
Ant-Based Metaheuristics Struggle
to Solve the Cartesian Genetic
Programming Learning Task

Julian Trautwein , Michael Heider(B) , Henning Cui , and Jörg Hähner

University of Augsburg, 86159 Augsburg, Germany
{julian.trautwein,michael.heider}@uni-a.de

Abstract. Ant-based metaheuristics have successfully been applied to a
variety of different graph-based problems. However, for Cartesian Genetic
Programming (CGP) only the impact of Max-Min Ant Systems has been
tested. In this work, we try to fill this gap by applying four different pop-
ular ant-based metaheuristics as the optimizer (and therefore training
algorithm) of CGP. The idea of combining CGP with ant-based meta-
heuristics is not novel but older works’ experimental design may not
meet today’s standard. To compare these metaheuristics to the Evolu-
tion Strategies (ESs) commonly used in CGP, we benchmark against a
standard CGP variant that uses a simplistic (1 + 4)-ES, mutation, and
no crossover. Additionally, we include (μ + λ)-ES and (μ, λ)-ES in our
experiments.

We analyse the performance on datasets from the symbolic regression,
regression, and classification domains. By tuning and evaluating various
configurations, we can not affirm a significant improvement by using
ant-based methods with CGP as we encounter premature convergence—
even with those ant-based metaheuristics that were originally proposed
to overcome such problems. Despite our results being of negative nature,
this work still gives important and interesting insights into the training
of CGP models. The key contributions of our work are thus a more thor-
ough benchmarking of these optimizers than has been done before. This
should clear up doubts about the capabilities of ant-based metaheuris-
tics in CGP. Furthermore, we include a roadmap on how they can be
addressed to solve this complex optimization problem from the model
building domain of machine learning.

Keywords: Cartesian Genetic Programming · Evolution Strategies ·
Evolutionary Algorithm · Ant Colony Optimization · Ant-based
Metaheuristic

1 Introduction

Cartesian Genetic Programming (CGP) is a form of Genetic Programming (GP)
developed by Miller in 1999 [26]. CGP—in contrast to GP—is represented by

http://orcid.org/0009-0002-3913-5896
http://orcid.org/0000-0003-3140-1993
http://orcid.org/0000-0001-5483-5079
http://orcid.org/0000-0003-0107-264X
https://doi.org/10.1007/978-3-031-89991-1_9

140

a feed-forward, directed, and acyclic graph instead of a tree based representa-
tion. This makes it easy to be applied to graph-based applications like neural
architecture search [32] or image processing [25].

CGP often omits crossovers, which are an archetypical operator of genetic
algorithms, even though there have been experiments where including crossover
shows an increase in fitness [9]. As a result, only selection and mutation operators
induce changes to optimise a graph for a given learning task. Metaheuristics or
other learning paradigms are typically not considered in the context of CGP.
Since CGP is represented by said graph, it can be viewed as a pathfinding
problem, for which ant system–related algorithms are a natural solution. In this
work, we apply four different variants of ant-based metaheuristics and analyse
their impact on CGP.

We start by reintroducing the core principles of CGP in Sect. 2 to serve as an
easy entrance to the reader. In Sect. 5 the different ant-based metaheuristics used
in this work are presented, which is followed by a summary of previous work on
ant-based CGP in Sect. 4. After that, we give a description of the implementation
of our ant-based metaheuristics into CGP (Sect. 3). Then, the performance of all
used metaheuristics is analysed in Sect. 6. At last, Sect. 7 summarizes our results
and shows further research possibilities.

2 Cartesian Genetic Programming

This section reintroduces the core principles of Cartesian Genetic Programming
(CGP).

2.1 Representation

In CGP, a program is represented as a feed-forward, directed, and acyclic graph.
Nowadays, it contains nodes arranged in a one dimensional grid with c ∈ N

+

columnsd [28]. CGP takes an arbitrary amount of program inputs and feeds
them forward through the graph to get the desired amount of program outputs.

There are three types of nodes present in a CGP graph: input, computational
and output nodes. The input nodes are the first nodes of the program. They
directly relay the program input to the other node types. The computational
nodes are represented by multiple genes: One function gene, that specifies which
function the node will apply on the given inputs, and a ∈ N

+ connection genes
that define the node’s inputs. The value a is set to the highest arity of the defined
function set. If a function needs less than a inputs, all unused connection genes
will be ignored. The output nodes are typically the last nodes of the graph.
They only receive the output previous node and redirect it as the output of the
program. This node category consist of one connection gene, which refers to the
computational or input node they take their output from.

Input and computational nodes can also be divided into active and inactive
nodes. Inactive nodes are nodes that are not part of a path to any output nodes

141

Fig. 1. A graph defined by a CGP genotype. The dashed nodes and connections are
inactive.

and therefore do not contribute to the program output. Still, they are benefi-
cial to the optimization process as they lead to genetic drift [33]. Active nodes
are part of a path to any output nodes by one or more paths—therefore they
contribute to the output of the program.

Figure 1 shows an example graph defined by a CGP genotype. It has c = 6
columns, takes two inputs and returns one output. The first two nodes n0 and n1

are input nodes and only relay the two program inputs. The nodes n2, n3 and n4

are computational nodes. Node n3 uses the function ln() on its inputs, which has
an arity of one. This leads to n3 omitting the second input and only calculating
with its first input. Therefore, only n1, n3 and n4 are active nodes. At last, n5

provides the output of the program by relaying the output of the computational
node n4. As a result, this CGP graph describes the following function:

f : R × R → R

(n0, n1) → ln(n1) + ln(n1)

2.2 Common Evolutionary Operators of CGP

Most CGP variants use an elitist (1+4)-ES. It is commonly used in combination
with neutral search to improve performance and convergence time [27]. In this
context, neutral search describes the concept that if an offspring of the current
parent has the same fitness value as the parent, it will always be chosen as the
new parent. This allows for neutral drift to occur and improves the exploration
of the search space [28].

As the mutation strategy, either a probabilistic mutation [16] or Single [14] are
used. With the first operator, it simply iterates over all genes and mutates them
with a predefined probability. This leads to children possibly not having mutated
any active nodes and therefore not altering the program’s output. Single, on the
other hand, randomly selects genes and mutates them until an active node is
mutated. This enforces a change in the phenotype and allows inactive nodes
to be mutated. To improve readability, the aforementioned description of CGP
will be called Standard in the following sections. There are also many more
adaptations to the Evolutionary Algorithm of CGP like [10,13,18], which will
not be used in this paper.

142

3 Ant-Based Metaheuristics

This section will describe the non-ES metaheuristics used in this paper to opti-
mize CGP graphs. The integration and benchmarking of previously unexplored
(or unpublished) options of ant-based metaheuristics is the key contribution of
this work.

3.1 Ant System

Ant System (AS) [12] was the first proposed ant-based metaheuristic. AS is the
simplest ant-based metaheuristic and every other ant-based metaheuristic can
be seen as an extension of AS.

Initially, a given number of m ∈ N
+ ants are randomly distributed among

all nodes and each edge gets an initial pheromone level of τ0 ∈ R
+, therefore

τij(0) := τ0 for i, j = 1, . . . ,#nodes. At each timestep, each ant selects the next
node it will move to1, based on the amount of pheromones present on the given
edge and the length of the path to the next node. For the k-th ant, the transition
probability to go from node i to node j at time t is defined as:

pk
ij(t) :=

{
[τij(t)]

αAS ·[ηij]
β

∑
c∈Ck

[τic(t)]
αAS ·[ηic]

β if j ∈ Ck

0 otherwise
(1)

where Ck is the set of available nodes that ant k has not yet visited, ηij : − 1
dij

for
dij being the distance between node i and j, i, j = 1, ...,#nodes, and αAS , β ∈
R

+ are hyperparameters that scale the importance of the pheromone versus the
distance. The intensity of the pheromone trail left on edge (i, j) at timestep
t ∈ N is represented by τij(t). After all nodes have been visited, each ant lays
pheromones on the connections it has used to construct its path to the inputs.
The pheromone update is specified by the following two rules:

τij(t) := ρ · τij(t − n) +
m∑

k=1

Δτk
ij(t) (2)

Δτk
ij(t) :=

{
1

Lk
if ant k used edge (i, j) in its latest tour

0 otherwise

where Lk is the fitness (defined by a task-appropriate metric) of ant k and
ρ ∈ [0, 1[is a hyperparameter that simulates the evaporation of pheromones on
each edge.

1 Note that the ants can only select nodes that are “further left” than the current
location to avoid the creation of cyclical graphs.

143

3.2 Ant Colony System

The Ant Colony System (ACS) [11] is one of the many improvements of the
Ant System. There are two main differences: At first, the authors changed the
pheromone update rule and the state transitioning rule of ants as follows:

Δτk
ij(t) :=

{
τ0 if ant k used edge (i, j) in its latest tour
0 otherwise

In addition to that, ACS introduced a global update rule where only the best ant
is allowed to deposit pheromones. This best ant can either be the best ant that
has been found so far, or the best ant of the current iteration of the algorithm.
The pheromone update rule, with k̃ as the best ant, is described as following for
all i, j = 1, ..., n:

τij(t) := (1 − αACS) · τij(t − n) + Δτ k̃
ij(t) (3)

Δτ k̃
ij(t) :=

{ 1
Lk̃

if (i, j) ∈ best tour

0 otherwise
(4)

where αACS ∈ [0, 1[is another hyperparameter, that simulates pheromone evap-
oration on the edges. For the transition rule, they used the same function as the
AS, but without the use of the αAS hyperparameter given in AS. In addition to
that, ACS introduces the hyperparameter q0 ∈ [0, 1], that determines a rate of
exploitation vs exploration.

3.3 Max-Min Ant System

The Max-Min Ant System (MMAS) [31] is another enhancement of the Ant Sys-
tem. Its characteristic differences to the AS are that only the global best ant or
the best ant of the iteration updates the pheromone trail. Furthermore, to avoid
stagnation, the pheromone trails are limited to an interval [τmin, τmax]. Addi-
tionally, the pheromone trails are initialized to τmax to get a higher exploration
of the search space at the start of the algorithm. The state transition rule used
in the MMAS is the same as in AS. MMAS updates its pheromones with the
global update rule of ACS, as shown in Equation (3) and Equation (4) and omits
the local update of all ants.

3.4 Ant System Local Best Tour

The last ant-based metaheuristic we tested is the Ant System Local Best Tour
(ASLBT) [35]. The main idea behind ASLBT is to remove a global observer and
let every single ant keep track of the best tour it has found so far. The pathfinding
algorithm of ants is the same as in AS, which can be seen in Equation (1). The
pheromone update rule is also the same rule as Equation (2) with the following
addition:

Δτk
ij(t) :=

{
Lk

best(t)
Lk(t)

if ant k used edge (i, j) in its latest tour

0 otherwise

144

Table 1. Distance functions used by Ant-based metaheuristics.

Distance function Mathematical definition

Manhattan Distance: η(i, j) := (i − j1) + (i − j2)

Euclidean Distance: η(i, j) :=
√

(i − j1)2 + (i − j2)2

Logarithmic Distance: η(i, j) :=
√

ln(i − j1) + ln(i − j2)

Constant: η(i, j) := 1

where Lk
best(t) is the best fitness value ant k has found until timestep t and Lk(t)

is the current fitness value corresponding to ant k.

4 Including Ant-Based Metaheuristics Into CGP

After reintroducing ant-based metaheuristics, we now describe our method
of integrating them into the CGP training algorithm. We use two different
pheromone matrices for optimising the CGP Graphs. One for optimising the
connections of the graph and one for optimising the functions of the individual
nodes.2

All entries of the connection pheromone matrix are initialised with the respec-
tive default τ0, τmax ∈ R

+
0 values as is typical for the different ant-based meta-

heuristics. Connections that are not allowed are initialised with 0 to stop ants
from generating illegal solutions.

An ant creates a genotype by iterating over every node i and choosing the
connection according to the probability

pj :=
[τ(i, j)]αAS · [η(i, j)]β∑
j [τ(i, j)]

αAS · [η(i, j)]β

where i, j are the two connections defined by the row index of the matrix. We
used the parameter αAS := 1 for all transition probability calculations as it was
proposed that way in [31] and [35] to limit the hyperparameter search space. The
parameter αACS used in ACS still needs to be optimised. We implemented four
different distance functions (see Table 1) to improve the optimizers capability.
Given their mathematical definition, i is the current node’s index, j1 is the index
of the first connection of node i, and j2 is the respective second connection. To
prevent the distance function from differentiating between different inputs, all
input nodes got the same index for calculation of the distance (the highest index
of all input nodes). Ideally, we would find one distance function that is good or
even optimal for all cases. However, we did not find one function to be ideal as
our hyperparametertuning selected different functions regularly.

2 We also looked at having only one pheromone matrix that combines optimizing the
graph and the individual nodes. This version showed worse performance on all tested
datasets and was therefore discarded.

145

After the pheromones of all connections have been updated, each ant iterates
through the function pheromone matrix and assigns functions according to the
probability pj := [τ(j)]∑

j [τ(j)]
, where j is the column index of the matrix. Here, no

distance function is used because the probability to use a specific function should
not be dependent on a randomly assigned index.

The update of the pheromone level after each iteration is done according to
the function defined by each algorithm. The only difference is, that for AS, ACS,
and MMAS Δτk

ij := 1
1+f(ak)

, where f(ak) is equal to the fitness of ant k. For the

ASLBT pheromone update Δτk
ij := fbest(ak)

f(ak)
is used, where fbest(ak) is equal to

the best fitness ant k has had so far. In all cases, Δτk
ij := 0, if the connection or

function was not used by ant k.
The available computation node functions for all problems are: sin (), cos (),

tan (), tanh (), ReLu, Sigmoid, exp (), ln (), abs(), ∗(−1), +, −, ∗, /. Please note
that the first ten functions are of arity one while the last four have an arity of
two. Therefore, the function matrix consists of 14 different rows.

5 Ant-Based Cartesian Genetic Programming

Our work focuses on analysing the impact on the performance of CGP when the
ES is substituted with different ant-based metaheuristics . There is already some
existing research in this area, which we will present in the following.

Hara et al. [15] introduced the idea of using an adapted Max-Min Ant Sys-
tem [31] for mutating the connections of CGP nodes and named their system
Cartesian Ant Programming (CAP). However, contrary to our work, they used
fixed alternating function genes that were not mutated during training. Also,
in comparison to standard Max-Min Ant Systems and our work, the distance
between the nodes was not taken into consideration for the transition rule of ants.
This allowed them to use a single ant that walks through the graph moving from
one output node to one of the input nodes. After that, the ant backtracks until
it reaches a node that has unconnected inputs and repeats the aforementioned
step of choosing a single next connection. This was repeated until a complete
CGP graph is built.

Kushida et al. [23] extended the work of Hara et al. [15] by introducing a
function to use the inter-node distance for the transition rule of the ants. They
also tried to enhance CAP by dynamically assigning functions to the compu-
tational nodes. For this, they used two different pheromone tables, one for the
connections and another one for the functions. They updated them with the same
rule as Hara et al. [15] and only used functions with arity two. Their approach
made the ant choose the two connections of each node independent of each other,
which is their main difference compared to our work. This independence might
lead to ants not choosing the best order of input nodes for the given function
because functions like subtraction or division are not associative.

146

At last, Luis et al. [24] introduced a rank-based ant algorithm for evolving
a CGP graph. For this, they effectively used three different pheromone tables.3
One is for the first connection of each node, another is for the second connection
of each node, and the last is the function of each node. They also omitted the idea
of Kushida et al. [23] to use a distance function to make the ants explore shorter
connections first. Their method lead to a higher diversity in the population and
therefore better adaptation to a dynamic environment. However, it did not lead
to a better fitness of the trained model than the approach of Hara et al. [15].

6 Experimental Setup and Evaluation

We logged the mean fitness of the population, the standard deviation of the
fitness, the mean absolute error on the regression problems, the best fitness found
until the given iteration, the best fitness of the current population, the active
nodes, and the number of function evaluations executed so far. To approximate
the convergence time of each algorithm, we used the mean number of function
evaluations it took to find the best solution during training mean(F2B).

Additionally, in order to compare the different configurations based on solid
statistical statements, we ranked the algorithms according to their final fitness
values on the test data. Throughout the benchmarks, the fitness is always posi-
tive, therefore, a t-distribution can not model the data well [22]. Hence, we per-
formed a Bayesian data analysis for the posterior distributions of our results. The
model to compare the algorithms is based on the Plackett-Luce model described
by Calvo et al. [6].4

6.1 CGP Variants and Configurations

To allow for a fair comparison a broad set of configurations have to be evaluated
in addition to the ant-based metaheuristics. CGP is mostly used in combination
with a (1+4)-ES with neutral search (we call it Standard; Sect. 2). However, the
authors Kaufmann and Kalkreuth [20,21] found that a different parametrization
of the (μ+λ)-ES helps CGP achieve its full potential. Thus, we include (μ+λ)-
ES into our experiments to ensure a fair comparison. To go one step further,
we also examine the impact of a (μ, λ)-ES as this approach is also very close
to the (μ + λ)-ES. Furthermore, the following three replacement strategies are
examined in conjunction with both ES:

– Neutral Search [28]
– Random Selection
– Fitness Uniform Selection Scheme (FUSS) [17]

3 By contrast, we use two pheromone tables for the functions and the connections,
respectively.

4 We used the Python library cmpbayes https://github.com/dpaetzel/cmpbayes.

https://github.com/dpaetzel/cmpbayes
https://github.com/dpaetzel/cmpbayes
https://github.com/dpaetzel/cmpbayes
https://github.com/dpaetzel/cmpbayes
https://github.com/dpaetzel/cmpbayes

147

For Standard, (μ + λ)-ES, and (μ, λ)-ES, we tested both Single and proba-
bilistic mutation.

To find the best hyperparameters for each metaheuristic, we used a Tree-
structured Parzen Estimator implemented in the Python library optuna [1]. All
configurations were tested four times with independent train–test splits and ran-
domly chosen seeds. After finding the best hyperparameters for a benchmark,
each CGP variant was run for 10 times with independent seeds and train–test
splits for our evaluation. Each algorithm has a different set of hyperparameters
that needs to be optimized. These hyperparameters are shown in Table 2.

Table 2. Hyperparameters tuned for each CGP version.

CGP variant Hyperparameters

Standard #nodes, mutation type ∈ {Single, probability}
(μ + λ), (μ, λ)#nodes, μ, λ, mutation probability p, elitist selection scheme,

mutation type ∈ {Single, probability}
AS, ASLBT #nodes, β, m, τ0, ρ, distance function
ACS #nodes, β, m, τ0, ρ, distance function, α, q0, global/local best
MMAS #nodes, β, m, τmin, τmax, ρ, distance function, global/local best

Table 3. An overview of the symbolic regression benchmarks used for testing. U [a, b, c]
means that c random samples are drawn from a uniform distribution in the range [a, b].
E[a, b, c] defines a grid from a to b with spacing c.

Name Variables Equation Data Set

Koza–3 1 x6 − 2 × x4 + x2 U [−1, 1, 20]

Pagie–1 2 1
1−x−4 + 1

1−y−4 E[−5, 5, 0.4]

Nguyen–7 1 ln(x + 1) + ln(x2 + 1)U [0, 2, 20]

To decrease the search space of ACS we use q0 := 0.9 as it was proposed
in [11]. For the Max-Min Ant System, we use the dynamic recalculation of τmin

and τmax proposed by Stützle et al. [31] to simplify the search space even further.

6.2 Benchmarks

To evaluate our metaheuristics, 21 different symbolic regression, regression, and
classification benchmarks were tested. We used the symbolic regression bench-
marks Koza–3, Pagie–1 and Nguyen–7 [34] (cf. Table 3). Furthermore, we present
results on the regression problems Forest Fires [8] and Wine Quality (White) [7]

148

and the classification problems Adult [4] and Chronic Kidney Disease [30].5
The input data of every regression and classification dataset was normalized by
implementing Min-Max Scaling on the range [0, 1]. The outputs of the regression
problems were standardized by using the Z-score.

Each dataset was split randomly using a Monte-Carlo Cross Validation with
an 80%–20% train–test split for ten runs each. For the regression and symbolic
regression problems, the mean squared error is used as the fitness function. The
classification problems are optimised with 1− |MCC| as fitness function, where
MCC is the Matthews Correlation Coefficient.

With these settings each CGP variant is classified as solved once the fitness
value reaches less than 0.0001. Furthermore, each ant-based algorithm is seen
as converged once there has not been an increase in fitness over the last 500
iterations. All algorithms are given a maximum of 100,000 iterations to finish
their optimisation process which should ensure that convergence is achieved for
even the slowest algorithm. Note that the number of iterations has to be multi-
plied by the population sizes to arrive at the number of function evaluations if
a comparison would be made on budgets.

6.3 Results

We will now discuss our results on all different CGP variations. As our bench-
mark featured 21 different datasets from different types of learning tasks which
generated a lot of data, we made a pre-selection and present the most interesting
results in Table 4.6 This article should be seen as a comprehensive benchmark
that focusses on more than one application niche. As all datasets led to the gener-
ally same outcomes and findings with regards to the performance of the different
optimizers, we are confident that out selection is made on sound assumptions
and does not take away from a fair comparison.7 However, we want to stress
that the datasets not featured in the table are still important for our evaluation
and discussion points.

5 Additionally, we tested on the following additional regression and classification
datasets (which are all publicly available as part of the UCI repository): Abalone,
Air Quality, Appliances Energy Prediction, Bike Sharing Dataset - (Day & Hour),
California Housing, Wine Quality (Red); Apnea-ECG, Bach Chorales Harmony, Car
Evaluation, Diabetes. Their respective results as well as our source code can be found
at https://github.com/trautwju/ACM_CGP.

6 We made our selection for Table 4 based on a number of points: First, we considered
datasets/learning tasks frequently used in the evolutionary computation community
and featured in GP publications, e.g. Koza–3. Then, we limited the number of classi-
fication and regression datasets to give an approximately even representation. Last,
we selected datasets that fulfil the criteria above and showed similar outcomes to
others of the respective groups.

7 Again, we refer to our GitHub https://github.com/trautwju/ACM_CGP and the
supplementary material for the results on the remaining datasets.

https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP
https://github.com/trautwju/ACM_CGP

149

Table 4. Results on a representative subset of our benchmark. We report the mean
number of function evaluations until the best solution was found mean(F2B), the mean
fitness and its standard deviation mean ± std(fit), total number of nodes #nodes, and
the probability of one configuration being the best pbest.

CGP Variant mean(F2B) mean ± std(fit) #nodes pbest

Koza–3 Standard 49,003 0.00 ± 0.00 50 0.311

(μ + λ)-ES 67,528 0.00 ± 0.00 300 0.273

(μ, λ)-ES 1,394,913 0.00 ± 0.00 650 0.270

AS 212 0.01 ± 0.00 400 0.011

ACS 126 0.02 ± 0.04 200 0.036

MMAS 10,486 0.00 ± 0.00 250 0.054

ASLBT 162 0.00 ± 0.00 500 0.046

Nguyen–7 Standard 152,306 0.00 ± 0.00 300 0.189

(μ + λ)-ES 261,586 0.00 ± 0.00 450 0.356

(μ, λ)-ES 73,027 0.00 ± 0.00 50 0.396

AS 771 0.18 ± 0.00 100 0.027

ACS 1,201 0.59 ± 0.37 400 0.008

MMAS 5,570 0.27 ± 0.22 400 0.018

ASLBT 367 0.63 ± 0.47 800 0.005

Pagie–1 Standard 324,146 0.00 ± 0.00 950 0.301

(μ + λ)-ES 2,019,017 0.00 ± 0.00 450 0.417

(μ, λ)-ES 2,979,659 0.01 ± 0.02 800 0.221

AS 8,874 0.50 ± 0.17 350 0.006

ACS 317 0.37 ± 0.21 100 0.016

MMAS 10,795 0.27 ± 0.06 350 0.025

ASLBT 410 0.42 ± 0.16 550 0.015

Forest Fires Standard 253,605 0.41 ± 0.42 50 0.089

(μ + λ)-ES 1,731,673 0.61 ± 0.90 800 0.055

(μ, λ)-ES 1,512,850 0.06 ± 0.00 550 0.647

AS 384 0.21 ± 0.00 100 0.14

ACS 192 2.98 ± 0.04 660 0.075

MMAS 10,648 0.44 ± 0.86 700 0.114

ASLBT 451 1.18 ± 1.39 300 0.041

Wine Quality (White) Standard 389,552 0.74 ± 0.03 800 0.233

(μ + λ)-ES 2,850,189 0.75 ± 0.17 300 0.218

(μ, λ)-ES 3,419,420 0.70 ± 0.07 550 0.372

AS 155 0.98 ± 0.00 500 0.089

ACS 669 0.93 ± 0.06 450 0.052

MMAS 6,024 1.00 ± 0.03 200 0.015

ASLBT 1,125 1.00 ± 0.06 200 0.021

Chronic Kidney Dis. Standard 98,856 0.06 ± 0.06 400 0.255

(μ + λ)-ES 604,656 0.05 ± 0.02 600 0.261

(μ, λ)-ES 1,050,944 0.02 ± 0.02 200 0.406

AS 506 0.55 ± 0.31 250 0.008

ACS 23 1.00 ± 0.00 350 0.003

MMAS 9,467 0.27 ± 0.05 50 0.044

ASLBT 590 0.38 ± 0.12 300 0.022

Adult Standard 342,400 0.22 ± 0.00 350 0.265

(μ + λ)-ES 3,192,479 0.22 ± 0.00 600 0.350

(μ, λ)-ES 2,358,825 0.22 ± 0.01 300 0.302

AS 3,250 0.51 ± 0.26 500 0.005

ACS 1,596 0.25 ± 0.06 550 0.055

MMAS 12,090 0.31 ± 0.11 100 0.008

ASLBT 1,520 0.40 ± 0.27 300 0.015

150

Symbolic Regression. On the symbolic regression benchmarks, the ant-based
metaheuristics perform worse on every problem other than Koza–3. On Koza–3,
all CGP variations apart from AS and ACS are able to solve the problem, but
Standard, (μ+ λ)-ES, and (μ, λ)-ES still outperform all other metaheuristics.

On the other symbolic regression problems all ant-based algorithms clearly
show a worse performance than Standard, (μ + λ)-ES, and (μ, λ)-ES. ACS
shows a relatively high standard deviation of the fitness value and a very low
F2B as a locally optimal ant is found early on but never really improved upon.
This is due to using the locally or globally best ant to update the pheromone
table which apparently restricts the search space too much.

Still, the high standard deviation shows that it is possible for the ants to
find better solutions. A possible improvement here is to implement some sort
of restart or pheromone smoothing algorithm to reset the search and help ACS
escape a local fitness minimum. MMAS shows a high standard deviation on
Nguyen–7 which is unexpected because setting τmin and τmax should help with
exploring the search space and our tuning process did not find values for these
constants that achieved better results.

Regression. On the forestfire dataset, ASLBT did converge fast, but mostly
ended up with a bad fitness score, although some runs did find good solutions
quickly. Another interesting result is that AS outperforms Standard on Forest
Fires. However, the wine quality white dataset shows that the ant-based meta-
heuristics often times cannot compete with the already established algorithms.

Classification. The classification problems show a similar result. Here, the
ant-based metaheuristics can compete with Standard, (μ + λ) and (μ, λ)-ES
in some runs but mostly reach a worse fitness score. However, the ant-based
metaheuristics did converge considerably faster even when finding good results.

General Discussion. The additional implementations of the modified replace-
ment schemes showed worse or at best only similar result to the established
neutral search. Therefore, it seems to not have any positive impact to include
further options which confirms the long-standing practice of using neutral search
in CGP. The (μ, λ)-ES showed a significantly larger mean(F2B) than the Stan-
dard or (μ + λ)-ES on all problems apart from Nguyen–7, but showed no sig-
nificant improvement in fitness other than on Forest Fires. The (μ + λ)-ES also
had a larger mean(F2B) than Standard without an improvement in fitness.
Probabilistic mutation outperformed Single most of the times with a well chosen
mutation probability.

The optimal hyperparameters for each ant-based metaheuristic seem to be
very dependent on the given problem, therefore making it impossible to decide on
one generalist hyperparameter configuration. On most problems, the use of the
globally best ant to update the pheromone tables for ACS and MMAS showed
significantly better performance than using the iteration’s best. Therefore, it

151

seems feasible to remove this hyperparameter from the search space for future
tuning. Looking at the different distance functions, most commonly the constant
distance lead to the best result, closely followed by the logarithmic distance.
When the number of nodes are examined, we can not see any trends between
the different CGP configurations. Similarly to the other hyperparameters, the
required number of nodes are completely dependent on the given problem state-
ment in combination with its respective CGP variant.

Despite the high variations of achieved fitnesses during testing, the ant-based
metaheuristics showed small standard deviations during the training process.
This comes from the fact that they assume that the optimal solution of a prob-
lem is very close to the locally best found solution so far. Furthermore, the biased
exploration, which all ant-based algorithms use, increases the possibility of gen-
erating the same solution in different iterations because there is no guarantee an
active node has been changed. Therefore, it could be argued that the optimal
graph in CGP requires a lot more exploration of the search space.

Early during training, MMAS does seem to suffer less from a lack of explo-
ration which is in line with the original proposal of the system being better at
exploring the search space. This is the case because τmin makes the ants choose
non-optimal connections and functions more often. The lack of exploration in
later iterations could be caused by our use of the pheromone update function,
which might put too much emphasis on good solutions early on and therefore
leading to a loss of exploration of other solutions.

Another interesting discovery is that the intensive tuning of the pheromone
evaporation rate ρ did not always positively influence the exploration and
exploitation balance of the search space. Instead, exploitation seems to be too
high as all ant-based metaheuristics except MMAS converge within the first few
hundred iterations. This hypothesis is supported by the high standard deviation
of their fitness values: Given better exploration, ant-based CGP should be able
to converge towards a much better mean fitness value and do so more consis-
tently. However, we can assume that—judging from the very high mean(F2B)’s
of the ES variants—they might very well still be faster than their competition.

As stated at the beginning of this section, we also performed extensive sta-
tistical testing to confirm the results. Even though the raw numbers were quite
expressive we added the tests to adhere to good scientific practices and encour-
age future researchers to do the same, especially when the results are not this
clear. What can be seen from the tests (pbest in Table 4) is that the probability
of an ant-based CGP being the best according to fitness is almost zero. In fact,
we reach typically suggested thresholds for automated decision making (e.g. at
least 80% according to Benavoli et al. [5]) to eliminate ant-based metaheuristics
from consideration as the best optimizer of a CGP graph. The ES-based CGP
approaches show similar probabilities to each other and overall, there is no clear
picture, but we can discern a small tendency towards using the (μ, λ)-ES with
elitism. However, we want to stress that this is also by far the slowest approach
we tested.

152

7 Conclusion

In this work, we investigated the effect different ant-based metaheuristics have on
CGP performance. We compared these algorithms with a standard CGP variant
and the commonly used (μ + λ)-ES and (μ, λ)-ES.

In our testing, we found that the ant-based metaheuristics show no significant
benefit with regards to achieved fitness. While previous work [15,23,24] shows
similar results of the Max-Min ant system on chosen symbolic regression prob-
lems, we came to the conclusion that using ant-based metaheuristics most of the
time leads to an overall worse result. Even though the introduction of different
distance functions lead to significantly more active nodes over the CGP graph,
this increase of active nodes does not have any positive impact on the fitness
and is barely visible in the number of nodes needed for the optimal solution.

One redeeming quality of ant-based metaheuristics is their fast convergence
by a factor of 100 or more compared to ES-based CGP approaches (which could
also lead to premature convergence). Thus, given the same training budget for
all configurations, more CGP graphs optimized by ant-based metaheuristics can
be generated. Paired with the high standard deviation of their fitness values,
ant-based CGP has a high possibility to generate a good solution with only a
fraction of the computational power needed. We would recommend that the ant-
based CGPs will be run multiple times with far fewer iterations. Besides multiple
independent runs, a possible strategy is to implement a random restart scheme
where the pheromone matrices and the random seed are reset after some set
budget was used. If the current best solution is now placed into an archive, it is
still available after training. We assume that some of the solutions in the archive
will be far off the optimal one, similarly to what we did experience in some of
our runs. Nonetheless, there should be solutions that do fit the learning task well
and that all of this can be achieved with a number of function evaluations equal
to the ESs’.

Interestingly, a premature convergence contradicts the claims of some ant-
based metaheuristics. For example, the Max-Min Ant System introduces hyper-
parameters that should improve exploration. This, however, seems to not be
enough to improve graphs defined by CGP. Similar notions of ants often stuck
in local optima were put forth by Prakasam and Savarimuthu [29]. The problem
of locality of the search performed could also be investigated more in-depth. This
could provide more insights into the behaviour of ant-based CGP, and why it
performs badly.

Therefore, for additional future works, some improvements for ant-based
metaheuristics that were proposed for optimization tasks could be tested. Scal-
ing the value of β down over the course of iterations was proposed by Kushida et
al. [23]. This leads to ants exploring shorter connections early and being able to
choose longer connections later in the training, which might improve search space
exploration. Furthermore, algorithms that help ACS escape local minima—like
pheromone trail smoothing [31] or 2 Phase reinitialisation [2]—should be tested
to analyse if ant-based metaheuristics can improve the performance of CGP. At
last, a different pheromone update function could be used to stop ants from

153

landing in a local fitness minimum early on. Another possibility is to introduce
ideas from Artificial Bee Colony (ABC) [19]—or even completely substitute the
ant-based metaheuristics. Because the population of ABC features specialised
individuals with different tasks (individuals for exploration, exploitation, etc.),
ABC may be better suited for optimizing graphs defined by CGP [3].

Overall, we find that our rigorous benchmarking rejects the use of ant-based
metaheuristics in the same way we would use ESs in CGP. Still, there are clear
paths to exploit the orders of magnitude faster convergence speeds towards
achieving better results than previously possible. This becomes especially pro-
nounced when computation budgets are limited.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

2. Altiparmak, F., Karaoglan, I.: A genetic ant colony optimization approach for
concave cost transportation problems. In: 2007 IEEE Congress on Evolutionary
Computation, pp. 1685–1692 (2007). https://doi.org/10.1109/CEC.2007.4424676

3. Baykasoǧlu, A., Özbakir, L., Tapkan, P.: Artificial bee colony algorithm and its
application to generalized assignment problem. In: Chan, F.T., Tiwari, M.K. (eds.)
Swarm Intelligence, chap. 8. IntechOpen, Rijeka (2007). https://doi.org/10.5772/
5101

4. Becker, B., Kohavi, R.: Adult. UCI Machine Learning Repository (1996). https://
doi.org/10.24432/C5XW20

5. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial
for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res.
18(1), 2653–2688 (2017)

6. Calvo, B., Ceberio, J., Lozano, J.A.: Bayesian inference for algorithm ranking anal-
ysis. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. GECCO ’18, pp. 324–325. Association for Computing Machinery, New
York (2018). https://doi.org/10.1145/3205651.3205658

7. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Wine Quality. UCI
Machine Learning Repository (2009). https://doi.org/10.24432/C56S3T

8. Cortez, P., Morais, A.: Forest Fires. UCI Machine Learning Repository (2007).
https://doi.org/10.24432/C5D88D

9. Cui, H., Heider, M., Hähner, J.: Positional bias does not influence cartesian genetic
programming with crossover. In: Affenzeller, M., et al. (eds.) Parallel Problem
Solving from Nature – PPSN XVIII, pp. 151–167. Springer, Cham (2024). https://
doi.org/10.1007/978-3-031-70055-2_10

10. Cui, H., Pätzel, D., Margraf, A., Hähner, J.: Weighted mutation of connections to
mitigate search space limitations in cartesian genetic programming. In: Proceedings
of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms.
FOGA ’23, pp. 50–60. Association for Computing Machinery, New York (2023).
https://doi.org/10.1145/3594805.3607130

11. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997).
https://doi.org/10.1109/4235.585892

https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.1109/CEC.2007.4424676
https://doi.org/10.5772/5101
https://doi.org/10.5772/5101
https://doi.org/10.5772/5101
https://doi.org/10.5772/5101
https://doi.org/10.5772/5101
https://doi.org/10.5772/5101
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C5D88D
https://doi.org/10.24432/C5D88D
https://doi.org/10.24432/C5D88D
https://doi.org/10.24432/C5D88D
https://doi.org/10.24432/C5D88D
https://doi.org/10.24432/C5D88D
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1007/978-3-031-70055-2_10
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892

154

12. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41
(1996). https://doi.org/10.1109/3477.484436

13. Fang, W., Gu, M.: FMCGP: frameshift mutation cartesian genetic programming.
Complex Intell. Syst. 7(3), 1195–1206 (2021). https://doi.org/10.1007/s40747-020-
00241-5

14. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic
programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş, Hu, B.
(eds.) Genetic Programming, pp. 61–72. Springer, Heidelberg (2013)

15. Hara, A., Watanabe, M., Takahama, T.: Cartesian ant programming. In: 2011
IEEE International Conference on Systems, Man, and Cybernetics, pp. 3161–3166
(2011). https://doi.org/10.1109/ICSMC.2011.6084146

16. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: mixed type
cartesian genetic programming. In: Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation. GECCO ’12, pp. 751–758. Association
for Computing Machinery, New York (2012). https://doi.org/10.1145/2330163.
2330268

17. Hutter, M., Legg, S.: Fitness uniform optimization. IEEE Trans. Evol. Comput.
10(5), 568–589 (2006). https://doi.org/10.1109/TEVC.2005.863127

18. Kalkreuth, R.: Two new mutation techniques for cartesian genetic programming.
In: Proceedings of the 11th International Joint Conference on Computational Intel-
ligence, IJCCI 2019, pp. 82–92. SCITEPRESS - Science and Technology Publica-
tions, Lda, Setubal, PRT (2019). https://doi.org/10.5220/0008070100820092

19. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

20. Kaufmann, P., Kalkreuth, R.: An empirical study on the parametrization of carte-
sian genetic programming. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion. GECCO ’17, pp. 231–232. Association for Com-
puting Machinery, New York (2017). https://doi.org/10.1145/3067695.3075980

21. Kaufmann, P., Kalkreuth, R.: On the parameterization of cartesian genetic pro-
gramming. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8
(2020). https://doi.org/10.1109/CEC48606.2020.9185492

22. Kruschke, J.K.: Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen.
142(2), 573–603 (2013). https://doi.org/10.1037/a0029146

23. Kushida, J.I., Hara, A., Takahama, T., Nagura, S.: Cartesian ant programming
with transition rule considering internode distance. In: 2016 IEEE 9th International
Workshop on Computational Intelligence and Applications (IWCIA), pp. 101–105
(2016). https://doi.org/10.1109/IWCIA.2016.7805756

24. Luis, S., dos Santos, M.V.: On the evolvability of a hybrid ant colony-cartesian
genetic programming methodology. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-
Uyar, A.Ş, Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 109–120. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_10

25. Margraf, A., Stein, A., Engstler, L., Geinitz, S., Hahner, J.: An evolutionary learn-
ing approach to self-configuring image pipelines in the context of carbon fiber
fault detection. In: 2017 16th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 147–154 (2017). https://doi.org/10.1109/ICMLA.
2017.0-165

26. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions
using a cartesian genetic programming approach. In: Proceedings of the 1st Annual

https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1109/ICSMC.2011.6084146
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.1109/TEVC.2005.863127
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0008070100820092
https://doi.org/10.5220/0008070100820092
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1109/IWCIA.2016.7805756
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1007/978-3-642-37207-0_10
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165
https://doi.org/10.1109/ICMLA.2017.0-165

155

Conference on Genetic and Evolutionary Computation. GECCO’99, vol. 2, pp.
1135–1142. Morgan Kaufmann Publishers Inc., San Francisco (1999)

27. Miller, J.F.: Cartesian genetic programming. In: Miller, J.F. (ed.) Cartesian
Genetic Programming. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-17310-3_2

28. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program
Evol. Mach. 21(1), 129–168 (2020)

29. Prakasam, A., Savarimuthu, N.: Metaheuristic algorithms and polynomial turing
reductions: a case study based on ant colony optimization. In: Proceedings of
the International Conference on Information and Communication Technologies,
ICICT, vol. 46, pp. 388–395. Procedia Computer Science (2015). https://doi.org/
10.1016/j.procs.2015.02.035

30. Rubini, L., Soundarapandian, P., Eswaran, P.: Chronic Kidney Disease. UCI
Machine Learning Repository (2015). https://doi.org/10.24432/C5G020

31. Stützle, T., Hoos, H.H.: Max-min ant system. Future Gener. Comput. Syst. 16(8),
889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1

32. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep con-
volutional neural networks using cartesian genetic programming. Evol. Comput.
28(1), 141–163 (2020). https://doi.org/10.1162/evco_a_00253

33. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using Carte-
sian Genetic Programming. Genet. Program Evol. Mach. 16(4), 531–558 (2015).
https://doi.org/10.1007/s10710-015-9244-6

34. White, D.R., et al.: Better GP benchmarks: community survey results and pro-
posals. Genet. Program Evol. Mach. 14(1), 3–29 (2013). https://doi.org/10.1007/
s10710-012-9177-2

35. White, T., Kaegi, S., Oda, T.: Revisiting elitism in ant colony optimization. In:
Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 122–133. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_11

https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.1016/j.procs.2015.02.035
https://doi.org/10.24432/C5G020
https://doi.org/10.24432/C5G020
https://doi.org/10.24432/C5G020
https://doi.org/10.24432/C5G020
https://doi.org/10.24432/C5G020
https://doi.org/10.24432/C5G020
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11
https://doi.org/10.1007/3-540-45105-6_11

	Ant-Based Metaheuristics Struggle to Solve the Cartesian Genetic Programming Learning Task
	1 Introduction
	2 Cartesian Genetic Programming
	2.1 Representation
	2.2 Common Evolutionary Operators of CGP

	3 Ant-Based Metaheuristics
	3.1 Ant System
	3.2 Ant Colony System
	3.3 Max-Min Ant System
	3.4 Ant System Local Best Tour

	4 Including Ant-Based Metaheuristics Into CGP
	5 Ant-Based Cartesian Genetic Programming
	6 Experimental Setup and Evaluation
	6.1 CGP Variants and Configurations
	6.2 Benchmarks
	6.3 Results

	7 Conclusion
	References

