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Abstract

Bioeconomic supply chains (BioSC) processing biogenic resources and substituting
fossil-based products are prone to weather-induced feedstock supply disruptions,
which likely increase in severity and frequency due to climate change. To attain sup-
ply security of biobased products that contribute to sustainable development, BioSCs
should be equipped with a certain level of “resilience” against unexpected feedstock
fluctuations. Existing BioSC models usually capture producer resilience to maximize
profitability for anticipated feedstock scenarios. Consumer supply security for unan-
ticipated events has drawn less attention. To encounter the unforeseen and both
producer and consumer perspectives, we present a two-step approach: (1) resilient
planning of a European BioSC producing bioethanol as petrol substitute from straw
for both producer and consumer perspective; a novel step (2) assesses the “actual”
resilience for unanticipated, random feedstock scenarios and economic, and environ-
mental implications. While a producer-resilient supply chain has lower bioethanol
production capacity and already high straw storage capacities to maximize profitability
under feedstock fluctuations, supply security degrades. In contrast, consumer-resilient
supply chains have higher production and storage capacities to maintain supply secu-
rity. Although this network redundancy comes with higher environmental impacts
from facility construction and supply chain operation (production and transport), the
environmental benefit of substituting petrol exceeds those burdens in most environ-
mental life cycle assessment categories. Consequently, consumer resilience can be
congruent with environmental sustainability and should be supported by policymakers
to strengthen European bioeconomy and guide producers toward consumer-resilient
supply chains. This article met the requirements for a gold-gold JIE data openness
badge described at http://jie.click/badges.
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1 | INTRODUCTION

The bioeconomy endeavors to satisfy humans’ hunger for materials and energy through renewable biological resources and is a central sector
of the global economy and of key importance for leading the society toward a sustainable pathway (EI-Chichakli et al., 2016). Depending on its
realization, bioeconomic value chains enable a positive contribution to multiple stakeholders, from the economy to the environment and society
(Messmann et al., 2023; Wietschel et al., 2021). However, recent global supply disruptions insinuate ever-increasing vulnerabilities of efficiency-
trimmed supply chains (SC) (Bruckler et al., 2024; Carvalho et al., 2012; Golan et al., 2020; Sheffi & Rice, 2005; Tang, 2006). Bioeconomic SC (BioSC)
are particularly vulnerable to disruptions: Even in the optimistic 1.5°C global warming scenario, temperature extremes, heavy precipitation, and
droughts will occur more frequently and intensely (IPCC, 2022), increasing the likelihood of weather-induced resource shortfalls (Lesk et al., 2016)
and making BioSC more susceptible than fossil and mineral resource-based SC (Habibi et al., 2023). Increasing BioSC resilience, which paves the way
for a more sustainable future, is therefore of great interest to society as a whole. The field of industrial ecology, traditionally focused on reducing
environmental impacts through technology, identified the urgent need to equip sustainable development with resilience considerations to protect
the path to sustainability from the impacts of climate change (Chester, 2020; Dijkema et al., 2015; EImqvist et al., 2019; Kendall & Spang, 2020;
Meerow & Newell, 2015; Yang et al., 2020).

The term “resilience” could be translated to “rebound” from a disturbance and is popular in several fields, such as psychology, livelihood, social,
economic, engineering, or ecological systems. Engineering resilience is a reactive concept that targets stability around an equilibrium state and
investigates a system’s capacity to absorb and recover from disturbances (Holling, 1996). Supply chain resilience (SCR) is based on this school of
thought and is usually defined by a combination of preparedness for a disturbance and the ability to respond, recover, and maintain a positive equi-
librium state within reasonable costs and time (Ribeiro & Barbosa-Pévoa, 2018). These abilities are known as absorptive, adaptive, and restorative
capacities (Vugrin et al., 2011). SCR research has already developed quantitative methods to evaluate the effects of high-impact, low-probability
disruptions: the so-called resilience curve maps a system'’s performance over time and, thereby, illustrates its degradation and recovery in case
of disruptions (Bruneau et al., 2003) depending on the available absorptive, adaptive, and restorative capacities (Bruckler et al., 2024). Resilience
metrics assess characteristics of the curve, such as the depth of impact (extent of performance decline) or the recovery rate (slope of performance
recovery) (Poulin & Kane, 2021). BioSC, such as biofuel production, can be termed resilient when absorptive, adaptive, and restorative capacities
ensure an efficient response, adaption, and recovery of the network from disruptions (e.g., feedstock shortfall) to meet the system’s objectives (e.g.,
profitability from a producer perspective) and the consumer needs (e.g., demand coverage) (Habibi et al., 2023). Deliberate actions can strengthen
those capacities, improve resilience metrics, and, consequently,improve overall SCR (Bruckler et al., 2024). These precautionary actions can already
be considered in strategic planning to increase resilience toward supply disruptions.

BioSC depend on low-density and low-cost feedstock, which is spatially spread, resulting in nonlinear feedstock transportation costs (Lau-
ven et al.,, 2018; Wietschel et al., 2021; Wright & Brown, 2007). Consequently, these SC require context-specific models and actions to improve
resilience, which have already been addressed in the literature.

Existing approaches that explicitly consider resilience actions in BioSC modeling include resilience-oriented biorefinery (BR) location and capac-
ity planning (e.g., Bai et al., 2015), feedstock storages or collection centers (e.g., Fattahi et al., 2021; Liu et al., 2017; Mousavi Ahranjani et al., 2020;
Saghaei et al., 2020; Yazdanparast et al., 2022), pretreatment facilities (e.g., Khezerlou et al., 2021; Maheshwari et al., 2017; Osmani & Zhang, 2013,
2017), or multiple feedstock types (e.g., Fattahi et al., 2021; Huang & Pang, 2014; Khezerlou et al., 2021; Mousavi Ahranjani et al., 2018, 2020;
Osmani & Zhang, 2013, 2017). Some of these articles incorporate environmental or social objectives or constraints alongside the predominant
economic perspective and examine the implications of different dimensions on the SC design (e.g., Mousavi Ahranjani et al., 2020; Salehi et al.,
2022).

Besides the integration of resilience actions, literature on BioSC planning has considered resilience by models intended to optimize or at least
maintain economic efficiency in case of parameter uncertainty. In this context, strategic planning encompasses uncertainty of feedstock availability
(e.g., Mousavi Ahranjani et al., 2020; Soren & Shastri, 2019), demand (e.g., Kalhor et al., 2023), operational availability (e.g., Huang & Pang, 2014;
Khezerlou et al., 2021), or joint uncertainties of multiple parameters (e.g., Liu et al., 2017; Mousavi Ahranjani et al., 2020; Osmani & Zhang, 2013;
Saghaei et al., 2020). The dominant method to consider uncertainty in BioSC is stochastic programming with objective functions minimizing costs or
maximizing profit (Habibi et al., 2023). To reduce complexity, uncertainty is typically represented by finite random scenarios with given probabilities
(Habibi et al.,2023). Few articles consider realistic scenarios drawn from probability distributions based on historical data (Bairamzadeh et al., 2018;
Mousavi Ahranjani et al., 2018).
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Resilience is rarely considered within BioSC by integrating resilience objectives, constraints, or metrics. Zhao and You (2019) optimize the area
under the resilience curve for the performance measure of available BR capacity in a bi-objective two-stage robust model. They additionally use
Pareto curves to analyze trade-offs between resilience and economic performance for two small-scale cases (transportation network and biofuel
SC). Salehi et al. (2022) incorporate resilience and sustainability factors into a joint objective function of a robust optimization model, assuming
demand and operational uncertainty. Resilience is achieved by penalizing the use of old technology and critical nodes and flows along the SC. They
apply the same metric as Zhao and You (2019) as a constraint to assess the resilience also for the performance measure of available BR capacity.

Based on the existing scientific literature, following research gaps are identified:

« Resilience operationalization: To design resilient BioSC, most models follow economic objectives under uncertainty through fictive, randomly
chosen scenarios, including explicit decisions on resilience actions whereas most works exclusively focus on “operational resilience” from the
producer perspective. However, multiple stakeholders might be affected by disruptions and countervailing resilience actions (Grafton et al.,
2019), requiring an inclusive assessment of the different affected perspectives to avoid unwanted problem shifting (Elmqvist et al., 2019).
Approaches of explicit resilience objectives or metrics integrated into models to address different stakeholders, such as the consumer (ensuring
supply security), are barely investigated.

+ Resilience against the unforeseen: Existing models rely on anticipated scenarios for which resilience is determined as a priori assessment.
However, resilience is not necessarily improved against unknown future events (Inan et al., 2024). This “actual” SCR against unforeseen, not
anticipated scenarios has not yet gained much attention (Bruckler et al., 2024).

< Implications of incorporating resilience: Less attention has been paid to jointly investigating the effect of resilience considerations in SC

modeling on resilience, economic, and environmental performance (Habibi et al., 2023).

Against this background, this article investigates the following research questions:
+ RQ1: How can resilience in terms of supply security (consumer perspective) be considered in quantitative models for the strategic planning of
BioSC?
+ RQ2: How can the “actual” resilience regarding unanticipated events be assessed?
< RQ3: Which effect do these resilience considerations in SC modeling have on the economic and environmental performance of a
second-generation bioethanol (2G EtOH) SC?

This article presents a real-data experiment design to model and assess resilient SCs for 2G EtOH production in the EU, considering feedstock
supply uncertainty due to extreme events. Therefore, Section 2.3 presents a new two-step approach: In step 1 (strategic planning), a bi-criteria
two-stage stochastic linear programming decides on the combination of actions to optimize economic profit under feedstock uncertainty (producer
perspective) and to meet a resilience satisfaction goal to ensure “supply security” (consumer perspective). Therefore, we select a set of realistic
feedstock scenarios from historical feedstock data. In contrast to existing approaches that are based exclusively on a priori optimization, a subse-
quent simulation (step 2) is used to validate these strategic decisions from the resilient model for a new set of randomly drawn scenarios, which
the model did not yet anticipate. This enables the analysis of economic and environmental implications (Section 3.1) of resilience considerations in
SC modeling and to assess the “actual” SCR (Section 3.2) for unforeseen scenarios. Thereby, our article contributes to the required shift in research
that a resilient system needs to deal with unknown developments for a sustainable future (Reyers et al., 2022). Although our approach is tailored
for BioSC, this work contributes to a general understanding of how the resilience curve, its metrics, and SC modeling can be combined to increase

resilience and which implications can come along with resilient SC planning.

2 | METHODS
2.1 | Problem description and aim

This article builds upon the model of a large-scale 2G EtOH production network introduced by Wietschel et al. (2021) as an advanced real-case
model for the EU. In their work, a mixed integer linear programming model (MILP) is used to determine 2G EtOH SC configurations as trade-off
solutions according to different objectives: an economic objective function maximizing the profit and several life cycle assessment (LCA)-based
environmental objective functions maximizing benefits of the network design and operation. The SC configurations are designed within 91 Nomen-
clature des unités territoriales statistiques (NUTS1) regions of the EU28 and comprise the following decisions (Figure 1): feedstock harvesting
(cereal straw) and transport to the BR, BR location and production capacity, and 2G EtOH production and distribution to either substitute petrol
or first-generation (1G) EtOH. However, their model considers average feedstock availability, which may limit the validity of the results (Wietschel

et al,, 2021). While their approach shows a potential course toward a more sustainable future, additionally considering the resilience of different
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FIGURE 1 Overview of network structure, model decisions of Wietschel et al. (2021), and model decisions/resilience actions of the developed
model. Decisions made by Wietschel et al. (2021) include the amount and transport mode (truck, train, or tractor) of straw from a sourcing region
or the biorefinery region itself to the biorefinery, the location and production capacity level of the biorefinery, as well as the amount and transport
mode of second-generation bioethanol (EtOH) from the biorefinery region to the demand region as well as the substituted product (fossil petrol or
first-generation EtOH). Model decisions marked with * are considered as resilience actions that are integrated into our model to strengthen
resilience. These decisions include the selection of location and production capacity level of biorefineries to be resilient against feedstock
fluctuations, the decision on locations and storage capacities of straw storages which can be constructed at the biorefineries, and the straw flows
in and out of the storage. Please see Supporting Information S1 for the mathematical formulation of the proposed model, which includes
parameters, objective function, and constraints.

affected stakeholders would strengthen the system’s capacity to adhere to the pathway, especially in light of the increasing frequency and inten-
sity of climate change-induced weather extremes (IPCC, 2022). Consequently, we aim for an approach that combines tools (metrics) and concepts
(resilience curve) of resilience research with SC modeling to (1) strengthen resilience of vulnerable BioSC and (2) analyze their “actual” resilience,
economic, and environmental performance regarding not anticipated scenarios. Therefore, we adapt the model of Wietschel et al. (2021) by con-
sidering resilience within the model formulation and decisions to enable coping with feedstock disruptions. In contrast to the original model, where
economic and environmental objective functions are (Pareto) optimized, our model is solely optimized economically, while a resilience satisfaction

goal is introduced (see Section 2.2), and the environmental performance is co-calculated for several LCA end/midpoints.

2.2 | Resilience consideration and assessment

Unlike existing articles, we differentiate between the producer and consumer resilience of a BioSC. From a producer perspective, the performance
measure is the BR capacity utilization: A resilient production maintains high capacity utilization by absorption, adaptation, or restoration from a
disruption, which aligns with existing models (e.g., Salehi et al., 2022; Zhao & You, 2019). Regarding the stakeholder “consumer,” we define perfor-
mance as EtOH supply to cover a demand (supply security): a fully resilient EtOH SC maintains a constant supply to fulfill demand at any time and
disruption scenario equal to the covered demand in case of average feedstock availability.

To operationalize resilience, the deterministic MILP of Wietschel et al. (2021) is transformed to explicitly consider the consumer: a satisfaction
objective (constraint) enforces a minimum residual performance in demand coverage in each period and feedstock scenario as first resilience con-
sideration. To cover the producer perspective, the model is turned into a time-discrete, two-stage stochastic linear programming model considering
feedstock supply uncertainty. Consequently, the proposed model decides on BR locations and capacities at the strategic level under consideration
of feedstock disruption scenarios, which can be considered a second resilience consideration for the improvement of absorptive capacity (Bruckler
et al.,, 2024; Sharkey et al., 2021), since the network design already reflects the supply uncertainty of each individual region. The resulting network

design intends to reduce impacts on EtOH production and supply volumes which is analyzed in Section 3.2.
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Cum. recovery improvement Area between curves during absorb duration
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Recovery duration Duration of recovery
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Cum. recovery improvement Area between curves during endure & recovery duration

FIGURE 2 Assessment of resilience. The resilience curve enables the visualization of the performance of different supply chain (SC)
configurations from two different perspectives: producer perspective = biorefinery (BR) capacity utilization; consumer perspective = bioethanol
(EtOH) supply to demand region. In this work, we aim to compare the resilient SC configuration (determined by the resilient model in this work)
with a baseline SC (determined by the deterministic baseline model similar to Wietschel et al., 2021) in case of feedstock disruption scenarios.
Therefore, the proposed resilience metrics are used to quantify the effect of resilience consideration in SC modeling regarding several curve
characteristics. For example, the residual performance quantifies the difference between the remaining performance (BR capacity or EtOH supply)
after the disruption of the resilient SC and the remaining performance of the baseline SC. This difference represents the positive effect of
resilience considerations (by two-stage stochastic modeling, resilience satisfaction objective, and the explicit resilience action of feedstock
storages) (own figure based on Wietschel et al., 2021 and Bruckler et al., 2024).

Besides the model formulation, resilience can be influenced by explicit actions that decision-makers proactively choose to improve absorptive,
adaptive, and/or restorative capacities (Bruckler et al., 2024). The underlying model incorporates actions at the strategic and tactical planning
levels (Figure 1). Research on BR network planning considers different types of storage to hedge feedstock uncertainty (Fattahi et al., 2021; Liu
et al.,, 2017; Mousavi Ahranjani et al., 2020; Saghaei et al., 2020; Yazdanparast et al., 2022). Therefore, as third resilience consideration, our model
makes strategic decisions on feedstock storage locations at BR sites and capacities as explicit, strategic resilience action aiming at improving absorp-
tive capacity by absorbing feedstock shortages through inventory (Bruckler et al., 2024). In addition, our model decides on inventory management
(storage in-/outflow) as a tactical resilience action.

Finally, the effect of the proposed resilience considerations is assessed by the resilience curve, which results from mapping the performance
measures (capacity utilization = producer resilience; EtOH supply = consumer resilience) over time. Metrics from Bruckler et al. (2024) quantify
the effect of resilience actions, the “resilience gain,” on the curve’s characteristics that improve absorptive, adaptive, and restorative capacities
and, thereby, overall SCR. This article applies only metrics computable with the available data (Figure 2) to assess how the resilience considerations
affect the resulting networks compared to a deterministic baseline supply chain (BSC), which is planned without resilience considerations and based
on average feedstock availability similar to Wietschel et al. (2021).

2.3 | Experiment design

This work’s experiment design aims at the methodological inclusion of resilience in the strategic planning of BioSC and the investigation of its inter-

play with economic and environmental performance for unforeseen scenarios. Therefore, the regional scope is limited to NUTS1 regions of Romania
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FIGURE 3 Two-step experiment design for strategic supply chain planning (step 1) and simulation of performance for not anticipated
scenarios (step 2); feedstock scenarios (step 1): regional historical feedstock volumes are determined based on the approach of Thorenz et al.
(2018) using crop production data between 1987 and 2021 (eurostat, 2024). The feedstock volumes are then trend adjusted and clustered for
each region into five discrete feedstock scenarios (worst to best). Finally, 25 feedstock scenarios are built for the 4-year time horizon: scenario
1-5:years 2 and 4; average feedstock availability: years 1 and 3 (to avoid overlap of effects from consecutive scenarios) (see Supporting
Information S1 for further explanations on scenario generation and probabilities). For the baseline model, mean trend-adjusted historical
feedstock volumes in each region were assumed to be available (baseline scenario); feedstock scenarios (step 2): To validate the supply chain
designs of step 1, 25 regionally correlated feedstock scenarios are randomly generated (Supporting Information S1).

(RO), Hungary (HU), and Bulgaria (BG), which were identified as promising for 2G EtOH production due to relatively low BR construction and oper-

ation costs and high-feedstock availability (Wietschel et al., 2019, 2021). A timeframe of 16 quarters (4 years) is chosen as suitable compromise

between accurate temporal resolution and computational efficiency to account for seasonal supply patterns and inventory holding costs.

Figure 3 visualizes the proposed two-step approach: In step 1, strategic SC decisions based on selected, representative feedstock scenarios from

real historical data are drawn. Therefore, two-stage stochastic programming determines the capacity levels of biorefinery production and straw
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storage as well as their locations. Step 2 then simulates tactical decisions on storage in- and outflows, feedstock sourcing, and EtOH supply based
on scenarios randomly drawn from historical feedstock distributions and thus assesses the performance for unforeseen scenarios. The results from
the resilient model are benchmarked to the strategic decisions of a baseline model for these scenarios to calculate the “resilience gain.”

< Step 1: The baseline model is formulated as a deterministic MILP assuming average supply (baseline scenario) in each region, similar to the
assumptions made by Wietschel et al. (2021), and is solved only once to determine the strategic decisions (BR/storage locations and capacities)
of a reference network named baseline SC (BSC). Furthermore, the 2G EtOH supply volume to each demand region is calculated to serve as
benchmark EtOH demand fulfillment in the resilient model (2G EtOH supply (baseline) in Figure 3). The resilient model is implemented as a
two-stage stochastic model: the first-stage (“here-and-now”) decisions (Li & Grossmann, 2021) involve location and capacity planning for BR
and storage facilities. The second-stage (“wait-and-see”) decisions depend on the first-stage decisions and are determined for each scenario
realization (Li & Grossmann, 2021). They comprise decisions on feedstock and ETOH flows and storage in-/outflows. The objective function
is the expected net present value for the realization of the 25 selected scenarios with their respective (joint) probability, which results from
five discrete feedstock supply scenarios in years two and four (Supporting Information S1 1.4 and 4.1). In addition, the resilience satisfaction
objective ensures a certain level of minimum EtOH demand fulfillment (residual performance) for each demand region. It is solved for 11 different
residual performances between 0% and 100% (represented by o™") of the benchmark EtOH demand fulfillment in the baseline. This results in 11
different SC configurations determined by the first-stage decisions with the ascending impact of the resilience satisfaction objective (resilient
SCO0-SC10).

« Step 2: Each resulting SC configuration of step 1 is fixed (strategic decisions of BSC; first-stage decisions of the resilient model forming resilient
SC0-SC10), and their performance is simulated for the new 25 randomly generated feedstock scenarios (Supporting Information S1). Therefore,
a one-stage stochastic model only takes second-stage tactical decisions: tactical resilience actions (rerouting feedstock collection, storage in-

/Joutflows) and decisions on EtOH supply to demand regions.

Finally, an ex post analysis assesses the economic (expected net present value) and environmental performance regarding three LCA endpoints
of ReCiPe 2016 (Huijbregts et al., 2017) and most contributing midpoints (Figure 2 of Supporting Information S1) of the resulting SC configurations.
Additionally, the effect of resilience considerations in SC modeling is evaluated based on the resilience curve for two different performance mea-
sures (BR capacity utilization and EtOH demand fulfillment) to investigate both the producer and consumer resilience as conceptually explained in
2.2.

3 | RESULTS

In the following, the results of the strategic planning (step 1) and the SC simulation for not anticipated scenarios (step 2) are visualized (see Figure
4) and described.

< Baseline model, step 1: The BSC has a total BR capacity of 781.3 kt 2G EtOH/quarter without straw storage since it is not economically viable.
The largest BR is built in RO3 (187.5 kt), followed by HU2 and HU3 (150 kt each), RO4 (100 kt), and BG3 and RO2 (87.5 kt each). A comparatively
small BR is built in HU1 (18.8 kt). The EtOH produced is finally distributed to high-profit demand regions (i.e., Austria (AT1, AT2), Finland (FI1,
FI2), and Sweden (SE2)).

< Resilient model, step 1: Considering the stochasticity of feedstock supply and the ascending levels of the resilience satisfaction objective resid-
ual performance (0%-100% of the benchmark performance), 11 SC configurations (SCO to SC10) are identified. For SCO, the constraint residual
performance is set to 0% (not binding), the model solely maximizes the economic objective. Compared to BSC, the total capacity reduces to 756.3
kt due to asmaller BR in RO3, RO4, and HU3. Even though the total capacity decreases, a new BR is constructed in RO 1. The capacity reduction
ensures higher utilization rates even in adverse feedstock supply scenarios but also results in lower total EtOH production volumes. In contrast
to BSC, a total of 128 kt straw storage is built in RO3, HU1, and HUS3 to cushion fluctuating supply. These strategic decisions remain robust until
the resilience constraint enforces a minimum residual performance of 60%, resulting in an identical network of SCO to SCé. A residual performance
of at least 70% (SC7) further increases the storage capacity in HU1 to a total of 133.5 kt. For a residual performance of 80% (SC8), the BR capacity
of RO4 increases, totaling a capacity of 769 kt. For further accentuating residual performance to 90% (SC9), the resulting network is characterized
by a capacity increase in RO1 to 775 kt. To ensure a residual performance equal to the benchmark performance in the baseline scenario (100%),
the total BR capacity of SC10 increases to 787.5 kt while the storage capacity remains unchanged.

< Economic performance and resilience of the SC simulation, step 2: Under optimization of the economic objective, the performance of BSC and
SCO-SC10 are simulated for the new set of 25 random feedstock scenarios per region and year drawn from the correlated normal distribution.
Regarding economic performance, the expected net present value of SCO-SC7 is 1.58% higher than that of the BSC (4.09 E+08€) due to higher

average utilization rates of BR capacities (99.42% vs. 98.77% for BSC). Consequently, producer resilience and profitability seem complementary,
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FIGURE 4 Supply chain (SC) configurations from step 1 (biorefinery and storage locations and capacities) and economic/environmental
performance in step 2 represented as absolute objective value of baseline supply chain and percentage increase/decline when choosing a resilient
SC (SC0-SC10). Two groups of relations between environmental performance and economic performance /resilience are identified. While the
environmental performance regarding life cycle assessment (LCA) categories E1-E3 and M1, M5, and M7 (group 1) rise with increasing consumer
resilience and decreasing economic performance, group 2 (M14 and M15) decreases with rising consumer resilience and decreasing economic
performance. Please see Supporting Information S1 for the selection process of the LCA categories analyzed within the results. Underlying data
for this figure are available in “Figure data 2” of Supporting Information S2.
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as higher capacity utilization rates were identified as economically efficient. However, the average quarterly EtOH production volume of 752 kt
EtOH is lower due to the smaller total BR capacity of 756.3 kt, resulting in a lower mean covered demand of 96.24% compared to the baseline
supply, which indicates lower consumer resilience (more details in Section 3.2). For SC8-10, the economic performance remains better than for
the BSC, but the advantage slightly declines from +1.58% (SC8) to +1.17% (SC10). At the same time, the average produced EtOH volume signifi-
cantly increases from 764 kt (SC8) to 783 kt EtOH (SC10), and demand coverage rises from 97.84% (SC8) to 100% (SC10). The economic benefit
of SCO-SC10 compared to BSC is even more apparent in single low feedstock availability scenarios, resulting in above-average performance of
up to 4.8% (SCO) and 4.5% (SC10), proving the robustness of the proposed SC configurations, especially against severe events. In contrast, for
high-feedstock availability scenarios, the performance is mainly below average, but except for few scenarios, SC10 is preferable compared to
BSC. A scenario-wise analysis for each of the 25 scenarios is conducted in Supporting Information S1 5.2.

2%
o<

Environmental performance of the SC simulation, step 2: The environmental performance is represented by three LCA endpoints and the

context-specific most important midpoints (global warming (M1), fine particulate matter formation (M5), terrestrial acidification (M7), human

non-carcinogenic toxicity (M14), and land use (M15)). Figure 4 groups them according to their correlation to economic performance and

resilience.

< Group 1: All endpoints and the midpoints M1, M5, and M7 positively correlate with consumer resilience (maintaining high EtOH demand
fulfillment) and negatively correlate with profitability. Two clusters of SC configurations with similar performance were detected. Cluster 1
(SCO-SC7) performs up to 2.3% worse than BSC for these categories, mainly due to the comparatively lower EtOH production. Like the eco-
nomic performance, the environmental performance in severe scenarios is mainly higher than the average results but still worse compared
to BSC. For high-feedstock scenarios, the performance is even below average, with up to 2.9% worse (regarding E3). It increases with higher
resilience satisfaction due to higher total EtOH production volumes substituting fossil petrol. In cluster 2 (SC8-SC9), the performance is
almost equal to or better than that of BSC, while SC10 shows, on average, up to 2.1% (M5) and, in severe scenarios, up to 2.6% (M5) better
performance.

<% Group 2 (M14 and M15) shows an inverse behavior: With increasing demand fulfillment (resilience satisfaction), the environmental per-
formance degrades. On the other hand, those categories positively correlated with the economic objective and negatively with consumer
resilience. Cluster 1 has up to 3.3% (M14) higher performance and average capacity utilization rates because of a smaller total BR capacity.
However, the environmental performance of SCO in low feedstock scenarios is mainly below average, with up to only 2.4% (M15) due to less
EtOH production of BSC compared to high-feedstock availability scenarios. With increasing residual performance from 80% to 90% and the
resulting higher BR capacities, cluster 2 converges to the performance of BSC from 1.4 % (SC8) to 0.5% (SC9) for M14. However, capacity
utilization rates remain high as the main objective is still the economic dimension. SC10 performs 1.4% regarding M14 and 1.7% regarding
M15 worse than BSC and even worse in low feedstock scenarios as maintaining EtOH supply high leads to more land use required for SC
operations compared to BSC providing less EtOH.

3.1 | Evaluation of consumer and producer resilience

To assess the “actual” producer and consumer resilience for unanticipated scenarios, the resilience curves of the performance measures of average
BR capacity utilization and average EtOH demand fulfillment (EtOH supply) are analyzed.

Figure 5 shows the curves for consumer and producer resilience for three representative network configurations: BSC represents the network
without resilience considerations, SCO represents planning under uncertainty without binding resilience constraint (0%), and SC10 represents
planning under uncertainty with strong resilience constraint (100%).

For evaluating the “resilience gain,” the timeframe around the lowest residual performance (period 1-6) is selected. The curves of SCO and SC10
are then separately compared for both performance types to the curve of BSC (11, Il1, V, and VI), and the metrics for quantifying the resilience gain
are calculated (Table 1). Since the metrics resistive, absorb, endure, and recovery duration are unaffected by the proposed resilience considerations,

the remaining seven metrics presented in Figure 2 are evaluated.

* Producer resilience: Investigating the curves of SCO and SC10, most metrics indicate a positive effect of integrating resilience into strategic SC
modeling. When selecting SCO instead of BSC, the absorptive capacity increases, which is indicated by the improved metrics depth of impact by
0.94%, residual performance by 1.42%, failure rate by 0.47%, and cumulative absorptive improvement by 2.86%. Figure 5 shows a smaller and less
steep performance decline and a higher residual performance for SCO than for BSC. SC10 shows a slightly higher positive effect on the metrics
depth of impact (0.99% higher than BSC) and failure rate improvement to 0.50% compared to BSC, while residual performance is about the same for
both SCO and SC10. However, cumulative absorptive improvement, which aggregates the effect of the aforementioned metrics, is lower for SC10
than for SCO, wherefore SCO is slightly preferable for improving the absorptive capacity from the producer perspective. Since the performance
decline of SCO and SC10 is lower than that for the BSC, less performance must be regained. Therefore, the metrics of restored performance and

recovery rate are lower compared to BSC, leading to negative values. In contrast, the cumulative recovery improvement of SCO (0.92%) and SC10
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FIGURE 5 Resilience curves and metrics from producer perspective (average biorefinery (BR) capacity utilization; producer resilience) and
consumer perspective (average bioethanol (EtOH) demand fulfillment/EtOH supply of/to NUTS1 region of Finland (FI1), since the supply
disruption only affects this region; consumer resilience): () curve for average capacity utilization for complete time horizon (period 1-16) for
baseline supply chain (BSC), SCO, and SC10; (Il) curve for average BR capacity utilization for period 1-6 showing resilience benefit of SC1
compared to BSC; (lll) curve for average BR capacity utilization for period 1-6 showing resilience benefit of SC10; (IV) curve for average EtOH
supply to FI1 for complete time horizon (period 1-16); (V) curve for average EtOH supply to FI1 for period 1-6 showing lack of resilience of SCO
compared to BSC; (VI) resilience for average EtOH supply to Fl1 for period 1-6 showing resilience benefit of SC10. Underlying data for this figure
are available in “Figure data 3” of Supporting Information S2.

(0.89%) is higher than for BSC. Compared to SCO, SC10 is slightly preferable when aiming at the improved restored performance (+0.02%) but not
regarding the recovery rate (—-0.03%). SCO is preferable again for maintaining BR capacity utilization high during recovery duration, with a slightly
higher cumulative recovery improvement (0.03%). Analyzing the resilience metrics, SCO and SC10 show very similar producer resilience.

* Consumer resilience: The difference between SCO and SC10 becomes apparent from the consumer perspective. SCO (V) performs worse than
BSC in terms of residual performance (—13.53 kt) and cumulative absorptive improvement (—52.01 kt during the resistive and absorb duration)
because of the smaller total BR capacity installed. However, due to a significantly lower production volume, the depth of impact (7.62 kt) and
failure rate (3.81 kt) of SCO are lower, whereas SCO performs better in these metrics than BSC. Nevertheless, SC10 (VI) is preferable for improv-
ing the absorptive and adaptive/restorative capacity indicated by almost every single metric (besides restored performance). This is especially true
for the metrics residual performance (+30.83 kt) and cumulative absorptive/recovery improvement (+92.33/4+62.02 kt), which mainly characterize

how well the level of demand coverage is maintained during the observation period.

3.2 | Performance under increasing disruption severity

This chapter investigates the effect of increasing disruption severity in light of climate-change-related extreme weather events (IPCC, 2022; Lesk
etal.,, 2016) on the economic and environmental performance regarding global warming potential (GWP) of BSC, SCO, and SC10 (Figure 6). To reflect
event severity for the randomly drawn feedstock scenarios, the extreme events are assumed to occur in years 2 and 4 and reduce the supply by a
factor from 0% to 80%.

The environmental and economic performance decreases with rising disruption severity. In the economic dimension, SCO consistently performs
best. At a severity level of 60% (rather unrealistically high severity), the economic performance of SCO, SC10, and BSC turns negative. Around
that point (50%-60%), the relative economic advantageousness of SCO and SC10 compared to BSC peaks. For even higher severity, all configura-
tions show further decreasing economic performance, while the relative economic advantage of SCO and SC10 still remains but decreases again
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FIGURE 6 Economic and environmental performance regarding global warming potential (GWP) (M1) for increasing disruption severity. The
diagram on the top visualizes the absolute economic profit (blue) and GWP benefit (green) for increasing severity for the configurations SC0, SC10,
and baseline supply chain (BSC) (gray). The diagram at the bottom displays the relative deviation (benefit or drawback) of SCO and SC10 compared
to BSC regarding economic profit (blue) and GWP benefit (green), as well as the deviation of the bioethanol production volume (green lines)
compared to BSC. Underlying data for Figure 6 are available in “Figure data 4” of Supporting Information S2.

as this extreme level of low feedstock availability has not been anticipated in the planning step. The relative economic advantage of SC10 is espe-
cially decreasing as the investment in resilience actions weighs relatively high compared to the low economic revenue from EtOH production for
high severity. The GWP benefit is more robust against increasing severity than the economic performance and consistently stays positive for each
severity scenario and SC configuration. SC10 has the highest average GWP benefit, and its advantage, compared to the BSC, peaks at 3.9% for
60% severity before it decreases again. Similarly, the relative GWP disadvantage of SCO compared to BSC decreases with increasing severity, and
from 60% severity onward, SCO has a higher GWP benefit than BSC due to available resilience actions like feedstock storage that covers short-
ages. Figure 6 further unveils a high correlation between the average EtOH production volumes of SCO and SC10 and the GWP benefit. Figure 3 of
Supporting Information S1 describes the performance of land use for increasing severity.

4 | DISCUSSION

This article presents a two-step experiment design that integrates resilience considerations into the strategic planning of BioSC. The principal
idea behind the experiment design is the anticipation of future feedstock disruptions already within strategic SC design. We, therefore, propose
a stochastic MILP that optimizes the economic dimension, adheres to resilience constraints, and co-calculates the environmental dimension.

Step 1 takes strategic SC decisions on scenarios that represent the historical supply variance. Using representative scenarios that typify realis-
tic future developments instead of randomly drawn scenarios from probability distributions is a common approach in SC decision-making (Maier

et al., 2016). To account for the unknown future, step 2 simulates the performance of the resulting networks by drawing equally weighted random
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feedstock scenarios. We thereby validate the strategic SC decisions from step 1, which pursues the necessary shift toward the assessment of the
“actual” resilience to unforeseen events called for in the literature (Bruckler et al., 2024; Inan et al., 2024; Reyers et al., 2022).

The feedstock scenarios used in this work reflect realistic supply fluctuations in promising bioeconomy regions such as Eastern Europe to inves-
tigate the ramifications of fluctuations in the BioSC performance. Our results indicate that scenario-based stochastic modeling that considers
feedstock uncertainty and integrates deliberate resilience actions such as feedstock storages strengthens producer resilience. However, consumer
resilience is not inherent, as it is not necessarily profitable for the producer. This requires an explicit consideration of resilience metrics within the
model constraints, such as a minimum residual performance in EtOH demand coverage, to steer BioSC planning toward consumer resilience. The
positive effect of explicitly incorporating consumer resilience in the supply chain planning is proven by the simulation of unforeseen supply fluctu-
ations in step 2: with very high consumer resilience requirements (e.g., due to contracted supply rates), the resulting SC10 achieves a higher EtOH
supply security (consumer resilience), higher economic benefit and higher environmental benefits for several impact categories (e.g., GWP) com-
pared to the deterministic baseline SC. This observation is especially pronounced in severe disruption scenarios. Compared to SCO, the resilience
curve of SC10 shows a higher residual performance and related metrics like cumulative absorptive/recovery improvement. Planning without the bind-
ing consumer resilience constraint (SCO) results in slightly higher economic benefit for the producer compared to SC10 and BSC and a noticeably
lower EtOH supply security for the consumers. For practitioners such as SC planners, our results demonstrate the necessity of considering con-
sumer resilience in SC modeling to fulfill the system objective (economic profitability) and customer needs simultaneously as the requirements for
resilient BioSC.

Although the expected objective values and resilience metrics of the different SC configurations differ only slightly in the aggregated results, the
scenario-wise analysis unveiled more pronounced economic and environmental benefits of resilient SC, especially for low feedstock supply scenar-
ios. Eventually, the performance of different SC configurations is simulated for increasing disruption severity to investigate the impacts of ongoing
climate change with increasing frequency and intensity of weather extremes. Similarly to Pizzol (2015), we confirm an increasing outperformance of
resiliently planned networks over vulnerable networks in terms of GWP for growing disruption severity. However, we observe a nonlinear behavior
of the economic and environmental (GWP) benefit of the resilient SC compared to the BSC, as the relative advantage peaks at 60% severity.

The bigger picture of considering resilience in BioSC modeling unveils heterogeneous patterns for different environmental categories, resilience,
and the economic dimension. Consumer resilience is congruent with environmental goals of group 1, where considerable benefits (e.g., regarding
global warming) can be realized by producing 2G EtOH to substitute petrol. In line with Pizzol (2015), this phenomenon particularly applies to
BioSC when environmentally beneficial alternatives substitute fossil-based products. Policymakers can conclude from our study that strengthening
consumer resilience of BioSC increases environmental benefits regarding several LCA categories and serves the goal of sustainable development.
Therefore, incentivizing consumer-resilient SC planning contributes to a successful European bioeconomy. Conversely, resilience conflicts with
environmental categories like land use (group 2), where the product performs worse than its reference. Due to the multiplicity of goals for sus-
tainable development, it is not possible to equally satisfy all objectives simultaneously. Especially policymaking may be confronted with remaining
conflicts between desirable aspects, which necessitates a transparent discussion of such limitations (European Commission, 2018).

A limitation of our approach is the small number of 25 different scenarios in the strategic SC planning. However, Shapiro and Philpott (2007)
note that a high number of scenarios does not necessarily result in a solution closer to the “actual” optimum of the real problem. Since the exact
prediction of future supply is impossible, we decided to base the strategic planning on explicitly chosen scenarios representing the historical range of
feedstock availability in each region. Although some assumptions, such as the constant feedstock availability within a year (seasonality is considered
by seasonal inventory holding costs at the farmer), the pattern of average feedstock availability in years 1 and 3 and explicit feedstock scenarios in
years 2 and 4 are arbitrarily chosen to represent two isolated extreme years that do not interfere, the viability of our approach is proven by step 2.

The presented approach is specifically elaborated for the 2G bioethanol production in the EU, which limits drawing more general conclusions.
Nevertheless, for SC planners, the approach can serve as methodological blueprint for other BioSC using straw or feedstock with similar properties
as biorefineries could also produce other green chemicals like methanol to substitute fossil-based products. Also, for completely different SC, the
integration of resilience constraints or objectives to strengthen consumer resilience might be possible and desirable to increase supply security.
Conclusions about the environmental performance cannot be transferred to other SCs, as this depends heavily on the product under considera-
tion. A possible extension would be an integration of different metrics to improve specific characteristics of the resilience curve according to the
decision-maker’s preference. As this work has not considered resilience metrics as maximizing objective function, multi-criteria approaches opti-
mizing economic, environmental, and/or resilience aspects would provide deeper insights into relevant trade-offs for decision- and policymaking.
Our research approach sets a basis for future research to derive a more standardized methodology for various application cases to prepare for the

unforeseen in resilient planning.
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