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1. MOTIVATION 
 

The endothelial glycocalyx, a complex and dynamic layer of carbohydrates and proteins coating the surface 

of virtually all mammalian cells, has long captivated the curiosity of scientists across disciplines. Its intricate 

structure and multifaceted functions remain enigmatic, yet its significance in various physiological and 

pathological processes cannot be overstated [1][2]. 

The glycocalyx serves as the first point of contact between cells and their external environment, playing 

pivotal roles in cellular adhesion, signaling, and protection. Composed of an array of glycoproteins, 

glycolipids, and proteoglycans, this dynamic structure acts as a molecular sieve, selectively allowing the 

passage of molecules and ions while shielding the cell from mechanical and chemical insults. Despite its 

seemingly delicate nature, the glycocalyx exerts profound influences on cellular behavior and function, 

impacting processes ranging from immune response modulation to vascular homeostasis [3][4]. 

Additionally, the role of the glycocalyx in vascular health is of paramount importance. This layer helps 

regulate blood flow and shear stress, preventing excessive permeability and maintaining the integrity of the 

vascular endothelium. Damage or degradation of the glycocalyx is often associated with conditions such as 

atherosclerosis, diabetes, and sepsis, where the protective barrier is compromised, leading to increased 

vulnerability to vascular inflammation and injury [5][6]. 

The glycocalyx also plays a critical role in the immune system. It contributes in the recognition and clearance 

of pathogens, as well as the regulation of leukocyte adhesion and migration. Understanding how the 

glycocalyx interacts with immune cells can provide valuable insights into immune evasion strategies 

employed by pathogens and tumor cells, potentially guiding the development of immunotherapies and anti-

cancer treatments [7][8]. 

Of particular interest is the intersection between the glycocalyx and drug delivery systems, notably 

nanoparticles. The glycocalyx serves as a formidable barrier to nanoparticle penetration, presenting a 

significant challenge for effective drug delivery to target cells and tissues. However, exploiting the unique 

properties of the glycocalyx holds promise for enhancing the specificity, efficacy, and safety of drug delivery 

systems. By understanding the intricate interplay between nanoparticles and the glycocalyx, researchers 

can engineer tailored delivery platforms capable of traversing this biological barrier with precision, 

unlocking new frontiers in targeted therapeutics [9][10]. 

In this doctoral thesis, a comprehensive investigation into the intricate role of the glycocalyx as a barrier in 

cellular physiology is conducted, with a particular focus on the impact of flow cultivation, the resulting 

changes to the cell membrane, and its implications for targeted drug delivery systems. The research involves 

a series of carefully designed experiments conducted with Human Umbilical Vein Endothelial Cells (HUVEC) 

and HeLa cells as reference in vitro. 

Flow cultivation is expected to induce significant alterations in the structure and composition of the cell 

membrane, particularly in the glycocalyx layer. These membrane changes are crucial as they can influence 

various cellular functions, including permeability, mechanotransduction, and cellular signaling pathways. 
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The investigation delves into how these dynamic alterations impact the overall barrier function of the 

endothelial cells and their ability to regulate the passage of molecules [11][12][13]. 

Additionally, the role of cell junctions, such as tight junctions, adherens junctions, and gap junctions, is 

examined to comprehend their interplay with the glycocalyx in maintaining the integrity and functionality 

of the endothelial barrier. Understanding these junctions is essential as they contribute significantly to the 

cohesive barrier that regulates cellular permeability and communication [14][15]. 

The specific questions regarding the glycocalyx and subsequent research objectives of this thesis include: 

1. Does an intact glycocalyx, as observed under physiological conditions, occur under the in vitro 

culture conditions used in this research? Wheat Germ Agglutinin (WGA) staining will be employed 

to visualize and verify the state of the glycocalyx in HUVEC cultures. This validation step is crucial 

for ensuring the reliability and reproducibility of experimental findings regarding glycocalyx 

modulation and its impact on cellular behavior. 

 

2. Does an intact glycocalyx affect the uptake of nanoparticles into endothelial cells? The influence 

of the glycocalyx on the endocytic uptake of nanoparticles is examined using 50 nm SiO2 

nanoparticles. Fluorescence microscopy is employed to indirectly quantify the number of 

nanoparticles internalized by endothelial cells with an intact glycocalyx, as well as those with a 

compromised or degenerated glycocalyx. 

 

3. Does an intact glycocalyx affect the uptake of molecules by diffusion through the cell membrane 

into endothelial cells? The experiment will assess the diffusion of Hoechst 33342 dye through the 

cell membrane to quantify how treatments or conditions impact the integrity and functionality of 

the glycocalyx in HUVEC. By evaluating changes in dye uptake, this study aims to determine the 

extent to which the glycocalyx influences membrane permeability. 

 

4. Has the presence or absence of an intact glycocalyx an effect on the phase state of the 

membrane? To assess the effect of the glycocalyx on the phase state of the cell membrane, the 

HUVEC will be stained with Laurdan, a dye sensitive to lipid packing and membrane fluidity. By 

measuring the generalized polarization of Laurdan, the influence of the presence or absence of an 

intact glycocalyx on membrane phase behavior will be quantified. The same experiments will be 

performed on HeLa cells as a reference. This approach is particularly important to differentiate 

whether observed changes in membrane properties arise directly from the glycocalyx or are a 

consequence of cultivation under flow conditions. 

 

5. Is the adhesion of lipid vesicles to the cell membrane dependent on the electrical charge of the 

membrane and the glycocalyx? The adhesion dynamics of vesicles, made of positively charged and 

uncharged lipid, mimicking drug delivery carriers or circulating tumor cells, to HUVEC (and HeLa as 

a references) with varying glycocalyx states will be investigated. Therefore, DOTAP-DMPC and 

DMPC vesicles are produced and the adhesion to the cell layer in dependance of the culture 

condition is measured. 
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6. Does the glycocalyx affect the diffusion of macromolecules beyond the endothelium in a blood 

vessel model? The objective is to establish a 3D hydrogel-HUVEC model by creating a 3D channel 

and populating it with HUVEC to form an endothelial layer. Once the model is established, the 

diffusion of FITC-Dextran of varying sizes will be studied to measure differences in macromolecule 

diffusion across the endothelial layer. 

 

7. Does the existence of the glycocalyx affect the cell-cell-contacts? VE-cadherin is employed to stain 

and visualize the cell-cell contacts of HUVEC. This staining allows for a detailed analysis of the 

solidity and integrity of these contacts, highlighting any variations that may arise due to different 

culture conditions. By comparing static, dynamic, and shedding culture methods, the experiment 

aims to elucidate how each method impacts the structural cohesiveness of endothelial cell 

junctions. 

 

The methodology, as illustrated in figure 1.1 involves conducting experiments on three fundamental types 

of cell cultures: 

 Statically cultured cells: Cells grown in a stationary environment without shearflow. 

 Dynamically cultured cells: Cells exposed to continuous shearflow, so a glycocalyx can be formed. 

 Shedding cells: Cells initially under dynamic conditions, followed by a one-hour flow stop to induce 

glycocalyx degradation. 

 

 
Figure 1.1: Culture Methods and Impact on HUVEC. A) Dynamic culture. Cells are constantly exposed to a distinct shear stress. 

HUVEC will synthesize a robust glycocalyx. B) Static culture. Cells are not exposed to shear stress and the glycocalyx in HUVEC 

is only minimal. C) Shedding. Cells are dynamically cultured, and the shear stress is stopped. HUVEC begin to shed their 

glycocalyx. 

 

Based on these research questions and objectives, the following hypotheses are proposed for this thesis: 

1. HUVEC cultured under dynamic conditions exhibit higher binding of Alexa Fluor 555-conjugated 

WGA compared to statically cultured cells or cells under the shedding condition. 

 

2. HUVEC cultured under dynamic conditions show a reduced endocytic uptake of nanoparticles 

compared to statically cultured cells or cells under the shedding condition. 
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3. HUVEC cultured under dynamic conditions impede the diffusion of dye molecules into the cells 

compared to statically cultured cells or cells under the shedding condition. 

 

4. The cultivation method of HUVEC and HeLa influences the cell membrane's phase state, making it 

either more fluid or gel-like depending on whether the cells are cultured statically, dynamically, or 

under shedding conditions. 

 

5. HUVEC cultured under dynamic conditions exhibit decreased adhesion of positively charged lipid 

vesicles compared to statically cultured cells or cells under the shedding condition. 

 

6. HUVEC cultured under dynamic conditions show decreased diffusion of FITC-dextran through the 

cell layer into the hydrogel, particularly for smaller molecular sizes, compared to statically cultured 

cells or cells under the shedding condition. 

 

7. HUVEC cultured under dynamic conditions demonstrate improved solidity and form factor of cell-

cell contacts compared to statically cultured cells or cells under the shedding condition. 
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2. BASIC PRINCIPLES 
 

The fundamental principles of cell physiology and -physics form the basis for understanding complex 

biological processes and are essential for the study of specific cellular structures such as the glycocalyx. This 

Chapter will elaborate on the basic mechanisms and components of the endothelium, the glycocalyx, and 

cell junctions, highlighting their physiological aspects and theoretical foundations that underpin the 

experimental investigations [16]. 

Particular focus is given to the cell membrane and lipid order, which are crucial for understanding models 

and mechanisms of uptake and transport from a physical perspective. The complex organization and 

dynamic nature of the cell membrane play a pivotal role in maintaining cellular integrity and facilitating 

various cellular processes. Understanding the lipid order and phase transitions within the membrane is 

essential for comprehending how cells regulate transport mechanisms and interact with their environment 

[17]. 

Subsequently, the Chapter will delve into fundamental processes such as nanoparticle uptake, membrane 

transport, and trans endothelial diffusion, providing a comprehensive understanding of these phenomena 

from a biophysical point of view. The uptake of nanoparticles by cells is a complex process influenced by 

the physical properties of the particles and the characteristics of the cell membrane [18].  

The principles of shear flow in cylindrical and rectangular channels will also be briefly revisited, as such flow 

conditions are used to mimic physiological conditions and variations that endothelial cells experience in 

vivo and in vitro. Studying shear flow in controlled environments allows for precise manipulation of flow 

parameters, facilitating the investigation of endothelial responses to different shear stress levels [19]. 
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2.1. Endothelium and Glycocalyx 
 

The human endothelium, composed of endothelial cells forming a delicate monolayer along blood vessel 

walls, stands as a vital interface mediating intricate interactions between circulating blood components and 

the vascular environment. Endothelial cells exhibit remarkable morphological diversity across various 

vascular beds, yet they commonly present a flattened and elongated morphology aligned with blood flow, 

showcasing an adaptation to hemodynamic forces [20][21]. 

 
Figure 2.1: Cross-Sectional Anatomy of a Blood Vessel. Blood vessels consist of three main layers: the tunica adventitia, tunica 

media, and tunica intima. The tunica adventitia is made up of connective tissue. The tunica media is primarily composed of 

smooth muscle cells and includes the external elastic lamina. The tunica intima contains the endothelium and is supported by 

the internal elastic lamina. Derived from [22]. 

 

Endothelial cells are highly specialized and differ depending on their location within the vascular system. 

For example, arterial endothelial cells are adapted to withstand high pressure and shear stress, whereas 

venous endothelial cells are more involved in regulating the exchange of substances between blood and 

tissues. Microvascular endothelial cells, found in capillaries, are key players in nutrient and gas exchange 

and are often characterized by their ability to form tight junctions to regulate permeability [23][24]. 

Furthermore, endothelial cells are involved in a variety of physiological processes, including the regulation 

of blood flow and pressure through the production of vasoactive substances such as nitric oxide and 

endothelin. They also play a critical role in angiogenesis, the formation of new blood vessels, which is 

essential for growth, development, and wound healing. In addition, endothelial cells contribute to the 

immune response by controlling the passage of immune cells into tissues and presenting antigens 

[25][26][27]. 
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Endothelial cell morphology and function can be significantly influenced by pathological conditions. For 

instance, in atherosclerosis, endothelial cells become dysfunctional, leading to increased permeability, 

inflammation, and the formation of plaques. Similarly, in diabetes, high glucose levels can damage 

endothelial cells, resulting in impaired vascular function and increased risk of complications [28][29]. 

 

Endothelial Cell Junctions 

Critical for maintaining vascular integrity, endothelial cell junctions, including tight junctions, adherens 

junctions, and gap junctions, establish a cohesive barrier between adjacent endothelial cells. These 

junctions are integral to the endothelial barrier function and play crucial roles in cellular communication, 

mechanotransduction, and the regulation of vascular permeability [30]. 

 Tight junctions are composed of proteins such as claudins, occludin, and junctional adhesion 

molecules (JAMs), form a continuous seal along endothelial borders, tightly regulating paracellular 

permeability. These junctions are crucial in maintaining the selective barrier of the endothelium, 

controlling the passage of ions, proteins, and other solutes between the bloodstream and 

surrounding tissues. The integrity of tight junctions is influenced by various signaling pathways and 

can be dynamically regulated in response to physiological and pathological stimuli [31][32]. 

 

 Adherens junctions, primarily formed by the cadherin-catenin complex, provide structural support 

and facilitate intercellular communication. The main component, VE-cadherin (vascular endothelial 

cadherin), is linked to the actin cytoskeleton through catenins, which not only ensures mechanical 

cohesion between cells but also transduces signals that regulate cell growth, migration, and 

survival. Adherens junctions play a pivotal role in endothelial barrier function and are involved in 

the remodeling of blood vessels during angiogenesis [33]. 

 

 Gap junctions, composed of connexin proteins, enable direct exchange of ions and small molecules 

between neighboring endothelial cells, further integrating cellular responses within the endothelial 

monolayer. These junctions allow for rapid intercellular communication and coordination of 

cellular activities, such as synchronization of endothelial cell responses to shear stress and the 

propagation of calcium waves, which are essential for maintaining vascular tone and homeostasis 

[34]. 

 

 In addition to these primary junctions, other adhesive structures, such as desmosomes and focal 

adhesions, contribute to the endothelial barrier's integrity and the mechanical stability of the 

endothelium. Desmosomes provide strong intercellular adhesion by connecting intermediate 

filaments between cells, while focal adhesions anchor endothelial cells to the extracellular matrix 

and facilitate signal transduction from the extracellular environment to the cell interior 

[35][36][37]. 
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Figure 2.2: Cell Junctions in Endothelial Cells. Gap junctions are composed of connexin transmembrane proteins that facilitate 

cell-to-cell communication. Adherens junctions are formed by cadherin adhesion receptors and associated cytoplasmic 

proteins, connecting the actin cytoskeletons of adjacent cells. Tight junctions consist of occludin, claudin proteins, and 

junctional adhesion molecules, sealing the spaces between cells. Desmosomes, formed by adherens family proteins such as 

desmoglein and desmocollin, provide additional adhesion and structural stability between cells. Derived from [38]. 

 

The endothelial glycocalyx 

The endothelial glycocalyx is a dense and intricate layer comprised of a diverse array of macromolecules 

lining the luminal surface of endothelial cells. It serves as a dynamic interface between circulating blood 

and the endothelium. This mesh-like structure extends from the endothelial cell membrane into the 

bloodstream [39]. 

This complex architecture imparts the glycocalyx with unique properties such as a negative charge, selective 

permeability, and mechanosensory capabilities. Key components of the glycocalyx and their roles include 

[40]: 

 Syndecans and Glypicans: These proteoglycans are integral membrane proteins that anchor the 

glycocalyx to the endothelial cell surface, playing a crucial role in maintaining the structural 

integrity of the glycocalyx [41][42]. 

 

 Heparan Sulfate Proteoglycans: These molecules extend into the vascular lumen and interact with 

a variety of circulating molecules, contributing to the anticoagulant properties of the endothelium 

and influencing blood coagulation and fibrinolysis. Heparan sulfate proteoglycans are highly 

sulfated, imparting a strong negative charge [43]. 

 

 Hyaluronan: A large negatively charged glycosaminoglycan that forms a hydrated gel-like matrix, 

providing a cushioning effect and contributing to the mechanical properties of the glycocalyx [44]. 

 

 Chondroitin Sulfate: A sulfated glycosaminoglycan that integrates into the extracellular matrix of 

the glycocalyx, contributing to its structural integrity and mechanical properties. It also forms a 
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hydrated gel-like substance that provides cushioning and viscoelasticity, resists compressive forces, 

and enhances the selective permeability of the glycocalyx [45]. 

 

 Adherent Plasma Proteins: These proteins, including albumin and fibrinogen, bind to the 

glycocalyx, forming an additional protective layer that influences vascular permeability and 

enhances the barrier function of the endothelium. They help maintain an anti-coagulant surface, 

prevent platelet aggregation and leukocyte adhesion, and play roles in mechanotransduction, 

inflammatory responses, and tissue repair [46]. 

Due to the presence of heparan sulfate proteoglycans, hyaluronan, and chondroitin sulfate, the glycocalyx 

exhibits an overall negative charge. This negative charge is crucial as it repels negatively charged molecules, 

including albumin and various inflammatory mediators. By preventing the adhesion of these negatively 

charged molecules, the glycocalyx plays a pivotal role in maintaining vascular homeostasis. This selective 

barrier function is essential for regulating vascular permeability, ensuring that the endothelium remains a 

controlled interface between the blood and the underlying tissues [47]. 

 

 

 
Figure 2.3: Components of the Endothelial Glycocalyx. The endothelial glycocalyx consists of various components, including 

proteoglycans, which are the core structures of the glycocalyx. Adherent plasma proteins attach to these proteoglycans, 

contributing to the layer's functionality. Heparan sulfate and chondroitin sulfate are glycosaminoglycans associated with the 

proteoglycans, playing a role in maintaining the structure and charge of the glycocalyx. Hyaluronan, another key 

glycosaminoglycan, is also present, contributing to the overall thickness and protective function of the glycocalyx. Derived 

from [47][48]. 

 

Mechanotransduction 

The endothelial glycocalyx plays a pivotal role in mechanotransduction, the process by which cells convert 

mechanical stimuli into biochemical signals. Shear stress, exerted by blood flow on the endothelial surface, 

induces deformation of the glycocalyx, triggering a cascade of intracellular signaling pathways. Key 

mechanosensitive molecules within the glycocalyx, including the already mentioned syndecans and 

glypicans, function as mechanoreceptors, transducing mechanical forces into biochemical signals [49]. 
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Upon experiencing shear stress, the deformation of the glycocalyx activates several downstream signaling 

pathways. This includes the activation of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), 

and transcription factors such as nuclear factor kappa B (NF-κB). These pathways collectively modulate 

endothelial function and gene expression, influencing various physiological processes. Syndecans and 

glypicans are critical for detecting mechanical changes in the environment, initiating signaling cascades that 

lead to cellular responses. Heparan sulfate proteoglycans contribute not only to the structural integrity of 

the glycocalyx but also participate in mechanotransduction by interacting with growth factors and cytokines 

[50][51]. 

PKC is activated by mechanotransductive signals from the glycocalyx, leading to alterations in endothelial 

cell permeability and inflammatory responses. MAPKs play a significant role in cellular responses to stress; 

their activation leads to changes in gene expression, affecting cell growth, differentiation, and apoptosis. 

NF-κB is crucial for inflammatory responses, with shear stress-induced activation resulting in the expression 

of pro-inflammatory genes that can affect vascular tone and inflammation [52][53]. 

The mechanotransductive properties of the glycocalyx influence the production of nitric oxide (NO) and 

other vasoactive substances, regulating vascular tone and blood pressure. Additionally, 

mechanotransduction pathways modulated by the glycocalyx can either promote or inhibit inflammatory 

responses, depending on the context. This regulation is vital in maintaining vascular homeostasis and 

responding to injury or infection [54][55]. 

 

Selective Barrier of the Glycocalyx 

A key feature of the glycocalyx is its ability to discriminate between molecules based on size and charge. 

The negatively charged components of the glycocalyx, mostly heparan sulfate proteoglycans and 

glycosaminoglycans, create an electrostatic barrier that repels other negatively charged molecules, 

including albumin and various inflammatory mediators. Conversely, this negative charge facilitates the 

passage of positively charged ions and small solutes, ensuring that essential nutrients and electrolytes can 

traverse the endothelial layer efficiently [56][57]. 

The size selectivity of the glycocalyx is equally important. The dense, gel-like matrix of the glycocalyx acts 

as a molecular sieve, allowing small solutes and water to pass through while restricting larger molecules. 

This sieving effect is crucial for preventing the leakage of plasma proteins and other macromolecules into 

the interstitial space, thereby maintaining the colloid osmotic pressure necessary for proper fluid balance 

within the vascular system [58][59]. 

In addition to its intrinsic properties, the glycocalyx also interacts with endothelial cell junctions, enhancing 

its barrier function. By influencing the assembly and maintenance of tight junctions, adherens junctions, 

and gap junctions, the glycocalyx helps regulate the overall permeability of the endothelial monolayer. This 

interaction ensures that the endothelial barrier remains selectively permeable and can dynamically adjust 

to varying physiological demands and stressors [14][60][61]. 

The barrier function of the glycocalyx is not static; it can be compromised under pathological conditions. 

Enzymatic degradation, oxidative stress, and inflammatory responses can disrupt the glycocalyx, leading to 

increased vascular permeability. This disruption allows for the uncontrolled passage of proteins, solutes, 
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and inflammatory mediators into the surrounding tissues, contributing to conditions such as tissue edema 

and inflammation [62][63]. 

 

Synthesis of the Endothelial Glycocalyx Under Shear Flow 

Under physiological conditions, shear flow exerted by circulating blood plays a crucial role in the synthesis 

and maintenance of the endothelial glycocalyx. Shear stress, generated by laminar blood flow, stimulates 

endothelial cells to produce and release glycocalyx components, promoting glycocalyx buildup and 

structural integrity. Mechanotransduction pathways activated by shear stress, such as those involving 

endothelial nitric oxide synthase (eNOS), enhance glycocalyx synthesis and assembly [64][65][66]. 

Additionally, shear-induced activation of transcription factors, including Krüppel-like factors (KLFs) and NF-

κB, upregulates the expression of glycocalyx-related genes, facilitating glycocalyx formation. Furthermore, 

shear flow promotes the recruitment and binding of glycocalyx-producing enzymes, such as 

glycosyltransferases and sulfotransferases, to the luminal surface of endothelial cells, facilitating 

glycosylation and sulfation of glycocalyx components. Overall, shear flow serves as a potent stimulus for 

glycocalyx synthesis, contributing to the maintenance of vascular homeostasis and endothelial function 

[67][19][68]. 

 
Figure 2.4: Electron micrographs showcasing the glycocalyx of goat capillaries. A)  Cross-sectional view of the entire capillary. 

B) 10x magnified image compared to A). Endothelial cells and the endothelial glycocalyx are clearly distinguishable. The 

endothelial glycocalyx is partially many times larger than the cell itself. Adapted and modified from [69], with permission from 

B. van den Berg and John Wiley and Sons (Licensce Number 5815831100201). 

 

The thickness of the endothelial glycocalyx can vary depending on several factors, including the vascular 

bed, shear stress levels, and physiological conditions. In larger vessels such as arterioles and arteries, the 

glycocalyx typically ranges from 0.2 to 1 µm, up to 3 µm in extreme cases. The time required to build a 

glycocalyx can also vary depending on several factors, including the rate of synthesis, turnover, and shear 

stress levels. Under physiological conditions with optimal shear stress, endothelial cells continuously 



12 
 

synthesize and replenish the glycocalyx, with studies suggesting that glycocalyx turnover occurs within days 

[67][69][70][71]. 

 

Degradation of the Endothelial Glycocalyx 

The endothelial glycocalyx, despite its continuous synthesis, is susceptible to degradation under various 

pathological conditions and physiological stimuli. Inflammatory cytokines, such as tumor necrosis factor-

alpha (TNF-α) and interleukin-1β (IL-1β), play a significant role in this process by upregulating the expression 

of glycocalyx-degrading enzymes, including matrix metalloproteinases (MMPs) and hyaluronidases. These 

enzymes specifically target glycocalyx components, such as glycoproteins and proteoglycans, leading to 

their cleavage and subsequent shedding from the endothelial surface [72][73][74]. 

When blood flow is stopped or reduced, creating conditions of low or disturbed flow, the shedding of the 

glycocalyx can occur rapidly. Studies have demonstrated that within minutes to hours of flow cessation or 

reduction, glycocalyx shedding becomes evident. This rapid shedding is attributed to elevated levels of 

inflammatory cytokines, increased oxidative stress, and mechanical stress on the endothelial surface. These 

factors collectively promote the release of glycocalyx components into the circulation [75][76][77][78]. 

Oxidative stress, marked by the increased production of reactive oxygen species (ROS), further aggravates 

glycocalyx degradation. ROS cause oxidative damage to glycocalyx components, compromising the 

structure and function of the glycocalyx. In addition to local factors, systemic conditions such as 

hyperglycemia and hyperlipidemia can worsen glycocalyx degradation [79][80][81]. 
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2.2. Cell Membranes and Lipid Order 
 

The cellular membrane is a dynamic structure in the form of a bilayer that plays an important role in 

maintaining the integrity and functionality of cells and is composed primarily of proteins, phospholipids, 

cholesterol, and glycolipids. Phospholipids are the most abundant lipids and are characterized by a 

hydrophilic head and two hydrophobic tails. These molecules spontaneously organize themselves into a 

bilayer structure in an aqueous environment, with the hydrophobic tails facing inward and the hydrophilic 

heads facing outward towards the aqueous surroundings [82][83]. This thesis focuses on the lipid 

components of the membrane, with the following theory addressing their specific properties and roles. 

Cholesterol molecules are interspersed within the phospholipid bilayer. They are vital for the regulation of 

membrane fluidity and stability by modulating the packing of phospholipids. Additionally, glycolipids, which 

have a carbohydrate moiety attached to a lipid tail, are found predominantly in the outer leaflet of the 

membrane and are involved in cell recognition and adhesion processes [84][85]. 

 

Lipid Order 

The arrangement of lipids within the bilayer can vary in terms of order and fluidity. Lipid order refers to the 

degree of packing and organization of lipid molecules within the membrane. It is influenced by factors such 

as lipid composition, temperature, and the presence of cholesterol [86][87]. 

At low temperatures, lipid molecules are packed tightly together, resulting in a highly ordered, gel-like state 

known as the gel phase. In this phase, lateral movement of lipid molecules is restricted, and the membrane 

exhibits decreased fluidity. Conversely, at higher temperatures, lipid molecules become more disordered, 

leading to a fluid state called the fluid phase. In this phase, lipid molecules can move laterally within the 

membrane, allowing for increased flexibility and permeability [87][88]. 

 

Phase State 

The lipid bilayer can exist in different phase states depending on its lipid composition and environmental 

conditions. These phase states include the liquid-disordered (Ld), liquid-ordered (Lo), and gel phases. The 

Ld phase is characterized by high fluidity and minimal lipid packing, whereas the Lo phase exhibits lower 

fluidity and increased lipid ordering due to the presence of cholesterol and sphingolipids [89][90]. 

The distribution of lipids between these phases is not uniform and can vary depending on the specific lipid 

species present in the membrane. For instance, saturated phospholipids tend to favor the gel phase, while 

unsaturated phospholipids prefer the fluid phase. Cholesterol and sphingolipids promote the formation of 

Lo domains within the membrane, which are enriched in certain lipid species and associated proteins 

[87][91]. 
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Figure 2.5: Phases of Lipid Bilayers: Gel Phase and Fluid Phase. Lipid bilayers can exist in different phases. The gel phase is 

characterized by tightly packed lipids with limited movement, resulting in a more rigid and ordered structure. In contrast, the 

fluid phase includes two sub-phases: the liquid-ordered phase, where lipids are more loosely packed yet maintain some order 

due to cholesterol presence, and the liquid-disordered phase, where lipids are more randomly distributed and have greater 

mobility, leading to a highly fluid and flexible membrane. Derived from [92][93]. 

 

Phase Transitions 

During a phase transition, such as the transition from a gel phase to a fluid phase, the specific excess heat 

capacity plays a crucial role. As the temperature increases, the specific heat capacity, defined as 

𝑐p =
d𝐻

d𝑇
ฬ

௣
 

 
(2.1) 
 

determines the amount of heat energy needed to disrupt the interactions between lipid molecules and 

facilitate the transition to a more disordered state. This process involves breaking the intermolecular forces 

that hold lipid molecules in a particular arrangement, such as van der Waals forces and hydrogen bonding 

[94]. 

At the phase transition temperature, the specific heat capacity may exhibit a peak or discontinuity, 

indicating the absorption or release of heat energy as the membrane undergoes a change in phase. This 

phenomenon, known as a heat capacity anomaly, reflects the energy required to overcome the energetic 

barriers associated with transitioning between different lipid packing arrangements [87][95][96]. 

The heat capacity model, while informative for understanding the thermodynamic behavior of lipid 

membranes, differs in application to real cell membranes due to several factors.  Real cell membranes are 

complex structures characterized by a diverse lipid composition including not only phospholipids, 

cholesterol and glycolipids, but also proteins. Also, the diversity in lipid composition results in broad, less 

cooperative phase transitions that are challenging to measure accurately [97][98]. 

The specific arrangement and interactions among these lipid components significantly influence the 

membrane's excess heat capacity. Moreover, cell membranes also host integral and peripheral membrane 

proteins, which play crucial roles in cellular function. Protein-lipid interactions, protein conformational 

changes, and modulation of lipid packing by these proteins can further alter the membrane's heat capacity. 
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Figure 2.6: Phase Transition Diagram of a Lipid Bilayer. As the temperature increases, the lipid bilayer undergoes a phase 

transition from the gel phase to the fluid phase. The transition temperature 𝑇m , marks the point at which this change occurs, 

typically represented by a peak in the heat capacity 𝑐p. Before 𝑇m, the bilayer is in the gel phase, and after 𝑇m, it transitions 

into the fluid phase, characterized by increased lipid mobility and fluidity. Derived from [87]. 

 

Variations in lipid composition and the abundance of membrane proteins across different cell types and 

organelles contribute to the variability in heat capacity profiles observed among real cell membranes 

[87][94][99]. 

 

Optical Spectroscopy as an Alternative to Differential Scanning Calorimetry 

To overcome the difficulties of determining phase transitions and changes in phase states in biological cell 

membranes, e.g. Laurdan can be used. Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) is a highly 

useful sovatochromic dye widely employed to study membrane order and dynamics in biological 

membranes. It exhibits a high sensitivity to the polarity of its environment, making it an excellent probe for 

assessing the lipid packing and phase state of membranes. The unique property of Laurdan lies in its 

fluorescence emission, which shifts depending on the lipid environment. This characteristic allows for the 

distinction between ordered (gel) and disordered (liquid-crystalline) membrane phases [100][101]. 

When incorporated into biological membranes, Laurdan is typically excited at a wavelength of around 350-

380 nm. Its emission spectrum undergoes significant changes depending on the phase of the membrane it 

is embedded in. In ordered (gel) phases, Laurdan exhibits an emission peak at approximately 440 nm, 

whereas in disordered (liquid-crystalline) phases, the emission peak shifts to around 490 nm. This spectral 

shift arises from differences in membrane hydration between the phases, which influence the relaxation 

dynamics of the dye and, consequently, the energy of the emitted light. These changes reflect variations in 

the local lipid environment and packing densities in the membrane [102]. 
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To quantify these changes in the fluorescence emission spectra of the Laurdan, the generalized polarization 

(GP) value can be utilized. It is calculated based on the ratio of Laurdan's emission intensities at two distinct 

wavelengths, typically around 440 nm and 490 nm: 

𝐺𝑃 =
𝐼440 nm − 𝐼490 nm

𝐼440 nm + 𝐼490 nm
 

 

 
(2.2) 

The GP-value approaches 1 for a completely ordered membrane and -1 for a maximally disordered 

membrane, changing proportionally with the order of the hydrocarbon chains. Higher GP values indicate 

more ordered, tightly packed membranes, whereas lower GP values suggest a more disordered, fluid 

membrane state. These properties can be exploited using classical spectroscopy or fluorescence 

microscopy, where emission filters in the two wavelength ranges are used to capture phase-dependent 

fluorescence images [103]. 

 

Figure 2.7: Generalized Polarization of Laurdan embedded in a Lipid Membrane around the Main Phase Transisiton. As the 

temperature increases, the GP value typically decreases, reflecting the transition from a more ordered gel phase to a less 

ordered fluid phase. The transition temperature, 𝑇m, marks the point where GP=0 or shows the highest slope, indicating the 

shift in lipid packing and membrane fluidity during the phase transition. Before 𝑇m, the GP value is higher, corresponding to 

the gel phase, and it decreases after 𝑇m, corresponding to the fluid phase. Derived from [104].  
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2.3. Nanoparticle Uptake 
 

Nanoparticles have garnered significant interest in various fields, including medicine, electronics, and 

environmental science. Their unique properties, such as large surface area-to-volume ratio, tunable surface 

chemistry, and ability to encapsulate or carry payloads, make them promising candidates for drug delivery, 

imaging, sensing, and other applications. One critical aspect of utilizing nanoparticles in biomedical 

applications is understanding how they interact with cell membranes and are internalized by cells 

[105][106]. 

 

Interaction Mechanisms of Nanoparticles and Cell Membranes 

Nanoparticles interact with cell membranes through various mechanisms, including adsorption, 

penetration, endocytosis, and membrane fusion. The specific interaction mechanism depends on factors 

such as nanoparticle size, shape, surface chemistry, and the properties of the cell membrane [107][108]: 

 Adsorption: Nanoparticles can adsorb onto the surface of the cell membrane through electrostatic, 

hydrophobic, or van der Waals interactions. This initial adsorption can influence subsequent uptake 

processes [109]. 

 

 Penetration: Small nanoparticles have the ability to penetrate the cell membrane directly, either 

by disrupting the lipid bilayer or by traversing through transient defects or nanopores in the 

membrane [110]. 

 

 Endocytosis: Endocytosis is a common mechanism by which cells internalize extracellular material. 

Nanoparticles can be engulfed by the cell through various endocytic pathways, such as clathrin-

mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis, or phagocytosis, 

depending on their size, shape, and surface properties [111]. 

 

 Membrane Fusion: Certain nanoparticles, particularly lipid-based or viral nanoparticles, can fuse 

with the cell membrane, releasing their cargo directly into the cytoplasm [112]. 

 

Factors Influencing Uptake of Nanoparticles 

Several physical and biological factors can influence the uptake of nanoparticles into cell membranes. The 

most important are: 

 Nanoparticle Properties: Size, shape, surface charge, surface chemistry, and composition of 

nanoparticles play crucial roles in determining their interaction with cell membranes and 

subsequent internalization. For example, smaller nanoparticles typically exhibit higher cellular 

uptake due to their increased surface area-to-volume ratio [105][113][114]. 
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 Cellular Factors: Cell type, membrane composition, membrane fluidity, expression of specific 

receptors or transporters, and metabolic activity of cells can all influence nanoparticle uptake. 

Different cell types may exhibit varying degrees of nanoparticle internalization [115][116]. 

 

 External Conditions: External factors such as temperature, pH, presence of serum proteins, and 

mechanical forces can affect nanoparticle-cell membrane interactions and uptake kinetics [17][18]. 

 

 Nanoparticle Coatings: Surface modifications, such as the addition of targeting ligands, polymers, 

or stealth coatings, can enhance nanoparticle stability, biocompatibility, and cellular uptake 

efficiency [106][119][120]. 

 

 

Figure 2.8: Types of Endocytosis in Cells. A) Phagocytosis: A process where the cell engulfs large particles or microorganisms 

by extending its membrane to form phagosomes. B) Pinocytosis: The cell engulfs extracellular fluid and dissolved substances 

into small vesicles. C) Clathrin-Mediated Endocytosis: Involves the formation of vesicles with the help of clathrin protein coats, 

specifically for the uptake of specific molecules bound to receptors. D) Caveolae-Mediated Endocytosis: A type of endocytosis 

involving flask-shaped invaginations called caveolae, rich in cholesterol and caveolin proteins, often associated with the 

uptake of specific lipid-bound molecules. Derived from [121][122]. 

 

Endocytic Uptake of Nanoparticles 

The size of nanoparticles plays a crucial role in determining their uptake mechanism, particularly through 

endocytosis. Generally, nanoparticles with sizes ranging from a range of 10 nm to around 200 nm are 

efficiently internalized by cells via various endocytic pathways [114].  

For instance, smaller nanoparticles (typically less than 200 nanometers) are often taken up via clathrin-

mediated endocytosis or caveolae-mediated endocytosis. These pathways involve the formation of vesicles 
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coated with clathrin or caveolin proteins, respectively, which bud off from the cell membrane to engulf the 

nanoparticles [114][121]. 

On the other hand, larger nanoparticles (ranging from 200 nm) may be internalized through 

macropinocytosis, a process where the cell membrane forms large, non-specific invaginations called 

macropinosomes to engulf extracellular material [122]. 

However, the relationship between nanoparticle size and endocytosis is not strictly defined, and it can vary 

depending on cell type, nanoparticle composition, and surface properties. Additionally, larger nanoparticles 

may face challenges in cellular uptake due to their size, as they may be too large to enter cells efficiently 

via endocytosis and instead may require alternative mechanisms such as phagocytosis by specialized cells 

like macrophages [123].  

For silica nanoparticles, the uptake mechanisms and predominant endocytic pathways are size-dependent, 

as observed for other nanoparticle types. Smaller silica nanoparticles (less than 200 nm) are primarily 

internalized via clathrin-mediated endocytosis or caveolae-mediated endocytosis, aligning with the general 

behavior of nanoparticles of this size range. In contrast, larger silica nanoparticles (over 200 nm) are more 

likely to undergo macropinocytosis or, in specialized cells such as macrophages, phagocytosis. However, 

the endocytic pathway can be influenced by the formation of a protein corona, which occurs when 

nanoparticles are incubated in biological media supplemented with proteins, such as fetal bovine serum 

(FBS). This protein corona can alter the surface properties of the nanoparticles, potentially modifying their 

interaction with the cellular membrane and favoring different uptake pathways. For instance, studies 

involving albumin-coated silica nanoparticles suggest that the protein corona can enhance cellular uptake 

efficiency and alter the specificity of the endocytic mechanism [201][202]. 

 

Fundamental Energetic Principles 

Lipid vesicles serve as excellent model systems for studying nanoparticle uptake mechanics due to their 

simplified and well-defined structure, which closely mimics the basic properties of cellular membranes. 

These vesicles, composed of lipid bilayers, provide a controllable environment where variables such as 

membrane composition can be precisely manipulated [124][125]. 

When viewed through a physicist’s point of view, the model for nanoparticle uptake into lipid vesicles 

involves a series of interrelated energy considerations. This process can be broken down into three main 

stages [126]: 

1. Adhesion of the nanoparticle to the membrane 

2. Invagination of the membrane around the nanoparticle 

3. Detachment of the membrane-enclosed nanoparticle 

This process encompasses the adhesion of an object to the membrane, subsequent invagination of the 

membrane, and final detachment of the membrane-enclosed object. The driving force behind this process 

is the change in adhesion energy 𝐸adh upon the object's envelopment. The energy behind this force must 

overcome the bending energy 𝐸ben,required to enclose the object, and the surface tension energy 𝐸ten, 

which accrues due to membrane consumption. The object is only taken up if 
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𝐸adh >  𝐸ben + 𝐸ten 
 

(2.3) 

This provides a framework primarily applicable to artificial lipid systems such as lipid vesicles. However, 

when applied to real cells, this model only partially captures the complexity of the uptake process 

[126][127][128]. 

 

Application to real Cells 

While the presence of proteins, glycoproteins, and other biomolecules on the cell surface can modulate the 

adhesion, they do not negate the basic energetic requirements for nanoparticle uptake. Instead, they may 

enhance or inhibit adhesion, altering 𝐸adh, but not changing the fundamental relationship among 𝐸adh, 𝐸ben 

and 𝐸ten [129][130]. 

Moreover, the dynamic nature of the cytoskeleton and cellular protrusions can influence membrane 

curvature and tension, affecting the energetics of nanoparticle uptake. Real cell membranes, like lipid 

vesicles, undergo invagination and other shape changes. The cell membrane's intrinsic properties, such as 

flexibility and ability to curve, are still governed by 𝐸ben , which must be overcome for successful 

nanoparticle encapsulation. The cytoskeleton's role in influencing membrane curvature and tension affects 

the energetics of nanoparticle uptake by potentially altering 𝐸ben and 𝐸ten [131][132]. 

Also in lipid vesicles, 𝐸ten would consequently increase due to the uptake of nanoparticles and therefore 

decreasing membrane area. However, cells have a lot of excess membrane area which means, that 

compared to lipid vesicles, 𝐸ten would increase significantly slower or even stay constant, although the 

energetic principle still holds [131][133][134]. 
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Figure 2.9: Endocytosis-like Uptake of Nanoparticles into Lipid Membranes. A) Steps of the uptake mechanism. (1) Adhesion 

of a particle onto the membrane. (2) Engulfment of the particle by the lipid membrane. (3) Rupture, internalization, and pore 

formation within the membrane. B) Energies involved in the uptake process. Tension Energy: Arises from the membrane's 

surface tension as it deforms to engulf the nanoparticle. Adhesion Energy: Generated through interactions between the 

nanoparticle and the membrane, typically mediated by van der Waals forces or electrostatic interactions. Bending Energy: 

Related to the membrane's curvature, reflecting the membrane's resistance to bending and deformation. Derived from 

[128][135]. 
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2.4. Membrane Transport 
 

Passive diffusion is a spontaneous process by which molecules move across the cell membrane from an 

area of higher concentration to an area of lower concentration. This movement is driven solely by the 

concentration gradient, without the expenditure of cellular energy. Small, nonpolar molecules such as 

oxygen and carbon dioxide can readily diffuse through the lipid bilayer due to their solubility in the 

hydrophobic core of the membrane. In contrast, polar molecules and ions, which are not readily soluble in 

the lipid bilayer, often require assistance from channel proteins or carrier proteins to traverse the 

membrane efficiently. These proteins provide specific pathways or mechanisms that facilitate the transport 

of such molecules, ensuring the cell's proper function and homeostasis [136][137][138][139]. 

 

Physical Model for Membrane Transport 

Substance exchange in passive diffusion occurs through porous substance transport. In artificial lipid 

membranes the required energy Δ𝑊 to form a pore of diameter 𝑑 in a membrane with an area of 𝐴m is 

given by:  

Δ𝑊(𝑑) =
1

2𝜅்
஺ ൬

𝑑

𝐴m
൰

ଶ

𝐴m + 𝜋𝑑𝛾 

 

 
(2.4) 

Here, 𝜅்
஺ describes the isothermal area compressibility of the membrane and 𝛾 the line tension of the pore. 

Furthermore, 𝜅்
஺ is described by the change of area caused by the lateral pressure Π: 

𝜅்
஺ = −

1

𝐴

𝜕𝐴

𝜕Π
ฬ

்
 

 

 
(2.5) 

Through this expression and the fact that the isothermal area compressibility 𝜅்
஺ is directly proportional to 

the specific heat capacity 𝑐p of the membrane one can conclude that both have their maximum at the phase 

transition of the membrane. As a result, the energy required for pore formation is minimized at the 

membrane's melting point, leading to a maximum in membrane permeability. This increased permeability 

at the phase transition facilitates the passive diffusion of molecules, making it easier for substances to cross 

the membrane through these transient pores [87][97][216]. 

 

Application to real Cells 

As already mentioned, real cell membranes are more complex consisting of various proteins, lipids, and 

other biomolecules that influence substance exchange beyond simple diffusion. While some aspects of 

the physical model still apply, real cell membranes introduce additional factors and regulatory 

mechanisms, including [139][140][141]: 

 Selective Transport: Facilitated by specific channels or transporters. 

 

 Active Transport: Driven by ATP hydrolysis. 
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 Membrane-Bound Compartments: Such as organelles, which further regulate substance 

exchange. 

Despite these complexities, certain similarities exist between artificial lipid membranes and real cells 

regarding basic membrane properties and behavior. Both systems exhibit phase transitions and changes 

in permeability associated with temperature or lipid composition alterations. Additionally, the principle of 

concentration gradients driving passive diffusion is a fundamental concept applicable to both artificial 

lipid membranes and real cells [139][141][142][143]. 

 
Figure 2.10: Temperature-Dependent Permeation Rate in Lipid Membranes. Permeation rate of the dye R6G through 

DPPC/DPPG (95:5) LUVs (200 mM NaCl) as a function of temperature, compared with the heat capacity profile of the same 

sample. The permeation rate shows a strong correlation with the heat capacity. Extracted from [142]. With permission from 

Elsevier (License Number 5815931036945). 
 

The process of pore formation in membranes, when considered without the influence of tension, is 

governed primarily by 𝛾 and 𝜅்
஺. In real cell membranes, compressibility is lower than in pure lipid bilayers 

due to the presence of proteins, cholesterol, and other biomolecules, which reduces the dominance of line 

tension as the driving factor. This results in altered energy landscapes for pore formation compared to 

artificial membranes. Depending on the uptake pathway, membrane bending rigidity also varies; for 

example, macropinocytosis likely requires higher bending rigidity due to the large-scale deformations 

involved, whereas clathrin- and caveolae-mediated pathways, with their structured protein-coated pits, 

reduce the influence of intrinsic membrane mechanical properties. Furthermore, the heterogeneous nature 

of cell membranes, such as lipid rafts or other microdomains, creates regions with varying physical 

parameters like line tension and compressibility [203][204]. 
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2.5. Trans Endothelial Diffusion 
 

Trans endothelial diffusion can occur via two main routes: paracellular and transcellular pathways. In the 

paracellular pathway, substances pass between adjacent endothelial cells through the intercellular spaces 

sealed by tight junctions. This route is selective and primarily allows for the diffusion of small hydrophilic 

molecules and ions. In contrast, the transcellular pathway involves the transport of substances across 

endothelial cells themselves, either through passive diffusion or facilitated transport mediated by 

transmembrane proteins such as transporters and channels. Lipid-soluble molecules can diffuse directly 

through the lipid bilayer of endothelial cell membranes, while larger or polar molecules may require specific 

transport mechanisms [23][30][33][144][145]. 

 

Factors Influencing Trans Endothelial Diffusion 

Several factors influence the rate and selectivity of trans endothelial diffusion. Molecular size, shape, 

charge, lipophilicity, and solubility play critical roles in determining the permeability of substances across 

endothelial barriers. Additionally, the presence of transporters, receptors, and enzymatic pathways on 

endothelial cell surfaces can actively regulate the transport of specific molecules. Physical forces such as 

hydrostatic pressure, osmotic gradients, and shear stress exerted by blood flow also influence trans 

endothelial diffusion by affecting endothelial cell morphology and junctional integrity [23][50][146]. 

 

Trans Endothelial Fluid Sieving 

Trans endothelial fluid sieving involves the special role in filtration of molecules of varying sizes and charges 

across the endothelial layer and in the kidney, driven by hemodynamic forces. This process is governed by 

the endothelial barrier and other components of the vessel wall. The selective sieving of plasma by these 

barriers significantly influences the composition of tissue fluid and lymph. By regulating which molecules 

pass through, the endothelial barrier maintains the balance of fluids and solutes within tissues, ensuring 

proper physiological function and response to changes in the vascular environment [147][148][149][150]. 

 

Physical Model for Trans Endothelial Diffusion 

In a simplified model of trans endothelial diffusion, the endothelial barrier is envisioned as a thin layer 

comprising interconnected endothelial cells forming the inner lining of a blood vessel. This layer is 

conceptualized as a porous medium, wherein the endothelial cells serve as obstacles through which 

molecules traverse to transit between the blood vessel and the adjacent tissue. By linking the endothelial 

barrier to a porous medium, the model acknowledges the intricate network of endothelial cells [150][151].  

In expanding upon the conceptualization of trans endothelial diffusion, it is plausible to consider the tissue 

situated behind the endothelial cells as akin to a hydrogel matrix. A hydrogel is a three-dimensional network 

of hydrophilic polymer chains capable of retaining large amounts of water. In this analogy, the tissue matrix 

exhibits properties similar to a hydrogel due to its water-retaining capacity and ability to swell in response 
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to environmental stimuli. Just as a hydrogel provides a supportive structure for cellular growth and 

molecular transport, the tissue behind the endothelial cells serves as a scaffold for various cellular 

components and facilitates the diffusion of molecules from the blood vessel into the surrounding interstitial 

space [150][151][152][153][154]. 

Figure 2.11: Size and Interaction Filtering Mechanisms in Hydrogels. A) Size filtering: This method allows particles that are 

smaller than the hydrogel's cut-off size to pass through, while larger particles are rejected. B) Interaction filtering: In this 

approach, particles are distinguished based on their surface properties. Particles that strongly interact with the polymer matrix 

of the hydrogel are trapped, whereas those with weak interactions are permitted to pass. Derived from [150]. 

 

Considering a cross-section of a hydrogel where a solute can diffuse exclusively from a single side, the 

solute's concentration across the length of the cross-section can be approximated using a one-dimensional 

diffusion model. For this scenario, the first Fick's law in the one-dimensional case states: 

𝐽 = −𝐷
𝜕𝑐

𝜕𝑥
 

 

 
(2.6) 

In this context, 𝐽 represents the diffusion flux along the x coordinate,  𝐷 the diffusion constant and 𝑐 the 

concentration of the dissolved solute in the gel. If one also considers the temporal change, the second Fick's 

law must be considered: 

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕²𝑐

𝜕𝑥²
 

 

 
(2.7) 

Assuming in the model used here that an infinite reservoir of the dissolved solute is maintained at a 

constant initial concentration 𝑐଴, the partial differential equation is represented by the nontrivial standard 

solution 

𝑐 (𝑥) = 𝑐଴ ൤1 − erf ൬
𝑥

(𝐷𝑡)ଶ
൰൨ 

 

 
(2.8) 

whereas  erf (𝑥) is   
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erf(𝑥) =
2

𝜋
ଵ
ଶ

න 𝑒ି௫́మ

௫

଴

d𝑥́ 

 

 
(2.9) 

Given that 𝑥  and 𝑡  are known, the solution obtained can be effectively used as a fitting function. The 

resulting curves are each the shape of a Gaussian distribution and are characterized by the diffusion length 

[151][155][156]:  

𝜆 = (𝐷𝑡)ଵ/ଶ 
 

(2.10) 

Typical diffusion lengths of macromolecules in polyacrylamide hydrogels range from approximately 10 µm 

for small proteins (e.g., 20 kDa) to 4.5 µm for large proteins (e.g., IgG, 150 kDa) over a 1-second timescale. 

Similar to biological tissues, these values depend on factors such as molecule size, hydrogel crosslinking 

density, and polymer concentration [205][206]. 

Figure 2.12: An Example of a Diffusion Gradient in a 3D Hydrogel Channel. A) Illustration of a blood vessel with the endothelial 

layer, where the diffusible substance (white) flows through the vessel. B) Diffusion gradient of a substance, abstracted into 

one dimension, diffusing through the endothelium into the tissue. B1) An infinite reservoir of a dissolved substance with a 

normalized concentration. B2) The entry of the dissolved substance occurs only on one side (dotted line) and then diffuses into 

the tissue. Light areas indicate high concentration, while dark areas indicate low concentration. The intensity profiles of the 

actual measurements ideally match the profile shown in this example. 
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2.6. Shear Flow in Cylindrical and Rectangular Channels 
 

Shear stress is present wherever there is fluid flow. In living organisms, this shear stress primarily arises 

from the frictional force of blood moving along the walls of blood vessels. To cultivate and maintain an 

intact glycocalyx in blood vessels and artificial blood vessels, there must be a flow present in blood vessels 

and artificial cultures. When fluids flow along a wall, friction effects lead to an exchange of momentum and 

thus a force exerted by the fluid elements on the wall and vice versa [78][157]. 

 
Figure 2.13: Dynamic Cell Culture in a Channel Slide. A) Illustration of a blood vessel with its different tunicae and cylindrical 

geometry. B) A rectangular channel slide for in-vitro culture of endothelial cells under dynamic conditions. 

 

Shear Stress in Laminar Flow 

Laminar flow occurs in distinct layers. Viscosity creates drag both between these layers and with the 

stationary surface. The quotient of the force 𝐹 acting per unit area 𝐴 is referred to as wall shear stress 

𝜏 =
𝐹

𝐴
 

 

 
(2.11) 
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For Newtonian fluids like water, the wall shear stress can be described as 

𝜏 = 𝜂𝛾̇ 
 

(2.12) 

where 𝜂 is the viscosity and 𝛾̇ is the shear rate. The shear rate is in turn defined by the gradient of the flow 

velocity 𝑣⃑ [157][158][159]: 

𝛾̇ = grad (𝑣⃑) 
 

(2.13) 

Although blood is a non-Newtonian fluid, the aqueous cell culture medium used in this context can be 

considered a Newtonian fluid. Consequently, 𝜂 the depends solely on temperature and remains constant 

across the experiments. 

 

Cylindrical Channels 

Figure 2.14: Flow Profile in a Cylindrical Channel. The flow velocity is highest at the center of the cylinder and decreases 

towards the walls, creating a parabolic velocity profile typical of laminar flow. 

 

For cylindrical geometry and laminar flow, which can be simplified for blood vessels, for example, it holds 

that the flow velocity is greatest at the center of the cylinder and becomes zero at the cylinder's edge with 

radius 𝑅: 

𝑣(𝑟) = 𝑣max ቆ1 −
𝑟²

𝑅²
ቇ 

 

 
(2.14) 

If the volumetric flow rate 𝑉̇ is known, the equation can be rewritten as follows: 

𝑣(𝑟) =
2𝑉̇

𝑅²𝜋
ቆ1 −

𝑟²

𝑅²
ቇ 

 

 
(2.15) 

If this expression is differentiated and substituted in 𝜏 it can be formulated as: 

𝜏(𝑟) =
4𝜂 𝑉̇𝑟

𝜋𝑅ସ
 

 

 
(2.16) 
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Accordingly, the wall shear stress decreases linearly towards the center of the vessel [157][158][159]. 

 

Rectangular Channels 

 

 
Figure 2.15: Flow Profile in a Rectangular Channel. The coordinate cross is positioned at the center of the channel. The y-axis 

is oriented vertically, the x-axis is horizontal and perpendicular to the flow direction, and the z-axis runs parallel to the flow 

direction. The flow velocity is highest at the center and decreases towards the channel walls, creating a characteristic flow 

profile. 

 

While cylindrical channels offer a more physiological representation of in vivo conditions, rectangular 

channels are prevalent in in vitro cell culture due to their compatibility with essential laboratory equipment 

such as microscopes and incubators. This compatibility makes rectangular channels a practical choice for 

researchers despite their departure from physiological accuracy. Therefore, understanding the theory of 

shear flow in rectangular channels becomes paramount, as it directly influences cellular responses and 

experimental outcomes in these commonly used setups [157][158][159]. 

The shear flow in rectangular channels is described as 

𝜏(𝑥, 𝑦) = 𝜂
𝜕𝑣(𝑥, 𝑦)

𝜕𝑦
=α𝑉̇ 

 

 
(2.17) 

Whereas 𝑣(𝑥, 𝑦) is the flow velocity and α =
ఈభ

ఈమ
 is a geometrical factor dependent on the dimensions of the 

channel.  

The flow velocity 𝑢(𝑥, 𝑦) and the flow rate 𝑉̇ can be written as [157][158][159][160]: 

𝑣(𝑥, 𝑦) = −
1

𝜂

d𝑝

d𝑧
ቐ

𝑏ଶ − 𝑥ଶ

2
− ෍

𝑏𝜋(−1)௡

(2𝑛 + 1)ଷ
൬

2

𝜋
൰

ଷஶ

௡ୀ଴

cosh ቂ(2𝑛 + 1) ቀ
𝜋𝑦
2𝑏

ቁቃ

cosh ቂ(2𝑛 + 1) ቀ
𝜋𝑦
2ℎ

ቁቃ
cos ቂ(2𝑛 + 1) ቀ
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(2.18) 
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(2.19) 

Here, 2ℎ  is the height in 𝑦-direction, 2𝑏  the width in 𝑥 -direction and d௣

d௭
 the change of pressure in 𝑧 -

direction. Solving the equation for d௣

d௭
 yields: 

d𝑝
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Since the cells adhere and grow on the bottom of the channels, one can now say that 𝑦 = −ℎ. For the 

middle of the channel surface the shear stress is then. 
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(2.21) 

With these equations 𝛼ଵ and 𝛼ଶ and therefore α can be calculated if the dimensions of the channel are 

known. For example, a commonly used channel with a height of 800 µm and a width of 5000 µm the 

geometrical factor is 

𝛼 = 34.7 
 

(2.22) 
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3. METHODS 
 

This Chapter explains the methodologies employed in the performed experiments. 

Initially, the cell culture techniques are elucidated, detailing static, dynamic, and shed cultivation methods 

to establish diverse cellular environments. Following this, the glycocalyx staining experiments are described 

to verify the presence or absence of the glycocalyx under different cultivation conditions. 

Nanoparticle uptake experiments are then outlined, followed by dye uptake experiments through 

membrane diffusion. Additionally, lipid vesicle adhesion experiments on the cell surface are conducted and 

membrane phase state experiments using Laurdan staining and generalized polarization (GP) value 

measurements are included to determine membrane fluidity. 

After that, trans endothelial diffusion experiments are performed in an artificial 3D hydrogel channel that 

simulates the endothelial surface layer.  

Finally, cell-cell contact staining experiments in dependance of the cultivation method are detailed. 

Each method is systematically detailed to ensure the reproducibility and reliability of the results. All works 

were performed under safety regulations S1 GenTSV. A complete table of the used materials and 

instruments, as well as detailed information about the excitation and emission of the used dyes is provided 

in the Appendix A2. 
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3.1. Cell Culture 
 

Human Umbilical Vein Endothelial Cells (HUVEC) are extensively utilized in in vitro cell culture studies as a 

representative model for human endothelial cells. Derived from the umbilical vein, HUVEC cells possess 

primary endothelial characteristics and exhibit similar behaviors and responses to physiological stimuli. 

These cells express a variety of endothelial markers and are responsive to mechanical forces such as shear 

stress, making them ideal for studying vascular biology and pathophysiology. Additionally, HUVEC cells have 

the ability to form functional monolayers and develop a glycocalyx under flow conditions in vitro, allowing 

researchers to mimic aspects of the vascular microenvironment [161][162].  

Primary cells, including Human Umbilical Vein Endothelial Cells (HUVEC), exhibit a finite lifespan in culture 

and gradually lose their characteristic features with each passage. Typically, after around passage 10, 

primary cells undergo senescence and exhibit altered morphology, reduced proliferation rates, and 

diminished responsiveness to stimuli. This loss of attributes compromises the reliability of experimental 

results and may lead to misinterpretations. Therefore, it is generally recommended to avoid prolonged 

cultivation of primary cells beyond passage 10 to maintain their physiological relevance and ensure the 

validity of research findings [162][163][164].  

For the experiments of this thesis, only HUVEC with passages 2 to 8 were used. The cells were split when 

they reached 70-80% confluency in their culture flasks. The cell culture medium used was supplemented 

with 1% penicillin/streptomycin. 

To investigate the effects of vesicle adhesion or membrane interactions in the absence of an intact 

glycocalyx, HeLa cells were chosen as an alternative to HUVEC. This substitution was made because HeLa 

cells have a structurally weaker glycocalyx in comparison to endothelial cells cultured under flow, making 

them a sufficient model system for studying cellular interactions that occur without the influence of the 

glycocalyx layer. Because of this, for HeLa the condition is referred to as “flow interruption” instead of 

“shedding” [165]. 

The cell culture medium used for HeLa cells was supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin. 

 

Thawing Protocol for HUVEC and HeLa 

1. The cell culture medium and DPBS were warmed to room temperature. 

2. Three T75 flasks were filled with 15 ml medium. 

3. Cryopreserved cells were taken out of the -80°C refrigerator and thawed at room temperature 

under the sterile bench. 

4. A 15 ml Centrifuge tube was filled with 4 ml cell medium. 

5. As soon as the cells were thawed, the contents (1 ml) were pipetted into the Centrifuge tube with 

cell medium. 

6. The centrifuge tube was centrifuged for 10 minutes at a force of 200 g, so that a cell pellet was 

formed at the bottom. 
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7. The medium was removed, disposed and resuspended with 5 ml fresh medium. 

8. The contents of the tube were then split equally into the T75 flasks and stored in an incubator at 

37°C and 5% CO2. 

Splitting Protocol for HUVEC and HeLa 

1. The cell culture medium and DPBS were warmed to 37°C. 

2. The old medium of the cell culture flask was removed and disposed. 

3. 15 ml DPBS was pipetted into the flask to wash the cells and then removed and disposed. 

4. 3 ml Accutase or Trypsin was added and left in the flask for 10 minutes to detach the cells from the 

bottom of the flask. To control this process, a microscope was used. 

5. 7 ml of fresh medium was filled into the flask to neutralize the Accutase. 

6. The cells were counted with a cell counter. 

7. The full content of the flask was pipetted into a Centrifuge tube and centrifuged for 10 minutes at 

a force of 200 g, so that a cell pellet was formed at the bottom. 

8.  The cell culture medium was removed, disposed and resuspended with 15 ml fresh medium if the 

cells were split into another passage or if used for an experiment, with an individual amount of 

medium that was calculated beforehand. 

9. If split, a new T75 flask was filled with 15 ml medium. 5 ml of the resuspended Falco tube were 

pipetted into the new flask and stored in an incubator at 37°C and 5% CO2. 

 

Dynamic Cell Culture 

To achieve an intact glycocalyx in dynamic in vitro cell culture, an Ibidi pump system was used. The ibidi 

pump system is a tool used in cell biology research to control fluid flow in microfluidic experiments. It offers 

precise control over flow rates and is compatible with microfluidic plates, designed for various cell culture 

applications. In this case it is used to mimic shear flow in blood vessels by pumping cell culture medium in 

a unidirectional flow through µ-channel slides in which HUVEC, or in some cases HeLa cells, are cultured. 

Since µ-channels of 800 µm and 400 µm height were used, the values in the parenthesis in the protocols 

indicate the parameters for 400 µm channels. If only one value is listed, it applies for both. 

 

Preparation of the Channels 

The channels were coated with rat tail collagen Type I at a 145 µg/ml concentration dissolved in 17.5 mM 

acidic acid before seeding the cells to ensure better adhesion. 

1. 200 µl (100 µl) of the collagen solution was pipetted into the channel so that the surface is fully 

covered. 

2. The channels slides were incubated at room temperature under the sterile bench for 1 hour. 

3. The channel slides were rinsed with 1 ml DPBS three times. 

4. If not used, the channel slides were stored in a sterile box in the refrigerator at 8 °C for a maximum 

of 1 day. 
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Static Cultivation in Channel Slides 

1. The cells were split as already written in the Splitting protocol. 

2. 200 µl (100 µl) medium with a cell concentration of 2 x 105 cells/ml (4 x 105 cells/ml) was pipetted 

into the channel. 

3. The channel slide was incubated for 1 hour at 37°C and 5% CO2 for the cells to adhere to the 

channel. 

4. The medium reservoirs of the channel slide were filled with medium 

5. Two 5 ml syringes were filled with 2 ml medium in each syringe were connected to the channel 

slide carefully without bringing air bubbles into the channel.  

6. The syringe plunger was removed and replaced with a filter on each syringe. The cells were 

cultivated for 6 days. 

7. The medium was replaced every 2 days. 

Figure 3.1: Statical Cell Culture in Channel Slides. A) An 800 µm channel slide, where cells are pipetted into the channel, which 

can later be connected to a pump for dynamic culture. B) To ensure that statically cultured cells receive sufficient cell medium, 

two syringes filled with medium and equipped with filters to prevent contamination are connected to the reservoirs of the 

channel slide. 

 

Dynamic Cultivation in Channel Slides 

1. A RED perfusion set (length 15 cm, inner diameter 1.6 mm, 10 ml reservoirs) was connected to 

fluidic unit and the pump system and filled with 6 ml cell medium in each reservoir. 

2. The pump system was started with a shear flow of 10 dyn/cm², 3 hours before the cells were 

connected, to remove air bubbles from the system. 

3. The cells were split as already written in the Splitting protocol. 

4. 200 µl (100 µl) medium with a cell concentration of 1 x 106 cells/ml (2 x 106 cells/ml) was pipetted 

into the channel. 

5. The channel slide was incubated for 1 hour at 37°C and 5% CO2 for the cells to adhere to the 

channel. 

6. The medium reservoirs of the channel slide were filled with medium. 
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7. The channel was carefully connected to the perfusion set without bringing air bubbles into the 

system. 

8. The pump was started with a shear flow of 2 dyn/cm² for 1 hour. 

9. The shear flow was adjusted to 6 dyn/cm² and the cells cultivated for 6 days. 

10. The medium was replaced every 2 days. Therefore, the pump was disconnected from the fluidic 

unit for about 1 minute. 

11. If shed samples were used, the slides were disconnected from the flow for 2 hours before the 

experiment. 

 

In some special cases, a shear flow of 2 dyn/cm² or 10 dyn/cm² was used for cultivation. 

Figure 3.2: Experimental Setup for Cell Culture under Dynamic Conditions. The computer and pump are placed on a stable 

surface, such as a workbench, next to the incubator. The Fluidic Unit with the mounted Perfusion Set is positioned inside the 

incubator, while the pump remains outside, connected to the Fluidic Unit via an electrical cable and air pressure tubing. The 

setup uses positive pressure, as recommended. Derived from the manual of the ibidi pump system. 
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Laurdan Staining of Cells 

For confocal microscopy, membrane fluorescence microscopy, and GP-value experiments, cells were 

stained using Laurdan. The detailed preparation of the Laurdan solution and the staining procedure are 

described in this Chapter and serve as a reference for subsequent sections. All steps were performed with 

very low and indirect light, to minimize photobleaching of the dye. 

 

Preparation of the Laurdan Dye 

1. Laurdan solution, consisting of 100 µl with a concentration of 5 mg/ml dissolved in chloroform, was 

pipetted into an opaque glass vial. 

2. The vial was exposed to a continuous flow of nitrogen for 30 minutes to evaporate the chloroform. 

3. 500 µl DMSO was added to the vial and placed in the ultrasonic bath for 30 minutes at a 

temperature of 50°C. 

4. The Laurdan-DMSO solution was mixed with 50 ml HUVEC medium in a Centrifuge Tube wrapped 

in aluminum foil to prevent bleaching. 

 

Staining the Cells 

Cells of all culture conditions were stained with Laurdan using the ibidi pump system. If the cells were 

cultured statically, they were connected to an ibidi pump system for the staining. If shed cells were needed, 

the flow was stopped 2 hours before the staining. 

1. The flow was stopped and the medium in the reservoirs was disposed and replaced with the 

Laurdan dye. 

2. The flow was restarted at 6 dyn/cm², and the cells incubated for another 2 hours. 

3. The channel slide was rinsed with 2 ml DPBS and 2 ml medium afterwards. 
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3.2. Glycocalyx Staining Experiments 
 

The existence or absence of the glycocalyx was verified via Alexa Fluor 555 conjugated WGA staining. After 

the cells were split, a set of dynamically, statically and shed specimen from the same source were cultured 

in 400 µm channels slides. A Zeiss Axio Observer 7 featuring an objective with 10x magnification was used 

to take images. 

All steps were performed with very low and indirect light, to minimize photobleaching of the dye. 

 

Preparation of the WGA Solution 

1. A 500 ml stock solution with a concentration of 1.0 mg/ml WGA dissolved in DPBS was produced 

and stored at -20°C. 

2. The stock solution was further diluted to a concentration of 5.0 µg/ml in DPBS. 

 

Staining the Cells 

If the cells were cultured statically, they were connected to an ibidi pump system for the staining. If shed 

cells were needed, the flow was stopped 2 hours before the staining.  

1. The flow was stopped and the medium in the reservoirs was disposed and replaced with the WGA. 

2. The flow was restarted, and the cells incubated for another 2 hours. 

3. The channel slide was rinsed with 2 ml DPBS afterwards. 

 

Preparation of the Experimental Setup 

All steps were performed with very low and indirect light, to minimize photobleaching of the dye. 

1. A stage incubator was pre heated to 37°C. 

2. The channel slide was disconnected from the pump system and quickly put on the microscope stage 

and connected to the syringe tube. It was made sure that no air bubbles were brought into the 

channels and that the flow has the same direction as in the cultivation. 

3. Another tube was connected to the other end of the channel slide and lead into a collection 

container. 

4. The microscope’s objective was located at the middle of the channel and an image of the cells in 

phase contrast was taken. 

5. The microscope shutter was closed and the Alexa Fluor 555 filter used. 

6. The exposure time was set to 7 s at an intensity of 30%. 
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Execution of the Experiment 

1. An image was taken in phase contrast for reference. 

2. An image was taken in the Alexa Fluor 555 fluorescence channel. 

 

Confocal Image Measurement 

A Stellaris 5 confocal microscope with a 63x magnification was used to gather additional data about the 

position and morphology of the vesicles. Therefore, a set of channel slides where vesicle adhesion had 

already been measured was used. 

1. The staining of the cells follows the same protocol as in the cell culture section. 

2. The Laurdan stained cells were illuminated using a 405 nm laser, while a white light laser with an 

excitation wavelength of 569 nm was utilized for the Texas Red fluorescent nanoparticles. 

3. The channel slides were mounted onto the microscope stage, and cells were located using a 20x 

magnification. 

4. The bottom of the slides was precisely identified using a 63x magnification. 

5. A z-scan was initiated, capturing images at 0.1 µm intervals from the slide bottom upwards until a 

z-position of 20 µm above the channel bottom was reached. 
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3.3. Nanoparticle Uptake Experiments 
 

Negatively charged Texas Red fluorescent Silica nanoparticles with a diameter of 50 nm were used in the 

experiments to measure the endocytic uptake over time into cells in dependance of the existence of an 

intact glycocalyx and the method of cultivation. After the cells were split, a set of dynamically, statically and 

shed specimen from the same source were cultured in 800 µm channels slides. A Zeiss Axiovert 200M 

microscope with a 10x magnification and a Hamamatsu Orca C8484-05G01 camera was used to take images. 

 

Preparation of the Nanoparticle Solution 

1. The nanoparticle stock solution was put in an ultrasonic bath for 30 minutes. 

2. The nanoparticles were diluted by a factor of 1:250 in cell medium in a 50 ml Centrifuge Tube to a 

concentration of 100 µg/ml. This is equal to a surface concentration of 4.54 m²/l. 

3. The Centrifuge Tube was wrapped with tin foil to prevent photobleaching. 

4. The solution was used the same day. 30 minutes before the experiment, the solution was again put 

in an ultrasonic bath at 37°C. 

 

Preparation of the Experimental Setup 

All steps were performed with very low and indirect light, to minimize photobleaching of the nanoparticles. 

1. 20 ml of the nanoparticle solution was filled into a syringe and a 1 m tube with an inner diameter 

of 1.6 mm was connected to the syringe. 

2. The syringe was placed in a syringe pump, and a flow rate of 50 µl/min was set which is equal to a 

flow velocity of 12,5 mm/min in the channel slide. 

3. A stage incubator was pre heated to 37°C. 

4. The channel slide was disconnected from the pump system and quickly put on the microscope stage 

and connected to the syringe tube. It was made sure that no air bubbles were brought into the 

channels and that the flow has the same direction as in the cultivation. 

5. Another tube was connected to the other end of the channel slide and lead into a collection 

container. 

6. The microscope’s objective was located at the middle of the channel and an image of the cells in 

phase contrast was taken. 

7. The microscope shutter was closed and the Texas Red filter set. 

8. The exposure time was set to 500 ms. 
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Execution of the Experiment 

1. The syringe pump was started and as soon as the nanoparticle solution filled the channel a timer 

was started. 

2. For 40 minutes every 300 s, a fluorescence image of the cells in the Texas Red channel was taken. 

The shutter was opened only very briefly before taking the image. 

3. The Z-focus was readjusted if needed. 

 

Confocal Image Measurement 

A Stellaris 5 confocal microscope with a 63x magnification was used on one set of cells to verify whether 

the nanoparticles were internalized or only adherent at the outside of the plasma membrane. Therefore, a 

set of channel slides where the nanoparticle uptake kinetic had already been measured was used. 

1. Hoechst 33342 was diluted to a concentration of 100 µl/ml in cell medium in a 50 ml Centrifuge 

Tube. 

2. The channels were flushed with 600 µl of the Hoechst 33342 solution and then incubated for 20 

minutes at 37°C with 5% CO2. 

3. The stained nuclei were illuminated using a 405 nm laser, while a white light laser with an excitation 

wavelength of 569 nm was utilized for the Texas Red fluorescent nanoparticles. 

4. The channel slides were mounted onto the microscope stage, and cells were located using a 20x 

magnification. 

5. The bottom of the slides was precisely identified using a 63x magnification. 

6. A z-scan was initiated, capturing images at 0.5 µm intervals from the slide bottom upwards until 

the nuclei were no longer visible. 
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3.4. Hoechst 33342 Uptake Experiments 
 

Hoechst 33342 dye was used to stain the cells and measure the uptake into the cells through the cell 

membrane membrane over time in dependance of the existence of an intact glycocalyx and the cultivation 

method. After the cells were split, a set of dynamically, statically and shed specimen from the same source 

were cultured in 800 µm channels slides. A Zeiss Axio Observer 7 featuring an objective with 10x 

magnification was used to take images. 

  

Preparation of the Hoechst 33342 Solution 

1. Hoechst 33342 was diluted to a concentration of 100 µl/ml in cell medium in a 50 ml Centrifuge 

Tube. 

2. The Centrifuge Tube was wrapped with tin foil to prevent photobleaching. 

 

Preparation of the Experimental Setup 

All steps were performed with very low and indirect light, to minimize photobleaching of the dye. 

1. 20 ml of the dye solution was filled into a syringe and a 1 m tube with an inner diameter of 1.6 mm 

was connected to the syringe. 

2. The syringe was placed in a syringe pump, and a flow rate of 50 µl/min was set which is equal to a 

flow velocity of 12,5 mm/min in the channel slide. 

3. A stage incubator was pre heated to 37°C. 

4. The channel slide was disconnected from the pump system and quickly put on the microscope stage 

and connected to the syringe tube. It was made sure that no air bubbles were brought into the 

channels and that the flow has the same direction as in the cultivation. 

5. Another tube was connected to the other end of the channel slide and lead into a collection 

container. 

6. The microscope’s objective was located at the middle of the channel and an image of the cells in 

phase contrast was taken. 

7. The microscope shutter was closed and the DAPI filter set. 

8. The exposure time was set to 250 ms. 

 

Execution of the Experiment 

1. The syringe pump was started and as soon as the dye solution filled the channel a timer was started. 

2. For 40 minutes every 300 s, a fluorescence image of the cells in the DAPI channel was taken. The 

shutter was opened only very briefly before taking the image. 

3. The Z-focus was readjusted if needed. 

 



42 
 

3.5. Membrane Phase State Experiments 
 

The phase state of HUVEC membranes was assessed by measuring changes in the GP-value of Laurdan 

stained membranes across varying temperatures, with consideration given to the presence of an intact 

glycocalyx and the cultivation method employed. Imaging was conducted using a custom-built temperature 

control device compatible with a Zeiss Axio Observer 7 microscope equipped with a 10x magnification 

objective. After the cells were split, a set of dynamically, statically and shed samples from the same source 

were cultured in 400 µm channels slides. 

In a complementary experiment, HeLa cells were used in place of HUVEC to further validate the results. To 

rule out potential systemic errors with the temperature control, a 3D-printed heat bath insert, compatible 

with the microscopes stage, was employed. Imaging of the HeLa cell membranes was performed using a 

Zeiss Axiovert 200M microscope equipped with a 10x magnification objective. 

The Laurdan staining procedure, previously detailed in the cell culture section, was applied.  

 
Figure 3.3: Temperature Control Device for GP-Measurements. A) An aluminum plate with an inlet for the channel slides, 

mounted onto the microscope stage. B) A second aluminum plate is positioned on top of the channel slides, equipped with 

three Peltier elements and CPU coolers. The temperature sensor is inserted into the reservoir of the channel slide, accessible 

from the top. 

 

Preparation of the Experimental Setup 

1. The temperature device was installed on the microscope stage and pre heated to 45°C. 

2. The exposure time for the images was set to 300 ms. 

3. The filters for 440 nm and 490 nm emission were set. 

4. The channel slide was placed on the microscope stage and the temperature sensor inserted into 

the reservoir. 
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Execution of the Experiment 

Conducting the membrane phase state experiment required swift action to preserve the integrity of the 

glycocalyx. Typically completed within a timeframe of less than 20 minutes, speed was essential to prevent 

degradation. 

1. The cells were initially focused with minimal intensity and subsequently adjusted to 30% intensity. 

2. Images were captured in both the 440 nm and 490 nm spectra. 

3. The temperature was systematically decreased to 5°C, with images taken at intervals of 3 K in the 

440 nm and 490 nm spectra. 

 

Reference Experiments with HeLa Cells 

The protocol of the experiment is identical to the protocol with HUVECs, with only the following differences, 

that the HeLa cells cultured under flow conditions were exposed to 2 dyn/cm², 6 dyn/cm², and 10 dyn/cm², 

respectively. 

The temperature control device used in the experiment was originally designed by Nicolas Färber for similar 

research purposes. It features a 3D-printed channel that is affixed to a metallic insert on the microscope 

stage using silicone paste. The 3D-printed channel is connected to tubes from a heat bath, which regulates 

the temperature. To ensure accuracy, the temperature is monitored using both the heat bath and an 

additional sensor placed in one of the reservoirs of the channel slide. 

However, measuring temperatures across the range of 10°C to 45°C takes approximately one hour due to 

the slow rate of temperature change. This makes the method unsuitable for experiments involving HUVECs 

with an intact glycocalyx but viable for use with HeLa cells. 

 

Bleaching Correction 

A bleaching correction was applied to normalize the fluorescence intensity over the illumination period. For 

data acquisition, Laurdan stained samples of statically cultured cells were measured according to the 

protocol in the normal experiment but at a constant temperature. For HUVEC, the samples were measured 

with constant temperatures of 𝑇 = {22.0°𝐶, 22.0°𝐶, 27.0°𝐶}, for HeLa with 𝑇 = {22.0°𝐶, 22.0°𝐶, 45.0°𝐶}. 
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Figure 3.4: Alternative Temperature Control Device for GP-Measurments. The device features a 3D-printed channel affixed 

to a metallic insert on the microscope stage using silicone paste. The channel is connected to tubes from a heat bath, which 

regulates the temperature. Temperature accuracy is maintained by monitoring with both the heat bath and an additional 

sensor placed in one of the channel slide reservoirs. 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

3.6. Lipid Vesicle Adhesion Experiments 
 

Positively and neutrally charged Giant Unilamellar Vesicles (GUV) stained with Texas Red dye were 

produced by using electroformation and used to measure the adhesion of the GUV on the cell surface in 

dependance of the existence of an intact glycocalyx and the method of cultivation. After the cells were split, 

a set of dynamically, statically and shed samples from the same source were cultured in 800 µm channels 

slides. A Zeiss Axio Observer 7 featuring an objective with 10x magnification was used to take images. 

Additional experiments were carried out using HeLa cells, where positively charged Multilamellar Vesicles 

(MLV) were produced through ultrasonication. These MLV were then employed to assess their adhesion to 

the cell surface, focusing on how this interaction varies with the duration and intensity of shear flow during 

dynamic cultivation. Following cell splitting, a series of samples, including dynamically cultivated and 

statically cultivated samples from the same source, were grown in 800 µm channel slides. Imaging was 

performed using a Zeiss Axiovert 200M microscope equipped with a 10x magnification objective to capture 

detailed observations of MLV adhesion under these different conditions. 

 

GUV Adhesion Experiments 

Preparation of the GUV 

A self-built incubation chamber, made of two zinc-oxide glass slides, coated on one side and a Teflon spacer, 

was used to produce the GUV. Proper cleaning of the equipment is crucial for ensuring the quality of the 

produced GUVs, which is why the process is explained here in detail. 

1. The glasses and the teflon spacers were put in a glass jar and filled with isopropyl alcohol. The jar 

was then put in the ultrasonic bath for 30 minutes. 

2. The coated glasses and the spacer were rinsed with ultrapure water, dried with a nitrogen airflow, 

and stored in a clean container with the uncoated surface facing upwards. 

3. An opaque 1 ml glass bottle was filled with chloroform and then briefly mixed with the vortex 

mixer. The chloroform was disposed afterwards. 

4. The lipids were filled into the cleaned bottle and diluted with chloroform to a concentration of 10 

mg/ml at a volume of 120 µl. A pure DMPC and an 80:20 DMPC-DOTAP mix was produced. 

5. 5% Texas Red DHPE at a 1 mg/ml concentration in chloroform was added to the solution. 

6. The solution was briefly mixed with a vortex mixer. 

7. A volume of 50 µl of the solution was applied onto the uncoated surface of one of the glass slides. 

The other slide was then put on top of the other glass, also with the uncoated surface facing the 

lipid. 

8. The glasses were then pulled apart, so that a thin film of lipids wetted the surface of both slides. 

9. The glass slides were put in an opaque box with the wetted surface facing upwards. The box was 

placed in a vacuum desiccator for 10 minutes, so that the chloroform can evaporate. 

10. The spacer was placed between the glass slides, with the lipid wetted surfaces facing inwards. Two 

clamps were used to keep the chamber together. 
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11. A sucrose solution with an osmolarity of DPBS was injected through a hole in the spacer until the 

incubation-chamber was full. 

12. The chamber was placed in a pre-heated heat bath (about 10°C above the phase transition 

temperature of the lipids). 

13. A frequency generator was connected to both glass slides. The generator was set to a peak to peak 

1 V square wave signal at 10 Hz for 15 minutes. After that the voltage was adjusted to 4 V for 

another 2 hours. 

14. The chamber was disconnected from the generator and carefully opened. The vesicle suspension 

was pipetted from the chamber into a 1.5 ml Eppendorf tube. The tube was wrapped in tin foil to 

prevent photobleaching. 

15. The vesicles could be stored up to several weeks in the refrigerator at 8°C. 

 

Preparation of the Experimental Setup 

1. A 2 cm diameter syringe was cut to serve as a funnel that can be screwed into one side of the 

channel slides. The syringe was previously cleaned with ethanol. 

2. The other side of the channel slide was connected to a tube with an inner diameter of 1.6 mm that 

was connected to another syringe. 

3. The syringe was placed in a syringe pump, and a flow rate of 20 µl/min was set which is equal to a 

flow velocity of 5 mm/min in the channel slide. The pump was used in reverse mode so that the 

fluid gets sucked into the syringe. 

4. A stage incubator was pre heated to 37°C. 

5. The microscope’s objective was located at the middle of the channel and an image of the cells in 

phase contrast was taken. 

6. The microscope shutter was closed and the Texas Red filter set. 

7. The exposure time was set to automatically adjust. 

8. The vesicle solution was diluted at 1:25 with DPBS at a final volume of 2.5 ml in a centrifuge tube. 

9. The solution was inserted into the reservoir. 

 

Execution of the Experiment 

1. The vesicle solution was manually pumped into the channel until it reached the area where the 

objective was.  

2. The focus was recalibrated so that the vesicles on the cell surfaces were visible. An image for 

reference was taken. 

3. The pump was started. Every 30 s an image was taken until a set of 25 images was complete. 
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Figure 3.5: Vesicle Reservoir for Adhesion Measurements. A reservoir made from a syringe is connected to one end of a 

channel slide, filled with a vesicle solution. A tube on the other end of the channel slide is connected to a syringe placed in a 

syringe pump. The pump operates in reverse mode, sucking the vesicle solution from the reservoir through the channel slide 

into the syringe. 

 

Confocal Image Measurement 

A Stellaris 5 confocal microscope with a 63x magnification was used to gather additional data about the 

position and morphology of the vesicles. Therefore, a set of channel slides where vesicle adhesion had 

already been measured was used. 

1. The staining of the cells follows the same protocol as in the cell culture section. 

2. The adhesion experiments were conducted as usual. 

3. The Laurdan stained cells were illuminated using a 405 nm laser, while a white light laser with an 

excitation wavelength of 569 nm was utilized for the Texas Red fluorescent nanoparticles. 

4. The channel slides were mounted onto the microscope stage, and cells were located using a 20x 

magnification. 

5. The bottom of the slides was precisely identified using a 63x magnification. 

6. A z-scan was initiated, capturing images at 0.5 µm intervals from the slide bottom upwards until 

neither cells nor vesicles were visible. 
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DOTAP-MLV Adhesion Measurement 

Preparation of the MLV 

1. An opaque 1 ml glass bottle was filled with chloroform and then briefly mixed with the vortex 

mixer. The chloroform was disposed afterwards. 

2. Pure DOTAP was filled into the cleaned bottle and diluted with chloroform to a concentration of 

10 mg/ml at a volume of 53 µl. 

3. 5% Texas Red DHPE at a 1 mg/ml concentration was added to the solution. 

4. The chloroform was vaporized by drying the solution for 3 hours in the desiccator. 

5. 1 ml DPBS was added. 

6. The glass bottle was put in the ultrasonic bath for 30 min. 

7. The MLV can now be stored in the refrigerator for several weeks. 

 

Preparation of the Experimental Setup 

The preparation of the experimental setup is identical to the setup of the GUV measurement. The exposure 

time in the fluorescence channel was calculated automatically for each measurement with the software 

HCImage. 

 

Execution of the Experiment 

1. The vesicle solution was manually pumped into the channel until it reached the area where the 

objective was.  

2. The focus was recalibrated so that the vesicles on the cell surfaces were visible. An image for 

reference was taken. 

3. The pump was started and an image in the Texas Red channel was taken. 

4. After 5 minutes another image in phase contrast and in the fluorescence channel was taken. 

 

Cytometry for Vesicle Size Analysis 

The size of the GUV was assessed using a Beckman Coulter CytoFlex cytometer. Forward Scatter Area (FSC-

A) measurements were recorded to evaluate the vesicle dimensions. A 100 µl aliquot of the vesicle solution 

was introduced into the cytometer, operating at a flow rate of 30 µl/min. 

 

Zeta Potential Measurement 

The surface charge characteristics of the GUVs were determined by measuring the zeta potential using a 

Zetasizer Ultra. Measurements were conducted at 37°C to reflect experimental conditions. Three 

independent runs were performed for both DMPC and DOTAP-DMPC GUVs to ensure accuracy and 

reproducibility. 
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3.7. Macromolecule Diffusion through the Endothelial 
Layer 

 

A durable, transparent 3D hydrogel channel was fabricated by molding an amalgam of acrylamide and 

collagen. Within this channel HUVEC were cultured, forming an artificial endothelial layer. To gauge the 

diffusion across this layer into the gel, a solution of FITC-dextran was actively pumped through the channel. 

Cultures containing dynamically, statically, and shed cells from identical sources were seeded within the 

channel and perfused with the ibidi Pump System. Additionally, control measurements devoid of cellular 

presence were conducted. Images were captured using a Zeiss Axiovert 200M microscope at a 

magnification of 5x. A 3D printed frame with the dimensions 30x25x2 mm with inlets on two sides was used 

to cast the hydrogel. 

 

Preparation of the Chamber 

1. Frame, cover slips, cannulas and clamps were cleaned with isopropyl alcohol and UV sterilized. 

2. A small film of hydrophobic silicon paste was spread between the frame and the cover slips. Clamps 

were used to give it additional stability. 

3. The shorter 1.6 mm diameter cannulas were inserted into the inlets, the long 1.1 mm diameter 

spinal cannula was inserted through both other cannulas. 

 

Preparation of the Hydrogel 

1. 60 mg ammonium peroxide sulphate (APS) was dissolved in 1 ml in ultra-pure water.  

2. 100 mg gelatin powder was dissolved in 4.5 ml ultra-pure water and 0.5 ml 10x PBS. For better 

solubility, the solution was warmed to 37°C for 30 minutes and mixed with a vortex mixer. 

3. The following chemicals were added into a 50 ml Centrifuge Tube: 

 2 ml acrylamide solution (40%) 

 2 ml bisacrylamide solution (2%) 

 1 ml gelatin solution 

 50 µl APS 

4. 50 µl N’,N’,N’,N’-Tetramethylethylenediamine (TEMED) was added. Adding TEMED and APS starts 

the polymerization reaction. 

5. The solution was briefly shaken and then pipetted into the prepared chamber until it was filled 

completely. 

6. The gel was left to polymerize for 30 minutes. Then the spinal cannula was carefully removed. 

7. The channel was rinsed with 1 ml DPBS and connected to the Ibidi pump system to equilibrate at a 

flow rate of 1 ml/h for 24 hours with HUVEC medium.  
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Cultivation of HUVEC inside the 3D Channel 

1. The chamber was disconnected from the Ibidi system. 

2. HUVEC in a 70% confluent T75 flask were detached from the flask, centrifuged, and resuspended 

to 300 µl new medium. 

3. The cell suspension was pulled into a 1 ml. 

4. A spinal cannula with a diameter of 0.9 mm was used to inject the cells evenly into the 3D channel. 

5. The inlets were closed with a Luer-plug and the chamber placed in the incubator at 37°C and 5% 

CO2. 

6. After 30 minutes the chamber was rotated, so that the cells could also adhere to the other side of 

the channel. 

7. The following chemicals were added into a 50 ml Centrifuge Tube: 

 If cultured dynamically, the pressure was set to 15 mbar which is equal to 3 dyn/cm² in the 800 

µm channel slides. The cells were then cultured for 4 days. For shed specimen, the flow was 

stopped 2 hours before the experiments. 

 If cultured statically, the medium was changed daily. 

 
Figure 3.6: 3D-Hydrogel Channel as a Blood Vessel Model. A) The housing consists of a plastic frame and glass slides that are 

held together with clamps. Two needles are inserted at the ends that connect to the 3D channel. B) The channel is 

approximately 1 mm in diameter. 

 

Preparation of the FITC-Dextran Solution 

4. A solution containing 20 ml of FITC-dextran at a concentration of 5 µM in DPBS was prepared inside 

a 50 ml Centrifuge tube, with the option of using either 4 kDa or 10 kDa dextran size. 

5. The tube was wrapped with tin foil to prevent photobleaching. 

6. The solution was used the same day. 30 minutes before the experiment, the solution was again put 

in an ultrasonic bath at 37°C. 
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Preparation of the Experimental Setup 

All steps were performed with very low and indirect light, to minimize photobleaching of the FITC-dextran. 

1. 20 ml of the FITC-dextran solution was filled into a syringe and a 1 m tube with an inner diameter 

of 1.6 mm was connected to the syringe. 

2. The syringe was placed in a syringe pump, and a flow rate of 50 µl/min was set. 

3. A stage incubator was pre heated to 37°C. 

4. The chamber was disconnected from the pump system and quickly put on the microscope stage 

and connected to the syringe tube. It was made sure that no air bubbles were brought into the 

channels and that the flow has the same direction as in the cultivation. 

5. Another tube was connected to the other end of the channel slide and lead into a collection 

container. 

6. The image was adjusted so that the center of the channel aligned with the bottom edge of the 

image. The focus was adjusted so that the center of the channel wall towards the gel was visible. 

7. An image in the phase contrast was taken. The microscope shutter was closed and the FITC filter 

set. 

 

Execution of the Experiment 

1. The syringe pump was started and as soon as the FITC-dextran solution filled the channel a timer 

was started. 

2. For 40 minutes every 300 s, a fluorescence image of the channel in the FITC fluorescence channel 

was taken. The shutter was only opened for 1 s to prevent bleaching, before taking the image. 

3. The Z-focus was readjusted if needed. 

 

Z-Scans to Verify the Adhesion of Cells 

To verify if the cells adhered to the channel surface, the cells were stained with Hoechst 33342 and imaged 

with the Zeiss Axiovert 200M microscope at a magnification of 10x. 200 µl Hoechst 33342 dye was diluted 

in 2 ml medium and pumped into a fully cultivated channel. Images of different z-regions were taken in the 

DAPI channel in the middle of the channel. 
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3.8. Cell-Cell-Contact Staining Experiments 
 

VE-cadherin antibodies conjugated with the fluorescent dye Alexa Fluor™ 674 were used label VE-cadherin 

proteins of the cell-cell contact in dependance of an existing glycocalyx and the cultivation method of the 

cells. After the cells were split, a set of dynamically, statically and shed specimen from the same source 

were cultured in 400 µm channels slides. To avoid a dry flow channel between the labeling steps, the liquid 

exchange is performed by rinsing three times with 100 µl each of the new reagent. This corresponds to 

three times the volume of the channel. A Zeiss Axio Observer 7 featuring an objective with 63x magnification 

was used to take images. 

 

Staining the Cells 

1. The channels were rinsed with DPBS. 

2. The cells were fixed with 4% paraformaldehyde solution in DPBS for 10 minutes at room 

temperature. 

3. The channels were rinsed with DPBS again. 

4. The cells were permeabilized with a 0.2% Triton-X-100 solution in DPBS for 10 minutes at room 

temperature. 

5. The channels were rinsed with DPBS again. 

6. The nonspecific bindings were blocked with a 1% Bovine Serum Albumin (BSA)-solution in DPBS for 

60 minutes at room temperature. 

7. The channels were rinsed with DPBS again. 

8. The cell contacts were marked with VE-Cadherin antibodies that were diluted to a concentration 

of 0.5% in the 1% BSA-DPBS-solution for 12 hours at 4°C. 

9. The channels were rinsed with 2 ml DPBS. 

 

Preparation of the Experimental Setup 

1. The channel slide was put on the microscope stage. 

2. The cells were located with the 10x magnification in phase contrast mode. 

3. The Alexa Fluor 674 fluorescence filter was used. 

4. The exposure time as set to 500 ms at an intensity of 20%. 

 

Execution of the Experiment 

10 images per slide of the cell-cell-contacts were taken with a 63x magnification in different positions of 

the channel. 
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4. RESULTS AND DISCUSSION 
 

In the subsequent Chapter the questions and hypothesis of the first Chapter will be revisited. It will be 

explored whether various cellular transport processes are significantly influenced by the presence of an 

intact glycocalyx and by the dynamic or static culture conditions. 

Firstly, it will be analyzed whether a sufficient growth of an intact glycocalyx could be achieved using the 

dynamic culture method compared to static culture. Additionally, it will be investigated whether the 

degradation and shedding of the glycocalyx occurred upon cessation of shear flow. 

Following the investigation into glycocalyx growth and shedding under dynamic and static culture 

conditions, the subsequent analysis will focus on measuring the change in the phase state of the membrane. 

This aims to determine whether the cultivation method influences membrane properties and whether the 

presence or shedding of the glycocalyx induces alterations. Understanding these membrane dynamics is 

crucial to understand their potential impact on the cellular uptake mechanisms and trans endothelial 

transport. 

Next, the analysis will focus onto the adhesion of vesicles, made from positively and uncharged lipids, on 

endothelial cells, investigating the influence of an intact glycocalyx and the cultivation method on adhesion 

forces. This examination seeks to discern whether adhesion dynamics are affected by glycocalyx integrity 

and if adhesion is mainly contingent upon vesicle charge. The findings from this investigation will then be 

used to further examine the already mentioned uptake mechanics. 

Subsequently, the endocytic uptake experiments of nanoparticles and the uptake of dye molecules into 

HUVEC through the cell membrane via diffusion will be analyzed and compared with the findings discussed 

above. This comparative analysis aims to identify differences and seek explanations for observed 

phenomena. By correlating the results from these experiments with the earlier investigations into 

glycocalyx integrity, membrane phase state, and changes of the adhesive forces, a comprehensive 

understanding of how these factors collectively influence cellular uptake mechanisms can be achieved. 

Eventually, the trans endothelial diffusion of macromolecules to determine how different culture 

conditions affect the permeability of the endothelial cell layer.  Additionally, the changes in cell-cell contacts 

depending on the culture method, particularly under shedding conditions, will be analyzed. This analysis 

will focus on the impact of these methods on the integrity and stability of endothelial junctions. By 

investigating these aspects, the goal is to identify key factors and mechanisms that influence endothelial 

barrier function and to understand how culture conditions can modulate these processes. 
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4.1. Cell Segmentation of Microscopy Images 
 

For the analysis of the nanoparticle uptake, the Hoechst 33342 uptake and the lipid vesicle adhesion, the 

Cellpose 2.0 algorithm was employed. Cellpose is a generalist algorithm for segmenting cells and cell nuclei 

in images. This deep learning-based algorithm utilizes multilayer neural networks to segment and identify 

cells across a variety of images, without specializing in just one type of cell or cell shape. Initially trained on 

a diverse set of images containing over 70,000 segmented objects, Cellpose can effectively segment cells in 

most cases without the need for custom training on specific image data. However, it is possible to train your 

own model and contribute data to further improve the algorithm [166][167]. 

The Cellpose algorithm segments input images and provides masks containing only the detected cell 

objects. The outcome can be influenced in advance by choosing various parameters, including the average 

diameter of the objects to be segmented, which can also be determined automatically, as well as the 

parameters "flow threshold" and "cellprob threshold." 

In this study, satisfactory results were achieved by training the algorithm with the images taken in phase 

contrast. An existing model was selected, and the mask was manually adjusted. Using the "Train New 

Model" function, a custom model was created and then automatically applied to a second image in the 

dataset, with the mask manually adjusted again. This process was repeated until Cellpose satisfactorily 

recognized the cells. 

A master script for cell segmentation, primarily developed by David Wörle and Manuel Sirch as part of David 

Wörle's thesis under the supervision of Manuel Sirch, was utilized for the analysis presented in Chapters 

4.3, 4.4, 4.5, and 4.6 (see Appendix A4). 
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4.2. Verification of the Glycocalyx of HUVEC in Vitro 
 

Verifying the glycocalyx status in these in vitro experiments is essential to distinguish whether the glycocalyx 

was truly shed or successfully rebuilt, as this differentiation is critical for accurately interpreting the cellular 

responses and experimental outcomes. 

As described in Chapter 3.2, epifluorescence images were captured for all three conditions: static, dynamic, 

and shedding environments. In this process, the glycocalyx and membrane structures of endothelial cells 

were stained using WGA-conjugated antibodies and Laurdan, enabling detailed analysis of their 

fluorescence properties. 

To quantitatively compare fluorescence images of endothelial cells cultured under different conditions, a 

histogram-based analysis is utilized, employing a custom Python script (see Appendix A3) to generate 

normalized histograms from the fluorescence images. Initially, the images are converted to grayscale, with 

gray values ranging from 0 to 255, linearly related to the fluorescence intensity of the WGA conjugate. The 

pixel count for each gray value is normalized to the total pixel count and presented as a percentage 

frequency distribution. 

The following results were obtained in close collaboration with Marina Huber as part of her master’s thesis, 

which was supervised by Manuel Sirch. A publication on this is currently under review [P3]. 

 
Figure 4.1: WGA and Laurdan Staining of an Endothelial Cell. A) Image of a statically cultured HUVEC stained with Alexa Fluor 

555-conjugated WGA, showing that even a statically cultured cell possesses a very thin glycocalyx. B) Image of the same cell 

stained with Laurdan, which integrates into the membrane, and merged with the Alexa Fluor 555 channel. The outlines of the 

glycocalyx are clearly visible. 

 

The fluorescence images of dynamically cultured cells are aligned so that the flow direction is to the right. 

Background fluorescence, which can be measured using images of statically cultured cells or slides coated 

with collagen but without cells, have to be taken into account. Gray values are assigned based on 
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representative fluorescence images to identify and classify the various components of the images according 

to their fluorescence signals. As shown in figure 4.2, gray values from 0 to 30 are attributed to the 

background, gray values from 30 to 100 represent the labeled glycocalyx of adherent cells, and gray values 

from 100 to 255 correspond to cells that are detaching, as indicated in previous studies. 

The average fluorescence intensity in a histogram is not a suitable method for comparing the fluorescence 

intensity of the glycocalyx between statically and dynamically cultured cells. This is because, as seen in 

figure 4.1, even statically cultured cells possess an underdeveloped glycocalyx. Also, the cell-free areas in 

the statically cultured flow channels could skew the average value.  

Therefore, to compare the fluorescence intensities of the glycocalyx, a peak analysis as seen in figure 4.3 is 

conducted in the region of adherent cells. The peak center represents the most frequent gray value in the 

region of the adherent cells and thus serves as an appropriate metric for comparing fluorescence intensity 

and the extent of the glycocalyx. 

Figure 4.2: Exemplary Gray Value Classification of Fluorescence Images for HUVEC Cultured under Static Conditions. Gray 

values are assigned to representative fluorescence images to identify and classify various image components based on their 

fluorescence signals. Gray values from 0 to 30 correspond to the background, values from 30 to 100 represent the labeled 

glycocalyx of adherent cells, and values from 100 to 255 indicate cells that are detaching. 

 

The Python script shifts the grey values by -30 a.u. and converts the peak values of individual measurements 

into a histogram. This is achieved by dividing the range of peak values into equal-sized bins. The frequency 

𝐻௞ of values within each bin [𝑏௞ , 𝑏௞ାଵ)is calculated as: 

𝐻௞ = ෍ 𝛿(𝑥௜𝜖 [𝑏௞ , 𝑏௞ାଵ))

௡

௜ୀଵ

 

 

 
 

(3.1) 



57 
 

where 𝑥௜ are the individual peak values, 𝑏௞ represents the bin edges, and 𝛿 is an indicator function that 

equals 1 if 𝑥௜ falls within the bin range, and 0 otherwise. This results in a histogram showing the distribution 

of peak values as intensities with arbitrary units. 

Subsequently, the peak values of the individual measurements for each cultivation method are aggregated, 

an average value is calculated, and these averages are plotted against each other. Finally, the mean and 

standard deviation for all measurements under each flow condition were determined and an ANOVA with 

a Tukey’s post-hoc test was performed to assess the significance of differences between conditions. 

Figure 4.3: Peak Center Analysis of WGA Staining. The result reveals mean grey value distributions for different sample 

conditions: dynamic samples exhibit a mean gray value of approximately 80.5, static samples show a value of 64.4, and 

samples under shedding conditions have a mean value of 69.0. The staining was performed using Alexa Fluor 555-conjugated 

WGA. The sample size were N=10 for dynamic conditions, N=8 for static conditions and N=4 for the shedding conditions.  

 

Figure 4.4 presents a histogram of the Alexa Fluor 555 intensities resulting from WGA staining, showing 

mean fluorescence values across different cell culture conditions. Dynamically cultured cells exhibited a 

significantly higher fluorescence intensity (20.5 ± 3.2 a.u.) compared to both statically cultured cells (4.4 ± 

1.8 a.u.) and cells under shedding conditions (9.0 ± 1.4 a.u.), with p<0.001 for both comparisons. 

Additionally, a significant difference was observed between statically cultured cells and shed cells (p<0.01). 
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Figure 4.4: Mean Intensity Values of the WGA Staining. Dynamically cultured cells exhibit a mean intensity of 20.5, which is 

significantly higher than that of statically cultured cells (mean intensity of 4.375) and cells under shedding conditions (mean 

intensity of 9). Additionally, there is a significant difference between the mean intensities of statically cultured cells and those 

under shedding conditions. Error bars are standard deviation. ***: p<0.001, **: p<0.01. 

 

To additionally obtain detailed insights into the vertical expression of the glycocalyx, the images of the z-

stacks obtained with the confocal microscope were analyzed by extracting and plotting the average 

fluorescence intensity for each z-position within the stack. Each image in the z-stack, containing 

approximately 15 cells, was assessed to determine its average fluorescence intensity. To ensure the 

resulting profiles were comparable, the baseline intensity was subtracted, and the z-position of the peak 

center was standardized to z = 0.  

Figure 4.5 presents exemplary fluorescence images from a z-stack of dynamically cultured HUVEC. It has to 

be noted, that this has been done with a sample size N = 1 for every cultivation method. 
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Figure 4.5: Confocal Z-Scans of Alexa Fluor 555 Conjugated WGA Staining on HUVEC. Exemplary images from a z-stack 

captured with a confocal microscope. Every 10th image of the measured z-stack is shown, resulting in the displayed 

fluorescence images having a vertical distance of 1 μm from each other. 

 

In Figure 4.6, the vertical profiles of HUVEC cultured under unidirectional flow, with and without shedding, 

are shown. The profiles exhibit an asymmetric geometry, necessitating a Voigt function fit to determine the 

Full Width at Half Maximum (FWHM). The FWHM is used to compare the heights of glycocalyx expression, 

with the standard error of the fit adjustment included for accuracy. 

The fluorescence intensity of statically cultured cells is significantly lower than that of dynamically cultured, 

consistent with the observations from the epifluorescence microscope experiments. Moreover, the FWHM 

for static culture is 3.31 ± 0.29 μm, while that for dynamic culture is 3.82 ± 0.06 μm. The vertical glycocalyx 

expression in dynamically cultured cells is 0.51 ± 0.30 μm greater than in statically cultured cells. For the 

shed specimen, there is a reduction in the vertical glycocalyx expression from 3.82 ± 0.06 μm to 3.58 ± 

0.26 μm, supporting the earlier findings. 
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Figure 4.6: Vertical Extent of the Glycocalyx Quantified using Alexa Fluor 555 Conjugated WGA. Vertical profiles of the mean 

fluorescence intensity measured with a confocal microscope, comparing different cultivation conditions: dynamic versus static 

cultivation, dynamic versus shedding conditions, and unidirectional versus pulsatile flow. The vertical distribution of the 

glycocalyx is determined by the half-width at half-maximum (HWHM) of a fitted Voigt function. The position of the peak center 

is normalized to z = 0 for all profiles, with the channel bottom located in the negative z-direction. The sample size was N=1. 

 

Discussion 

The results align with previous studies, which have shown that HUVECs, even under static conditions, can 

develop a small but detectable glycocalyx. This finding underscores the inherent ability of HUVECs to 

maintain a minimal glycocalyx structure under non-dynamic conditions [207][208][209]. 

However, the much higher fluorescence intensity observed in dynamically cultured cells clearly indicates a 

more robust and well-developed glycocalyx, which is likely due to the shear stress conditions that promote 

both glycocalyx synthesis and maintenance. The dynamic flow environment evidently plays a crucial role in 

enhancing the structural integrity and presence of the glycocalyx compared to static conditions. 

Furthermore, the significant difference between statically cultured cells and cells that have undergone the 

shedding process, as well as the sample that was measured during the shedding process, suggest that while 

the shedding process does reduce the glycocalyx, it does not completely remove it to the level observed in 

statically cultured cells. The presence of residual fluorescence in shed cells indicates that either the 
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glycocalyx is not fully shed, or parts of it may have been internalized post-shedding, as some studies on 

glycocalyx dynamics have suggested.  

This residual presence highlights the resilience of the glycocalyx and suggests that a longer shedding period 

might be required for more thorough removal, or it could imply that certain components of the glycocalyx 

are more resistant to shedding. 

This observation supports the notion that even in the absence of dynamic flow, HUVECs retain a baseline 

level of glycocalyx. The persistence of some glycocalyx components after shedding indicates that extended 

shedding periods might be necessary for more complete removal, or it could imply an inherent resistance 

of some glycocalyx elements to the shedding process. 

The FWHM of the glycocalyx after the shedding process is observed to be between the FWHM values of 

dynamically cultured cells and statically cultured cells. This intermediate FWHM and the results of the 

histogram-based approach suggests that the glycocalyx undergoes a partial thinning in density as well as a 

degradation in height as a result of the shedding process. 

Overall, the results confirm that cells cultivated under flow conditions in this study exhibit a robust and 

intact glycocalyx. The hypothesis that HUVEC cultured under dynamic conditions exhibit a higher binding of 

Alexa Fluor 555-conjugated WGA compared to those cultured under static conditions or subjected to 

shedding conditions has been confirmed. The question of whether an intact glycocalyx can form under the 

in vitro culture conditions used in this study can therefore be answered affirmatively. 
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4.3. Endocytic Nanoparticle Uptake in Dependance of the 
Culture Condition 

 

Endocytosis is a fundamental cellular process that enables cells to internalize extracellular materials, 

including nanoparticles, through pathways such as clathrin-mediated endocytosis, caveolae-mediated 

endocytosis, macropinocytosis, or phagocytosis, depending on the particles' size, shape, and surface 

properties [111].  

50 nm SiO₂ nanoparticles, which are specifically taken up by endothelial cells via endocytosis, were used to 

investigate whether an intact glycocalyx impacts endocytic processes as explained in Chapter 3.3. 

Understanding this relationship is crucial for optimizing experimental approaches to quantify cellular 

uptake under varying culture conditions. The following results were obtained in close collaboration with 

Serap Demir as part of her bachelor’s thesis, supervised by Manuel Sirch. A publication on this is currently 

under review [P3]. 

Figure 4.6: Method of Nanoparticle Uptake Analysis. A1) Phase contrast image of cells before the perfusion with 

nanoparticles.  A2) Segmentation of the phase contrast images with Cellpose 2.0. B1) Cells perfused with fluorescent 

nanoparticles in the Texas Red channel after 5 minutes. B2) Cells perfused with fluorescent nanoparticles in the Texas Red 

channel after 40 minutes. 
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The uptake of nanoparticles into cells was quantitatively analyzed by measuring the increase in the intensity 

of the Texas Red fluorescence signal over time, which means if more nanoparticles are internalized in a cell, 

the intensity increases. Hence, again the Cellpose 2.0 algorithm implemented in a Python script (see 

appendix A4) was employed to identify and segment cells within phase-contrast images captured prior to 

each measurement as illustrated in figure 4.6A. Subsequently, the intensity of the segmented cell areas was 

cumulated and divided by the total number of pixels within those segments. Moreover, the mean 

background intensity of areas outside the segmented cells was subtracted from this calculation. Figure 4.6B 

illustrates a representative increase in Texas Red channel intensity from 5 minutes to 40 minutes.  

Figure 4.7 illustrates the mean absolute intensity of HUVEC over time during the internalization of 

fluorescent nanoparticles (N=6 per set). Statically cultured cells show a pronounced intensity increase, with 

a linear fit slope of 0.86 ± 0.03 a.u./min. In contrast, dynamically cultured cells display minimal change, with 

a linear fit slope of 0.10 ± 0.04 a.u./min and intensity remaining nearly constant. 40 minutes after the 

addition of the nanoparticles, the intensity in statically cultured cells is nearly four times higher than in 

dynamically cultured cells. Shed samples exhibit the steepest increase, with a slope of 1.12 ± 0.06 a.u./min 

and greater variability, particularly between 20 and 40 minutes. Significant differences were observed 

between all conditions, including dynamic-static (p<0.001), dynamic-shed (p<0.001), and static-shed 

(p=0.032). 

Figur4.7: Intensity Kinetics of the Nanoparticle Uptake. Dynamically cultured cells with intact glycocalyx exhibit minimal 

intensity change, while statically cultured cells without glycocalyx display a consistent increase. Cells with a shed glycocalyx 

show a slightly steeper slope and a slight offset compared to other conditions. Intensity kinetics of the cells for each culture 
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method over time, demonstrating the rate of nanoparticle internalization. Error bars are standard deviation. ***: p<0.001, 

**: p<0.01, *: p<0.05. The sample size for each condition was N=6. 

 

However, this data does not clarify whether the nanoparticles were internalized by the cells or simply 

adhered to their surface, as the measurements were limited to the intensity of the apical plane. To resolve 

this, as previously mentioned, confocal microscopy was employed, and z-scans through the cells were 

performed. 

 

Analysis of the Confocal Microscopy Data 

Using the ImageJ plugin "VolumeViewer," a 3D image was constructed from the captured z-stacks. Cross-

sections were taken in the xz and yz planes to better assess the position of the nanoparticles. Analysis of 

the data unveiled that the maximum fluorescent signal emitted by nanoparticles was localized within 

cellular structures, indicating penetration beyond the plasma membrane. Notably, the size range of the 

particle signal detected, between 0.5 µm and 1 µm, corresponds well with the height of the cells 

themselves. This aligns with literature suggesting that HUVEC typically range from 5 µm at the nucleus to 2 

µm to 3 µm at non-nuclear regions. Furthermore, the data showed only minimal fluorescence signal around 

and above the nucleus region. These exploratory measurements, based on a sample size of N=1, confirm 

that the nanoparticles were indeed internalized into the cells, as evidenced by the localization of the 

maximum fluorescent signal within cellular structures and below the plasma membrane. 

 
Figure 4.8: Confocal Scans of Nanoparticle Uptake. The fluorescent signal emitted by nanoparticles within cells 40 minutes 

after addition (red) and the signal emitted from the nucleus (blue). A1 and A2 show scans of a cell cultured under static 

conditions. B1 and B2 show scans of a cell cultured under dynamic conditions. C1 and C2 show scans of a cell cultured under 

dynamic conditions with a shed glycocalyx. 

 

Discussion 

The findings reveal consistent patterns in the uptake and permeability of nanoparticles and molecules into 

endothelial cells. As already mentioned in the theoretical part, endocytosis is characterized as an energy-

consuming process for the cell, where the adhesion energy between particles and the cell membrane serves 
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as the driving factor. Consequently, higher adhesion energy enhances the efficiency of nanoparticle uptake 

by cells [129][168][169]. 

Research by Möckl et al. demonstrated that particles with both positive and negative zeta potentials exhibit 

significantly increased uptake in cells with a degraded glycocalyx [170]. 

These results, combined with the current findings, suggest that the zeta potential of particles may not be 

the primary driving factor for adhesion and subsequent uptake. The observation that statically cultured 

HUVECs also exhibit significantly higher uptake compared to dynamically cultured cells leads to the 

hypothesis that nanoparticle uptake is inhibited by the additional distance the glycocalyx provides between 

the cell membrane and the nanoparticle, thereby diminishing adhesion forces. Another possible effect 

could be that the glycocalyx distance hinders the efficient binding of nanoparticles to membrane structures 

such as clathrin-coated pits or caveolae, which, as demonstrated by Zimmer & Goepfering, also regulate 

nanoparticle avidity to cells [171]. 

However, this does not explain why cells with a degraded glycocalyx exhibit even higher nanoparticle 

uptake. A possible reason for the enhanced uptake in cells with a shed glycocalyx compared to statically 

cultured samples could be the alteration in membrane phase state and the consequent changes in 

membrane mechanical properties. Under flow conditions, not only is the glycocalyx synthesized, but the 

composition of lipids in the membrane may also be affected by an adaptation process. Yamamoto & Ando 

showed that endothelial cell membranes cultured under flow conditions have significantly decreased lipid 

order [172]. 

Färber et al. reported that membrane transport decreases with low lipid order and increases with high lipid 

order. This appears to conflict with the observation that cells with a degraded glycocalyx exhibit the highest 

uptake of nanoparticles [173]. 

However, in the same study, Färber et al. indicated that higher cell density leads to increased lipid order 

and, consequently, increased membrane transport. A potential explanation for the increased uptake in cells 

with a shed glycocalyx could be the higher cell density resulting from morphology changes. When HUVECs 

are cultured under flow conditions, they assume their characteristic cobblestone structure, which has a 

much higher density compared to statically cultured cells. However, cellular adaptation may also play a role. 

Yamamoto & Ando specifically investigated the effects of short-term shear stress [173][174].  

Additionally, in a previous study, an increase in membrane transport with increasing lipid order was 

observed for GP < 0, while Yamamoto & Ando showed a decrease in lipid order under shear stress for GP > 

0. A non-linear relationship between permeability and membrane state, as demonstrated for synthetic 

vesicles, could also explain these findings [169][172].  

Recent research on the same SiO2 nanoparticles in synthetic lipid vesicles revealed a non-linear uptake 

behavior related to endocytosis-like uptake, likely associated with the main phase transition and 

corresponding changes in membrane mechanical properties [175]. 

The hypothesis that dynamically cultured HUVECs exhibit reduced nanoparticle uptake compared to 

statically cultured or shedding-condition cells is confirmed, demonstrating that an intact glycocalyx 

significantly affects nanoparticle uptake in endothelial cells. 
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This leads directly to the next research objective of whether the observed effect is specific to nanoparticles 

if it also extends to smaller molecules that are taken up via diffusion through the cell membrane. 
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4.4. Uptake of Hoechst 33342 through the Cell Membrane   
 

To examine the role of the glycocalyx in regulating membrane permeability, the diffusion of Hoechst 33342 

dye through the cell membrane  was analyzed as described in Chapter 3.4, under the three different culture 

conditions: static, dynamic and shedding. These findings are compared to prior observations involving 

nanoparticle interactions, evaluating whether the glycocalyx serves as a general barrier to diffusion across 

the cell membrane. A publication on this is currently under review [P3]. 

Figure 4.9 shows the exemplary increase of intensity in the nuclei over time. The images were processed 

similarly to the nanoparticle uptake experiments. In this case, only the nuclei were segmented using 

Cellpose 2.0. The intensity was determined by summarizing and averaging the grey values per pixel within 

the segmented nuclei areas. Background correction was not necessary for this analysis, allowing for a 

straightforward and accurate quantification of the fluorescence intensity specifically within the nuclear 

regions. 

 
Figure 4.9:  Intensity Increase in the Nuclei over Time due to Hoechst 33342 Uptake. Panels A to D show the same cells at 10, 

20, 30, and 40  minutes after addition of the Hoechst 33342 dye, respectively. 

 

The values from each dataset, processed using the Python script (see Appendix A4), were aggregated to 

calculate the mean values and standard deviations, which were plotted in Figure 4.10 to depict the diffusion 

kinetics of Hoechst 33342 into HUVEC over time. An ANOVA with Tukey post hoc analysis was performed 

to identify significant differences between the groups. Additionally, the intensity kinetic of the data sets 

were fitted with the equation 

𝐼(𝑡) = 𝐴଴ ∗ ൤1 − exp ൬−
𝑡 − 𝑡଴

𝜏
൰൨ + 𝑦଴ 

 

 
(3.2) 

which describes a model for exponential saturation. Here, 𝐴଴ represents the amplitude, which represents 

the difference between the initial and the asymptotic value of the function. The parameter 𝑡଴ is a time 

offset that shifts the curve along the time axis and represents the time at which the exponential process 

effectively starts. The time constant 𝜏 determines the rate at which the function approaches its asymptotic 

value and is a measure of how quickly the exponential term decays. The larger the 𝜏 , the slower the 

approach to the asymptotic value. The offset 𝑦଴ represents the initial value of the function at 𝑡 = 𝑡଴. For 

the fits of these curves, the offsets were set to 𝑡଴ = 1.5 min and  𝑦଴ = 0, for which they converge best. 

The intensity of dynamically cultured cells consistently remains lower than that of cells under static and 

shedding conditions. While statically cultured cells and cells under the shedding condition exhibit similar 

intensity values 5 and 10 minutes after the addition of the dye, the intensity of cells under the shedding 
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condition increases thereafter. Significant differences are observed between dynamic and static conditions 

(p<0.001) as well as between dynamic and shedding conditions (p<0.001), with no significant difference for 

the comparison of cells cultured under static conditions and shedding conditions (p = 1). 

Figure 4.10: Hoechst 33342 Uptake Kinetics. Dynamically cultured cells exhibit the lowest uptake, which is significantly lower 

compared to both statically cultured cells and cells under shedding conditions. No significant difference is observed between 

the static and shed conditions. The data have been fitted with an exponential saturation model, where 𝐴଴ represents the 

amplitude and 𝜏 is the decay parameter. Error bars are standard deviation. ***: p<0.001, **: p<0.01, *: p<0.05. The sample 

size for each culture condition was N=5. 

 

For dynamically cultured cells, the values 𝐴଴ = 200.71 a.u. and 𝜏 = 1083 min indicate a slower approach 

to saturation and a lower intensity uptake of the dye. In statically cultured cells, the values 𝐴଴ = 221.49 

a.u. and 𝜏 = 6.18 min suggest a more rapid and higher intensity uptake compared to dynamic conditions. 

Cells with a degraded glycocalyx show the highest amplitude 𝐴଴ = 230.85 a.u. and a moderate time 

constant 𝜏 =  6.86 min, reflecting both a rapid and elevated intensity uptake of Hoechst 33342 dye. 

 

Discussion 

The dynamic culture method utilized in the experiments apparently provides a significant barrier, effectively 

impeding the uptake of Hoechst 33342 molecules into the cells. This phenomenon may stem from various 

potential mechanisms. 
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Firstly, the glycocalyx may create a spatial hindrance between the cell membrane and the surrounding 

environment. Given that Hoechst 33342 dye molecules have a molecular weight of 561.93 g/mol, they may 

encounter difficulty penetrating this dense and complex structure. This hindrance impedes their access to 

the cell membrane and interior, consequently delaying their uptake by the cells. 

Moreover, the glycocalyx often carries a net negative charge due to the presence of sialic acid residues in 

its composition. In contrast, Hoechst 33342 is generally considered to be a cationic dye. It contains several 

nitrogen atoms that can be protonated under physiological conditions, contributing to its overall positive 

charge. The electrostatic interaction between the positively charged Hoechst 33342 molecules and the 

negatively charged glycocalyx could further hinder their penetration. This electrostatic repulsion may divert 

the Hoechst 33342 molecules away from the cell membrane, reducing their likelihood of entering the cells 

[176]. 

Additionally, it's plausible that when a certain amount of positively charged molecules, are attracted by the 

glycocalyx, they contribute to an electrostatic shielding effect against further positively charged molecules. 

This shielding effect could limit the penetration of Hoechst 33342 molecules into the cells, as they are 

repelled by the accumulated positive charge at the glycocalyx interface [177]. 

However, given that no significant difference in Hoechst 33342 uptake was found between shed samples 

and those cultured under dynamic flow conditions, it is more likely that this effect is related to membrane 

changes induced by shear flow during cultivation. Culturing cells under shear flow conditions can, as already 

mentioned, lead to various adaptations in membrane composition and structure, which can affect 

membrane permeability and transport properties. 

The observed differences between shed and static specimens might be explained by changes in the 

membrane phase state. Under flow conditions, not only is the glycocalyx synthesized, but the lipid 

composition of the membrane can also be altered through adaptation. It can be argued, as in the discussion 

of nanoparticle uptake, that the findings by Yamamoto and Ando, showing decreased lipid order in 

endothelial cell membranes under flow conditions, can be reconciled with Färber et al.'s observation that 

while lower lipid order typically reduces membrane transport, the associated increase in cell density under 

these conditions can actually enhance transport, thereby explaining the higher dye molecule uptake in shed 

samples [172][173]. 

A broader perspective on membrane permeability can be gained by considering the biophysical properties 

of lipid bilayers under specific conditions. As Blicher demonstrated with artificial membranes, the 

permeability of lipid membranes to dyes and ions increases significantly near the chain melting regime, 

characterized by a transition from a solid-like to a more fluid state in the lipid bilayer. This regime is crucial 

as it allows the membrane to exhibit behaviors similar to protein channels, such as quantized conductances 

and specific lifetimes for ion permeation. Mechanical stress on the membrane can also modulate its 

permeability. The collective understanding of lipid membrane permeation suggests that it is fundamentally 

linked to lateral area fluctuations within the membrane. This insight raises the possibility that some 

quantized current events, traditionally attributed solely to protein channels, might also be due to lipid 

channels, particularly in biological membranes, which often exist near their melting transitions. While the 

phenomenon plays a direct role in the uptake of Hoechst 33342, it may also indirectly influence nanoparticle 

uptake due to the necessity of pore formation during endocytosis [97][142][178]. 



70 
 

Overall, the results confirm that cells cultured under dynamic conditions exhibit a significant barrier to the 

diffusion of Hoechst 33342 dye, consistent with the presence of a robust and intact glycocalyx. The 

hypothesis that HUVEC cultured under dynamic conditions impede the diffusion of dye molecules into the 

cells compared to statically cultured cells or cells under the shedding condition has been validated. The 

question of whether an intact glycocalyx affects the uptake of molecules by diffusion through the cell 

membrane into endothelial cells can therefore be answered affirmatively. 

This leads directly to the next two research objectives: investigating the impact of culture conditions on 

membrane order and evaluating the extent to which electrostatic charge influences adhesion and uptake 

processes. 
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4.5. Phase State of Endothelial Cell Membranes as Function 
of Culture Conditions 

 

The lipid components of the cellular membrane, particularly phospholipids and cholesterol, play a central 

role in determining its fluidity, packing, and phase state. Membrane fluidity, which is influenced by lipid 

composition and environmental factors, may be affected by culturing cells under flow conditions, as this 

induces changes in lipid organization and glycocalyx integrity. The phase behavior of lipid bilayers—ranging 

from gel-like to liquid-ordered or liquid-disordered states—is influenced by factors such as lipid 

composition, temperature, and cholesterol content. Laurdan enables the assessment of these phase states 

through its spectral shifts and the calculation of GP-values [86][87][100][101]. 

This section presents results on how culture conditions and glycocalyx integrity impact membrane order 

and phase behavior, as measured by Laurdan fluorescence, as explained in Chapter 3.5. 

The measurements were conducted using HUVEC cultured under the three previously described conditions: 

dynamic, static, and shedding. The results were obtained in close collaboration with Niklas Kugelmann as 

part of his bachelor’s thesis, supervised by Manuel Sirch. 

Additional measurements were performed on HeLa cells to with varying flow velocities and culture 

duration. The results on these experiments were obtained in close collaboration with Lara Clemen as part 

of her master’s thesis, again, supervised by Manuel Sirch. 

 

Membrane Phase State Change of HUVEC 

For each acquired micrograph, 15 cells were selected for analysis, along with three additional regions 

devoid of cells to determine the background intensity. These selected areas were consistently applied 

across micrographs taken at different temperatures, ensuring uniformity and minimizing distortion in cell 

intensity measurements caused by detection errors. The cell and background intensity values were 

averaged, and the background intensity was subtracted from the cell intensity to calculate the final 

corrected cell intensity. 

This procedure was performed for all images, after which the GP values were calculated. For each of the 

three different culture conditions, three measurements were obtained from the 440 nm and 490 nm 

channels in the micrographs, and the GP values were averaged to ensure accurate and representative 

results. 
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Figure 4.11: Laurdan Bleaching Correction for HUVEC. Change in GP value due to Laurdan photobleaching at an exposure 

time of 300 ms for statically cultured HUVEC. The datasets were linearly fitted, and the mean change in GP value was 

calculated. The initial data points were identified as artifacts and excluded; only the linearly fittable data was used to calculate 

the mean change in GP value. 

 

It is essential to evaluate the bleaching correction, as previously mentioned in the experimental methods 

section. Figure 4.11 presents the datasets obtained at three constant temperatures, where bleaching 

correction was performed. The data reveal a linear trend, which has been fitted accordingly. The cumulative 

change in GP per unit time is calculated as 1.76*10-5 a.u./ms, equivalent to 5.29*10−4 a.u. per subsequent 

image. This value was taken into account for the analysis of the samples with dynamic temperature. 

Figure 4.12 displays the calculated GP-values for measurements with HUVECs under different culture 

conditions. Both dynamic cultivation and cells under shedding conditions exhibit a trend toward slightly 

higher GP-values. However, the large variability, as indicated by the error bars, and the results of the ANOVA 

with Tukey post hoc test confirm that no statistically significant differences exist between the groups. 

 



73 
 

Figure 4.12: GP-Values for HUVEC. Calculated GP-values for HUVEC measurements under different culture conditions. Both 

dynamic cultivation and cells under shedding conditions exhibit a shift toward slightly higher GP-values, but large error bars 

indicate no significant differences between the groups. 

 

Membrane Phase State Change of HeLa Cells 

Due to the rather unusual or suboptimal results observed in the previous experiments, and to establish a 

reference point without the presence of glycocalyx, additional experiments were conducted using HeLa 

cells. These experiments aimed to provide clearer insights and serve as a control for comparison. 

Cells in each image were identified using Cellpose 2.0 to create a mask of the cells (see Appendix A4). The 

fluorescence images with the 490 nm filter were used instead of phase contrast images due to slight drift 

caused by temperature changes during the measurements. Background intensity was subtracted from the 

previously determined cell intensities. Background intensity was measured and averaged from three cell-

free areas in each image using ImageJ. The difference between cell intensity and background intensity was 

then used to determine the GP value. The GP value change per image due to bleaching correction averaged 

at 4.27*10-5 a.u./ms, which is equivalent to 2.96*10-4 a.u. per subsequent image (see figure 4.13). 
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Figure 4.13: Laurdan Bleaching Correction for HeLa. Change in GP value due to Laurdan photobleaching at an exposure time 

of 300 ms for statically cultured HeLa. The datasets were linearly fitted, and the mean change in GP value was calculated. 

 

Figure 4.14 illustrates the differences in GP values for the temperature range of 15 to 42 °C under various 

culture conditions for HeLa cells. At a shear stress of 2 dyn/cm², the GP values of statically cultured cells 

and those cultured under flow for 72 hours and 144 hours are similar. However, at shear stresses of 6 

dyn/cm² and 10 dyn/cm², the GP values increase for both 72-hour and 144-hour cultures. For cells cultured 

at 2 dyn/cm² with a 2-hour flow interruption before the experiment, the GP value for 72-hour cultured cells 

is lower compared to statically cultured cells and those cultured for 144 hours. Both 72-hour and 144-hour 

cultured cells with a 2-hour flow interruption exhibit an increase in GP values at 6 dyn/cm². Interestingly, 

this shift in GP values decreases again at 10 dyn/cm². 

For Figure 4.15, only the differences between flow and static conditions were considered, regardless of the 

duration or shear rate of the culture. Since HeLa cells do not have a glycocalyx, measurements taken under 

the shed condition or rather after interrupted flow were also included in the dynamic conditions. The results 

indicate that the linear trendline for dynamic cultivation slopes upwards, although the gradient becomes 

less steep. 
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Figure 4.14: GP-Values for HeLa Cells. GP-values of HeLa cells under different culture conditions across a temperature range 

of 15 to 42 °C. The static dataset, consistent across all graphs, provides a baseline for comparison. A1) At 2 dyn/cm² shear 

stress, GP-value changes are similar between statically cultured cells and those cultured under flow for 72 and 144 hours. A2) 

& A3) At 6 and 10 dyn/cm², GP values increase slightly for both 72-hour and 144-hour cultures. B1) For cells with a 2-hour flow 

interruption, GP values decrease at 2 dyn/cm² for 72-hour cultures compared to static and 144-hour culture. B2) & B3) The 

GP-values increase at 6 dyn/cm², with a subsequent decrease at 10 dyn/cm² for dynamically cultured HeLa after the 2-hour 

flow interruption. 
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Figure 4.15: Summary of GP-Values for HeLa Cells. Comparing flow versus static conditions, irrespective of culture duration 

or shear rate. As HeLa cells lack a glycocalyx, measurements taken under shed conditions or after interrupted flow were also 

categorized as dynamic conditions. The results suggest an upward-sloping linear trendline for dynamic cultivation, with a 

gradually decreasing gradient. 

 

Discussion 

It is important to note that these observations are based on experiments with considerable variability, and 

no statistical significance was determined here. The implications and limitations of these findings, including 

the statistical robustness, are further discussed below. 

The experiments with HUVEC reveal a distinct shift toward higher GP values for cells cultured under dynamic 

conditions, indicating changes in membrane phase states likely due to shear stress. Interestingly, this shift 

is reversed under shed conditions, where a decrease in GP values is observed, suggesting that the removal 

of the glycocalyx or interruptions in flow may lead to a more fluid membrane phase. This behavior 

underscores the sensitivity of HUVEC to mechanical stimuli and the presence of the glycocalyx in 

maintaining membrane integrity under dynamic conditions. 

In the case of HeLa cells, the trend of increasing GP values under dynamic cultivation is also evident, 

supporting the notion that shear stress can induce changes in membrane phase state. However, the results 

are inconsistent, particularly when comparing GP values between samples subjected to flow interruptions 
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and continuous dynamic cultivation. This variability suggests that HeLa cells, which lack a glycocalyx, may 

not respond as uniformly to shear stress as HUVEC do. 

The duration of cultivation (72 hours versus 144 hours) does not appear to significantly influence the GP 

values; instead, the magnitude of shear stress plays a more critical role. For example, at a shear rate of 10 

dyn/cm², the difference in GP values between dynamic and static cultivation becomes most pronounced, 

particularly in HeLa cells. This finding highlights the importance of shear rate over time in determining 

membrane phase behavior in cells subjected to dynamic conditions. 

Contrarily, these findings conflict with the results of Yamamoto & Ando, as well as older experiments by 

Butler et al., which demonstrate a decrease in lipid order in response to the application of shear stress 

Notably, in both studies, the cultivation times and shear stress application durations were significantly 

shorter compared to the conditions used in the present experiments [172][179][180]. 

The high standard deviations observed in both HUVEC and HeLa measurements, along with inconsistencies 

between replicates, make it challenging to draw definitive conclusions regarding the relationship between 

shear stress, glycocalyx presence, and membrane phase state changes. This variability suggests that 

additional replicates and more controlled experimental conditions are necessary to gain clearer insights.  

The results could not conclusively verify the hypothesis that the cultivation method of HUVEC or HeLa 

influences the membrane phase state, nor could it determine whether the presence or absence of an intact 

glycocalyx plays a role. Despite these limitations, the observed trends are intriguing, and these research 

questions remain highly relevant. Future experiments, designed to reduce variability and address these 

methodological challenges, are essential to provide a more comprehensive understanding of these effects. 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

4.6. Role of Surface Charge for Adhesion to Dynamically 
Cultured Endothelial Cells 

 

Cationic DOTAP vesicles are widely used in transfection to deliver genetic material into cells by forming 

lipoplexes through electrostatic interactions with nucleic acids. This approach enables efficient nucleic acid 

delivery into various cell types and is commonly applied in gene therapy research and molecular biology. 

As MLVs, they closely mimic the characteristics of transfection vesicles and physiologic extracellular 

vesicles, while as GUVs, they are more representative of cells or circulating tumor cells [210][211][212]. 

Here, both MLVs and GUVs are used to measure the effects of electrostatics as explained in Chapter 3.6, 

specifically the impact that the different culture conditions have on these effects due to variations in the 

glycocalyx or cell membrane. 

The adhesion of DOTAP-DMPC (20:80) GUVs and DMPC GUVs to HUVEC was analyzed under static, 

dynamic, and shedding conditions. In addition, as a preliminary investigation, MLVs were used to study 

adhesion to HeLa cells under similar conditions as a reference. The results were obtained in close 

collaboration with David Wörle as part of his bachelor’s thesis, supervised by Manuel Sirch. The datasets 

on HUVEC are associated with a publication that has been accepted but has not yet been published [P2]. 

 

DOTAP-MLV Adhesion to HeLa Cells 

The MLVs are not detected individually. Instead, the analysis of these measurements is based on the 

difference in intensity between areas on the slide where cells have adhered and areas where no cells are 

present. To quantify the adhesion behavior, the change in this intensity difference over the course of the 

measurement is monitored. 

Again, a Python script employing Cellpose 2.0 is used (see Appendix A4) to segment the cells in the phase 

contrast image, and the resulting masks are saved. The total intensity 𝐼seg of all pixels in the fluorescence 

image that correspond to a pixel inside a segmented mask from the cell layer, as well as the total intensity 

𝐼rest of the remaining pixels. The intensity difference is normalized by the total intensity 𝐼total of all pixels: 

𝐼 =
𝐼seg − 𝐼rest

𝐼total
 

 

 
(3.3) 

In case of adhesion of the MLVs to the cells, the intensity difference 

∆𝐼 = 𝐼ଶ − 𝐼ଵ 
 

(3.4) 

will change during the measurement, whereas 𝐼ଶ and 𝐼ଵ are the intensities of image 1 and 2. This quantifies 

the adhesion strength of the MLV to the cell surface. 

In this context, comparing different cells is also important. Since the vesicle concentration is assumed to 

remain constant throughout the measurement, it does not affect the calculation of ∆𝐼 and, therefore, does 

not influence the assessment of adhesion behavior. 
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For adhesion under flow conditions, the flow velocity was varied. Specifically, the experiments included 

static conditions with flow velocities of 0.02 µm/min and 0.2 µm/min, as well as dynamic conditions with 

different culture durations (72 h and 144 h), shear stresses (2 dyn/cm² and 6 dyn/cm²), and flow velocities 

of 0.02 µm/min and 0.2 µm/min. 

The intensity differences for each condition were aggregated to calculate the mean, and the standard 

deviation was determined. A one-way ANOVA was performed, followed by Tukey's post hoc test to identify 

significant differences between the groups. 

 
Figure 4.16: Adhesion of MLV to HeLa Cells. The datasets of 144 h dynamic cultivation and 72 h dynamic cultivation have 

been summarized, regardless of the shear stress applied. The 144 h culture shows significantly higher adhesion of MLV in 

comparison to the 72 h culture samples and static samples. Static samples and 72 h culture samples show no significant 

difference. Error bars are standard deviation. *: p<0.05, ns: p>0.05. The sample sizes are listed in table 4.1. 

 

Figure 4.16 shows the results of the MLV adhesion to HeLa cells. Since the results in the lower flow rate 

range appeared to be more consistent and exhibited smaller deviations between measurements, a larger 

number of slides were measured in this range.  

 

 

 



80 
 

Table 4.1: Sample Sizes for the Adhesion of MLV to HeLa Cells: 

Condition Culture Duration (h) Shear Stress (dyn/cm²) Flow Velocity (µm/min) Sample Size (N) 
Static - - 0.02 6 
Static - - 0.2 6 
Dynamic 72 2 0.02 8 
Dynamic 72 2 0.2 8 
Dynamic 144 2 0.02 4 
Dynamic 144 2 0.2 4 
Dynamic 72 6 0.02 9 
Dynamic 72 6 0.2 9 
Dynamic 144 6 0.02 8 
Dynamic 144 6 0.2 8 

 

Each value represents the mean and standard deviation, where different samples have been cultivated on 

different slides, as listed in table 4.1. It can be observed that cells cultured over a longer period tend to 

show a larger difference in ∆𝐼 compared to statically cultured cells and those cultured under flow for a 

shorter period. However, cells cultured under flow for 72 h show only a slightly larger ∆𝐼 compared to static 

cultures at a flow rate of 2 dyn/cm², and even a smaller value at 6 dyn/cm². The standard deviations, 

however, are relatively large in this case, particularly for the cells cultured for 144 h. 

The results from 72 h and 144 h cultures were grouped together, regardless of the shear stress level. A 

significant difference was found between the 144 h dynamic culture and the 72 h dynamic culture for both 

flow velocities (p<0.05). Additionally, a significant difference was observed between the 144 h dynamic 

culture and the static culture (p<0.05). However, there was no significant difference between the 72 h 

dynamic culture and the static culture (p=0.50 for 0.02 µl/min and p=0.29 for 0.2 µl/min). 

GUV Adhesion to HUVEC 

A Python script (see Appendix A4) was developed to analyze the adhesion of lipid vesicles by tracking the 

number of vesicles remaining on the cell layer throughout the measurement. The script's functionalities 

include utilizing Cellpose 2.0 to find masks and diameters on numerous images, determining the count of 

individually detectable adherent vesicles or cells, assessing the confluence of a cell lawn, and quantifying 

the adhesion of vesicles no longer individually detectable based on their intensity. 

The script generates objects of a cell class from individual masks, incorporating attributes like position and 

radius. Position calculation involves computing the mean of all pixel positions within the mask on the image, 

while a simplified assumption of circular shape aids in radius calculation. These cell objects facilitate 

position comparison for later detection of adherent objects. 
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Figure 4.17: Fluorescence Image Analysis of Vesicles Adhering to the Cell Surface of HUVEC. A1) – A3) Grayscale images 

showing fluorescent signals from Texas Red-stained vesicles at 30, 90, and 150 seconds. B1) Vesicle detection using Cellpose 

2.0, with red circles highlighting the vesicles identified in the focal plane. B2) Adherent vesicles, defined as those that remained 

stationary, are marked with green squares. B3) The increasing number of adherent vesicles over time is observed. 

 

To discern whether a vesicle is moving with the flow or adhering to the cell surface, the script compares 

vesicle positions across consecutive images as exemplary shown in figure 4.17. A vesicle retains its position 

if it's detected in the same spot in successive images, allowing for a specified tolerance radius. Adherent 

vesicles, detected over a defined period, are subclassed and characterized by attributes like the initial 

detection image and the number of images maintaining that position. 

This methodology enables the determination of the total number of adherent GUVs and vesicles per image, 

alongside the total and per-image count of detected objects. A normalization approach is applied to account 

for variations in vesicle concentration, yielding the adhesion quotient 

𝐴 =
𝑁adh

𝑁଴
 

 

 
(3.5) 

as a measure of GUV adhesion. The adhesion coefficients from individual measurements for each cultivation 

method were aggregated, and the mean and standard deviation for all measurements under each flow 

condition were calculated. An ANOVA with Tukey’s post-hoc test was performed to evaluate the significance 

of differences between the conditions. 

In Figure 4.18, the adhesion behavior of both pure DMPC vesicles and 80:20 DMPC-DOTAP vesicles on the 

HUVEC layer is elucidated. It's necessary to consider the possibility of vesicles adhering to areas without cell 

growth or to coated surfaces. Only vesicles adhering to the cell lawn are relevant for analysis. Therefore, 

the phase-contrast image of the cell lawn is used as depicted in figure 4.19A. Only adherent vesicles whose 

positions align with cell lawn mask pixels are considered for analysis. Vesicles adhering to the edge of a cell 

are also counted as adherent to the cell lawn, based on their radius. 
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Figure 4.18: Adhesion Dynamics of 80:20 DMPC-DOTAP GUVs under different Conditions. The adhesion coefficients for 

vesicles on statically and dynamically cultured cells ranged from 1 to 1.5, with a p-value of 0.343, indicating no significant 

difference in adhesive propensity between these two conditions. In contrast, vesicles under shedding conditions exhibited a 

significantly higher adhesion coefficient, averaging around 3.5, demonstrating robust adherence to the endothelial cell layer. 

Statistical analysis confirmed a significant difference in adhesion for shed samples compared to both static and dynamic 

conditions, highlighting the distinct adhesive behavior under shedding conditions. No adhesion has been measured for pure 

DMPC vesicles. Error bars are standard deviation. The sample size of analyzed slides was N=6 for dynamically cultured cells, 

N=6 for statically cultured cells and N=4 for cells under the shedding condition. **: p<0.01, *:p<0.05. 

 

The address the potential reduction in adhesion area in statically cultured cells, the adhesion coefficient 

was normalized by dividing it by the confluency percentage. Notably, the results depict a stark contrast in 

adhesion patterns between the two vesicle types under different culturing conditions. 

For the pure DMPC vesicles, irrespective of the culturing condition—be it static, dynamic, or shed—no 

adhesion was observed on the HUVEC layer. This consistent lack of adhesion across varying conditions 

underscores the inert nature of these vesicles in interacting with the endothelial cell layer. 

Conversely, examination of the 80:20 DMPC-DOTAP vesicles reveals nuanced adhesion dynamics. Both 

statically and dynamically cultivated cells exhibited adhesion coefficients ranging from 0.77 to 1.44, with a 

p-value of 0.713, suggesting no significant difference between the two conditions. This finding suggests a 

comparable adhesive propensity of the membranes regardless of the cell culturing environment. 
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However, shedding conditions elicited a markedly different response. Shed samples displayed a 

substantially higher adhesion coefficient, averaging around 3.5, indicating a robust adherence of the 

vesicles to the endothelial cell layer. Statistical analysis revealed a significant difference between HUVEC 

under the shedding condition and dynamic condition (p<0.01) as well as static condition (p<0.05).  

 
Figure 4.19: Phase Contrast and Confocal Image Analysis of HUVEC and Adhering Vesicles. A1) Phase-contrast microscopy 

of statically cultured HUVEC shows loosely arranged cells lacking the cobblestone morphology of dynamically cultured cells. 

A2) A Cellpose 2.0 mask highlights intercellular spaces, excluding vesicles outside these regions from adherence counts. B1) 

Confocal microscopy of dynamically cultured HUVEC (dyed with Laurdan, depicted in blue) shows minimal vesicle adherence 

(red) to the confluent cell layer. B2) Statically cultured HUVEC show wider gaps, with vesicles adhering in these spaces; 

however, these are excluded from counts as they are not cell-bound. B3) Dynamically cultured HUVEC under shedding 

conditions exhibit enhanced GUV binding to a highly confluent layer. 

Confocal data as shown in figure 4.19B reveals a higher number of adhered vesicles compared to previous 

measurements. However, a closer examination indicates that these vesicles primarily adhere to the bottom 

of the slide, situated between the cells rather than directly on the cell surfaces. Consequently, they are 

correctly excluded from the counts of vesicles adhered to the cell surface. Measurements under dynamic 

and shedding conditions align with previous data, reinforcing the reliability of these observations. 

Interestingly, the cells seem to preferentially occupy positions at cell-cell contacts, suggesting a potential 

role of these junctions in influencing cellular positioning and behavior under different culture conditions. 

To account for potential size differences among the various types of GUVs, two methods of size 

determination were employed: a micrograph-based analysis and a cytometric comparison. The data 
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are presented in Figure 5. The analysis of vesicle size distributions in Figure 4.20A highlights trends 

between non-adherent and adherent GUVs, as well as between DOTAP-DMPC and pure DMPC GUVs. 

Figure 4.20: Boxplots and Histograms of Size Distribution of GUVs. A1) Size distributions of non-adherent and adherent 

DOTAP-DMPC GUVs. Non-adherent GUVs have a mean diameter of 9.47 ± 4.42 µm and a median of 8.78 µm (N=12,484 

vesicles). Adherent GUVs are smaller, with a mean diameter of 7.10 ± 3.78 µm and a median of 6.21 µm (N=1,876 vesicles). 

A2) Comparison of DOTAP-DMPC and pure DMPC GUVs. DOTAP-DMPC GUVs show a mean diameter of 9.16 ± 4.43 µm and a 

median of 8.28 µm (N=14,362 vesicles), while pure DMPC GUVs have a larger mean diameter of 10.61 ± 5.39 µm and a median 

of 8.97 µm (N=381 vesicles). Outliers are represented by dots above the whiskers. B1) FSC-A analysis of DOTAP-DMPC GUVs 

and B2) FSC-A analysis of pure DMPC GUVs. Both measurements included 10,000 vesicles, with higher FSC-A values indicating 

larger vesicles. The blue graph represents P1 (the primary gate isolating the main vesicle population, excluding debris and 

doublets), while the grey graph includes all recorded events. 

Non-adherent GUVs had a mean diameter of 9.47 µm (±4.42 µm) and a median of 8.78 µm, based on 

measurements of 12,484 vesicles. In contrast, adherent GUVs exhibited a smaller mean diameter of 

7.10 µm (±3.78 µm) and a median of 6.21 µm, calculated from 1,876 vesicles. 

The comparison between DOTAP-DMPC and pure DMPC GUVs also revealed size differences. DOTAP-

DMPC GUVs had a mean diameter of 9.16 µm (±4.43 µm) and a median of 8.28 µm, based on 

measurements of 14,362 vesicles. In contrast, pure DMPC GUVs showed a larger mean diameter of 

10.61 µm (±5.39 µm) and a median of 8.97 µm, though this analysis was limited to 381 vesicles. The 
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smaller sample size for DMPC GUVs reflects their behavior post-sedimentation, where no vesicles 

could be identified as adherent or temporarily adherent beyond this stage. 

Figure 4.20B compares cytometric measurements of DOTAP-DMPC and DMPC GUVs, revealing a visible 

overlap in size distributions. However, the DMPC vesicles exhibit a broader size distribution, indicating 

a greater range of vesicle sizes. For each sample, data from 10,000 vesicles were recorded, with event 

rates of 41 events/s for DOTAP-DMPC GUVs and 54 events/s for DMPC GUVs. The higher event rate 

for DMPC suggests a slightly higher concentration of vesicles in the sample. 

The observed overlap in size distributions, broader range, and higher concentration of DMPC GUVs 

suggest that the DMPC population contains sufficient vesicles of similar size to the adherent DOTAP-

DMPC GUVs, as further discussed below. 

To quantify differences in surface charge, zeta potential measurements were conducted. DMPC GUVs 

exhibited a zeta potential of -7.41 ± 0.24 mV, indicating a negatively charged surface under the 

experimental conditions. In contrast, DOTAP-DMPC GUVs had a zeta potential of +2.29 ± 0.17 mV, 

reflecting a shift to a positively charged surface due to the incorporation of DOTAP. 

 

Discussion 

The observed increase in adhesion of positively charged MLVs suggests that the significant enhancement 

only occurs when HeLa cells are cultured for 144 hours under shear stress conditions of 2 or 6 dyn/cm². 

Since HeLa cells lack a well-developed glycocalyx, this increase in adhesion must be attributed to changes 

in the cell membrane itself. It appears that after 144 hours of shear stress, the membrane's surface charge 

becomes more negative, facilitating stronger interactions with the positively charged vesicles. This effect is 

likely not due to changes in membrane fluidity, as membrane phase state experiments in this study showed 

that any such effects would have already occurred after 72 hours of dynamic culture. 

A possible explanation involves the response of HeLa cells to high shear stress, where they undergo nuclear 

expansion. This expansion is driven by histone acetylation, which not only protects the cells from shear-

induced damage but also could influence the overall net charge of the cell. The increase in nuclear size 

might alter the distribution of charge within the cell, potentially enhancing interactions with the 

extracellular environment [187]. 

Zeta potential measurements of DMPC GUVs show that their surface charge becomes more negative when 

suspended in an ionic buffer medium, such as DPBS, and maintained above their phase transition 

temperature, as noted by Morini et al. in their study on lipid electrostatics. This behavior suggests that pure 

DMPC vesicles, despite their zwitterionic composition, are not electrically neutral under these conditions. 

The increased negative charge enhances electrostatic repulsion between the DMPC vesicles and the 

negatively charged glycocalyx and cell membranes, hindering effective adhesion [213]. 

The inclusion of positively charged DOTAP lipids in the vesicle composition introduces electrostatic 

attraction between the vesicles and the negatively charged cell membrane and glycocalyx of the HUVEC 

layer. Under both static and dynamic culturing conditions, these electrostatic attractions facilitate the 
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adhesion of 80:20 DMPC-DOTAP vesicles to the endothelial cells, resulting in observed adhesion coefficients 

[181][182]. 

During shedding or degradation, proteolytic enzymes may cleave glycoproteins or proteoglycans of the 

glycocalyx, leading to the generation of protein fragments. These fragments may contain negatively charged 

amino acid residues or domains, which could interact with positively charged molecules on the vesicle 

surface, enhancing adhesion. Shedding of the glycocalyx may also disrupt protein-protein interactions 

within the glycocalyx layer, leading to the release of proteins or protein fragments that were previously 

involved in adhesion or signaling processes. These released proteins could potentially interact with vesicle 

surface proteins or receptors, promoting adhesion to the endothelial cell membrane [181][183][184]. 

Some membrane-associated proteins or glycolipids within the glycocalyx layer may have membrane-

spanning domains or lipid anchors. Upon shedding or degradation, these anchors or domains could be 

exposed and retained as remnants. Depending on their composition, they could contribute to increased 

adhesion by providing binding sites for vesicles [181][183][184][185]. 

Shedding exposes surface proteins that are typically concealed beneath the glycocalyx, potentially 

enhancing vesicle adhesion. This phenomenon may explain why vesicles adhere more effectively even when 

the glycocalyx is modified or reduced. These findings suggest that the cell membrane’s ability to provide 

multiple interaction points—beyond charge-based adhesion—plays a more significant role in vesicle 

adhesion than the glycocalyx alone [5][8]. 

In addition to these exposed proteins, the lipid composition and organization of the cell membrane, 

including the formation of lipid rafts—potentially induced by cultivation under shear stress—also contribute 

to adhesion. Lipid rafts, microdomains enriched with cholesterol and sphingolipids, may serve as 

preferential docking sites for vesicles by concentrating adhesion-related proteins. These specialized 

membrane regions could act as key platforms for vesicle interaction, enabling robust adhesion even in the 

absence of an intact glycocalyx [214][215]. 

Another factor to consider is vesicle diameter. The size distributions of adherent and non-adherent GUVs, 

as well as those of DMPC and DOTAP-DMPC GUVs, exhibit significant overlap, suggesting that size variations 

are not the primary drivers of the observed differences. Moreover, the vesicle sizes in this study closely 

align with the typical diameters of circulating tumor cells (CTCs), which range from 8 µm to 20 µm. This 

similarity is particularly noteworthy as it implies that the mechanisms governing vesicle adhesion to 

endothelial cells may also shed light on how CTCs interact with the endothelium during metastasis [186]. 

The hypothesis that HUVECs cultured under dynamic conditions exhibit decreased adhesion of positively 

charged lipid vesicles compared to statically cultured cells or cells under the shedding condition is confirmed 

partially. Notably, shedding conditions resulted in the greatest vesicle adhesion, underscoring the critical 

role of glycocalyx integrity. Although dynamic and static conditions showed no significant differences in 

adhesion for HUVECs, the comparison with shedding conditions validates the hypothesis. 

The research question is answered affirmatively, as the results demonstrate that the adhesion of lipid 

vesicles to the cell membrane depends on both the electrical charge of the membrane and the presence or 

modification of the glycocalyx. 
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With the role of electrostatics in vesicle adhesion clarified, a new question arises: how do culture conditions 

and the integrity of the glycocalyx influence the permeability of the endothelial barrier to the underlying 

tissue? Addressing this question involves exploring how these factors affect transendothelial diffusion and 

the selective transport of molecules or particles across the endothelium. 
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4.7. Trans Endothelial Diffusion of Macromolecules in a 
Blood Vessel Model 

 

Trans-endothelial diffusion plays a critical role in regulating the transport of molecules across the 

endothelial layer, ensuring precise control over fluid balance and molecular exchange between blood 

vessels and surrounding tissues. Negatively charged components of the glycocalyx repel similarly charged 

macromolecules, while facilitating the passage of positively charged ions and small solutes. This size and 

charge selectivity prevents plasma protein leakage and maintains colloid osmotic pressure [56][57][58]. 

Building upon this understanding, a 3D hydrogel-HUVEC model provides a biomimetic platform to study 

trans-endothelial diffusion. By emulating the endothelial barrier as a porous medium with HUVEC and the 

surrounding tissue as a hydrogel matrix, this model enables the investigation of macromolecule diffusion 

and fluid sieving [148][150][154]. 

The diffusion of FITC-Dextran into the PAA hydrogel was measured from a molded 3D channel lined with 

HUVECs, using Dextran molecules of varying sizes as explained in Chapter 3.7. The study was conducted 

under the three distinct culture conditions: static, dynamic, and glycocalyx-shedding environments. The 

results were obtained in close collaboration with Yannic Schmidt as part of his bachelor’s thesis, supervised 

by Manuel Sirch. 

 

Proof of Adhesion 

Confirming successful cell adhesion and distribution is essential, as measuring diffusion beyond the 

endothelial layer relies on the presence of a continuous and functional cell layer. The cultivation of HUVECs 

within the channel yielded promising results under both static and dynamic culture conditions, as shown in 

Figure 4.21. 

Challenges in visualizing cells using phase-contrast microscopy, due to the complex 3D architecture of the 

channel, were effectively addressed by Hoechst 33342 staining. This staining method enabled clear 

visualization of cell nuclei, facilitating detailed scanning across multiple z-levels. These scans revealed a 

well-distributed population of HUVECs throughout the channel, demonstrating successful adhesion to the 

3D channel walls. The channel diameter, consistent at approximately 1 mm in all images, further highlights 

the uniformity of the model. 
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Figure 4.21: HUVEC in the 3D Hydrogel Channel. A) An empty, stable channel after equilibration with cell medium. B) HUVEC 

cultured on the inside surface of the channel. C1) Hoechst 33342 stained nuclei on the lower half of the channel. C2) Hoechst 

33342 stained nuclei on the upper half of the channel. 

 

Diffusion Measurements 

A Python script (see Appendix A5) was utilized to analyze the FITC-Dextran diffusion gradient for each 

image. The diffusion direction was defined along the x-axis, and for each pixel column, the mean gray value 

was calculated. The border between the gel and the 3D channel was manually determined, and the x-axis 

was normalized accordingly. Additionally, pixel values were converted to a µm scale to provide accurate 

spatial representation. These normalized mean values were then plotted against the corresponding x-axis 

positions, offering a detailed depiction of the diffusion profile. 
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Figure 4.22: Example of the Diffusion into the Gel without Cells over Time. Representation of image intensity versus distance 

from the lower edge, with the x-axis denoting the channel's position and the y-axis representing standardized intensity values 

(0 to 1). The maximum in the y-axis values confirms alignment with the channel. 

 

Figure 4.22 exemplary shows the diffusion of FITC-dextran within the gel. Over time, as FITC-dextran 

permeated the gel, the intensity gradually increased, indicative of its diffusion process. 

To ensure consistency and facilitate comparison across diffusion experiments, all data were plotted using 

diagrams with identical axis ranges. As expected, the y-axis values, representing normalized image intensity, 

were higher in the channel region, confirming alignment with the channel structure. Intensity values were 

normalized on a scale from 0 to 1, where 0 indicates the lowest intensity and 1 corresponds to the highest 

intensity observed at the channel center. Normalization was achieved by dividing all intensity values by the 

maximum value at the channel center. The graphs display relative intensities smaller than 1, starting from 

the offset point determined by the border between the gel and the channel, allowing a clear comparison of 

intensity profiles across experiments and restricting analysis to data points acquired outside this 

demarcation. 
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Figure 4.23: Example of the Diffusion Length Fit Function. Fitting procedures applied to diffusion experiment data to derive 

qualitative assessments of diffusion characteristics. The analysis is constrained to data points outside the predefined channel 

boundary, which serves as the reference point for the fitting process. Fit parameters are diffusion length 𝐿 and initial FITC-

dextrane concentration 𝑐଴. 

 

To enable the derivation of qualitative assessments regarding the diffusion characteristics, the data 

obtained from diffusion experiments will undergo fitting procedures according to equation (2.8)   

𝑐 (𝑥) = 𝑐଴ ቂ1 − erf ቀ
௫

(஽௧)మቁቃ for the diffusion mentioned in Chapter 2.5. This methodology facilitates the 

assessment, characterization, and subsequent comparison of diffusion lengths based on both the molecular 

dimensions of FITC-dextrans and the cellular coating of the channels. The obtained values for 𝜆௜ 

representing the diffusion lengths at specific time points are subsequently plotted against time and fitted 

using the function 

𝜆 = 𝐴 + √𝐷 ∗ √𝑡 
 

(4.6) 

as exemplary shown in figure 4.24, whereas 𝐴 is the offset. The resultant values for 𝐷, corresponding to 

different molecular weights of FITC-dextran and cultivation methods, are then visualized through the bar 

chart in figure 4.25 for comparative analysis. The bars represent the mean of the samples for each dataset, 

the error bars represent the standard deviation. The ANOVA could not be used because the assumption of 

equal variances was violated (p-value = 0.0219), the group sizes were highly unequal (ratio = 3.33), and the 
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test's power to detect variance differences was weak (0.17). Therefore, a double-sided t-test was used for 

statistical analysis. 

Figure 4.24: Example Fit Function for Determining the Diffusion Constant. The previously fitted diffusion lengths are plotted 

against time and then fitted with the equation 𝑦 = 𝐴 + √𝐷 ∗ √𝑡. 

 

The bar chart in Figure 4.25 highlights significant differences between statically cultured cells and 

dynamically cultured cells, with a 41% decrease for 4kDa FITC-dextran and a 51% decrease for 10kDa 

dextran (p<0.005). A significant reduction in the diffusion coefficient was observed relative to molecular 

sizes across all cultivation methods and in blank channels without cells (p<0.005). For 4kDa FITC-dextran, 

no significant difference was found between the blank channel and the statically cultured channel 

(p>0.005). In contrast, a 46% decrease was noted between these two conditions with 10kDa FITC-dextran 

(p>0.005). Regarding the shed condition, measurements were solely conducted with 10kDa FITC-dextran. 

Although the chart depicts the average diffusion coefficient between static and dynamic culture conditions, 

the high standard deviation renders it not significant in comparison with both (p>0.005). 
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Figure 4.25: Comparison of the Diffusion Coefficients for Different Molecular Weights and Cell Culture Conditions. Analysis 

of diffusion coefficients across various cultivation methods, highlighting significant decreases relative to molecular sizes. The 

bar chart shows a 46% decrease in the diffusion coefficient between blank channels and statically cultured channels for 10kDa 

FITC-dextran. Additionally, significant differences between statically cultured and dynamically cultured cells are illustrated, 

with decreases of about 41% for 4kDa FITC-dextran and 51% for 10kDa FITC-dextran. For the shed condition, measurements 

with 10kDa FITC-dextran were conducted, showing an average diffusion coefficient between static and dynamic culture 

conditions, though the high standard deviation rendered the difference non-significant. ***: p<0.001, **: p<0.01, *: p<0.05, 

ns:p>0.05. The sample sizes were N=3, N=6, N=9, N=3, N=5, N=8, N=10 from left to right. 

 

Discussion 

The difference in permeability between the molecular sizes without cells can be attributed to the size 

filtering effect of the hydrogel itself [150].  

Notably, the lack of significant difference in permeability between the blank channel and the statically 

cultured HUVEC for 4 kDa FITC-dextran suggests that molecules of this size can pass nearly unhindered 

between the cells into the hydrogel. In contrast, 10 kDa molecules appear to be too large to do so 

effectively. This indicates that 4 kDa molecules can diffuse through the intercellular spaces, as the cells do 

not form a tight cobblestone structure, and the molecules are able to partially pass between adherens 

junctions and tight junctions. For smaller molecules like those around 4 kDa, tight junctions may be 

sufficiently permeable to allow diffusion. However, larger molecules like those around 10 kDa are often 

impeded by these junctions due to their size, resulting in less efficient diffusion [188]. 
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The observed decrease in permeability for both molecular sizes under dynamic culture conditions could be 

attributed to several factors, including the formation of the cobblestone structure, enhanced gap junction 

formation, and the development of the glycocalyx. Gap junctions are channels that directly connect the 

cytoplasm of adjacent endothelial cells, allowing for the transfer of small molecules and ions. These 

channels are highly selective and generally allow the passage of molecules less than 1 kDa, thus not 

significantly contributing to the diffusion of 4 kDa or 10 kDa molecules across the endothelial layer. Shear 

stress influences the expression levels of connexin proteins, such as connexin 43 (Cx43), which are critical 

components of gap junctions [188][189][190]. 

Studies have shown that physiological levels of shear stress can upregulate the expression of connexins in 

endothelial cells. Shear stress induces endothelial cell alignment in the direction of flow, which can affect 

the spatial organization and distribution of gap junctions. This alignment optimizes the formation and 

function of gap junctions between neighboring cells. The morphological changes induced by shear stress, 

such as elongation and reorganization of the cytoskeleton, also contribute to the stabilization and 

functionality of gap junctions [188][189][190][191]. 

As observed in the results for the shed conditions, the presence of significantly high error bars suggests 

notable variability in the permeability measurements. This variability potentially points towards the 

involvement of the glycocalyx. When the glycocalyx is shed or degraded, either due to physiological 

processes or pathological conditions, endothelial cells may undergo morphological changes. These changes 

can include alterations in cell shape, surface roughness, and protrusion formation. Without the glycocalyx, 

endothelial cells may appear flatter and less elongated, potentially affecting their interaction with blood 

flow and neighboring cells. As stated, the glycocalyx plays a crucial role in maintaining the integrity of cell 

junctions, including tight junctions, adherens junctions, and gap junctions. Therefore, it might be possible, 

that shedding of the glycocalyx can disrupt these junctions by exposing them to mechanical stress. This 

disruption can lead to increased permeability of the endothelial barrier, allowing the passage of 

macromolecules [192][193]. 

An important aspect to consider in this discussion is the confluence of the endothelial model and how it 

impacts the observed properties of the endothelial layer under different culture conditions. While 

dynamically cultured cells are more likely to achieve and maintain confluence due to the effects of shear 

stress, it remains uncertain whether the model is fully confluent, particularly under static conditions. This 

uncertainty limits the reliability of conclusions drawn from the static cultures and underscores the need for 

further verification of confluence to better understand the observed permeability differences. For future 

experiments confocal microscopy could be employed to verify the confluency of the endothelial layer. 

However, the hydrogel model used in this study was not suited for such an approach due to its current 

design. To enable the use of confocal microscopy, a rework of the 3D hydrogel channel slide is necessary. 

The revised design would need to ensure a thinner structure with tightly sealed connections to prevent 

damage to the microscope and facilitate accurate imaging of the endothelial cells within the hydrogel. 

As of now, and considering that the model is still under development, the hypothesis that dynamically 

cultured HUVECs exhibit decreased diffusion of FITC-dextran through the endothelial layer into the 

hydrogel, particularly for larger molecular sizes, compared to statically cultured cells, can be partially 

supported. However, the role of confluence in influencing these diffusion differences remains uncertain, 
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particularly under static conditions. Additionally, the impact of the glycocalyx on the permeability of 

macromolecules beyond the endothelial layer cannot be definitively determined, as the observed 

differences were not statistically significant. 

Nonetheless, it is important to explore the modulation of cell-cell contacts in dependence on the applied 

culture methods, as this might play a crucial role in shaping the permeability and functionality of the 

endothelial barrier. 
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4.8. Modulation of Cell-Cell Contacts under Dynamic Flow 
Conditions 

 

Cell-cell contacts are essential structural and functional components of endothelial cells, playing a critical 

role in maintaining vascular integrity and regulating barrier function. Among these, adherens junctions, 

which are prominently marked by vascular endothelial (VE)-cadherin, are particularly significant. VE-

cadherin is a transmembrane protein that forms homophilic interactions between adjacent endothelial 

cells, creating a cohesive and mechanically stable endothelial layer [33]. 

Building on the theoretical foundation of these adherens junctions, the analysis focuses on how different 

culture methods influence these critical structures. The permeability of the endothelial layer and the 

localization of VE-cadherin at cell-cell contacts were examined, with particular emphasis on the impact of 

the glycocalyx and cultivation conditions. The following results were obtained in close collaboration with 

Marina Huber as part of her master’s thesis, which was supervised by Manuel Sirch. A publication on this is 

currently in preparation. 

The Analysis of the cell morphology of HUVEC through shape characteristics of cell-cell contacts was 

performed using CellProfiler. To utilize this tool, the images acquired as described in Chapter 3.2 and 

exemplary shown in figure 4.26, were first imported into the software. CellProfiler, much like Cellpose, can 

identify and segment cells. Once the cells are accurately segmented, the objects and their outlines can be 

exported for detailed analysis, as shown in figure 4.27. This allows for a comprehensive examination of area 

and shape features, providing valuable insights into the structural characteristics of the cell-cell contacts. 

For the analysis, both the principles of solidity and form factor were utilized [194]. 

Solidity is a shape descriptor defined as the ratio of an object's area 𝐴cell to the area of its convex hull 

𝐴hull, convex (see figure 4.28A). Mathematically, it is expressed as: 

𝑆 =
𝐴cell

𝐴hull, convex
 

 

 
(4.7) 

This metric quantifies how closely an object's shape approximates a convex shape. A solidity value of 1 

indicates that the object is perfectly convex, with no indentations or irregularities along its boundary. Values 

less than 1 indicate the presence of concavities or other deviations from a convex shape. In the context of 

cell-cell contacts, higher solidity values typically indicate smoother, more contiguous boundaries, 

suggestive of healthy and stable interactions between cells. Conversely, lower solidity values can reveal 

irregularities, protrusions, or indentations in the cell membrane, which may signal dynamic remodeling 

processes, pathological conditions, or responses to external stimuli [195][196]. 

 



97 
 

 
Figure 4.26: VE-Cadherin Proteins at Cell-Cell Contacts in HUVEC Stained with Antibodies. A) Dynamically cultured cells. B) 

Statically cultured cells. C) Cells under the shedding condition. Differences in form factor and solidity are visibly distinguishable. 

 

The form factor is a shape descriptor that quantifies the roundness or circularity of an object (see figure 

4.28B). It is defined as the ratio of the object's area to the area of a circle with the same perimeter 𝑈cell. 

Mathematically, it can be expressed as: 

𝐹 =
4𝜋 ∗ 𝐴cell

𝑈cell
ଶ  

 

 
(4.8) 

A form factor value of 1 indicates a perfect circle, with values decreasing as the shape becomes more 

elongated or irregular. This metric is particularly useful in image analysis for assessing the regularity and 

compactness of shapes, helping to distinguish between different morphological characteristics of cells. In 

the context of cellular analysis, a higher form factor suggests a more regular and rounded cell shape, which 

can be indicative of healthy, unstressed cells. Conversely, a lower form factor may indicate elongated, 

irregular, or deformed cells, which could be a result of cellular stress, pathological conditions, or 

morphological changes during various biological processes [195][196]. 
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Figure 4.27:  Method of Analysis with CellProfiler. A) Inverted grayscale image displaying cell-cell contacts. B) Cell-cell contact 

outlines processed using CellProfiler. 

 

 
Figure 4.28: Solidity and Formfactor. A) The Solidity showcased with the red line marking the convex hull encircling the cell. 

B) The Perimeter surrounding the cell, crucial for calculating the form factor. Derived from [195][196]. 

 

The form factor and solidity data of the cells were analyzed, with mean values and standard deviations 

determined for each culture condition. The results are presented as boxplots in Figures 4.29 and 4.30. 

Group comparisons were performed using ANOVA, followed by a Tukey post-hoc test for pairwise analysis. 



99 
 

In figure 4.29, dynamically cultured cells stand out with the highest solidity, recorded at 𝑆 =  0.9. This 

suggests that dynamically cultured cells are not only more compact but also exhibit a more regular and 

streamlined shape, indicative of a highly organized structural integrity. 

In stark contrast, statically cultured cells demonstrate the lowest solidity, 𝑆 =  0.8. These values imply that 

statically cultured cells are less dense and have a more irregular shape, reflecting a less organized cellular 

structure. 

Shed cells display a solidity of 𝑆 =  0.75. While this value is lower than that of dynamically cultured cells, 

it is significantly higher than that of statically cultured cells, suggesting that shed cells retain some structural 

integrity despite the shedding process. The solidity value of shed cells is positioned between the others at 

approximately 8.5, highlighting their intermediate characteristics. 

The ANOVA confirmed that the solidity values of statically cultured cells, dynamically cultured cells, and 

shed cells differ significantly from each other (p<0.05). 

Figure 4.29: Solidity of HUVEC for different Cell Culture Conditions. Dynamically cultured cells exhibit the highest solidity at 

S = 0.9, indicating a more compact, regular, and highly organized structure. In contrast, statically cultured cells have the lowest 

solidity, S = 0.8, reflecting a less dense and more irregular shape with lower structural organization. Shed cells, with a solidity 

of S = 0.75, retain some structural integrity despite the shedding process, placing their solidity between the other two types 

at approximately 8.5. The differences in solidity among statically cultured, dynamically cultured, and shed cells are statistically 

significant, highlighting their distinct structural characteristics. Error bars are standard deviation. *: p<0.05. The sample size 

was N=9 for each culture condition. 
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In Figure 4.30, dynamically cultured cells exhibit the highest form factor, 𝐹 =  0.35 , reinforcing the 

observation that these cells have a more regular and streamlined shape. 

Statically cultured cells demonstrate the lowest form factor, 𝐹 =  0.2, indicating a more irregular shape 

and less organized structure. 

Shed cells show a form factor of 𝐹 =  0.3, which, while lower than that of dynamically cultured cells, is 

significantly higher than that of statically cultured cells. This suggests that shed cells maintain some degree 

of regularity in shape, even after the shedding process. 

The ANOVA also confirms that the form factor values of statically cultured cells, dynamically cultured cells, 

and shed cells differ significantly from each other (p < 0.05). 

Figure 4:30: Formfactor of HUVEC for different Cell Culture Conditions. Dynamically cultured cells have the highest form 

factor, F = 0.35, indicating a more regular and streamlined shape. Statically cultured cells have the lowest form factor, F = 0.2, 

reflecting a more irregular shape and less organized structure. Shed cells show a form factor of F = 0.3, which, while lower 

than that of dynamically cultured cells, is significantly higher than that of statically cultured cells. This suggests that shed cells 

maintain some degree of regularity in shape even after the shedding process. The differences in form factor among statically 

cultured, dynamically cultured, and shed cells are statistically significant, emphasizing their distinct structural characteristics. 

Error bars are standard deviation. *: p<0.05. The sample size was N=9 for each culture condition. 
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Discussion 

The observed differences in solidity and form factor among dynamically cultured cells, statically cultured 

cells, and cells under the shedding condition could be attributed to the distinct mechanical and biochemical 

environments, as well as the presence or absence of the glycocalyx layer for several reasons. 

The dynamic environment promotes cytoskeletal rearrangements and could strengthen cell-cell junctions, 

leading to more regular and rounded cell shapes. The fluid shear stress likely enhances cell-cell contact 

integrity and reduces irregularities, contributing to these higher metrics, as it has already been discussed in 

Chapter 4.7 [188][189][190][191]. 

The partial removal of the glycocalyx layer in these shed cells appears to significantly affect their 

morphology and mechanical properties. This may likely compromise the integrity of the cell surface, leading 

to a slight reduction in solidity and form factor compared to dynamically cultured cells. The absence of the 

glycocalyx may also exacerbate cell membrane irregularities and weaken cell-cell adhesion, contributing to 

the observed changes in shape metrics. 

The glycocalyx is intrinsically connected to the cytoskeleton through transmembrane proteins such as 

integrins and syndecans, which interact with cytoskeletal components like actin filaments via adaptor 

proteins such as ezrin, radixin, and moesin. These linkages are essential for maintaining cellular structure 

and transmitting mechanical and chemical signals. Shedding of the glycocalyx likely disrupts these critical 

connections, altering cytoskeletal organization and dynamics, which in turn impacts cell morphology and 

mechanical properties [192]. 

Even without the glycocalyx, cells can undergo morphological changes due to various factors such as 

changes in cell-cell and cell-matrix adhesion, and mechanical forces. Other studies have shown that the 

cessation of shear flow can lead to rapid morphological changes in cells as well. When shear flow is stopped, 

these cells can revert to a more rounded and less aligned morphology. This reversion can occur relatively 

quickly, within hours or even minutes, as the cells respond to the sudden change in mechanical environment 

[199][200]. 

The hypothesis that HUVEC cultured under dynamic conditions demonstrate improved solidity and form 

factor of cell-cell contacts compared to those cultured under static conditions or subjected to glycocalyx 

shedding can be supported. The question of whether the existence of the glycocalyx affects cell-cell 

contacts can therefore be answered affirmatively. 

These findings align with the broader discussion in Chapter 4.7, highlighting how distinctions in cell-cell 

contacts under different culture conditions contribute to enhanced or decreased endothelial barrier 

functionality. The improved solidity and form factor of cell-cell contacts observed in dynamically cultured 

HUVEC, facilitated by the presence of an intact glycocalyx, underscore its pivotal role in strengthening 

barrier integrity and reducing permeability. Conversely, disruptions to the glycocalyx, as seen under 

shedding conditions, seem to correlate with weakened cell-cell junctions and compromised barrier 

functionality. 
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5. CONCLUSION AND OUTLOOK 
 

The goal of this thesis was to shed light on the various aspects of transport mechanisms into and beyond 

HUVEC, with a focus on the influence of an existing glycocalyx and its connection to secondary effects, such 

as changes in membrane phase state due to cultivation under flow conditions. The findings can be 

summarized as follows: 

 A glycocalyx was successfully synthesized in vitro under dynamic conditions, with a shear stress of 

6 dyn/cm² over 144 hours. Notably, the glycocalyx partially degrades when the flow is stopped. The 

rate of nanoparticle uptake via endocytosis is significantly higher in statically cultured endothelial 

cells compared to dynamically cultured cells with an intact glycocalyx. Additionally, cells with a 

shed glycocalyx exhibit an even significantly higher uptake rate compared to statically cultured 

cells.  

The hypothesis that HUVEC cultured under dynamic conditions exhibit higher binding of Alexa Fluor 

555-conjugated WGA compared to statically cultured cells or cells under the shedding condition is 

supported by the data, and the research question of whether an intact glycocalyx occurs under the 

in vitro culture conditions used in this research can be answered with yes. 

 

 The uptake of 50 nm SiO₂ nanoparticles is significantly inhibited in HUVECs cultured under dynamic 

conditions with an intact glycocalyx compared to statically cultured cells or cells with a shed 

glycocalyx. In the shed glycocalyx condition, the uptake is even significantly higher than in statically 

cultured cells, emphasizing the critical role of glycocalyx integrity in regulating nanoparticle 

internalization. Additionally, it was verified that the nanoparticles are internalized by the cells 

rather than merely adhering to the membrane surface, confirming actual uptake.  

The hypothesis that HUVEC cultured under dynamic conditions show a reduced endocytic uptake 

of nanoparticles compared to statically cultured cells or cells under the shedding condition has 

been confirmed. The research question regarding whether an intact glycocalyx impacts 

nanoparticle internalization is answered positively. 

 

 The uptake of Hoechst 33342 molecules through the cell membrane is significantly higher in 

statically cultured endothelial cells than in dynamically cultured cells with an intact glycocalyx. 

However, the difference in uptake between cells with an intact and a degraded glycocalyx is not 

significant. 

The hypothesis that HUVEC cultured under dynamic conditions impede the diffusion of dye 

molecules into the cells compared to statically cultured cells or cells under the shedding condition 

has been confirmed. The research question of whether an intact glycocalyx affects molecular 

diffusion through the cell membrane can be answered with answered yes.  

 

 The GP-value of dynamically cultured cells appears to shift to higher values compared to statically 

cultured cells, suggesting increased membrane fluidity. However, these results were inconsistent, 

indicating that the methods may need refinement. 
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The hypothesis that the cultivation method of HUVEC and HeLa influences the cell membrane's 

phase state, making it either more fluid or gel-like depending on whether the cells are cultured 

statically, dynamically, or under shedding conditions, has not been fully supported due to 

inconsistent results. The research question of whether the glycocalyx affects membrane phase 

behavior cannot be conclusively answered 

 

 The adhesion of positively charged DMPC-DOTAP GUVs to the surface of endothelial cells with a 

degraded glycocalyx is significantly higher than to dynamically cultured cells with an intact 

glycocalyx or statically cultured cells. Similarly, the adhesion of MLVs to dynamically cultured HeLa 

cells (cultured for 144 hours) is significantly higher than to cells cultured statically or for only 72 

hours under flow, regardless of whether the shear flow is 2 or 6 dyn/cm². 

The hypothesis that HUVEC cultured under dynamic conditions exhibit decreased adhesion of 

positively charged lipid vesicles compared to statically cultured cells or cells under the shedding 

condition has been confirmed. Consequently, the research question regarding the glycocalyx's role 

in vesicle adhesion can be answered affirmatively. 

 

 A sufficient in vitro model of the endothelial layer was successfully created using a 3D channel 

molded from polyacrylamide hydrogel, in which HUVECs were seeded and cultured. It was 

demonstrated that the diffusion of FITC-dextran beyond the endothelial layer is significantly higher 

for 4kDA molecules compared to 10kDA molecules. Furthermore, diffusion decreases for both 

molecule sizes when cells are adherent inside the 3D channel, and further decreases when cells are 

cultured under dynamic rather than static conditions. 

The hypothesis that HUVEC cultured under dynamic conditions show decreased diffusion of FITC-

dextran through the cell layer into the hydrogel, particularly for smaller molecular sizes, compared 

to statically cultured cells or cells under the shedding condition, can be partially supported. 

However, the role of confluence and the glycocalyx in influencing macromolecule diffusion remains 

uncertain due to the lack of statistically significant differences. The research question of whether 

the glycocalyx affects the diffusion of macromolecules beyond the endothelial layer cannot yet be 

definitively answered 

 

 VE-cadherin antibody staining revealed distinct differences in solidity and form factor among 

dynamically cultured, statically cultured, and shed cells. Dynamically cultured cells exhibited the 

significantly highest solidity (𝑆 =  0.9) and form factor (𝐹 =  0.35), indicating a more compact, 

regular, and organized structure. In contrast, statically cultured cells showed the significantly 

lowest solidity (𝑆 =  0.8) and form factor (𝐹 =  0.2), reflecting a less dense and more irregular 

shape. Shed cells exhibited intermediate values, with significant differences compared to the other 

culture methods, showing a solidity of 𝑆 =  0.75 and a form factor of 𝐹 =  0.3, suggesting they 

retain some structural integrity and regularity despite the shedding process. 

The hypothesis that HUVEC cultured under dynamic conditions demonstrate improved solidity 

and form factor of cell-cell contacts compared to statically cultured cells or cells under the 

shedding condition has been confirmed. The research question of whether the existence of the 

glycocalyx affects cell-cell contacts can therefore be answered with yes. 
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The findings from this thesis provide a valuable contribution to the fields of drug delivery and the 

development of 3D models in vascular research. The observed effects of dynamic cultivation on endothelial 

cells and the synthesis of an in vitro glycocalyx offer insights into how flow conditions and membrane 

characteristics can influence drug transport. These insights suggest that further investigation could enhance 

our understanding of how to optimize drug delivery systems, particularly in targeting specific areas within 

the vascular system. 

In drug delivery, the differential uptake of nanoparticles and other molecules into endothelial cells, as well 

as the adhesion dynamics of vesicles, depending on the glycocalyx state and membrane fluidity highlights 

potential strategies for improving the specificity and efficiency of transfection and therapeutic delivery. By 

carefully modulating flow conditions or glycocalyx integrity, there may be opportunities to enhance the 

targeting of drugs, particularly in the treatment of vascular diseases where endothelial function is affected. 

Further research in this area could help in developing more precise and effective delivery methods, 

potentially offering benefits in clinical applications. 

The creation of a 3D endothelial model represents an important step toward more physiologically relevant 

in vitro systems. These models, which better replicate the complex environment of blood vessels, hold 

promise for studying drug transport and endothelial behavior under conditions that more closely resemble 

those in vivo. This approach could contribute to a more accurate understanding of drug interactions with 

the endothelial barrier, which is crucial for the preclinical evaluation of new therapeutics. 

While the results of this research are promising, there remains much to explore. Continued work in refining 

these models and deepening the understanding of the underlying mechanisms could lead to significant 

advancements in drug delivery and vascular research, with the hope of translating these findings into 

practical applications. 
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APPENDIX 
 

A1 Abbreviations and Chemical Acronyms 
 

ANOVA:  Analysis of Variance 

APS:   Ammonium Persulfate 

BSA:   Bovine Serum Albumin 

CTCs:   Circulating Tumor Cells 

Cx43:   Connexin 43 

DHPE:   1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine 

DMPC:   Dimyristoylphosphatidylcholine 

DOTAP:   Dioleoyl-3-trimethylammoniumpropane 

DPBS:  Dulbecco's Phosphate-Buffered Saline 

FBS:   Fetal Bovine Serum 

FITC:  Fluorescein Isothiocyanate 

FSC-A:  Forward Scatter-Area 

FWHM:   Full Width at Half Maximum 

GP:   Generalized Polarization 

GUV:   Giant Unilamellar Vesicle 

HUVEC:  Human Umbilical Vein Endothelial Cells 

JAMs:   Junctional Adhesion Molecules 

KLFs:  Krüppel-like Factors 

Laurdan:  6-Dodecanoyl-2-Dimethylaminonaphthalene 

MAPKs:   Mitogen-Activated Protein Kinases 

MLV:   Multilamellar Vesicle 

MMPs:   Matrix Metalloproteinases 

NO:   Nitric Oxide 

PKC:   Protein Kinase C 

ROS:   Reactive Oxygen Species 

TEMED:  Tetramethylethylenediamine 

VE:   Vascular Endothelial 

WGA:   Wheat Germ Agglutinin 
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A2 Tables of used Instruments and Materials 
 

Devices 
Name Manufacturer Country of Origin 
Ibidi Pump System Ibidi Germany 
Stellaris 5 Confocal Microscope Leica Microsystems Germany 
Axiovert 200M Carl Zeiss Germany 
Axio Observer 7 Carl Zeiss Germany 
Zetasizer Ultra Malvern Panalytical United Kingdom 
CytoFlex Beckman Coulter Life Sciences United States 
Ultimaker S5 3D Printer Ultimaker Netherlands 

 

Cells and Cell Culture Components 
Name Manufacturer Country of Origin 
Early Passage HUVEC pooled Pelobiotech Germany 
HeLa CCL-2 American Type Culture 

Collection (ATCC) 
United States 

EASY Endothelial Cell Growth 
Medium 

Pelobiotech Germany 

Dulbecco's Modified Eagle's 
Medium 

Bio&SELL Germany 

Penicillin/Streptomycin 
(Pen/Strep) 

Bio&SELL Germany 

FBS Superior stabil Bio&SELL Germany 
Dulbecco’s phosphate buffered 
saline 

Sigma-Aldrich Germany 

Trypsin/EDTA (0.25%/0.02% 
w/v) in DPBS 

Bio&SELL Germany 

Accutase/Biotase Solution Bio&SELL Germany 
Collagen Type I, Rat (4,63 
mg/ml) 

Corning United States 

Acidic acid Honeywell International United States 
μ-Slide I Luer 0.4 Ibidi Germany 
μ-Slide I Luer 0.8 Ibidi Germany 
Perfusionset red Ibidi Germany 
Perfusionset yellow-green Ibidi Germany 
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Fluorescent Substances 
Name, Excitation/Emission Manufacturer Country of Origin 
Wheat Germ Agglutinin (Alexa 
Fluor 555) 
555 nm/565 nm 

Invitrogen United States 

Laurdan (6-Dodecanoyl-2-
Dimethylaminonaphthalene) 
350–380 nm/440–490 nm 

Sigma Aldrich Germany 

Red Fluorescent Silica 
Nanoparticles, 50 nm 
569 nm/ 585 nm 

DiagNano United States 

NucBlue Live ReadyProbes 
(Hoechst 33342) 
350 nm/ 461 nm 

Invitrogen United States 

Texas Red 1,2-Dihexadecanoyl-
sn-Glycero-3-
Phosphoethanolamine, 
Triethylammonium Salt 
595 nm/615 nm 

Invitrogen United States 

Fluoreszeinisothiocyanat–
Dextran 4 kDa 
495 nm/519 nm 

Sigma Aldrich Germany 

Fluoreszeinisothiocyanat–
Dextran 10 kDa 
495 nm/519 nm 

Sigma Aldrich Germany 

VE-cadherin Antibodies (F-8) 
(Alexa Fluor 647) 
650 nm/665 nm 

Santa Cruz Biotechnology United States 

 

Lipids 
Name Manufacturer Country of Origin 
DMPC (14:0 PC) Avanti Polar Lipids United States 
DOTAP (18:1 TAP) Avanti Polar Lipids United States 
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Chemical Substances and Consumables 
Name Manufacturer Country of Origin 
Dimethylsulfoxide American Type Culture 

Collection (ATCC) 
United States 

Acrylamide Solution (40%) - Mix 
29:1 for Molecular Biology 

AppliChem Germany 

N, N'-Methylenebisacrylamide, 
2% Solution (Bisacrylamide) 

Alfa Aesar United States 

N’,N’,N’,N’-
Tetraacetylethylenediamine 
(TEMED) 

Sigma Aldrich Germany 

Ammonium Peroxodisulfate  
(APS) 

AppliChem Germany 

Gelatin, powdered AppliChem Germany 
Dulbecco's Modified Eagle's 
Medium 10X 

Bio&SELL Germany 

Silicone paste KORASILON high 
viscosity 

Carl Roth Germany 

Spinal cannula 1,10 x 90 mm M. Schilling Medical Products Germany 
Cannula 1,60 x 25 mm Dispomed Germany 
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A3 Script used in Glycocalyx Staining Experiments 
 

Available on Github: https://github.com/manuelsirch/dissertation/blob/main/glycocalyx_staining 

import os 
import numpy as np 
import matplotlib.pyplot as plt 
import csv 
 
input_folder = "Input" 
output_folder = "Output" 
 
def create_histogram(input_folder, output_folder): 
    # List of files in the input folder 
    file_list = os.listdir(input_folder) 
 
    os.makedirs(output_folder, exist_ok=True) 
 
    # Loop through the files 
    for file_name in file_list: 
        if file_name.endswith('.tif'): 
            input_file_path = os.path.join(input_folder, file_name) 
            output_file_path = os.path.join(output_folder, 
file_name.replace('.tif', '.csv')) 
 
            # Read the images and convert to grayscale if necessary 
            image = plt.imread(input_file_path) 
            if len(image.shape) == 3: 
                image = np.mean(image, axis=2) 
 
            # Calculate the histogram 
            histogram, bin_edges = np.histogram(image, bins=256, range=(0, 256)) 
 
            # Calculate the total number of pixels in the image 
            total_pixels = np.sum(histogram) 
 
            # Save the total and normalized histogram in a CSV file 
            with open(output_file_path, mode='w', newline='') as csv_file: 
                writer = csv.writer(csv_file) 
                writer.writerow(['pixel value', 'frequency', 'frequency in 
percent']) 
 
                for value, frequency in zip(bin_edges[:-1], histogram): 
                    percentage = (frequency / total_pixels) * 100 if total_pixels > 
0 else 0 
                    writer.writerow([int(value), int(frequency), 
"{:.16f}".format(percentage)]) 
 
create_histogram(input_folder, output_folder) 
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A4 Script used for Cell Segmentation and Vesicle 
Adhesion 

 

Available on Github: https://github.com/manuelsirch/dissertation/blob/main/segmentation_and_tracking 

# --- Start of main.py --- 
 
import os 
 
import glob 
from PIL import Image 
 
import cellpose.plot 
import matplotlib.pyplot as plt 
import imagefunctions as imf 
import skimage.io 
from Cell import Cell 
from AdherentCell import AdherentCell 
import programrun_functions as prf 
 
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"     # Suppress warning when program is 
run on different computer 
 
""" Run program for already created masks/diams, create new ones or run on test 
images to find parameters for cell  
detection? """ 
new_or_use_or_test = input("Create NEW masks, USE already created masks, run on 
TEST images, find masks/diams for \ 
MULTIPLE data, determine CONFLUENCE or find adherent cells for FILTERED areas? \n[n 
/ u / t / m / c / f]: ") 
 
# Create new masks: 
if new_or_use_or_test == "n": 
    # get images from user 
    path_input = input("Path of '.tif'-images: ") 
    imgs = imf.read_tifs(path_input) 
 
    # get parameters for cell detection from user 
    cellprob_threshold, flow_threshold = prf.get_celldet_params() 
 
    # create new directory for the data with the selected 'cellprob_threshold' and 
'flow_threshold' 
    path_output_cells_diams = os.path.join(path_input, "celladhesion_" + 'cpt' + 
str(cellprob_threshold) + 'ft' + str(flow_threshold)) 
    os.mkdir(path_output_cells_diams) 
 
    # run 'find_cells' method and save masks and diams (names: include 
'cellprob_threshold' and 'flow_threshold') 
    masks, diams = Cell.run_cellpose(imgs, cellprob_threshold=cellprob_threshold, 
flow_threshold=flow_threshold) 
    cells = Cell.find_cells(masks) 
    masks_name = 'masks_' + 'cpt' + str(cellprob_threshold) + 'ft' + 
str(flow_threshold) 
    Cell.safe_masks(masks, path_output_cells_diams, masks_name) 
    diams_name = 'diams_' + 'cpt' + str(cellprob_threshold) + 'ft' + 
str(flow_threshold) 
    Cell.safe_diams(diams, path_output_cells_diams, diams_name) 
 
    # get parameters for adherent-cell detection from user 
    time_for_adherent, delay, images_threshold, compare_threshold = 
prf.get_adhcelldet_params(diams) 
 
    # search adherent cells 
    number_adherent_cells, number_cells_total, adherent_cells = 
AdherentCell.find_adherent_cells(cells, diams, 
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images_threshold, 
                                                                                                 
compare_threshold) 
    # find number of adherent cells on each image 
    nr_adherent_cells_on_img = 
AdherentCell.nr_adherent_cells_on_img(adherent_cells, len(imgs)) 
 
    # create new subdirectory for data with the selected time and tolerance 
    path_output_adherent = os.path.join(path_output_cells_diams, 'time' + 
str(time_for_adherent) + 's_tolerance' + str(compare_threshold)) 
    os.mkdir(path_output_adherent) 
 
    # create '.txt'-file to save data 
    txtfile = open(os.path.join(path_output_adherent, 'celladhesion_' + 'time' + 
str(time_for_adherent) + 's_tolerance' 
                                + str(compare_threshold) + '.txt'), 'w+') 
 
    # save the used masks, diams and parameters in the text file 
    prf.save_params_in_txtfile(txtfile, masks_name, diams_name, time_for_adherent, 
delay, images_threshold, 
                               compare_threshold) 
 
    # save the information found about the adherent cells in the text file 
    prf.save_adh_in_txtfile(txtfile, number_adherent_cells, number_cells_total, 
adherent_cells, cells, 
                            nr_adherent_cells_on_img) 
 
    # overlay outlines of the detected cells on the input images and mark the 
adherent cells 
    overlay = imf.overlay_outlines(imgs, masks) 
    # 'overlay_adherent_squares' can only be done if list contains 'adherent_cell'-
objects 
    if isinstance(adherent_cells[0], AdherentCell): 
        overlay = imf.overlay_adherent_squares(overlay, adherent_cells, 30) 
 
    # show created images and save them in the subdirectory 
    prf.show_and_save_result_imgs(overlay, path_output_adherent, "celladhesion") 
 
# use already created masks 
elif new_or_use_or_test == "u": 
    # get images from user 
    path_imgs = input("Path of '.tif'-images: ").replace('\\', '/') 
    imgs = imf.read_tifs(path_imgs) 
 
    # get masks/diams from user 
    path_input = input("Path where masks and diams are saved: ").replace('\\', '/') 
    masks_name = str(input("Name of '.npy'-file with masks (without ending): ")) + 
'.npy' 
    masks = imf.load_masks(os.path.join(path_input, masks_name)) 
    diams_name = str(input("Name of '.txt'-file with diameters (without ending): 
")) + '.txt' 
    diams = imf.load_diams(os.path.join(path_input, diams_name)) 
 
    while True: 
        # get parameters from user 
        time_for_adherent, delay, images_threshold, compare_threshold = 
prf.get_adhcelldet_params(diams) 
 
        # create new subdirectory for the data with the selected time and tolerance 
        path_output_adherent = os.path.join(path_input, 'time' + 
str(time_for_adherent) + 's_tolerance' + str(compare_threshold)) 
        os.mkdir(path_output_adherent) 
 
        # find cells and adherent cells 
        cells = Cell.find_cells(masks) 
        number_adherent_cells, number_cells_total, adherent_cells = 
AdherentCell.find_adherent_cells(cells, diams, 
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images_threshold, 
                                                                                                     
compare_threshold) 
        # find number of adherent cells on each image 
        nr_adherent_cells_on_img = 
AdherentCell.nr_adherent_cells_on_img(adherent_cells, len(imgs)) 
 
        # create '.txt'-file to save the data 
        txtfile = open(os.path.join(path_output_adherent, 'celladhesion_' + 'time' 
+ str(time_for_adherent) + 's_tolerance' 
                                    + str(compare_threshold) + '.txt'), 'w+') 
 
        # save the used masks, diams and parameters in the text file 
        prf.save_params_in_txtfile(txtfile, masks_name, diams_name, 
time_for_adherent, delay, images_threshold, 
                                   compare_threshold) 
 
        # save the found information about the adherent cells in the text file 
        prf.save_adh_in_txtfile(txtfile, number_adherent_cells, number_cells_total, 
adherent_cells, cells, 
                                nr_adherent_cells_on_img) 
 
        # save number of adherent cells on image in a '.csv'-file 
        prf.number_adh_on_image_to_csv(nr_adherent_cells_on_img, 
os.path.join(path_output_adherent, 'adh_on_img.csv')) 
 
        # overlay outlines of the detected cells on the input images and mark the 
adherent cells 
        overlay = imf.overlay_outlines(imgs, masks) 
        # 'overlay_adherent_squares' can only be done if list contains 
'adherent_cell'-objects 
        if isinstance(adherent_cells[0], AdherentCell): 
            overlay = imf.overlay_adherent_squares(overlay, adherent_cells, 30) 
 
        # show created images and save them in the subdirectory 
        prf.show_and_save_result_imgs(overlay, path_output_adherent, 
"celladhesion") 
 
        # check if user wants to overlay the adherent cells on an image of the call 
layer 
        cells_on_phc = input("\nOverlay adherent cells on image of the cell layer? 
[y / n]: ") 
        if cells_on_phc == "y": 
 
            # get path and image of the cell layer 
            path_phc = input("Path where image of cell layer is saved: 
").replace('\\', '/') 
            name_phc = str(input("Name of '.tif'-file of cell layer (without 
ending): ")) + '.tif' 
            img_phc = imf.read_single_img(os.path.join(path_phc, name_phc)) 
 
            # create new subdirectory for the overlayed images 
            path_output_phc = os.path.join(path_output_adherent, 
'celladhesion_overlayPhc') 
            os.mkdir(path_output_phc) 
 
            # overlay adherent cells on the image and save the result images in the 
directory 
            adh_over_phc = imf.adherent_cells_over_phasecontrast(img_phc, masks, 
adherent_cells) 
            prf.show_and_save_result_imgs(adh_over_phc, path_output_phc, 
"overlayPhc") 
 
            determine_confluence = input("\n Determine confluence of the cell 
layer? [y / n]: ") 
            if determine_confluence == "y": 
                # get new parameters for cell detection from user and find mask + 
confluence 
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                print("\nSet new parameters for cell detection on the cell layer: 
") 
                cellprob_threshold_layer, flow_threshold_layer = 
prf.get_celldet_params() 
                mask_layer, diams_layer = Cell.run_cellpose(img_phc, 
flow_threshold=flow_threshold_layer, 
                                                            
cellprob_threshold=cellprob_threshold_layer) 
                confluence = Cell.determine_confluence(mask_layer) 
 
                # print and safe confluence 
                prf.save_confluence_in_txtfile(txtfile, cellprob_threshold_layer, 
flow_threshold_layer, confluence) 
 
                # set name for output image 
                name_output = name_phc 
                if name_output.endswith('.tif'): 
                    name_output = name_output[:-4] 
                # plot masks over image and show/save the result 
                img_output = cellpose.plot.mask_overlay(img_phc, mask_layer) 
                prf.show_and_save_result_imgs(img_output, path_phc, "confluence_" + 
str(confluence) + "_ "+ name_output) 
 
        # check if user wants to rerun or stop the program 
        rerun = input("Rerun? [y / n]: ") 
        # if no, break out of the loop to stop the program 
        if rerun == "n": 
            break 
        else: 
            # if yes, check if user wants to use the same masks as before or new 
ones 
            new_or_same_masks = input("Use NEW or SAME masks? [n / s]: ") 
            # if the user chooses new ones, get new images, masks and diameters 
            if new_or_same_masks == "n": 
                print("\n\n") 
                # get images from user 
                path_imgs = input("Path of '.tif'-images: ").replace('\\', '/') 
                imgs = imf.read_tifs(path_imgs) 
 
                # get masks/diams from user 
                path_input = input("Path where masks and diams are saved: 
").replace('\\', '/') 
                masks_name = str(input("Name of '.npy'-file with masks (without 
ending): ")) + '.npy' 
                masks = imf.load_masks(os.path.join(path_input, masks_name)) 
                diams_name = str(input("Name of '.txt'-file with diameters (without 
ending): ")) + '.txt' 
                diams = imf.load_diams(os.path.join(path_input, diams_name)) 
 
 
# run on test images to find parameters for cell detection 
elif new_or_use_or_test == "t": 
    # get test-images from user 
    path_imgs = input("Path of '.tif' test-images: ").replace('\\', '/') 
    imgs = imf.read_tifs(path_imgs) 
 
    while True: 
        # get parameters for cell detection from user 
        cellprob_threshold, flow_threshold = prf.get_celldet_params() 
 
        # run 'find_cells' method, overlay cell outlines 
        masks, diams = Cell.run_cellpose(imgs, 
cellprob_threshold=cellprob_threshold, flow_threshold=flow_threshold) 
        cells = Cell.find_cells(masks) 
        overlay = imf.overlay_outlines(imgs, masks) 
 
        # show images 
        for i in range(len(overlay)): 
            skimage.io.imshow(overlay[i]) 
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            plt.title("testimg{0},  cpt={1}, ft={2}          ".format(i, 
cellprob_threshold, flow_threshold)) 
            skimage.io.show() 
 
        # check if user wants to rerun with different parameters 
        rerun = input("Rerun? [y / n]: ") 
        if rerun == "n": 
            break 
        else: 
            print("Set new parameters.") 
 
# Run Code to find masks and diams for multiple data inputs 
elif new_or_use_or_test == "m": 
    path_input = list() 
    imgs = list() 
    cellprob_threshold = list() 
    flow_threshold = list() 
    while True: 
        path_input_temp = input("Path of '.tif'-images or 'stop', if no more paths 
shall be read: ") 
        if path_input_temp == "stop": 
            break 
        path_input.append(path_input_temp) 
        imgs.append(imf.read_tifs(path_input_temp)) 
        cellprob_threshold_temp, flow_threshold_temp = prf.get_celldet_params() 
        cellprob_threshold.append(cellprob_threshold_temp) 
        flow_threshold.append(flow_threshold_temp) 
        print("\n") 
 
    for data_nr in range(len(path_input)): 
        # create new directory for the data with the selected 'cellprob_threshold' 
and 'flow_threshold' 
        path_output_cells_diams = os.path.join(path_input[data_nr], 
                                               "celladhesion_" + 'cpt' + 
str(cellprob_threshold[data_nr]) + 'ft' + str( 
                                                   flow_threshold[data_nr])) 
        os.mkdir(path_output_cells_diams) 
 
        # run 'find_cells' method and save masks and diams (names: include 
'cellprob_threshold' and 'flow_threshold') 
        masks, diams = Cell.run_cellpose(imgs[data_nr], 
cellprob_threshold=cellprob_threshold[data_nr], 
                                         flow_threshold=flow_threshold[data_nr]) 
        masks_name = 'masks_' + 'cpt' + str(cellprob_threshold[data_nr]) + 'ft' + 
str(flow_threshold[data_nr]) 
        Cell.safe_masks(masks, path_output_cells_diams, masks_name) 
        diams_name = 'diams_' + 'cpt' + str(cellprob_threshold[data_nr]) + 'ft' + 
str(flow_threshold[data_nr]) 
        Cell.safe_diams(diams, path_output_cells_diams, diams_name) 
 
elif new_or_use_or_test == "c": 
    # get path and image of the cell layer 
    path_phc = input("Path where image of cell layer is saved: ").replace('\\', 
'/') 
    name_phc = str(input("Name of '.tif'-file of cell layer (without ending): ")) + 
'.tif' 
    # read cell layer image 
    img_phc = imf.read_single_img(os.path.join(path_phc, name_phc)) 
 
    # get parameters for cell detection from user and find mask + confluence 
    cellprob_threshold, flow_threshold = prf.get_celldet_params() 
    mask, diam = Cell.run_cellpose(img_phc, flow_threshold=flow_threshold, 
cellprob_threshold=cellprob_threshold) 
    confluence = Cell.determine_confluence(mask) 
 
    # print confluence 
    print("confluence: {0}%".format(confluence)) 
 
    # set name for output image 
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    name_output = name_phc 
    if name_output.endswith('.tif'): 
        name_output = name_output[:-4] 
    # plot masks over image and show/save the result 
    img_output = cellpose.plot.mask_overlay(img_phc, mask) 
    prf.show_and_save_result_imgs(img_output, path_phc, "confluence_" + 
str(confluence) + "_ "+ name_output) 
 
 
elif new_or_use_or_test == "f": 
    path_imgs = input("Path of '.tif'-images: ").replace('\\', '/') 
    imgs = imf.read_tifs(path_imgs) 
 
    # get masks/diams from user 
    path_input = input("Path where masks and diams are saved: ").replace('\\', '/') 
    masks_name = str(input("Name of '.npy'-file with masks (without ending): ")) + 
'.npy' 
    masks = imf.load_masks(os.path.join(path_input, masks_name)) 
    diams_name = str(input("Name of '.txt'-file with diameters (without ending): 
")) + '.txt' 
    diams = imf.load_diams(os.path.join(path_input, diams_name)) 
    #background_mask_name = str(input("Name of '.npy'-file with background masks 
(without ending): ")) + '.npy' 
    background_mask_name = str(input("Name of '.png'-file with background masks 
(without ending): ")) + '.png' 
    background_mask = skimage.io.imread(os.path.join(path_input, 
background_mask_name)) 
    #background_mask = imf.load_masks(os.path.join(path_input, 
background_mask_name)) 
 
    while True: 
        # get parameters from user 
        time_for_adherent, delay, images_threshold, compare_threshold = 
prf.get_adhcelldet_params(diams) 
 
        # create new subdirectory for the data with the selected time and tolerance 
        path_output_adherent = os.path.join(path_input, 
                                            'time' + str(time_for_adherent) + 
's_tolerance' + str(compare_threshold) + '_filtered') 
        os.mkdir(path_output_adherent) 
 
        # find cells and adherent cells 
        cells = Cell.find_cells(masks) 
        filtered_cells = list() 
        for i in range(len(cells)): 
            filtered_cells.append(Cell.filter_for_position(cells[i], 
background_mask)) 
        number_adherent_cells, number_cells_total, adherent_cells = 
AdherentCell.find_adherent_cells(filtered_cells, diams, 
                                                                                                     
images_threshold, 
                                                                                                     
compare_threshold) 
        # find number of adherent cells on each image 
        nr_adherent_cells_on_img = 
AdherentCell.nr_adherent_cells_on_img(adherent_cells, len(imgs)) 
 
        # create '.txt'-file to save the data 
        txtfile = open( 
            os.path.join(path_output_adherent, 'celladhesion_' + 'time' + 
str(time_for_adherent) + 's_tolerance' 
                         + str(compare_threshold) + '.txt'), 'w+') 
 
        # save the used masks, diams and parameters in the text file 
        prf.save_params_in_txtfile(txtfile, masks_name, diams_name, 
time_for_adherent, delay, images_threshold, 
                                   compare_threshold) 
 
        # save the found information about the adherent cells in the text file 
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        prf.save_adh_in_txtfile(txtfile, number_adherent_cells, number_cells_total, 
adherent_cells, cells, 
                                nr_adherent_cells_on_img) 
 
        # save number of adherent cells on image in a '.csv'-file 
        prf.number_adh_on_image_to_csv(nr_adherent_cells_on_img, 
os.path.join(path_output_adherent, 'adh_on_img.csv')) 
 
        # overlay outlines of the detected cells on the input images and mark the 
adherent cells 
        overlay = imf.overlay_outlines(imgs, masks) 
        # 'overlay_adherent_squares' can only be done if list contains 
'adherent_cell'-objects 
        if isinstance(adherent_cells[0], AdherentCell): 
            overlay = imf.overlay_adherent_squares(overlay, adherent_cells, 30) 
 
        # show created images and save them in the subdirectory 
        prf.show_and_save_result_imgs(overlay, path_output_adherent, 
"celladhesion") 
 
        # check if user wants to overlay the adherent cells on an image of the call 
layer 
        cells_on_phc = input("\nOverlay adherent cells on image of the cell layer? 
[y / n]: ") 
        if cells_on_phc == "y": 
            # get path and image of the cell layer 
            path_phc = input("Path where image of cell layer is saved: 
").replace('\\', '/') 
            name_phc = str(input("Name of '.tif'-file of cell layer (without 
ending): ")) + '.tif' 
            img_phc = imf.read_single_img(os.path.join(path_phc, name_phc)) 
 
            # create new subdirectory for the overlayed images 
            path_output_phc = os.path.join(path_output_adherent, 
'celladhesion_overlayPhc') 
            os.mkdir(path_output_phc) 
 
            # overlay adherent cells on the image and save the result images in the 
directory 
            adh_over_phc = imf.adherent_cells_over_phasecontrast(img_phc, masks, 
adherent_cells) 
            prf.show_and_save_result_imgs(adh_over_phc, path_output_phc, 
"overlayPhc") 
 
        # check if user wants to rerun or stop the program 
        rerun = input("Rerun? [y / n]: ") 
        # if no, break out of the loop to stop the program 
        if rerun == "n": 
            break 
        else: 
            # if yes, check if user wants to use the same masks as before or new 
ones 
            new_or_same_masks = input("Use NEW or SAME masks? [n / s]: ") 
            # if the user chooses new ones, get new images, masks and diameters 
            if new_or_same_masks == "n": 
                print("\n\n") 
                # get images from user 
                path_imgs = input("Path of '.tif'-images: ").replace('\\', '/') 
                imgs = imf.read_tifs(path_imgs) 
 
                # get masks/diams from user 
                path_input = input("Path where masks and diams are saved: 
").replace('\\', '/') 
                masks_name = str(input("Name of '.npy'-file with masks (without 
ending): ")) + '.npy' 
                masks = imf.load_masks(os.path.join(path_input, masks_name)) 
                diams_name = str(input("Name of '.txt'-file with diameters (without 
ending): ")) + '.txt' 
                diams = imf.load_diams(os.path.join(path_input, diams_name)) 
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# --- End of main.py --- 
 
# --- Start of AdherentCell.py --- 
 
import numpy as np 
 
from Cell import Cell 
 
 
class AdherentCell(Cell): 
    """ 
    Subclass of Cell with extra attributes 'first_appearance' and 
'number_appearances' needed for adherent adherent_cells 
    """ 
    adherent_cellcounter = 0  # number of created 'AdherentCell'- objects 
 
    def __init__(self, pos, radius, first_appearance, number_appearances): 
        """ 
 
        :param pos: array 
                1-dim array representing pixel positions x and y of cell center: 
[x, y] (x and y: int) 
        :param first_appearance: int 
                image number of first appearance; e.g. if image with first 
appearance is first image in the image 
                folder, first_appearance will be 0 (image is imgs[0]) 
        :param number_appearances: int 
                number of consecutive images where adherent cell is detected 
        """ 
        super().__init__(pos, radius) 
        self.__first_appearance = first_appearance 
        self.__number_appearances = number_appearances 
 
        AdherentCell.adherent_cellcounter += 1 
 
    def get_first_appearance(self): 
        return self.__first_appearance 
 
    def set_first_appearance(self, first_appearance): 
        self.__first_appearance = first_appearance 
 
    def get_number_appearances(self): 
        return self.__number_appearances 
 
    def set_number_appearances(self, number_appearances): 
        self.__number_appearances = number_appearances 
 
    @staticmethod 
    def reset_adherent_cellcounter(): 
        AdherentCell.adherent_cellcounter = 0 
 
    @staticmethod 
    def get_adherent_cellcounter(): 
        return AdherentCell.adherent_cellcounter 
 
    def __str__(self): 
        return "Pos.: {0}, Radius: {1}, Imgnr. first appearance: {2}, Nr. 
appearances: {3}".format(self.get_position(), 
                                                                                                   
self.get_radius(), 
                                                                                      
self.get_first_appearance(), 
                                                                                      
self.get_number_appearances()) 
 
    @staticmethod 
    def find_adherent_cells(cells, diams, threshold_imgs, tolerance): 
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        """ 
        Returns number of adherent adherent_cells (adherent_cells that hold their 
position on at least 'threshold_imgs' 
        consecutive images). Position of a cell is compared to the position, where 
the cell was first detected (rolling 
        cells may not be detected as adherent cells) 
 
        :param cells: list 
                    list containing cell objects for each image: 
list[img_index][cell_index] 
        :param diams: list 
                    list of cell diameters (float) 
        :param threshold_imgs: int, >=2 
                    number of consecutive images (for example threshold_imgs = 3, 
if cell needs to be in same position 
                    on three consecutive images) 
        :param tolerance: int 
                    tolerance radius for Cells.compare method 
 
        :return number_adherent_cells: int 
                    total number of adherent adherent_cells with given parameters 
        :return number_cells_total: int 
                    total number of adherent_cells 
        :return adherent_cells: list 
                    list of 'AdherentCell' objects 
        """ 
        if threshold_imgs < 2: 
            print("threshold_imgs has to be greater than or equal to 2") 
            return "error", "error", "error" 
        """elif float(tolerance) > min(diams) / 2: 
            print("tolerance has to be smaller than estimated cell size")  # 
prevent overlapping of adherent_cells 
            return "error", "error", "error" """ 
 
        AdherentCell.reset_adherent_cellcounter()   # reset adherent_cellcounter 
every time the method is called 
        number_adherent_cells = 0  # complete number of adherent adherent_cells 
        number_cells_total = 0  # complete number of adherent_cells 
 
        adherent_cells_doubles = list()  # auxiliary variable to prevent multiple 
counts for one cell 
        adherent_cells = list()          # list with 'AdherentCell'-objects 
 
        # iterate every image (ignore last image where no more new adherent 
adherent_cells can be found) 
        for img_number in range(len(cells) - 1): 
 
            # iterate every cell on image 'img_number' 
            for cell_number in range(len(cells[img_number])): 
                number_consecutive_imgs = 1  # auxiliary variable that represents 
number of images in which cell keeps its position 
 
                # prevent multiple counts for one cell by checking if it's already 
in 'adherent_cells_doubles'-list 
                if not (cells[img_number][cell_number] in adherent_cells_doubles): 
 
                    # iterate every image after 'image_number' to find adherent 
adherent_cells 
                    for check_img_number in range(img_number + 1, len(cells)): 
                        """Boolean used to make sure no more images are searched 
for  adherent_cells[img_number][cell_number] if  
                        one image 'check_image_number' doesn't contain an adherent 
cell""" 
                        cell_found = False 
 
                        # iterate every cell on image 'check_img_number' 
                        for check_cell_number in 
range(len(cells[check_img_number])): 
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                            # compare cell position 
                            if 
cells[img_number][cell_number].compare(cells[check_img_number][check_cell_number], 
                                                                      tolerance): 
                                """if true, raise 'number_consecutive_imgs' and add 
cell to 'adherent_cells_doubles'  
                                
(adherent_cells[check_img_number][check_cell_number] is same cell as the one on  
                                image 'img_number' -> doesn't have to be counted 
twice)""" 
                                number_consecutive_imgs += 1 
                                
adherent_cells_doubles.append(cells[check_img_number][check_cell_number]) 
                                cell_found = True 
                                break 
                        if not cell_found: 
                            break  # no cell found on image 'check_img_number' 
                            # -> jump to next cell cell[img_number][cell_number] 
 
                # cell is only considered adherent, if it keeps position on at 
least 'threshold_imgs' images 
                if number_consecutive_imgs >= threshold_imgs: 
                    number_adherent_cells += 1 
                    
adherent_cells.append(AdherentCell(cells[img_number][cell_number].get_position(), 
                                                       
cells[img_number][cell_number].get_radius(), img_number, 
                                                       number_consecutive_imgs)) 
 
        """calculate total number of adherent_cells by counting all cell objects 
and subtracting the doubled  
        adherent_cells (saved in 'adherent_cells_doubles'-list)""" 
        for i in range(len(cells)): 
            for j in range(len(cells[i])): 
                number_cells_total += 1 
        number_cells_total -= len(adherent_cells_doubles) 
 
        if not adherent_cells:  # prevent ValueError if 'adherent_cells'-list is 
empty 
            return number_adherent_cells, number_cells_total, ["No adherent cells 
found"] 
        else: 
            return number_adherent_cells, number_cells_total, adherent_cells 
 
    @staticmethod 
    def find_adherent_cells2(cells, diams, threshold_imgs, tolerance, 
missing_cell_threshold=0): 
        """ 
        Same as 'AdherentCell.find_adherent_cells', but with an optional parameter 
'missing_cell_threshold'. 
        Returns number of adherent adherent_cells (adherent_cells that hold their 
position on at least 'threshold_imgs' 
        consecutive images). Position of a cell is compared to the position, where 
the cell was first detected (rolling 
        cells may not be detected as adherent cells) 
 
        :param cells: list 
                    list containing cell objects for each image: 
list[img_index][cell_index] 
        :param diams: list 
                    list of cell diameters (float) 
        :param threshold_imgs: int, >=2 
                    number of consecutive images (for example threshold_imgs = 3, 
if cell needs to be in same position 
                    on three consecutive images) 
        :param tolerance: int 
                    tolerance radius for Cells.compare method 
        :param missing_cell_threshold: int 
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                    if one cell is not found on 'missing_cell_threshold' images, 
but on enough other consecutive images, 
                    the cell will still be detected as adherent 
 
        :return number_adherent_cells: int 
                    total number of adherent adherent_cells with given parameters 
        :return number_cells_total: int 
                    total number of adherent_cells 
        :return adherent_cells: list 
                    list of 'AdherentCell' objects 
        """ 
        if threshold_imgs < 2: 
            print("threshold_imgs has to be greater than or equal to 2") 
            return "error", "error", "error" 
 
        AdherentCell.reset_adherent_cellcounter()  # reset adherent_cellcounter 
every time the method is called 
        number_adherent_cells = 0  # complete number of adherent adherent_cells 
        number_cells_total = 0  # complete number of adherent_cells 
 
        adherent_cells_doubles = list()  # auxiliary variable to prevent multiple 
counts for one cell 
        adherent_cells = list()  # list with 'AdherentCell'-objects 
 
        # iterate every image (ignore last image where no more new adherent 
adherent_cells can be found) 
        for img_number in range(len(cells) - 1): 
 
            # iterate every cell on image 'img_number' 
            for cell_number in range(len(cells[img_number])): 
                number_consecutive_imgs = 1  # auxiliary variable that represents 
number of images in which cell keeps its position 
 
                # prevent multiple counts for one cell by checking if it's already 
in 'adherent_cells_doubles'-list 
                if not (cells[img_number][cell_number] in adherent_cells_doubles): 
                    missing_cell_counter = 0 
 
                    # iterate every image after 'image_number' to find adherent 
adherent_cells 
                    for check_img_number in range(img_number + 1, len(cells)): 
                        """Boolean used to make sure no more images are searched 
for  adherent_cells[img_number][cell_number] if  
                        one image 'check_image_number' doesn't contain an adherent 
cell""" 
                        cell_found = False 
 
                        # iterate every cell on image 'check_img_number' 
                        for check_cell_number in 
range(len(cells[check_img_number])): 
 
                            # compare cell position 
                            if 
cells[img_number][cell_number].compare(cells[check_img_number][check_cell_number], 
                                                                      tolerance): 
                                """if true, raise 'number_consecutive_imgs' and add 
cell to 'adherent_cells_doubles'  
                                
(adherent_cells[check_img_number][check_cell_number] is same cell as the one on  
                                image 'img_number' -> doesn't have to be counted 
twice)""" 
                                number_consecutive_imgs += 1 
                                
adherent_cells_doubles.append(cells[check_img_number][check_cell_number]) 
                                cell_found = True 
                                break 
                        if not cell_found: 
                            missing_cell_counter += 1  # no cell found on image 
'check_img_number' 
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                        if missing_cell_counter > missing_cell_threshold: 
                            """ jump to next cell cell[img_number][cell_number], if 
number of images with a missing 
                                cell is greater than the missing_cell_threshold """ 
                            break 
 
                            # cell is only considered adherent, if it keeps 
position on at least 'threshold_imgs' images 
                if number_consecutive_imgs >= threshold_imgs: 
                    number_adherent_cells += 1 
                    
adherent_cells.append(AdherentCell(cells[img_number][cell_number].get_position(), 
img_number, 
                                                       number_consecutive_imgs)) 
 
        """calculate total number of adherent_cells by counting all cell objects 
and subtracting the doubled  
        adherent_cells (saved in 'adherent_cells_doubles'-list)""" 
        for i in range(len(cells)): 
            for j in range(len(cells[i])): 
                number_cells_total += 1 
        number_cells_total -= len(adherent_cells_doubles) 
 
        if not adherent_cells:  # prevent ValueError if 'adherent_cells'-list is 
empty 
            return number_adherent_cells, number_cells_total, ["No adherent cells 
found"] 
        else: 
            return number_adherent_cells, number_cells_total, adherent_cells 
 
    @staticmethod 
    def nr_adherent_cells_on_img(adherent_cells, nr_imgs): 
        """ 
        Returns how many of the 'adherent_cells' are located on which image 
 
        :param adherent_cells: list 
                    list of 'AdherentCell' objects 
        :param nr_imgs: int 
                    total number of images 
 
        :return: nr_adherent_cells_on_img: array 
                    1-dim array where each element represents one image. 'int' 
value of element is the number of 
                    adherent cells on the image 
        """ 
        # create 1-dim array where default number of adherent cells on each image 
is 0 
        nr_adherent_cells_on_img = np.zeros((nr_imgs,), dtype=int) 
 
        if adherent_cells: 
            for cell_number in range(len(adherent_cells)):      # iterate all 
adherent cells in 'adherent_cells' list 
                cell = adherent_cells[cell_number]              # simplify calling 
the cell 
                try: 
                    # iterate 'number_appearances'-attribute of the cell to count 
the appearances for all images 
                    for number_appearance in range(cell.get_number_appearances()): 
                        # raise the adherent cells counter for the respective image 
                        nr_adherent_cells_on_img[cell.get_first_appearance() + 
number_appearance] += 1 
                except: 
                    print("No adherent cells") 
 
        return nr_adherent_cells_on_img 
 
# --- End of AdherentCell.py --- 
 
# --- Start of Cell.py --- 
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import os.path 
import cellpose.models 
import numpy as np 
import imagefunctions as imf 
 
 
class Cell: 
    """ Object 'Cell' for each mask returned by 'cellpose' representing one cell 
""" 
    cellcounter = 0   # number of created 'Cell'-objects 
 
    def __init__(self, pos, radius): 
        """ 
        creates Object 'Cell' with given parameters 
 
        :param pos: array 
                1-dim array representing pixel positions x and y of cell center: 
[x, y] (x and y: int) 
        :param radius: int 
                radius of the cell 
 
        """ 
 
        self.__position = pos 
        self.__radius = radius 
 
        Cell.cellcounter += 1 
 
    def get_position(self): 
        return self.__position 
 
    def set_position(self, pos): 
        self.__position = pos 
 
    def get_radius(self): 
        return  self.__radius 
 
    def set_radius(self, radius): 
        self.__radius = radius 
 
    @staticmethod 
    def reset_cellcounter(): 
        Cell.cellcounter = 0 
 
    @staticmethod 
    def get_cellcounter(): 
        return Cell.cellcounter 
 
    def __str__(self): 
        return "Pos.: {0}, Radius: {1}".format(self.get_position(), 
self.get_radius()) 
 
    @staticmethod 
    def calculate_radius(number_pixels): 
        # calculates the radius of an approximately round cell with an area of 
'number_pixels' 
        return int(round(np.sqrt(number_pixels / np.pi))) 
 
 
    """   OLD VERSION 
    @staticmethod 
 
    def find_cells(imgs, flow_threshold=0.4, diameter=None, model_type='cyto'): 
         
        Uses 'cellpose' to find masks on images 'imgs' where each mask represents 
one cell and returns 
        list of 'Cell' objects 
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        :param imgs: list 
                containing 'ndarray' of each image 
        :param flow_threshold: float (optional, default 0.4) 
                flow error threshold (all adherent_cells with errors below 
threshold are kept) 
        :param diameter: float (optional, default None) 
                diameter for each image (only used if rescale is None), 
                if diameter is None, set to diam_mean 
        :param model_type: str (optional, default 'cyto') 
                'cyto'=cytoplasm model; 'nuclei'=nucleus model 
        :return adherent_cells: list 
                list containing cell objects for each image: 
list[img_index][cell_index] 
         
 
 
            cellpose returns 'masks': list of 2D arrays; labelled  
            image, where 0=no masks; 1,2,...=mask labels  
        model = cellpose.models.Cellpose(gpu=False, model_type=model_type) 
        masks, flows, styles, diams = model.eval(imgs, diameter=None, 
channels=[0,0], 
                                         flow_threshold=0.4, do_3D=False) 
        masks = np.asarray(masks) 
 
        adherent_cells = list() 
 
        for img_index in range(masks.shape[0]):             # walk through all 
images in 'imgs' 
            cells_on_img = list()                           # temporary list object 
for each image 
            for cell_index in range(1, masks[img_index].max() + 1):     # iterate 
through all masks 
 
                x_tot = 0           # counter for pixel x-position to calculate 
center of cell 
                y_tot = 0           # counter for pixel y-position to calculate 
center of cell 
                pixel_counter = 0       # counter for overall pixel number 
                for y in range(masks[img_index].shape[0]):   # walk every pixel 
                    for x in range(masks[img_index].shape[1]): 
                        if masks[img_index][y][x] == cell_index:    # find pixels 
of each mask 'cell_index' 
                            x_tot += x 
                            y_tot += y 
                            pixel_counter += 1 
                x_center = int(round(x_tot / pixel_counter))    # calculate center 
                y_center = int(round(y_tot / pixel_counter)) 
                pos = np.array([x_center, y_center]) 
                cells_on_img.append(Cell(cell_index, pos))      # initialize Cell 
object with 'cell_index' and center position 'pos' 
            adherent_cells.append(cells_on_img) 
 
        return adherent_cells  
    """ 
 
 
    @staticmethod 
    def run_cellpose(imgs, flow_threshold=0.4, cellprob_threshold=0.0, 
diameter=None, model_type='cyto', min_size=15): 
        """ Uses Uses 'cellpose' to find masks on images 'imgs' where each mask 
represents one cell 
 
        :param imgs: list 
                containing 'ndarray' of each image 
        :param flow_threshold: float (optional, default 0.4) 
                flow error threshold (all adherent_cells with errors below 
threshold are kept) 
        :param cellprob_threshold: float (optional, default 0.0) 
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                cell probability threshold (all pixels with prob above threshold 
kept for masks) 
        :param diameter: float (optional, default None) 
                diameter for each image (only used if rescale is None), 
                if diameter is None, set to diam_mean 
        :param model_type: str (optional, default 'cyto') 
                'cyto'=cytoplasm model; 'nuclei'=nucleus model 
        :param min_size: int 
                minimum number of pixels per mask, can turn off with -1 
 
        :return masks: list of 2D arrays; labelled 
                image, where 0=no masks; 1,2,...=mask labels 
        :return diams: list 
                list of cell diameters (float) 
        """ 
 
        model = cellpose.models.Cellpose(gpu=False, model_type=model_type) 
        masks, flows, styles, diams = model.eval(imgs, diameter=diameter, 
channels=[0, 0], 
                                                 flow_threshold=flow_threshold, 
                                                 
cellprob_threshold=cellprob_threshold, do_3D=False, min_size=min_size) 
        # change data types 
        masks = np.asarray(masks) 
        diams = [float(i) for i in diams] 
 
        return masks, diams 
 
    @staticmethod 
    def find_cells(masks): 
        """ 
        Creates 'Cell' object for each cellpose mask and returns them as a list 
item 
 
       :param masks: list of 2D arrays; labelled 
                image, where 0=no masks; 1,2,...=mask labels 
 
        :return cells: list 
                list containing cell objects for each image: 
list[img_index][cell_index] 
        """ 
 
        Cell.reset_cellcounter()  # reset cellcounter every time the method is 
called 
        cells = list() 
 
        for img_index in range(masks.shape[0]):             # walk through all 
images in 'imgs' 
            cells_on_img = list()                           # temporary list object 
for each image 
            number_of_cells = masks[img_index].max()        # number of cells 
(=highest mask label) 
            x_tot = np.zeros(number_of_cells + 1)           # arrays to calculate 
center of cell 
            y_tot = np.zeros(number_of_cells + 1) 
            pixel_counter = np.zeros(number_of_cells + 1) 
            for y in range(masks[img_index].shape[0]):      # walk every pixel 
                for x in range(masks[img_index].shape[1]): 
                    vap = masks[img_index][y][x]            # value at pixel 
 
                    # if mask-pixel, add position to 'y_tot' and 'x_total' , index 
is mask-label number 
                    if vap != 0: 
                        y_tot[vap] += y 
                        x_tot[vap] += x 
                        pixel_counter[vap] += 1 
 
            for i in range(1, number_of_cells + 1):         # create position array 
with center pos for each cell/mask 
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                pos = np.array([int(round(x_tot[i] / pixel_counter[i])), 
int(round(y_tot[i] / pixel_counter[i]))]) 
                radius = Cell.calculate_radius(pixel_counter[i]) 
                cells_on_img.append(Cell(pos, radius))           # add to temporary 
list for each image 
            cells.append(cells_on_img)                      # add to complete cells 
list 
 
        return cells 
 
    def compare(self, cell2, tolerance): 
        """ Checks if position of two 'Cell'-objects match within given 'tolerance' 
radius: 
            equal if ((x2-x1)^2 + (y2-y1)^2 < tolerance^2)  """ 
        return (cell2.get_position()[0] - self.get_position()[0]) ** 2 + \ 
               (cell2.get_position()[1] - self.get_position()[1]) ** 2 <= tolerance 
** 2 
 
    @staticmethod 
    def safe_masks(masks, path, filename): 
        """ Save 'masks' as a '.npy'-file under the name 'filename' at given 'path' 
        :param masks: list of 2D arrays 
        labelled image, where 0=no masks; 1,2,...=mask labels 
        :param path: string 
                Format: "...:/.../..." 
        :param filename: string 
                without '.npy' ending 
        """ 
 
        masks_array = np.asarray(masks) 
        open(os.path.join(path, (filename + '.npy')), 'w+')     # create file 
        np.save(os.path.join(path, (filename + '.npy')), masks_array) 
 
    @staticmethod 
    def safe_diams(diams, path, filename): 
        """ Save 'diams' as a '.txt' file under the name 'filename' at given 'path' 
        :param diams: list 
                list of cell diameters (float) 
        :param path: string 
                Format: "...:/.../..." 
        :param filename: string 
                without '.txt' ending 
        """ 
 
        txtfile = open(os.path.join(path, (filename + '.txt')), 'w+') 
        txtfile.write("\n".join(str(item) for item in diams)) 
 
    @staticmethod 
    def determine_confluence(mask): 
        """ 
        Determines the confluence (percentage of the surface of a culture dish that 
is covered by adherent cells) of the 
        cells, represented by the mask 
 
        :param mask: 2D array; labelled 
                image, where 0=no masks; 1,2,...=mask labels 
 
        :return confluence: int 
                confluence of cells on img, given in percent 
        """ 
 
        pixels = 0              # total number of pixels 
        pixels_cells = 0        # number of pixels belonging to a cell (mask) 
 
        for y in range(mask.shape[0]):          # iterate whole image 
            for x in range(mask.shape[1]): 
                pixels += 1                     # count pixels 
                if mask[y][x] != 0:             # if mask pixel, increase 
pixel_cells counter 
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                    pixels_cells += 1 
        confluence = round((pixels_cells / pixels) * 100)   # calculate confluence 
 
        return confluence 
 
    @staticmethod 
    def filter_for_position(cells, background_mask): 
        """ 
        Filters an given 'cells' list, so that only those cells that have the same 
position as the cells on an 
        'background_mask' will remain. Use this function to consider cell adhesion 
only for those cells, that have a 
        certain position, determined by the background mask. 
 
        :param cells: list 
                list containing cell objects: list[cell_index] 
        :param background_mask: 2D array; labelled 
                image, where 0=no masks; 1,2,...=mask labels 
        :return: filtered_cells: list 
                list containing only the cells whose position matches the 
background mask 
 
        """ 
 
        filtered_cells = list()     # new list for the results 
 
        for cell_nr in range(len(cells)):       # iterate all cells 
            cell = cells[cell_nr]               # simplify cell call 
            # check if the center of the cell already matches the background mask 
            if background_mask[cell.get_position()[1]][cell.get_position()[0]] != 
0: 
                filtered_cells.append(cells[cell_nr])       # if yes, add the cell 
to the result list 
            else: 
                radius = cell.get_radius()      # simplify radius call 
                match_found = False             # used to make sure, each cell is 
added to 'filtered_cells' only once 
                # iterate over all pixels in a square around the cell (side length: 
2 * cell_radius) 
                for y in range(cell.get_position()[1] - radius, 
cell.get_position()[1] + radius): 
                    for x in range(cell.get_position()[0] - radius, 
cell.get_position()[0] + radius): 
                        # prevent adding cell to 'filtered_cells' more than once 
                        if not match_found: 
                            # only check pixels of the actual cell (approx. circle 
with radius  of the cell) 
                            if (y - cell.get_position()[1]) ** 2 + (x - 
cell.get_position()[0]) ** 2 <= radius: 
                                # make sure the pixel is part of the background img 
(relevant for cells on edges of the img) 
                                if (0 <= y <= background_mask.shape[0]) and (0 <= x 
<= background_mask.shape[1]): 
                                    # if the position of the pixel matches a mask 
pixel, add the cell to list 
                                    if background_mask[y][x] != 0: 
                                        match_found = True 
                                        filtered_cells.append(cells[cell_nr]) 
 
        return filtered_cells 
 
 
# --- End of Cell.py --- 
 
# --- Start of config.py --- 
 
"""Configuration file for the needed parameters""" 
 
# cell detection parameters for 'cellpose' functions 
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celldet = { 
    "cellprob_threshold": 0.0,  # float: (between 0.0 and 1.0, higher: less masks 
will be found) 
    "flow_threshold": 0.4,      # float: (between 0.0 and 1.0, lower: less masks 
will be found) 
} 
 
# adherent cell detection parameters 
adhcelldet = { 
    "time_for_adherent[s]": 60,    # int or float: time [s] to be detected as 
adherent 
    "delay[s]": 30,                # int or float: delay [s] between images 
    "images_threshold": 3, 
    "tolerance": 10             # int: tolerance radius for comparing cell 
positions (pixels) 
} 
 
# --- End of config.py --- 
 
# --- Start of imagefunctions.py --- 
 
import skimage.io 
import skimage.segmentation 
import os 
import numpy as np 
import cv2 
import glob 
from natsort import os_sorted 
 
 
"""def read_tifs(folder): 
     
    Reads '.tif'-files from the given folder 
    :param folder: folder directory (...:/.../.../) 
    :return: list containing ndarray of each '.tif'-file in the folder 
     
    files = [os.path.join(root, filename)   # creates list of every filename 
             for root, dirs, files in os.walk(folder) 
             for filename in files 
             if filename.lower().endswith('.tif')] 
 
    imgs = [skimage.io.imread(f) for f in files] 
 
    return imgs""" 
 
 
def read_tifs(folder): 
    """ 
    Reads '.tif'-files from the given folder 
    :param folder: folder directory (...:/.../.../) 
    :return: list containing ndarray of each '.tif'-file in the folder 
    """ 
 
    # read the images and make sure the reading order is the same es the one in the 
windows explorer ('os_sorted()') 
    imgs = [skimage.io.imread(file) for file in 
os_sorted(glob.glob(os.path.join(folder, "*.tif")))] 
 
    return imgs 
 
 
def read_pngs(folder): 
    """ 
     Reads '.png'-files from the given folder 
    :param folder: folder directory (...:/.../.../) 
    :return: list containing ndarray of each '.png'-file in the folder 
    """ 
    # read the images and make sure the reading order is the same es the one in the 
windows explorer ('os_sorted()') 
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    imgs = [skimage.io.imread(file) for file in 
os_sorted(glob.glob(os.path.join(folder, "*.png")), key=os.path.getmtime)] 
 
    return imgs 
 
 
def read_test_tifs(): 
    """ 
    Reads '.tif'-test-files from the test-folder 
    :return: list containing ndarray of each .'tif'-test-file in the folder 
    """ 
    folder = 'C:/Users/woerl/Documents/Physik/WS 21-
22/Bachelorarbeit/Python/celladheison/celladhesion/testimages' 
    files = [os.path.join(root, filename) 
             for root, dirs, files in os.walk(folder) 
             for filename in files 
             if filename.lower().endswith('.tif')] 
 
    imgs = [skimage.io.imread(f) for f in files] 
 
    return imgs 
 
 
def read_single_img(path): 
    # Read a single image from given path 
    img = skimage.io.imread(path) 
    return img 
 
 
def load_masks(path): 
    # load '.npy' masks from given path 
    masks = np.load(path, allow_pickle=True) 
    return masks 
 
 
def load_test_masks(): 
    testmasks = np.load('testmasks.npy') 
    return testmasks 
 
 
def load_diams(path): 
    # load diameters from '.txt' file at given path 
    with open(path, 'r') as filehandle: 
        diams = [current_diam.rstrip() for current_diam in filehandle.readlines()] 
    return list(np.float_(diams)) 
 
 
def load_test_diams(): 
    # open file and read the content in a list 
    with open('testdiams.txt', 'r') as filehandle: 
        diams = [current_diam.rstrip() for current_diam in filehandle.readlines()] 
    return list(np.float_(diams)) 
 
 
def overlay_outlines(imgs, masks): 
    """ 
    Generates red outline overlay in 'imgs' 
 
    :param imgs: list 
                containing 'ndarray' of each image 
    :param masks: list of 2D arrays; labelled 
                image, where 0=no masks; 1,2,...=mask labels 
    :param colour: array 
                Float array with values from 0.0 to 1.0 for the three RGB channels 
    :return overlay: list of RGB images 
                RGB images with coloured outlines 
    """ 
    if isinstance(imgs, list): 
        overlay = list() 
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        for img_number in range(len(imgs)):     # iterate all images in 'imgs' 
            # Create outlines of the masks with 'find_boundaries' function from 
'skimage' package: 
            outlines = skimage.segmentation.find_boundaries(masks[img_number], 
mode='outer').astype(np.uint8) 
            # Check if image is already RGB 
            if len(imgs[img_number].shape) != 3: 
                # convert image to RGB, divide by maximum value to show image in 
full range: 
                # img_rgb = np.stack((imgs[img_number] / 
imgs[img_number].max(),)*3, axis=-1) 
                img_rgb = np.stack((imgs[img_number],)*3, axis=-1) 
            else: 
                # img_rgb = imgs[img_number] / imgs[img_number].max() 
                img_rgb = imgs[img_number] 
            # iterate over every pixel and set colour of image to red, if pixel is 
part of an outline: 
            for y in range(masks[img_number].shape[0]): 
                for x in range(masks[img_number].shape[1]): 
                    if outlines[y][x] == 1: 
                        img_rgb[y][x] = [imgs[img_number].max(), 0, 0] 
            overlay.append(img_rgb)     # add new image with outlines to list 
        return overlay 
 
    else: 
        outlines = skimage.segmentation.find_boundaries(masks, 
mode='outer').astype(np.uint8) 
        # Check if image is already RGB 
        if len(imgs.shape) != 3: 
            # convert image to RGB, divide by maximum value to show image in full 
range: 
            img_rgb = np.stack((imgs / imgs.max(),) * 3, axis=-1) 
        else: 
            img_rgb = imgs / imgs.max() 
        # iterate over every pixel and set colour of image to red, if pixel is part 
of an outline: 
        for y in range(masks.shape[0]): 
            for x in range(masks.shape[1]): 
                if outlines[y][x] == 1: 
                    img_rgb[y][x] = [1.0, 0, 0] 
        overlay = img_rgb  # add new image with outlines to list 
    return overlay 
 
 
def overlay_adherent_squares(imgs, adherent_cells, square_length, colour=[0, 0.54, 
0.27]): 
    length = int(square_length / 2) 
    imgs_rgb = list() 
    for img_number in range(len(imgs)): 
        # Check if image is already RGB 
        if len(imgs[img_number].shape) != 3: 
            # convert image to RGB, divide by maximum value to show image in full 
range: 
            # imgs_rgb.append(np.stack((imgs[img_number] / imgs[img_number].max(),) 
* 3, axis=-1)) 
            imgs_rgb.append(np.stack((imgs[img_number],) * 3, axis=-1)) 
        else: 
            imgs_rgb.append(imgs[img_number] / imgs[img_number].max()) 
 
    for cell_number in range(len(adherent_cells)): 
        cell = adherent_cells[cell_number] 
        try: 
            pos = cell.get_position() 
            pos_top = [pos[0] - length, pos[1] - length] 
            pos_bottom = [pos[0] + length, pos[1] + length] 
            first_appearance = cell.get_first_appearance() 
            for consecutive_img_number in range(cell.get_number_appearances()): 
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                # imgs_rgb[first_appearance + consecutive_img_number] = 
cv2.rectangle(imgs_rgb[first_appearance + consecutive_img_number], pos_top, 
pos_bottom, color) 
                imgs_rgb[first_appearance + consecutive_img_number] = 
cv2.circle(imgs_rgb[first_appearance + consecutive_img_number], pos, 40, colour) 
                """ 
                for x_top in range(-length, length): 
                    imgs_rgb[first_appearance + concsecutive_img_number][pos[1] + 
length][pos[0] + x_top] = [0, 0.54, 0.27] 
                for x_bottom in range(-length, length): 
                    imgs_rgb[first_appearance + concsecutive_img_number][pos[1] - 
length][pos[0] + x_bottom] = [0, 0.54, 0.27] 
                for y in range(-length, length): 
                    imgs_rgb[first_appearance + concsecutive_img_number][pos[1] + 
y][pos[0] + length] = [0, 0.54, 0.27] 
                     
                for y in range(-length, length): 
                    imgs_rgb[first_appearance + concsecutive_img_number][pos[1] + 
y][pos[0] - length] = [0, 0.54, 0.27] 
                """ 
 
 
                """ 
                for y in range(-5, 5): 
                    for x in range(-5, 5): 
                        imgs_rgb[first_appearance + concsecutive_img_number][pos[1] 
+ y][pos[0] + x] = [0, 0.54, 0.27] 
                    """ 
        except: 
            print("No adherent cells") 
 
    return imgs_rgb 
 
 
def time_to_nrimgs(time, delay): 
    return 1 + int(round(time/delay, 0)) 
 
 
def filter_masks(masks, adherent_cells): 
    """ 
    Filters the given masks for the adherent cells -> deletes all masks that do not 
belong to an adherent cell 
 
    :param masks: list of 2D arrays 
                labelled image, where 0=no masks; 1,2,...=mask labels 
    :param adherent_cells: list 
                list of 'AdherentCell' objects 
    :return: filtered_masks: list of 2D arrays 
                same as masks, but only contains the masks that belong to adherent 
cells 
    """ 
 
    """for img_nr in range(len(masks)): 
        if adherent_cells[img_nr]: 
            pos = adherent_cells[img_nr][0].get_position() 
            mask_number = masks[img_nr][pos[0]][pos[1]] 
            adherent_mask_numbers[0] = mask_number 
            for cell_nr in range(1, len(adherent_cells[img_nr])): 
                pos = adherent_cells[img_nr][cell_nr].get_position() 
                mask_number = masks[img_nr][pos[0]][pos[1]] 
                adherent_mask_numbers.append(mask_number) 
        for y in range(masks[img_nr].shape[0]): 
            for x in range(masks[img_nr].shape[1]): 
                if masks[img_nr][y][x] not in adherent_mask_numbers: 
                    masks[img_nr][y][x] = 0 
    filtered_masks = masks""" 
 
    """zero_list = [0] 
    adherent_mask_numbers = list() 



151 
 

    for i in range(len(masks)): 
        adherent_mask_numbers.append(zero_list) 
    print(adherent_mask_numbers) 
 
    for cell_number in range(len(adherent_cells)): 
        cell = adherent_cells[cell_number] 
        first_app = adherent_cells[cell_number].get_first_appearance() 
        pos = adherent_cells[cell_number].get_position() 
        for consecutive_img_number in range(cell.get_number_appearances()): 
            mask_nr = masks[first_app + consecutive_img_number][pos[1]][pos[0]] 
            adherent_mask_numbers[first_app + 
consecutive_img_number].append(mask_nr)""" 
 
    # create list where the mask numbers belonging to adherent cells for each image 
will be saved 
    adherent_mask_numbers = list() 
 
    # create copy of masks that will be edited 
    filtered_masks = masks 
 
    for img_nr in range(len(masks)):    # iterate all images/masks of all images 
        temp_list = [0]                 # temporary list to safe adherent mask 
numbers for one image 
        for cell_nr in range(len(adherent_cells)):  # iterate all adherent cells 
            cell = adherent_cells[cell_nr] 
            first_app = cell.get_first_appearance() 
            # iterate all appearances of an adherent cell 
            for consecutive_img_number in range(cell.get_number_appearances()): 
                # check, if the image number of the current appearance equals the 
image number (outer iteration) 
                if img_nr == first_app + consecutive_img_number: 
                    # if yes, get position of the adherent cell 
                    pos = cell.get_position() 
                    # get number (pixel value) of the related mask 
                    mask_nr = masks[first_app + 
consecutive_img_number][pos[1]][pos[0]] 
                    # add number to the temporary list 
                    temp_list.append(mask_nr) 
        # add temporary list to adherent_mask_numbers list 
        adherent_mask_numbers.append(temp_list) 
 
    # iterate all images 
    for img_nr in range(len(filtered_masks)): 
        # iterate all pixels on image 
        for y in range(filtered_masks[img_nr].shape[0]): 
            for x in range(filtered_masks[img_nr].shape[1]): 
                # if value at pixel (mask) does not belong to an adherent mask, 
delete the mask pixel (set value to 0) 
                if filtered_masks[img_nr][y][x] not in 
adherent_mask_numbers[img_nr]: 
                    filtered_masks[img_nr][y][x] = 0 
 
    return filtered_masks 
 
 
def adherent_cells_over_phasecontrast(phc_img, masks, adherent_cells, colour): 
    """ 
    Overlays outlines only of the adherent cells on one single image 
 
    :param phc_img: ndarray 
                Image on which the outlines of the adherent cells will be plotted 
    :param masks: list of 2D arrays 
                labelled image, where 0=no masks; 1,2,...=mask labels 
    :param adherent_cells: list 
                list of 'AdherentCell' objects 
    :param colour: array 
                Float array with values from 0.0 to 1.0 for the three RGB channels 
    :return: adh_over_phc: list of RGB images 
                RGB images with red outline where adherent cells are located 
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    """ 
 
    adherent_masks = filter_masks(masks, adherent_cells) 
    imgs = list() 
    for i in range(len(masks)): 
        imgs.append(phc_img) 
    adh_over_phc = overlay_outlines(imgs, adherent_masks) 
 
    return adh_over_phc 
 
 
def background_mask_over_img(imgs, background_masks): 
    """ 
    Overlays outlines of the background mask over the images 
 
    :param imgs: list 
                list of 2D images 
    :param background_masks: 2D array or list of 2d arrays 
                labelled image, where 0=no masks; 1,2,...=mask labels 
    :param colour: array 
                Float array with values from 0.0 to 1.0 for the three RGB channels 
    :return: background_over_img: list of RGB images 
                RGB images with coloured outlines 
    """ 
    masks = list() 
    # if background mask is a list with more than one image 
    if (isinstance(background_masks, list)) and (len(background_masks) > 1): 
        masks = background_masks 
    # if background mask is a list with just one image 
    elif isinstance(background_masks, list): 
        for i in range(len(imgs)): 
            masks.append(background_masks[0]) 
    # if background mask is a single image 
    else: 
        for i in range(len(imgs)): 
            masks.append(background_masks) 
 
    background_over_img = overlay_outlines(imgs, masks) 
 
    return background_over_img 
 
 
def find_intensity_complete(img): 
    """ 
    Determines the intensity of all pixel values of an given image 
 
    :param img: ndarray 
            image of which the intensity shall be determined 
    :return: intensity: float 
            intensity of the picture 
    """ 
    pixels = 0  # total number of pixels 
    intensity_counter = np.float64(0)   # total intensity of all pixels 
 
    for y in range(img.shape[0]):   # iterate image 
        for x in range(img.shape[1]): 
            intensity_counter += img[y][x]  # raise value of the intensity by the 
value of the pixel 
            pixels += 1     # raise pixel counter 
 
    intensity = round(intensity_counter / pixels, 2)   # calculate intensity, 
normalized with the total number of pixels 
    return intensity 
 
 
def find_intensity_mask(img, background_mask): 
    """ 
    Determines the intensities of those pixels on an image, that match with the 
pixels of an background mask 



153 
 

    :param img: ndarray 
            image of which the intensity shall be determined 
    :param background_mask: 2D array 
            labelled image, where 0=no masks; 1,2,...=mask labels 
    :return: intensities: dictionary 
            dictionary that contains the intensity (float) of all pixels matching a 
mask, the intensity of all the other pixels 
            and the confluence (percentage of the image surface covered by masks). 
Key words: "mask", "rest", 
            "confluence" 
    """ 
 
    pixels_mask = 0     # variable to count the number of mask pixels 
    pixels_rest = 0     # variable to count all other pixels 
    intensity_mask_counter = np.float64(0)  # total intensity of mask pixels 
    intensity_rest_counter = np.float64(0)  # total intensity of other pixels 
 
    for y in range(img.shape[0]):   # iterate image 
        for x in range(img.shape[1]): 
            if background_mask[y][x] != 0:  # mask pixel, if value is not zero 
                intensity_mask_counter += img[y][x]     # -> raise total mask 
intensity 
                pixels_mask += 1    # -> raise mask pixel counter 
            else:   # else: no mask pixel 
                intensity_rest_counter += img[y][x]     # -> raise rest mask 
intensity 
                pixels_rest += 1    # -> raise rest pixel counter 
 
    # calculate intensity (normalized with the total number of pixels) of the mask 
and rest pixels 
    intensity_mask = round(intensity_mask_counter / pixels_mask, 2) 
    intensity_rest = round(intensity_rest_counter / pixels_rest, 2) 
    # calculate confluence of the background mask 
    confluence = round((pixels_mask / (pixels_mask + pixels_rest)) * 100) 
 
    # save values in a dictionary 
    intensities = {"mask": intensity_mask, "rest": intensity_rest, "confluence": 
confluence} 
 
    return intensities 
 
 
def find_intensity(imgs, background_mask=None): 
    """ 
    Determines the intensities of one or more images. If an image with a background 
mask is handed over, the intensities 
    of those pixels on the images, that match with the pixels of the background 
mask, are calculated separately. 
    The function uses 'find_intensity_complete' and 'find_intensity_mask' functions 
to do so. 
 
    :param imgs: list or ndarray 
            list containing 'ndarray' of each image ore one single ndarray 
    :param background_mask: 2D array or list of 2d arrays 
            labelled image, where 0=no masks; 1,2,...=mask labels 
    :return: intensity: float or dictionary 
            intensity value (for single image input) or list of intensity values 
(for multiple image input) 
            If a background mask is used, the intensity is a dictionary that 
contains the intensity (float) of all 
            pixels matching a mask, the intensity of all the other pixels and the 
confluence (percentage of the image 
            surface covered by masks). Key words: "mask", "rest", "confluence". 
            Otherwise, the intensity is a single float value. 
    """ 
    # version without background mask 
    if background_mask is None: 
        # multiple images 
        if isinstance(imgs, list): 
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            intensities = list()    # list needed for multiple images 
            for img_nr in range(len(imgs)):     # find intensity for every image 
                intensities.append(find_intensity_complete(imgs[img_nr])) 
            return intensities 
        # single image 
        else: 
            intensity = find_intensity_complete(imgs)   # find intensity for single 
image 
            return intensity 
    # version with background mask 
    else: 
        # multiple images 
        if isinstance(imgs, list): 
            intensities = list()    # list needed for multiple images 
            for img_nr in range(len(imgs)): 
                # if function gets a list of background_masks (one for every 
image): use the specific background_mask[img_nr] 
                if (isinstance(background_mask, list)) and (len(background_mask) > 
1): 
                    intensities.append(find_intensity_mask(imgs[img_nr], 
background_mask[img_nr])) 
                # otherwise use the same background mask for every image 
                else: 
                    intensities.append(find_intensity_mask(imgs[img_nr], 
background_mask[0])) 
            return intensities 
        # single image 
        else: 
            intensity = find_intensity_mask(imgs, background_mask) 
            return intensity 
 
 
# --- End of imagefunctions.py --- 
 
# --- Start of programrun_functions.py --- 
 
import json 
 
import imagefunctions as imf 
from AdherentCell import AdherentCell 
import skimage.io 
import os.path 
import csv 
import config 
 
 
def change_celldet_params(): 
    """ Changes the cell detection parameters in the config file""" 
 
    # load the current configuration 
    with open("config.json", "r") as jsonFile: 
        config = json.load(jsonFile) 
 
    while True: 
        try: 
            config["celldet"]["cellprob_threshold"] = 
float(input("cellprob_threshold (between 0.0 and 1.0, higher: less masks will be 
found): ")) 
            break 
        except ValueError: 
            print("cellprob_threshold not valid") 
    while True: 
        try: 
            config["celldet"]["flow_threshold"] = float(input("flow_threshold 
(between 0.0 and 1.0, lower: less masks will be found): ")) 
            break 
        except ValueError: 
            print("flow_threshold not valid") 
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    # write the new parameters to the config file 
    with open("config.json", "w") as jsonFile: 
        json.dump(config, jsonFile) 
    jsonFile.close() 
 
 
def change_adhcelldet_params(): 
    """ Changes the cell detection parameters in the config file""" 
 
    # load the current configuration 
    with open("config.json", "r") as jsonFile: 
        config = json.load(jsonFile) 
 
    while True: 
        try: 
            config["adhcelldet"]["time_for_adherent[s]"] = float(input("time [s] to 
be detected as adherent: ")) 
            break 
        except ValueError: 
            print("time not valid") 
    while True: 
        try: 
            config["adhcelldet"]["delay[s]"] = float(input("delay [s] between 
images: ")) 
            break 
        except ValueError: 
            print("delay not valid") 
 
    config["adhcelldet"]["images_threshold"] = 
imf.time_to_nrimgs(config["adhcelldet"]["time_for_adherent[s]"], 
                                                               
config["adhcelldet"]["delay[s]"]) 
    while True: 
        try: 
            config["adhcelldet"]["tolerance"] = int(input("tolerance radius for 
comparing cell positions: ")) 
            break 
        except ValueError: 
            print("tolerance radius not valid") 
 
    # write the new parameters to the config file 
    with open("config.json", "w") as jsonFile: 
        json.dump(config, jsonFile) 
    jsonFile.close() 
 
 
"""def get_celldet_params(): 
    # get parameters for cell detection from user 
    while True: 
        try: 
            cellprob_threshold = float(input("cellprob_threshold (between 0.0 and 
1.0, higher: less masks will be found): ")) 
            break 
        except ValueError: 
            print("cellprob_threshold not valid") 
    while True: 
        try: 
            flow_threshold = float(input("flow_threshold (between 0.0 and 1.0, 
lower: less masks will be found): ")) 
            break 
        except ValueError: 
            print("flow_threshold not valid") 
    return cellprob_threshold, flow_threshold""" 
 
 
"""def get_adhcelldet_params(diams): 
    # get parameters for adherent-cell detection from user 
    while True: 
        try: 
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            time_for_adherent = float(input("time [s] to be detected as adherent: 
")) 
            break 
        except ValueError: 
            print("time not valid") 
    while True: 
        try: 
            delay = float(input("delay [s] between images: ")) 
            break 
        except ValueError: 
            print("delay not valid") 
    images_threshold = imf.time_to_nrimgs(time_for_adherent, delay) 
    while True: 
        try: 
            """"""compare_threshold = int(input( 
                "tolerance radius for comparing cell positions: ".format( 
                    min(diams) / 2)))"""""" 
            compare_threshold = int(input("tolerance radius for comparing cell 
positions: ")) 
            break 
        except ValueError: 
            print("tolerance radius not valid") 
 
    return time_for_adherent, delay, images_threshold, compare_threshold""" 
 
 
"""def save_params_in_txtfile(txtfile, masks_name, diams_name, time_for_adherent, 
delay, images_threshold, 
                           compare_threshold): 
    # save the used masks, diams and parameters in the text file 
    txtfile.write("masks={0}, diams={1}, time_for_adherent[s]={2}, delay[s]={3}, 
images_threshold={4}, \ 
    tolerance={5}\n".format(masks_name, diams_name, time_for_adherent, delay, 
images_threshold, compare_threshold))""" 
 
 
def save_config_in_txtfile(txtfile, masks_name, diams_name, config): 
    # save the used masks, diams and parameters in the text file 
    txtfile.write("masks={0}, diams={1}\n".format(masks_name, diams_name)) 
    txtfile.write("Cell detection parameters:") 
    txtfile.write(str(config["celldet"])) 
    txtfile.write("\nAdherent Cell detection parameters:") 
    txtfile.write(str(config["adhcelldet"])) 
    
txtfile.write("\n__________________________________________________________________
________________________\n\n") 
 
 
def save_adh_in_txtfile(txtfile, number_adherent_cells, number_cells_total, 
adherent_cells, cells, 
                        nr_adherent_cells_on_img): 
    # save the information found about the adherent cells in the text file 
    # number adherent cells 
    print("Number adherent cells: ", number_adherent_cells) 
    txtfile.write("Number adherent cells: {0}\n".format(number_adherent_cells)) 
 
    # number cells total 
    print("Number cells total: ", number_cells_total) 
    txtfile.write("Number cells total: {0}\n".format(number_cells_total)) 
 
    # number generated Cell objects 
    cellcounter = 0 
    for img_nr in range(len(cells)): 
        for cell_nr in range(len(cells[img_nr])): 
            cellcounter += 1 
    print("Number generated Cell objects: {0}".format(cellcounter)) 
    txtfile.write("Number generated Cell objects: {0}\n\n".format(cellcounter)) 
 
    # number cells on first image 
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    print("\nNumber cells on first image: {0}".format(len(cells[0]))) 
    txtfile.write("\n\nNumber cells on first image: {0}".format(len(cells[0]))) 
 
    # number adherent cells on each image 
    print("\nNumber adherent cells on each image: \n") 
    txtfile.write("\n\nNumber adherent cells on each image: \n") 
    for i in range(len(nr_adherent_cells_on_img)): 
        print("    Image {0}:  {1}".format(i, nr_adherent_cells_on_img[i])) 
        txtfile.write("\n    Image {0}:  {1} ".format(i, 
nr_adherent_cells_on_img[i])) 
 
    # adherent cells 
    print("\n\nAdherent cells: \n") 
    txtfile.write("\n\nAdherent cells: \n\n") 
    for i in range(len(adherent_cells)): 
        print("    {0}".format(adherent_cells[i])) 
        txtfile.write("    {0}".format(adherent_cells[i].__str__())) 
        txtfile.write("\n") 
 
    # number generated AdherentCell objects 
    print("\nCreated AdherentCell-objects: ", 
AdherentCell.get_adherent_cellcounter()) 
    txtfile.write("\n\nCreated AdherentCell-objects: 
{0}\n".format(AdherentCell.get_adherent_cellcounter())) 
 
    
print("\n__________________________________________________________________________
________________\n\n") 
    
txtfile.write("\n\n________________________________________________________________
__________________________\n\n") 
 
 
def save_confluence_in_txtfile(txtfile, mask_name, confluence): 
    print("Confluence: {0}% \n\n".format(confluence)) 
    txtfile.write("\n\n\nConfluence (Used background mask: {0}): {1}% 
\n\n\n".format(mask_name, confluence)) 
 
 
def show_and_save_result_imgs(imgs, path, name): 
    # show images and save them in the directory under a given name 
    if isinstance(imgs, list): 
        for i in range(len(imgs)): 
            skimage.io.imshow(imgs[i]) 
            skimage.io.show() 
            filename = name + str(i) + ".jpg" 
            skimage.io.imsave(os.path.join(path, filename), 
skimage.util.img_as_ubyte(imgs[i])) 
    else: 
        skimage.io.imshow(imgs) 
        skimage.io.show() 
        filename = name + ".jpg" 
        skimage.io.imsave(os.path.join(path, filename), 
skimage.util.img_as_ubyte(imgs)) 
 
 
def number_adh_on_image_to_csv(nr_adherent_cells_on_img, path): 
    # saves the nr_adherent_cells_on_img ('int'-list) in csv file 
    with open(path, 'w', newline='') as csv_1: 
        csv_out = csv.writer(csv_1) 
        csv_out.writerows([nr_adherent_cells_on_img[index]] for index in range(0, 
len(nr_adherent_cells_on_img))) 
 
 
def celladhesion_to_csv(confluence, nr_adherent_cells, nr_on_first, 
nr_adherent_cells_filtered, nr_on_first_filtered, 
                        path): 
    with open(path, 'w') as csv_1: 
        csv_out = csv.writer(csv_1) 
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        csv_out.writerow(['Confl', 'adhC', 'Cfirst', 'adhC/Cfirst', 'adhC_filter', 
'Cfirst_filter', 
                          'adhC/Cfirst_filter']) 
        csv_out.writerow([str(confluence).replace('.', ','), 
str(nr_adherent_cells), str(nr_on_first), 
                          str(round(nr_adherent_cells / nr_on_first, 
2)).replace('.', ','), 
                          str(nr_adherent_cells_filtered), 
str(nr_on_first_filtered), 
                          str(round(nr_adherent_cells_filtered / 
nr_on_first_filtered, 2)).replace('.', ',')]) 
    csv_1.close() 
 
 
def intensities_to_csv(intensity, path): 
 
    with open(path, 'w') as csv_1: 
        csv_out = csv.writer(csv_1) 
        # single image, no background mask 
        if isinstance(intensity, float): 
            csv_out.writerow(['Intensity']) 
            csv_out.writerow([str(intensity).replace('.', ',')]) 
        # single image, background mask 
        elif isinstance(intensity, dict): 
            csv_out.writerow(['Confluence', 'Intensity Mask', 'Intensity Rest', 
'Diff.', 'Diff. Norm.']) 
            csv_out.writerow([str(intensity["confluence"]).replace('.', ','), 
                              str(intensity["mask"]).replace('.', ','), 
                              str(intensity["rest"]).replace('.', ','), 
                              str(intensity["mask"] - 
intensity["rest"]).replace('.', ','), 
                              str((intensity["mask"] - intensity["rest"]) / 
(intensity["mask"] + intensity["rest"])).replace('.', ',')]) 
        # multiple images 
        else: 
            # no background mask 
            if isinstance(intensity[0], float): 
                csv_out.writerow(['Image Nr.', 'Intensity']) 
                for i in range(len(intensity)): 
                    csv_out.writerow([i, intensity[i]]) 
                csv_out.writerow(['']) 
                csv_out.writerow(['Images', 'Intensity Diff.']) 
                for i in range(len(intensity) - 1): 
                    csv_out.writerow([str(i + 1) + ' - ' + str(i), 
                                      intensity[i + 1] - intensity[i]]) 
            # background mask 
            else: 
                # create lists for the results (simplify writing to the csv file) 
                confluence = list() 
                mask = list() 
                rest = list() 
                diff = list() 
                diff_norm = list() 
 
                csv_out.writerow(['Image Nr.', 'Confluence', 'Intensity Mask', 
'Intensity Rest', 'Diff.', 'Diff. Norm.']) 
                for i in range(len(intensity)): 
                    # add results to the lists 
                    confluence.append(intensity[i]["confluence"]) 
                    mask.append(intensity[i]["mask"]) 
                    rest.append(intensity[i]["rest"]) 
                    diff.append(mask[i] - rest[i]) 
                    diff_norm.append((mask[i] - rest[i]) / (mask[i] + rest[i])) 
                    csv_out.writerow([i, 
                                      str(confluence[i]).replace('.', ','), 
                                      str(mask[i]).replace('.', ','), 
                                      str(rest[i]).replace('.', ','), 
                                      str(diff[i]).replace('.', ','), 
                                      str(diff_norm[i]).replace('.', ',')]) 
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                csv_out.writerow(['']) 
                csv_out.writerow(['Images', 'Intensity Diff.', 'Intensity Diff. 
Norm.']) 
                for i in range(len(intensity) - 1): 
                    csv_out.writerow([str(i + 1) + ' - ' + str(i), 
                                      str(diff[i + 1] - diff[i]).replace('.', ','), 
                                      str(diff_norm[i + 1] - 
diff_norm[i]).replace('.', ',')]) 
 
    csv_1.close() 
 
# --- End of programrun_functions.py --- 
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A5 Script used in Macromolecule Diffusion through the 
Endothelial Layer 

 

Available on Github: https://github.com/manuelsirch/dissertation/blob/main/macromolecule_diffusion 

from PIL import Image 
import numpy as np 
from tkinter import Tk 
from tkinter.filedialog import askdirectory 
import os 
import matplotlib.pyplot as plt 
import csv 
import time 
import pandas as pd 
import re 
 
timestr = time.strftime("%Y-%m-%d-%H-%M-%S") 
 
rootdir = askdirectory(title='Select Folder') 
print(rootdir) 
 
for dirs in os.listdir(rootdir): 
    if os.path.isdir(os.path.join(rootdir, dirs)): 
         
        foldername = os.path.basename(os.path.normpath(dirs)) 
         
        df=pd.DataFrame() 
         
        dfname = './' + foldername + '_' + timestr + '.csv' 
         
        length = np.arange(0, 634.88, 0.62) 
         
        df['Abstand'] = length 
         
         
        for files in os.listdir(os.path.join(rootdir, dirs)): 
                 
            filename = os.path.join(dirs, files) 
            print(filename) 
             
            if files.endswith(".jpg"): 
                img = Image.open(filename).convert('L') 
                filename = os.path.basename(filename) 
                number = re.findall(r'\d+', filename) 
                time = (int(number[0]) * 15) - 15 
                new_filename = str(time).zfill(3) + ' s' 
                WIDTH, HEIGHT = img.size 
                pix = img.load() 
                data = np.asarray(img.getdata()) 
                data = data.reshape((HEIGHT,WIDTH)) 
                reduced_data = data.mean(axis=1) 
                maximum = max(reduced_data) 
                reduced_data[:] = [x / maximum for x in reduced_data] 
                reduced_data = reduced_data[::-1] 
                #filename = os.path.basename(filename) 
                df[new_filename] = reduced_data.flatten() 
                #df = df.join(pd.DataFrame(reduced_data, columns = [filename])) 
                #if not os.path.exists(dfname): 
                    #with open(csvname, 'w', neewline='') as file: 
                        #spamwriter = csv.writer(file, delimiter = ',') 
                     
        df = df.sort_index(axis = 1) 
        first_column = df.pop('Abstand') 
        df.insert(0, 'Abstand', first_column) 
        df.to_csv (dfname, index = False, header = True) 
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