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Molecular dataintegration plays a central role in central nervous system
(CNS) tumor diagnostics but currently used assays pose limitations
due to technical complexity, equipment and reagent costs, as well as

lengthy turnaround times. We previously reported the development of
Rapid-CNS?, an adaptive-sampling-based nanopore sequencing workflow.
Here we comprehensively validated and further developed Rapid-CNS?
forintraoperative use. It now offers real-time methylation classification
and DNA copy number information within a30-minintraoperative
window, followed by comprehensive molecular profiling within 24 h,
covering the complete spectrum of diagnostically and therapeutically
relevant information for the respective entity. We validated Rapid-CNS?
inamulticenter setting on 301 archival and prospective samples
including 18 samples sequenced intraoperatively. To broaden the

utility of methylation-based CNS tumor classification, we developed
MNP-Flex, a platform-agnostic methylation classifier encompassing

184 classes. MNP-Flex achieved 99.6% accuracy for methylation families
and 99.2% accuracy for methylation classes with clinically applicable
thresholds across a global validation cohort of more than 78,000 frozen
and formalin-fixed paraffin-embedded samples spanning five different
technologies. Integration of these tools has the potential to advance CNS
tumor diagnostics by providing broad access to rapid, actionable molecular
insights crucial for personalized treatment strategies.

CNS tumors represent a particularly diverse and hard-to-treat group
of cancers. Recent successes in clinical trials for targeted therapies
address mutations or gene fusions in addition to traditional pre-
dictive markers such as MGMT promoter (MGMTp) methylation'™.
Among notable advancements in molecular diagnostics, the Hei-
delberg Molecular Neuropathology (MNP) methylation classifier
(https://www.molecularneuropathology.org) has emerged as a pivotal
diagnostic tool with more than 140,000 uploads to the website>. The
2021 World Health Organization (WHO) classification of CNS tumors
(CNS5) underscores a paradigm shift toward the evaluation of awide

range of molecular alterations, including methylation-based classi-
fication, to report WHO-compatible integrated diagnoses’. Conven-
tional state-of-the-art workflows necessitate substantial investment,
are labor intensive and require batching of samples, which resultin
turnaround times in the order of several days or weeks®’; this has
consequently confined them to institutions with high-throughput
capabilities.

Inthe dynamic field of CNS tumor diagnostics, thereis a growing
demand for methodologies that are comprehensive as well as rapid
and accessible. In fact, the multitude of biomarkers necessary for
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WHO-conformant diagnostics in the CNSS classification has provoked
criticism for being incompatible with the WHO’s mandate to consider
needs worldwide.

Nanopore sequencingis rapidly emerging as an efficient technique
for rapid and cost-effective DNA sequencing. Its distinctive feature
of directly reading native DNA enables the acquisition of genetic and
epigenetic information in a single assay, thus eliminating the need
for separate workflows. Several approaches have been described to
enable swift and evenintraoperative methylation classification using
sparse nanopore sequencing data” . However, these approaches do
not report targetable alterations, particularly mutation and fusion
data. Anoteworthy attribute of nanopore sequencing is the capability
to reverse the voltage across pores, a process referred to as adaptive
sampling. Unlike traditional sequencing methods that rely on capture
or amplicon approaches, this permits the selection of molecules for
sequencingbased on real-time assessment of asmallinitial part of the
reads”. Leveraging readfish’, atool developed to enable genome-level
adaptive sampling, with CNS tumor relevant targets, we previously pub-
lished a technical proof-of-concept study for our platform Rapid-CNS?
(ref.19). Yet, Rapid-CNS? provides granularity up to only 91 classes,
whereas the latest version of the MNP classifier discriminates 184 (sub)
classes. However, the current MNP classifier only accepts methylation
array dataasinput. To overcome these limitations, we also developed
MNP-Flex (https:/mnp-flex.org), which classifies 184 categories from
diverse sources. Here we present acombined workflow that allows for
rapid stratification followed by high-resolution profiling (Fig. 1a) and
introduces platform-independent methylation classification with the
most up-to-date granularity (Fig. 1b).

Results

Next-day reporting of molecular diagnostic results

After a proof-of-concept preliminary version’, Rapid-CNS* was run
independently at two centers on fresh or cryopreserved tumor tissue
(University Hospital Heidelberg, Germany and University of Notting-
ham, United Kingdom). We provided a comprehensive report to the
neuropathologistincluding quality control (QC) parameters, clinically
relevant single nucleotide variants (SNVs), small insertions and dele-
tions (Indels), gene fusions or structural variants (SVs), copy number
variations (CNVs), MGMT promoter methylation status and methyla-
tion classification to make a WHO-compatible integrated diagnosis. All
sequencing and analysis conditions are described in Supplementary
Table 1. The pipeline can be run on the MinlON, GridION and Prome-
thlON devices, as well as the new R10 flow cells. To establish and test
thefeasibility of varied sequencing conditions, we sequenced archived
frozen tissue from 112 samples using the Rapid-CNS? pipeline at the
Department of Neuropathology, Heidelberg. In parallel, we prospec-
tively sequenced DNA from fresh tissue sent to the Department of
Neuropathology, Heidelberg and issued comprehensive molecular
diagnosticreportsinareal diagnostic setting for 140 patient samples.
Oncethe pipeline was set up for regular prospective application, 51of
62 CNS tumor samples (82.3%) sent between February and May 2024
underwent the Rapid-CNS? pipeline without any restrictions on tissue
amount or quality (Supplementary Table 1). We achieved an average
turnaround time of 2 days from tissue receipt to complete report (meth-
ylation classification, CNVs, SNVs and/or Indels, SVs) for diagnostic
samples compared with an average of 20 days for the conventional
workflow. When subtracting avoidable logistical and organizational
delays, the entire pipeline took only 40 h. Similarly, Rapid-CNS?was run
on27archivaland 22 prospective diagnostic samples at the University
of Nottingham with an average turnaround time of 30 h as opposed
to over several weeks for the conventional workflow. Among the wide
scope of tumor typesinour dataset, the cohortalsoincluded 74 molec-
ular low-grade glial and glioneuronal tumors, 15 recurrent tumors,
10 samples withinfiltration zones of diffuse glioma and 5samples the
size of asmall biopsy (-1.5 mm diameter) (Supplementary Table 1).

In our attempt to scrutinize the workflow on an utmost diverse
basis, we prospectively included 31 cases that in retrospect could not
have been resolvable by methylation (for example, brain metastases,
not represented in the CNS tumor methylation classifier). Yet, these
were not censored in further analyses to provide a comprehensive
picture of the performance.

Rapid-CNS?is available as a Nextflow pipeline that can be easily
deployed withasingle command and requires only abasic knowledge
of command-line programming (https://github.com/areebapatel/
Rapid-CNS2_nf).

Evaluation of reported molecular data

We integrated molecular alterations reported by Rapid-CNS? with
conventional histopathology to issue WHO-compatible integrated
diagnosesinarealistic diagnostic setting (Fig. 2). In addition, we com-
pared each of the reported alterations separately with results from
conventional methods. For 103 samples with matched next-generation
sequencing (NGS) panel sequencing data, Rapid-CNS?accurately called
91.67% of the SNVs identified by NGS (Fig. 3a), well in line with estab-
lished accuracy metrics between conventional sequencing and variant
calling pipelines®. A minimum on-target coverage of 10X was required
toachieve more than 90% concordance in mutation calls (Supplemen-
tary Fig. 1). Minor discordances between sequencing platforms are
expected and are currently insurmountable given fundamental dif-
ferences betweenlong-and short-read technologies, but may become
problematic if they persist in clinically relevant alterations. Hence,
we further specifically investigated IDH1/2 and BRAF mutations and
found correct calling in 47 of 48 samples with matched NGS data and
endorsed by direct sequencing and/or immunohistochemistry, with
no false positives (97.9% sensitivity, 100% specificity). MGMT promoter
methylation status reported by Rapid-CNS? considers the entire region
as opposed to the two-site Bady model used for methylation arrays?.
An unambiguous difference between the methylated and unmeth-
ylated tumor profiles could be identified (Fig. 3b). MGMT promoter
status was concordant in 227 of 251 cases (90.4%) with matched MGMT
predictions (Supplementary Fig. 2). This discrepancy is similar to that
reported when comparing other MGMT methylation tests; forexample,
pyro-sequencing versus methylation array****. Of note, discrepancies
in MGMT prediction are known to exist even among established, con-
ventional methods, precluding definition of ground truth®.

Inaddition, copy number profiles generated by Rapid-CNS?werein
complete agreement with methylationarray-generated counterparts
inall 254 samples with corresponding Illumina Infinium Methylation
BeadChip array (either 450K or EPIC) data available (Supplementary
Fig. 3). Figure 3c shows an example of a glioblastoma sample with
multiple focal alterations (highlighted), all of which were reproduced
in the corresponding Rapid-CNS? profile. KIAA1549:BRAF fusion was
accurately identified in all eight cases with that fusion established in
conventional analysis and biologically supported by the type of tumor.
Notably, this fusion was part of a19-Mb duplication on chr. 7q34 with
breakpoints in the introns of BRAF and KIAA1549, aligning with the
proposed mechanism of tandem duplications in the region leading
to the fusion® (Supplementary Fig. 4). Furthermore, as an example of
the advantages of long-read sequencing, a subclonal 1.3-Mb deletion
in EGFR spanning exons 2 to 7, known as EGFR vlll, was confidently
detected in one glioblastoma sample with consistent breakpoint map-
ping®. Interestingly, this alteration had not been previously identified
inNGS data, highlighting the advantage of long-read sequencingin SV
detection (Supplementary Fig. 5).

Methylation classification using the built-in Rapid-CNS?> model
covers 91CNS tumor classes from the MNP v.11 model’: Of 270 samples
classifiable using conventional methods, 251 (92.9%) were assigned
to the correct methylation family, typically the decisive level in diag-
nostics. Because the conventional random forest classifier imposes a
cutoff (0.9) for cases that should be deemed ‘classifiable’, we derived a
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Fig. 1| Overview of the Rapid-CNS?> workflow and validation of MNP-Flex.

a, Streamlined workflow that starts with intraoperative sequencing to report
broad methylation classification and arm-level copy number alterations followed
by postoperative sequencing to report comprehensive molecular markers and
fine-grained methylation classification. Lines below indicate the timeline for
Rapid-CNS?versus classical methods. b, Sources and types of sequencing data

Sequencing technology
- Nanopore WGS

Methylation classification v.12
184 subclasses

—— Methylation panels
—— Rapid-CNS?

used for validation of MNP-Flex. Credits: Brain outline in b adapted from SVG
Repo (https://www.svgrepo.com) under a Creative Commons license CC BY 4.0;
DNA helix adapted from SVG Repo (https://www.svgrepo.com) under a Creative
Commons license CC BY 4.0. Signal and classification tree in the MNP-Flex logo in
b was created using BioRender.com.

cutofffrom the Rapid-CNS? data: on filtering samples with at least 30%
confidencescore,2210f230 (96.1%) samples were correctly predicted
(Fig.3d).However, to provide acomprehensive picture of performance,
we included all cases irrespective of score. Even at the methylation
class level, 164 of 223 samples (73.5%) with that information available
were matching. For example, cases concordant on the family level, but
notonthe classlevel comprised 42 instancesin the glioblastoma, IDH
wild-type methylation family. Despite classes being available, granular-
ityinglioblastoma, IDHwild-type, is not endorsed by the current WHO
classificationbecause of alack of known clinical relevance and haseven
been shown to vary in a given sample**”. The latter may well explain
the difference at the class level between frozen and formalin-fixed
paraffin-embedded (FFPE) fragments in some cases.

While 8 of the 19 nonmatching samples were predicted as com-
patible classes of ‘inflammatory glioblastoma microenvironment’ or
‘reactive tumor microenvironment’ unequivocal for glioblastoma or
broader tumor context respectively, the remaining 11 samples were
considered clear mismatches. Reassuringly, samples with correct
predictions generally had higher scores than samples with mismatches
oroutside thereference set, indicating a conservative approach (Sup-
plementary Fig. 6a).

Integrated diagnoses leveraging all layers of molecular data
generated by Rapid-CNS? in 285 of 301 (94.6%) cases were in
complete accordance with corresponding integrated diagnoses
obtained through conventional methods, affirming the reliability
of Rapid-CNS?in providing accurate and comprehensive diagnostic
information for CNS tumors (Extended Data Fig.1). The added value

beyond methylation in rendering a precise diagnosis encompassed
pathognomonic CNVs (for example, 7/10 in glioblastoma, 1p/19q in
oligodendroglioma), mutations (for example, IDH1, TERT) and/or
gene fusions (for example, KIAA1549::BRAF) to distinguish between
differential diagnoses in cases not resolved by methylation alone.
Remarkably, allsmallbiopsy, recurrence and infiltration zone samples
could be issued concordant integrated diagnosis (Supplementary
Table 1). Four of the 16 discordant cases were compatible with but
notidentical to the conventional integrated diagnosis. Seven others
would have benefited from the granularity of a fine-grained version
of the CNS classifier, v.12. In only 5 of 301 cases (1.6%), were the data
from Rapid-CNS? potentially misleading. This is well in line with the
rate in conventional array-based classification®?®. Notably, earlier
studies defined cutoffs for ‘classified’ cases, whereas this analysis
includes all samples regardless of score, still yielding a low error
rate. Importantly, none of them presented a consistent picture of a
confident but incorrectly called diagnosis, but evidently called for
additional analysis in keeping with the integrated diagnosis concept
ofthe WHO classification. As opposed to separately and sequentially
run molecular assays, the concurrent availability of all datalayersin
Rapid-CNS?increases procedural safety for patients.

Illustrative of the advantages is, for example, one case (Study
ID 212) in which a glioma was initially suspected based on smear and
frozensection analysis. However, Rapid-CNS?identified it as an Ewing
family tumor with a capicua transcriptional repressor gene (CIC)
alteration. Similarly, MNP-Flex predicted it to be a C/IC-rearranged
sarcoma, aligning with the eventually available methylation array
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Fig.2| Overview of concordance for the Rapid-CNS? cohort. a, Archival
samples. b, Diagnostic samples. Bars indicate on-target coverage, sequencing
time and the percentage of SNVs that were recovered in Rapid-CNS? data

from their corresponding NGS data. Site and device blocks indicate site of
sequencing (University Hospital Heidelberg or University of Nottingham)

and the device that sequencing was run on. NGS and methylation array blocks
indicate the availability of corresponding conventional data. Following blocks

indicate concordance with available matched conventional data. Methylation
classification displays concordance levels of the Rapid-CNS? ad hoc classifier
with corresponding methylation array-based classification. Methylation
classindicates the ‘ground truth’ or inferred methylation class. MGMTp
shows concordance of MGMT promoter methylation status with matched
conventional data.

prediction. Markedly, integrated diagnosis with Rapid-CNS*was estab-
lished within 5 days without prioritization, whereas it took 1 month
with conventional methods (Extended Data Fig. 2). Considering the
aggressive nature of these tumors, an early diagnosis is essential for
swift treatment.

Platform-agnostic methylation classifier for CNS tumors

Withthe surgein popularity of sequencing-based approaches for meth-
ylation calling, we aimed to widen the utility of the most recent MNP
classifier version (v.12), hereafter referred to as MNP-RF. The MNP v.12
classifier follows a hierarchical scheme and includes 184 subclasses,

143 classes, 75 families and 34 superfamilies. To achieve this, we devel-
oped MNP-Flex—a platform-agnostic CNS tumor methylation classifier.
Wetrained agradient-boosted model that uses binarized methylation
values to compensate for the nuances of the respective technologies
used”. We tested this model on the entire MNP dataset consisting of
more than 90,000 samples. The array test dataset included 48,598
(61.7%) FFPE and 30,174 (38.3%) cryopreserved samples for which sam-
ple type information was available. Generally, samples with scores
>0.9 are considered to be reliably classified by the RF model**°. Hence,
we applied this cutoff as a criterion to include samples in the valida-
tion analysis, considering cases with scores >0.9 as ground truth.
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Fig. 3| Evaluation of molecular markers reported by Rapid-CNS?. a, Violin plot
showing the percentage of SNVs recovered by Rapid-CNS?libraries compared
with their corresponding NGS panel sequencing libraries (n =103), with the
width proportional to the frequency of values at each level. The overlaid box
plotindicates the median (horizontal line), the 25th and 75th percentiles (edges
ofthe box) and whiskers extending up to 1.5x the interquartile range from the
box boundaries. Data points lying beyond these whisker bounds are shown
individually as outliers. b, Methylation values of methylated and unmethylated
glioblastoma samples over the MGMT promoter region (highlighted in blue).

The panels show (top to bottom) aligned reads colored by sample with CpG

sites marked as closed (methylated) or open (unmethylated) dots followed by
smoothed methylation profiles for each sample. The smoothed profiles showa
clear difference in overall methylation between methylated and unmethylated
samples. ¢, CNV profile generated using EPIC array data (left) and CNV profile
generated by Rapid-CNS? (right) for the same sample; focal alterations detected
inboth are highlighted with ovals. d, Sankey plot comparing predictions from the
MNP v.11 classifier for methylation array data with the predictions by Rapid-CNS?
(calibrated score >30%) for the same cases.

However, the 0.9 cutoff excludes a considerable number of cases in
areal-world setting and is therefore suggested to be lowered in the
literature; for example, to 0.84 (ref. 31). To account for this, in par-
allel, we considered a lower cutoff for MNP-RF of >0.7. As shown in
Extended DataTable1, we observed anincreaseinaccuracy with higher
cutoffs, ultimately achieving 99.3% subclass-level accuracy and 99.7%
family-level accuracy with clinically applicable thresholds. In176 0of 182
subclasses, F, scores >0.5 were found, whereas 163 subclasses had F;
scores >0.9 (Fig. 4a). Subclasses with low F; scores consisted of those

with alow number of reference samples (Supplementary Fig. 7). To
evaluate the variety of data sources, we tested MNP-Flex on a total of
448 samples with sequencing-based data covering 80 whole-genome
bisulfite sequencing (WGBS), 27 methylation panels, 40 nanopore
Oxford Nanopore Technologies whole-genome sequencing (ONT-WGS)
and 301 Rapid-CNS? samples from seven institutes across the globe
(Fig.1). Sample-specificinformationislisted in Supplementary Table 2
and accuracies for each technology are indicated in Extended Data
Table 1. Similar to the MNP-RF array classifier, we evaluated nonarray
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datato establish a cutoff score. Starting with a subclass accuracy of  truth and MNP-Flex predictions for samples with scores >0.3. In WGBS
65.9% and family accuracy of 91.9% for all nonarray samples without  data, four misclassifications were in the same molecular family (for
any cutoff, we observed anincrease in subclassaccuracyto 82.8%and example, Medulloblastoma Group 4, subclass VIl classified as Medul-
in family accuracy to 99.5% on applying a prediction threshold of 0.3  loblastoma Group 4, subclass VI), while one diffuse intrinsic pontine
(Extended Data Table 1 and Supplementary Fig. 8). Fraction of scores  gliomasample was predicted as ‘inflammatory microenvironment’. For
>0.3 did not significantly differ between frozen and FFPE samples (Sup-  samples sequenced using Twist panels, one glioblastoma RTK1 subtype
plementary Fig. 9). Figure 4b illustrates the distribution of ground  sample was classified as glioblastoma RTK2, while the other had limited
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Fig. 5| Intraoperative reporting. a, Box plots indicate calibrated scores for each
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concordance over time. Reads generated within the indicated sequencing time
were used for analysis (top). Each rectangle on the bar plot indicates individual
samples colored by ground truth methylation class from corresponding
methylation array profiles. The x axis indicates time in minutes from beginning
of sequencing. A positive y axis indicates correct predictions and a negative
yaxisindicatesincorrect predictions (bottom). b, Prediction score versus time
for intraoperative samples runin Heidelberg and Nottingham using a P2 Solo;
colorindicates class; size of dots indicates number of CpG sites.

sequencing reads and a very low prediction score <0.03. Because no
array data were available, true methylation families were inferred for
all ONT-WGS samples by taking into consideration reported molecular
alterations and histological characteristics (Supplementary Table 2).
Methylation classification by MNP-Flex was concordant for all ONT-WGS
cases. The MNP-Flexmodel was not trained to account for large missing-
nessin data. To test the native ability of the gradient-boosted model to
make predictions on data with missing values, we tested it on samples
sequenced using Rapid-CNS? Rapid-CNS? samples had an average of

16.6% missingness. In comparison, other methods had an average of
<0.7% missing sites. After confidence filtering, we achieved 89.1% and
78% accuracy at the methylation subclass level, and 98.7% and 100%
at the methylation family level for the Heidelberg and Nottingham
Rapid-CNS?datasets, respectively. Rapid-CNS? datasets had the lowest
scores among the tested datasets (Fig. 4c). We speculate that this is
caused by the high number of missing values prevalentin these samples.
Furthermore, we observed lower accuraciesin the Heidelberg dataset
thaninthe Nottingham dataset because of a higher share of samples run
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diffuse leptomeningeal glioneuronal tumor (DLGNT) was predicted as pilocytic
astrocytoma (outlined in orange), both of which are MAPK-activated low-grade
glialand/or glioneuronal tumors. Credits: Nanopore schematic as well as signal
and classification tree in the MNP-Flex logo in a was created using BioRender.com.
Brain outline ina adapted from SVG Repo (https://www.svgrepo.com) under a
Creative Commons license CC BY 4.0; DNA helix adapted from SVG Repo
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differential diagnosis; DMG, diffuse midline glioma; LOH, loss of heterozygosity;
NOS, not otherwise specified; mut, mutation; wt, wild type.

with the older R9 flow cells, and on GridION or MinlON instead of Pro-
methlON. Of note, Rapid-CNS? data generated with R10 already showed
increased accuracy for MNP-Flex (Supplementary Fig. 9). Reassuringly,
MNP-Flex reported lower calibrated scores over this dataset (Fig. 4b).
Asshownin Fig.4b, most misclassifications occur in methylation fami-
lies or with tumor microenvironment classes (Supplementary Fig. 8).

Collectively, we derived a cutoff of >0.7 for array samples and
>0.3 for nonarray samples with MNP-Flex. We attained 99.6% accu-
racy (95% confidence intervals (CI) 99.6% to 99.7%) in identifying
methylation families and 99.2% accuracy (95% CI 99.1% to 99.2%)
for methylation subclasses on applying these thresholds across
the comprehensive cohort (with MNP-RF >0.9 where applicable),

Nature Medicine | Volume 31| May 2025 | 1567-1577

1574


http://www.nature.com/naturemedicine
https://www.biorender.com
https://www.svgrepo.com
https://creativecommons.org/licenses/by/4.0/
https://www.svgrepo.com
https://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s41591-025-03562-5

consisting of both frozen and FFPE samples, spanning five distinct
technologies.

Intraoperative molecular classification

Totest the shortest time to methylation classification and copy number
calling, weretrospectively reanalyzed data from 36 representative sam-
ples fromintraoperative frozensections of the Heidelberg Rapid-CNS?
dataset runonR9 flow cells. So far, these had been reported after, not
during surgery. We sub-setted the data to reads generated at vary-
ing timepoints, enabling reconstruction of a real-world sequencing
scenario. Twenty-nine of 35 (83%) samples with sufficient reads were
assigned the correct methylation family from 15 min of sequencing
(Fig. 5a). Within one hour of sequencing, 35 of 36 samples were accu-
rately predicted. Importantly, concordant classifications consistently
had significantly higher calibrated scores than discordant classifica-
tions. Short rejected reads from adaptive sampling result in uniform
coverage over the genome leading to high-resolution copy number
profilesin short periods. Arm-level alterations such as 1p, 7p and 22q
loss were clearly resolved after 10 min of sequencing. Owing to CNV
data, the single aberrant case could be identified as /DH wild-type glio-
blastoma on the basis of the diagnostic chromosome 7/10 alterations
despite being predicted as methylation class ‘high-grade IDH-mutant
astrocytoma’.In addition, we simulated intraoperative setting for the
51 prospective samples (Supplementary Fig. 10), again demonstrat-
ing more precise classification. Finally, using amodified rapid library
preparation protocol, we conducted actual real-time intraoperative
sequencing on 18 samples in Heidelberg and Nottingham. Figure 5b
demonstrates the predictions over 1 h of sequencing for two of these
samplesrun ateach centerindependently. Both were confidently pre-
dicted from 5 min of sequencing and results were forwarded to the sur-
geonintheoperatingroom by phone to evaluate the entire procedure.
Althoughthese results are not yet used for surgical decision-making, a
prospective study to assess theimpact on outcomeis being prepared.
Inalignmentwith our retrospective simulations, we found thatintegra-
tion of methylation and CNV dataresulted inamore preciseinterpreta-
tion of 13 of 18 intraoperative samples within 30 min (Extended Data
Figs. 3 and 4): seven samples of diffuse glioma could be identified as
either IDH-mutant astrocytoma or IDH wild-type glioblastoma, which
areimpossible to distinguish on inspection of frozen section alone.
Likewise, one ependymoma sample could be subtyped, yielding the
high-risk supratentorial ZFTA-fusion positive group, as opposed to
histologically indiscernible differential diagnoses of YAPI-fusion with
lower risk profile. Five meningioma cases yielded insight into their copy
number status, providing information associated with risk of recur-
rence. Only three cases were not substantially more informative than
morphologicalinspection of the frozen section. Of note, one of these
remained elusive after conventional testing as ‘glial neoplasm’. In total,
intraoperative Rapid-CNS? provided clinically relevant information
on tumor (sub)type and risk profile in more than two-thirds (72.2%)
of cases. Our intraoperative protocol yielded results on tumor clas-
sificationand CNVs within 90 min of sample receipt, with sequencing
and data interpretation constituting only 30 min or less, followed by
comprehensive reporting with SNVs and/or Indels, gene fusions and
fine-grained methylation classification on the next day.

Rapid-CNS? coupled with MNP-Flex improves
diagnosticaccuracy

Figure 6ademonstrates the end-to-end workflow combining Rapid-CNS?
with MNP-Flex for Study ID 220. The sample was classified as a men-
ingioma within 30 min of sequencing by the Rapid-CNS? methylation
classifier. On completion of 24 h of sequencing, we detected SNVs in
CDK6,NOTCH2and TSC2.In addition, we observed ahomozygous dele-
tionof chr.22qand the MGMT promoter was unmethylated. MNP-Flex
accurately predicted this sample to be the meningiomaben-1subtype, a
classnot existing inthe v.11 classifier versions (Supplementary Table 2).

Oneintraoperative sample consistently achieved low scores for differ-
ent classes over time even after 24 h of sequencing. MNP-Flex accurately
diagnosed it as ‘Diffuse pediatric-type high-grade glioma, RTK1, sub-
class A, as corroborated by methylation array results obtained 40 days
later (Extended DataFig.3). Moreover, of seven cases not unequivocally
classifiable by Rapid-CNS*and five classifiable when leveraging all
data, but not methylation alone in Rapid-CNS?, eight were assigned a
clear, correct methylation class and one a clear methylation family by
MNP-Flex. Two of the remaining three samples were assigned ‘control
tissue’ predictions, as confirmed by low tumor content using histol-
ogy, and one was predicted as pilocytic astrocytoma but was other-
wise diagnosed as diffuse leptomeningeal glioneuronal tumor, both
MAPK-activated low-grade glial and/or glioneuronal tumors. Resolved
samples could hence be unequivocally assigned anintegrated diagnosis
(Fig. 6b). This further demonstrates the value of granular subtyping
using MNP-Flex and detailed molecular reporting with Rapid-CNS?
over sole broad methylation classification with v.11-based models.

Discussion

Limitations associated with traditional comprehensive molecular
diagnostics have long posed challenges for the field of neuropathol-
ogy, resulting in a significant portion of the global population being
denied access to vital diagnostic information. Rapid-CNS? combined
with MNP-Flex—our platform-agnostic methylation classifier—enables
reporting of an extensive array of molecular markers and fine-grained
methylation classification in a variety of settings.

Nanopore sequencing has revolutionized the field of molecu-
lar research with handheld devices, easy library preparation, native
nucleic acid sequencing resulting in long reads and base modifica-
tion detection all at comparatively low costs**, Recent studies have
demonstrated the potential of using shallow whole-genome nanop-
ore sequencing to report methylation classification’ . Rapid-CNS?
supersedes these approaches to target clinically relevant genomic
regions, while rejected reads provide sufficient breadth of coverage
for methylation classification and fine copy number profiling”. Fur-
thermore, intraoperative reporting of methylation classification and
CNVs providesinformation crucial for surgical decisions. The approach
offers the flexibility of analyzing a single sample or scaling up to 48
samples on the PromethlON. Adaptive sampling only requires a text
file that can be altered during a run, making the approach adaptable
and readily transferable to other tumor indications. New adaptive
sampling approaches like BOSS-RUNS now enable hands-free dynamic
targeting®. Accumulation and investigation of long-read data have the
potential to identify complex SVs as new molecular drivers missed by
conventional short-read sequencing.

Owingtoitsaccessible nature, actionable alterationsreported by
Rapid-CNS?will allow swift access to targeted therapies and molecularly
informed disease management for patients in remote facilities as well.
Although nanopore devices are certainly not yet widely available to
neurosurgical groups, the fact that the capital expense for the small-
est device allowing for Rapid-CNS?is of the magnitude of one-fiftieth
of the minimal required set-up for conventional methylation testing
will likely facilitate swift proliferation of the technology. Success-
ful application of MNP-Flex to sequencing-based data from multiple
sources across the world highlights its generalizability and potential
utility in diverse settings. The static model of MNP-Flex compared with
dynamic ad hoc classification in Rapid-CNS? enables it to cover the
granularity of the MNP classifier v.12 at a much lower computational
footprint than the broader ad hoc model. This has implications for the
implementation of further iterations of the CNS or other methylation
classification approaches, particularly for regulatory aspects, in which
dynamic systems are viewed with much scrutiny. However, limitations
toourapproach mustbe acknowledged. A high prevalence of missing
values and errors observed particularly in the Rapid-CNS? dataset,
underscore the need for ongoing refinement of the model to address
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such variability. Ultimately, the MNP-Flex model may replace the ad
hoc model in the intraoperative setting, attenuating the variability
associated with ad hoc approaches. Rapid-CNS?is currently limited
to fresh or cryopreserved tissue because of the prevalence of short
DNA fragments in paraffinized tissue posing challenges for effective
computational targeting.

Rapid-CNS? utilizes single-molecule sequencing toidentify genetic
and epigenetic modifications on the same molecule. Integrated analy-
sis of mutations, CNVs and methylation—especially with long reads—
holds promise for detecting subclonal reads accurately**>*°, Subclonal
methylation classes could be identified by a robust MNP-Flex model
providing insights for potential heterogeneity-informed targeted
therapies. Anticipated advancementsin nanopore technology, clono-
typing and methylation classification models suggest a futureinwhich
disease monitoring vianoninvasive liquid biopsy becomes routine**®,
Thisapproach couldidentify clonal diversity through methylation clas-
sification, target emerging clones therapeutically and assess treatment
efficacy by estimating tumor burden®°,

The current release of Rapid-CNS? and MNP-Flex provides the
basis for making these advancements and further updates of molecular
classification guidelines more equally accessible and readily available
onaglobalscale.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Ethics and inclusion statement

This study complied with ethics regulations as approved by the Eth-
ics Committee Heidelberg (S-318/2022), Ethics Committee Notting-
ham (11/EM/0076) and Ethical Committee, Ghent University Hospital
(Clinical Trial Number/IRB B6702021000850). Informed consent was
obtained for all patients and patients were not compensated for par-
ticipation. Patient samples were included if they presented with a
suspected CNS tumor and had undergone surgery to ensure tissue
availability. Patient sex was self-reported and available for 239 patients
in the Rapid-CNS? cohort. Age, sex and/or gender were not included
in the study design, because the focus was on validating a platform
for molecular profiling. Based on available literature, such profiling
accuracyisnotknowntobeinfluenced by age, sex or gender. No exclu-
sions were made based on race, ethnicity, sex, age, gender or other
social factor.

Tissue

For Rapid-CNS? we required a minimum of 5 mg of fresh or cryopre-
served tissue. Werecommend 2.5 pg of starting DNA for the best results,
but we were able to successfully perform sequencing with 800 ng of
starting DNA on the P2 Solo. All results presented in this study were
generated for research purposes only and were not used to influence
clinical or surgical decisions.

Rapid-CNS?

DNA was extracted using the Maxwell RSC Blood DNAKit (Promega, cat.
no. AS1400) following the manufacturer’s instructions. In summary,
40 x 10 pm of fresh-frozen tumor tissue was incubated with 400 pl of
lysis buffer and 40 pl of proteinase K, at 56 °C overnight, with continu-
ousagitation at 550 rpm. The following day, samples were transferred
to well 1 of aMaxwell cartridge. DNA extraction was performed using
therecommended protocol onthe device. For sequencing performed
inHeidelberg, two protocols were followed depending on the flow cells
used. For R9 flow cells, we used the previously described protocol”. The
following describes the protocol for R10 flow cells: 2.5 pg of extracted
DNA was sheared into 10-kb fragments in 60 pl of nuclease-free water
using a Covaris g-Tube (Covaris, cat. no. 520079) following the manu-
facturer’s instructions. A sequencing library was prepared using the
Ligation Sequencing Kit (Oxford Nanopore Technologies (ONT), cat.
no. SQK-LSK114) and the NEBNext Companion Module (New England
Biolabs, cat. no. E7180S) with only minor adjustments to the original
protocol (ONT, Ligation Sequencing DNA V14 (SQK-LSK114)). In brief,
DNArepair and end-prep was carried out starting with 58 pl of sheared
DNA asinput. The ratio of AMPure beads for bead clean-up was adjusted
to the volume of the sheared DNA, as proposed in ref. 33. Adapter
ligation and bead clean-up were performed using the short fragment
buffer. DNAwas eluted in15 pl foraMinlON sequencing run, and in 25 pl
for aPromethlON sequencing run. If sequencing was performed with
aMinlON (FLO-MIN114, R10) flow cell, flow cells were primed using the
BSA supplement and sequenced using a GridION X5. If sequencing was
performed with aPromethlON (FLO-PRO114M, R10) flow cell, flow cells
were primed without BSA supplement and sequenced on the P2 Solo.
Sequencing onboth devices was performed with 600-700 ng of DNA
library for 24 hwith all available channels in adaptive sampling mode,
using the hgl9 genome build as a reference file and a custom.bed file
for panel B as described previously for target enrichment®.

Rapid-CNS?analysis

We iteratively refined the Rapid-CNS? pipeline to keep pace with
evolving developments and tools. Inits initial version, Rapid-CNS?v.1
incorporated guppy v.4.4.0 base-calling, alignment and megalodon
(https://github.com/nanoporetech/megalodon) methylation calling
as described previously”. Subsequent improvements in Rapid-CNS?
integrated guppy v.5 onwards, enabling simultaneous base-calling,

methylation calling using remora (https://github.com/nanoporetech/
remora) and alignment in a single step. We developed both bash and
Nextflow pipelines to ensure adaptability across diverse environments.
At Heidelberg, we ran two versions depending on the infrastructure—
local or load sharing facility. We deployed the pipeline in multi-GPU
(graphical processing unit) mode on the load sharing facility cluster
with a primarily conda-based workflow. For the local deployment,
we used a single NVIDIA RTX 3090 Ti GPU powered local workstation
with a Dockerised pipeline. We performed base-calling in a base-call
server-supervisor mode for ONT’s proprietary software guppy or
Dorado (https://github.com/nanoporetech/dorado) as specified in
Supplementary Table 1. For the multi-GPU mode, we used 15 base-call
clientsfor a3 GPU setting with available NVIDIA GPU models (RTX 2080
Ti, A100, V100). For a single GPU, we ran guppy_basecall_supervisor
or subsequently ont_basecall_supervisor with five clients. The super
accuracy model with 5-mC detection was used for base-calling for all
samples.

Because we evaluated each sample at the time of receipt, versions
of the tools used for the respective libraries are indicated in Supple-
mentary Table 1. We aligned reads to the hgl9 reference genome using
guppy or Dorado. Methylation values were extracted using modbam-
2bed (https://github.com/epi2me-labs/modbam2bed, v.0.5.3) with
the --cpg parameter. We performed liftover of the methylation bed
files to the hg38 genome using the liftOver tool*'. MGMT promoter
status was calculated using a logistic regression-based binomial clas-
sifier as previously described if the sample had minimum 3x coverage
over the region spanning chr10:129466536-129467536. Methylation
classification was performed by retraining sample-specific ad hoc
random forest models'. We performed SNV detection and filtering
using PEPPER-Margin-DeepVariant (r0.4 for R9 flow cells and r0.8 for
R10 flow cells) on the reads mapping to the targeted regions*’. The
subset bam file was generated using the bedtools (v.2.30.0) intersect
function®. The analysis was conducted with a minimum base quality
score of 7, a maximum read depth of 8,000 and nanopore-specific
adjustments (-X ont). We extracted read depth, allelic depth for forward
strand and allelic depth for reverse strand from on-target bamfiles. This
was followed by beftools view to generate variant call format outputs.
SNVs were annotated using ANNOVAR (downloaded 7 May 2021) and
filtered for clinical relevance using a custom script**. We called CNVs
ontheentire bam file with abin size of 100 kb using default parameters
for CNVpytor (v.1.2.1for R9 flow cells and v.1.3.1 for R10 flow cells)*.
The copy number status of relevant genes was reported using a cus-
tom python script. The script parses the pytor file obtained as output
of CNVpytor. If the complete gene was covered by the bin, the copy
number status of the bin was assigned to the gene. SV detection used
Sniffles2 (v.2.2) in nongermline mode, followed by annotation using
AnnotSV (v.3.0.7)***. Visualization of methylation values in the MGMT
promoter region was carried out using methylartist (v.1.2.8)*. Bam
files and variant call formats were visualized in the integrated genome
viewer. An updated Nextflow pipeline compatible with latest version
tools, asavailablein August 2024, is also made available. In this pipeline,
GPU-supported variant calling is performed using Clara Parabricks*.

The pipelines are available on GitHub. The bash pipeline that
was used to analyze samples is https://github.com/areebapatel/
Rapid-CNS2_sh and the updated Nextflow workflow is https://github.
com/areebapatel/Rapid-CNS2_nf.

Protocol for Nottingham

For thearchival samples, we ran adaptive sampling using GridlON with
three loads per patient using the Ligation Sequencing Kit on R10.4.1
flow cells. For the diagnostic cases, we ran adaptive sampling using
readfish (https://github.com/LooseLab/readfish) onaP2Solo for24 h
for each sample using R10.4.1 flow cells and a rapid based kit'®*°. For
the purposes of this manuscript, samples were analyzed at the end of
72 h (archival) or 24 h (diagnostic) using a Nextflow pipeline based on
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the Rapid-CNS? protocol. We replaced the DeepVariant step with the
ONT wf-human-variation pipeline (https://github.com/epi2me-labs/
wf-human-variation).

Intraoperative protocol

For theintraoperative protocol, we require aminimum of 5 mg of tissue.
In Nottingham, we prepared samples with the ONT Ultra-Long DNA
SequencingKit using anadjusted protocol (SQK-ULK114) (https://pro-
tocols.io/view/intra-operative-nanopore-sequencing-to-classify-br-
c65qzg5w). For intraoperative samples sequenced in Heidelberg, we
performed protein cracking using Maxwell DNA extraction with a
PreCellys cell/tissue homogenization device instead of shearing by
needle. We analyzed samples in real-time using the ROBIN pipeline
at Nottingham and a custom pipeline at Heidelberg®. Briefly, the
pipelines base-call and align the fast5 and/or pods5 files using Dorado
(dna_r10.4.1_e8.2_400bps_modbases_Smc_cg_hac_prom)assoonthey
are written to the output folder. Methylation values were extracted
using modbam2bed (Heidelberg) and modkit (Nottingham), respec-
tively. We ran the Rapid-CNS? methylation classifier on the files upon
generation. We ran QDNAseq for copy number variant calling on bam
files at 5-minintervals.

Nanopore whole-genome sequencing

Genomic DNA was extracted from fresh or fresh-frozen tumor biopsies
withthe Qiagen Blood & Tissue MiniKit. Briefly, 10-30 mg of tissue were
homogenized in ATL buffer in a TissueLyser bead mill at 30 Hz for 30's,
followed by digestion with proteinase K for 3-16 h. Buffer ALand RNAse
wereaddedtothesample andincubated at roomtemperature for 5 min,
followed by incubationat 70 °Cfor 10 min. EtOH (100%) was added tothe
sample before washing and elution on spin columns. DNA purity was eval-
uated with NanoDrop (260/230 >1.8and 260/280 > 1.9 was deemed suf-
ficient) and concentration was measured usinga Qubit DNA broad-range
kit. Betweenland 3 pg of gDNA were used asinput for sequencing library
preparationwith Ligation SequencingKit V14 (SQK-LSK114) according to
the manufacturer’s protocol (Ligation Sequencing DNAV14). Then300 ng
of DNA library was loaded onto PromethION flow cells (FLO-PRO114M)
onaP24 sequencing device, onelibrary per flow cell, and sequenced for
80 h. Flow cells were washed and reloaded if necessary after 24 or 48 h
of sequencing (Flow Cell Wash Kit; ONT, cat. no. EXP-WSHO04). Live
base-calling, methylation calling and mapping (hg38) were performed
using MinKNOW software (v.23.07) with Dorado (v.7.1.14). Base-calling
was performed with the super-high accuracy model (dna_r10.4.1_
€8.2_400bps_sup@v4.1.0), sequences below the quality threshold of 10
were excluded from further analysis. Per-site methylation extractionand
across-strand aggregationfrom modified.bam fileswas performedinthe
epi2me-labssuite through the wf-human-variation (v.1.8.1) workflow with
modkit (v.0.2.0) or modbam2bed (v.0.10.0). Whole-genome methylation.
bedfiles were cross-referenced with EPIC probe genomic locations with
thebedtoolsintersect function.

Twist panel sequencing

DNA was extracted from FFPE tissue. Two hundred nanograms of DNA
was used asinput for the Twist Human Methylome Panel. The protocol
provided by the Twist Targeted Methylation Sequencing Protocol was
followed>’. Thelibraries were sequenced on anllluminaNovaSeq 6000
using paired-end 150 bp reads (2 x 150 bp). Methylation values were
extracted using a Nextflow pipeline (https://nf-co.re/methylseq/1.6.1).

WGBS Heidelberg

Sampleswere prepared for the WGBS library using the ‘Swift Accel-NGS
Methyl-Seq DNA’ kit and sequenced on the Illumina HiSeq X Ten v.2.5
in paired-end mode, with one lane per tumor sample, resulting in an
average genome coverage of ~30X per sample. WGBS sequencing data
were analyzed using methylCtools (https://github.com/hovestadt/
methylCtools) as part of the Omics IT and Data Management Core

Facility Bisulfite core workflow (https://github.com/DKFZ-ODCF/Align-
mentAndQCWorkflows; AlignmentAndQCWorkflows:1.2.73-2)%*. In
brief, methylCtools builds upon BWA and adds functionality for align-
ing bisulfite-treated DNA to areference genome inasimilar manner to
that described previously**. Sequencing reads were adapter-trimmed
and translated to a fully C-to-T converted state. Alignments were per-
formed against a single index of both in silico bisulfite-converted
strands of the humanreference genome (hs37d5 including PhiX) using
BWA. Previously translated bases were translated back to their original
state, and reads mapping antisense to the respective reference strand
were removed. Single-base-pair methylation ratios (g values) were
determined by quantifying evidence for methylated (unconverted)
and unmethylated (converted) cytosines at all CpG positions. Only
properly paired or singleton reads with mapping quality of >1and bases
with a Phred-scaled quality score of 220 were considered. We used
processed WGBS data from the publicly available PBCA-DE cohort on
the International Cancer Genome Consortium portal.

NGS panel sequencing and EPIC array analysis

Nucleic acid extraction, NGS panel sequencing, NGS RNA sequenc-
ing and DNA methylation array data were produced and analyzed as
previously described**%°>*¢, At the Department of Neuropathology,
University Hospital Heidelberg, DNA sequencing was performed using
acustomized enrichment and hybrid capture-based NGS gene panel,
covering the entire coding regions (all exons +25 bp) and selected
intronic and promoter regions of 130 genes. This panel was designed
to detect SNVs, small Indels, exonic rearrangements and recurrent
fusion events. RNA sequencing was performed for selected samples
based onindications of fusion events from targeted DNA sequencing
or copy number data derived from methylation arrays, assignment to
DNA methylation classes associated with fusion events or where RNA
sequencing was expected to provide additional diagnostic insights.
DNA methylation data obtained using the Illumina Infinium Human-
Methylation450 and MethylationEPIC v.1 BeadChip arrays was classi-
fied using the MNP v.11b4 and MNP v.12.8 classifiers, while that obtained
using the MethylationEPIC v.2 BeadChip arrays were classified only
using the v.12.8 classifier (https://www.molecularneuropathology.
org/mnp/).

Time to classification analysis

For 39 Rapid-CNS?samples sequenced in Heidelberg, we conducted
simultaneous base-calling and alignment to the hgl9 genome using
guppy 6.4.6 with the super accuracy configuration and 5-mC modi-
fication detection. Sequencing summary files aided in extracting
cumulative reads at time intervals (5, 10, ... 1,440 min). Methyla-
tion values were extracted using modbam2bed (https://github.com/
epi2me-labs/modbam2bed), liftover to hg38 genome was performed
and the ad hoc Rapid-CNS? classifier was applied”. Simultaneously,
CNV calling was performed using QDNAseq (v.1.32.0) with a bin size
of 1 Mb (ref. 57).

MNP-Flex

The MNP-Flex classification model was trained by applying
gradient-boosted decision trees using the popular xgboost algo-
rithm (R package xgboost 2.01)**, The MNP v.12 training dataset which
includes 7,495 samples comprising 184 methylation classes, described
indetail on our website (https://www.molecularneuropathology.org),
was split into training and validation data with a 70% and 30% data
split (R package caret 6.0-94), respectively. Raw signal intensities
were obtained from IDAT files using the minfi Bioconductor pack-
age v.1.21.4 (ref. 59). lllumina EPIC samples and 450K samples were
merged to acombined dataset by selecting the intersection of probes
presentonboth arrays (combineArrays function, minfi). Each sample
was individually normalized by performing a background correction
(shifting of the 5% percentile of negative control probe intensities to 0)
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and adye-bias correction (scaling of the mean of normalization control
probe intensities to 10,000) for both color channels. Subsequently, a
correction for the type of material tissue (FFPE or frozen) and array type
(450K or EPIC) was performed by fitting univariable, linear models to
the log,-transformed intensity values (removeBatchEffect function,
limma package v.3.30.11). The methylated and unmethylated signals
were corrected individually. Beta-values were calculated from the
retransformed intensities using an offset of 100 (as recommended
by Illumina). For CpG probe filtering, probes valid according to the
filtering criteriain ref. 60 were selected (https://zwdzwd.github.io/
InfiniumAnnotation), resulting in 357,521 probes after additionally
removing probeslocated onthe XandY chromosomes. The CpG probes
havebeen furtherfiltered to the 100K probes showing highest standard
deviation. Tobe able to later perform modelinference on other poten-
tial low coverage sequencing-based data sources, the training data has
been binarized by applying a threshold of >0.6 to the preprocessed
beta methylation values.

Finally, the model was trained with ‘mulitclass:softprob’ as objec-
tive functionfor 2,306 iterations with alearning rate of eta = 0.01 until
the early stopping was triggered, achieving a multiclass logloss of
0.1969 on the validation data.

Concordance analysis

For Rapid-CNS?, our concordance analysis focused on panel regionsin
both NGS and Rapid-CNS?*bam files. ‘SNVs recovered’ represented the
percentage of variants identified in NGS data that were also present in
Rapid-CNS?variant calls. We compared CNV profiles with their corre-
sponding methylation array-based profiles by visualinspection. MGMT
promoter methylation status was compared with the predictions
for the methylation array data using Bady’s method”. Samples with
a coverage <3x over the MGMT region were deemed ‘unclassifiable’.
Only clinically relevant fusions were compared with corresponding
data from NGS RNA sequencing. We compared methylation classes
with their corresponding MNP v.11 prediction for the methylation
array. Because v.11is unavailable for samples profiled using EPIC v.2
chips, we compared those with an ‘inferred’ class from the MNP v.12
prediction. Integrated diagnoses were made by neuropathologistsin
a‘real-world’ setting. ‘Conventional’ integrated diagnoses were issued
by considering histopathology, clinical data and molecular analysis
results from the NGS + Infinium Methylation array. Rapid-CNS? inte-
grated diagnoses were similarly issued using molecular results from
Rapid-CNS?instead.

For MNP-Flex, datafromall validation samples were subset to sites
presentin the llluminaInfinium MethylationEPIC array and the MGMT
promoter region. For methylation array data, we compared subclass
and family-level predictions with the corresponding MNP-RF predic-
tions. For nonmethylation array samples, we calculated concordance
for MNP-Flex samples based on predictions made for corresponding
MethylationEPIC array profiles by MNP-RF or available neuropathology
data assessment (Supplementary Table 2). Cl values were calculated
using the binom R package. Plots were generated using ggplot2 (v.3.5.1),
ggsankey (v.0.0.99999), ggridges (v.0.5.4), patchwork (v.1.1.3) and
related R packages for visualization. The MNP-Flex scores obtained
from analyzing samples gathered from FFPE and frozen sources were
tested with a nonparametric equivalence test available through the
R package TOSTER (v.0.8.3) using an upper and lower equivalence
bound of 0.01.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Datagenerated in this study are available viaZenodo at https://doi.org/
10.5281/zenodo.13351527 (ref. 61). Deidentified sequencing data will

be made available for academic research use only upon request to
F.S. (felix.sahm@med.uni-heidelberg.de). Requests will be reviewed
and responded to within 14 working days. Source data are provided
with this paper.

Code availability

Analysis code for different use cases of Rapid-CNS?and preprocessing
codeto convertbedmethyl filesto MNP-Flex compatible input is avail-
ablevia GitHub at https://github.com/areebapatel/Rapid-CNS2_sh and
https://github.com/areebapatel/Rapid-CNS2_nf.
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Extended Data Fig. 2| Rapid molecular reclassification of a suspected glioma. tumour) within 30 minutes of sequencing and after 24 h of sequencing.
Representative regions from A) Smear H&E stain and B) frozen H&E section for D) MNP-Flex methylation classification after 24 h of sequencing indicated it to be
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for 16 classifiable samples from the 18 intraoperative runs. Boxplots (top)
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Box plots show the median (horizontal line) and the box boundaries correspond
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accompanying bar plots. (bottom) Each rectangle on the bar plotindicates
individual samples coloured by true methylation class or inferred methylation
family (GBM). X axis indicates time in minutes. Positive Y-axis indicates correct
predictions, negative Y-axis indicates incorrect predictions for the prediction.
B) Prediction over time for two unclassifiable samples, not included in A). (left)
did not have a true class represented in the classifier and (right) had low (< 0.3)
scores for the corresponding methylation array. Both were predicted with low
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Extended Data Table 1| Accuracies of MNP-Flex validation cohorts

Dataset Sample type Cut- |Subclass |Family- |Confidence |Confidence |Sample
off -level level interval interval size
score |accuracy |accuracy |(subclass) |(family)

Array-based

MNP dataset

MNP-RF 20.7 |FFPE/ None (92.70% |95.70% [92.5% - 95.5% - 78,833

Cryopreserved 92.8% 95.8%
20.7 |98.50% |99.54% |98.4% - 99.49% - 58,410
98.6% 99.59%
MNP-RF 20.9 20.7 (99.30% |99.70% |99.3% - 99.6% - 52,735
99.4% 99.7%

Non-array

dataset

All non-array FFPE/ None [65.90% |(91.90% [61.0% - 88.9% - 382

(classifiable) Cryopreserved 70.5% 94.1%

20.3 [91.10% |99.60% |86.0% - 97.6% - 215
94.5% 99.9%

Whole genome |[Cryopreserved |None (93.80% |98.75% [88.15% - 96.22% - 80

bisulfite 99.03% 100%

sequencing

(WGBS)

20.3 |94.11% |100% 88.00% - 100% - 100% |68
99.69%

Nanopore whole |Cryopreserved |None |- 100% - 100% - 100% |40

genome

sequencing

(ONT-WGS)

20.3 |- 100% - 100% - 100% |32

Methylation FFPE None (92.60% [96.29% |(82.71% - 89.17% - 27

panels (Twist) 100% 100%

20.3 |100% 100% 100% - 100% [100% - 100% |23

Rapid-CNS2 Cryopreserved |None [66.00% |89.70% [59.31% - 85.41% - 194

(Heidelberg) 72.65% 93.97%

20.3 (89.18% (98.64% |82.11% - 96.02% - 74
96.26% 100%

Rapid-CNS2 Cryopreserved |None [63.40% |90.20% [48.67% - 81.16% - 41

(Nottingham) 78.16% 99.33%

20.3 |77.78% |100% 58.57% - 100% - 100% (18
96.98%

Whole cohort |FFPE/ 0.7/ [99.20% |99.60% [99.1% - 99.6% - 58,625

(array/non- Cryopreserved (20.3 99.2% 99.7%

array,

classifiable)
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Data exclusions  No data exclusion criteria was set for Rapid-CNS2. For non-IDAT validation samples for MNP-Flex, all samples submitted by collaborating
groups were included

Replication Technical robustness of the Rapid-CNS2 protocol was established by running the protocol in two laboratories- University Hospital Heidelberg
and University of Nottingham
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