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Although lipid biology may play a key role in the pathophysiology of mental health disorders such as schizophrenia (SCZ) and bipolar
disorder (BD), the nature of this interplay and how it could shape phenotypic presentation, including cognitive performance is still
incompletely understood. To address this question, we analyzed the association of plasma level of different lipid species with
cognitive performance in the transdiagnostic PsyCourse Study. Plasma lipidomic profiles of 623 individuals (188 SCZ, 243 BD, 192
healthy controls) belonging to the PsyCourse Study were assessed using liquid chromatography and untargeted mass spectrometry.
The association between 364 annotated lipid species from 16 lipid classes and six cognitive tests was evaluated. Likewise, the
association of polygenic risk scores (PRS) for SCZ, BD, executive function (EF), and educational attainment (EA) with lipid plasma
levels were also investigated. In the regression analysis, three lipid species belonging to phosphatidylethanolamine plasmalogen and
one belonging to ceramide class showed significant negative association with Digit-Symbol test scores. Lipid class-based enrichment
analysis in LipidR replicated the significance of the phosphatidylethanolamines class for the Digit-Symbol test, which evaluates the
processing speed in cognitive tasks. Polygenic load for SCZ, BD, EF, or EA was not associated with lipid levels. Our findings suggest a
link between lipids and cognitive performance independent of mental health disorders. Still, independent replication is warranted to
better understand if phosphatidylethanolamines could represent an actionable pharmacologic target to tackle cognitive dysfunction,
an important unmet clinical need that affects long-term functional outcomes in individuals with severe mental health disorders.
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INTRODUCTION reported at around 0.8% for SCZ and 2-3% for BD [1, 3, 4]. The
Schizophrenia (SCZ) and bipolar disorder (BD) are severe and exact etiology of these major mental health disorders is yet
chronic mental disorders with highly polygenic architecture and unknown and while their symptoms overlap, their diagnostic
heterogeneous symptoms [1, 2]. Heritability estimates range criteria still are based on clinical evaluations of symptoms without
around 60 to 80% and the global lifetime prevalence has been objective markers [5, 6].
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Given the association between plasma lipid profiles and clinical
traits, lipid biology may have important functions in the
pathophysiology of SCZ and BD [2, 7-9]. Lipids make up more
than half of the brain’s dry weight, and myelin sheaths make up
about 80% of all brain lipids [1]. In addition to a potential role as
biomarkers, lipids and lipid intermediates hold important yet
under-studied roles in brain structure and function [10]. More than
10% of prefrontal cortex (PFC) lipids in individuals with SCZ are
significantly different from healthy controls [9]. Also, individuals at
high risk of developing SCZ and BD exhibit abnormalities
compatible with lipid dysregulation such as myelin dysfunction
in the PFC that could lead to functional and cognitive impairments
[1, 11, 12]. In our most recent study, a multi-cohort case-control
study that included the PsyCourse Study, plasma lipid abnorm-
alities were transdiagnostically and transethnically linked to
diagnoses, such as SCZ, BD, and major depressive disorder
(MDD) [13].

Cognitive dysfunction is among the most disabling symptoms
of SCZ and BD and is difficult to treat with the commonly used
pharmacologic regimes [14, 15]. Consequently, it has important
impacts on long-term functional outcomes [15, 16]. Although the
relationship between circulating lipids and cognitive performance
is complex, disruptions in lipid homeostasis and clinical dyslipi-
demia are generally contributors to changes in cognitive
performance in mental health disorders [17, 18]. While the
relationship between clinical lipids, such as cholesterol and
cognitive performance has been investigated in some depth,
little is known about the role of the vast rest of the lipidome -i.e.,
non-clinically tested lipid species- in this context.

The fact that in neurotypical individuals, brain lipidomic profiles
have been shown to be brain-region- and brain-cell type-specific
and related to functional connectivity [19], argues for a likely role
for brain lipidomic profiles and brain lipids well beyond those that
are commonly assessed in clinical contexts to be relevant to
cognitive processes. Several neurodevelopmental traits have been
associated with specific dyslipidemia, e.g., autism spectrum
disorder with decreased linoleic acid, intelligence quotient/
developmental quotient composite score with increased arachi-
donic acid and sleep disturbances with decreased docosahexanoic
acid and arachidonic acid [20]. In addition, previous studies in the
field of neurodegenerative disorders such as Alzheimer’s diseases
(AD) have demonstrated that links between the lipid profile and
cognitive symptoms/changes may exist [21, 22]. It has been
suggested that plasma lipid levels could differentiate two early AD
subgroups with varying cognitive performance [23]. In this vein, a
panel of plasma lipids (17-lipid signature) comprising acylcarni-
tines, sterol lipids, sphingolipids, and phospholipids, has been
suggested to be positively associated with the Alzheimer Disease
Assessment Scale-13-item cognitive subscale for cognitive per-
formance [21].

Regarding SCZ and BD, both central and peripheral abnormal-
ities in lipidome composition and metabolism have been
described that might affect cognitive performance [1, 5. Indivi-
duals with SCZ presenting with metabolic syndrome and clinical
dyslipidemia exhibit higher cognitive impairments (lower cogni-
tive domain scores on tests measuring processing speed,
attention/vigilance, working memory and problem solving/reason-
ing) [18, 24]. Changes in blood cholesterol, apolipoprotein A1, and
apolipoprotein B levels in individuals with SCZ, and blood high-
density lipoprotein and triglyceride levels in individuals with BD,
have been associated with cognitive function especially as
measured on composite memory-related scales (e.g., the Mini
Mental State Examination (MMSE) or the Repeatable Battery for
the Assessment of Neuropsychological Status (RBANS))
[17, 25-28].

Furthermore, shared genetic determinants of severe mental
health disorders and lipid metabolism have been previously
identified and genetic factors are known to determine peripheral
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lipid levels to a large extent [20, 29-31]. In psychiatry, dyslipidemia
is a significant health concern, and it has been documented that
lipid metabolism-related genes exhibit enrichment of genetic
variants linked to certain mental health disorders [29, 32, 33]. Over
1000 genetic loci have been linked to blood lipid concentrations
and lipid class heritability’s range from 0.2 to 0.5 [31, 34-39].
Polygenic complex traits, such as metabolic syndrome and mental
health disorders, share several genetic risk loci [32] and genome-
wide association studies (GWAS) have revealed an overlap
between susceptibility loci for SCZ and BD and genes involved
in the regulation of lipid levels [2].

Accordingly, the aim of the study presented herein was to
explore the association of plasma lipid levels with cognitive
performance by utilizing untargeted liquid chromatography-mass
spectrometry (LC-MS)-based profiling approach in the PsyCourse
Study. We also investigated if genetic liability in the form of
polygenic risk scores (PRS) for SCZ (PRC-SCZ), BD (PRS-BD),
executive function (PRS-EF), and educational attainment (PRS-EA;
which can account for a portion of cognitive function in
individuals with mental health disorders) [40] influence the lipid
levels in our study. Compared to previous approaches, our current
study vastly expands the range of mental health diagnoses, the
depth of cognitive phenotyping, and the breadth of analyzed
lipidomic features and addresses the role of genetic factors in the
interplay between lipidomics and cognition. Yet, it still keeps a
narrow focus on lipidomics and cognitive performance in mental
health disorders.

SUBJECTS AND METHODS

Participants

A total of 623 individuals from the PsyCourse Study, all participants for
whom plasma lipidomic data were available, were included in this
investigation, among them 188 and 243 individuals with SCZ and BD,
respectively, who had been diagnosed using DSM-IV criteria, as well as
192 healthy controls without a mental health diagnosis. The PsyCourse
Study (www.psycourse.de) is a German/Austrian longitudinal cohort
study, in which biomaterials and detailed phenotypic data from 1320
individuals with a range of mental health disorders and 466 individuals
without a mental health diagnosis have been collected. The control
group did not include any individuals with neurological diseases
affecting the central nervous system, such as mental health disorders,
epilepsy, stroke, multiple sclerosis, dementia, and structural brain
impairments, or severe somatic comorbidities. The current analyses
were based on version 5.0 of the PsyCourse dataset [41]. Written
informed consent was obtained from each participant. The study was
approved by the University Hospital Munich’s ethical committee (Project
number: 17-13) and the other study sites [42], and was carried out in
accordance with the Declaration of Helsinki.

Cognitive performance assessment

A cognitive testing battery consisting of Trail-Making Test part A (TMT-A) and
B (TMT-B) [43-45], Verbal Digit Span forward (DGT-SP-FRW) and backward
(DGT-SP-BCK) [46], Digit-Symbol (DG-SYM) [47], and Multiple-choice Vocabu-
lary Intelligence (Deutsch: Mehrfachwahl-Wortschatz-Intelligenz [MWT-B])
[48, 49] tests were administered by trained raters. The cognitive tests that
provide scores (applied to our analyses), used to interpret cognitive
performance are briefly explained in Table 1 [40-42] and detailed additional
information on the tests can be obtained elsewhere [40-49]. Plasma
sampling and cognitive testing were performed on the same day.

Lipid quantification

Plasma sample collection and lipid quantification were carried out as
previously reported in Tkachev et al. [13]. In brief, non-fasting plasma
samples were collected between 2012 and 2016 and analyzed between
2018 and 2020. Liquid chromatography coupled with untargeted mass
spectrometry (LC-MS) consisted of a Waters Acquity UPLC system (Waters,
Manchester, UK) and a Q Exactive orbitrap mass spectrometer (Thermo
Fisher Scientific, USA) equipped with a heated electro-spray ionization
(HESI) probe was used to reproducibly detect 1361 lipid features.
Separation of lipids was performed using a reverse phase ACQUITY UPLC
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Table 1. Description of the tests assessed in the cognitive performance testing battery in the PsyCourse Study.
Name Cognitive Domain Description Interpretation
TMT-A Psychomotor speed (and to a Randomly distributed numbers need to be connected in Higher values indicate poorer
lesser degree executive function) ascending order in a timely manner (“1-2-3-4...") test performance
TMT-B Executive function Randomly distributed numbers and symbols need to be Higher values indicate poorer
connected alternatingly and in ascending order in a test performance
timely manner (“1-A-2-B-3-C...")
DGT-SP- Short-term memory The interviewer reads increasingly longer strings of digits Lower values indicate poorer
FRW and asks the participant to repeat them test performance
DGT-SP- Working memory The interviewer reads increasingly longer strings of digits Lower values indicate poorer
BCK and asks the participant to repeat them backwards test performance
DG-SYM Processing speed (and to a lesser Participants are asked to fill in a symbol that corresponds Lower values indicate poorer
extend psychomotor speed) to a number by using a given number-symbol key as test performance
quickly as possible
MWT-B Crystallized intelligence Participants have to select the single existing German Lower values indicate poorer

word in 37 sets of five “words” each

test performance

TMT-A trail-making test part A, TMT-B trail-making test part B, DGT-SP-FRW verbal digit span forward, DGT-SP-BCK verbal digit span backward, DG-SYM digit-

symbol, MWT-B multiple-choice vocabulary intelligence.

BEH C8 Column (2.1x 100 mm, 1.7 um, Waters co., Milford, MA, USA)
coupled to a Vanguard precolumn. Mass spectra were recorded in both
positive and negative modes. Spectra were analyzed with the XCMS
software [50], which employed the “centWave” method for peak detection
[13]. Of 1361 lipid features, 394 were lipid species annotated using an in-
house library belonging to 16 different lipid classes, including triacylgly-
ceride (TAG), acylcarnitine (CAR), phosphatidylcholine (PC), phosphatidyl-
choline plasmalogen (PC-P), ceramide (Cer), phosphatidylethanolamine
(PE), phosphatidylethanolamine plasmalogen (PE-P), fatty acid (FA),
sphingomyelin (SM), plasmanylphosphatidylcholine (PC-O), cholesteryl
ester (CE), diacylglycerol (DAG), lysophosphatidylcholine (LPC), lysopho-
sphatidylcholine plasmalogen (LPC-P), lysoplasmanylphosphatidylcholine
(LPC-0), and lysophosphatidylethanolamine (LPE). After excluding all lipid
species known to be altered by fasting status (n = 30; of which 26 were
fatty acids) [51], 364 annotated lipids species not affected by fasting status
remained and were carried forward to the analysis (Supplementary tables
S1-S3).

Genotyping and PRS calculation

Individuals were genotyped using the Illlumina Infinium Global Screening
Array-24 Kit (GSA Array, version 1 and 3; lllumina, San Diego, CA). Quality
control and imputation (HRC [Version r1.1 2016] reference panel) were
carried out following a pipeline described elsewhere [52]. In order to
calculate the PRS-SCZ, PRS-BD, PRS-EF, and PRS-EA, we used the findings of
the latest GWAS in SCZ [53], BD [54], executive function [55] and
educational attainment [56] as discovery datasets. We calculated PRSs
using the PRS Continuous Shrinkage approach (PRS-CS; “auto” settings)
[57], to infer posterior SNP effect sizes under continuous shrinkage priors
and eventually providing an individual estimate of the PRS-SCZ, PRS-BD,
PRS-EF, and PRS-EA. PLINK 1.9 [58] was used for the final PRS scoring by
summing the weighted effect generated by PRS-CS of each SNP that
contributed to the PRS.

Statistical analysis

Inverse normal- and log2-transformation were used for normalization of
cognitive tests results and lipid levels, respectively and standardization was
performed on both. A linear regression model in R version 4.3.0 (https:/
www.R-project.org/) was used to test for an association between lipid
levels and cognitive tests results, and to check the effect of the PRS-SCZ,
PRS-BD, PRS-EF, and PRS-EA on lipid levels. The class-enrichment analysis
from LipidR package 2.15.1 [59] was used in R to test a two group
comparison. Briefly, in this analysis lipids were classified based on their
annotations, and enrichment scores and significance were determined for
each lipid set using a permutation algorithm to indicate whether lipid
classes were up- or downregulated between two groups (here, mean-
based dichotomous cognitive tests results: low versus high performance).
A more detailed explanation of the methodology can be found elsewhere
(https://www.lipidr.org; [59]). Covariates included age, sex, diagnosis,
duration of illness, body mass index, educational status (only in cognition
analyses), first two ancestry principal components (only in PRS analyses),
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and medication (i.e, number of antipsychotics, antidepressants, mood
stabilizers, and tranquilizers taken by each individual at the time of
sampling). Sensitivity analysis of the covariates (to quantitatively check the
robustness of putative causal estimates [60, 61]) in our study using
“sensemakr” package in R has been conducted. We also re-ran different
models of the regression analysis (Without covariates, with covariates
having robustness values (RV) greater than 20%, and with all covariates).
False discovery rate (FDR) was applied to adjust for multiple comparisons
and the results were considered statistically significant if the adjusted
p-value was < 0.05.

RESULTS

After normalization and standardization of the lipid intensities
and the cognitive tests results, 619 individuals (344 males, 275
females; age: 40.8 +14.5 years) remained in the analysis. The
demographic and psychopathological information of study
participants are presented in Table 2. In addition, the compar-
isons of test scores for six cognitive test across three different
diagnoses in our study (SCZ, BD, and HC) are presented in
supplementary figure 1.

Linear regression analysis indicated four individual lipid species to
be significantly and negatively associated with DG-SYM test results:
PE-P 42:5 (3 =—0.134, FDR-adjusted p value =0.039), PE-P 40:4
(B = —0.124, FDR-adjusted p value = 0.039), PE-P 40:5 (3 = —0.125,
FDR-adjusted p value = 0.042) belonging to the PE-P class and Cer
38:1 (B =—0.137, FDR-adjusted p value =0.039) belonging to the
Cer class. No statistically significant associations between individual
lipid species (n = 364) and results of the TMT-A, the TMT-B, the DGT-
SP-FRW, the DGT-SP-BCK, or the MWT-B could be identified
(Supplementary table S4). Sensitivity analyses for age, sex, diagnosis,
duration of illness, body mass index, educational status and
medication use indicated that among these covariates, age with
an RV of 034 and a R2Y ~ D|X of 0.15 had a relatively robust effect
on DG-SYM test performance analyzed in this study (Supplementary
Table S5, Figure S2). Running different models of linear regression
analyses with different covariates yielded no change in our
significant results; output of these models showed our four
significant lipids remained unaffected (Supplementary Table S6). In
addition to findings from linear regression analysis using normalized
and standardized DG-SYM test results, the association between PE
class and the dichotomous DG-SYM test results (mean-based low
versus high) was also observed (adjusted p-value =0.001) in the
lipid class-based enrichment analysis using LipidR, which results in a
list of significantly changes lipid classes. The presence or absence of
a mental health diagnosis did not have a major impact on this
outcome (Fig. 1). Furthermore, although single lipid species from the
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Table 2. Demographic and psychopathological data of study participants.

sCcz BD HC Test
Subjects (n) 187 240 192 -
Sex (%female) 30 45 57 SCZ vs BD: x-squared = 9.248;
p-value = 0.00235
SCZ vs HC: x-squared = 25.541;
p-value=4.33x10"’
BD vs HC: x-squared = 5.056; p-value = 0.024
Inpatient status (%inpatient vs. outpatient) 57 32 - X-squared = 25.053; p-value =5.58 x 10’
Age (years, mean *+ SD) 389+12.9 44.7 +13.4 37.8+16 SCZ vs BD: F-value — 19.98;
p-value =1.01x 10 °
SCZ vs HC: F-value = 0.531; p-value = 0.467
BD vs HC: F-value = 23.24;
p-value =1.98x 10 °
Educational status (%professional vs. high- 38 60 66 SCZ vs BD: x-squared = 19.14;
school level) p-value=1.21x10"°
SCZ vs HC: x-squared = 27.00 ;
p-value=2.02x10"7
BD vs HC: y-squared= 1.00; p-value = 0.32
BMI (kg/m?, mean % SD) 28.2+6.1 28.3+6.3 24.1+44 SCZ vs BD: F-value = 0.026; p-value = 0.872
SCZ vs HC: F-value = 54.17;
p-value =1.19x 10 "2
BD vs HC: F-value =
59.84; p-value =7.53x 10 '*
Duration of illness (years, mean + SD) 12.1+10 11.8+11.2 - SCZ vs BD: F-value = 0.085; p-value = 0.77
PANSS_Positive (mean + SD) 13.5+5.8 8.9+2.8 = SCZ vs BD: F-value = 114.6; p-value <2 x 10 ¢
PANSS_Negative (mean + SD) 15.1+6.3 9.9 +4.1 = SCZ vs BD: F-value = 106.5; p-value <2 x 10 ¢
PANSS_General (mean + SD) 28.3+8.9 22.4+6.6 - SCZ vs BD: F-value = 59.48; p-
value=9.28 x 10~ '*
YMRS Sumscore (mean * SD) 3+4.6 3.7+5.9 - SCZ vs BD: F-value =2.191; p-value =0.14
IDS-C3, Sumscore (mean + SD) 14.9 £ 10.1 12.1+10.1 - SCZ vs BD: F-value = 7.049; p-value = 0.00826

BMI body mass index, PANSS positive and negative syndrome scale, YMRS young mania rating scale, IDS-C30 inventory of depressive symptomatology, SCZ

Schizophrenia, BD bipolar disorder, HC healthy control.
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Fig. 1 No major effect of mental health diagnosis (schizophrenia, bipolar disorder, healthy control) as a covariate in regression model on
significance of PE class for the DG-SYM test in lipid class-based enrichment analysis in lipidR. Distribution of log fold change (logFC) per
lipid class, with significantly enriched classes (marked in red) for mean-based low (as seen in the plots) versus high results in the dataset
including all individuals with schizophrenia, bipolar disorder, and healthy controls (sample size: 531 individuals). PE: phosphatidylethanolamine;

DG-SYM: Digit-Symbol test.

other lipid classes did not reach statistical significance in the linear
regression model, DAG, FA, and TAG as lipid classes were also
significantly associated with DG-SYM test performance in lipid class-
based enrichment analysis using LipidR (Fig. 1, Fig. 2 and
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Supplementary table S7). This enrichment analysis also showed
significant associations between other lipid classes and various
cognitive tests: TAG and CAR with TMT-A; LPE, TAG, PE, PC and CAR
with TMT-B; PE, FA and TAG with DGT-SP-FRW; LPC-O, LPE, LPC, CAR

Translational Psychiatry (2025)15:105
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Fig. 2 Lipid class-based enrichment analysis in LipidR for different cognitive tests. Distribution of log fold change (logFC) per lipid class,
with significantly enriched classes (marked in red) for mean-based low (as seen in the plots) versus high cognitive tests results in the full
dataset with the effect of covariates. TMT-A, Trail-Making Test part A; TMT-B, Trail-Making Test part B; DGT-SP-FRW, Verbal Digit Span forward; DGT-
SP-BCK, Verbal Digit Span backward; DG-SYM, Digit-Symbol; MWT-B, Multiple-choice Vocabulary Intelligence.

and FA with DGT-SP-BCK; and TAG with MWT-B (Fig. 2 and
Supplementary table S5). Number of participants for each test in
class-enrichment analysis is shown in supplementary table S8.
When PRS-SCZ, PRS-BD, PRS-EF, or PRS-EA were included in the
linear models to check for the effect of genetic burden on the
annotated lipid levels, nominal association was detected for several
lipids for all PRSs. However, after FDR correction, no association
remained significant (Supplementary tables S$S9-512), arguing
against common genetic factors implicated in mental health
disorders or educational attainment driving the observed associa-
tions. In this vein, we also checked the effect of PRS-SCZ, PRS-BD,
PRS-EF, and PRS-EA on cognitive test results; that PRS-EF as
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expected was associated with most of the tests, such as DG-SYM
test, and PRS-EA with DGT-SP-BCK and MWT-B tests (as previously
also reported by our group [40]), but the results for PRS-SCZ and
PRS-BD revealed no significant relationship between these PRSs and
DG-SYM or other cognitive tests (Supplementary tables S13-S16).

DISCUSSION

Lipidomic changes have previously been linked to both mental
health disorders, such as SCZ or BD, and cognitive performance. In
order to better understand the role of the lipidome in the context
of deep cognitive phenotypes across the affective to psychotic
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spectrum, we capitalized on a large and cognitively deeply
phenotyped study of individuals with mental health disorders with
a rich plasma lipidomic dataset. We aimed to answered the
question, whether specific lipid species or classes were associated
with differential performance across various cognitive domains,
including psychomotor and processing speed, executive function,
short-term and working memory and crystalized intelligence and
whether these associations were affected by diagnoses or genetic
predispositions for mental health disorders or educational
attainment.

In our hypothesis-free, untargeted lipidomics approach, lipids
belonging to the PE-P class emerged as the main lipid class
associated negatively with DG-SYM test performance, representa-
tive of processing and psychomotor speed. Our findings showed
that higher levels of PE-P 42:5, PE-P 40:4, and PE-P 40:5 in plasma
samples of our study are significantly associated with poorer DG-
SYM test performance. The DG-SYM test mainly measures
processing speed [41], the amount of time required to complete
a series of cognitive tasks [62]. The lipid class-based enrichment
analysis in LipidR validated the significant association of increases
across the entire PE class with decreased processing speed as
measured by the DG-SYM (Fig. 2). In addition, this analysis showed
significant association of PE class with executive function (TMT-B)
and short-term memory (DGT-SP-FRW) as different cognitive
domains (Fig. 2).

Plasmalogens (-P) are a subclass of glycerophospholipids
belonging either to the PC or PE class. Together with other
phospholipids, they form lipid bilayer membranes. Plasmalogens
makeup around 65% of all PEs and are present in all mammalian
cells, but are especially numerous in neurons, cardiac muscle, and
skeletal muscle [63, 64]. Plasmalogens have shown potential
benefits on cognitive performance and their alterations can cause
changes in ion channel and receptor function as well as a loss of
membrane fluidity, myelination and myelin structure; processes of
likely importance to cognitive function and the pathophysiology
of mental health disorders, such as SCZ and BD [64-67]. Rare
disorders of plasmalogen synthesis, such as rhizomelic chondro-
dysplasia punctata, lead to severe delays in motor development
and intellectual disability [65, 68] and involve an impaired
Schwann cell differentiation and consequent changes in synaptic
neurotransmission, neuronal signaling and apoptosis and neuroin-
flammation, which may finally have an impact on cognitive
performance [65, 66].

Our findings from the mean-based dichotomous analysis
indicated that high peripheral levels of plasmalogens are related
to poorer processing speed (DG-SYM) and executive function
(TMT-B) but better short-term memory (DGT-SP-FRW), suggesting
an intricate relation between plasmalogens and different cogni-
tive parameters that warrants further investigation. As demon-
strated by the lipid-species-based analyses, it is possible that
individual lipid species or closely related groups of lipid species
within a lipid class could have differential effects in the contexts of
different cognitive functions. These differential effects could be
lost in crude class-based enrichment analysis. The recent finding
of a specific PE species (PE 18:1/20:4) as a potential predictor of
overall cognitive decline measured using a composite score
reflecting six cognitive domains in healthy aging individuals
further speaks to this intricate interplay [69].

Although it is generally believed that it is difficult for
plasmalogens to cross the blood-brain-barrier, recent evidence
shows that in mice gastric uptake of plasmalogens has a direct
effect on synaptic function and neuroinflammation in the murine
brain [70]. Taken together, it is possible that the changes in
plasma PE levels associated with DG-SYM results, could be
reflective of alterations in brain cells membrane and myelin
structure or function that are linked to altered processing speed.

Our regression analysis results also indicated a significant
negative association between a ceramide species (C38:1 from Cer
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class) and processing speed. Higher plasma levels of C38:1 were
associated with poorer DG-SYM test performance. Ceramides are a
heterogeneous class of sphingolipids [71]. They are integral
components of cell membranes and bioactive lipids involved in a
variety of cell signaling pathways, including cell proliferation,
differentiation, senescence, apoptosis, cell cycle arrest, inflamma-
tion, and responses to stress [72, 73]. Ceramides are one of the most
abundant lipid classes in myelin sheaths, but disruption in their
balance can represent an endogenous neurotoxin [8]. Moreover, in
individuals with coronary artery disease, circulating ceramides have
been related to changes in verbal memory and levels of some Cer
species have also been linked to MDD [74-77]. Cer as a class in our
lipidR analysis, however, were not linked to any measures of
cognitive performance. Instead, at lipid class level, other interesting
findings emerged. For example, working memory, as measured by
the DGT-SP-BCK, was associated with levels of CAR and all three
lysophospholipid classes (LPC, LPC-O, and LPE). Lysophospholipids
have near ubiquitous functions in membrane shaping, cell
trafficking, cell growth and death, and inflammatory cascades and
are closely related to lysophosphatidic acid (LPA) [78]. LPA and LPA
receptor signaling pathway deficits have been linked to different
types of memory in both mice and zebrafish [79-81], providing a
hypothetical biological link for the observed association.

In our recent multi-cohort case-control study (3 cohorts with
varied cultural and demographic backgrounds including the
PsyCourse Study), a profile of 77 significant and reproducible
lipid species, including ones belonging to the PE-P and Cer classes,
were found to be associated with SCZ; however, overlapping
changes were also observed in BD and MDD [13]. As far as we
know, our current study represents first evidence at lipidome-wide
scale, that peripheral lipid particularly plasmalogens could reflect
cognitive performance, most concretely for psychomotor proces-
sing speed, both in individuals with mental health disorders and
those without.

Age in our study had a relatively robust effect on processing
and psychomotor speed of cognitive function, while medications
showed relatively low robustness values as demonstrated by
sensitivity analysis (Supplementary table S5). Nevertheless, the
significant findings of our study remained stable across different
models, including those that included or did not include the
covariates such as age and four groups of medications
(Supplementary table S6).

While overall PRS-SCZ, PRS-BD, PRS-EF, and PRS-EA were not
related to lipid levels in our analysis, more refined analysis based
on PRS for specific lipid species or lipid-pathway-specific PRS
would be a next interesting analytic step. However, comprehen-
sive lipid-metabolism-based PRS analysis would likely require
larger sample sizes not currently available for the phenotypes of
interest to this study. In this context of PRS, common genetic
variants in retinoid signaling (a lipid metabolism-related pathway)
genes have been shown to be associated with the severity of
cognitive impairment in individuals with SCZ [82]. This highlights
the potential utility of our results and those of others in unraveling
the complex interplay between genetics, lipid profiles, and
cognitive performance, thus paving the way towards predictive
risk models.

Nonetheless, our study has several limitations. Even though
obtained in one of the currently largest studies of individuals with
untargeted lipidomics data and in-depth cognitive performance
metrics, our results would benefit from replication in an independent
dataset in the future. One of our study’s main limitations is that we
were only able to examine peripheral lipidomic profiles. Lipidomic
analysis of cerebrospinal fluid samples could be more informative in
understanding which lipids are linked with cognitive performance,
although the current paradigm of cerebrospinal fluid as the gold
standard biomaterial for cognition biomarkers is currently being
challenged and potentially rewritten for neurodegenerative diseases
[83]. Study recruitment in a naturalistic setting also adds different
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clinical states and differing treatment regimes for each study
participant at the time of evaluation as additional challenges. These
were addressed by including gross medication categories and
disease duration as covariates but confounding cannot be ruled out
entirely. More granular information on, for example, cognitive
training that study participants could potentially have received also
is not available but could, of course, have an impact on cognitive
testing performance. When a very conservative overall correction
was applied to the regression model results for all six cognitive tests
together, none of the lipid-species-significant findings remained
significant. Lastly, no differential relationship between plasma
lipidomic profiles and cognitive performance could be identified in
individuals with SCZ and BD as opposed to those without mental
health disorders, therefore potentially limiting the utility of our
findings for future predictive strategies specific to the cognitive
dysfunction affecting disease course and outcome in SCZ and BD.

In conclusion, we found here the negative association of PE lipid
class with DG-SYM test performance, which represents the
processing and psychomotor speed. While it is becoming
increasingly clear that dysregulated blood lipid profiles are
present in individuals with major mental health disorders, their
extent and links to the etiopathology and phenotypic presenta-
tion are only partially understood. Although speculative at this
point, links between lipidomic profiles and cognitive function
could exist along the plasma-to-brain axis. Such a link would be
the basis necessary for studies focusing on clinical translation and
drug development and repurposing in order to address the need
to ameliorate the outcome-determining cognitive dysfunction in
individuals with mental health disorders.

DATA AVAILABILITY

A unique feature of the PsyCourse Study is that it has been conceptualized as a
continuously growing data resource available to the scientific community. Data
sharing will be based on mutually agreed research proposals and within the Open
Science framework of the PsyCourse Study (see psycourse.de/openscience-en.html).
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