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Abstract. Hydrometeorological forecasting is crucial for
managing water resources and mitigating the impacts of hy-
drological extremes. At sub-seasonal scales, readily available
hydrometeorological forecast products often exhibit large
uncertainties and insufficient accuracies to support decision-
making. We propose a deep-learning-based modelling frame-
work for sub-seasonal joint precipitation and streamflow
ensemble forecasts for a lead time of up to 30 d. This is
achieved by coupling (1) an ensemble of enhanced convo-
lutional neural network (CNN) models with ResNet blocks
and a specialized loss function for statistically downscaling
of European Centre for Medium-Range Forecasts (ECMWF)
ensemble precipitation forecasts to (2) a hybrid hydrologic
model integrating the conceptual Xin’anjiang model (XAJ)
and the long short-term memory network (LSTM) for en-
semble streamflow forecasting (XAJ-LSTM). Applying the
modelling framework to the source region of the Yangtze
River Basin, results indicate that the CNN-based down-
scaling model exhibits ∼ 34 % and ∼ 26 % less root mean
squared error (RMSE) than the raw ECMWF forecasts and
the quantile mapping (QM) forecasts, respectively, averaged
over the 30 d lead time. Similarly, the CNN achieves ap-
proximately 6 % and 10 % lower RMSE than raw forecasts
and QM for heavy precipitation events. Using these pre-
cipitation forecasts as meteorological forcing for the hy-

brid XAJ-LSTM hydrologic model, we found that forecasted
streamflow and flood peaks driven by CNN-based precipi-
tation forecasts have 16 %–33 % lower relative errors and
20 %–31 % lower RMSE compared to those driven by raw
forecasts. However, the standalone XAJ model shows only
marginal improvements with the same enhanced precipita-
tion forecasts. This highlights the importance of understand-
ing the effectiveness of the hydrologic model as part of
the sub-seasonal hydrometeorological modelling chain. Our
study is expected to provide implications for leveraging ad-
vanced AI techniques to enhance sub-seasonal hydrometeo-
rological forecasting accuracy and operational efficiency for
effective water resources management and disaster prepared-
ness.

1 Introduction

In past decades, the frequency and intensity of extreme pre-
cipitation events have been increasing in many areas as
global warming continues, thereby amplifying the potential
for hazards of extreme weather and hydrologic events (Wei
et al., 2018; Yuan et al., 2018; Wang et al., 2019; Zhu et al.,
2020). Hydrological forecasting has become critically impor-
tant for managing water resources and mitigating the impacts
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of these extreme weather and hydrologic events (Robertson
and Wang, 2013; Liu et al., 2020; Jiang et al., 2022). Tra-
ditional hydrological forecasts, which do not integrate sub-
seasonal meteorological forecasts, often provide insufficient
lead times for decision-making on flood control, agricultural
planning, and ecological preservation efforts (de Andrade et
al., 2021; Bierkens, 2015; Jaun et al., 2008). Integrating both
meteorological and hydrological forecasts at sub-seasonal
scales is therefore essential to extend lead times, thereby im-
proving water resources management and disaster prepared-
ness over a longer term (Yuan et al., 2016; Cloke and Pap-
penberger, 2009; Liang et al., 2018; Vigaud et al., 2019; Zhu
et al., 2019).

Advancements in numerical weather prediction (NWP)
models, such as the European Centre for Medium-Range
Forecasts (ECMWF) Integrated Forecasting System (IFS)
and the NCEP Global Forecast System (GFS), have greatly
improved the accuracy of sub-seasonal weather forecast-
ing (Yuan et al., 2011; Bauer et al., 2015; Brotzge et al.,
2023). However, these global models often suffer from rel-
atively coarse resolutions and generalized parameterizations
that may not be suitable for regional-scale and local-scale
forecasts (Dehshiri and Firoozabadi, 2023; Singhal et al.,
2023). Dynamic downscaling, such as that performed by the
Weather Research and Forecasting (WRF) model, translates
larger-scale atmospheric trends captured by global climate
models (GCMs) into fine-scale regional details that reflect
local geographic and climatic factors (Merino et al., 2022;
Nooni et al., 2022; Maraun et al., 2010). For instance, re-
cent studies by Gao et al. (2022) and Srivastava et al. (2023)
demonstrate the effectiveness of WRF in enhancing the ac-
curacy of precipitation forecasts and capturing the dynam-
ics of severe weather events. Despite these advantages, dy-
namic downscaling often requires extensive computational
resources especially for sub-seasonal scales, and can be sen-
sitive to the quality of input data. Furthermore, the process is
constrained by the physical parameterizations that may not
always accurately represent localized meteorological condi-
tions, a concern that is increasingly critical under changing
climatic conditions (Di Luca et al., 2015; Shi, 2020; Xu et
al., 2015).

Statistical downscaling techniques, which have been used
to relate the larger-scale meteorological patterns to local-
scale weather, offer a different approach (Tabari et al., 2021;
Zhang et al., 2022a; Michalek et al., 2024). Traditional sta-
tistical downscaling methods such as quantile mapping have
proven effective in reducing the systematic bias of pre-
cipitation forecasts with relatively simple inputs (Vrac and
Friederichs, 2015). On the other hand, forecasting weather
and predicting climate using machine learning, especially
deep learning (DL), has recently become a hot topic. A com-
mon approach for this purpose is to use preceding predic-
tors from observational or reanalysis data to forecast sub-
sequent predictands (Weyn et al., 2021; Xie et al., 2023;
Ham et al., 2019; Ling et al., 2022). An alternative method

involves post-processing dynamical forecasts. For instance,
Cho et al. (2020) applied machine learning techniques, in-
cluding random forests and support vector machines, to de-
velop statistical relationships for temperature adjustments.
Similarly, Kim et al. (2021) utilized long short-term memory
(LSTM) networks to correct bias in the amplitude and phase
of the Madden–Julian Oscillation. More recently, deep learn-
ing models such as convolutional neural networks (CNNs)
have been reported able to more effectively reduce the total
bias of meteorological forecasts due to their ability to learn
multi-dimensional representations of data features (Vandal et
al., 2019; Sachindra et al., 2018; Jiang et al., 2024; Li et al.,
2022). For example, Lagerquist et al. (2019) used a CNN to
identify fronts in gridded data for spatially explicit prediction
of synoptic-scale fronts.

Despite general improvements of forecasts, these DL-
based models tend to smooth the extreme precipitation at
sub-seasonal scales (Baño-Medina et al., 2021; Kim et al.,
2022), likely due to insufficient heavy precipitation sam-
ples (Chen and Wang, 2022). Many studies have since in-
troduced more recent variants of CNNs including the U-
shaped U-Net (Han et al., 2021; Horat and Lerch, 2024; Ni
et al., 2023) and SmaAt-UNet (Li et al., 2024a), or cou-
pled standard CNNs with different structures, such as auto-
encoders (Ling et al., 2022a) and LSTM (Ling et al., 2022b).
In particular, the residual network, ResNet, has been intro-
duced in sub-seasonal forecast correction, which shows the
potential of mitigating the vanishing gradient issue by in-
troducing the residual paths (Jin et al., 2022; Nie and Sun,
2024). Others have attempted to introduce specialized loss
functions to balance heavy and light rains, such as the ex-
ponentially weighted mean squared error (Ebert-Uphoff and
Hilburn, 2020) and Dice loss (You et al., 2023). However,
these new developments have not been sufficiently examined
for sub-seasonal forecasts.

Other state-of-the-art forms of deep learning for weather
forecasts include fully DL-based models, such as Pangu (Bi
et al., 2023) and GraphCast (Lam et al., 2023), which are
reported able to achieve forecast skills comparable to numer-
ical weather prediction systems. While these models may
appear quite different from statistical post-processing deep
learning models, some argue that these models act more as
post-processing tools rather than realistic simulators of the
atmosphere due to the lack of physical fidelity and consis-
tency (Bonavita, 2024). Although not the primary focus of
this paper, this calls attention to the scientific community to
critically evaluate and differentiate between the capabilities
and applications of fully DL-based models and DL models
designed for post-processing.

In addition to meteorological forecasts, sub-seasonal
streamflow forecasts are crucial because streamflow at these
timescales is directly related to the onset and progression
of flooding and drought events. To translate meteorologi-
cal predictions to streamflow forecasts, both physics-based
and data-driven hydrologic forecasting models are widely
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used. Physics-based models, such as the lumped Xin’anjiang
model, HBV model, and the distributed CLHMS and VIC
models, make predictions by interpreting detailed physi-
cal processes (Gassman et al., 2014; Dong et al., 2022,
2023). Data-driven models were also developed to perform
rainfall-runoff modelling and forecasts by learning from big
data (Kisi, 2007; Adnan et al., 2019) and have been re-
ported to outperform the well-calibrated physics-based mod-
els (Kratzert et al., 2019). It is noteworthy that both mod-
els are embedded with uncertainties. Physics-based models
may produce inaccurate simulations due to simplified rep-
resentations of hydrologic processes, and data-driven mod-
els may perform less effectively in extrapolation beyond the
range of the training data (Addor et al., 2020). By integrat-
ing the strengths of both approaches, recent studies have at-
tempted to establish a hybrid model with a higher predic-
tive performance than the physical model alone (Liu et al.,
2022; Abrahart et al., 2012; Raftery et al., 2005; Yang et
al., 2020). For example, Humphrey et al. (2016) combined
a Bayesian neural network (BNN) with the traditional GR4J
model and achieved improved forecast accuracy compared
to using either the BNN or GR4J alone. However, the role
of such models as part of the hydrometeorological mod-
elling chain in producing reliable streamflow forecasts has
not been well examined at sub-seasonal scales. For example,
Crochemore et al. (2016) and Valdez et al. (2022) suggested
that the relationship between the accuracy of precipitation
forecasts and the corresponding streamflow forecasts is not
necessarily straightforward. An ensemble approach with DL
models also shows promising results (Ferranti et al., 2018;
Bremnes, 2020; Balint et al., 2006; Cloke and Pappenberger,
2009; Scheuerer and Hamill, 2015; Taillardat et al., 2016)
that require further investigation.

The above considerations are particularly relevant for the
source region (SR) of the Yangtze River Basin, which is
historically susceptible to extensive flooding and droughts
that affect thousands of kilometres downstream (Sun et al.,
2016). Aiming at enhancing sub-seasonal hydrometeorolog-
ical forecasts for the wet season in this area, we start by ad-
dressing the following questions:

1. How effectively can CNN architectures with recent ex-
tensions improve the sub-seasonal precipitation fore-
casts compared to traditional statistically downscaling
models?

2. How effectively can AI-assisted hydrologic models con-
vert more accurate sub-seasonal precipitation forecasts
into more accurate streamflow forecasts compared to
traditional conceptual hydrologic models?

Specifically, this study investigates sub-seasonal precipita-
tion and streamflow ensemble forecast skills for up to 30 d
ahead with deep learning models, which integrates enhanced
CNN models with ResNet blocks and specialized loss func-
tions for post-processing the ensemble ECMWF forecasts

with a hybrid hydrologic model of the Xin’anjiang model
(XAJ) and the long short-term memory network (LSTM) for
streamflow forecasting. Our approaches and findings are ex-
pected to provide implications for operational hydrometeoro-
logical forecasts in the SR and also similar basins worldwide.

2 Study area and data

2.1 Study area

The source region (SR) of the Yangtze River Basin is located
on the eastern edge of the Tibetan Plateau, between 26–36° N
and 90–101° E, as shown in Fig. 1. The region serves as a cru-
cial transitional area from highland mountains to plains in
southern China, with the surface elevation decreasing from
over 6000 m in the north to just over 2500 m in the south.
The climate of the region is subject to both plateau and sub-
tropical monsoon climates, with annual precipitation ranging
from 280 to 760 mm. The SR has a significant impact on the
utilization of water resources in the Yangtze River Basin and
southwest China (Hao et al., 2024). The controlling hydro-
logic station of the SR is Shigu station (Fig. 1), which has
a mean annual streamflow of around 1300 m3 s−1, account-
ing for 5 % of the total water resources of the Yangtze River
Basin.

The SR spans a large north–south range, with the north-
ern region deep in the Tibetan Plateau and dominated by a
plateau monsoon climate and the southern region character-
ized by low hills and a subtropical monsoon climate. These
contrasting environments suggest different runoff generation
mechanisms between the two regions. To ensure the accuracy
of streamflow simulations at Shigu, we therefore divided the
SR into two sub-basins (i.e. northern and southern basins in
Fig. 1) for hydrologic modelling in Sect. 3.4.

2.2 Data sources

2.2.1 Observed precipitation and temperature

To train the forecast models and evaluate the accuracy of
forecasts, this study employs the 0.25° daily precipitation
and temperature grid dataset (CN05.1), released by the Na-
tional Meteorological Information Center, as the reference
observed data. This dataset is produced by interpolating pre-
cipitation and temperature data from over 2000 meteorolog-
ical stations across the country and covers the period from
1961 to 2022.

2.2.2 ECMWF sub-seasonal reforecast data

The European Centre for Medium-Range Weather Forecasts
(ECMWF) offers a sub-seasonal forecast service designed to
bridge the gap between short-range weather predictions and
long-term climate outlooks. This service focuses on predict-
ing atmospheric and oceanic conditions over the next 2 to 6
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Figure 1. The source region of the Yangtze River Basin and its lo-
cation in the Yangtze River Basin.

weeks, providing valuable information for a variety of ap-
plications such as water resources management and disas-
ter preparedness. In this study, we collect the ECMWF Sub-
seasonal to Seasonal (S2S) daily reforecast data for a lead
time of 30 d initialized on 35 dates during the wet season
(between May and August) per year during 2002–2019. The
forecasted variables used in this study include precipitation
and convective precipitation at the land surface and tempera-
ture, wind components, geopotential heights, and specific hu-
midity at 200, 500, and 850 hPa pressure levels. All of these
variables are at a spatial resolution of 1.5°.

2.2.3 Observed streamflow

To calibrate the hybrid hydrologic model and evaluate the hy-
drologic forecasts, the daily streamflow data of Shigu station
are collected for 1981–2019.

3 Methods

3.1 Overview

The presented sub-seasonal hydrometeorological forecasting
framework aims to improve the daily precipitation forecasts
and the corresponding streamflow forecasts at the Shigu hy-
drologic station during the wet season (May to August) for a
lead time up to 30 d. We first employ all 10 ensemble mem-
bers from the ECMWF S2S gridded sub-seasonal precipita-
tion reforecast dataset for the next 30 d as raw forecasts, de-
noted as EC. An ensemble of enhanced CNN models with
ResNet blocks and a specialized loss function is established
to statistically downscale and bias-correct each ensemble
member of the 1.5° EC raw precipitation forecasts to 0.25°

grid resolution, with its post-processed forecast denoted EC-
CNN (Sect. 3.2.1). The quantile mapping (QM) serves as a
benchmark for comparison, with its post-processed forecast
denoted EC-QM (Sect. 3.2.2).

These three gridded ensemble precipitation forecasts (EC,
EC-QM, and EC-CNN), along with ECMWF gridded sub-
seasonal daily temperature forecasts corrected by the delta
method (Sect. 3.3), are employed to drive two lumped hydro-
logic models to produce the daily streamflow forecasts for
lead times of 1–30 d. All these gridded forecasts are areal-
averaged over the two sub-basins of the SR (Fig. 1) before
being input to the lumped hydrologic models. The first hy-
drologic model is a standalone XAJ model (Sect. 3.4.1), and
the second model is a hybrid model that integrates the con-
ceptual XAJ model and the LSTM (hereinafter XAJ-LSTM)
(Sect. 3.4.2 and 3.4.3). The streamflow and flood forecasts
of XAJ-LSTM and standalone XAJ driven by EC-CNN fore-
casts are then quantitatively evaluated against those driven
by EC and EC-QM forecasts.

The evaluation metrics include deterministic metrics of
root mean squared error (RMSE), relative error (RE), and the
Nash–Sutcliffe efficiency (NSE) for the ensemble mean and
probabilistic metrics of continuous ranked probability score
(CRPS) for a total of 10 ensemble members (Sect. 3.5). A
detailed workflow of this study is presented in Fig. 2.

3.2 Statistically downscaling of ensemble precipitation
forecasts

3.2.1 Enhanced convolutional neural network

An ensemble of enhanced CNN models with ResNet blocks
and a specialized loss function is established to learn the
spatially dependent relationship between fine-resolution lo-
cal precipitation and coarse-resolution predictors from sur-
rounding regions. Specifically, it downscales a total of 10
ensemble members of the ECMWF S2S reforecasts from a
1.5° resolution to a 0.25° resolution, using the CN05.1 ref-
erence precipitation dataset. The model takes spatially dis-
tributed inputs of 19 predictors, including the surface ele-
vation, convective precipitation, and total precipitation at the
surface level andU and V wind components, specific humid-
ity, temperature, and geopotential height at 200, 500, 850 hPa
pressure levels, from ECMWF forecasts. These inputs cover
a 3× 3 area of coarse grid cells at 1.5° resolution, centred
around the target fine grid cell at 0.25° resolution. Due to
the square-shaped input structure of the CNN model, some
ECMWF data from outside the basin boundary are included
in the input. For the outputs, the predictand is the daily pre-
cipitation at a spatial resolution of 0.25°, and the CNN loops
over each fine-resolution grid cell (0.25°) within the basin
boundary, thereby generating a high-resolution precipitation
forecast for the entire SR. Figure 2 presents the model struc-
ture, which primarily consists of convolutional layers, em-
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Figure 2. The workflow of this study.

bedding layers, fully connected layers, and residual paths.
More details on the model structure are described as follows.

1. Inputs to the network are predictors from a 3× 3 grid
patch (1.5° resolution) centred on the target grid cell
(0.25° resolution). This patch includes a total of 19
meteorological variables, resulting in input arrays with
sizes of 19× 3× 3. The spatial dimension of 3× 3 is
selected because it shows the best performance among
four candidates of 1× 1, 3× 3, 5× 5, and 7× 7.

2. The model includes three ResNet blocks, with each
block containing two convolutional layers with 3× 3
kernels and feature maps of sizes 64, 32, and 16, re-

spectively. Such blocks mitigate the vanishing gradi-
ent problem and improve computational efficiency for
a moderately deep learning model as in our study by al-
lowing the gradient to bypass certain layers. For each
convolutional layer, the convolution procedure involves
moving the kernels along the input spatial fields, with
the dot product calculated between the inputs and the
kernels to capture spatial features. The lth feature map
of the current convolutional layer Xln is computed from
the previous layer Xn−1 with K feature maps through
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the convolutional operation as follows:

Xln = ELU

(
bln+

K∑
k=1

W k,l
n ∗X

k
n−1

)
, (1)

where W k,l
n denotes the convolutional kernels, bln is the

bias for the lth feature map, and the symbol ∗ denotes
two-dimensional convolution. Here, we employ expo-
nential linear units (ELUs) as the activation function,
i.e.

f (x)=

{
x x > 0
a (ex − 1) x ≤ 0 , (2)

where a is a hyperparameter to be estimated, and x is
the input to the ELU function.

3. To address spatial heterogeneity, embedding layers are
introduced to convert the coordinate indices into lati-
tude and longitude decimals (Rasp and Lerch, 2018).
The outputs from these embedding layers are merged
with the flattened outputs from the ResNet blocks, and
these combined data are then fed into two fully con-
nected layers before the output layer.

The Adam optimizer is used to train the CNN model
with an early stopping technique to avoid overfitting.
Specifically, to account for the small number of extreme
precipitation samples, a specialized loss function that
combines the threat score (TS) and mean squared error
(MSE) is used in this study, i.e.

loss= b (1−TS)+MSE

MSE=
1
N

N∑
i=1

(Fi −Oi)
2

TS=
H

H +F +M
, (3)

where b represents the weight of extreme precipitation
in model training. Fi is the ith forecast data,Oi is the ith
observation data, and N is the number of data. Mean-
while, H , F , and M represent the hits, false alarms
and misses, respectively. Note that the categorical in-
dices used for calculating TS are discrete, which is not
well suited for training deep learning models. Thus, the
differentiable formulations proposed by Larraondo et
al. (2020) and Lyu et al. (2023) are utilized in this study,
i.e.

H = (O > α)� sigmoid(F −α) (4)
F = (O < α)� sigmoid(F −α) (5)
M = (O > α)� sigmoid(−F −α) (6)

sigmoid(x)=
1

1+ e−ax
, (7)

in which � means element-wise multiplication, and the
(O > α) and (O < α) are logical operations, which are

1 and 0 when the statement are true and false, respec-
tively. α is the precipitation threshold that corresponds
to the 90th percentile of observed precipitation of each
grid cell for 2002–2019. The logical operations towards
the F (forecast) term are substituted with a sigmoid
function, which represents a smooth transition between
the Boolean values at the threshold point. In the above
expressions, a and b are hyperparameters that are deter-
mined following Lyu et al. (2023); see Table S1 in the
Supplement for detailed values.

Another approach for improving extreme precipitation fore-
casts is to manually increase the number of heavy precipi-
tation events within the training datasets. This approach is
eventually not adopted in our study because it is found to
degrade the sub-seasonal forecast accuracy of light precipi-
tation events while not improving the accuracy of heavy pre-
cipitation events over the SR region (results not shown). A
possible reason is that by doing so artificial disruptions are
brought into the distribution of precipitation samples, which
could possibly impair the generalization capability of models
(You et al., 2023).

3.2.2 Quantile mapping

Quantile mapping is a widely used post-processing technique
and is able to effectively enhancing quantitative precipita-
tion forecasts at the sub-seasonal timescale (Li et al., 2024).
Therefore, the current study adopts QM as a benchmark to
evaluate the proposed CNN-based model.

We implement QM using a non-parametric approach that
adjusts the quantiles of the forecasted and observed data
without assuming a specific distribution. Specifically, the
empirical cumulative distribution functions (CDFs) of ob-
served and forecasted daily precipitation are built respec-
tively, and each percentile of the forecasted data is adjusted
to match the corresponding percentile in the observed data.
Dry days with a precipitation amount less than 0.1 mm are
excluded from the derivation of CDFs (Gudmundsson et al.,
2012). To match the 1.5° forecast resolution with the 0.25°
reference dataset resolution, the empirical CDFs are estab-
lished separately for each 0.25° grid from the correspond-
ing 1.5° forecast grid cell. Manzanas et al. (2018), Cannon et
al. (2015),a and other studies have indicated the effectiveness
of this implementation in improving the overall precipitation
forecasts.

Here, the period from 2002–2015 is used to estimate the
empirical CDFs, and these CDFs are then used to correct the
EC forecasts in the test period of 2016–2019:

p̃QM =O
−1 [F (pEC)

]
, (8)

where p̃QM and pEC are the QM-based precipitation fore-
casts and the ECMWF raw precipitation forecasts, respec-
tively. The QM is constructed separately for each lead time
to account for forecast bias variations across different lead
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times. For each lead time, a single model is applied across
all months, which is aligned with the structure of the CNN
model built in this study.

3.3 Bias correction of temperature forecasts

In this study, we apply the widely used delta method to cor-
rect the ECMWF temperature forecasts for lead times of 1–
30 d. We calculate the difference between observed and fore-
cast temperature (i.e. the delta) for each lead time during May
and August of 2002–2015 as a calibration period and then
apply a single delta model for each lead time to the forecast
temperature during May and August of 2016–2019 as a val-
idation period. Given that temperature is not the main focus
of the paper, in addition to the fact that temperature forecasts
generally have less bias and much less hydrologic impact
than precipitation forecasts (as discussed in Sect. 5.3), rel-
evant evaluation results are provided in Sect. S1 in the Sup-
plement.

3.4 Hybrid hydrologic model of XAJ-LSTM

3.4.1 Xin’anjiang model

The XAJ model is a conceptual hydrological model (Zhao,
1992), which has been widely used to generate flood fore-
casts for humid and semi-humid regions of China. The
lumped XAJ model consists of the evapotranspiration mod-
ule, the runoff generation module, the runoff partition mod-
ule, and the runoff routing module (Hu et al., 2005). In this
study, a modified version of XAJ model with snow accumu-
lation and melting mechanisms is employed to simulate and
forecast the daily streamflow of the SR at the sub-seasonal
scale, which shows satisfactory accuracies for basins with
snowmelt runoff in our previous study (Tan et al., 2023).

3.4.2 Long short-term memory network

In this study, the LSTM model is employed as part of the
modelling chain to simulate and predict the sub-seasonal
streamflow. LSTMs have memory cells that are analogous to
the states of a traditional dynamical system model (Kratzert
et al., 2018), which make them practicable for simulating nat-
ural hydrologic systems. Compared with other types of recur-
rent NNs (RNNs), LSTMs perform better in coping with ex-
ploding and vanishing gradients, which enables them to learn
the long-term dependencies between input and output arrays
(Zhang et al., 2022b). This is particularly desirable for mod-
elling hydrological processes that have relatively long-time
dependencies as compared with input-driven processes such
as direct surface runoff. For example, Kratzert et al. (2018,
2019) applied LSTMs to hydrologic modelling and show that
the internal memory states of the network are highly corre-
lated with observed snow and soil moisture states, even if
no snow or soil moisture data were input to the models dur-
ing training. This model feature allows accurate sub-seasonal

hydrologic simulations in the SR where there is snow accu-
mulation around the winter and spring.

3.4.3 Model integration

The XAJ model employs daily precipitation and temperature
of the two sub-basins to simulate the daily streamflow at the
Shigu station. The model parameters are calibrated for the
period of 1981–2015 and validated for the period of 2016–
2019. The particle swarm optimization (PSO) approach is
employed to optimize the parameters of the XAJ model, with
the NSE as the objective function.

As input features, the LSTM model takes a time se-
quence of daily precipitation pi = pi [1] ,pi [2] , . . .,pi [N ],
daily temperature ti = ti [1] , ti [2] , . . ., ti [N ] (i = 1, 2) of
two sub-basins, and XAJ-simulated daily streamflow q=
q [1] ,q [2] , . . .,q [N ] over N time steps. Each element of pi ,
ti , and qi , namely pi[n], ti[n], and qi[n], is a vector of input
features for the past n_seq days and corresponds to the pre-
dictand o[n], the daily streamflow of Shigu station for time
step n. Here n_seq is an optimized hyperparameter repre-
senting the size of input features. In snow-affected regions
such as the SR, it is typically set to a larger value to account
for the snow accumulation and melting processes, which can
span hundreds of days. In our study, LSTM can also be con-
sidered a post-processing model of the XAJ model, similar to
the CNN model as a post-processing model of the ECMWF
forecast model. The LSTM model is trained by the Adam
optimizer and is cross-validated 5-fold using the Random-
ized Search approach for the period of 1981–2015 (see the
Table S2 in the Supplement for details of model hyperpa-
rameters). The trained model is then tested for the period of
2016–2019.

3.5 Evaluation metrics

The precipitation forecasts are evaluated using the root mean
squared error (RMSE) and relative error (RE) for the en-
semble mean and using the CRPS for the total 10 ensem-
ble members. Specifically, we classify the 5 d daily precipi-
tation less than and greater than the 90th percentile of all his-
toric 5 d precipitation during 2002–2019 as light rain events
and heavy rain events. The RMSEs are calculated for all rain
events and heavy rain events to evaluate the forecasts in pre-
dicting common and extreme events, which are both criti-
cal for sub-seasonal forecasts that need to inform agricultural
planning and flood risk management.

The streamflow forecasts are evaluated using the RMSE,
RE, and NSE for general trends and the relative error of the
maximum daily flow (REF) for extreme events.
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4 Results

4.1 Calibration and validation of the hybrid hydrologic
model

The conceptual XAJ model is calibrated for the period of
1981–2015 and validated for the period of 2016–2019. Re-
sults in Fig. 3 indicate a satisfactory performance for the
standalone XAJ model. The daily NSE values of simulated
streamflow are 0.88 and 0.83 during the calibration and val-
idation period. The relative error of streamflow is 1.0 % and
2.6 % during the calibration and validation period. The mean
absolute error and relative error of simulated maximum daily
flow are 844 m3 s−1 and 17.0 % during the calibration period
and 379 m3 s−1 and 7.9 % during the validation period, re-
spectively.

The hybrid hydrologic model is calibrated for the period
of 1981–2015 (corresponding to the calibration period of
XAJ model and the training and cross-validation period of
the LSTM model) and validated for the period of 2016–2019
(corresponding to the validation period of XAJ model and
the testing period of the LSTM model). Figure 3 depicts the
simulated daily streamflow at Shigu during the validation pe-
riod, as compared with observations. The results indicate that
the daily NSE stands at 0.96 and 0.93 during the calibration
and validation period, and the relative error stands at 1.7 %
and 2.8 %, respectively. The mean absolute error and rela-
tive error of simulated maximum daily flow are 329 m3 s−1

and 7.5 % during the validation period, respectively, indicat-
ing the model also has a satisfactory ability to simulate large
flood events of the basin. By comparing the simulation ac-
curacy of the standalone XAJ model with that of the hybrid
model, it is found that the hybrid model can take advantage
of the XAJ outputs and improve the streamflow simulations
at Shigu station.

4.2 Evaluation of sub-seasonal precipitation forecasts

The RMSE and RE of areal-averaged EC, EC-QM, and EC-
CNN precipitation at different lead time ranges for the period
from 2016 to 2019 are provided in Fig. 4, with the error bars
representing the 25th–75th percentile interval.

Generally, the EC raw precipitation forecast skills de-
crease gradually with the increasing lead times and tend to
be constant at a relatively low level for lead times of 15–30 d,
which is also observed by Lyu et al. (2023) across South-
east China. The RMSE averaged over all lead times for the
areal-averaged EC forecasts is 1.13 mm d−1. The EC-QM ef-
fectively reduces RMSE at all lead times by an average of
0.12 mm d−1 (∼ 11 %), indicating the effectiveness of QM
in improving precipitation at sub-seasonal scales. In con-
trast, the EC-CNN exhibits ∼ 26 % less RMSE compared to
EC-QM for all lead times, which reduces the RMSE of EC
forecasts by 0.38 mm d−1 (∼ 34 %). The RE shows a similar
trend to RMSE, and the RE of EC, EC-QM, and EC-CNN is

27 %, 36 %, and 42 % averaged over all lead times, respec-
tively.

In particular, the forecast accuracy is improved by EC-
CNN forecasts to a relatively steady extent at all lead times,
as the RMSE is reduced by 33 %–34 % for different lead
time ranges. On the other hand, the RMSE improvements
of EC-QM forecasts decrease rapidly with the increase in
lead times. For example, the EC-QM reduces the RMSE of
EC forecasts by 24 % for the first 10 d, by 11 % for the mid-
dle 10 d, and by 4 % for the last 10 d. In addition, EC-CNN
forecasts exhibit narrower 25th–75th percentile intervals of
RMSE and RE across different initialized dates than raw EC
forecasts and EC-QM forecasts, suggesting that the CNN
model tends to produce precipitation forecasts with more sta-
ble skill metrics across different initialized dates. These re-
sults preliminarily demonstrate the superiority of proposed
CNN method to the raw EC forecasts and the EC-QM fore-
casts.

The right-hand panels in Fig. 4 display the variations of
RMSE for heavy rain events averaged over SR at lead times
of 1–30 d, with the error bars representing the 25th–75th per-
centile interval. Generally, the RMSE of EC forecasts in-
creases with the increasing lead times for both light and
heavy rains. In terms of the heavy rain events, EC-QM shows
no improvements as compared to the EC forecasts averaged
over all lead times, with the RMSE increasing by∼ 5 %, sug-
gesting that QM has a limited ability to improve the fore-
cast skills for extreme precipitation events in the SR. The
EC-CNN generally shows slight improvements (∼ 6 %) in
RMSE as compared to raw forecasts, and the RMSE of EC-
CNN forecasts is smaller than that of EC-QM for all lead
times, suggesting CNN exhibits advantages over QM for ex-
treme events. This is particularly the case for lead times of
1–10 d, where the RMSE of EC-CNN (EC-QM) forecasts is
26 % (14 %) lower than that of EC forecasts. Overall, these
results imply that, for heavy rainfall events, the EC-CNN
forecast has an advantage over the EC-QM forecast and also
shows a slightly better accuracy than the raw EC forecasts.
The RE shows a similar trend to RMSE, as the RE of EC,
EC-QM, and EC-CNN is 22 %, 25 %, and 24 % averaged
over all lead times. The EC-CNN effectively reduces the bias
of heavy rain events at all lead times except for the 16–20 d
range.

To investigate the spatial characteristics of precipitation
forecasts, Fig. 5 presents the spatial distribution on the
RMSE of EC and EC-CNN forecast for lead times of 1–10,
11–20, and 21–30 d. It is clear that the EC-CNN improves
the forecast skill of the raw ECMWF forecasts over the ma-
jority of the SR for all lead times. For example, the RMSE
is reduced from 3–5 mm d−1 for EC forecasts to 1–2 mm d−1

for EC-CNN forecasts at the northern sub-basin for all lead
times. Similar improvements can also be seen around the
southern part of the basin; for example the southernmost part
of SR sees a RMSE over 10 mm d−1 for EC forecasts at lead
times of 11–30 d, but this reduces to 6–7 mm d−1 for EC-
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Figure 3. Streamflow validation of the XAJ model and the XAJ-LSTM hydrologic model.

Figure 4. (a) RMSE and (b) RE of all rain events (left) and heavy rain events (right) for the ensemble means of EC, EC-QM, and EC-CNN 5 d
precipitation forecasts at lead times of 1–5, 6–10, 11–15, 16–20, 21–25, and 26–30 d. Error bar represents the 25th–75th percentile interval.

CNN forecasts. In addition, by comparing Fig. 5b and c it can
be seen that the EC-CNN shows larger improvements than
EC-QM across the SR for all lead times. The above results
indicate that EC-CNN not only improves the raw forecasts
temporally, but also enhances their spatial accuracy across
various regions of the SR. This basin-wise improvement al-
lows for more reliable predictions across diverse hydrologi-

cal zones within the SR, which could further benefit the hy-
drologic modelling.

Figure 6 presents cumulative distribution functions
(CDFs) of EC-, EC-QM- and EC-CNN-forecasted precipi-
tation averaged over the SR across all lead times. Notably,
the EC-QM forecast consistently aligns well with the ob-
served CDF across all lead times, which reflects the designed
purpose of QM to match the empirical distribution through
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Figure 5. The spatial distribution of RMSE for the ensemble means
of (a) EC forecasts, (b) EC-QM, and (c) EC-CNN forecasts aver-
aged over lead times of 1–10, 11–20, and 21–30 d during the test
period.

quantile mapping. This result demonstrates EC-QM is good
at correcting the raw EC forecast to follow the observed dis-
tribution closely, despite an overall large RMSE and RE com-
pared to EC-CNN.

The EC-CNN forecast shows improvement over the EC
forecasts and EC-QM forecasts by better approximating the
observed CDF for the first 15 d. However, as compared to
EC and EC-QM, the EC-CNN begins to deviate more signifi-
cantly from the observed CDF as lead times increase. Specif-
ically, the EC-CNN forecast appears to concentrate around
medium precipitation values for 16–30 d, which underesti-
mates the frequency of both lighter and heavier precipitation
events. This pattern suggests that while EC-CNN improves
the overall accuracy of light and heavy rains of the raw EC
forecasts at all lead times (Fig. 4), the distributional accu-
racy, particularly for extreme precipitation events, may be
compromised over extended lead times. A discussion on the
possible cause of biases in CDF for different forecasts is pro-
vided in Sect. 5.4.

Figure 7 presents the CRPS of EC-, EC-QM-, and EC-
CNN-forecasted precipitation averaged over the SR across
the lead times. The CRPS evaluates how close the ensem-
ble forecast distribution is to the observed value, and a value
close to zero means a better ensemble forecast. As can be
seen in the figure, the CRPS for EC is around 1.1 mm d−1 at
lead times of 1–10 d, and this increases to around 1.4 mm d−1

at lead times of 11–30 d. The EC-QM reduces the CRPS
by an average of around 0.1 mm d at all lead times, indi-
cating an improvement in the probabilistic calibration and

sharpness of the ensemble forecasts. The EC-CNN further
reduces the CRPS for most of the lead times as compared to
the EC-QM, especially for the first 5 d where the CRPS is
0.4 mm d−1 lower than EC forecasts and 0.2 mm d−1 lower
than EC-QM forecasts. This shows that the EC-CNN has an
enhanced capability of representing the range of possible out-
comes and improving the overall reliability in probabilistic
forecasting. Such an advantage also offers better decision-
making insights under uncertainty, which is favourable for
risk management and planning across various time horizons.

4.3 Evaluation of sub-seasonal streamflow forecasts

Figure 8 shows the RE, REF, RMSE, and NSE of the XAJ-
LSTM and XAJ streamflow forecasts driven by EC, EC-
QM, and EC-CNN precipitation forecasts, respectively. Re-
sults indicate that, for the XAJ-LSTM hybrid model, the ac-
curacy metrics of streamflow forecasts decrease as the lead
times increase for all precipitation forecasts. For example,
the RE (REF) of streamflow forecasts driven by EC pre-
cipitation increases from around 11.6 % (14 %) for 1–10 d
to 24 % (23 %) and 28 % (27 %) for 11–20 and 21–30 d,
respectively. The EC-QM (EC-CNN) forecasts reduce the
RE of the EC forecasts by approximately 6.9 % (16.4 %),
13.8 % (32.5 %), and 12.5 % (26.8 %), respectively, and re-
duce the REF of the EC forecasts by approximately 14.3 %
(28.6 %), 10.4 % (35.7 %), and 13.3 % (25.6 %), respectively.
It is noted that the improvements brought by EC-QM and
EC-CNN are larger in lead times of 11–20 d than in 1–10 d,
which was also observed by Zhang et al. (2023), Lyu et
al. (2023), and Li et al. (2024b) in specific cases.

For the standalone XAJ model, the RE (REF) of stream-
flow forecasts driven by EC raw forecasts increases from
around 18 % (21 %) for 1–10 d to 31 % (33 %) and 34 %
(31 %) for 11–20 and 21–30 d, respectively. The EC-QM
(EC-CNN) forecasts reduce the RE of the EC forecasts
by approximately 5.6 % (9.4 %), 8.1 % (18.4 %), and 0.6 %
(12.4 %) for the 1–10, 11–20, and 21–30 d lead times, respec-
tively. For the relative error of maximum daily flow, the EC-
QM (EC-CNN) forecasts reduce it by approximately 9.4 %
(26.7 %), 11.6 % (24.8 %), and 0.9 % (5.8 %) for each corre-
sponding lead time range.

The above results indicate (1) that the streamflow and
flood biases are smaller for XAJ-LSTM than for XAJ for
all lead times and (2) that improvements in EC-CNN and
EC-QM precipitation forecast enhance the streamflow fore-
cast accuracy more effectively for the XAJ-LSTM model
than for the XAJ model. Notably, the EC-CNN (EC-QM)-
driven XAJ-LSTM streamflow forecast sees 20 %–31 %
(6 %–12 %) less RMSE than that driven by EC forecasts over
different lead time periods. On the other hand, the EC-CNN
(EC-QM)-driven XAJ streamflow forecasts only see 7 %–
11 % (1 %–7 %) less RMSE compared to that driven by EC,
reflecting a much less improvement compared to those driven
by XAJ-LSTM. A similar trend can also be observed for
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Figure 6. The cumulative distribution function (CDF) of areal-averaged precipitation for observed precipitation and the ensemble means of
EC, EC-QM, and EC-CNN forecasts at different lead times during the test period.

Figure 7. The CRPS of areal-averaged precipitation for the EC, EC-
QM, and EC-CNN ensemble forecasts at different lead times during
the test period. Error bar represents the 25th–75th percentile inter-
val.

NSE, as XAJ-LSTM shows more improvement than XAJ
when EC precipitation forecasts are replaced by EC-CNN
and EC-QM precipitation forecasts. This result suggests that
improving sub-seasonal precipitation forecasts may not nec-
essarily translate to a streamflow improvement because it is

not only related to the skill of precipitation forecasts but also,
to a large extent, the hydrologic model.

It is also noted that, despite the NSE values improving with
the EC-CNN precipitation forecasts, they are mostly negative
for both hydrologic models. This suggests further improve-
ments may be required to achieve a more accurate hydrologic
forecast at sub-seasonal scales. A discussion on this aspect is
provided in Sect. 5.4.

Figure 9 presents examples of XAJ-LSTM streamflow en-
semble forecasts initialized on different dates, with the RE of
total forecast flow presented in each subplot. In most cases,
the EC-CNN forecasts can reduce the streamflow bias in a
more flexible manner than the EC-QM forecasts, resulting in
more accurate overall streamflow predictions across different
dates. For example, the CNN model decreases (increases) the
EC precipitation and hence the forecast streamflow issued on
6 June 2017 (8 August 2019), which improves the forecast
skills in both cases. The EC-CNN reduces the relative er-
ror from 22.1 % of raw EC forecasts to −2.5 % for the 30 d
streamflow forecast issued on 6 June 2017 and reduces the
relative error from −21.5 % of raw EC forecasts to −9.2 %
for the 30 d streamflow forecast issued on 8 August 2019. On
the other hand, the QM reduces the precipitation and hence
the streamflow forecasts for both dates, which reduces the
relative error to 11.0 % on June 2017 but increases the rela-
tive error to−27.3 % on August 2019. Similarly, for the fore-
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Figure 8. The RMSE, RE, REF, and NSE for the (a) XAJ-LSTM and (b) XAJ streamflow forecasts driven by the ensemble means of EC,
EC-QM, and EC-CNN forecasts for lead times of 1–10, 11–20, and 21–30 d. Error bar represents the 25th–75th percentile interval.

cast issued on 11 August 2017, EC-CNN decreases the EC
precipitation for lead times of 1–20 d and increases it for lead
times of 21–30 d, which alleviates the streamflow overesti-
mation in late August and underestimation in early Septem-
ber. However, EC-QM consistently predicts lower precipita-
tion and hence streamflow compared to EC forecasts at all
lead times, worsening the underestimation in early Septem-
ber.

Figure 10 presents the CRPS of EC-, EC-QM-, and
EC-CNN-driven XAJ-LSTM streamflow forecasts at Shigu
across the lead times. The CRPS for EC is around 120 m3 s−1

at lead times of 1–5 d and increases rapidly to around
300 m3 s−1 at lead times of 6–10 d and further to 500 m3 s−1

at lead times of 21–30 d. The EC-QM reduces the CRPS by
an average of around 65 m3 s−1 at all lead times, and the EC-
CNN further reduces the CRPS for most of the lead times
as compared to the EC-QM, especially for the lead times of
6–20 d, where the CRPS is about 60 m3 s−1 lower than EC
forecasts and 25 m3 s−1 lower than EC-QM forecasts. How-
ever, for lead times of 26–30 d, the CRPS of EC-CNN is
slightly larger than that EC-QM, indicating the advantage of
EC-CNN in ensemble forecasting is not evident for extended
forecast lead times. Nevertheless, the EC-CNN improves the
overall reliability in probabilistic streamflow forecasting for
all lead times as compared to EC and for most lead times
as compared to EC-QM, which can benefit the downstream
water resources management under uncertainty.

5 Discussion

5.1 Deep learning models can outperform traditional
statistical downscaling methods in both mean and
extremes

Traditional post-processing methods for precipitation fore-
casts often rely on local precipitation forecasts as the sole
predictor, which can limit their ability to fully utilize the spa-
tial information embedded in raw forecasts (Sun and Lan,
2021). In this study, an ensemble of enhanced CNN post-
processing models with ResNet blocks and a weighted loss
function specialized on extreme events is established to in-
vestigate its potential to overcome these limitations by estab-
lishing multi-dimensional relationships between atmospheric
circulation predictors and local precipitation.

We compare the CNN model with the commonly used
quantile mapping (QM) bias correction method. It is noted
that, for several lead time ranges, EC-QM forecasts show no
improvements in RMSEs compared to those of raw EC fore-
casts. This was also observed by some of the recent stud-
ies using QM for statistical downscaling precipitation. For
example, Li et al. (2023), Huang et al. (2022), and Mao et
al. (2015) show that while QM is generally effective in ad-
justing model bias towards observations, it does not always
lead to improvements of the forecast accuracy. One plausible
reason could be the limited applicability of the relatively sim-
ple QM method. Specifically, QM primarily adjusts the dis-
tribution of forecasted values towards the distribution of his-
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Figure 9. Examples of sub-seasonal XAJ-LSTM streamflow forecasts for a lead time of 30 d driven by EC, EC-QM, and ensemble EC-CNN
precipitation forecasts. Shaded areas represent the 25th–75th percentile. The relative error of total forecast flow is shown in each subplot.

torical observations, with no account of the atmospheric con-
ditions associated with those forecasts. However, physics-
based numerical weather predictions involve complex and
nonlinear errors that QM may not be able to fully correct.

On the other hand, the CNN model improves the RMSE
and RE of forecast precipitation at all lead times and out-
performs QM in terms of capturing the general trends, pre-
dicting extreme precipitation events, and approximating the
probabilistic distribution at sub-seasonal scales. This supe-
rior performance is likely due to the specialized loss func-
tion that balances the prediction of light rain events and ex-
treme events by incorporating the mean squared error and the
threat score. This balance is crucial for sub-seasonal fore-
casts, where both event types impact water resource manage-
ment. In general, the CNN structure used in our study is not
only effective and easy to implement but also more compu-

tationally efficient than more complex CNN variations like
SmaAt-UNet. Nevertheless, newer variants may better lever-
age multi-scale spatial information and incorporate multi-
ple auxiliary predictors relevant to local weather conditions
(Rasp and Lerch, 2018; Peng et al., 2020; Baño-Medina et
al., 2020). Future research will focus on integrating these
variants with new loss functions to achieve more desirable
forecast outcomes.

The rapid development of AI-based weather prediction
models in recent years, such as Pangu and GraphCast, has
also demonstrated the potential of these models to achieve
forecast skills comparable to state-of-the-art physics-based
models (Bi et al., 2023; Lam et al., 2023). In comparison,
our CNN-based statistically downscaled model of ECMWF
precipitation forecasts offers improved sub-seasonal fore-
cast skills with significantly lower computational resources,
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Figure 10. The CRPS of streamflow forecasts driven by the EC,
EC-QM, and EC-CNN ensemble forecasts at different lead times
during the test period. Error bar represents the 25th–75th percentile
interval.

which could make it a practical and efficient tool for opera-
tional use in local meteorological or water agencies to pro-
vide high-quality forecasts and issue early warmings. Our re-
sults also underscore the potential of combining advanced
AI techniques with physics-based forecasting methods to
achieve superior performance and operational efficiency in
weather prediction.

5.2 Better sub-seasonal precipitation forecasts may not
guarantee better streamflow forecasts

The evaluation of sub-seasonal streamflow forecasts in
Sect. 4.3 reveals a complex relationship between precipita-
tion forecast accuracy and streamflow forecast performance.
For example, the results presented in Fig. 8 demonstrate
that while improvements in precipitation forecasts generally
lead to better streamflow forecasts, this relationship is not
straightforward and can be influenced significantly by the
choice of hydrologic model.

For example, a notable finding is that the hybrid XAJ-
LSTM model shows much more substantial streamflow im-
provements with better precipitation forecasts compared to
the standalone XAJ model. Specifically, the XAJ-LSTM
model, which combines the strengths of LSTM networks
and the XAJ hydrologic model, benefits significantly from
the enhanced accuracy of EC-CNN forecasts. This model
demonstrates a considerable reduction in RMSE for stream-
flow predictions over various lead times. On the other hand,
the standalone XAJ model exhibits marginal improvements
when driven by the same enhanced precipitation forecasts.

This disparity suggests that while advanced precipitation
forecasts provide more accurate inputs, the ability of hy-
drologic models to effectively utilize these inputs is crucial.
Similar findings are also reported by Valdez et al. (2022),
for lead times of 7 d, who attribute the potential degrada-
tion of streamflow forecasts to other sources of uncertainties

that may cancel out the added values of precipitation forecast
improvements. The integration of machine learning (LSTM)
and physical process representations (XAJ) allows it to bet-
ter capture the long-term dependencies in hydrological pro-
cesses, making it more responsive to the quality of precipi-
tation forecasts at sub-seasonal scales. This synergy between
the two models enables to leverage the strengths of both con-
ceptual understanding and data-driven prediction, which can
also be extended to other basins with similar hydrological
characteristics for addressing the sub-seasonal forecasting
challenges.

5.3 Attribution of the XAJ-LSTM streamflow forecast
error

To identify the possible sources of error for the XAJ-LSTM
streamflow forecasts, an error decomposition method is em-
ployed to break down the total forecast error into its con-
stituent parts. The specific contributions of each error source
are isolated by calculating the RMSE of the ensemble mean
streamflow forecast driven by observed precipitation and
temperature (i.e. the hydrologic modelling error, Em), the
RMSE of the ensemble mean streamflow forecasts driven by
forecast precipitation and observed temperature (i.e. the pre-
cipitation forecast error, Ep), and the RMSE of the ensemble
mean streamflow forecasts driven by observed precipitation
and forecast temperature (i.e. the temperature forecast error,
Et). Note that the total error between the observed stream-
flow and the forecast streamflow driven by forecast precipi-
tation and temperature may not be equal to the sum of Em,
Ep, and Et, due to the interacting effects between multiple
sources of error. This is manifested by the analysis result that
the individual contributions of Ep, Em, and Et to the total er-
ror add up to a value greater than 100 %, indicating that there
is a compensatory effect between multiple sources of error
that reduces the total error.

Figure 11 depicts the individual contribution of Ep, Em,
and Et to their combined error. In general, the hydrologic
modelling error Em dominates for lead times of 1–3 d, ac-
counting for over 50 % of the three sources of error com-
bined. The ratio of Em decreases rapidly with the increase
in lead times and reaches a steady value of around 0.3 after
the lead time of 15 d. The contribution ratio of precipitation
forecast error Ep rises rapidly for lead times of 1–7 d and
stands at a steady value of around 0.6 after the lead time of
15 d. The temperature forecast error Et, while present, has a
less pronounced impact compared to Em and Ep, accounting
for 5 %–10 % of the combined error. This is an expected re-
sult as precipitation generally impacts the streamflow more
significantly than temperature.

5.4 Limitations of this study

One limitation of the proposed EC-CNN model is its reduced
accuracy in capturing the CDF over lead times extending be-
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Figure 11. Contribution of precipitation forecast errors, temperature forecast errors, and hydrologic modelling errors to their combined error.

yond 15 d. While EC-CNN outperforms in terms of RMSE
and RE for both light and heavy rainfall events (Fig. 4), its
CDF deviates from observed patterns for these longer lead
times. In contrast, EC and EC-QM tend to align more closely
with observed CDFs at these lead times. We attribute this to
the following possible reason.

Over extended lead times (> 15 d), extreme precipitation
values of EC and EC-QM forecasts tend to be more incor-
rectly assigned to specific times, leading to, for instance,
storm-level precipitation predictions on dry days or nearly
zero precipitation predictions on storm days. While these
misplaced extremes inflate daily errors, they still allow the
overall CDF of the forecast to retain both high and low
ends of the precipitation distribution. The EC-CNN model,
however, is designed to minimize daily errors by adjusting
outliers and bringing exaggerated values closer to moderate
levels, thereby reducing large forecast errors. For example,
when EC forecasts a high precipitation event on a dry day,
EC-CNN mitigates this by lowering the extreme to a more
typical value. While this adjustment helps decrease RMSE
and RE, it compresses the distribution toward the centre by
reducing the frequency of both extreme high and low pre-
cipitation values. This approach limits the model ability to
capture the full distribution, resulting in a CDF that is overly
concentrated around moderate values.

Another limitation is the relatively low Nash–Sutcliffe
efficiency (NSE) values in streamflow forecasts, especially
over extended lead times. Despite improvements in stream-
flow forecast accuracy due to EC-CNN and the XAJ-LSTM,
NSE values are found predominantly negative. This can be
primarily due to the inaccuracies in the precipitation fore-
casts that drive these hydrologic models, as high NSE val-
ues require precipitation inputs to be accurate both spatially
and temporally. Improving the hydrologic model alone is un-
likely to address this issue substantially, as it depends heavily
on input accuracy (Sect. 5.3).

Nevertheless, with our proposed coupled EC-CNN and
XAJ-LSTM framework, the overall relative error of forecast
flow can be reduced to ∼ 10 % for the next 10 d and ∼ 20 %

for the next 30 d (Fig. 7), which can have implications for
water management and disaster prevention. Future improve-
ments in NSE could focus on refining precipitation fore-
casting with more advanced AI models. Additionally, LSTM
model training on multiple basins and fine-tuning on specific
target basins could further enhance the streamflow accuracy
over extended lead times (Kratzert et al., 2019).

6 Summary and conclusions

This study proposes a deep-learning-based modelling frame-
work for sub-seasonal hydrometeorological forecasts (i.e.
precipitation and streamflow) for a lead time of up to 30 d.
The framework couples (1) an ensemble of enhanced CNN
models with ResNet blocks for statistically downscaling
ECMWF raw precipitation ensemble forecasts to (2) a hy-
brid hydrologic model integrating the conceptual XAJ model
and LSTM for streamflow forecasting. The CNN models in-
corporate a specialized loss function that combines the con-
tinuous form of TS and MAE.

By applying the modelling framework to the source re-
gion of the Yangtze River Basin, we show that the CNN-
based downscaling model exhibits advantages over quantile
mapping in improving the precipitation forecasts in terms
of the general trends, extreme events, and ensemble dis-
tribution. The CNN-based model consistently outperforms
the raw ECMWF forecasts and the traditional QM approach
across all lead times, achieving an average RMSE value
around 30 % lower than both forecasts. This improvement is
also noted in extreme precipitation events, as demonstrated
by approximately 6 % and 10 % lower RMSE of the CNN
for heavy rain events as compared to raw forecasts and QM
forecasts.

With these precipitation forecasts serving as meteorolog-
ical drivers of a hybrid XAJ-LSTM hydrologic model, it is
found that CNN-based models can reduce the relative er-
ror of streamflow forecasts by 16 %–33 % compared to raw
precipitation forecasts, particularly for longer lead times.
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This outperforms QM, which reduces the relative error of
streamflow by 7 %–14 % compared to raw precipitation fore-
casts. The CNN-based precipitation forecasts also prove ef-
fective in deriving more reliable streamflow forecasts during
extreme hydrological events (such as floods) for the XAJ-
LSTM model, with the average relative error of maximum
daily flow reduced by 26 %–36 %. However, for the stan-
dalone XAJ model, the streamflow forecasts show marginal
improvements with the same CNN enhanced precipitation
forecasts. This highlights the importance of understanding
the effectiveness of the hydrologic model as part of the sub-
seasonal hydrometeorological modelling chain.

From a practical perspective, the proposed modelling
framework is computationally efficient, requiring lower com-
putational resources compared to fully AI models, traditional
dynamic downscaling methods, and distributed hydrologic
models. This makes it a viable tool for operational use in
local meteorological and water management agencies to pro-
vide more accurate forecasts and issue early warnings. This
study also shows the potential of combining advanced AI
techniques with traditional hydrologic modelling approaches
to achieve superior performance in sub-seasonal hydromete-
orological forecasting, offering a robust and adaptable solu-
tion for effective water resources management and disaster
preparedness.

Code availability. The CNN model for statistically downscal-
ing and bias-correcting the ECMWF raw forecasts is deposited
in a Zenodo repository (https://doi.org/10.5281/zenodo.12664798;
Dong et al., 2024a). The LSTM and the hybrid hydrologic model
are developed and configured using the NeuralHydrology package,
available at https://neuralhydrology.readthedocs.io/en/latest/index.
html (Kratzert et al., 2022).

Data availability. The ECMWF forecast data and observed precip-
itation and temperature data are all deposited in a Zenodo repository
(https://doi.org/10.5281/zenodo.12664851; Dong et al., 2024b).
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line at https://doi.org/10.5194/hess-29-2023-2025-supplement.

Author contributions. ND contributed to the research design; com-
piled the dataset; and conducted the data processing, analysis, and
manuscript preparation. HH contributed to the research design, data
processing, and code development. MY, JW, SX, and HK con-
tributed to the manuscript editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Financial support. This research has been supported by the Na-
tional Key Research and Development Program of China (grant
no. 2023YFC3081000), the National Natural Science Founda-
tion of China (grant no. 42401053), the German Federal Min-
istry of Science of Education (BMBF) through funding of the
KARE_II project (grant no. 01LR2006D1), the China Power Con-
struction Corporation Technology Project (grant no. DJ-HXGG-
2021-04), the Key R&D Plan Project in Yunnan Province (grant
no. 202203AA080010), and the IWHR Basic Operational Funds
(grant nos. SKL2024YJZD02 and WR110145B0032024).

Review statement. This paper was edited by Xing Yuan and re-
viewed by two anonymous referees.

References

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W.,
Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine,
D. P., Toth, E., and Wilby, R. L.: Two decades of anar-
chy? Emerging themes and outstanding challenges for neural
network river forecasting, Prog. Phys. Geogr., 36, 480–513,
https://doi.org/10.1177/0309133312444943, 2012.

Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K.,
and Mendoza, P. A.: Large-sample hydrology: recent progress,
guidelines for new datasets and grand challenges, Hydrol. Sci. J.,
65, 712–725, https://doi.org/10.1080/02626667.2019.1683182,
2020.

Adnan, R. M., Liang, Z., Trajkovic, S., Zounemat-Kermani, M.,
Li, B., and Kisi, O.: Daily streamflow prediction using opti-
mally pruned extreme learning machine, J. Hydrol., 577, 123981,
https://doi.org/10.1016/j.jhydrol.2019.123981, 2019.

Balint, G., Csik, A., Bartha, P., Gauzer, B., and Bonta, I.: Ap-
plication of meteorological ensembles for Danube flood fore-
casting and warning, in: Transboundary Floods: Reducing Risks
through Flood Management, edited by: Marsalek, J., Stancalie,
G., and Balint, G., NATO Sci. Ser., Springer, Dordrecht, 57–68,
https://doi.org/10.1007/1-4020-4902-1_6, 2006.

Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: Configura-
tion and intercomparison of deep learning neural models for
statistical downscaling, Geosci. Model Dev., 13, 2109–2124,
https://doi.org/10.5194/gmd-13-2109-2020, 2020.

Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: On
the suitability of deep convolutional neural networks for
continental-wide downscaling of climate change projections,
Clim. Dynam., 57, 2941–2951, https://doi.org/10.1007/s00382-
021-05847-0, 2021.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Hydrol. Earth Syst. Sci., 29, 2023–2042, 2025 https://doi.org/10.5194/hess-29-2023-2025

https://doi.org/10.5281/zenodo.12664798
https://neuralhydrology.readthedocs.io/en/latest/index.html
https://neuralhydrology.readthedocs.io/en/latest/index.html
https://doi.org/10.5281/zenodo.12664851
https://doi.org/10.5194/hess-29-2023-2025-supplement
https://doi.org/10.1177/0309133312444943
https://doi.org/10.1080/02626667.2019.1683182
https://doi.org/10.1016/j.jhydrol.2019.123981
https://doi.org/10.1007/1-4020-4902-1_6
https://doi.org/10.5194/gmd-13-2109-2020
https://doi.org/10.1007/s00382-021-05847-0
https://doi.org/10.1007/s00382-021-05847-0
https://doi.org/10.1038/nature14956


N. Dong et al.: Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting 2039

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate
medium-range global weather forecasting with 3D neural net-
works, Nature, 619, 533–538, https://doi.org/10.1038/s41586-
023-06185-3, 2023.

Bierkens, M. F. P.: Global hydrology 2015: State, trends,
and directions, Water Resour. Res., 51, 4923–4947,
https://doi.org/10.1002/2015WR017173, 2015.

Bonavita, M.: On some limitations of current machine learn-
ing weather prediction models, Geophys. Res. Lett., 51,
e2023GL107377, https://doi.org/10.1029/2023GL107377, 2024.

Bremnes, J. B.: Ensemble postprocessing using quantile
function regression based on neural networks and Bern-
stein polynomials, Mon. Weather Rev., 148, 403–414,
https://doi.org/10.1175/MWR-D-19-0227.1, 2020.

Brotzge, J. A., Berchoff, D., Carlis, D. L., Carr, F. H., Carr, R.
H., Gerth, J. J., Gross, B. D., Hamill, T. M., Haupt, S. E., Ja-
cobs, N., McGovern, A., Stensrud, D. J., Szatkowski, G., Szun-
yogh, I., and Wang, X.: Challenges and opportunities in numeri-
cal weather prediction, B. Am. Meteorol. Soc., 104, E698–E705,
https://doi.org/10.1175/BAMS-D-22-0172.1, 2023.

Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction
of GCM precipitation by quantile mapping: How well do meth-
ods preserve changes in quantiles and extremes?, J. Climate, 28,
6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.

Chen, G. and Wang, W.-C.: Short-term precipitation
prediction for contiguous United States using deep
learning, Geophys. Res. Lett., 49, e2022GL097904,
https://doi.org/10.1029/2022GL097904, 2022.

Cho, D., Yoo, C., Im, J., and Cha, D. H.: Comparative assessment of
various machine learning-based bias correction methods for nu-
merical weather prediction model forecasts of extreme air tem-
peratures in urban areas, Earth Space Sci., 7, e2019EA000740,
https://doi.org/10.1029/2019EA000740, 2020.

Cloke, H. L. and Pappenberger, F.: Ensemble flood
forecasting: A review, J. Hydrol., 375, 613–626,
https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009.

Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias cor-
recting precipitation forecasts to improve the skill of seasonal
streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601–3618,
https://doi.org/10.5194/hess-20-3601-2016, 2016.

de Andrade, F. M., Young, M. P., MacLeod, D., Hirons, L. C., Wool-
nough, S. J., and Black, E.: Subseasonal precipitation predic-
tion for Africa: Forecast evaluation and sources of predictability,
Weather Forecast., 36, 265–284, https://doi.org/10.1175/WAF-
D-20-0102.1, 2021.

Dehshiri, S. S. H. and Firoozabadi, B.: A multi-objective frame-
work to select numerical options in air quality prediction models:
A case study on dust storm modeling, Sci. Total Environ., 863,
160681, https://doi.org/10.1016/j.scitotenv.2022.160681, 2023.

Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value
in precipitation simulated by high-resolution nested regional cli-
mate models and observations, Clim. Dynam., 44, 2519–2537,
https://doi.org/10.1007/s00382-011-1068-3, 2015.

Dong, N., Wei, J., Yang, M., Yan, D., Yang, C., Gao, H., Ar-
nault, J., Laux, P., Zhang, X., Liu, Y., and Niu, J.: Model
estimates of China’s terrestrial water storage variation due to
reservoir operation, Water Resour. Res., 58, e2021WR031787,
https://doi.org/10.1029/2021WR031787, 2022.

Dong, N., Yang, M., Wei, J., Arnault, J., Laux, P., Xu, S., Wang,
H., Yu, Z., and Kunstmann, H.: Toward improved parameteri-
zations of reservoir operation in ungauged basins: A synergistic
framework coupling satellite remote sensing, hydrologic mod-
eling, and conceptual operation schemes, Water Resour. Res.,
59, e2022WR033026, https://doi.org/10.1029/2022WR033026,
2023.

Dong, N., Hao, H., Yang, M., Wei, J., Xu, S.,
and Kunstmann, H.: Model, Zenodo [code],
https://doi.org/10.5281/zenodo.12664798, 2024a.

Dong, N., Hao, H., Yang, M., Wei, J., Xu, S.,
and Kunstmann, H.: Data, Zenodo [data set],
https://doi.org/10.5281/zenodo.12664851, 2024b.

Ebert-Uphoff, I. and Hilburn, K.: Evaluation, tuning and interpre-
tation of neural networks for working with images in meteoro-
logical applications, B. Am. Meteorol. Soc., 101, E1654–E1677,
https://doi.org/10.1175/BAMS-D-19-0324.1, 2020.

Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent
verification of the ECMWF ensemble over the Euro-
Atlantic sector, Q. J. Roy. Meteor. Soc., 144, 317–326,
https://doi.org/10.1002/qj.3204, 2018.

Gao, S., Huang, D., Du, N., Ren, C., and Yu, H.: WRF ensemble
dynamical downscaling of precipitation over China using dif-
ferent cumulus convective schemes, Atmos. Res., 271, 106116,
https://doi.org/10.1016/j.atmosres.2022.106116, 2022.

Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.:
The Soil and Water Assessment Tool: Historical development,
applications, and future research directions, Trans. ASABE, 57,
1211–1250, https://doi.org/10.13031/2013.23637, 2014.

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-
Skaugen, T.: Technical Note: Downscaling RCM precipitation
to the station scale using statistical transformations – a com-
parison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390,
https://doi.org/10.5194/hess-16-3383-2012, 2012.

Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning
for multi-year ENSO forecasts, Nature, 573, 568–572,
https://doi.org/10.1038/s41586-019-1559-7, 2019.

Han, L., Chen, M., Chen, K., Chen, H., Zhang, Y., Lu, B., Song,
L., and Qin, R.: A deep learning method for bias correction of
ECMWF 24–240 h forecasts, Adv. Atmos. Sci., 38, 1444–1459,
https://doi.org/10.1007/s00376-021-0434-2, 2021.

Hao, H., Dong, N., Yang, M., Wei, J., Zhang, X., Xu, S., Yan,
D., Ren, L., Leng, G., Chen, L., and Zhou, X.: The changing
hydrology of an irrigated and dammed Yangtze River: Stream-
flow, extremes, and lake hydrodynamics, Water Resour. Res.,
60, e2024WR037841, https://doi.org/10.1029/2024WR037841,
2024.

Horat, N. and Lerch, S.: Deep Learning for Postprocessing Global
Probabilistic Forecasts on Subseasonal Time Scales, Mon.
Weather Rev., 152, 667–687, https://doi.org/10.1175/MWR-D-
23-0112.1, 2024.

Hu, C. H., Guo, S. L., Xiong, L. H., and Peng, D. Z.: A modified
Xin’anjiang model and its application in northern China, Hydrol.
Res., 36, 175–192, https://doi.org/10.2166/nh.2005.0013, 2005.

Huang, Z., Zhao, T., Xu, W., Cai, H., Wang, J., Zhang, Y.,
Liu, Z., Tian, Y., Yan, D., and Chen, X.: A Seven-Parameter
Bernoulli-Gamma-Gaussian Model to Calibrate Subseasonal
to Seasonal Precipitation Forecasts, J. Hydrol., 610, 127896,
https://doi.org/10.1016/j.jhydrol.2022.127896, 2022.

https://doi.org/10.5194/hess-29-2023-2025 Hydrol. Earth Syst. Sci., 29, 2023–2042, 2025

https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1002/2015WR017173
https://doi.org/10.1029/2023GL107377
https://doi.org/10.1175/MWR-D-19-0227.1
https://doi.org/10.1175/BAMS-D-22-0172.1
https://doi.org/10.1175/JCLI-D-14-00754.1
https://doi.org/10.1029/2022GL097904
https://doi.org/10.1029/2019EA000740
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.5194/hess-20-3601-2016
https://doi.org/10.1175/WAF-D-20-0102.1
https://doi.org/10.1175/WAF-D-20-0102.1
https://doi.org/10.1016/j.scitotenv.2022.160681
https://doi.org/10.1007/s00382-011-1068-3
https://doi.org/10.1029/2021WR031787
https://doi.org/10.1029/2022WR033026
https://doi.org/10.5281/zenodo.12664798
https://doi.org/10.5281/zenodo.12664851
https://doi.org/10.1175/BAMS-D-19-0324.1
https://doi.org/10.1002/qj.3204
https://doi.org/10.1016/j.atmosres.2022.106116
https://doi.org/10.13031/2013.23637
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1007/s00376-021-0434-2
https://doi.org/10.1029/2024WR037841
https://doi.org/10.1175/MWR-D-23-0112.1
https://doi.org/10.1175/MWR-D-23-0112.1
https://doi.org/10.2166/nh.2005.0013
https://doi.org/10.1016/j.jhydrol.2022.127896


2040 N. Dong et al.: Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting

Humphrey, G. B., Gibbs, M. S., Dandy, G. C., and Maier,
H. R.: A hybrid approach to monthly streamflow fore-
casting: Integrating hydrological model outputs into a
Bayesian artificial neural network, J. Hydrol., 540, 623–640,
https://doi.org/10.1016/j.jhydrol.2016.06.026, 2016.

Jaun, S., Ahrens, B., Walser, A., Ewen, T., and Schär, C.: A
probabilistic view on the August 2005 floods in the upper
Rhine catchment, Nat. Hazards Earth Syst. Sci., 8, 281–291,
https://doi.org/10.5194/nhess-8-281-2008, 2008.

Jiang, M., Weng, B., Chen, J., Huang, T., Ye, F., and You, L.:
Transformer-enhanced spatiotemporal neural network for post-
processing of precipitation forecasts, J. Hydrol., 630, 130720,
https://doi.org/10.1016/j.jhydrol.2024.130720, 2024.

Jiang, Z., Yang, S., Liu, Z., Xu, Y., Xiong, Y., Qi, S., Pang, Q.,
Xu, J., Liu, F., and Xu, T.: Coupling machine learning and
weather forecast to predict farmland flood disaster: A case study
in Yangtze River basin, Environ. Model. Softw., 155, 105436,
https://doi.org/10.1016/j.envsoft.2022.105436, 2022.

Jin, W., Zhang, W., Hu, J., Weng, B., Huang, T., and Chen,
J.: Using the residual network module to correct the sub-
seasonal high temperature forecast, Front. Earth Sci., 9, 760766,
https://doi.org/10.3389/feart.2021.760766, 2022.

Kim, H., Ham, Y.-G., Joo, Y.-S., and Son, S.-W.: Deep learning
for bias correction of MJO prediction, Nat. Commun., 12, 3087,
https://doi.org/10.1038/s41467-021-23406-3, 2021.

Kim, T., Yang, T., Zhang, L., and Hong, Y.: Near real-
time hurricane rainfall forecasting using convolutional neu-
ral network models with Integrated Multi-satellitE Retrievals
for GPM (IMERG) product, Atmos. Res., 270, 106037,
https://doi.org/10.1016/j.atmosres.2022.106037, 2022.

Kisi, O.: Streamflow forecasting using different artificial neu-
ral network algorithms, J. Hydrol. Eng., 12, 532–539,
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(532),
2007.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K.,
Hochreiter, S., and Nearing, G. S.: Toward improved pre-
dictions in ungauged basins: Exploiting the power of
machine learning, Water Resour. Res., 55, 11344–11354,
https://doi.org/10.1029/2019WR026065, 2019.

Kratzert, F., Gauch, M., Nearing, G., and Klotz, D.: Neu-
ralHydrology – A Python library for Deep Learning re-
search in hydrology, J. Open Source Softw., 7, 4050,
https://doi.org/10.21105/joss.04050, 2022 (code available at:
https://neuralhydrology.readthedocs.io/en/latest/index.html, last
access: 1 July 2024).

Lagerquist, R., McGovern, A., and Gagne, D. J., II: Deep learning
for spatially explicit prediction of synoptic-scale Fronts, Weather
Forecast., 34, 1137–1160, https://doi.org/10.1175/WAF-D-18-
0183.1, 2019.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., For-
tunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z.,
Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott,
J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning skillful
medium-range global weather forecasting, Science, 382, 1416–
1421, https://doi.org/10.1126/science.adi2336, 2023.

Larraondo, P. R., Renzullo, L. J., Van Dijk, A. I., Inza, I., and
Lozano, J. A.: Optimization of deep learning precipitation mod-
els using categorical binary metrics, J. Adv. Model. Earth Sy.,
12, e2019MS001909, https://doi.org/10.1029/2019MS001909,
2020.

Li, J., Li, L., Zhang, T., Xing, H., Shi, Y., Li, Z., Wang, C., and Liu,
J.: Flood forecasting based on radar precipitation nowcasting us-
ing U-net and its improved models, J. Hydrol., 632, 130871,
https://doi.org/10.1016/j.jhydrol.2024.130871, 2024a.

Li, L., Yun, Z., Liu, Y., Wang, Y., Zhao, W., Kang, Y., and Gao,
R.: Improving Categorical and Continuous Accuracy of Pre-
cipitation Forecasts by Integrating Empirical Quantile Mapping
and Bernoulli-Gamma-Gaussian Distribution, Atmos. Res., 298,
107133, https://doi.org/10.1016/j.atmosres.2023.107133, 2024b.

Li, W., Pan, B., Xia, J., and Duan, Q.: Convolutional
neural network-based statistical post-processing of en-
semble precipitation forecasts, J. Hydrol., 605, 127301,
https://doi.org/10.1016/j.jhydrol.2021.127301, 2022.

Li, X., Wu, H., Nanding, N., Chen, S., Hu, Y., and Li, L.: Statisti-
cal Bias Correction of Precipitation Forecasts Based on Quantile
Mapping on the Sub-Seasonal to Seasonal Scale, Remote Sens.,
15, 1743, https://doi.org/10.3390/rs15071743, 2023.

Liang, P., Lin, H., and Ding, Y.: Dominant modes of subsea-
sonal variability of East Asian summertime surface air tem-
perature and their predictions, J. Climate, 31, 2729–2743,
https://doi.org/10.1175/JCLI-D-17-0368.1, 2018.

Ling, F., Li, Y., Luo, J.-J., Zhong, X., and Wang, Z.: Two deep
learning-based bias-correction pathways improve summer pre-
cipitation prediction over China, Environ. Res. Lett., 17, 124025,
https://doi.org/10.1088/1748-9326/aca68a, 2022a.

Ling, F., Luo, J.-J., Li, Y., Tang, T., Bai, L., Ouyang, W., and Yam-
agata, T.: Multi-task machine learning improves multi-seasonal
prediction of the Indian Ocean Dipole, Nat. Commun., 13, 7681,
https://doi.org/10.1038/s41467-022-35412-0, 2022b.

Liu, D., Jiang, W., Mu, L., and Wang, S.: Streamflow
prediction using deep learning neural network: case
study of Yangtze River, IEEE Access, 8, 90069–90086,
https://doi.org/10.1109/ACCESS.2020.2993874, 2020.

Liu, J., Yuan, X., Zeng, J., Jiao, Y., Li, Y., Zhong, L., and
Yao, L.: Ensemble streamflow forecasting over a cascade reser-
voir catchment with integrated hydrometeorological modeling
and machine learning, Hydrol. Earth Syst. Sci., 26, 265–278,
https://doi.org/10.5194/hess-26-265-2022, 2022.

Lyu, Y., Zhu, S., Zhi, X., Ji, Y., Fan, Y., and Dong, F.:
Improving subseasonal-to-seasonal prediction of summer ex-
treme precipitation over southern China based on a deep
learning method, Geophys. Res. Lett., 50, e2023GL106245,
https://doi.org/10.1029/2023GL106245, 2023.

Manzanas, R., Lucero, A., Weisheimer, A., and Gutiérrez, J. M.:
Can bias correction and statistical downscaling methods improve
the skill of seasonal precipitation forecasts?, Clim. Dynam., 50,
1161–1176, https://doi.org/10.1007/s00382-017-3669-y, 2018.

Mao, G., Vogl, S., Laux, P., Wagner, S., and Kunstmann, H.:
Stochastic bias correction of dynamically downscaled precipi-
tation fields for Germany through Copula-based integration of
gridded observation data, Hydrol. Earth Syst. Sci., 19, 1787–
1806, https://doi.org/10.5194/hess-19-1787-2015, 2015.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon,
E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., The-

Hydrol. Earth Syst. Sci., 29, 2023–2042, 2025 https://doi.org/10.5194/hess-29-2023-2025

https://doi.org/10.1016/j.jhydrol.2016.06.026
https://doi.org/10.5194/nhess-8-281-2008
https://doi.org/10.1016/j.jhydrol.2024.130720
https://doi.org/10.1016/j.envsoft.2022.105436
https://doi.org/10.3389/feart.2021.760766
https://doi.org/10.1038/s41467-021-23406-3
https://doi.org/10.1016/j.atmosres.2022.106037
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(532)
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1029/2019WR026065
https://doi.org/10.21105/joss.04050
https://neuralhydrology.readthedocs.io/en/latest/index.html
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1029/2019MS001909
https://doi.org/10.1016/j.jhydrol.2024.130871
https://doi.org/10.1016/j.atmosres.2023.107133
https://doi.org/10.1016/j.jhydrol.2021.127301
https://doi.org/10.3390/rs15071743
https://doi.org/10.1175/JCLI-D-17-0368.1
https://doi.org/10.1088/1748-9326/aca68a
https://doi.org/10.1038/s41467-022-35412-0
https://doi.org/10.1109/ACCESS.2020.2993874
https://doi.org/10.5194/hess-26-265-2022
https://doi.org/10.1029/2023GL106245
https://doi.org/10.1007/s00382-017-3669-y
https://doi.org/10.5194/hess-19-1787-2015


N. Dong et al.: Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting 2041

meßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M.,
Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipita-
tion downscaling under climate change: Recent developments to
bridge the gap between dynamical models and the end user, Rev.
Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314,
2010.

Merino, A., García-Ortega, E., Navarro, A., Sánchez, J.
L., and Tapiador, F. J.: WRF hourly evaluation for ex-
treme precipitation events, Atmos. Res., 274, 106215,
https://doi.org/10.1016/j.atmosres.2022.106215, 2022.

Michalek, A. T., Villarini, G., and Kim, T.: Understanding the im-
pact of precipitation bias-correction and statistical downscaling
methods on projected changes in flood extremes, Earth’s Future,
12, e2023EF004179, https://doi.org/10.1029/2023EF004179,
2024.

Ni, L., Wang, D., Singh, V. P., Wu, J., Chen, X., Tao, Y., Zhu, X.,
Jiang, J., and Zeng, X.: Monthly precipitation prediction at re-
gional scale using deep convolutional neural networks, Hydrol.
Process., 37, e14954, https://doi.org/10.1002/hyp.14954, 2023.

Nie, Y. and Sun, J.: Improving dynamical-statistical subsea-
sonal precipitation forecasts using deep learning: A case
study in Southwest China, Environ. Res. Lett., 19, 044032,
https://doi.org/10.1088/1748-9326/ad5370, 2024.

Nooni, I. K., Tan, G., Hongming, Y., Chaibou, A. A. S.,
Habtemicheal, B. A., Gnitou, G. T., and Lim Kam Sian, K.
T. C.: Assessing the performance of WRF Model in sim-
ulating heavy precipitation events over East Africa using
satellite-based precipitation product, Remote Sens., 14, 1964,
https://doi.org/10.3390/rs14091964, 2022.

Peng, T., Zhi, X., Ji, Y., Ji, L., and Tian, Y.: Prediction skill of ex-
tended range 2-m maximum air temperature probabilistic fore-
casts using machine learning postprocessing methods, Atmo-
sphere, 11, 805, https://doi.org/10.3390/atmos11080805, 2020.

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski,
M.: Using Bayesian model averaging to calibrate fore-
cast ensembles, Mon. Weather Rev., 133, 1155–1174,
https://doi.org/10.1175/MWR2906.1, 2005.

Rasp, S. and Lerch, S.: Neural networks for postprocessing en-
semble weather forecasts, Mon. Weather Rev., 146, 3885–3900,
https://doi.org/10.1175/MWR-D-18-0187.1, 2018.

Robertson, D. E. and Wang, Q. J.: Seasonal forecasts of un-
regulated inflows into the Murray River, Australia, Water Re-
sour. Manag., 27, 2747–2769, https://doi.org/10.1007/s11269-
013-0313-4, 2013.

Sachindra, D. A., Ahmed, K., Rashid, M. M., Shahid, S., and
Perera, B. J. C.: Statistical downscaling of precipitation us-
ing machine learning techniques, Atmos. Res., 212, 240–258,
https://doi.org/10.1016/j.atmosres.2018.05.022, 2018.

Scheuerer, M. and Hamill, T. M.: Statistical post-processing of
ensemble precipitation forecasts by fitting censored, shifted
gamma distributions, Mon. Weather Rev., 143, 4578–4596,
https://doi.org/10.1175/MWR-D-15-0061.1, 2015.

Shi, X.: Enabling smart dynamical downscaling of extreme precip-
itation events with machine learning, Geophys. Res. Lett., 47,
e2020GL090309, https://doi.org/10.1029/2020GL090309, 2020.

Singhal, A., Jaseem, M., and Jha, S. K.: Spatial connections
in extreme precipitation events obtained from NWP forecasts:
A complex network approach, Atmos. Res., 282, 106538,
https://doi.org/10.1016/j.atmosres.2022.106538, 2023.

Srivastava, A. K., Ullrich, P. A., Rastogi, D., Vahmani, P.,
Jones, A., and Grotjahn, R.: Assessment of WRF (v 4.2.1)
dynamically downscaled precipitation on subdaily and daily
timescales over CONUS, Geosci. Model Dev., 16, 3699–3722,
https://doi.org/10.5194/gmd-16-3699-2023, 2023.

Sun, L. and Lan, Y.: Statistical downscaling of daily temperature
and precipitation over China using deep learning neural models:
Localization and comparison with other methods, Int. J. Clima-
tol., 41, 1128–1147, https://doi.org/10.1002/joc.6769, 2021.

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu,
K. L.: A review of global precipitation data sets: Data sources,
estimation, and intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2014RG000477, 2016.

Tabari, H., Paz, S. M., Buekenhout, D., and Willems, P.: Compar-
ison of statistical downscaling methods for climate change im-
pact analysis on precipitation-driven drought, Hydrol. Earth Syst.
Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021,
2021.

Taillardat, M., Mestre, O., Zamo, M., and Naveau, P.: Calibrated
ensemble forecasts using quantile regression forests and ensem-
ble model output statistics, Mon. Weather Rev., 144, 2375–2393,
https://doi.org/10.1175/MWR-D-15-0260.1, 2016.

Tan, Y., Dong, N., Hou, A., and Yan, W.: An improved
Xin’anjiang hydrological model for flood simulation coupling
snowmelt runoff module in Northwestern China, Water, 15,
3401, https://doi.org/10.3390/w15193401, 2023.

Valdez, E. S., Anctil, F., and Ramos, M.-H.: Choosing be-
tween post-processing precipitation forecasts or chaining sev-
eral uncertainty quantification tools in hydrological fore-
casting systems, Hydrol. Earth Syst. Sci., 26, 197–220,
https://doi.org/10.5194/hess-26-197-2022, 2022.

Vandal, T., Kodra, E., and Ganguly, A. R.: Intercomparison of ma-
chine learning methods for statistical downscaling: the case of
daily and extreme precipitation, Theor. Appl. Climatol., 137,
557–570, https://doi.org/10.1007/s00704-018-2613-3, 2019.

Vigaud, N., Tippett, M. K., and Robertson, A. W.: De-
terministic skill of subseasonal precipitation forecasts
for the East Africa-West Asia sector from September
to May, J. Geophys. Res.-Atmos., 124, 11887–11896,
https://doi.org/10.1029/2019JD030747, 2019.

Vrac, M. and Friederichs, P.: Multivariate-intervariable, spa-
tial, and temporal bias correction, J. Climate, 28, 218–237,
https://doi.org/10.1175/JCLI-D-14-00059.1, 2015.

Wang, R., Zhang, J., Guo, E., Zhao, C., and Cao, T.: Spa-
tial and temporal variations of precipitation concentration
and their relationships with large-scale atmospheric circu-
lations across Northeast China, Atmos. Res., 222, 62–73,
https://doi.org/10.1016/j.atmosres.2019.02.008, 2019.

Wei, L., Hu, K.-H., and Hu, X.-D.: Rainfall occurrence and its rela-
tion to flood damage in China from 2000 to 2015, J. Mt. Sci., 15,
2492–2504, https://doi.org/10.1007/s11629-018-4931-4, 2018.

Weyn, J. A., Durran, D. R., Caruana, R., and Cresswell-Clay,
N.: Sub-seasonal forecasting with a large ensemble of deep-
learning weather prediction models, J. Adv. Model. Earth Sy.,
13, e2021MS002502, https://doi.org/10.1029/2021MS002502,
2021.

Xie, J., Hsu, P.-C., Hu, Y., Ye, M., and Yu, J.: Skillful extended-
range forecast of rainfall and extreme events in East China

https://doi.org/10.5194/hess-29-2023-2025 Hydrol. Earth Syst. Sci., 29, 2023–2042, 2025

https://doi.org/10.1029/2009RG000314
https://doi.org/10.1016/j.atmosres.2022.106215
https://doi.org/10.1029/2023EF004179
https://doi.org/10.1002/hyp.14954
https://doi.org/10.1088/1748-9326/ad5370
https://doi.org/10.3390/rs14091964
https://doi.org/10.3390/atmos11080805
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR-D-18-0187.1
https://doi.org/10.1007/s11269-013-0313-4
https://doi.org/10.1007/s11269-013-0313-4
https://doi.org/10.1016/j.atmosres.2018.05.022
https://doi.org/10.1175/MWR-D-15-0061.1
https://doi.org/10.1029/2020GL090309
https://doi.org/10.1016/j.atmosres.2022.106538
https://doi.org/10.5194/gmd-16-3699-2023
https://doi.org/10.1002/joc.6769
https://doi.org/10.1002/2014RG000477
https://doi.org/10.5194/hess-25-3493-2021
https://doi.org/10.1175/MWR-D-15-0260.1
https://doi.org/10.3390/w15193401
https://doi.org/10.5194/hess-26-197-2022
https://doi.org/10.1007/s00704-018-2613-3
https://doi.org/10.1029/2019JD030747
https://doi.org/10.1175/JCLI-D-14-00059.1
https://doi.org/10.1016/j.atmosres.2019.02.008
https://doi.org/10.1007/s11629-018-4931-4
https://doi.org/10.1029/2021MS002502


2042 N. Dong et al.: Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting

based on deep learning, Weather Forecast., 38, 467–486,
https://doi.org/10.1175/WAF-D-22-0132.1, 2023.

Xu, Y. P., Gao, X., Zhu, Q., and Zhang, Y.: Coupling a regional cli-
mate model and distributed hydrological model to assess future
water resources in Jinhua River Basin, East China, J. Hydrol.
Eng., 20, 04014054, https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001007, 2015.

Yang, S., Yang, D., Chen, J., Santisirisomboon, J., and Zhao, B.:
A physical process and machine learning combined hydrolog-
ical model for daily streamflow simulations of large water-
sheds with limited observation data, J. Hydrol., 590, 125206,
https://doi.org/10.1016/j.jhydrol.2020.125206, 2020.

You, X. X., Liang, Z. M., Wang, Y. Q., and Zhang, H.: A study
on loss function against data imbalance in deep learning cor-
rection of precipitation forecasts, Atmos. Res., 281, 106500,
https://doi.org/10.1016/j.atmosres.2022.106500, 2023.

Yuan, X., Wood, E. F., Luo, L., and Pan, M.: A first look
at Climate Forecast System version 2 (CFSv2) for hydro-
logical seasonal prediction, Geophys. Res. Lett., 38, L13401,
https://doi.org/10.1029/2011GL047792, 2011.

Yuan, X., Ma, F., Wang, L., Zheng, Z., Ma, Z., Ye, A., and Peng, S.:
An experimental seasonal hydrological forecasting system over
the Yellow River basin – Part 1: Understanding the role of ini-
tial hydrological conditions, Hydrol. Earth Syst. Sci., 20, 2437–
2451, https://doi.org/10.5194/hess-20-2437-2016, 2016.

Yuan, X., Wang, S., and Hu, Z.-Z.: Do climate change and El Niño
increase likelihood of Yangtze River extreme rainfall?, B. Am.
Meteorol. Soc., 99, S113–S117, https://doi.org/10.1175/BAMS-
D-17-0089.1, 2018.

Zhang, Q., Li, Y. P., Huang, G. H., Wang, H., Li, Y. F., Liu, Y. R.,
and Shen, Z. Y.: A novel statistical downscaling approach for
analyzing daily precipitation and extremes under the impact of
climate change: Application to an arid region, J. Hydrol., 615,
128730, https://doi.org/10.1016/j.jhydrol.2022.128730, 2022a.

Zhang, T., Liang, Z., Li, W., Wang, J., Hu, Y., and Li, B.: Statis-
tical post-processing of precipitation forecasts using circulation
classifications and spatiotemporal deep neural networks, Hydrol.
Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-
1945-2023, 2023.

Zhang, Y., Ragettli, S., Molnar, P., Fink, O., and Peleg, N.:
Generalization of an Encoder-Decoder LSTM model for flood
prediction in ungauged catchments, J. Hydrol., 614, 128577,
https://doi.org/10.1016/j.jhydrol.2022.128577, 2022b.

Zhao, R. J.: The Xin’anjiang model applied in China, J. Hydrol.,
135, 371–381, https://doi.org/10.1016/0022-1694(92)90096-E,
1992.

Zhu, E., Yuan, X., and Wood, A.: Benchmark decadal forecast skill
for terrestrial water storage estimated by an elasticity frame-
work, Nat. Commun., 10, 1237, https://doi.org/10.1038/s41467-
019-09245-3, 2019.

Zhu, S., Remedio, A. R. C., Sein, D. V., Sielmann, F., Ge, F., Xu,
J., Peng, T., Jacob, D., Zhi, X., and Fraedrich, K.: Added value
of the regionally coupled model ROM in the East Asian sum-
mer monsoon modeling, Theor. Appl. Climatol., 140, 375–387,
https://doi.org/10.1007/s00704-020-03093-8, 2020.

Hydrol. Earth Syst. Sci., 29, 2023–2042, 2025 https://doi.org/10.5194/hess-29-2023-2025

https://doi.org/10.1175/WAF-D-22-0132.1
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001007
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001007
https://doi.org/10.1016/j.jhydrol.2020.125206
https://doi.org/10.1016/j.atmosres.2022.106500
https://doi.org/10.1029/2011GL047792
https://doi.org/10.5194/hess-20-2437-2016
https://doi.org/10.1175/BAMS-D-17-0089.1
https://doi.org/10.1175/BAMS-D-17-0089.1
https://doi.org/10.1016/j.jhydrol.2022.128730
https://doi.org/10.5194/hess-27-1945-2023
https://doi.org/10.5194/hess-27-1945-2023
https://doi.org/10.1016/j.jhydrol.2022.128577
https://doi.org/10.1016/0022-1694(92)90096-E
https://doi.org/10.1038/s41467-019-09245-3
https://doi.org/10.1038/s41467-019-09245-3
https://doi.org/10.1007/s00704-020-03093-8

	Abstract
	Introduction
	Study area and data
	Study area
	Data sources
	Observed precipitation and temperature
	ECMWF sub-seasonal reforecast data
	Observed streamflow


	Methods
	Overview
	Statistically downscaling of ensemble precipitation forecasts
	Enhanced convolutional neural network
	Quantile mapping

	Bias correction of temperature forecasts
	Hybrid hydrologic model of XAJ-LSTM
	Xin'anjiang model
	Long short-term memory network
	Model integration

	Evaluation metrics

	Results
	Calibration and validation of the hybrid hydrologic model
	Evaluation of sub-seasonal precipitation forecasts
	Evaluation of sub-seasonal streamflow forecasts

	Discussion
	Deep learning models can outperform traditional statistical downscaling methods in both mean and extremes
	Better sub-seasonal precipitation forecasts may not guarantee better streamflow forecasts
	Attribution of the XAJ-LSTM streamflow forecast error
	Limitations of this study

	Summary and conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

