
AutoDFBench: A Framework for AI Generated Digital Forensic
Code and Tool Testing and Evaluation

Akila Wickramasekara
School of Computer Science
University College Dublin

Dublin, Ireland
akila.wickramasekara@ucdconnect.ie

Alanna Densmore
Florida State University
Tallahassee, FL, USA
amd22c@fsu.edu

Frank Breitinger
Institute of Computer Science

University of Augsburg
Augsburg, Germany

frank.breitinger@uni-a.de

Hudan Studiawan
Department of Informatics

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia
hudan@if.its.ac.id

Mark Scanlon
School of Computer Science
University College Dublin

Dublin, Ireland
mark.scanlon@ucd.ie

Abstract
Generative AI (GenAI) and Large Language Models (LLMs) show
great potential in various domains, including digital forensics. A
notable use case of these technologies is automatic code generation,
which can reasonably be expected to include digital forensic appli-
cations in the not-too-distant future. As with any digital forensic
tool, these systems must undergo extensive testing and validation.
However, manually evaluating outputs, including generated DF
code, remains a challenge. AutoDFBench is an automated frame-
work designed to address this by validating AI-generated code and
tools against NIST’s Computer Forensics Tool Testing Program
(CFTT) procedures and subsequently calculating an AutoDFBench
benchmarking score. The framework operates in four phases: data
preparation, API handling, code execution, and result recording
with score calculation. It benchmarks generative AI systems, such
as LLMs and automated code generation agents, for DF applica-
tions. This benchmark can support iterative development or serve
as a comparison metric between GenAI DF systems. As a proof of
concept, NIST’s forensic string search tests were used, involving
more than 24,200 tests with five top-performing code generation
LLMs. These tests validated the output of 121 cases, considering
two levels of user expertise, two programming languages, and ten
iterations per case with varying prompts. The results also highlight
the significant limitations of the DF-specific solutions generated by
generic LLMs.

CCS Concepts
• Applied computing→ Computer forensics; Evidence collec-
tion, storage and analysis; • Software and its engineering →
Software verification and validation.

This work is licensed under a Creative Commons Attribution International
4.0 License.

DFDS 2025, Brno, Czech Republic
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1076-6/25/04
https://doi.org/10.1145/3712716.3712718

Keywords
Digital Forensics, Large Language Models, Investigative Process,
Automation, Challenges

ACM Reference Format:
Akila Wickramasekara, Alanna Densmore, Frank Breitinger, Hudan Studi-
awan, and Mark Scanlon. 2025. AutoDFBench: A Framework for AI Gener-
ated Digital Forensic Code and Tool Testing and Evaluation. In Digital Foren-
sics Doctoral Symposium (DFDS 2025), April 01, 2025, Brno, Czech Republic.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3712716.3712718

1 Introduction
Digital forensics (DF) relies on software tools to gather and analyse
digital data, which can range from small single-function scripts to
advanced software suites [2, 18].With recent advances in generative
artificial intelligence (GenAI), including Large Language Models
(LLMs) [12], and the growing interest in the application of AI to
digital forensics [4], it is reasonable to expect GenAI to be used
for digital forensic purposes in the not-too-distant future. This has
the potential to streamline workflows and allow practitioners to
develop bespoke solutions faster for specific DF tasks [16]. However,
this evolution raises critical questions about the evaluation of these
tools, i.e., scalable and robust testing.

To address these challenges, this article introduces a novel frame-
work, AutoDFBench (Automatic Digital Forensic Code and Tool
Benchmarking), along with its corresponding AutoDFBench score.
The framework provides a structured approach to evaluate AI-
generated DF code, comparable to unit testing in software develop-
ment, where specific functions are validated against expected re-
sults. A forensic task is defined with a dataset containing a ‘ground
truth’. The task is executed through a pipeline, enabling comparison
of the tool’s output with the ground truth. This methodology is
exemplified in the National Institute of Standards and Technology’s
(NIST) Computer Forensic Tool Testing Programme (CFTT)1.

The framework is validated using forensic string search, a com-
mon task in digital investigations [7]. This validation uses AutoDF-
Bench to query five LLMs to generate executable string search code,

1https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-
testing-program-cftt

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.

https://orcid.org/0000-0003-4320-417X
https://orcid.org/0009-0009-1753-9129
https://orcid.org/0000-0001-5261-4600
https://orcid.org/0000-0002-8884-6208
https://orcid.org/0000-0002-6581-7164
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3712716.3712718
https://doi.org/10.1145/3712716.3712718
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712716.3712718&domain=pdf&date_stamp=2025-04-01


DFDS 2025, April 01, 2025, Brno, Czech Republic Wickramasekara et al.

execute it, and evaluate the generated code. The CFTT string search
dataset serves as the ground truth.

This work makes the following contributions:
(1) Design and implementation of an open-source benchmark-

ing framework, AutoDFBench: A robust framework for evalu-
ating AI-generated scripts in digital forensic use cases, acces-
sible at the following GitHub link: https://github.com/akila-
UCD/AutoDFBench.

(2) Demonstration of the framework: A comparison of five state-
of-the-art LLMs performing string search, resulting in the
most extensive known comparison of generated DF code
with 24,200 unique tests.

(3) Insights on LLM performance: The findings reveal that none
of the LLMs performed satisfactorily, highlighting the need
for practitioners to validate the LLM output and the impor-
tance of well-tested tools in forensic investigations.

2 Background
2.1 Computer Forensics Tool Testing Program

(CFTT)
The typical phases of the DF process commonly rely on both pro-
prietary and open-source tools for accurate data acquisition and
analysis, leading to evidence discovery. Ensuring the reliability of
these tools is critical, and the National Institute of Standards and
Technology (NIST) addresses this through the Computer Forensics
Tool Testing Program (CFTT). The program establishes a framework
to test forensic tools by defining specifications, criteria, procedures,
and test sets to validate their effectiveness and reliability2. CFTT
provides protocols for various subfields, including Windows reg-
istry forensics, deleted file recovery, disk imaging, file carving, mo-
bile devices, cloud data extraction, SQLite forensics, string search,
and write blockers.

2.2 Large Language Models
An LLM is a neural network-based model with billions of parame-
ters trained on extensive text datasets. These models understand
and generate human language by recognising relationships between
words and phrases [5, 15]. LLMs have revolutionised natural lan-
guage processing (NLP), excelling in various tasks rather than being
limited to specific functions.

Fine-tuned LLMs are adapted for specialised tasks in domains
such as security, medicine, engineering, and business. This involves
retraining the model on domain-specific datasets, enabling them
to perform tasks such as threat detection, clinical decision-making,
and business process automation [16].

2.3 HumanEval
HumanEval is a benchmark for assessing the code generation ca-
pabilities of generative AI systems, including LLMs. It consists of
Python programming tasks, where each task includes a problem
description and a test suite to verify the generated code [3].

The evaluation metric, pass@k, measures the percentage of cor-
rectly solved problems, with pass@1 indicating success on the first

2https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-
testing-program-cftt

attempt. HumanEval is widely used to evaluate and compare LLMs
such as GPT-4 and StarCoder for their accuracy and functionality
in code generation.

3 Related Work
The admissibility of electronic evidence requires a rigorous and
scientific approach to validate DF tools. Guo et al. [6] proposed
a functionality-orientated paradigm for tool testing, focussing on
search functions. Their methodology includes mapping functions,
specifying requirements, and developing reference test cases to
assess tools’ performance against standardised criteria, thereby
aiding in the design of new validation frameworks.

The use of LLMs in DF is nascent but promising, as highlighted
in prior studies. ChatGPT has been explored for tasks such as pro-
gramming, recovering encryption keys, file carving, and keyword
searching, demonstrating the potential for investigation and edu-
cation [13]. Henseler and van Beek [8] showed ChatGPT’s utility
in the analysis phase, acting as a copilot to examine artefacts and
provide instructions. However, they noted inherent issues with hal-
lucinations in LLMs, suggesting that Augmented Language Models
(ALMs) might mitigate these shortcomings [8]. Other studies have
explored the potential for automating script generation, question
answering, and sentiment analysis while acknowledging risks such
as hallucinations, bias, and legal concerns [14].

Wickramasekara et al. [16] introduced a usability matrix cate-
gorising DF phases as low, medium, or high potential for LLMs.
They highlighted Multimodal Large Language Models (MLLMs) for
investigations and analysis. Similarly, Michelet and Breitinger [10]
demonstrated LLMs’ ability to generate DF reports using Llama2
and ChatGPT 3.5. By inputting data from a Universal Forensic Ex-
traction Device (UFED) Physical Analyser, the researchers demon-
strated that while LLMs can automate report generation, the quality
depends on the model size, and hallucinations remain a drawback,
stressing the need for standardised reports.

The potential of LLMs for generating forensic intelligence graphs
(FIGs) was explored by Xu et al. [19]. Using GPT-4-turbo, they
reconstructed FIGs from data extracted from mobile devices. Their
approach achieved 91.7% coverage for evidence entities and 93.8%
for relationship coverage, showcasing the utility of LLMs in building
evidence networks.

Wickramasekara and Scanlon [17] proposed a framework that
uses Microsoft AutoGen for DF investigations. This framework
utilises AI agents with multiple pretrained LLMs to perform DF
tasks, bridging knowledge gaps among investigators and enhancing
efficiency. However, the researchers highlighted language profi-
ciency as a dependency that affects agent performance.

volGPT, a Volatility 3 plugin, employs LLMs to evaluate ran-
somware in memory dumps through prompt-based techniques [11].
It uses JSON-formatted process data to identify ransomware. Limi-
tations include challenges in detecting fileless malware or obscured
processes [11].

Despite these advancements, Breitinger et al. [2] emphasised
the rapid growth of AI in DF in recent years and the need for new
research avenues to effectively leverage AI and LLMs. Although
prior work has explored LLM applications in DF, a structured mech-
anism to evaluate their results remains absent. This work addresses

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.

https://github.com/akila-UCD/AutoDFBench
https://github.com/akila-UCD/AutoDFBench
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt


AutoDFBench: A Framework for AI Generated Digital Forensic Code and Tool Testing and Evaluation DFDS 2025, April 01, 2025, Brno, Czech Republic

Database

Report

NIST
Ground
Truth

Test Suite

Score Computation

Code Execution
Environment

Code
Generator
Interface

Figure 1: Overview of the proposed framework

this gap by proposing a framework to evaluate AI-assisted contri-
butions, allowing the evaluation of LLM effectiveness in forensic
scenarios.

4 Framework Design
This section outlines the design considerations and provides a de-
tailed technical explanation of the framework.

4.1 Design Considerations
The framework is built for extensibility, enabling customisation
for diverse experiments. Parameters such as the base prompt, test-
ing disk image types, and the number of cross-validations can be
tailored to specific needs. Its flexibility also includes seamless inte-
gration with various LLMs, as the framework is LLM agnostic. It
supports local models such as Llama 3, StarCoder 2, andWaveCoder,
as well as remote models such as GPT-4o and Claude 3.5 Sonnet,
accessed via APIs integrated through the LLM Python library3. Key
variables and configurations are stored in a MySQL database and a
configuration file, allowing the smooth incorporation of new mod-
els or updates and ensuring adaptability to future technological
advancements.

The framework also prioritises reproducibility and architecture
agnosticism. By maintaining all variables, prompts, and results
in a MySQL database, experiments can be reliably replicated un-
der identical conditions, enabling consistent validation of LLMs in
DF. The architecture-agnostic design further enhances its versatil-
ity, ensuring compatibility across various computing environments.
Whether hosted on GPU-enabled local servers or deployed on cloud
platforms, Ollama Docker containers ensure smooth operation re-
gardless of hardware or software infrastructure. These features,
illustrated in Figure 1, establish the framework as a flexible and
robust solution for a wide range of forensic validation tasks.

3https://llm.datasette.io/en/stable/

4.2 Database
The AutoDFBench database is designed to support the management
and analysis of experiments. Key components include tables for dy-
namic configurations, experiment management, and results storage.
The configuration table tracks parameters such as API URLs, API
keys, and disk paths, while the jobs table manages experiment defi-
nitions, including test parameters such as model type, disk image
type, and script settings.

Prompt generation and test outcomes are recorded, including
metadata such as response times, token counts, and execution sta-
tuses. These details enable a comprehensive performance tracking
and facilitate analysis in various test scenarios. The results are cat-
egorised by hit types (active, deleted, and unallocated), allowing
for a detailed performance evaluation and accuracy scoring.

4.3 Software
The framework operates in four key phases: API handling, code
preparation, code execution, and summary generation, as illustrated
in Figure 3 and detailed in Section 6.

In the API handling phase, the framework retrieves job details
and base prompts, combines them with additional input, and gen-
erates responses using specified language models. API calls for
remote models like GPT-4o and Claude 3.5 Sonnet adhere to rate
limits and token usage policies, ensuring reliable operation.

During code preparation, the system processes generated prompts,
extracts, and saves code snippets from the LLMs’ responses, and
organises them into structured output folders for traceability. Once
prepared, these scripts are queued for execution.

The code execution phase runs the scripts, verifying disk paths
and permissions to ensure valid test environments. A fallback mech-
anism addresses corrupted or inaccessible disk paths. The results
of the execution, including any errors, are recorded for analysis,
with a timeout limit ensuring testing efficiency for badly formatted
code.

Finally, test results are validated against ground truth data in the
summary phase and metrics such as precision, recall, and F1 scores
are calculated. These results are stored for detailed performance
analysis and benchmarking.

The framework is modular and configurable, allowing each phase
to run independently. This flexibility enables users to adapt the
system to specific needs and test cases, facilitating comprehensive
and scalable evaluations.

4.4 Ground Truth
The framework relies on ground truth data from the NIST CFTT
program for validation. These data are formatted and stored in the
ground_truth table within the database. The framework compares
search results with the ground truth during validation to ensure
accuracy. More details on the usability of these data are provided
in Section 5.1.

4.5 Score Calculation
The framework uses ground truth data to compute precision, recall,
and F1 scores for each test run by analysing true positives, false
positives, and false negatives.

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.



DFDS 2025, April 01, 2025, Brno, Czech Republic Wickramasekara et al.

Llama 3

StarCoder2

WaveCoder

GPT-4o

Claude 3.5 Sonnet

Report and AutoDFBench Scores

Human
Prompt

Engineering

NIST
Test

Cases

AutoDFBench
Framework

Ollama Docker

OllamaDocker

Ollama Docker

LLM
LibraryJobs

Figure 2: Overview of the proof of concept and evaluation of
the framework

True Positives are matches between test results and ground
truth data for a specific test case. False Positives are hits in the
test results that do not align with the ground truth, indicating
incorrect detections. False Negatives are expected outcomes from
the ground truth not identified in the test results, representing
missed detections.

Based on these metrics, precision, recall and F1 scores are cal-
culated for each subtest. The database stores these scores, and the
average F1 score is computed across subtests. This average, referred
to as the AutoDFBench score, provides a benchmark to evaluate the
performance of different language models and to suggest strategies
in the forensic string search.

5 Proof of Concept
This section demonstrates the capabilities of the framework and its
practical usability. The evaluation used the Forensic String Search
test cases provided by CFTT, employing three open-source LLMs
and two closed-source LLMs. Figure 2 provides an overview of
the evaluation process for code generated by the LLMs, including
Llama 3, StarCoder2, WaveCoder, GPT-4o, and Claude 3.5 Sonnet.
The framework integrates human-engineered prompts and NIST
test cases as input for testing and validation. It interacts with the
LLMs to generate task-specific code, executes the resulting scripts,
evaluates outputs against ground truth data, and computes the
AutoDFBench Scores to benchmark the models’ performance.

5.1 Forensic String Search
String-based evidence is critical in investigations, encompassing
data such as natural language text, financial transactions, logs,
emails, and other text-based information [1]. String searching is
one of the most commonly performed tasks by practitioners [7],
making it a practical choice for proof-of-concept testing.

The CFTT defines two core requirements for string search tools:
returning exactmatches for a given keyword and supporting searches
using specific character representations. In addition, 15 non-functional
requirements are outlined, including search area specification, stem-
ming, and synonym searches. Based on these criteria, NIST has
validated numerous forensic tools [18].

The ground truth data, sourced from NIST’s ‘Expected Results’4,
lists four-digit numbers each tool must locate, with their file loca-
tions specified as Allocated, Unallocated, or Deleted. For Linux, only
Allocated and Deleted spaces are covered. Approximately 1,900 test
cases for Windows and Linux were added to the ground_truth
table, focussing on these two locations for Linux experiments.

5.2 LLM Selection
According to Jiang et al. [9], the pass@k = 1 scores for code gen-
eration are 84.1% for GPT-4, 82.9% for Claude 3 Opus, 72.6% for
StarCoder2-Instruct, 74.4% for CodeFuse, and 81.7% for Llama 3,
based on the largest versions of each model. These high HumanEval
scores make them suitable for this proof-of-concept.

Anthropic recently reported that Claude 3.5 Sonnet achieves a
pass@k = 1 score of 92%, surpassing Claude 3 Opus, while GPT-4o
achieves 90.2%, outperforming GPT-4. These evaluations highlight
the advances in the code generation capabilities of Claude 3.5 Son-
net and GPT-4o.

For this demonstration, five LLMs were selected: GPT-4o, Claude
3.5 Sonnet, WaveCoder, StarCoder2-Instruct, and Llama 3. These
models were chosen for their high HumanEval benchmark perfor-
mance and compatibility with the Ollama framework, ensuring
robust code generation for the framework’s tasks [9].

5.3 Implementation
The framework and testing environment were deployed in a Docker-
enabled setup. Separate Docker containers were used for the soft-
ware and MySQL database. The testing server featured a 3.6 GHz
Intel Core i7 CPU with 8 cores and 192 GB of RAM, along with
NVIDIA GeForce RTX 4090 and RTX 3090 GPUs, each equipped
with 24 GB of VRAM, for LLM response generation.

API keys for GPT-4o and Claude 3.5 Sonnet were securely stored
in the config table. For local LLMs, three individual Ollama Docker
containerswere configured using docker-compose.yml files. These
files defined settings such as Docker IP addresses, container names,
ports, and GPU preferences. An internal Docker network facili-
tated communication within the server, and the IP addresses of the
configured containers were recorded in the config table.

The test disk images provided by NIST, approximately 2 GB each
in raw format for Windows and Linux5, were used for evaluation.
These disk images were placed adequately with appropriate permis-
sions to ensure seamless access and execution by the framework.

5.4 Base Prompts
The framework requires base prompts to guide LLMs in structuring
their outputs and formulating their approaches. For this experiment,
two distinct base prompts were used, each designed to simulate
different levels of forensic expertise.

The first base prompt was comprehensive and detailed, providing
extensive guidance on conducting a string search. It encompassed
418 words and included suggestions for libraries, Linux commands,
and examples. This prompt aimed to replicate the instructions that
an advanced forensic investigator might typically provide.

4https://cfreds.nist.gov/all/NIST/StringSearch,V11
5https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-
testing-programme-cftt/federated-testing

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.

https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-programme-cftt/federated-testing
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-programme-cftt/federated-testing


AutoDFBench: A Framework for AI Generated Digital Forensic Code and Tool Testing and Evaluation DFDS 2025, April 01, 2025, Brno, Czech Republic

Generate
natural

language
queries 

Assist Chat
GPT

Human
evaluation

Invalid

Valid

Check validity
and accuracy 

Input to a
CSV file

Send to combined prompts to LLMs

Input the basic
prompt

Natural language
query 

Save response in DB

Extract codes
from the
responses

Generate code
files

Execute the
code

Save result +
errors in DB

Check 
results

accuracy

Fetch ground
truth data from

DB

Save the valid counts
and F1 Scores End

Identify basic 
test cases

according to
CFTT 

Start
Data

Preparation

API
Handling 

Code Preparation Code Execution

Summary
Generation

Figure 3: Flow diagram of the experimentation

The second base prompt was concise, containing 105 words. It
instructed the LLM to act as an investigator and focus on delivering
results without offering detailed procedural hints.

In both cases, the expected output format was standardised to
ensure consistency in the results generated by the LLMs.

6 Experiment Flow
As shown in Figure 3, the test data was prepared for seamless in-
tegration into the framework. All test cases were compiled into
a spreadsheet, and 1,330 human-like prompts were generated us-
ing ChatGPT. These prompts were manually reviewed to ensure
accuracy before being input into the framework.

During the API Handling phase, these natural language prompts
were combined with base prompts and sent to LLMs, generating
responses stored in the database. The Code Preparation phase ex-
tracted code from these responses and generated the corresponding
files. In the Code Execution phase, the framework executed the
generated code and saved the outcomes in the database. The exe-
cutions were performed in a Conda environment pre-configured
with libraries for string extraction in Python and tools and depen-
dencies essential for the process. This environment was defined in
an environment.yml file containing approximately 180 libraries
and dependencies. Finally, during the summary generation phase,

the outputs were cross-validated against ground truth data, and
summary statistics were recorded.

For this experiment, 40 job configurations were defined. These
configurations included combinations of five LLMs, two base prompts,
two script types, and two disk types, resulting in 40 jobs. Windows
test cases included 59 cases, while Unix involved 62, each repeated
10 times for validation, generating 24,200 unique tests. Each job
was run within the Conda environment and summary results were
logged in the database.

The process of code generation, execution, and evaluation was
computationally intensive. Local LLMs averaged approximately 1
minute for code generation and 2 minutes for execution per test,
requiring about 484 hours. Cloud-based LLMs (Claude 3.5 Sonnet
and GPT-4o) completed code generation in approximately 5 seconds
per test but required 3 minutes for execution, totalling 496 hours.
Overall, the experimentation took approximately 980 hours for all
test cases.

7 Results
This section presents the findings from the proof-of-concept ex-
periments, examining the performance of LLMs in string search
tasks. The analysis focusses on the impact of different triggers, the
capabilities of LLMs, and the factors influencing their accuracy,
efficiency, and reliability. All experiments were conducted as 0-shot
tests with the LLMs and results were obtained by averaging hits
across subtests compared to the ground truth. Table A.1 details the
results of the Windows and Linux test cases, classified by LLM, OS,
coding language, and prompt level (beginner or advanced). The
average F1 scores were also calculated for each test case. These
F1 scores are then averaged across all test cases to produce the
AutoDFBench forensic string search (FSS) score for each LLM.

Despite a poor performance, Claude 3.5 Sonnet and GPT-4o
achieved the highest benchmarks, with values of 0.043 and 0.036,
respectively. The results highlight that advanced prompts consis-
tently produce higher F1 scores, demonstrating the critical role
of input prompt detail in the generation of effective code. Among
open-source LLMs, WaveCoder achieved the highest F1 score with
advanced prompts, suggesting its potential for DF fine-tuning.

In particular, Claude 3.5 Sonnet and StarCoder2-Instruct success-
fully identified all social security numbers in the Linux environment.
High hits in the phone number test case suggest that most LLMs,
except Llama 3, generated an accurate code to identify numeric
string values. For ASCII-related string searches, the accuracy in
locating all search strings was also consistently high.

Furthermore, of the 4,840 test runs per LLM, it is found that GPT-
4o and WaveCoder achieved an F1 score of 1 in just 11 instances,
while Claude 3.5 Sonnet and StarCoder2-Instruct achieved it 9 and
3 times, respectively. However, Llama 3 failed to achieve an F1 score
of 1 in any run.

To determine the best performance run among the ten trials
for each test case, the highest F1 score was selected, as shown in
Table A.1. The AutoDFBench score was calculated by averaging the
F1 scores in all subtest cases, with equal weight assigned to each
subtest. The results indicate that Claude 3.5 Sonnet achieved the
highest AutoDFBench score of 0.421 using the advanced prompt,

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.



DFDS 2025, April 01, 2025, Brno, Czech Republic Wickramasekara et al.

LLM

To
ta

l H
its

0

2000

4000

6000

8000

Llama 3

StarCoder2-Instruct

WaveCoder

Claude 3.5 Sonnet
GPT-4o

Advanced Prompt Beginner Prompt Total Hits

Figure 4: Summary of total keywords found

followed by GPT-4o. Among open-source models, WaveCoder out-
performed Llama 3 and StarCoder2-Instruct in average F1 score,
reaffirming its potential for AI-driven digital forensic applications.

The significant gap between the ‘best run’ scores and the average
scores from the ten runs highlights the variability inherent in gen-
erative AI systems. Although the higher ‘best run’ scores suggest
promising future possibilities for fine-tuned LLMs tailored for digi-
tal forensic code generation, the consistently low average scores
underscore the current limitations of generic LLMs in delivering
reliable and consistent performance for this use case.

The framework also facilitates evaluating the impact of user
prompt quality/detail. In the evaluation performed as part of this
paper, two levels of simulated expertise were analysed with each of
the LLMs. Figure 4 summarises the total number of keyword search
hits for each LLM. The results show that advanced prompts, which
offer more detailed instructions, lead to higher hits than beginner
prompts, which provide minimal guidance.

Although GPT-4o achieved the highest hit count with advanced
prompts, Claude 3.5 Sonnet performed best considering total hits
across all prompt levels. Among open-source LLMs, WaveCoder
ranked highest in finding accurate keywords. Llama 3 had the
lowest hit count, suggesting that it may not be a suitable choice for
DF code generation fine-tuning.

7.1 Discussion
GPT-4o and Claude 3.5 Sonnet accurately identified only 5.5% and
4.5% of cases, respectively, demonstrating the limited capabilities
of advanced commercial LLMs for digital forensic string searches.
WaveCoder outperformed StarCoder2-Instruct and Llama 3 among
open-source models, with 5.5%, 1.5%, and 0% keyword search accu-
racy, respectively. Llama 3 showed negligible utility for DF tasks.

Despite being 0-shot responses from generic LLMs, the models
tested achieved relatively satisfactory keyword search hit rates and
F1 scores for some of the individual test cases, indicating reasonable
performance without specific training for those specific tasks. How-
ever, this performance was inconsistent across all forensic string
search test cases used as part of the validation of the benchmarking
framework. Significant improvement could be achieved through
a combination of better prompt design, AI agents, and fine-tuned

models tailored to digital forensics, improving both accuracy and
reliability. This experiment used only two base prompts, suggesting
that future work could explore a wider variety of prompts. Although
character encoding was not specified or validated, the framework’s
flexibility allows such considerations to be incorporated into future
evaluations.

8 Conclusion
This paper introduced AutoDFBench, a novel framework and bench-
marking score to test and evaluate AI-generated DF code and tools.
The framework encompasses four main components: data prepara-
tion, API handling, code execution, and summary and score gen-
eration. Built using a MySQL database and Python, AutoDFBench
is designed for flexibility, allowing seamless integration with gen-
erative AI systems, including multiple LLMs via Ollama Docker
containers or remote API calls.

AutoDFBench leverages ground truth data provided by NIST, us-
ing forensic string search as a proof-of-concept evaluation method
to test the effectiveness of various open-source and commercial
LLMs in DF applications. Beyond its current use case, the frame-
work is capable of evaluating prompts and iterating fine-tuned
DF-focused generative AI systems. Its modular nature also allows
for future integration with an API, enabling centralised retrieval
of results and the possibility of assessing non-AI-generated digital
forensic tools and code.

To validate its capabilities, the framework was tested using NIST
CFTT’s forensic string search, encompassing 24,200 tests across
five LLMs. These tests demonstrated the robustness of the frame-
work, while revealing that state-of-the-art code-generation LLMs
are not yet fully equipped to handle DF-specific tasks. GPT-4o
and Claude 3.5 Sonnet achieved the highest performance of the
tested models, but with modest F1 scores of 0.043 and 0.036, re-
spectively. Open-source models such as Llama 3, WaveCoder, and
StarCoder2-Instruct exhibited even more limited capabilities. How-
ever, a marked improvement was observed for all LLMs when pro-
vided with detailed “advanced user” prompts, underscoring the crit-
ical role of prompt engineering, AI agents and model fine-tuning
in enhancing DF task performance.

In conclusion, AutoDFBench represents a significant step for-
ward in the validation and evaluation of AI-generated DF tools. It
addresses the growing demand for reliable and scalable solutions
in the field, equipping forensic investigators to meet the challenges
of the AI era.

The framework will be expanded for future work to evaluate a
broader range of AI-assisted DF scenarios. This will include inte-
grating all NIST CFTT test procedures to ensure complete coverage
and alignment with established NIST tool testing and validation
standards. Such enhancements will bolster the framework’s appli-
cability across diverse DF tasks, advancing its utility in identifying
the most effective LLMs, prompts, and methodologies for future
AI-assisted DF investigations.

A Appendix
Table A.1 details the results of the Windows and Linux test cases,
classified by LLM, OS, coding language, and prompt level (beginner
or advanced).

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.



AutoDFBench: A Framework for AI Generated Digital Forensic Code and Tool Testing and Evaluation DFDS 2025, April 01, 2025, Brno, Czech Republic

Table A.1: AutoDFBench score and the best performing F1-score for LLMs benchmarked over the 10 runs for each subtest

Ll
am

a
3

St
ar
Co

de
r2

In
st
ru
ct

W
av
eC

od
er

Cl
au
de

3.5
So
nn

et

GP
T-
4o

Be
gi
nn

er

Ad
va
nc
ed

Be
gi
nn

er

Ad
va
nc
ed

Be
gi
nn

er

Ad
va
nc
ed

Be
gi
nn

er

Ad
va
nc
ed

Be
gi
nn

er

Ad
va
nc
ed

AutoBFBench Score 0 0.001 0.005 0.006 0.011 0.013 0.005 0.036 0.006 0.043
Best Performing Run 0 0.165 0.143 0.197 0.369 0.379 0.354 0.427 0.305 0.411

References
[1] Nicole Lang Beebe and Jan Guynes Clark. 2007. Digital forensic text string search-

ing: Improving information retrieval effectiveness by thematically clustering
search results. Digital Investigation 4 (2007), 49–54. doi:10.1016/j.diin.2007.06.005

[2] Frank Breitinger, Jan-Niclas Hilgert, Christopher Hargreaves, John Sheppard,
Rebekah Overdorf, and Mark Scanlon. 2024. DFRWS EU 10-year review and
future directions in Digital Forensic Research. Forensic Science International:
Digital Investigation 48 (2024), 301685. doi:10.1016/j.fsidi.2023.301685 DFRWS
EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research
Conference Europe.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. CoRR abs/2107.03374 (2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[4] Xiaoyu Du, Chris Hargreaves, John Sheppard, Felix Anda, Asanka Sayakkara,
Nhien-An Le-Khac, and Mark Scanlon. 2020. SoK: Exploring the State of the Art
and the Future Potential of Artificial Intelligence in Digital Forensic Investigation.
In Proceedings of the 15th International Conference on Availability, Reliability
and Security (Virtual Event, Ireland) (ARES ’20). Association for Computing
Machinery, New York, NY, USA, Article 46, 10 pages. doi:10.1145/3407023.3407068

[5] Lizhou Fan, Lingyao Li, Zihui Ma, Sanggyu Lee, Huizi Yu, and Libby Hemphill.
2023. A Bibliometric Review of Large Language Models Research from
2017 to 2023. CoRR abs/2304.02020 (2023). doi:10.48550/ARXIV.2304.02020
arXiv:2304.02020

[6] Yinghua Guo, Jill Slay, and Jason Beckett. 2009. Validation and Verification of
Computer Forensic Software Tools—Searching Function. Digital Investigation
6 (2009), S12–S22. doi:10.1016/j.diin.2009.06.015 The Proceedings of the Ninth
Annual DFRWS Conference.

[7] Christopher Hargreaves, Frank Breitinger, Liz Dowthwaite, Helena Webb, and
Mark Scanlon. 2024. DFPulse: The 2024 digital forensic practitioner survey.
Forensic Science International: Digital Investigation 51 (2024), 301844. doi:10.1016/
j.fsidi.2024.301844

[8] Hans Henseler and Harm van Beek. 2023. ChatGPT as a Copilot for Investi-
gating Digital Evidence. In Proceedings of the Third International Workshop on
Artificial Intelligence and Intelligent Assistance for Legal Professionals in the Digi-
tal Workplace (LegalAIIA 2023) co-located with the 19th International Conference
on Artificial Intelligence and Law (ICAIL 2023), Braga, Portugal, June 19, 2023
(CEUR Workshop Proceedings, Vol. 3423), Jack G. Conrad, Daniel W. Linna Jr., Ja-
son R. Baron, Hans Henseler, Paheli Bhattacharya, Aileen Nielsen, Jyothi K.
Vinjumur, Jeremy Pickens, and Amanda Jones (Eds.). CEUR-WS.org, 58–69.
https://ceur-ws.org/Vol-3423/paper6.pdf

[9] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A
Survey on Large Language Models for Code Generation. arXiv:2406.00515 [cs.CL]
https://arxiv.org/abs/2406.00515

[10] Gaëtan Michelet and Frank Breitinger. 2024. ChatGPT, Llama, can you write my
report? An experiment on assisted digital forensics reports written using (local)
large language models. Forensic Science International: Digital Investigation 48
(2024), 301683. doi:10.1016/j.fsidi.2023.301683 DFRWS EU 2024 - Selected Papers
from the 11th Annual Digital Forensics Research Conference Europe.

[11] Dong Bin Oh, Donghyun Kim, Donghyun Kim, and Huy Kang Kim. 2024. volGPT:
Evaluation on triaging ransomware process in memory forensics with Large
Language Model. Forensic Science International: Digital Investigation 49 (2024),
301756. doi:10.1016/j.fsidi.2024.301756 DFRWS USA 2024 - Selected Papers from
the 24th Annual Digital Forensics Research Conference USA.

[12] Partha Pratim Ray. 2023. ChatGPT: A comprehensive review on background,
applications, key challenges, bias, ethics, limitations and future scope. Internet of
Things and Cyber-Physical Systems 3 (2023), 121–154. doi:10.1016/j.iotcps.2023.
04.003

[13] Mark Scanlon, Frank Breitinger, Christopher Hargreaves, Jan-Niclas Hilgert, and
John Sheppard. 2023. ChatGPT for digital forensic investigation: The good, the
bad, and the unknown. Forensic Science International: Digital Investigation 46
(2023), 301609. doi:10.1016/j.fsidi.2023.301609

[14] Mark Scanlon, Bruce Nikkel, and Zeno Geradts. 2023. Digital forensic investiga-
tion in the age of ChatGPT. Forensic Science International: Digital Investigation 44
(03 2023), 301543. doi:10.1016/j.fsidi.2023.301543

[15] Yiqiu Shen, Laura Heacock, Jonathan Elias, Keith D. Hentel, Beatriu Reig, George
Shih, and Linda Moy. 2023. ChatGPT and Other Large Language Models Are
Double-edged Swords. Radiology 307, 2 (2023), e230163. doi:10.1148/radiol.230163
PMID: 36700838.

[16] Akila Wickramasekara, Frank Breitinger, and Mark Scanlon. 2024. Exploring the
Potential of Large Language Models for Improving Digital Forensic Investigation
Efficiency. arXiv:2402.19366 [cs.CR] https://arxiv.org/abs/2402.19366

[17] Akila Wickramasekara and Mark Scanlon. 2024. A Framework for Inte-
grated Digital Forensic Investigation Employing AutoGen AI Agents. In 2024
12th International Symposium on Digital Forensics and Security (ISDFS). 01–06.
doi:10.1109/ISDFS60797.2024.10527235

[18] Tina Wu, Frank Breitinger, and Stephen O’Shaughnessy. 2020. Digital forensic
tools: Recent advances and enhancing the status quo. Forensic Science Interna-
tional: Digital Investigation 34 (2020), 300999. doi:10.1016/j.fsidi.2020.300999

[19] Hanxiang Xu, Shenao Wang, Ningke Li, Kailong Wang, Yanjie Zhao, Kai Chen,
Ting Yu, Yang Liu, and Haoyu Wang. 2024. Large Language Models for Cyber
Security: A Systematic Literature Review. arXiv:2405.04760 [cs.CR] https://arxiv.
org/abs/2405.04760

D
ow

nloaded from
 the A

C
M

 D
igital Library by U

niversitaetsbibliothek A
ugsburg on A

pril 9, 2025.

https://doi.org/10.1016/j.diin.2007.06.005
https://doi.org/10.1016/j.fsidi.2023.301685
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3407023.3407068
https://doi.org/10.48550/ARXIV.2304.02020
https://arxiv.org/abs/2304.02020
https://doi.org/10.1016/j.diin.2009.06.015
https://doi.org/10.1016/j.fsidi.2024.301844
https://doi.org/10.1016/j.fsidi.2024.301844
https://ceur-ws.org/Vol-3423/paper6.pdf
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://doi.org/10.1016/j.fsidi.2023.301683
https://doi.org/10.1016/j.fsidi.2024.301756
https://doi.org/10.1016/j.iotcps.2023.04.003
https://doi.org/10.1016/j.iotcps.2023.04.003
https://doi.org/10.1016/j.fsidi.2023.301609
https://doi.org/10.1016/j.fsidi.2023.301543
https://doi.org/10.1148/radiol.230163
https://arxiv.org/abs/2402.19366
https://arxiv.org/abs/2402.19366
https://doi.org/10.1109/ISDFS60797.2024.10527235
https://doi.org/10.1016/j.fsidi.2020.300999
https://arxiv.org/abs/2405.04760
https://arxiv.org/abs/2405.04760
https://arxiv.org/abs/2405.04760

	Abstract
	1 Introduction
	2 Background
	2.1 Computer Forensics Tool Testing Program (CFTT)
	2.2 Large Language Models
	2.3 HumanEval

	3 Related Work
	4 Framework Design
	4.1 Design Considerations
	4.2 Database
	4.3 Software
	4.4 Ground Truth
	4.5 Score Calculation

	5 Proof of Concept
	5.1 Forensic String Search
	5.2 LLM Selection
	5.3 Implementation
	5.4 Base Prompts

	6 Experiment Flow
	7 Results
	7.1 Discussion

	8 Conclusion
	A Appendix
	References

