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1 INTRODUCTION

Abstract

Linearizability is a correctness criterion for concurrent systems. In this report,
we describe how temporal logic can be used to prove linearizability of a con-
current lock-free stack implementation. The logic used is an extended variant
of Interval Temporal Logic, which is integrated in the KIV interactive theorem
prover. To reduce the proof to single components only a compositional reasoning
technique is used.

1 Introduction

Verification of concurrent algorithms is a current and important research topic.
Usually, reasoning over a concurrent system is hard and tedious work as all pos-
sible interleavings have to be considered. To avoid reasoning over the complete
concurrent system, a common technique is compositional reasoning. The idea of
compositional reasoning was first formulated in [1] by Dijkstra. The basic idea
of this technique is, to split a system into several subcomponents. Then, the
overall property is proved with corresponding properties of the subcomponents
only.

A common compositional proof technique is the assumption-guarantee paradigm,
which was introduced by Jones [2] and by Misra & Chandy [3]. The basic idea of
this paradigm is, that each component can make specific assumptions about its
environment in order to guarantee a specific behavior. Usually an assumption-
guarantee technique provides a theorem, that specifies in a number of proof
obligations how the various assumptions and guarantees have to be connected
in order to show the property for the overall system. Ideally, these proof obliga-
tions contain only single subcomponents and properties of these subcomponents,
but not the complete system itself. This results in several proofs of feasible size.
Most assumption-guarantee techniques use temporal logics as underlying logic.
Examples for this technique can be found e.g. in [4, 5, 6].

Herlihy & Wing [7] define linearizability as a correctness criterion for processes
with concurrent access on a shared data structure. The underlying idea of
linearizability is to view the concurrent operations on a data object as though
they occur in sequential order, similar to serializability for database transactions.

Lock-free algorithms are a class of algorithms for concurrent access to data struc-
tures. Unlike the classic mutex based algorithms lock-free algorithms require no
locking. Therefore they are less vulnerable to common problems such as dead-
locks, livelocks and priority inversion. On the other hand, a disadvantage of
lock-free algorithms compared to mutex algorithms is an increased complexity
which makes it hard to assure their correctness intuitively.

In [8] a lock-free stack algorithm is presented that accesses the stack only via
atomic compare-and-swap-operations. Using this example this paper presents
an approach that combines refinement and compositional assumption-guarantee
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2 LOCK-FREE STACK ALGORITHM IN KIV

reasoning to prove linearizability. The temporal logic we use [9] has explicit
imperative interleaved programs and is a variant of ITL [10].It is integrated into
the interactive theorem prover KIV [11].

In the following, we assume that the reader has at least basic knowledge about
the sequent calculus and temporal logic. This paper is subdivided as follows:
Section 2 introduces the lock-free stack algorithm we use and presents an infor-
mal overview over our proof strategy. In Section 3 we give an informal overview
of the temporal logic framework of KIV and the assumption-guarantee tech-
nique we use. The main part of the paper, Section 4, contains the details of the
linearization proof of the lock-free stack algorithm. The paper concludes with
sections about related work (Section 5) and a short summary (Section 6).

2 Lock-Free Stack Algorithm in KIV

The basic principle of the lock-free stack algorithm consists of two phases. In
the first phase all the needed data are prepared without changing the main
data structure, e.g. storage is allocated or data are read. Then, in a second
phase, the algorithm attempts to make the data consistent in a single atomic
step by using a compare-and-swap (CAS) command. If this atomic step fails
(e.g. because the data structure has changed), the main data structure is not
changed and the algorithm repeats phase one.

The informal idea of the CAS command is, that a local pointer l1 is compared
to a global pointer G.1 If both pointers are identical, G is set to another local
variable l2 and the CAS command succeeds. If they are different, G is left
unchanged and the CAS command fails. The following KIV specification is
used for the CAS-operation:

CAS(l1, l2; G,Success)
1 (G = l1 ∧ (G := l2,Success := True)) ∨
2 (G 6= l1 ∧ Success := False)

Line 1 covers the case where the CAS succeeds (the comma denotes an atomic
assignment). In line 2 the failure of the CAS operation is handled.

The stack algorithm is represented in KIV by a linked list which is stored in a
heap H . Each heap cell has a field for the data value (accessible by the function
.val) and a field for a pointer (accessible via .next), which can also contain a
Null value that denotes the end of the stack. The top of the stack is represented
by a variable Top. The stack is empty, if Top is Null.

The push algorithm is depicted in Figure 1. The line numbers are given for
explanatory purposes only. They are not used in KIV. Parameters of CPush

1Note, that variables beginning with a small letter are considered as constants in our
framework, while variables starting with a capital letter can change dynamically
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2 LOCK-FREE STACK ALGORITHM IN KIV

CPush(v ;Top,H )
1 let Ss = Null,Nl = Null,Success = False

2 in {Alloc(H,Nl);
3 H [Nl ].data := v ;
4 while ¬Success
5 do {Ss := Top;
6 H [Nl ].next := Ss;
7 CAS(Ss,Nl ;Top,Success)
8 }
9 }

Figure 1: Formalization of the push algorithm in KIV

are the value v, which should be inserted into the stack and the variables Top
and H for the stack representation. In line 1 some local variables are defined.
Ss and Nl are pointers while Success is a boolean variable. The pointer Ss is
used to detect, if the stack has changed while Nl contains the new data value,
that should be included into the stack. The algorithm starts by allocating a new
cell on the heap and storing the pointer in the variable Nl (line 2) and storing
the data value in this new allocated cell (line 3). After that the algorithm loops,
as long as the insertion of the new cell in the stack fails (line 4 to 8). Inside the
loop the pointer of the current top cell is stored in variable Ss (line 5) and the
.next-pointer of the previously allocated cell is set to the current top cell (line
6). Finally, the new data value is added to the top of stack data structure by
a CAS operation (line 7). That means, if the current top-of-stack pointer Top
is still the same as it was in line 5, the previously allocated cell Nl contains the
correct .next-pointer and Top can be set to Nl . If the top-of-stack pointer was
changed by another push or pop process in the meantime, the CAS operation
fails and the while-loop is reiterated.

The principle for the pop algorithm is the same as for the push algorithm. The
specification of the pop algorithm is shown in Figure 2. Here, parameter V is
used as return value of CPop and the local variable V 0 to temporarily store
the return value. Inside the loop, the first operation is to store the current top-
pointer inside Ss to detect changes of the stack afterwards (line 3). If the stack
is currently empty a special value Empty is returned and the process terminates
(line 4-6). In the other case the pointer to the second cell in the stack and the
data of the top-cell is retrieved (line 7 and 8). In line 9, if the stack is still
unchanged the CAS-operation changes the Top-pointer to the second cell, else
it repeats the loop again. After execution of the loop the final result is assigned
to the return parameter V (line 12).

As both algorithms use pointers to detect whether the stack has changed the
so called ABA-problem is common for the class of lock-free algorithms. It can
occur, if cells are deallocated and newly allocated afterwards while there is still a
pointer referencing to it. In this case, both algorithms can perform a successful
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CPop(;V ,Top,H )
1 let V 0 = Empty,Ss = Null,NewTop = Null,Success = false

2 in {while ¬Success
3 do {Ss := Top;
4 if Ss.isnull

5 then {V 0 := Empty;
6 Success := true }
7 else {NewTop := H [Ss].next;
8 V 0 := H [Ss].val;
9 CAS(Ss ,NewTop;Top,Success)

10 };
11 }
12 V := V 0;
13 }

Figure 2: Formalization of the pop algorithm in KIV

CAS although the stack has changed, which may result in unpredictable results
of the algorithms. There are several techniques to avoid this problem. One is
to use a garbage collection, which deallocates cells only if there is no pointer
referencing to it. In this paper we do not deallocate cells explicitly, assuming
there is a separate garbage collection deallocating all unreferenced cells. An
alternative is to use separate modification counters, that allow detection of cell
changes (see e.g. [12, 13]). These can be introduced in a separate refinement.
[14]

3 Temporal Logic Framework

In this section we give an informal overview over the temporal logic calculus we
use, which is integrated into the interactive theorem prover KIV. The logical
formalism is described in detail in [15, 9]. The temporal logic framework is a
variant of ITL [10] that is extended by explicitly including the behavior of the
environment into each step. The basis for ITL are finite or infinite sequences π

of valuations, which are called intervals. Valuations in π are called states. Each
state is described by a higher order predicate logic formula over dynamic vari-
ables V , which also can be primed V ′ or double primed V ′′. V and V ′ describe
a system transition, whereas the step between V ′ and V ′′ describes an environ-

ment transition. The value of V ′′ in a state must be equal to the value of V in
the next successive state. Thereby system and environment transitions alter-
nate. Constants are written in small letters. A selection of temporal operators
supported by KIV are:
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3.1 Symbolic Execution 3 TEMPORAL LOGIC FRAMEWORK

2ϕ ϕ holds always from now on in every state

ϕunlessψ either ϕ holds always from now on

or ψ holds in some state and ϕ holds in every state before

ϕ1 ‖ ϕ2 interleaving

∃∃ V.ϕ temporal exists-quantifier

X := t assignment

X := t1, Y := t2 atomic assignment of multiple variables

ϕ1;ϕ2 sequential composition

if ψ thenϕ1 elseϕ2 case distinction

letX = t inϕ local variable declaration

whileψ doϕ loop

As shown, our ITL variant supports classic temporal logic operators as well
as program operators. This allows us to mix programs with temporal logic
formulas. Program operators describe only system steps that alternate with
arbitrary environment steps.

3.1 Symbolic Execution

A typical sequent in proofs about interleaved programs has the form P, A, Γ ⊢ ∆.
P is the interleaved program that executes the system steps, A contains a tem-
poral formula that describes behavior of the environment and Γ is a predicate
logic formula for the current variable assignment, while ∆ contains the property
which has to be shown.2 To verify that ∆ holds it must be proved that the
current state Γ does not violate ∆ and that the rest of the program run of P

does not violate ∆ either. To show the latter, symbolic execution is used.

For example, a sequent of the form mentioned above might look like this:

M := M + 1; α, 2 M ′ = M ′′, M = 2 ⊢ 2 M > 0

The program executed is M := M + 1; α (α can be an arbitrary program) and
the environment is assumed not to change M (formula 2 M ′ = M ′′). As the
current state M = 2 does not violate 2 M > 0, a symbolic execution step is
used to show that the rest of the program does not violate that formula too.
The intuitive idea of a symbolic execution step is to execute the first program
statement, i.e. applying the changes on the current state and to discard the first
statement. So for the example above, a symbolic execution step would lead to
the following formula:

α, 2 M ′ = M ′′, M = 3 ⊢ 2 M > 0

Of course, the environment assumption has to be considered too, but it simply
leaves M unchanged in this example. More complex formulas in the succedent

2P, A or Γ can be left unspecified by simply omitting them. E.g. if A is missing in a
formula an arbitrary behaviour of the environment is assumed.
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might change too during the step (e.g. if the formula in the succedent is a
program too, it has to be symbolically executed like the example program in
the antecedent).

The basic idea to prove safety properties is to advance in the interval until a
valuation that was considered earlier in the interval is reached. In this case
a loop was executed. If we can prove that the property is true at beginning
and during the loop it is invariant the proof can be finished with an inductive
argument.

Two interleaved formulas are executed by executing the first transition from
one or the other formula. After this, the proof continues with interleaving the
remaining formulas. For example, if there are two interleaved programs in the
antecedent

M := 1; α1 ‖ N := 2; α2, Γ ⊢ ∆

this formula can be transformed into the following two cases:

M := 1; (α1 ‖ N := 2; α2), Γ ⊢ ∆
N := 2; (m := 1; α1 ‖ α2), Γ ⊢ ∆

which can be symbolically executed by the mechanism described above. For
more details about symbolic execution, interleaving and induction in KIV see [9].

3.2 Rule for Compositional Reasoning

In [16] we presented a compositional theorem for proof safety formulas similar to
standard compositional theorems such as [4, 6]. However, to show linearizability
we use a modification of this theorem, which is presented in the following.

Most assumption-guarantee based compositional proof techniques use a special

operator similar to the ”while-plus” operator
+

_ presented in [5]. Informally,

the term A
+

_ G means, that if A holds up to step i, then G must hold up to
step i+1. With this operator it is possible to express that a component violates
its guarantee G only after its assumption A is violated. This operator is needed
to break the circularity of the compositional rule used.

Assumptions and guarantees can be formulated with propositional predicates
over unprimed and primed variables (e.g. [6]). We use the same approach in
this work, but for the assumptions we use predicates over primed and doubly
primed variables. In this way it is possible to formalize which steps are allowed
for the components and which steps are allowed for the environment. This also

allows to use a standard TL operator unless as
+

_ operator, i.e.:

A
+

_ G := Gunless (G ∧ ¬A)

With these preliminaries it is possible to construct the compositionality theorem
depicted in Figure 3. Unlike standard assumption-guarantee theorems (e.g. [4,
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If for all 1 ≤ i, j ≤ n, i 6= j:

1. Mi(V ), 2 Ai(V
′, V ′′), I(V ) ⊢ AMi(V )

2. Mi(V ), I(V ) ⊢ Ai(V
′, V ′′)

+

_p Gi(V, V ′)

3. Gi(v1, v2) ⊢ Aj(v1, v2)

4. I(v1) ∧ Gi(v1, v2) ∨ A(v1, v2) ⊢ I(v2)

5. A(v1, v2) ⊢ Ai(v1, v2)

6. Ai(v1, v2), Ai(v2, v3) ⊢ Ai(v1, v3)

then: (
f

i Mi(V )), 2 A(V ′, V ′′), I(V ) ⊢ (
f

i AMi(V ))

Figure 3: AG-Theorem

6]), this theorem does not reason about one interleaved system but about two
interleaved systems connected by refinement.

Here, V is the set of variables that describes the system state. Mi is a parallel
component, Ai is its assumption to the environment and Gi is its guarantee to
the environment. AMi is an abstract component and A describes the behavior
of the overall environment. I contains the initial variable assignment.

The conclusion of the theorem states, that each trace described by interleaving
of all parallel components Mi (with assumption of the environment behaviour
A and initial state I) has an equivalent trace described by the interleaving of
the abstract components AMi. Premise 1. and 2. are temporal logic formulae
while premise 3. - 6. are predicate logic formulas. The proof obligations have
the following informal meaning:

1. The concrete component Mi and it’s assumption to the environment Ai

imply the abstract component AMi.

2. All components Mi must sustain their guarantee Gi as long as their as-
sumption Ai holds.

3. The guarantee of each component does not violate the assumptions of all
other components.

4. I is preserved by all guarantees and the global assumption.

5. All component assumptions hold, if the global assumption holds. There-
fore, no component assumption is violated in an environment step.

6. The assumptions of all components are transitive. With this property,
the components assumption is preserved even if other components make
several steps.
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This theorem was formally proven in KIV. The proof is similar to the one
outlined in [16].

Assumptions and guarantees are usually formulated as conjunction of proposi-
tions. This fact is used to split proofs of the predicate logic premises up into
several small proofs, i.e. instead of showing that (G1i ∧ G2i) ⊢ (A1j ∧ A2j)
holds we can separately show that e.g. G1i ⊢ A1j and G2i ⊢ A2j hold. This
allows to use the correctness management of KIV to keep track, which assump-
tions are connected with which guarantees and vice versa.

The theorem can be extended to show also data refinement. I.e. the abstract
components AMi have an abstract data type as parameter, which is described
with the variable set VA. Therefore, an abstraction relation R is needed. The
new conclusion of the extended theorem is

(
f

i Mi(V )), 2 A(V ′, V ′′), I(V ) ⊢ ∃∃ VA. (2 (R(V, VA) ∧ R(V ′, V ′
A))

∧ ∃∃ V. (
f

i AMi(VA)))
(1)

This conclusion is similar to the original theorem with addition of formula
∃∃ VA.2 (R(V, VA) ∧ R(V ′, V ′

A)). This formula states that there exist suitable
values of VA generated by runs of all AMi(VA), such that a representation in-
variant R holds before and after system steps. The second quantifier ∃∃ V hides
the changes of the concrete system from the abstract system, which is necessary
for technical reasons. To show this new conclusion, premise 1. of the theorem
in Figure 3 has to be exchanged with

(Mi(V ), 2 Ai(V
′, V ′′), I(V ) ⊢ ∃∃ VA. (2 (R(V, VA) ∧ R(V ′, V ′

A))

∧ ∃∃ C. AMi(VA)))
(2)

while premises 2.-6. are the same.

4 Linearization of the Stack Algorithms

First, a short overview over the case study is given before some of the inter-
esting technical issues are explained in the following subsections. The KIV
formalization of the used stack algorithm is presented in Section 2. In the fol-
lowing CStack is used as short form for either a push or a pop process (i.e.
CStack(C) ↔ CPush(C) ∨ CPop(C)). The global data used by these algo-
rithms is abbreviated with C. Similarly, AStack(A) abbreviates the atomic
push and pop (see Fig. 4) on an abstract stack A.

Informally, linearization states that every concurrent execution of a set of op-
erations is equivalent to a sequential execution of the same set. Verification of
this property is usually done by showing that each operation has a linearization
point [7]. A linearization point is an atomic step that is between the call and
return of the operation which contains all effects of the abstract data structure.
To show the linearization property for the lock-free stack algorithm in KIV, our
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4.1 Specification of Important Predicates4 LINEARIZATION OF THE STACK ALGORITHMS

goal is to show that for any run of an arbitrary number n of parallel CStack

processes there is an equivalent run of n parallel AStack processes. The atomic
push (resp. pop) marks then the linearization point of that operation. This ap-
proach is similar to other approaches showing linearization, e.g. [12, 17]. So the
overall property which is proved is the following:

(
f

i∈{1,...,n}CStacki(C)), 2 C′ = C′′, Init(C)

⊢ ∃∃ A.2 (R(C, A) ∧ R(C′, A′)) ∧ ∃∃ C.(
f

i∈{1,...,n}AStacki(A)) (3)

This formula is an instantiation of formula (1). The main proposition of this
formula is that for every trace of the concrete system

f

i∈{1,...,n}CStacki(C)

an equivalent trace of abstract processes
f

i∈{1,...,n}AStacki(A) exists. This

proposition reflects the linearization property. The global assumption 2 C′ =
C′′ specifies a closed system, i.e. no external process except CPush or CPop

changes the heap. The predicate Init(C) specifies the initial configuration of
the heap.

To avoid reasoning over the whole system, the AG-theorem presented in Sec-
tion 3 is used to reduce the proof to single components. For process i this gives
the proof obligation (as instantiation of formula (2))

CStacki(C) ∧ 2 Ai(C
′, C′′) ∧ Init(C)

⊢ ∃∃ A.2 (R(C, A) ∧ R(C′, A′)) ∧ ∃∃ C.AStacki(A) (4)

This formula replaces the whole system by a single component. The environment
assumption 2 Ai(C

′, C′′) is needed to describe the behavior of other push and
pop processes, which form the environment for the process CStacki(C). Of
course the Ais must be chosen in a way that the premises 4. and 5. of the
AG-Theorem hold.

Finally, to apply the AG-Theorem and prove the overall property (formula (3))
we have to find suitable guarantees for CPush and CPop that imply the as-
sumptions Ai (premise 3. of the AG-Theorem) and holds for the respective
component (premise 2.).

In Subsection 4.1 the formalization of the abstract stack and the predicates R

and Init is described. The proof of formula (4) and the assumptions Ai are
described in Subsection 4.2. Finally, Subsection 4.3 describes the application of
the AG-theorem.

4.1 Specification of Important Predicates

For verification, the following adaptions of the algorithms presented in Section 2
were made to simplify the verification in KIV: For the push algorithm in Fig-
ure 1 a global array Nl [1] . . .Nl [n] is used instead of the local variables Nl to
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APush(v ;Stack)
1 skip∗;
2 Stack := push(v,Stack);
3 skip∗

APop(; V,Stack)
1 let V 0 = nil

2 in {skip∗;
3 V 0 := top(Stack),
4 Stack := pop(Stack);
5 skip∗;
6 V := V 0}

Figure 4: Formalization of the abstract stack algorithm in KIV

store the new allocated cells of the push algorithms in the array-cell Nl [i ]. So
every occurrence of Nl in CPushi is replaced with Nl [i ] and the process iden-
tifier i is added as additional parameter. This enables the formalization of the
environment assumption, as shown in Subsection 4.2. For the same reason cells
Ss[i ] of a global array are used for storing the top-of-stack pointer in CPopi

(Figure 2 instead of the local variable Ss). The correctness of both adaptions
can be shown by an additional indirection step. Apart from these changes, the
same programs as shown in Section 2 are used directly in KIV.

The abstract push and pop algorithms are depicted in Figure 4. For the abstract
stack a standard algebraic definition for stacks is used. Both, the APush and the
APop algorithm access the stack only in a single atomic operation. Before and
after this operation, a skip* operation is used to include an undefined number
of stuttering steps. As last step, APop assigns the result to the global return
variable V .

For the refinement relation the predicate represents(St ,Top, H) is defined re-
cursively over the length of the stack by the following two axioms:

represents(Empty,Top = null, H) (5)

represents(push(d,St),Top, H) ↔ Top ∈ H ∧ H [Top].val = d

∧ represents(St , H [Top].next, H)
(6)

St is a stack, d is a data value, Top is the pointer to the top of the stack and
H is a heap. In formula (5) the empty stack is represented when Top is the
nullpointer. For the recursive case in formula (6), Top has to be allocated in
H , the data value of the cell referenced by Top has to be the data value on top
of the stack and the rest of the stack has to be represented by the pointer in
the cell referenced by Top. As refinement relation R(C, A) we use the formula
represents(St ,Top, H).

To show the correctness of the concrete stack algorithms an assumption about
the initial state of the stack is needed. Initially, the data structure represented
by the heap and the top variable has to be valid, i.e. that it really represents a
stack and is not cyclic.

valid(Top, H) ↔ ∃ St .represents(St ,Top, H) (7)
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PushA1 valid(Top ′, H ′) → valid(Top′′, H ′′)

PushA2 ¬ reachable(Nl ′[i ],Top ′,H ′) →
¬ reachable(Nl ′′[i ],Top ′′,H ′′)

PushA3 Nl ′[i ] = Nl ′′[i ]

PushA4 H ′[Nl ′[i ]] = H ′′[Nl ′′[i ]]

PushA5 Nl ′[i ] ∈ H ′ → Nl ′′[i ] ∈ H ′′

(a) Assumptions for the Push Process

PopA1 valid(Top′, H ′) → valid(Top ′′, H ′′)

PopA2 Ss ′[i ] = Ss ′′[i ]

PopA3 Ss ′[i ] ∈ H ′ → Ss ′′[i ] ∈ H ′′

PopA4 Ss ′[i ] ∈ H ′ → (H ′[Ss ′[i ]] = H ′′[Ss ′′[i ]])
(b) Assumptions for the Pop Process

Figure 5: Formalization of Assumptions

The formula valid(Top, H) is used as initial condition Init(C) for the system.

4.2 Abstraction Proof

The proof of formula (4) relies on assumptions Ai about the behaviour of other
concrete CPush and CPop executions. Finding the right assumptions is the
main proof effort for the complete verification.

For a process CPushi we used a conjunction of PushA1-PushA4 (shown in
Figure 5(a)) as assumption Ai. Informally, they have the following informal
meaning

PushA1 If the data structure on the heap is valid, it is valid after the environ-
ment step.

PushA2 If the allocated cell Nl [i ] is not yet integrated into the stack, it will
not be in the stack after the environment step.3

PushA3 The environment will not change the variable Nl [i ].

PushA4 The environment will not change the content of the cell Nl [i ].

PushA5 The environment step will not deallocate the cell Nl [i ] points to.

3The predicate reachable(p, Top, H ) is true, iff p is a reference of the stack representation
reachable from Top
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4.3 Modularization 4 LINEARIZATION OF THE STACK ALGORITHMS

Only assumption PushA1 and PushA2 are specific for the both stack algorithms,
while the assumptions PushA3 - PushA5 are generic for all algorithms that
allocate variables (PushA4 may need generalization in some cases).

As assumption Ai for a process CPopi the conjunction of the formulas PopA1-
PopA4 (depicted in Figure 5(b)) are used. They have the following meaning

PopA1 The same as PushA1.

PopA2 The variable Ss[i ] is not changed by the environment.

PopA3 Analogous to PushA5.

PopA4 The content of the cell where Ss[i ] points to will not be changed by
the environment.

The assumptions PopA2 and PopA3 are generic for processes with local vari-
ables. The assumption PopA4 formalizes the fact, that cells are not changed as
long as they are part of the stack data structure. This fact is vital for the pop
algorithm.

With all these assumptions the push abstraction proof proceeds straight forward
by using symbolic execution and induction as described in Section 3. The only
interesting step is the execution of the CAS-step, where a case distinction is
necessary. In the first case CAS is succesful where the program terminates after
2 additional steps. In the other case, if CAS failed, the program loops and
induction can be applied to close this case.

The abstraction proof for the pop algorithm is very similar, even though it is a
bit longer as an additional case distinction has to be considered, which discerns
whether the stack is empty or not (line 4 in the pop algorithm).

4.3 Modularization

To apply the assumption-guarantee technique described in Section 3, it remains
to find guarantees for CPush and CPop, so that premises 2. and 3. of the AG-
Theorem hold, i.e. guarantees must hold for their respective component and
must imply the assumptions of the other components. For most of the assump-
tions this task is very straight forward. E.g. the assumption PushA1 and PopA1
can be formulated directly as guarantee (i.e. valid(Top, H) → valid (Top′, H ′)).
For the following two assumptions this task is more difficult:

The first is the statement, that the newly allocated cell Nl [i ] of the push algo-
rithm is not changed by another process (assumption PushA4). The guarantees
for the pop process are very simple, as pop changes neither H nor any Nl [i ].
It is easy to show, that CPush(v, i ;Nl , H) does not change any other cell than
the cell where Nl [i ] points to. Therefore, the invariant ∀ i0 6= i1.Nl [i0] 6= Nl [i1]
is used, which states that all Nl [i ]-cells are always disjoint. With this invariant
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a guarantee can be easily formalized, that implies assumption PushA4. Also,
guarantees that preserve this invariant can be easily formulated.

Assumption PopA4 is more difficult, because Ss[i ] can point to any cell that is
or was in the stack representation. We must guarantee that no CPush process
modifies this cell (in the assignment in line 3 of Fig. 1) to ensure that CPop

extracts the right return value (line 8 of Fig. 2). Therefore, a history variable is
used to monitor which cells are or were part of the stack. Formally, we exploit
the fact that we have an explicit environment which can record the history in a
variable L. A change of the program is unnecessary, we just add

2 L′′ = L′ ∪ reachableSet(Top ′, H ′) (8)

to the global environment assumptions. reachableSet(Top, H) is the set of all
cells that are reachable from Top. With this new environment assumption, the
following guarantee is shown for the CPush process.

∀ a.a ∈ L → H [a] = H ′[a] (9)

CPush never changes a cell that is or was part of the stack. Therefore, CPush

never violates the assumption PopA4.

In total, 7 assumptions and 10 guarantees are specified for the push algorithm
and 5 assumptions and 7 guarantees are used for the pop process. Most of
the additional assumptions and guarantees are needed to formalize properties
properties of the history described above. Compared to the effort to find and
specify all assumptions and guarantees, the proof effort for the assumption-
guarantee proofs is relative low, as many proofs require only little interaction.

5 Related Work

Verification of lock-free algorithms is currently an active research topic. Various
algorithms have been proven correct, e.g. algorithms working on a global queue
[18], [19], a lazy caching algorithm [20] or a concurrent garbage collection [21].

The algorithm considered here was taken from Colvin and Groves [18, 22], who
have given a correctness proof using IO automata and the theorem prover PVS.
We have only studied the core algorithm, their work also discusses extending
the algorithm with elimination arrays, and adds modification counts to avoid
the ABA problem. In contrast to this formal proof our proof is not monolithic,
and does not require to encode programs as automata using program counters.

Recent work by the same authors [12, 13] discusses incremental development
of the algorithm using refinement calculus and programs very similar to ours.
The resulting steps are rather intuitive for explaining the ideas and possible
variations. Again this work also discusses various extensions and variations of
the algorithm. The refinement calculus used is quite close to parts of the logic
used in KIV [11] (in particular to Dynamic Logic [23] for sequential programs).
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Therefore, we tried to imitate some of the steps, but we found that this is not
really possible: the basic idea underlying the paper of commuting statements
that assign to disjoint variables is almost never applicable, since most assign-
ments work on one variable: the global heap. Such assignments commute only,
if it can be proved that the locations they access are disjoint. Indeed most
of the complexity of our assumptions (e.g. PushA4, PopA4) is to answer the
question, why processes cannot modify or access certain locations. Answers to
these questions are only given informally in [12].

In [17], Vafeiadis et. al. describe a rely-guarantee approach, that is similar to
ours. The approach is applied informally on an implementation of sets using fine-
grained locking. [24, 25] extends the approach by using a specialized separation
logic and by providing tool support. The approach is specialised to reasoning
over pointer structures and therefore has stronger automation then ours.

Fully automatic approaches based on static analysis are given by Amit et. al.
in [26] and by Berdine et. al. in [27]. They are also specialised on reasoning
over pointer structures.

The second author of this paper has also contributed to [28] and [29], where a
data refinement theory for lock-free algorithms is developed. While the goal,
to modularize the linearizability proof is similar, the technique used is rather
different: control structure of the operations is encoded using CSP in [28] and
using program counters in [29]. Single steps of the algorithm are given as Z
operations. Interleaving of processes is done explicitly using promotion, while
we use the interleaving operator of temporal logic. The stack algorithm is used
as a running example, but the complexity of proofs is much lower than the ones
given here, since the concrete level does not use a global heap. [29] explicitly
proves that the example satisfies the original criterion of linearizability that was
defined in Herlihy and Wing’s original paper [7]. Linearizabilty is only implicitly
implied by this and all other related work. In future work we plan to connect the
proofs done here to the explicit formal definition of linearizability. The explicit
history of events needed to do this should be definable exploiting the explicit
environment as we did for the reachableSet predicate in Section 4.3.

6 Conclusion

In this paper we have developed a proof technique for verifying refinements
of abstract data types to interleaved algorithms. The standard example of
Treiber’s stack could be verified with this technique. Both, data refinement and
decomposition using assumption-guarantee reasoning were expressed using the
temporal logic available in KIV. A suitable modularization theorem was proved
for this purpose.

We see the following advantages in our approach: first, the tool support gives
proofs of higher quality compared to the verification of programs with pen and
paper. The interactive verifier KIV allows us to directly verify parallel programs
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in a rich programming language. An additional translation to a special normal
form (as e.g. in TLA [30]) using explicit program counters is not necessary.
The proof strategy of symbolic execution in KIV is very intuitive and can be
automated to a large extent. In this paper we have also shown how to decompose
proofs; instead of a single large proof it was sufficient to construct several small
and comprehensible proofs for single processes.

As future work this approach opens several interesting possibilities. For the
compositional verification of the lock-free algorithm, we have verified a num-
ber of interesting properties of more general nature, e.g., properties concerning
memory allocation. Can these properties be reused for the verification of other
algorithms? Another direction we want to investigate is to examine other prop-
erties for lock-free algorithms, e.g. liveness properties. In KIV, liveness proper-
ties can also be verified with symbolic execution and induction. It remains to
incorporate a suitable modularization theorem into the calculus of KIV.
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