz). The model has three 
3D CNN blocks, followed by 2 FC layers to map the 486 
extracted features into binary labels. Each 3D CNN block 
includes a 3D CNN layer with kernel size of 3, ReLU activa-
tion function, and MaxPooling with kernel size of 2.

Abbreviations

AUROC	� area under receiver operating characteristic 
curve

  BRAF	 B-Raf proto-oncogene, serine/threonine kinase
     CE	 cross entropy
    CNN	 convolutional neural network
     DL	 deep learning
    EHR	 electronic health record
     FC	 fully connected
    ML	 machine learning

Figure A1.  Visualization of the CNN architecture and parameters.

https://github.com/szagoruyko/pytorchviz
https://github.com/szagoruyko/pytorchviz
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     PCA	 principal component analysis
     PDF	 probability density functions
  pLGG	 pediatric low-grade glioma
     RF	 random forest
     ROC	 receiver operating characteristic
    SGD	 stochastic gradient descent
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