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A B S T R A C T

Background: Functional connectivity in the context of functional magnetic resonance imaging is typically 
quantified by Pearsońs or partial correlation between regional time series of the blood oxygenation level 
dependent signal. However, a recent interdisciplinary methodological work proposes >230 different metrics to 
measure similarity between different types of time series.
Objective: Hence, we systematically evaluated how the results of typical research approaches in functional 
neuroimaging vary depending on the functional connectivity metric of choice. We further explored which metrics 
most accurately detect presumed reductions in connectivity related to age and malignant brain tumors, aiming to 
initiate a debate on the best approaches for assessing brain connectivity in functional neuroimaging research.
Methods: We addressed both research questions using four independent neuroimaging datasets, comprising 
multimodal data from a total of 1187 individuals. We analyzed resting-state functional sequences to calculate 
functional connectivity using 20 representative metrics from four distinct mathematical domains. We further 
used T1- and T2-weighted images to compute regional brain volumes, diffusion-weighted imaging data to build 
structural connectomes, and pseudo-continuous arterial spin labeling to measure regional brain perfusion.
Results: First, our findings demonstrate that the results of typical functional neuroimaging approaches differ 
fundamentally depending on the functional connectivity metric of choice. Second, we show that correlational 
and distance metrics are most appropriate to cover reductions in connectivity linked to aging. In this context, 
partial correlation performs worse than other correlational metrics. Third, our findings suggest that the FC metric 
of choice depends on the utilized scanning parameters, the regions of interest, and the individual investigated. 
Lastly, beyond the major objective of this study, we provide evidence in favor of brain perfusion measured via 
pseudo-continuous arterial spin labeling as a robust neural entity mirroring age-related neural and cognitive 
decline.
Conclusion: Our empirical evaluation supports a recent theoretical functional connectivity framework. Future 
functional imaging studies need to comprehensively define the study-specific theoretical property of interest, the 
methodological property to assess the theoretical property, and the confounding property that may bias the 
conclusions.
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1. Introduction

Over the past twenty years, the use of connectivity-based methods 
has played a leading role in characterizing of both the normal brain 
organization and alterations due to various brain disorders (van den 
Heuvel and Sporns, 2019). In the context of resting-state functional 
magnetic resonance imaging (rs-fMRI), functional connectivity (FC) 
reflects the statistical interdependence of the 
blood-oxygenation-level-dependent (BOLD) signal of two or more brain 
regions during rest (Biswal et al., 1995; Fox and Raichle, 2007; van den 
Heuvel and Hulshoff Pol, 2010). Given an appropriate denoising strat
egy, the BOLD signal results from changes in cerebral blood flow, vol
ume and oxygenation and is interpreted as an indirect measure of neural 
activity (Fox and Raichle, 2007; Logothetis and Wandell, 2004). Hence, 
FC refers to the degree of similarity of neural activation between 
different brain regions (Aertsen et al., 1989; Friston et al., 1993). The 
higher the statistical similarity between the neural activity of different 
brain regions is, the stronger both regions are assumed to be functionally 
connected (Biswal et al., 1995; van den Heuvel and Hulshoff Pol, 2010).

Studies that utilize FC as an outcome of interest often apply one of 
the following approaches: First, based on typically occurring FC pat
terns, the human brain is divided in several functional brain networks 
such as the default-mode network (Laird et al., 2011; Yeo et al., 2011). 
Second, these brain networks can also be regarded as macroscale gra
dients that distribute along different spatial axes (Margulies et al., 2016) 
and represent developmental markers from adolescence to adulthood 
(Dong et al., 2021). Third, many studies attempt to relate certain FC 
patterns to behavioral domains such as cognitive functioning, aiming to 
clarify the contribution of certain brain regions to observable human 
behavior. For instance, FC between the hippocampus and the middle 
frontal gyrus has been associated with multiple cognitive processes such 
as working memory (Sigurdsson and Duvarci, 2015). Fourth, to identify 
robust biomarkers of pathological conditions, many approaches 
examine alterations in certain FC patterns by comparing clinical samples 
to matched healthy controls (Brandl et al., 2019; Li et al., 2019; Sha 
et al., 2019). For example, aberrant FC between certain brain networks 
has been demonstrated in multiple neurological (Tang et al., 2022) and 
psychiatric conditions (Sha et al., 2019).

Importantly, most studies that follow one of the four approaches use 
Pearsońs correlation or partial correlation to quantify FC. Since the 
correlation coefficient only covers the linear relationship between two 
BOLD time series, other metrics aiming to assess FC in rs-fMRI research 
have been proposed in recent years (Bobadilla-Suarez et al., 2020; 
Honari et al., 2021; Mahadevan et al., 2021; Mohanty et al., 2020; 
Philips et al., 2022; Savva et al., 2019; Wu et al., 2021). Thereby, 
exploratory evidence demonstrates that the type of FC metric affects the 
resulting functional brain configuration regarding the number and size 
of the extracted brain networks and the regions assigned to each 
network (Mohanty et al., 2020). A recent interdisciplinary work assigns 
>230 metrics that quantify similarity between different types of time 
series to the following six categories: basic measures, distance measures, 
spectral measures, information-theoretic measures, causal measures, 
and miscellaneous measures (Cliff et al., 2023). These similarity metrics 
are computed based on various distinct approaches and thus differ in 
their mathematical properties such as dis-/similarity, directionality, 
directness, domain, or linearity (Cliff et al., 2023).

With regard to the vast amount of applicable and mathematically 
different FC metrics, it remains unknown if the abovementioned com
mon approaches in FC research provide stable results independent of the 
actual FC metric of choice. Therefore, in the first part, we examine the 
impact of different FC metrics on several common FC-based outcomes in 
rs-fMRI research. In particular, we assess how FC strength within the 
default-mode network depends on the actual FC metric of choice. We 
further inspect the composition of macroscale gradients across different 
FC metrics. Moreover, we investigate if the association between 
hippocampal-frontal FC and cognitive functioning remains stable across 

all FC metrics. Finally, we study if FC between certain brain networks in 
patients with schizophrenia differs from healthy controls independent of 
the chosen FC metric.

Irrespective of potential variations across FC metrics, the above
mentioned and widely used statistical definition of FC fails to differen
tiate between the theoretical property of interest and the 
methodological approach to assess this property (Reid et al., 2019). In 
other words: In many cases, it remains unclear what kind of biological 
interaction between two brain regions (theoretical property) is covered, 
when computing the purely statistical correlation between of two BOLD 
time series (methodological approach). Nowadays, FC has become an 
inherent entity by itself, although the biological underpinnings are not 
clarified sufficiently (Reid et al., 2019). This issue is of particular in
terest in clinically heterogeneous populations without strong and 
obvious neurological indications such as psychiatric samples (Gratton 
et al., 2022).

In this work, we assume that FC, on the biological level, reflects the 
ability of two or more brain regions to synchronize their neural acti
vation patterns, facilitating an efficient information flow between them 
(theoretical property), whereas the choice of the FC metric is only the 
method to quantify this ability of signal synchronization (methodolog
ical approach). Hence, studying factors that are likely to reduce the 
ability of different brain regions to synchronize their neural activity 
reflects an empirical approach to investigate which FC metric is most 
appropriate metrics to measure connectivity in the human brain.

One such factor is normal aging, which is accompanied by a decline 
of global and regional grey matter volumes revealed through large-scale 
normative modelling approaches (Bethlehem et al., 2022; Ge et al., 
2024). In addition to ageing, another factor of interest is a severe 
neurological condition such as a malignant tumor. Malignant high-grade 
brain tumors are more likely to invade the surrounding healthy brain 
tissue and thus can lead to disruptions in structural connectivity (Manan 
et al., 2023). Given the interrelation between structural connectivity and 
FC (Liu et al., 2023), we assume that such age- and tumor related de
teriorations in grey and white matter tissue are likely to impede the 
braińs ability to effectively synchronize its neural activity between 
different regions leading to a decline in global FC throughout the later 
life. Indeed, a recent large-scale normative modelling approach reveals 
reductions of global FC starting in the late fourth decade of life (Sun 
et al., 2024). In the following, we use terms such as “reduction of con
nectivity” to describe the age- and tumor-related disturbed ability of 
neural signal synchronization.

Hence, in the second part, we aim to determine which FC metric is 
most suitable to display the presumed reduction of connectivity related 
to age and malignant brain tumors. We further study with which FC 
metric associations between age-related reductions of connectivity and 
cognitive decline are found.

Through our in-depth multimodal and transdiagnostic in
vestigations, we contribute to a broader field of neuroimaging research 
to better understand if brain connectivity can be quantified in empirical 
data using metrics other than Pearsońs or partial correlation.

2. Methods

2.1. Study samples

The current study was based on four independent datasets acquired 
at different sites. All research procedures were performed in compliance 
with relevant laws and institutional guidelines and have been approved 
by the respective institutional committees. We analyzed behavioral and 
neuroimaging data from the Mind-Brain-Body dataset from the Max- 
Planck-Institute Leipzig in Germany (MBB, DOI:10.18112/openneuro. 
ds000221.v1.0.0, reference number and date of approval: 154/13-ff, 
10/02/2013) (Babayan et al., 2019), the Clinical Deep Phenotyping 
cohort from the Department of Psychiatry and Psychotherapy of the 
Ludwig-Maximilians-University Hospital Munich in Germany (CDP, 
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reference number and date of approval: 20–528, 08/28/2020) (Krčmář 
et al., 2023), the aging cohort of the Human Connectome Project 
(HCP-Aging, reference number and date of approval: 0925-0667, 
03/14/2025) (Harms et al., 2018), and from four patients with malig
nant tumors from the Brain Tumor Connectomics data from the Ghent 
University Hospital in Belgium (BTC, DOI:10.18112/openneuro. 
ds001226.v4.0.0, reference number and date of approval: 2013/881, 
03/03/2014) (Aerts et al., 2020; 2018). The CDP and MBB datasets were 
used to address the first aim of this study, namely to examine the impact 
of different FC metrics on several common FC-based outcomes in rs-fMRI 
research. The HCP-Aging cohort, the MBB dataset, and the BTC data 
were utilized to achieve the studýs second objective, targeting the 
capability of different FC metrics to capture age- and tumor-related re
ductions of connectivity. Table S1 provides an overview of the sample 
characteristics. Ages and sexes of the four subjects from the BTC dataset 
are shown in Figs. 6 and 7.

2.2. MRI data acquisition

The MBB dataset was measured at a Siemens 3T Magnetom Verio 
scanner with a 32-channel head coil, applying a magnetization-prepared 
two rapid acquisition gradient echoes (MP2-RAGE) sequence, a T2- 
weighted sequence, a resting-state functional echo-planar-imaging 
(EPI) sequence, and a diffusion-weighted imaging (DWI) sequence. A 
detailed description of the scanning protocols is provided elsewhere 
(Babayan et al., 2019). The imaging protocol of the CDP study was based 
on the HCP protocol (Harms et al., 2018). It contained a T1-weighted 
magnetization-prepared rapid acquisition gradient echo (MP-RAGE) 
sequence, a T2-weighted sampling perfection with 
application-optimized contrasts using different flip angle evolution 
(T2-SPACE), a resting-state EPI sequence and a DWI sequence conducted 
at a Siemens 3T Magnetom Prisma scanner with a 32-channel head coil 
(for details see Krčmář et al. (2023)). The HCP-Aging protocol 
comprised a T1-weighted MP-RAGE sequence, T2-weighted SPACE 
sequence, a resting-state EPI sequence, a DWI sequence, and a pseudo 
continuous Arterial Spin Labeling (PCASL) sequence acquired at a 
Siemens 3T Magnetom Prisma scanner with a 32-channel head coil. 
Details are provided in Harms et al. (2018). For the BTC dataset, a 
T1-weighted MP-RAGE sequence, a resting-state functional EPI 
sequence, and a multi-shell High Angular Resolution Diffusion Imaging 
(HARDI) sequence were acquired in a Siemens 3T Magnetom Trio MRI 
scanner using a 32-channel head coil. The entire scanning protocol is 
described elsewhere (Aerts et al., 2020; 2018). Table S2 provides an 
overview of the scanning parameters.

2.3. Multimodal MRI data processing

T1- and T2-weighted images of the MBB and HCP-Aging datasets 
were processed using FreeSurfer v7.2 (Dale et al., 1999; Fischl et al., 
2002, 1999). DWI sequences of the MBB, HCP-Aging, and BTC datasets 
were processed using functions from MRtrix3 v3.0.3 (Tournier et al., 
2019), FSL v6.0 (Jenkinson et al., 2012; Smith et al., 2004), Freesurfer 
v7.2 (Dale et al., 1999; Fischl et al., 2002; 1999), AFNI v22.1.09 (Cox, 
1996; Cox and Hyde, 1997) and ANTS v2.3.5 (Avants et al., 2009). 
PCASL images of the HCP-Aging dataset were processed using Oxfor
d_ASL from FSL v6.0 (Chappell et al., 2009). fMRIPrep v22.1.1 (Esteban 
et al., 2019) was utilized to preprocess the resting-state functional MRI 
images of all datasets. After removal of the first ten volumes and sub
sequent smoothing (FWHM = 6 mm), the global signal, cerebrospinal 
fluid signal, white matter signal, and the extracted noise components 
from Automatic Removal Of Motion Artifacts based on independent 
component analysis (ICA-AROMA) were regressed from BOLD time se
ries using the clean_img function from Nilearn. The denoised BOLD time 
series were extracted using the maskers module from Nilearn. 
Subject-specific FC was computed for 20 different metrics using the 
python-based pyspi module (Cliff et al., 2023).

Details on the preprocessing steps performed for each MRI modality 
and dataset and the applied quality control procedures are described in 
the supplemental information.

2.4. Selection of FC metrics

A recent interdisciplinary study proposed >230 metrics from distinct 
categories to quantify dis-/similarity between different types of time 
series and released the python package pyspi to compute these metrics 
(Cliff et al., 2023). We selected 20 metrics from four mathematical 
categories already used to quantify FC in the context of resting-state 
fMRI research. We used Pearsońs correlation, partial correlation, 
Spearmańs rank correlation, Kendalĺs tau, and cross-correlation as 
correlational metrics. As distance metrics, Euclidean distance, city
block distance, cosine distance, constrained dynamic time warping 
using the Itakura parallelogram, and constrained dynamic time warping 
using the Sakoe-Chiba band were computed. Distance metrics were 
multiplied by minus one prior to data analysis to convert them to sim
ilarity measures. Coherence magnitude, phase coherence, phase-locking 
value, phase-slope index, and spectral Granger causality were assessed 
as metrics in the frequency domain, while mutual information with 
either a gaussian, kernel-based, or Kraskov-Stögbauer-Grassberger 
density estimation and transfer entropy with either a gaussian or a 
Kraskov-Stögbauer-Grassberger density estimation served as metrics 
from information theory. The supplemental information provides a 
detailed description of these metrics with the respective formulas.

2.5. Multimodal neuroimaging outcomes and cognitive assessments

As outlined previously, the first objective of this study was to 
investigate the impact of the selected FC metric on several common FC- 
based approaches in rs-fMRI research. We considered the following four 
commonly applied approaches: Investigation of default-mode network 
connectivity, assessment of macroscale gradients, examination of the 
association between hippocampal-frontal FC and cognition, and identi
fication of FC-based biomarkers for schizophrenia based on a case- 
control comparison. Details on how these approaches were addressed 
are provided in the supplemental information.

Concerning the second aim of this study, addressing the sensitivity of 
different FC metrics regarding age- and tumor-related decline in con
nectivity, we used the HCP-Aging cohort and the MBB dataset for aging 
effects, and the BTC dataset to study the impact of malignant tumors. 
Prior to comparing the FC metrics in terms of their ability to capture age- 
and tumor-related reductions in connectivity, we first intended to 
demonstrate that multimodal neural decline was observable in our 
particular cohorts using other MRI modalities.

With regard to aging effects on neural and cognitive outcomes, we 
considered T1- and T2-weighted structural MRI data and DWI data, and 
PCASL data. Structural MRI and DWI were available for the HCP-Aging 
and MBB datasets, whereas PCASL data was only provided by the HCP- 
Aging project. Global cognitive functioning in the HCP-Aging cohort was 
assessed by the NIH toolbox (Hodes et al., 2013).

We used the outputs from FreeSurfer v7.2 gained from the structural 
MRI data to summarize cortical and subcortical brain volumes based on 
subcortical parcellations from FreeSurfer and the DKT atlas. We first 
extracted the regional volumes of several previously defined hub regions 
in the brain (precuneus, posterior cingulate gyrus, anterior cingulate 
gyrus, insula, superior frontal gyrus, the pallidum, putamen, thalamus, 
hippocampus) (Oldham and Fornito, 2019; van den Heuvel and Sporns, 
2013). Volumes were z-standardized and averaged to a score indicating 
the mean volume in these hub regions. We focused on these hub regions 
because they are characterized by their particularly pronounced con
nectivity with all other brain regions (Oldham and Fornito, 2019; van 
den Heuvel and Sporns, 2013).

Considering the DWI data, structural connectivity between subcor
tical and cortical regions defined by subcortical parcellations from 
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FreeSurfer and the DKT atlas was estimated as the number of white 
matter tracts standardized by the size of the respective regions using the 
tck2connectome function from MRtrix3 (Tournier et al., 2019). We 
extracted the structural connectivity values between the hub regions, 
z-standardized the values, and averaged them to a global structural 
connectivity score between all hubs.

In case of the PCASL data, Oxford_ASL provided partial volume- 
corrected measures of the cerebral blood flow for all subcortical and 
cortical regions specified in the subcortical parcellations from Free
Surfer and the DKT atlas. We extracted the measures of the cerebral 
blood flow for each hub region, performed a z-standardization, and 
averaged the values to calculate the mean perfusion across all hubs.

Finally, based on rs-fMRI data, BOLD timeseries of all hub regions 
defined by the subcortical parcellations of FreeSurfer and the DKT atlas 
were extracted. FC between all hub regions was calculated for each 
metric and subject. FC values between all hub regions were z-stan
dardized across all subjects separately for each metric and then averaged 
across functional connections, resulting in one subject-specific value of 
mean FC between all hub regions per metric.

We considered DWI and the rs-fMRI data from the BTC dataset to 
identify biologically plausible disruptions of connectivity related to 
malignant tumors.

Based on the processed DWI data, we computed structural connec
tivity between all regions from the multimodal Brainnetome atlas (Fan 
et al., 2016) using the tck2connectome function from MRtrix3 (Tournier 
et al., 2019). For each patient with a malignant tumor, we extracted 
structural connectivity values between regions close to the specific 
tumor location and between the same regions from the contralateral 
hemisphere. Structural connectivity values were z-standardized and 
averaged to a subject-specific structural connectivity score between re
gions that were located close to the individual malignant tumor versus a 
structural connectivity score between the same regions from the 
contralateral hemisphere. After extracting the BOLD timeseries of all 
regions close to the tumor and the same regions in the contralateral 
hemisphere, the same strategy was applied for all FC metrics computed 
from rs-fMRI data.

Figs. 1 and 2 illustrate the processing strategies to address the first 
and second research question, respectively, and Table S5 provides an 
overview of all neuroimaging outcomes of interest.

2.6. Statistical data analysis

R v4.2.2 was used for statistical data analysis. With regard to the first 
aim of this study, we evaluated both FC strength within the default- 
mode network and the composition of macroscale gradients in the 
MBB dataset descriptively. To investigate if the association between 
hippocampal-frontal FC and cognitive functioning in the healthy sub
jects of the CDP cohort remains stable independent of the chosen FC 
metric, we computed one Bayesian multiple linear regression for each 
hippocampal-frontal connection and each FC metric with the BACS 
composite score as dependent variable and hippocampal-frontal FC, age, 
and sex as predictors. Aiming to evaluate if FC between common brain 
networks differs between patients with schizophrenia and healthy con
trols in the CDP cohort independent of the utilized FC metric, we 
calculated one Bayesian multiple linear regression for each inter- 
network connection and each FC metric with inter-network FC as 
dependent variable and group (schizophrenia, healthy controls), age, 
and sex as predictors.

Regarding the second objective of this study, we explored the asso
ciation between aging and multimodal neural and cognitive decline in 
the HCP-Aging and MBB datasets. We used Bayesian multiple linear 
regressions with either mean volume, mean perfusion, mean structural 
connectivity, and mean functional connectivity (for all 20 metrics) of the 
hub regions as dependent variables and age and sex as predictors. Note 
that we used age as a binary predictor in the case of the MBB dataset 
(younger adults between 20 and 35 years versus older adults between 55 
and 80 years), because only age categories instead of actual ages of 
participants were published for this dataset. Moreover, we calculated 
Bayesian multiple linear regressions with the cognitive composite score 
from the NIH toolbox as dependent variable and either mean volume, 
mean perfusion, mean structural connectivity, and mean functional 
connectivity (for all 20 metrics) of the hub regions and sex as predictors. 

Fig. 1. Multimodal processing strategy for the first research question. 
This figure illustrates the processing strategies to address the first research question of this study.
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Structural connectivity and metric-specific FC between regions close to 
the malignant tumor and the same regions from the contralateral 
hemisphere were compared descriptively.

The main test statistics of interest from the Bayesian multiple linear 
regression computed with the brms package (Bürkner, 2017) was 
Jeffreýs default Bayes Factor (BF10), representing a continuous, relative 
measure of evidence the data is providing for the alternative hypothesis 
(H1: βz ∕= 0) compared to the null hypothesis (H0: βz = 0) (Ly et al., 
2016). A BF10 between one and three reflects anecdotal evidence for the 
alternative hypothesis, between three and ten is considered to be mod
erate evidence, between ten and 30 is labeled as strong evidence, be
tween 30 and 100 is seen as very strong evidence, and a BF10 above 100 
is decisive evidence for the alternative hypothesis (Lee and Wagen
makers, 2013).

3. Results

3.1. Default-mode network connectivity across FC metrics

We compared the absolute connectivity strength for all 20 FC metrics 
across both hemispheres. Based on the distance metrics, we obtained the 
highest absolute connectivity strength within the DMN followed by the 
correlational metrics, whereas the information-theory and frequency 
metrics showed the lowest. Among the correlational metrics, DMN 
connectivity was the lowest for partial correlation (Fig. S1).

3.2. Composition of macroscale functional gradients across FC metrics

Depending on the FC metric used, gradient patterns vary in their 
graphical representation, as indicated in Fig. S2. Especially, phase 
coherence, dynamic time warping with an Itakura constraint, spectral 
Granger causality, and transfer entropy with a Kraskov-Stögbauer- 
Grassberger density estimation do not show patterns related to the DMN 
as proposed in Margulies et al. (2016). In contrast, the remaining FC 

Fig. 2. Multimodal processing strategy for the second research question 
This figure illustrates the processing strategies to address the first research question of this study. *, in case of the MBB dataset no PCASL data were acquired and 
neural outcomes were not linked to cognitive performance.
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metrics show similar patterns, most dominantly reflected by the corre
lational metrics. Importantly, the first and second gradients were 
inverted for some metrics compared to Margulies et al. (2016).

3.3. Association between hippocampal-frontal FC and cognition across FC 
metrics

Fig. 3A illustrates the β-coefficients and BF10 of the respective 
hippocampal-frontal connection extracted from the Bayesian multiple 
linear regression that assessed the association between hippocampal- 
frontal FC and cognition using the healthy controls from the CDP 
cohort. Results indicate that depending on the FC metric of choice a 
different number and different types of hippocampal-frontal connec
tions show associations with cognitive functioning. For instance, when 
using Pearsońs correlation, Spearmańs correlation, Kendalĺs tau, 
Euclidean distance, Cityblock distance, Cosine distance or dynamic time 
warping with a Sakoe-Chiba band, higher FC between the left para
hippocampal gyrus and the left caudal anterior cingulate gyrus is related 
to better cognitive performance. This finding is not reproduced in the 
case of partial correlation or any other FC metric, demonstrating that the 
choice of the FC metric affects the results and interpretations of brain- 
behavior associations.

3.4. Dysconnectivity patterns in schizophrenia across FC metrics

Fig. 3B shows the β-coefficients and BF10 of the predictor group 
extracted from the Bayesian multiple linear regression that covered the 
case-control differences in FC between brain networks based on patients 
with schizophrenia and healthy controls from the CDP study. Results 
reveal that depending on the FC metric of choice different numbers and 
types of dysconnectivity patterns are found. For example, when using 
partial correlation, coherence magnitude or phase-locking value, pa
tients with schizophrenia reveal a hyperconnectivity between the visual 
network and the dorsal attention network. At the same time, this is not 
the case for any other FC metric. Hence, the choice of the FC metric 
impacts the results of disorder-related dysconnectivity patterns.

3.5. Sensitivity of FC metrics regarding age-related decline in connectivity 
and cognition

Figs. 4 and 5 visualize the associations between age and cognition 
and multimodal neural outcomes in the hub regions and the test statis
tics extracted from the respective Bayesian multiple linear regressions 
based on the HCP-Aging and the MBB cohort.

With regard to the HCP-Aging dataset (Fig. 4A–D), we found decisive 
evidence that the older the participants were, the lower their mean 
volume (Fig. 4A), structural connectivity (Fig. 4B), and perfusion 
(Fig. 4C) in the hub regions was, on average. The strongest effects were 
found for volume, followed by perfusion and structural connectivity. 
These findings demonstrate that multimodal age-related neural decline 
in the hub regions was present in the HCP-Aging cohort. Considering the 
rs-fMRI data (Fig. 4D), our findings reveal decisive evidence that FC 
between the hub regions decreases with age, when using Pearsońs cor
relation, Spearmańs correlation, Kendalĺs tau, cross correlation, 
Euclidean distance, or cosine distance as FC metric. Correspondingly, we 
found very strong evidence for this association with Cityblock distance 
and strong evidence when utilizing Gaussian mutual information. In the 
case of partial correlation and dynamic time warping with a Sakoe- 
Chiba band we only found anecdotal evidence, but strong and anec
dotal evidence for phase coherence and gaussian transfer entropy to
wards a positive relation between age and FC in hub regions, 
respectively. Effect sizes were overall smaller than in the other MRI 
modalities.

With respect to the MBB dataset (Fig. 4E–G), we found decisive ev
idence that elderly, on average, had lower mean volume (Fig. 4E) and 
structural connectivity (Fig. 4F) in the hub regions than younger 

participants. The effect for volume was stronger than the effect for 
structural connectivity. These findings demonstrate that multimodal 
age-related neural decline in the hub regions was also observable in the 
MBB cohort. Considering the rs-fMRI data (Fig. 4G), our findings 
demonstrate decisive evidence that the elderly show lower FC between 
the hub regions than younger participants, when using cross-correlation 
and dynamic time warping constrained by an Itakura parallelogram. We 
also obtained strong evidence for this group difference in the case of 
Pearsońs correlation, Spearmańs correlation, Kendalĺs tau, and cosine 
distance, but moderate and anecdotal evidence by Euclidean distance 
and partial correlation, respectively. Higher FC between the hub regions 
in elderly was evident when using dynamic time warping with a Sakoe- 
Chiba band, coherence magnitude, phase coherence, phase-locking 
value, spectral Granger causality, and both transfer entropy versions. 
Apart from dynamic time warping constrained by an Itakura parallelo
gram, effect sizes were smaller than in the other MRI modalities.

Referring back to the HCP-Aging cohort, we obtained very strong and 
decisive evidence that larger mean volumes (Fig. 5A) and higher mean 
perfusion (Fig. 5C) in the hub regions, respectively, were linked to better 
cognitive performance in the HCP-Aging cohort. The effect for perfusion 
was stronger than the effect for volume. We did not encounter such an 
association for structural connectivity between hub regions (Fig. 5B). 
These findings demonstrate that age-related cognitive decline in the hub 
regions was present for volumes and perfusion in the HCP-Aging cohort. 
Regarding the rs-fMRI data (Fig. 5D), only anecdotal evidence was 
observed, suggesting that higher FC between the hub regions was linked 
to better cognitive performance, when using Pearsońs correlation, 
Kendalĺs tau, cosine distance, and dynamic time warping constrained 
with an Itakura parallelogram. Effect sizes were smaller than in struc
tural MRI and PCASL.

3.6. Sensitivity of FC metrics regarding tumor-related decline of 
connectivity

Figs. 6 and 7 display structural connectivity and FC data from the 
BTC dataset for four patients with malignant tumors.

Our findings indicate that the average number of white matter tracts 
between regions close to the subject-specific tumor location was smaller 
compared to the same regions in the contralateral hemisphere for the 
first three subjects, whereas this was not the case for the healthy controls 
included in the BTC dataset. For the first subject (Fig. 6A), lower FC 
between regions close to the subject-specific tumor location compared to 
the same regions in the contralateral hemisphere was observed, when 
using Pearsońs correlation, Spearmańs correlation, Kendalĺs tau, 
Euclidean distance, Cityblock distance, cosine distance, dynamic time 
warping constrained by a Sakoe-Chiba band, or the phase-slope index as 
FC metrics. In case of the second subject (Fig. 6B), only kernel-based 
mutual information and both transfer entropy metrics revealed corre
sponding results. In contrast, correlational and distance metrics, as well 
as several frequency metrics indicated an effect in the opposite direc
tion. For the third subject (Fig. 7A), no FC metric except phase coherence 
and dynamic time warping constrained by an Itakura parallelogram 
revealed clear differences in FC between regions close to the subject- 
specific tumor location, which was smaller compared to the same re
gions in the contralateral hemisphere. In case of the fourth subject 
(Fig. 7B), the average number of white matter tracts did differ sub
stantially between both hemispheres in contrast to the healthy controls. 
Only phase coherence and spectral Granger causality showed a corre
sponding pattern.

4. Discussion

Based on four independent multimodal MRI data sets, our study first 
explored if FC metrics with distinct mathematical properties lead to 
different conclusions in the context of typical FC-based research ques
tions. Furthermore, we evaluated whether FC metrics other than 
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Pearsońs or partial correlation are more appropriate for detecting re
ductions of connectivity related to aging or malignant brain tumors.

4.1. Influence of FC metrics on typical research approaches in functional 
neuroimaging

Our findings suggest that the selected FC metric affects the results 
and conclusions in several common FC-based research approaches, such 
as examining FC within the default-mode network, exploring the 
composition of macroscale gradients, investigating brain-behavior as
sociations, and studying disorder-related dysconnectivity patterns. This 
lines with previous evidence demonstrating that distinct FC metrics 
computed within the same dataset lead to substantial differences in the 
resulting brain network configuration (Mohanty et al., 2020). Hence, the 
choice of FC metric represents an essential step in studies including FC as 
a relevant outcome, because the resulting conclusions on the particular 
research questions will be fundamentally different. With respect to the 
noticeable mathematical differences of potentially applicable FC met
rics, the resulting variation in typical FC-based outcomes is not sur
prising. In particular, the FC metrics examined in this study differ in 
terms of their type (similarity or dissimilarity measure or both), direc
tionality (non-directional, unidirectional, or bidirectional), directness 
(direct or non-direct measure), domain (time or frequency), and line
arity assumption (linear or non-linear) (Bastos and Schoffelen, 2015; 
Cliff et al., 2023). For instance, partial correlation reflects both simi
larity and dissimilarity between two BOLD time series. It does not as
sume a direction of the association, considers the influence of other 
regions, and thus assesses the direct association between the two regions 
of interest. Moreover, partial correlation captures similarity in the time 
domain and includes a linearity assumption. The supplemental infor
mation provides an overview of the mathematical properties of all 
applied FC metrics.

4.2. Superiority of correlational and distance metrics in detecting age- 
related decline of connectivity

Apart from demonstrating the impact of different FC metrics on the 
results in common FC-based research approaches, our findings reveal 
that correlational and distance metrics most accurately capture con
nectivity decline. Although generally in line with previous simulation 
studies that also suggest the superiority of correlational measures in 
detecting specific alterations in brain networks (Smith et al., 2011), we 
observed that partial correlation only provided anecdotal evidence in 
favor of age-related connectivity decline, whereas other correlational 
and distance metrics indicated more robust associations. In contrast, 
partial correlation was found to be one of the most accurate FC metrics 
when tested in simulated BOLD time series (Smith et al., 2011) and is 
generally suggested to be less prone to confounds resulting from other 

neural entities (Reid et al., 2019). Despite these convincing examina
tions and the underlying reasonable theoretical foundation, our findings 
suggest that using partial correlation should have some additional 
consideration. Here, we used a rather global measure of FC as the main 
outcome by averaging the subject-specific FC values per metric between 
all hub regions. If a certain brain region is highly connected to many 
other regions, it is more likely to influence FC between all other regions. 
When not controlling for its impact on other functional connections, this 
highly connected region will be weighted stronger than less connected 
regions in an average FC value used in this study. Given that we 
demonstrated an age-related decline of white matter tracts between hub 
regions, a summarizing FC that gives more weight to highly connected 
regions may be beneficial in covering decline of connectivity and 
cognition related to age. This emphasizes the role of directness as one 
important property of FC metrics.

However, directness is not the only important property, as FC metrics 
in the frequency domain and from information theory did not capture 
age-related decline of connectivity and cognition properly, despite also 
covering indirect associations between brain regions like most correla
tion and distance metrics. In the case of frequency metrics computed 
from BOLD time series, previous simulation studies raise concerns about 
their sensitivity regarding alterations in the underlying network archi
tecture (Smith et al., 2011), which corresponds to our empirical find
ings. These concerns also apply to the directional metrics we examined, 
namely spectral Granger causality and transfer entropy, whose utility for 
BOLD time series has been questioned (Smith et al., 2011). Finally, 
mutual information as an FC metric that also covers non-linear associ
ations between BOLD time series has been suggested to be a promising 
alternative to correlational metrics (Pereda et al., 2005), but our results 
do not support its use to assess age-related decline in connectivity and 
cognition. This again corresponds to evidence in simulated data (Smith 
et al., 2011) and is in line with theoretical considerations emphasizing 
that non-linear metrics of FC are not necessarily better than linear 
metrics, but rather address distinct aspects of the similarity between two 
signals (Pereda et al., 2005). In sum, our empirical examination supports 
the use of correlational and distance metrics in order to detect re
ductions of connectivity and impaired cognition related to age, while 
questioning the utility of partial correlation at least for summarizing FC 
scores across different regions.

4.3. Variability across datasets, brain regions, and individuals

In addition to this general tendency towards the superiority of 
correlational and distance metrics, we obtained dataset-specific effects 
that have also been reported previously (Bobadilla-Suarez et al., 2020). 
Specifically, when using dynamic time warping constrained by an Ita
kura parallelogram as FC metric, age-related connectivity decline was 
robustly identified in the MBB dataset, whereas no effect was observed 

Fig. 3. Brain-behavior associations and dysconnectivity patterns between cases and controls for 20 metrics 
This figure displays the results from Bayesian multiple linear regression analyses, addressing the associations between hippocampal-frontal FC and cognitive 
functioning (A) and the FC differences between patients with schizophrenia and healthy controls (B) across 20 FC metrics. Each dot reflects one Bayesian multiple 
linear regression. (A) The β-coefficient of the respective hippocampal-frontal connection is shown on the x-axis and the BF10 of this predictor is illustrated on the y- 
axis. A positive β indicates a positive association between the particular functional connection and cognition, and a negative β reveals a negative association. (B) The 
β-coefficient of the predictor group (schizophrenia vs. controls) is shown on the x-axis and the BF10 of this predictor is illustrated on the y-axis. A positive β indicates 
a higher FC between the respective networks in patients with schizophrenia and a negative β reveals lower FC. The higher the BF10, the darker the color of the dots. 
Functional connections are labelled if the BF10 is higher than one. Pearson corr, Pearsońs correlation; Partial corr, partial correlation; Spearman corr, Spearmańs 
correlation; Kendall tau, Kendalĺs tau; Cross corr, cross correlation; Euclidean dist, Euclidean distance; Cityblock dist, Cityblock distance; Cosine dist, Cosine distance; 
DTW itakura, dynamic time warping constrained with Itakura parallelogram; DTW sakoe-chiba; dynamic time warping constrained with Sakoe-Chiba band; COH 
magnitude, coherence magnitude; COH phase, phase coherence; PLV, phase-locking value; PSI, phase slope index; SGC, spectral Granger causality; MI gaussian, 
mutual information with gaussian density estimation; MI kernel, mutual information with kernel-based density estimation; MI kraskov, mutual information with 
Kraskov-Stögbauer-Grassberger density estimation; TE gaussian, transfer entropy with gaussian density estimation; TE kraskov transfer entropy with Kraskov- 
Stögbauer-Grassberger density estimation; L, left hemisphere; R, right hemisphere; PHIG, parahippocampal gyrus; CMFG, caudal middle frontal gyrus; CACG, caudal 
anterior cingulate gyrus; RACG, rostral anterior cingulate gyrus; RMFG, rostral middle frontal gyrus; EC, entorhinal cortex; HI, hippocampus; VN, visual network, 
SMN, somatormotor network; DAN, dorsal attention network; VAN, ventral attention network; LN, limbic network; FPN, fronto-parietal network; DMN, default-mode 
network; H0, null hypothesis; H1, alternative hypothesis.
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in the HCP-Aging cohort. The utilized MRI scanners and the underlying 
scanning parameters differed noticeably between both projects, as the 
MBB protocol used a repetition time of 1400 ms with 657 timepoints, 
while the single HCP-Aging sequences had a repetition time of 800 ms 
with 478 timepoints. Given that especially the sequence length and 
repetition time have been shown to affect the sensitivity of FC metrics 
towards network alterations (Smith et al., 2011; Wang et al., 2014), it 
appears plausible that the FC metric of choice, to a certain degree, de
pends on the acquired EPI sequence. Hence, our findings indicate that 
methodological considerations regarding the scanning parameters need 
to be considered, but it remains to be determined which FC metric suits 
best under which scanning conditions in empirical data.

In addition to the impact of the scanning sequence, we also observed 
inter-individual variation between four patients with malignant tumors 
from the BTC dataset. Particularly, in the case of the first patient 
(Fig. 6A), correlational and distance metrics were sensitive to white 
matter decline between regions close to the tumor. However, with re
gard to the other patients, this was not the case, as other FC metrics such 
as transfer entropy or kernel-based mutual information (2nd patient, 
Fig. 6B), phase coherence and dynamic time warping constrained by an 
Itakura parallelogram (3rd patient, Fig. 7A) or partial correlation and 
the frequency metrics (4th patient, Fig. 7B) mimicked the existing white 
matter decline in the ipsilateral compared to the contralateral hemi
sphere. While having been scanned under the same conditions, the four 
patients differ in terms of age, sex, tumor location, and tumor type (only 
4th patient). Consequently, these descriptive observations could suggest 
that the choice of the appropriate FC metric may depend on the indi
viduaĺs characteristics or on the regions of interest.

4.4. Embedding current findings into a theoretical FC framework

Our empirical findings can be embedded in the theoretical FC 
framework proposed by Reid et al. (2019). They categorize properties 
essential for mechanistic inferences from FC data into three types: 
theoretical, methodological, and confounding properties. Theoretical 
properties refer to the characteristics of the neural connections or 
pathways investigated (e.g., directionality between two neural assem
blies). Methodological properties comprise all methodological ap
proaches to assess these theoretical properties (e.g., type of FC metric). 
Confounding properties consist of any factors that may induce bias (e.g., 
motion artifacts). Reid et al. (2019) emphasize the need for empirical 
validations of methods used in FC research and suggest that future FC 
studies should comprehensively describe and discuss the three proper
ties of the framework in the context of their particular research question 
to refine their conclusions.

Our approach aimed for empirical validation of different FC metrics 
(methodological property) to explore deteriorations in connectivity 
related to age and malignant tumors (theoretical property). Importantly, 

our findings serve as an empirical endorsement of the FC framework 
proposed by Reid et al. (2019), as indicated by the following examples: 
First, using partial correlation as FC metric eliminates the confounding 
effect of unmeasured neural activity (confounding property), but proves 
less effective than other FC metrics that do not consider directness in 
detecting global connectivity decline (theoretical property). Second, the 
dataset-specific effects described above reveal that the selection of FC 
metrics (methodological property) to assess age-related connectivity 
decline (theoretical property) may depend on the parameters of the 
underlying scanning protocol (methodological property). Lastly, the 
findings in patients with malignant tumors show that the choice of FC 
metric (methodological property) may also depend on the type and 
location of the brain regions of the individual between which neural 
impairments are assessed (theoretical property). These examples 
demonstrate that no single FC assessment is superior; the optimal 
approach depends on the theoretical property of interest, other meth
odological properties than the choice of the FC metric itself, and relevant 
confounding properties.

4.5. Brain perfusion measured by PCASL as a neural representation of 
age-related cognitive decline

Lastly, beyond the major scope of this study, we observed that 
volumetric and perfusion-based measures in the hub regions gained 
from structural MRI and PCASL are more stable in mirroring multimodal 
neural and cognitive decline than structural connectivity and FC out
comes assessed by DWI and rs-fMRI, respectively. This is particularly 
interesting with respect to PCASL since this sequence is not yet 
commonly used in clinical neuroimaging research. According to our 
findings, cerebral blood flow in the hub regions assessed by PCASL de
creases substantially with age and shows the strongest associations with 
age-related cognitive decline. Notably, cognitive impairments reflect a 
robust transdiagnostic phenomenon in various fields such as psychiatry 
(Goodkind et al., 2015), but associations between cognitive functioning 
and the underlying neural processes are mostly small and often not 
reliably detected (Gratton et al., 2022; Marek et al., 2022). The robust 
correlation between reductions in the cerebral blood flow of central 
brain hubs and age-related cognitive decline identified in the current 
work can serve as a promising basis for future clinical neuroimaging 
studies that aim to identify the neural underpinnings of cognitive defi
cits. Thus, our results may leverage the use of PCASL to investigate 
neural correlates of behavior in human neuroimaging.

4.6. Study limitations and future directions

Our study navigates through multiple FC metrices with room for 
enhancement, while maintaining a solid foundation for future explora
tion. First, our empirical validation of FC requires knowledge about the 

Fig. 4. Associations between age and multimodal neural outcomes for the HCP-Aging and MBB cohort 
This figure depicts the associations between age and mean volume, structural connectivity, perfusion, and functional connectivity in the hub regions, as well as the 
test statistics of the respective Bayesian multiple linear regressions. Each dot represents a healthy subject from the HCP-Aging (A-D) and the MBB (E-G) cohort. The 
red regression line reflects the correlation between age and the particular neural outcome. A) Association between age and mean volume in hub regions with age 
displayed on the x-axis and mean volume on the y-axis. B) Association between age and mean structural connectivity between hub regions with age displayed on the 
x-axis and mean structural connectivity on the y-axis. C) Association between age and mean perfusion in hub regions with age displayed on the x-axis and mean 
perfusion on the y-axis. D) Association between age and mean FC between hub regions with age displayed on the x-axis and mean FC on the y-axis for each FC metric. 
E) Difference in mean volume in hub regions with the age groups displayed on the x-axis and mean volume on the y-axis. F) Difference in mean structural con
nectivity between hub regions with the age groups displayed on the x-axis and mean structural connectivity on the y-axis. G) Difference in mean FC between hub 
regions with the age groups displayed on the x-axis and mean FC on the y-axis for each FC metric. Pearson corr, Pearsońs correlation; Partial corr, partial correlation; 
Spearman corr, Spearmańs correlation; Kendall tau, Kendalĺs tau; Cross corr, cross correlation; Euclidean dist, Euclidean distance; Cityblock dist, Cityblock distance; 
Cosine dist, Cosine distance; DTW itakura, dynamic time warping constrained with Itakura parallelogram; DTW sakoe-chiba; dynamic time warping constrained with 
Sakoe-Chiba band; COH magnitude, coherence magnitude; COH phase, phase coherence; PLV, phase-locking value; PSI, phase slope index; SGC, spectral Granger 
causality; MI gaussian, mutual information with gaussian density estimation; MI kernel, mutual information with kernel-based density estimation; MI kraskov, 
mutual information with Kraskov-Stögbauer-Grassberger density estimation; TE gaussian, transfer entropy with gaussian density estimation; TE kraskov transfer 
entropy with Kraskov-Stögbauer-Grassberger density estimation; BF10, Bayes factor of the predictor age; βz, standardized beta coefficient of the predictor age and 95 
% confidence interval; N, sample size considered in the respective analysis; SC, structural connectivity; FC, functional connectivity.
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ground truth of aberrant FC patterns in the brain (Reid et al., 2019). We 
assumed that ageing and tumors lead to a decline in the ability of the 
hub brain regions to synchronize their activation patterns and thus 
result in a reduction of efficient information flow (theoretical property). 
Hence, an appropriate functional connectivity metric (methodological 
property) should mirror this effect. However, especially in the case of 
brain tumors it may be possible that our presumed ground truth may not 
hold. Patterns of increased FC have also been observed in such patients 

(Fox and King, 2018) and, more generally, may reflect a pathological 
rather than a healthy brain state in neurological disorders like Alz
heimer’s disease (Roemer-Cassiano et al., 2025). We used a multimodal 
approach to demonstrate that the mean volume, perfusion, and struc
tural connectivity in the hub regions decrease with age among different 
datasets, assuming that this decline should also manifest in decreased FC 
between the hubs. This served as the ground truth presumed in this 
study. Given the known link brain structure and function (Liu et al., 

Fig. 5. Associations between multimodal neural outcomes and global cognition for the HCP-Aging cohort 
This figure shows the associations between mean volume, structural connectivity, perfusion, and functional connectivity in the hub regions and the cognitive 
composite score, as well as the test statistics of the respective Bayesian multiple linear regressions. Each dot represents on healthy subject from the HCP-Aging cohort. 
The red regression line reflects the correlation between the particular neural outcome and cognitive performance. A) Association between mean volume in hub 
regions and cognition with mean volume displayed on the x-axis and the cognitive composite score on the y-axis. B) Association between mean structural connectivity 
between hub regions and cognition with mean structural connectivity displayed on the x-axis and the cognitive composite score on the y-axis. C) Association between 
mean perfusion in hub regions and cognition with mean perfusion displayed on the x-axis and the cognitive composite score on the y-axis. D) Association between 
mean FC between hub regions and cognition with mean FC between hub regions displayed on the x-axis and the cognitive composite score on the y-axis. Pearson corr, 
Pearsońs correlation; Partial corr, partial correlation; Spearman corr, Spearmańs correlation; Kendall tau, Kendalĺs tau; Cross corr, cross correlation; Euclidean dist, 
Euclidean distance; Cityblock dist, Cityblock distance; Cosine dist, Cosine distance; DTW itakura, dynamic time warping constrained with Itakura parallelogram; 
DTW sakoe-chiba; dynamic time warping constrained with Sakoe-Chiba band; COH magnitude, coherence magnitude; COH phase, phase coherence; PLV, phase- 
locking value; PSI, phase slope index; SGC, spectral Granger causality; MI gaussian, mutual information with gaussian density estimation; MI kernel, mutual in
formation with kernel-based density estimation; MI kraskov, mutual information with Kraskov-Stögbauer-Grassberger density estimation; TE gaussian, transfer 
entropy with gaussian density estimation; TE kraskov transfer entropy with Kraskov-Stögbauer-Grassberger density estimation; BF10, Bayes factor of the predictor 
age; βz, standardized beta coefficient of the predictor age and 95 % confidence interval; N, sample size considered in the respective analysis; SC, structural con
nectivity; FC, functional connectivity.
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2023), this assumption stands on biologically plausible ground and is 
supported by recent large-scale normative modeling approach on the 
functional connectome across the life span (Sun et al., 2024). None
theless, the relationship between brain structure and function is not fully 
explicit due to complex multi-synaptic interactions (Zamani Esfahlani 

et al., 2022). There may persist an uncertainty if age-related decreases in 
FC between the hub regions truly reflect a stable and replicable ground 
truth. It may be possible that different FC metrics address different 
theoretical properties in the brain. In other words: Distinct metrics may 
cover different aspects of neural interactions between brain regions. 

Fig. 6. Comparison of white matter tracts and FC between regions close to tumor and contralateral equivalents 
This figure shows the average number of white matter tracts between regions close to the subject-specific tumor location compared to the same regions in the 
contralateral hemisphere for two subjects with malignant tumors and for respective healthy controls of the BTC dataset. In each panel (A-B), the tumoŕs location is 
shown on the top left, the respective tractography on the top middle, and the regions from the Brainnetome atlas used to compute the average number of white matter 
tracts and FC on the top right. Patient characteristics and the comparison in the average number of white matter tracts and FC between selected regions from both 
hemispheres are illustrated.
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Some of these aspects may be affected by ageing and tumors, while 
others may not. In this case, a reduction of FC would not necessarily 
mean that the respective FC metric is more appropriate. This is impor
tant to consider when interpreting our current findings.

Based on this discussion, future examinations could combine 

empirical factors that induce strong neural impairments with model- 
based simulated data to bolster biologically plausible assumptions and 
to decrease the uncertainty about the ground truth in FC research.

Secondly, we conclude that selecting a proper FC metric depends on 
the acquired EPI sequence and the type and location of the connections 

Fig. 7. Comparison of white matter tracts and FC between regions close to tumor and contralateral equivalents 
This figure shows the average number of white matter tracts between regions close to the subject-specific tumor location compared to the same regions in the 
contralateral hemisphere for two subjects with malignant tumors and for respective healthy controls of the BTC dataset. In each panel (A-B), the tumoŕs location is 
shown on the top left, the respective tractography on the top middle, and the regions from the Brainnetome atlas used to compute the average number of white matter 
tracts and FC on the top right. Patient characteristics and the comparison in the average number of white matter tracts and FC between selected regions from both 
hemispheres are illustrated.

L. Roell et al.                                                                                                                                                                                                                                    NeuroImage 312 (2025) 121195 

13 



of interest. While our data do not provide clear-cut guidelines for metric 
selection, future studies could evaluate how certain scanning parame
ters, such as the session length or repetition time, affect the utility of 
different FC metrics in capturing connectivity decline. This could 
involve leveraging respective biophysical models or simulating specific 
brain networks to test if distinct brain pathways require different FC 
metrics to evaluate the sensitivity of several FC metrics regarding known 
patterns of information flow within these networks.

Thirdly, our selection of 20 representative metrics from four do
mains, based on their previous application in fMRI research, opens the 
field for further inquiry time series (Cliff et al., 2023). Future in
vestigations are encouraged to test the applicability of these 
yet-unutilized metrics, as it has been done in a recent comprehensive 
work comparing all metrics included in the pyspi package (Liu et al., 
2024).

Fourth, we did not systematically evaluate if our results depend 
global signal regression, as it was not the primary focus of this work. 
However, future studies in this field should incorporate such analysis, 
given that the global signal regression is known to affect FC (Murphy 
and Fox, 2017).

Fifth, we did not have proper longitudinal data available to proof the 
test-retest reliability of different FC metrics over time. Future studies 
should address this issue to provide insights on the longitudinal stability 
of different FC metrics.

5. Conclusion

To conclude, we first provide empirical evidence that the utilized FC 
metric strongly affects the results in the context of typical fMRI research 
approaches. Secondly, our results demonstrate that correlational and 
distance metrics perform best in detecting age- and tumor-related 
decline in connectivity, while questioning the utility of partial correla
tion when summarizing FC scores across regions are used. Thirdly, we 
demonstrate that the sensitivity of FC metrics towards connectivity 
decline is influenced by the parameters of the acquired EPI sequence, 
may vary between individuals that underwent the same scanning 
sequence, and depends on the regions of interest. Lastly, our results 
emphasize the promising role of the cerebral blood flow measured by 
PCASL as a neural representation of aging and cognitive impairment. 
These empirical findings strongly support the considerations by Reid 
et al. (2019), which illustrate the urgent need to define the respective 
theoretical, methodological, and confounding properties more carefully 
in future FC-based studies.
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