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Abstract
For the orthogonal Grassmannian X = OGr(3, N) of 3-dimensional subspaces in
a symplectic vector space of dimension N = 2n + 1, we construct an exceptional
Lefschetz collection in its bounded derived category of coherent sheaves Db(X). For
the case n = 4 or equivalently N = 9, we present an exceptional Lefschetz collection
of maximal expected length.
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Chapter 1

Introduction

1.1 Motivation

For a smooth projective variety X, its associated bounded derived category of coherent
sheaves, namely

Db(X),

is a highly interesting homological invariant. I refer you to [5, 8, 23] and references
therein to gain an overview to this topic and the several possible perspectives. Let us
just sketch two of the latter and hence catch a glimpse: First, the bounded derived
category of a projective variety provides data about the underlying base space. For
instance, under suitable conditions as in [6], we can reconstruct X from Db(X).
Second, the bounded derived category of a projective variety can carry its own
geometric structure. For instance, in [19, 24], we can assign notions such as dimension
or orientation to the entity Db(X) or suitable components.

In [9, 10], Dubrovin conjectures a relation between the bounded derived category of
coherent sheaves over X and its (big) quantum cohomology: The first of three parts
proposes that Db(X) permits a full exceptional collection if and only if BQH•(X) is
generically semisimple. Emanating from this, in [26, Conjecture 1.3.], Kuznetsov
and Smirnov refine the test area for smooth Fano varities of Picard rank r and with
index m by an analogy between the µm-action on the (canonical) quantum spectrum
QSX := Spec(QH•(X) ⊗Q[q1,··· ,qr ] C) on the one side and the twist by OX(1) on
Lefschetz exceptional collections in Db(X) on the other side. The advantage of
this approach relies on the fact that the small quantum cohomology QH•(X) is much
easier to compute in contrast to the big one BQH•(X). In this thesis, we construct
exceptional Lefschetz collections such that their patterns might be in accordance with
the prediction arising from the corresponding (small) quantum cohomologies.

1.2 State of the art

Given an arbitrary homogeneous variety X = G/P, we can break it down into an
iterated fibration such that each fibre is of the form G(i)/P(i) where G(i) is semi-simple
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and P(i) ⊆ G(i) is a maximal parabolic subgroup. Due to Orlov’s projectivization
formula in [29] we can establish a full exceptional collection on Db(G/P) whenever
we have for each fibre such collection on Db(G(i)/P(i)). Thus, we are left to consider
minimal homogeneous varieties X = G/P – that is, the algebraic group G is simple
and the corresponding parabolic subgroup P ⊆ G is maximal.

There is a general algorithm in [25] arising from a representation-theoretic study
of G to construct an exceptional collection of maximal expected length (Kuznetsov-
Polishchuk collection): First, we take specific subsets in the cone of L-dominant
weights, the so-called exceptional blocks B. Then we form the exceptional subcollec-
tions {Uλ}λ∈B in the G-equivariant bounded derived category Db

G(G/P) of coherent
sheaves and next we set up the associated right dual exceptional subcollections
{Eλ}λ∈B in Db

G(G/P). Finally, dropping off the G-equivariant structure yields (mirac-
ulously) exceptional subcollections in Db(G/P). The desired exceptional collection
of maximal expected length is obtained by merging the previous subcollections
{Eλ}λ∈B. Unfortunately, this collection has not yet been proven to be full unless for a
few sporadic cases.

Besides the (systematic) approach we sketched before, in the past the extensive re-
search on homogeneous varieties X = G/P has come up with various subfamilies
where it is possible to construct an exceptional collections which are even full. If we
confine ourselves to a subfamily of homogeneous varieties with specific geometric
and/or representation-theoretic properties, this can provide us with suitable condi-
tions to prove fullness. The website [2] serves as a periodic table of (generalized)
Grassmannians.

An: In [1], Beilinson constructed his famous pioneering minimal full exceptional
Lefschetz collection O,O(1), · · · ,O(n) on the projective space Pn.
In [18], Kapranov established a full exceptional collection on the Grassmannian
Gr(k, n + 1). These collections are far from being minimal if one implements a
Lefschetz structure. Later, in [13], Fonarev presented two exceptional Lefschetz
collections: the first one is proven to be full but only almost minimal, while the
second one is conjectured to be full and minimal.

Bn: In case of the quadric space Q2n−1, let me also refer you to [18].
In [20], Kuznetsov implemented a collection on OGr(2, 2n + 1). Its pattern
seems to extend the aforementioned Kapranov’s collection on Q2n−1 = OGr(1, 2n+

1) in some sense. In this thesis, we are going to partially advance in this direc-
tion as we will consider the cases OGr(3, 2n + 1).
If k = n, then OGr(n, 2n + 1) is isomorphic to the spinor 1

2 n(n + 1)-fold
OGr+(n + 1, 2n + 2). For the cases n ∈ {3, 4, 5}, let me refer you to the corre-
sponding cases appearing in type Dn+1.

Cn: The spaces SGr(1, 2n) = P2n−1 are covered by Beilinson’s collection. For SGr(2, 2n),
we proceed analogously as before in the type Bn: See again [20], where Kuznetsov
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extends the collection of the aforementioned case on SGr(1, 2n) to SGr(2, 2n).
Furthermore, the following sporadic cases are covered: For SGr(3, 8) let me
refer you to [14], and for SGr(3, 10) to [28].
If k = n, i.e. the Lagrangian Grassmannian LGr(n, 2n), Fonarev elaborated a
full exceptional collection for the Lagrangian Grassmannians in general in [12].

Dn: For the quadric space Q2n−2, let me refer you to Kapranov’s collection in [18], as
before.
The orthogonal Grassmannian OGr(2, 6) is isomorphic to the projective space
P3 and therefore let me refer you to Beilionson’s collection in type A3. For
higher n, let me refer you again to Kuznetsov’s collection in [26].
If k = n, then we consider the spinor 1

2 (n − 1)n-fold OGr+(n, 2n). If k = n = 3,
i.e. the spinor 3-fold OGr+(3, 6) is isomorphic to the projective space P3, we
fall back to Beilinson’s collection. If k = n = 4, i.e. the spinor 6-fold OGr+(4, 8)
is isomorphic to the quadric 6-fold Q6, we need to recall the corresponding
collection. If k = n = 5, i.e. the spinor 10-fold OGr+(5, 10), let me refer you
to [22]. Furthermore, in [27], Moschetti and Rampazzo linked this collection
with the one arising from the general algorithm of [25] via suitable mutations.
If k = n = 6, i.e. the spinor 15-fold OGr+(6, 12), let me refer you to [4].

E6: If k = 1, i.e. the Cayley plane OP2, or if k = 6, i.e. the dual Cayley plane OP2,∨,
in [11], Faenzi and Manivel constructed a full strongly exceptional collection.

F4: In [30], Smirnov came up with a full rectangular Lefschetz collection on the ad-
joint Grassmannian of type F4, namely on F4/P1.
In [3], Belmans, Kuznetsov and Smirnov provided a full exceptional collec-
tion on the coadjoint Grassmannian of type F4, namely on F4/P4. Indeed,
they restricted the Faenzi–Manivel collection on the Cayley plane to a suitable
hyperplane section.

G2: This space G2/P1 can be realized as quadric 5-fold Q5 and therefore let me refer
you to Kapranov’s collection in [18].
Kuznetsov covered the sporadic case G2/P2 in [22].

1.3 Results

First, we initialize our setting for X = OGr(3, 2n + 1) in chapter 2 and prepare auxil-
iary calculations in chapter 3.
Thereafter, we construct exceptional collections in the bounded derived category
Db(X): the tautological subcollection in chapter 4 (Propositions 4.1.2, 4.2.2, 4.3.4)
and the spinor one in chapter 5 (Proposition 5.0.10). Then, we merge the above
subcollections in chapter 6 (Proposition 6.1.2 or 6.2.2 respectively).
In chapter 7, we focus on the case X = OGr(3, 9) and develop an exceptional collec-
tion of maximal expected length for it (Proposition 7.2.1).
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Finally, in chapter 8, we present an outlook on open issues, namely the fullness of our
collection on X = OGr(3, 9) as well as its residual part.
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Chapter 2

Preliminaries

In the following, we introduce the required notions and recall the necessary founda-
tions. For further details, refer to [17, 15].

2.1 Notation

We denote by ei the ith standard basis vector.

We will write intervals as the following:

Z[a,b] = [a, b] = { x ∈ Z : a ≤ x ≤ b }
Q[a,b] = { x ∈ Q : a ≤ x ≤ b }
R[a,b] = { x ∈ R : a ≤ x ≤ b }

2.2 Setting

We fix an algebraically closed field K of characteristic zero, some integer n ≥ 4
and N := 2n + 1. Let V be a N-dimensional vector space over K equipped with a
non-degenerate, symmetric bilinear form ⟨−,−⟩. Let X = OGr(3, V) be the space
parameterizing 3-dimensional isotropic subspaces in V. It is well-known that X is
a Fano variety and that its Picard group Pic(X) is torsion free and of rank 1. We
compute the following invariants of X straightforward:

d := dim(X) = 6n − 12,

wmax := indx(X) = 2n − 3, and

lmax := rk K0(X) =
4
3
(n − 2)(n − 1)n

=
4
3

n3 − 4n2 +
8
3

n.

(2.1)
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2.3 Bounded derived category

Our main object of interest is the bounded derived category of coherent sheaves on
X, i.e.

Db(X) = Db(Coh(X)). (2.2)

Given an object E from Db(X), the functor

Db(pt) := Db(Vec/K) → Db(X) via V• 7→ V• ⊗ E (2.3)

is fully faithful if and only if E is exceptional. This means, its automorphism group
contains only scalar multiplication and there are no higher self-extensions; or in
formulas

HomDb(X)(E, E) = Ext•(E, E) = K[0]. (2.4)

We say an object E2 is right orthogonal to another one E1 or likewise E1 is left orthogonal
to E2 if there are no morphisms from E2 to E1, i.e.

HomDb(X)(E2, E1) = Ext•(E2, E1) = 0. (2.5)

In this case, we write briefly E2 ⊥ E1. We explicitly mention that this relation is not
symmetric. A collection of l many objects E1, · · · , El from Db(X) is called exceptional
if

1. any object Ei is exceptional, and

2. for any pair i < j of indices, Ej is right orthogonal to Ei.

In this case, the full triangulated subcategory D = ⟨E1, · · · , El⟩ ⊆ Db(X) admits a
semi-orthogonal decomposition. We call this collection full if D coincides with Db(X).
Due to the Euler pairing χ : Db(X)× Db(X) → Z via

(E ′′, E ′) 7→ ∑
i
(−1)i dim(Exti(E ′′, E ′) ), (2.6)

we see that lmax is an upper bound for the length l of any exceptional collection, and
moreover reaching it is a necessary (but not sufficient) criterion for fullness – see
[16, Proposition 3.5.] for further details. We equip such a collection with a Lefschetz
structure by establishing the following data; see [21]:

Twist Let τ be an automorphism on Db(X). In later sections, it will be tensoring
with an ample generator OX(1) of the Picard group. Hence, we already write
E(m) for τmE.

Support partition Let h1 ≥ h2 ≥ · · · ≥ hw ≥ 0 be a descending sequence of integers
summing up to l.
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It is Ei = Ey(x − 1) whenever i = ∑x−1
c=1 hc + y for x ∈ [1, w] and y ∈ [1, hx]. This

means, we arrange the objects of the collection in the following grid:
...

...
E2 E2(1) · · ·
E1 E1(1) · · ·

 . (2.7)

The columns are called blocks and the xth one has height hx. The rows are called
orbits and the yth one has width/length wy = max{x : y ≤ hx}. We mention for Fano
varieties that its Fano index is an upper bound for the length of the orbits by Serre
duality.

Remark 2.3.1. In the following, we label the objects of a collection with the index i if
we want to emphasize the total ordering (without the data of a Lefschetz structure);
and otherwise, we label them with the indices x, y if we want to highlight the 2D grid
(arising from some Lefschetz structure).

2.4 Homogeneous variety

We can see X as realisation of the quotient G/P where G is the universal covering
(hence simply connected) of the simple algebraic group SO(V) of Dynkin type Bn

and P is the maximal parabolic subgroup P3 ⊆ G associated to the third node in the
Dynkin diagram

1 2 3 4
if n = 4,

1 2 3 4 5
if n = 5, or

1 2 3 4 n − 1 n
if n ≥ 6.

(2.8)

In detail, we fix a maximal torus T and construct in a first step the corresponding
negative Borel subgroup B− by adding all negative roots of G to the maximal torus T.
Then we construct the parabolic subgroup P = P3 in a second step by extending B−

along all positive roots except the third one. Hence, we have inclusions

T ⊆ B− ⊆ P ⊆ G. (2.9)

Similar, we obtain the positive Borel subgroup B+ from the maximal torus T by
involving the positive roots.

Since the parabolic subgroup P is a semi-direct product of its unipotent radical UP

acting on its quotient, it admits the splitting short exact sequence

0 → UP → P → L → 0. (2.10)
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Accordingly, this gives us the Levi subgroup L := P/UP of the parabolic subgroup P
containing the maximal torus T. It is a reductive group and its semi-simple part is of
Dynkin type

A2 × A1 – i.e.
1 2 4

if n = 4,

A2 × B2 – i.e.
1 2 4 5

if n = 5, or

A2 × Bn−3 – i.e.
1 2 4 n − 1 n

if n ≥ 6.

(2.11)

The intersection B− ∩ L is a negative Borel subgroup in the Levi subgroup L and
analogously B+ ∩ L a positive one.

We equip Qn with the standard scalar product

v1 · v2 =
n

∑
j=1

v1,jv2,j (2.12)

where vi = (vi,1, · · · , vi,n) ∈ Qn for i ∈ {1, 2} and we generate the root lattice QG of
the algebraic group G as a lattice by the simple roots

αi = ei − ei+1 for i ∈ {1, · · · , n − 1} and αn = en. (2.13)

The root lattice QL ⊆ QG of the Levi subgroup L consists of the linear combinations
of α1 and α2 as well as α4, ... , αn.

The weight lattice PG of G is generated in Qn by the fundamental weights

ωi =
i

∑
j=1

ej for i ∈ {1, · · · , n − 1} and ωn =
1
2

n

∑
j=1

ej. (2.14)

This means, a tuple λ = (λ1, λ2, λ3, · · · , λn) ∈ Qn describes a weight of G if and only
if

λi − λi+1 ∈ Z for i ∈ {1, · · · , n − 1} and λn ∈ 1
2

Z. (2.15)

In this context, let us reformulate that the root lattice QL of the Levi subgroup L
consists of those roots which are orthogonal to the third fundamental weight ω3 with
respect to the scalar product (2.12). We denote by P+

G the cone of dominant weights
with respect to B+. Concretely, a weight λ = (λ1, λ2, λ3, · · · , λn) is G-dominant if
and only if

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn ≥ 0. (2.16)

Obviously from (2.14), the sum of the fundamental weights is given by

ρG =
n

∑
i=1

ωi = (n − 1
2

, n − 3
2

, n − 5
2

, · · · ,
1
2
). (2.17)

Thanks to the embedding L ⊆ G, we identify the weight lattice PL of the Levi
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subgroup L with the weight lattice PG. Consequently, P+
L is the cone of dominant

weights with respect to B+ ∩ L and we have

P+
G ⊆ P+

L . (2.18)

A weight λ = (λ1, λ2, λ3, · · · , λn) is L-dominant if and only if

λ1 ≥ λ2 ≥ λ3 and λ4 ≥ · · · ≥ λn ≥ 0. (2.19)

The Weyl group WG of G is generated by the simple reflections

(λ1, λ2, λ3, · · · , λn)
w17−→ (λ2, λ1, λ3, · · · , λn),

(λ1, λ2, λ3, · · · , λn)
w27−→ (λ1, λ3, λ2, · · · , λn),
...

(λ1, λ2, λ3, · · · , λ4)
wn−17−−→ (λ1, λ2, · · · , λn, λn − 1), and

(λ1, λ2, λ3, · · · , λ4)
wn7−→ (λ1, λ2, λ3, · · · , λn−1,−λn).

(2.20)

Let ℓG : WG → Z be the length function on the Weyl group WG, i.e. if w = wi1 · · ·win

is the minimal representation by simple reflections, then we have ℓGw = n. The Weyl
group WL of L is generated by w1 and w2 as well as w4, ..., wn. The presentations
(2.20) imply that the longest elements act as

(λ1, λ2, λ3, · · · , λn)
wG,∞7−−→ (−λ1,−λ2,−λ3,−λ4, · · · ,−λn) (2.21)

and
(λ1, λ2, λ3, · · · , λn)

wL,∞7−−→ (λ3, λ2, λ1,−λ4, · · · ,−λn) (2.22)

respectively. Obviously, we have WL ⊆ WG. Let W be the set of minimal length
representatives of the quotient WG/WL, i.e.

W = { wi1 · · ·win representative of minimal length : in = 3 } (2.23)

A weight λ = (λ1, λ2, λ3, · · · , λn) is called G-singular if it is invariant under some
element of the Weyl group WG. This means conceptionally that it is orthogonal to
some root of the algebraic group G and therefore lies on one of the so-called Weyl
chambers. Concrete for our case, we notice that λ is G-singular if and only

|λi| = |λj| for two distinct entries of λ or λi = 0 for at least one entry of λ.
(2.24)

Otherwise, we say that such a weight λ is G-regular. This means, we find a unique
element w in the Weyl group WG such that the entries of λ′ = wλ are proper descend-
ing.
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The Weyl group WG acts on the weight lattice PG via the dot action

w · λ := w(λ + ρG)− ρG. (2.25)

2.5 Equivariant vector bundles

The foundation of our machinery is the natural equivalence between the following
tensor abelian categories: on one side the category of G-equivariant coherent sheaves on
the homogeneous variety X = G/P and on the other side the category of representations
of the parabolic subgroup P, namely

CohG(G/P) ∼= Rep(P) via F 7→ F[P] (2.26)

where F[P] is the fiber of F at the point [P] ∈ X = G/P. In particular, tensor products
and duals are preserved. We explicitly mention that Rep(L) is the semi-simple part
of the category Rep(P) and describe in the following how to construct G-equivariant
vector bundles from L-representations. Given a L-dominant weight λ, i.e. λ ∈ P+

L ,
we take the irreducible L-representation Vλ

L with highest weight λ and extend it via the
projection P → L of (2.10) to a P-representation Vλ

P. Therefore, moving from the right
side of (2.26) to the left, we obtain a G-equivariant vector bundle Uλ. This means
that we manage the tensor multiplication as well as the dualisation of G-equivariant
vector bundles by the manipulations of the corresponding L-representations.

Proposition 2.5.1. 1. It is
Uλ∨ = U−wL,∞λ (2.27)

2. It is

Vλ1
L ⊗ Vλ2

L =
⊕

µ

M(λ1,λ2)
µ ⊗ Vµ

L ⇒ Uλ1 ⊗Uλ2 =
⊕

µ

M(λ1,λ2)
µ ⊗Uµ (2.28)

where M(λ1,λ2)
µ = Hom(Vµ

L, Vλ1
L ⊗ Vλ2

L ).

Proof. Cf. [25, Formula (8)].

We denote by O(1) := Uω3 the ample generator of the Picard group Pic(X). In
particular, we write

Uλ(t) := Uλ+tω3 . (2.29)

Finally, we illustrate how we compute the cohomology of G-equivariant vector
bundles and therefore see the basics for later Ext-computations.
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Proposition 2.5.2 (Borel–Weil–Bott). Let λ be from P+
L and let Uλ be the corresponding

G-equivariant vector bundle. Then, we compute

H•(X,Uλ) =

Vw·λ
G [−ℓG(w)] , if λ + ρG is G-regular

0 , if λ + ρG is G-singular
(2.30)

where, in the first case, w denotes the unique element from the Weyl group WG mapping
λ + ρG to P+

G and w · λ is the dot action as in (2.25).

Proof. Cf. [25, Theorem 2.15.] and the reference [7, Theorem IV’] therein.

2.6 Tautological vector bundles

We have the short exact sequence

0 → U → V ⊗O → Q → 0. (2.31)

build up from the following vector bundles:

The trivial vector bundle: V = V ⊗O is the vector bundle of rank N = 2n + 1 with
fiber V.

The tautological subbundle: U is the subbundle of isotropic subspaces. It has rank 3
and determinant O(−1).

The tautological quotient bundle: Q = V/U is the corresponding quotient bundle
of rank N − 3 = 2n − 2. It has determinant O(1).

Dualising (2.31) and implementing the isomorphism V = V∨ arising by the mapping
v 7→ ⟨v,−⟩ yields the morphism

V ⊗O ∼= V∨ ⊗O → U∨. (2.32)

Applying the snake lemma shows that its kernel is isomorphic to the dual of the
quotient bundle Q, i.e.

0 → Q∨ → V ⊗O → U∨ → 0. (2.33)

We have the inclusion U ⊆ Q∨ ⊆ V ⊗O of vector bundles and consequently the
short exact sequence

0 → U → Q∨ → Q∨/U → 0. (2.34)

In fact, locally for a point U ∈ X, we have the zero mapping

U ↪→ V ∼= V∨ ↠ U∨ via u 7→ ⟨u,−⟩|U = 0 (2.35)
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since the bilinear form ⟨−,−⟩ vanishes on the isotropic subspace U ⊆ V by definition.
So, we deduce the commutative diagram

0 U V ⊗O Q 0

0 Q∨ V∨ ⊗O U∨ 0

∼ (2.36)

for the zero morphism (2.35) and see the desired embedding. Moreover, snaking
shows us that the quotient Q∨/U is self-dual.

The dual of the tautological subbundle U∨ has highest weight ω1 as the trivial vector
bundle V has the following weights:

ω1 −ω3 + 2ω4 ω2 − ω3

−ω1 + ω2 0 ω1 − ω2

−ω2 + ω3 ω3 − 2ω4 −ω1

 if n = 4 (2.37)

ω1 −ω3 + ω4 ω2 − ω3

−ω1 + ω2 −ω4 + 2ω5 ω1 − ω2

−ω2 + ω3 0 −ω1

ω4 − 2ω5

ω3 − ω4


if n = 5 (2.38)

ω1 −ω3 + ω4 ω2 − ω3

−ω1 + ω2
... ω1 − ω2

−ω2 + ω3 −ωn−2 − ωn−1 −ω1

−ωn−1 − 2ωn

0
ωn−1 − 2ωn

ωn−2 − ωn−1
...

ω3 − ω4



if n ≥ 6 (2.39)

Lemma 2.6.1. We have
∧iQ = (∧2n−2−iQ)∨(1) (2.40)

Proof. We apply the determinant to the short exact sequence (2.31) and therefore see

O = det(V) = det(U ) · det(Q). (2.41)

Since Q is a vector bundle of rank 2n − 2 and det(U ) = O(−1), we conclude

∧2n−2Q = det(Q) = O(1). (2.42)
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For i ∈ {0, · · · , 2n − 2}, the claimed isomorphism follows from the perfect pairing

∧iQ×∧2n−2−iQ → ∧2n−2Q = O(1). (2.43)

2.7 Spinor bundle

We write the spinor bundle as
S := Uωn . (2.44)

It has rank 2n−3 and determinant O(2n−4) – see [20, Corollary 6.5.].

First, we present a filtration of S ⊗O.

Proposition 2.7.1.
F (1)

4 = 0

0 → F (1)
4 → F (1)

3 → Uωn(−1) → 0

0 → F (1)
3 → F (1)

2 → Uω1+ωn(−1) → 0

0 → F (1)
2 → F (1)

1 → Uω2+ωn(−1) → 0

0 → F (1)
1 → F (1)

0 → Uωn → 0

F (1)
0 = S ⊗O

(2.45)

Proof. We apply [20, Proposition 6.3.] and check

F (1)
i /F (1)

i+1
∼= S ⊗ ∧iU (2.46)

for i ∈ {0, · · · , 3}.

Secondly, we give useful description of S ⊗ S .

Proposition 2.7.2.
F (2)

n = 0

0 → ∧2n−2Q → F (2)
n−1 → F (2)

n → 0

0 → ∧2n−4Q → F (2)
n−2 → F (2)

n−1 → 0
...

0 → ∧2Q → F (2)
1 → F (2)

2 → 0

0 → O → F (2)
0 → F (2)

1 → 0

F (2)
0 = S ⊗ S

(2.47)

Proof. We apply [20, Proposition 6.7.] and dualise the induced short exact sequences.
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2.8 Equivariant extensions

Irreducible vector bundles are our building blocks. However, there are several more
ways to construct new objects than just summing up directly. Given two objects E ′

and E ′′, the nth Ext-space Extn(E ′, E ′′) classifies the degree n extensions of E ′ by E ′′, i.e.
exact sequences of the form

0 → E ′′ → E1 → · · · → En → E ′ → 0. (2.48)

Any simple summand K in Extn(E ′, E ′′) describes a family of G-equivariant extensions
of degree n. In detail, the zero belongs to the direct sum while any non-zero induces
a non-splitting extension. In the last case, its representatives coincide up to rescaling.
Mostly, we will be interested in G-equivariant extension of degree n = 1.

Let 0 → E ′′ → E → E ′ → 0 be a short exact sequence defining an extension E, let F
be a further object.

Lemma 2.8.1.

F is right orthogonal to E ′′ ⇒ Ext•(F , E) = Ext•(F , E ′) (2.49)

E ′′ is right orthogonal to F ⇒ Ext•(E,F ) = Ext•(E ′,F ) (2.50)

F is right orthogonal to E ⇒ Ext•(F , E ′) = Ext•+1(F , E ′′) (2.51)

E is right orthogonal to F ⇒ Ext•(E ′′,F ) = Ext•+1(E ′,F ) (2.52)

F is right orthogonal to E ′ ⇒ Ext•(F , E) = Ext•(F , E ′′) (2.53)

E ′ is right orthogonal to F ⇒ Ext•(E,F ) = Ext•(E ′′,F ) (2.54)

Proof. (2.49), (2.51), and (2.53) We apply Hom(F ,−) to the short exact sequence
defining E and induce the long exact sequence

· · · → Exti(F , E ′′) → Exti(F , E) → Exti(F , E ′) → · · · . (2.55)

The vanishing of one out of the three Ext-spaces gives us an isomorphism
between the remaining two ones.

(2.50), (2.52), and (2.54) We apply Hom(−,F ) to the short exact sequence defining E
and argue similar as before with the long exact sequence

· · · → Exti(E ′,F ) → Exti(E,F ) → Exti(E ′′,F ) → · · · . (2.56)

Corollary 2.8.2. If F is right orthogonal to two out of the three objects E ′, E ′′, and E, then it
is also right orthogonal to the third one. Likewise, if two out of the three objects E ′, E ′′, and E
are right orthogonal to F , then the third also does.
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Chapter 3

Calculations

3.1 Dualisations

First, we describe the dual of an irreducible G-equivariant vector bundle explicitly.

Lemma 3.1.1.

U c1ω1+c2ω2+c4ω4+···+cnωn(t)∨

= U c2ω1+c1ω2+c4ω4+···+cnωn(−t −
2

∑
i=1

ci − 2
n−1

∑
i=4

ci − cn)
(3.1)

Proof. We combine (2.22) with (2.27) and apply it to the weight

c1ω1 + c2ω2 + tω3 + c4ω4 + · · ·+ cnωn

= (λ1, λ2, λ3, λ4, · · · , λn)
(3.2)

where λi = ∑n−1
j=i cj +

1
2 cn and c3 = t. Accordingly, the claimed statement follows

from
− wL,∞(λ1, λ2, λ3, λ4, · · · , λn)

= (−λ3,−λ2,−λ1, λ4, · · · , λn).
(3.3)

3.2 Tensor product decomposition

Next, we recall the computations of tensor products, exterior powers, and symmetric
powers given in [30, Section 2.3.]. Therefore, we introduce the following two closed
algebraic subgroups of the Levi subgroup L:

The semi-simple part ss(L) It is a connected simply connected semi-simple alge-
braic group with Dynkin diagram (2.11). Its corresponding weight lattice Pss(L)

is the quotient of the map

PG
πss(L)−−−→ Pss(L) := PG/Zω3. (3.4)
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Since the fundamental weights ω1, ω2, ω3, ω4, ..., and ωn form a basis of the
weight lattice PG, the projection in (3.4) is determined by

ωi 7→

ω̄i = ωi + Zω3 , if i ̸= 3

0 , if i = 3.
(3.5)

Obviously, we have a lifting from Pss(L) to PG via

∑
i

ciω̄i 7→ ∑
i ̸=3

ciωi. (3.6)

We observe Pss(L) ⊗ Q = ∑α∈QL
Qα. Let λ ∈ P+

L be a weight and consider the
corresponding irreducible L-representation Vλ

L. Then restriction to the semi-
simple part yields the irreducible ss(L)-representation

Vλ̄
ss(L) = ResL

ss(L)(V
λ
L) (3.7)

where λ̄ = πss(L)λ.

The center Z(L) Because we excluded only a single node, namely the third one, it is
isomorphic to the multiplicative group Gm = k∗ (1-dimensional torus) and its
weight lattice PZ(L) arise by

PG
πZ(L)−−→ PZ(L) := PG/( ∑

α∈QL

Qα ∩ PG). (3.8)

Similar as before, we note PZ(L) ⊗ Q = Qω3. For a weight λ ∈ P+
L and ac-

cordingly for an irreducible L-representation Vλ
L, we have the restriction to the

irreducible Z(L)-representation

Vλ̄
Z(L) = ResL

Z(L)(V
λ
L) (3.9)

where λ̄ = πZ(L)λ.

The group law of the Levi subgroup L yields a short exact sequence of algebraic
groups

0 → ss(L) ∩ Z(L) → ss(L)× Z(L) → L → 0 (3.10)

where the kernel is finite. The map (πss(L), πZ(L)) : PG → Pss(L) ⊕ PZ(L) is an embed-
ding and the weight lattice PG is a subgroup of finite index in Pss(L)⊕PZ(L). Tensoring
with Q yields the isomorphism PG ⊗ Q = (Pss(L) ⊗ Q) ⊕ (PZ(L) ⊗ Q).

Lemma 3.2.1. Let λ or λ1 and λ2 be weights from P+
L and let us denote the corresponding

L-representations by Vλ
L or Vλ1

L and Vλ2
L respectively. We denote by Vλ̄

ss(L) or Vλ̄1
ss(L) and

Vλ̄2
ss(L) the restrictions as defined above in (3.7).
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1. It is
Vλ̄1

ss(L) ⊗ Vλ̄2
ss(L) =

⊕
µ̄

M(λ̄1,λ̄2)
µ̄ ⊗ Vµ̄

ss(L)

⇒ Vλ1
L ⊗ Vλ2

L =
⊕

µ̄

M(λ̄1,λ̄2)
µ̄ ⊗ Vµ

L(m)
(3.11)

where M(λ̄1,λ̄2)
µ̄ = Hom(Vµ̄

ss(L), Vλ̄1
ss(L) ⊗ Vλ̄2

ss(L)).

2. It is
∧pVλ̄

ss(L) =
⊕

µ̄

M(λ̄)
µ̄ ⊗ Vµ̄

ss(L)

⇒ ∧pVλ
L =

⊕
µ̄

M(λ̄)
µ̄ ⊗ Vµ

L(m)
(3.12)

where M(λ̄)
µ̄ = Hom(Vµ̄

ss(L),∧
pVλ̄

ss(L)).

3. It is
SpVλ̄

ss(L) =
⊕

µ̄

M(λ̄)
µ̄ ⊗ Vµ̄

ss(L)

⇒ SpVλ
L =

⊕
µ̄

M(λ̄)
µ̄ ⊗ Vµ

L(m)
(3.13)

where M(λ̄)
µ̄ = Hom(Vµ̄

ss(L), SpVλ̄
ss(L)).

µ and m are constructed explicitly in the following proof.

Proof. We only discuss the case (1) of tensor multiplication. The two other cases,
namely (2) on the exterior power and (3) on the symmetric power respectively, pro-
ceed analogously. Given two weights λ1 and λ2 in terms of fundamental weights, we
do a base change by 

2
3

1
3 0 0 · · · 0

1
3

2
3 0 0 · · · 0

1
3

2
3 1 a3,4 · · · a3,n

0 0 0 b4,4 · · · b4,n
...

...
...

...
...

0 0 0 bn,4 · · · bn,n


(3.14)

where

a3,i =

1 , if i ∈ [4, n − 1]
1
2 , if i = n

and bi,j =


j − 3 , if j ∈ [4, n − 1], j ≤ i

i − 3 , if j ∈ [4, n − 1], i < j
1
2 i − 3

2 , if j = n

(3.15)

to replace all fundamental weights by simple roots except the third one (mixed basis).
Hence, we write them as linear combinations

λ1 = aλ1,1α1 + aλ1,2α2 + cλ1,3ω3 + aλ1,4α4 + · · ·+ aλ1,nαn (3.16)
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and

λ2 = aλ2,1α1 + aλ2,2α2 + cλ2,3ω3 ++aλ2,4α4 + · · ·+ aλ2,nαn. (3.17)

The projections to the semi-simple part along (3.5) are given by

λ̄1 = aλ1,1ᾱ1 + aλ1,2ᾱ2 + aλ1,4ᾱ4 + · · ·+ aλ1,nᾱn (3.18)

and

λ̄2 = aλ2,1ᾱ1 + aλ2,2ᾱ2 + aλ2,4ᾱ4 + · · ·+ aλ2,nᾱn. (3.19)

Now, we compute Vλ̄1
ss(L) ⊗ Vλ̄2

ss(L) via the Littlewood–Richardson rule. For any µ̄

appearing in the decomposition, we take a lift µ by (3.6) and do the inverse base
change as before. This means, we change from the mixed basis over to the one
consisting of fundamental weights and write

µ = cµ,1ω1 + cµ,2ω2 + cµ,3ω3 + cµ,4ω4 + · · ·+ cµ,nωn. (3.20)

Finally, we sum up m = cλ1,3 + cλ2,3.

Corollary 3.2.2. It is

∧pU∨ =



O , if p = 0

Uω1 , if p = 1

Uω2 , if p = 2

Uω3 = O(1) , if p = 3

0 , if 4 ≤ p

(3.21)

as well as

SympU∨ = U pω1 . (3.22)

If we have irreducible G-equivariant vector bundles supported over different parts of
the Levi part – i.e. in our case one highest weight is a linear combination of ω1 and ω2

while the other one is a linear combination of ω4, ..., ωn – then the tensor product is
an irreducible G-equivariant vector bundles where the highest weight is just the sum.

Lemma 3.2.3.

U c1ω1+c2ω2 ⊗U c4ω4+···+cnωn = U c2ω1+c1ω2+c4ω4+···+cnωn (3.23)

Proof. If we multiply two irreducible ss(L)-representations with the highest weights
c1ω̄1 + c2ω̄2 and c4ω̄4 + · · ·+ cnω̄n, respectively, then this gives a single irreducible
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ss(L)-representation with highest weight equal to the sum. Hence, we apply first
3.2.1.(1) and then Proposition 2.5.1.(2) to deduce the desired statement.

3.3 Some landmarks in the jungle of Ext-computations

In the later chapters 4 and 5, we are going to compute a lot of Ext-spaces between
irreducible G-equivariant vector bundles. Therefore we present two very concrete
approaches:

1. For the tautological subcollection C(U ) in chapter 4, we compute the cohomology
of irreducible summands Uµ which appear in the direct sum decomposition of
tensor products of the form Uµ′∨ ⊗Uµ′′

. If we need to check the vanishings, we
show that the appropriate highest weights λ are G-singular.

2. In the context of the spinor subcollection C(S) in chapter 5, we need to check
(partial) vanishings of Ext-spaces of the form

Ext•(Uµ′ ⊗ S ,Uµ′′
),

Ext•(Uµ′
,Uµ′′ ⊗ S), or

Ext•(Uµ′ ⊗ S ,Uµ′′ ⊗ S)

where Uµ′
and Uµ′′

are from the previously mentioned collection C(U ) in chap-
ter 4. Hence, we deduce the desired vanishing from the one of Ext•(Uµ′

,Uµ′′
)

which has been checked before.

Throughout this section, let Uµ′
and Uµ′′

be two irreducible G-equivariant vector
bundles such that their highest weights µ′ and µ′′ are supported over the first Levi
part, namely

µ′ = (µ′
1, µ′

2, µ′
3, 0 · · · , 0) and µ′′ = (µ′′

1 , µ′′
2 , µ′′

3 , 0 · · · , 0) (3.24)

respectively. We denote by µ the highest weights corresponding to the irreducible
summands Uµ appearing in the direct sum decomposition of the tensor product
Uµ′∨ ⊗Uµ′′

.
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Auxiliary statements where the highest weights are supported over the first Levi
part.

Lemma 3.3.1. Let Uµ′
, Uµ′′

, and Uµ as introduced above. Then it is the following facts:

µ1 ≥ µ2 ≥ µ3 in Z, (3.25)

µi = −µ′
4−i +

3

∑
j=1

ti,jµ
′′
j with ti,j ∈ R[0,1] as well as

3

∑
j=1

ti,j = 1 for any i ∈ [1, 3], (3.26)

µ1 + µ2 + µ3 = −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) (3.27)

and

µ4 = · · · = µn = 0. (3.28)

Proof. Abstract description of µ We deduce two aspects from [25, Equation (8) and
Lemma 2.9]: First, µ need to be a L-dominant weight. This means, the difference
µi − µi+1 lies in Z≥0 whenever the index i is from [1, 2] or from [4, n − 1] and µn is an
element in 1

2 Z≥0. Second, it lies in the convex hull of {−wL,∞µ′ + wµ′′ : w ∈ WL }
and consequently it can be written as

µ = ∑
w∈WL

tw · (−wL,∞µ′ + wµ′′ )

= −wL,∞µ′ + ∑
w∈WL

twwµ′′ (3.29)

where the coefficients tw lie in R[0,1] for any w ∈ WL and they sum up to 1. In
particular, let us observe by (3.29) that µ is the sum of −wL,∞µ′ with an element from
the convex hull of {wµ′′ : w ∈ WL }.

Concretising the description of µ. Since Weyl elements w ∈ WL act on the weights µ′ and
µ′′ respectively by permutation within the first three entries as well as permutation
and sign-alternation within the remaining entries (recall (2.20)), we can rewrite

−wL,∞µ′ = (−µ′
3,−µ′

2,−µ′
1, 0, · · · , 0) (3.30)

as in (2.22) and
wµ′′ = (µ′′

w−1
1st (1)

, µ′′
w−1

1st (2)
, µ′′

w−1
1st (3)

, 0, · · · , 0). (3.31)

w1st is a permutation on [1, 3] which one obtains from w after restriction to the first
Levi part. By assumption on the support of the weights µ′ and µ′′ respectively, there
happens nothing on the second Levi part. This means, we have

µ = (−µ′
3,−µ′

2,−µ′
1, 0, · · · , 0)

+ ∑
tw1st ∈S3

tw1st (µ
′′
w−1

1st (1)
, µ′′

w−1
1st (2)

, µ′′
w−1

1st (3)
, 0, · · · , 0) (3.32)
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where tw1st is the sum of all coefficients tw such that w ∈ WL restricts over the first
Levi part to w1st .

Simplifying the description of µ any more. We write the partial sum in (3.32) running
over tw1st ∈ S3 as

∑
tw1st ∈S3

tw1st (µ
′′
w−1

1st (1)
, µ′′

w−1
1st (2)

, µ′′
w−1

1st (3)
, 0, · · · , 0)

= ∑
tw1st ∈S3

tw1st

3

∑
i

µ′′
w−1

1st (i)
ei

=
3

∑
i
( ∑

tw1st ∈S3

tw1st µ
′′
w−1

1st (i)
) ei

=
3

∑
i
(ti,1µ′′

1 + ti,2µ′′
2 + ti,3µ′′

3 )ei

(3.33)

where ti,j is the sum of all tw1st such that w1st ∈ S3 maps j to i. In particular, the ith

entry of µ is the sum of −µ′
4−i with an element from the convex hull of { µ′′

1 , µ′′
2 , µ′′

3 }.
Moreover, we compute

µ1 + µ2 + µ3 = −µ′
3 + t1,1µ′′

1 + t1,2µ′′
2 + t1,3µ′′

3

− µ′
2 + t2,1µ′′

1 + t2,2µ′′
2 + t2,3µ′′

3

− µ′
1 + t3,1µ′′

1 + t3,2µ′′
2 + t3,3µ′′

3 (3.34)

= −(µ′
1 + µ′

2 + µ′
3)

+
3

∑
i=1

(
3

∑
j=1

ti,j)︸ ︷︷ ︸
=1

µ′′
i (3.35)

= −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) (3.36)

Indeed, given some i, we see

3

∑
j=1

ti,j =
3

∑
j=1

∑
w1st∈S3

w1st (j)=i

tw1st = 1 (3.37)

as each w1st appears exactly once.

The above introduced description of µ can be summarized by handy inequalities on
the entries µi.

Corollary 3.3.2. Let Uµ′
, Uµ′′

, and Uµ as introduced above. Then we can estimate for the
first three entries of the highest weight µ:

−µ′
4−i + µ′′

3 ≤ µi ≤ min{−µ′
4−i + µ′′

1 ,−µ′
3 + µ′′

i } (3.38)
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for i ∈ [1, 3].

Proof. We consider (3.32) and recall µ′′
1 ≥ µ′′

2 ≥ µ′′
3 . The ith entry of µ is the sum of

−µ′
4−i with an element from the convex hull of {µ′′

1 , µ′′
2 , µ′′

3}. For the upper bound
−µ′

3 + µ′′
i we refer to [13, Lemma 2.10.].

The cohomology of Uµ vanishes by Proposition 2.5.2 if the weight µ+ ρG is G-singular.
Therefore, let us write out explicitly.

Lemma 3.3.3. µ + ρG is G-singular if and only if one of the following conditions is satisfied
(exclusively for a given index i):

µi ∈ [−n + i,−4 + i] where i ∈ [1, 3] (3.39)

µi + µj = −2n − 1 + i + j where i < j ∈ [1, 3] (3.40)

µi ∈ [−2n + 3 + i,−n − 1 + i] where i ∈ [1, 3] (3.41)

Proof. As the ith entry of µ + ρG takes the value µi + n + 1
2 − i, it is G-singular if and

only if one of the following conditions is satisfied:

1. µi + n + 1
2 − i = 0 or equivalently −µi − n + i = 1

2 . However, this case will
never happen, as the left-hand side of the second equation is from Z while its
right-hand side is from 1

2 Z.

2. µi + n + 1
2 − i = µj + n + 1

2 − j or equivalently µi − µj = i − j for two distinct
indices i and j from [1, n]. Without loss of generality, we assume i < j. If i and
j are both from [1, 3], then we have i − j < 0 and it is µi ≥ µj or equivalently
0 ≤ µi − µj by inequalities of Lemma 3.3.1. If i and j are from [4, n], then
we see µi − µj = 0 < i − j by the vanishings of µ4, ..., µn in Lemma 3.3.1.
Accordingly, we are left with i ∈ [1, 3] and j ∈ [4, n]. The current case, namely
the ith entry of µ + ρG coincides with its jth entry, can only appear if and only if
µi ∈ [−n + i,−4 + i] where i ∈ [1, 3].

3. µi + n + 1
2 − i = −µj − n − 1

2 + j or equivalently µi + µj = −2n − 1 + i + j for
two distinct indices i and j from [1, n]. In detail, the current case is given if one
of the following equations holds: µi + µj = −2n − 1 + i + j where i < j in [1, 3]
or µi ∈ [−2n + 3 + i,−n − 1 + i] where i ∈ [1, 3].

Auxiliary statements where the spinor bundle S appears in one component.

Lemma 3.3.4. Let Uµ′
and Uµ′′

be as introduced above.

1. Let Uµ be an irreducible summand from the direct sum decomposition of the tensor
product Uµ′∨ ⊗ Uµ′′

. We assume the following technical condition: If µ contains
two entries µi ≥ µj with i < j ∈ [1, 3] such that it is the equation µi + µj =

−2n − 1 + i + j, then we can check at least one of the following statements:
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• µi − µj ≤ 2n − 5 + i − j,

• there is some i∗ satisfying conditions (3.39) or (3.41) respectively, or

• µ + ωn + ρG is G-singular.

If Uµ′
is right orthogonal to Uµ′′

, then Uµ′
is also right orthogonal to Uµ′′ ⊗ S .

2. Let Uµ be an irreducible summand from the direct sum decomposition of the tensor
product Uµ′

(1)∨ ⊗Uµ′′
and we assume the same technical condition as before.

If Uµ′
(1) is right orthogonal to Uµ′′

, then Uµ′ ⊗ S is right orthogonal to Uµ′′
.

Remark 3.3.5. In many cases we can show already µi − µj ≤ 2n − 5 − i − j without
the assumption µi + µj = −2n − 1 + i + j. Hence, we only mention this requirement
if it is necessary for sure.

Proof. 1st statement. Due to assumption 0 = Ext•(Uµ′
,Uµ′′

) = H•(X,Uµ′∨ ⊗Uµ′′
), any

irreducible summand Uµ appearing in the direct sum decomposition of the tensor
product Uµ′∨ ⊗Uµ′′

needs to have vanishing cohomology by Proposition (2.5.2). So,
the weight µ + ρG need to be G-singular. This means that the entries of µ + ρG satisfy
at least one of the following conditions (see Lemma 3.3.3) and we conclude in each
case that µ + ωn + ρG is G-singular likewise (see 2.24):

1. µi ∈ [−n + i,−4 + i] where i ∈ [1, 3] – cf. (3.39): We have µi = −j + i for some
j ∈ [4, n]. Hence, the ith entry and the jth entry of µ + ωn + ρG are the same, as
we have (µi +

1
2 ) + n + 1

2 − i = 1
2 + n + 1

2 − j.

2. µi + µj = −2n − 1 + i + j where i < j ∈ [1, 3] – cf. (3.40): It is µj ≤ µi in Z

by Lemma 3.3.1. So, we deduce from µj − j < µi − i = −µj − 2n − 1 + j the
inequalities µj < −n − 1

2 + j as well as −n − 1
2 + i < µi. As µi and µj lie in Z,

we even have µj ≤ −n − 1 + j and −n + i ≤ µi. Now, let us consider various
subcases with respect to µj and µi respectively:

(a) µj ∈ [−2n+ 2+ j,−n− 1+ j] or equivalently (µj +
1
2 ) + n+ 1

2 − j ∈ [−n+

3, 0]: µ + ωn + ρG is G-singular as its jth entry lies in the range from −n + 3
to −1, is zero, or lies in the range from 1 to n − 3 (see (2.24)). In fact, we
recall from Lemma 3.3.1 that the entries µ4 to µn are zero and let us mention
that consequently the 4th entry of µ + ωn + ρG is 1

2 + n + 1
2 − 4 = n − 3, ...,

and the nth one is 1
2 + n + 1

2 − n = 1.

(b) µi ∈ [−n + i,−4 + i] or equivalently (µi +
1
2 ) + n + 1

2 − i ∈ [1, n − 3]:
We argue as in the previous subcase and see likewise that the weight
µ + ωn + ρG is G-singular.

(c) µj ≤ −2n + 1 + j and −3 + i ≤ µi: As we have 2n − 4 + i − j ≤ µi − µj,
we refer to our assumed technical condition: If we are not already done
with µ + ωn + ρG, then we either have a contradiction to the estimation
µi − µj ≤ 2n − 5 + i − j or repeat the proof with respect to i∗.
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3. µi ∈ [−2n + 3 + i,−n − 1 + i] where i ∈ [1, 3] – cf. (3.41): We have µi = −2n −
1 + i + j for some j ∈ [4, n] and accordingly see (µi +

1
2 ) + n + 1

2 − i = (−2n −
1+ i+ j)+ n+ 1− i = −n+ j. If j ∈ [4, n− 1], then the ith and the (j+ 1)th entry
of µ + ωn + ρG coincide up to a sign, namely µj+1 +

1
2 + n + 1

2 − (j + 1) = n − j.
Otherwise if j is n, then the ith entry of µ + ωn + ρG is zero.

We summarize all this by the following statement: If Uµ′∨ ⊗Uµ′′
decomposes as the

direct sum
⊕

µ Uµ where all irreducible summands Uµ have no cohomology, then
Uµ′∨ ⊗Uµ′′ ⊗ S decomposes likewise as

⊕
µ Uµ ⊗ S =

⊕
µ Uµ+ωn and again without

any cohomology. Finally, we see for the first statement

Ext•(Uµ′
,Uµ′′ ⊗ S) = H•(X,Uµ′∨ ⊗Uµ′′ ⊗ S)

=
⊕

µ

H•(X,Uµ ⊗ S)

=
⊕

µ

H•(X,Uµ+ωn)

= 0

(3.42)

2nd statement. As we have S∨ = S(−1) due to Lemma 3.1.1, we start with

Ext•(Uµ′ ⊗ S ,Uµ′′
) = Ext•(Uµ′

(1)⊗ S∨,Uµ′′
)

= Ext•(Uµ′
(1),Uµ′′ ⊗ S)

(3.43)

and then our assumption on Ext•(Uµ′
(1),Uµ′′

) = 0 implies Ext•(Uµ′
(1),Uµ′′ ⊗S) = 0

by the previous statement.

Lemma 3.3.6. Let Uµ′
and Uµ′′

be as in the previous Lemma 3.3.1.

1. If −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) < 0 and −µ′
3 + µ′′

i ≤ −3 + i for some
index i ∈ [1, 3], then the Ext-space Extp(Uµ′

,Uµ′′ ⊗ S) vanishes at least for any
p ∈ [0, n − 4].

2. If −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) < 3 and −µ′
3 + µ′′

i ≤ −2 + i for some
index i ∈ [1, 3], then the Ext-space Extp(Uµ′ ⊗ S ,Uµ′′

) vanishes at least for any
p ∈ [0, n − 4].

Proof. 1st statement. As we want to compute partially the Ext-space Ext•(Uµ′
,Uµ′′ ⊗S),

we start with
Ext•(Uµ′

,Uµ′′ ⊗ S) = H•(X,Uµ′∨ ⊗Uµ′′ ⊗ S)
=
⊕

µ

H•(X,Uµ ⊗ S)

=
⊕

µ

H•(X,Uµ+ωn)

(3.44)

where the index µ runs through the set of highest weights µ such that their cor-
responding vector bundles Uµ appear as irreducible summands in the direct sum



3.3. Some landmarks in the jungle of Ext-computations 29

decomposition of the tensor product Uµ′∨ ⊗ Uµ′′
. Due to Lemma 3.3.1, we have

µ1 ≥ µ2 ≥ µ3 in Z and the remaining entries vanish, namely from µ4 = · · · = µn = 0.
Moreover, we estimate the ith entry µi for i ∈ [1, 3] as µi ≤ −µ′

3 + µ′′
i by Corollary 3.3.2.

Next, we distinguish the following cases with respect to µi ≤ −µ′
3 + µ′′

i ≤ −3 + i:

1. µi = −3 + i:

(a) i ∈ {1, 2}: It is µ3 ≤ µi = −3 + i ≤ −1 and therefore we consider the cases
with respect to µ3 ≤ −1.

(b) i = 3: As we have µ1 ≥ µ2 ≥ µ3 = −3+ 3 = 0, we observe µ1 + µ2 + µ3 ≥
0. However this contradicts to the fact µ1 + µ2 + µ3 = −(µ′

1 + µ′
2 + µ′

3) +

(µ′′
1 + µ′′

2 + µ′′
3 ) < 0.

2. µi ∈ [−2n + 2+ i,−4+ i] or equivalently (µi +
1
2 ) + n + 1

2 − i ∈ [−n + 3, n − 3]:
(µi +

1
2 ) + n + 1

2 − i coincides with 1
2 + n + 1

2 − j where j is from [4, n], is zero,
or equals − 1

2 − n − 1
2 + j where j is from [4, n]. Thus, µ + ωn + ρG is G-singular

by (2.24).

3. µi ≤ −2n + 1 + i or equivalently (µi +
1
2 ) + n + 1

2 − i ≤ −n + 2: The ith entry
of µ + ωn + ρG is smaller than the 4th one which is n − 3, ..., and the nth one
which is 1. Hence, the unique element w ∈ WG such that w(µ + ωn + ρG) lies
in P+

G has at least length n − 3 ≤ ℓG(w).

We summarize the previous cases: Either Uµ+ωn has no cohomology at all or otherwise
at least in degree n − 3. Thus, the Ext-space Extp(Uµ′

,Uµ′ ⊗ S) in (3.44) vanishes for
any p < n − 3.

2nd statement. We have S∨ = S(−1) due to Lemma 3.1.1 and therefore we write

Ext•(Uµ′ ⊗ S ,Uµ′′
) = Ext•(Uµ′

(1)⊗ S(−1),Uµ′′
)

= Ext•(Uµ′
(1)⊗ S∨,Uµ′′

)

= Ext•(Uµ′
(1),Uµ′′ ⊗ S).

(3.45)

Due to our assumption, we deduce Ext•(Uµ′
(1),Uµ′′ ⊗ S) = 0.

Auxiliary statements where the spinor bundle S appears in both components.
Given two vector bundles Uµ′

and Uµ′′
as introduced in the beginning of this section.

Then we observe the following: First

Ext•(Uµ′ ⊗ S ,Uµ′′ ⊗ S) = H•(X, (Uµ′ ⊗ S)∨ ⊗Uµ′′ ⊗ S)
= H•(X,Uµ′∨ ⊗Uµ′′ ⊗ S(−1)⊗ S).

(3.46)
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Second, since we have S(−1) ⊗ S =
⊕n

l=3 U νl where U νl is the irreducible G-
equivariant vector bundle with highest weight νl = ∑l

i=4 ei, it is

Ext•(Uµ′ ⊗ S ,Uµ′′ ⊗ S) =
n⊕

l=3

Ext•(Uµ′
,Uµ′′+νl ). (3.47)

This means that the highest weights νl are supported over the second Levi part and
are of the form νl = (0, 0, 0, 1, · · · , 1, 0, · · · , 0). For this purpose, let l be an integer
from [3, n] and we consider those Ext-spaces where the second component is tensored
with those U νl .

Lemma 3.3.7. Let Uµ′
, Uµ′′

, l, U νl , and Uµ as introduced above.
We assume the following two technical conditions:

1. If µ contains an entry µi = −l + i where i ∈ [1, 3], then we can check that µ + νl + ρG

is G-singular.

2. If µ contains an entry µi = 2n − 1 + i + l where i ∈ [1, 3], then we can check likewise
that µ + νl + ρG is G-singular.

If Uµ′
is right orthogonal to Uµ′′

, then Uµ′
is also right orthogonal to Uµ′′ ⊗U νl .

Proof. The right orthogonal relation between Uµ′
and Uµ′′

– i.e. the vanishing 0 =

Ext•(Uµ′
,Uµ′′

) = H•(X,Uµ′∨ ⊗Uµ′′
) – implies that any irreducible summand Uµ

appearing in the direct sum decomposition of the tensor product Uµ′∨ ⊗ Uµ′′
must

have vanishing cohomology by Proposition (2.5.2). Consequently, the corresponding
weight µ + ρG need to be G-singular. This means that the entries of µ + ρG satisfy at
least one of the following conditions (see Lemma 3.3.3) and we conclude in each case
that µ + νl + ρG is G-singular likewise (see 2.24):

1. µi ∈ [−n + i,−4 + i] where i ∈ [1, 3] – cf. (3.39): We have µi = −j + i for some
j ∈ [4, n]. So, the ith entry of µ + νl + ρG is calculated as (−j + i) + 0 + n + 1

2 −
i = n + 1

2 − j. If j ∈ [4, l − 1], then the ith entry of µ + νl + ρG coincides with the
j + 1th one, as we have 1 + n + 1

2 − (j + 1) = n + 1
2 − j. If j = l, we apply our

first assumed technical condition. Finally, if j ∈ [l + 1, n], then the ith entry of
µ + νl + ρG is clearly equal to the jth one.

2. µi + µj = −2n − 1 + i + j where i < j ∈ [1, 3] – cf. (3.40): As we have µi + n +
1
2 − i = −(µj + n + 1

2 − j), the ith and the jth entry of µ + νl + ρG coincide up to
a sign. In fact, both the ith and the jth entry of νl are zero.

3. µi ∈ [−2n + 3 + i,−n − 1 + i] where i ∈ [1, 3] – cf. (3.41): We have µi =

−2n − 1 + i + j for some j ∈ [4, n] and therefore see µi + 0 + n + 1
2 − i =

(−2n − 1 + i + j) + n + 1
2 − i = −n − 1

2 + j. If j ∈ [4, l − 1], then the ith entry of
µ + νl + ρG coincides with the j + 1th one up to a sign. as we have 1 + n + 1

2 −
(j + 1) = n + 1

2 − j. If j = l, we apply our second assumed technical condition



3.3. Some landmarks in the jungle of Ext-computations 31

and see that µ + νl + ρG is G-singular. Finally if j ∈ [l + 1, n], then the ith entry
of µ + νl + ρG is equal to the jth one up to a sign.

Lemma 3.3.8. Let Uµ′
, Uµ′′

, l, U νl , and Uµ as introduced above.
If −µ′

3 + µ′′
i < −3 + i for some index i ∈ [1, 3], then the Ext-space Extp(Uµ′

,Uµ′′ ⊗ U νl )

vanishes for any

p ∈

[0, 2l − 5] , if − (µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) ≤ −l + 2

[0, l − 4] , else
. (3.48)

Proof. First, we want to compute partially the Ext-space

Ext•(Uµ′
,Uµ′′ ⊗U νl ) = H•(X,Uµ′∨ ⊗Uµ′′ ⊗U νl ) = H•(X,

⊕
µ

Uµ ⊗U ν) (3.49)

where µ is the highest weight of those vector bundles Uµ appearing as irreducible
summands in the direct sum decomposition of the tensor product Uµ′∨ ⊗ Uµ′′

. In
addition, we have the usual constraints on µi as before (see Lemma 3.3.1 and Corol-
lary 3.3.2). Next, we consider the weight µ + νl + ρG. Its entries are given by

µi + νl,i + n +
1
2
− i =


µi + n + 1

2 − i , if i ∈ [1, 3]

n + 3
2 − i , if i ∈ [4, l]

n + 1
2 − i , if i ∈ [l + 1, n]

. (3.50)

We distinguish the following cases with respect to µi ≤ −µ′
3 + µ′′

i ≤ −3 + i:

1. µi ∈ [−l + 1 + i,−3 + i] or equivalently µi + n + 1
2 − i ∈ [n + 3

2 − l, n − 5
2 ]: The

ith entry of µ + νl + ρG coincides with the jth one where j is from [4, l]. Hence,
µ + νl + ρG is G-singular by (2.24).

2. µi = −l + i or equivalently µi + n + 1
2 − i = n + 1

2 − l: Either µ + νl + ρG is
G-singular or it is G-regular. In the later case, there is a unique element w ∈ WG

mapping µ + νl + ρG to P+
G and we estimate its length as following:

(a) i = 1: We have n + 3
2 − l − 1 = µ1 + n − 1

2 ≥ µ2 + n − 3
2 ≥ µ3 + n − 5

2 and
accordingly ℓG(w) ≥ 3(l − 1) as we need to permute at least the first three
entries of µ + νl + ρG to P+

G at behind the 4th, ..., and the lth one.

(b) i = 2 : Then µ1 + n − 1
2 ≥ n + 3

2 − l − 1 = µ2 + n − 3
2 ≥ µ3 + n − 5

2 : We
conclude ℓG(w) ≥ 2(l − 2) analogously as in the previous subcase.

(c) i = 3: In general, it is ℓG(w) ≥ l − 3. However, if we have µ1 + µ2 +

µ3 = −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) ≤ −l + 2, then this case can not
occur. Indeed, it is µ1 ≥ µ2 ≥ µ3 = −l + 3. If µ1 would lie in the range
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[−l + 3,−2] or µ2 in the range [−l + 3,−1], then µ + νl + ρG would be G-
singular. Hence, we need to have µ1 ≥ µ2 ≥ 0 and therefore we compute
µ1 + µ2 + µ3 ≥ −l + 3 which contradicts to our previous assumption.

We summarize the previous cases: Either Uµ+νl has no cohomology at all or otherwise
at least in degree 2l − 4 , if µ1 + µ2 + µ3 ≤ −l + 1

l − 3 , else
. (3.51)
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Chapter 4

The tautological subcollection

General construction. The starting block C(U )
0 of the tautological subcollection C(U )

consists of irreducible G-equivariant vector bundles Uλ with highest weights λ which
are supported over the first component of the Levi part and which satisfy specific
constraints. In detail, we start with weights λ = (λ1, λ2, λ3, · · · , λn) ∈ PG such that
λ1 ≥ λ2 ≥ λ3 = 0 and λ4 = · · · λn = 0. We order these weights lexicographically.
Then we require additional conditions to form the following to building blocks
C(U )

0 = C(U ,1)
0 ∪ C(U ,2)

0 .

4.1 The first part

Construction. For the starting block C(U ,1)
0 of the first part C(U ,1) of the tautological

subcollection C(U ), we take the subset of those weights λ where we have n − 3 ≥ λ1.
Then C(U ,1)

0 is the set {Uλ} with the induced order. Each row has length wmax = 2n− 3.
This means, the collection C(U ,1) has support partition (h0, · · · , h2n−4) with

hx =
1
2

n2 − 3
2

n + 1 (4.1)

for any x ∈ [0, 2n− 4]. Accordingly, the collection C(U ,1) consists of n3 − 9
2 n2 + 13

2 n− 3
objects.
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Example 4.1.1. For OGr(3, V) with n = 7, we write completely

C(U ,1) =



U 4ω2 U 4ω2(1) · · · U 4ω2(10)
Uω1+3ω2 Uω1+3ω2(1) · · · Uω1+3ω2(10)
U 2ω1+2ω2 U 2ω1+2ω2(1) · · · U 2ω1+2ω2(10)
U 3ω1+ω2 U 3ω1+ω2(1) · · · U 3ω1+ω2(10)

U 4ω1 U 4ω1(1) · · · U 4ω1(10)
U 3ω2 U 3ω2(1) · · · U 3ω2(10)

Uω1+2ω2 Uω1+2ω2(1) · · · Uω1+2ω2(10)
U 2ω1+ω2 U 2ω1+ω2(1) · · · U 2ω1+ω2(10)

U 3ω1 U 3ω1(1) · · · U 3ω1(10)
U 2ω2 U 2ω2(1) · · · U 2ω2(10)

Uω1+ω2 Uω1+ω2(1) · · · Uω1+ω2(10)
U 2ω1 U 2ω1(1) · · · U 2ω1(10)
Uω2 Uω2(1) · · · Uω2(10)
Uω1 Uω1(1) · · · Uω1(10)
OX OX(1) · · · OX(10)



. (4.2)

Consequently, the Lefschetz structure is determined by the starting block, i.e. the first
column of (4.2), and the support partition (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15).

Let Uλ be an element from the starting block C(U )
0 and we write its highest weight

either as λ = (λ1, λ2, 0, 0, · · · , 0) or λ = c1ω1 + c2ω2. Then Uλ has rank

rk(Uλ ) =
1
2
(λ1 − λ2 + 1)(λ2 + 1)(λ1 + 2)

=
1
2
(c1 + 1)(c2 + 1)(c1 + c2 + 2)

(4.3)

due to [15, Example 10.23.] and we conjecture it has determinant det(Uλ ) = O(t)
with

t =
1
6
(λ1 − λ2 + 1)(λ1 + λ2)(λ2 + 1)(λ1 + 2)

=
1
6
(c1 + 1)(c1 + 2c2)(c2 + 1)(c1 + c2 + 2).

(4.4)

Proving exceptionality. Throughout this paragraph, let E (U ,1)
i′ = Uλ′

(x′) as well
as E (U ,1)

i′′ = Uλ′′
(x′′) be two objects from the first part C(U ,1) of the tautological

subcollection C(U ) such that i′′ ≤ i′ – i.e. we have either the case i′ = i′′ which is

x′ = x′′ and λ′ = λ′′ (4.5)

or the case i′′ < i′ which means

x′ = x′′ and λ′′ < λ′ lexicographically, or x′′ < x′. (4.6)
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We write their highest weights as µ′ = λ′ + x′ω3 and µ′′ = λ′′ + x′′ω3 respectively.
Furthermore, let Uµ be an irreducible component in the direct sum decomposition of
the tensor product

Uµ′∨ ⊗Uµ′′
= U−wL,∞µ′ ⊗Uµ′′

(4.7)

Proposition 4.1.2. The first part C(U ,1) of the tautological subcollection is exceptional.

Proof. To compute the Ext-space from E (U ,1)
i′ into E (U ,1)

i′′ , we write

Ext•(E (U ,1)
i′ , E (U ,1)

i′′ ) = H•(X,U−wL,∞µ′ ⊗Uµ′′
)

=
⊕

µ

M(−wL,∞µ′,µ′′)
µ ⊗ H•(X,Uµ). (4.8)

Let us recall from (2.28) that M(−wL,∞µ′,µ′′)
µ is the multiplicity of Vµ

L in the direct sum

decomposition of the tensor product VwL,∞µ′

L ⊗Vµ′′

L . We apply Lemma 4.1.3 to describe
the weights µ appearing in the tensor product (4.7) and to see M(−wL,∞µ′,µ′′)

µ = k if µ

is trivial. In Lemma 4.1.4 we compute the cohomology of the components Uµ which
is k in degree 0 if µ is trivial and vanishes otherwise. Consequently, the case (4.5)
covers the exceptionality of our objects Uλ(x) in the first part C(U ,1) of the tautological
subcollection C(U ) as well as the case (4.6) ensures the right orthogonal relations.

Lemma 4.1.3. We describe the weights µ appearing in the direct sum decomposition of the
tensor product (4.7) with respect to the above cases:

1. Case (4.5): It is either trivial and the corresponding vector bundle O has multiplicity 1,
or (exclusively) the entries satisfy the inequalities

max{µ2, 1} ≤ µ1 ≤ n − 3, (4.9)

max{µ3, ⌈−1
2

n +
3
2
⌉} ≤ µ2 ≤ min{µ1, ⌊1

2
n − 3

2
⌋}, (4.10)

−n + 3 ≤ µ3 ≤ min{µ2,−1}, (4.11)

µi = 0 for i ∈ [4, n], (4.12)

and

2 ≤ µ1 − µ3 ≤ 2n − 6. (4.13)

2. Case (4.6): We have the inequalities

max{µ2,−2n + 4} ≤ µ1 ≤ n − 3, (4.14)

max{µ3,−3n + 7} ≤ µ2 ≤ min{µ1, n − 4}, (4.15)

−3n + 7 ≤ µ3 ≤ min{µ2,−1}, (4.16)

µi = 0 for i ∈ [4, n], (4.17)
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and

0 ≤ µ1 − µ3 ≤ 2n − 6. (4.18)

Proof. First general description of µ. We recall from the Lemma 3.3.1 and Corollary 3.3.2
the following:

µ3 ≤ µ2 ≤ µ1, (4.19)

−x′ + x′′ = −µ′
3 + µ′′

3 ≤ µ1 ≤ −µ′
3 + µ′′

1 = λ′′
1 − x′ + x′′, (4.20)

−λ′
2 − x′ + x′′ = −µ′

2 + µ′′
3 ≤ µ2 ≤ min{−µ′

2 + µ′′
1 ,−µ′

3 + µ′′
2}

= min

{
−λ′

2 + λ′′
1 − x′ + x′′

λ′′
2 − x′ + x′′

}
, (4.21)

−λ′
1 − x′ + x′′ = −µ′

1 + µ′′
3 ≤ µ3 ≤ min{−µ′

1 + µ′′
1 ,−µ′

3 + µ′′
3}

= min

{
−λ′

1 + λ′′
1 − x′ + x′′

−x′ + x′′

}
,

(4.22)

µi = 0 for i ∈ [4, n].
(4.23)

Due to the above bounds of µi and −µj, we observe 0 ≤ µi − µj ≤ (−µ′
4−i + µ′′

1 ) +

(µ′
4−j − µ′′

3 ) = (µ′
4−j − µ′

4−i) + (µ′′
1 − µ′′

3 ) = λ′
4−j − λ′

4−i + λ′′
1 ≤ 2n − 6.

Case (4.5). As we have x′ = x′′ and λ′ = λ′′, this gives us clearly µ′ = µ′′.

If µ is trivial, we compute

M−wL,∞µ′,µ′

0 = dim(Hom(K, Vµ′

L
∨ ⊗ Vµ′

L ))

= dim(Hom(Vµ′

L , Vµ′

L )) = 1.
(4.24)

Indeed, as Vµ′

L is irreducible, we have HomDb(X)(Uµ′
,Uµ′

)
G
= HomRep(L)(V

µ′

L , Vµ′

L ) =

K by Schur’s Lemma.

Otherwise, we assume that µ is non-trivial and check the following inequalities:

(4.9): We estimate 0 ≤ µ1 ≤ λ′′
1 ≤ n − 3. If we assume that µ1 equals zero, then we

have both 0 = µ1 ≥ µ2 ≥ µ3 as well as µ1 + µ2 + µ3 = 0 and consequently
we see µ2 = µ3 = 0. However, this contradicts with our assumption that µ is
non-trivial. Thus, µ1 needs to lie in the range from 1 to n − 3.

(4.11): As we have −n + 3 ≤ µ3 ≤ 0, µ3 lies between −n + 3 and 0. If we assume that
µ3 equals zero, then we have µ1 ≥ µ2 ≥ µ3 = 0 as well as µ1 + µ2 + µ3 = 0 and
therefore it is also µ1 = µ2 = 0. However, this contradicts to the assumption
that µ is non-trivial. So, we can tighten the upper bound to −1.



4.1. The first part 37

(4.10): We refer to the first step introducing a general description of µ.
If we assume µ2 < − 1

2 n + 3
2 , then we have

0 = −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 )

= µ1 + µ2 + µ3

< µ1 + 2 · (−1
2

n +
3
2
)

= µ1 − n + 3

(4.25)

and accordingly n − 3 < µ1. However, this contradicts (4.9). So, we see − 1
2 n +

3
2 ≤ µ2. Since µ2 is an integer we even get ⌈− 1

2 n + 3
2⌉ ≤ µ2.

We proceed analogously to show µ2 ≤ ⌊ 1
2 n − 3

2⌋.

(4.12): Certainly, this is the above vanishing of the entries of µ supported over the
second Levi part.

(4.13): We can improve the lower bound up to 2 since we have 1 ≤ µ1 by (4.9) as well
as 1 ≤ −µ3 by (4.11).

Case (4.6). We mention the fact −x′ + x′′ ∈ [−2n + 4, 0] and check the following
inequalities:

(4.14): It is −2n + 4 ≤ −x′ + x′′ ≤ µ1 ≤ −x′ + x′′ + λ′′
1 ≤ n − 3.

(4.15): It is −3n + 7 ≤ −λ′
2 − x′ + x′′ ≤ µ2 ≤ −x′ + x′′ ≤ 0.

If x′ = x′′ and λ′′ < λ′ lexicographically, then we need to have either λ′′
1 =

λ′
1 = n − 3 and 0 ≤ λ′

2 < λ′
2 or it is λ′′

1 < λ′
1 ≤ n − 3 and 0 ≤ λ′

2. In both
cases, we conclude −λ′

2 + λ′′
1 ≤ n − 4. Otherwise, if x′′ < x′ or equivalently

−x′ + x′′ < 0, then it is −x′ + x′′ − λ′
2 + λ′′

1 ≤ n − 4 as we have 0 ≤ λ′
2 and

λ′′
1 ≤ n − 3 by construction.

(4.16): It is −3n + 7 ≤ −λ′
1 − x′ + x′′ ≤ µ3 ≤ −x′ + x′′ − λ′

1 + λ′′
1 ≤ 0. Now, let us

show that we can tighten the upper bound to −1 in any subcase of (4.6).

x′ = x′′ and λ′′ < λ′ lexicographically: We have −x′ + x′′ = 0 and hence we
estimate immediately µ3 ≤ −µ′

1 + µ′′
1 = −λ′

1 + λ′′
1 . If λ′′

1 < λ′
1, we have

clearly µ3 ≤ −1. If λ′′
1 = λ′

1 and λ′′
2 < λ′′

2 , then µ1 + µ2 + µ3 = −(µ′
1 +

µ′
2 + µ′

3) + (µ′′
1 + µ′′

2 + µ′′
3 ) = −λ′

2 + λ′′
2 ≤ −1. Thus, µ3 need also to be

negative; otherwise we would have a contradiction by 0 ≤ µ1 + µ2 + µ3.

x′′ < x′: We write µ3 ≤ −x′ + x′′ ≤ −1.

(4.17): Similar as before in the proof of (4.12), we refer to the vanishing of the entries
µ4, ..., and µn.

(4.18): See above at the proof of (4.13).
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Lemma 4.1.4. We compute

H•(X,Uµ) =

K[0] , if µ = 0

0 , else
. (4.26)

Proof. Case (4.5).

µ is trivial: We take the identity w = id and therefore see w · µ = w(µ+ ρG)− ρG = 0.
Hence, we obtain the claimed result by Proposition 2.5.2.

µ is not trivial: µ3 need to be in the range from −n + 3 to −1 by inequality (4.11).
Hence, µ + ρG is G-singular by condition (3.39) where i = 3.

Case (4.6). We distinguish with respect to µ3 which ranges from −3n + 7 to −1 by
(4.16).

µ3 ∈ [−2n + 6,−1]: We apply conditions (3.39) or (3.41) where i = 3 and deduce that
µ + ρG is G-singular.

µ3 = −2n + 5: It follows −2n + 5 ≤ µ1 ≤ −1 from (4.18) and accordingly µ2 is
between −2n + 5 and −1 by (4.15). If µ2 = −1, we compute µ2 + µ3 = −2n +

4 = −2n − 1 + (2 + 3) which is precisely condition (3.40). Otherwise, if µ2 ∈
[−2n + 5,−2], we apply conditions (3.39) or (3.41) where i = 2.

µ3 = −2n + 4: Similar as before, it follows −2n + 4 ≤ µ2 ≤ µ1 ≤ −2 from (4.15) as
well as (4.18). If µ1 = −2, then µ2 is in [−2n + 4,−2]. Hence, if µ2 lies even
in [−2n + 5,−2], we refer to the computation of the previous subcase; and if
µ2 = −2n + 4, then we consider µ1 + µ2 = −2n + 2 = −2n − 1+ (1+ 2) which
is condition (3.40). Otherwise, if µ1 ∈ [−2n + 4,−3], apply conditions (3.39) or
(3.41) where i = 1.

µ3 ∈ [−3n + 7,−2n + 3]: We have −2n+ 4 ≤ µ1 by (4.14) as well as µ1 ≤ µ3 + 2n− 6
by (4.18). Hence, µ1 lies in the range from −2n + 4 to µ3 + 2n − 6 ≤ −3. We
apply conditions (3.39) or (3.41) where i = 1 again as in the previous subcase.

4.2 The second part

Construction. The starting block C(U ,2)
0 of the second part C(U ,2) of the tautological

subcollection C(U ) is made up of those weights λ where we have ⌊ 3
2 n − 9

2⌋ ≥ λ1 ≥
n − 2 as well as ⌈ 1

2 n − 3
2⌉ ≥ λ2 ≥ −n + 3 + λ1. Then C(U ,2)

0 is the set {Uλ} with the
induced order. Each row has length wmax = 2n − 3. This means, the collection C(U ,2)

has support partition (h0, · · · , h2n−4) with

hx =
1
8

n2 − 3
8

n +
1
8

n · (−1)n − 5
16

− 11
16

· (−1)n (4.27)
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for any x ∈ [0, 2n − 4]. In fact, hx is the sum of all terms ⌈ 3
2 n − 7

2⌉ − λ1 while λ1 runs
from n − 2 to ⌊ 3

2 n − 9
2⌋. Accordingly, the collection C(U ,2) consists of

1
4

n3 − 9
8

n2 +
1
4

n2 · (−1)n +
1
2

n − 7
4

n · (−1)n +
15
16

+
33
16

· (−1)n (4.28)

objects.

Example 4.2.1. For OGr(3, V) with n = 7, we write completely

C(U ,2) =

U 4ω1+2ω2 U 4ω1+2ω2(1) · · · U 4ω1+2ω2(10)
U 3ω1+2ω2 U 3ω1+2ω2(1) · · · U 3ω1+2ω2(10)
U 4ω1+ω2 U 4ω1+ω2(1) · · · U 4ω1+ω2(10)

 . (4.29)

Consequently, the Lefschetz structure is determined by the starting block, i.e. the first
column of (4.29), and the support partition (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3).

For the rank of Uλ and its determinant, we refer to equations (4.3) and (4.4) respec-
tively.

Proving exceptionality. We proceed similarly to the first part C(U ,1) of the tauto-
logical subcollection C(U ) in previous section 4.1. Let E (U ,2)

i′ = Uλ′
(x′) as well as

E (U ,2)
i′′ = Uλ′′

(x′′) be two objects from the second part C(U ,2) of the tautological subcol-
lection C(U ) such that i′′ ≤ i′. Again, we distinguish the following two cases: Either
i′ = i′′ which is

x′ = x′′ and λ′ = λ′′ (4.30)

or i′′ < i′ which means

x′ = x′′ and λ′′ < λ′ lexicographically, or x′′ < x′. (4.31)

We set µ′ = λ′ + x′ω3 and µ′′ = λ′′ + x′′ω3 respectively. Let Uµ be an irreducible
component in the direct sum decomposition of the tensor product

Uµ′∨ ⊗Uµ′′
= U−wL,∞µ′ ⊗Uµ′′

(4.32)

Proposition 4.2.2. The second part C(U ,2) of the tautological subcollection is exceptional.

Proof. We start with the direct sum decomposition

Ext•(E (U ,2)
i′ , E (U ,2)

i′′ ) = H•(X,U−wL,∞µ′ ⊗Uµ′′
)

=
⊕

µ

M(−wL,∞µ′,µ′′)
µ ⊗ H•(X,Uµ). (4.33)

In a first step, we apply the Lemma 4.2.3 to describe the weights µ appearing in the
tensor product (4.32); and then in a second step, we deduce from Lemma 4.2.4 the
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desired statement. The case (4.30) shows that the objects Uλ(x) in the collection C(U ,2)

are exceptional, and the case (4.31) ensures the right orthogonal relations.

Lemma 4.2.3. We describe the weights µ appearing in the direct sum decomposition of the
tensor product (4.32) with respect to the above cases:

1. Case (4.30): It is either trivial and the corresponding vector bundle O has multiplicity
1, or (exclusively) the entries satisfy the inequalities

max{µ2, 1} ≤ µ1 ≤ ⌊3
2

n − 9
2
⌋, (4.34)

max{µ3, ⌊−1
2

n +
3
2
⌋} ≤ µ2 ≤ min{µ1, ⌈1

2
n − 3

2
⌉}, (4.35)

⌈−3
2

n +
9
2
⌉ ≤ µ3 ≤ min{µ2,−1}, (4.36)

µi = 0 for i ∈ [4, n], (4.37)

0 ≤ µ1 − µ2 ≤ 2n − 6, (4.38)

2 ≤ µ1 − µ3 ≤ 2 · ⌊3
2

n − 9
2
⌋, (4.39)

and

0 ≤ µ2 − µ3 ≤ 2n − 6. (4.40)

2. Case (4.31): We have the inequalities

max{µ2,−2n + 4} ≤ µ1 ≤ ⌊3
2

n − 9
2
⌋, (4.41)

max{µ3, ⌊−5
2

n +
11
2
⌋} ≤ µ2 ≤ min{µ1, ⌈1

2
n − 3

2
⌉}, (4.42)

⌈−7
2

n +
17
2
⌉ ≤ µ3 ≤ max{µ2,−1}, (4.43)

µi = 0 for i ∈ [4, n], (4.44)

0 ≤ µ1 − µ2 ≤ 2n − 6, (4.45)

0 ≤ µ1 − µ3 ≤ 2 · ⌊3
2

n − 9
2
⌋, (4.46)

and

0 ≤ µ2 − µ3 ≤ 2n − 6. (4.47)

Proof. We argue analogously as in the proof of Lemma 4.1.3.

First, we deduce from the Lemma 3.3.1 and Corollary 3.3.2 general inequalities for
the entries µ1, µ2, and µ3 as well as the vanishing of µ4, ..., and µn. Due to the bounds
of µ1 and −µ3, we observe 0 ≤ µ1 − µ3 ≤ λ′

1 + λ′′
1 ≤ 2 · ⌊ 3

2 n − 9
2⌋.
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Second, we distinguish the two cases (4.30) and (4.31): If we assume x′ = x′′ as well
as λ′ = λ′′ – i.e. µ′ = µ′′, then µ is either trivial and therefore M−wL,∞µ′,µ′

0 computes
as 1 by Schur’s Lemma, or it is non-trivial and we check the inequalities (4.34)-(4.40).
Otherwise, if x′ = x′′ and λ′′ < λ′ lexicographically or x′′ < x′, then we check
(4.41)-(4.47).

Lemma 4.2.4. We compute

H•(X,Uµ) =

K[0] , if µ = 0

0 , else
. (4.48)

Proof. Case (4.30).

µ is trivial: We take the identity w = id and therefore see w · µ = w(µ+ ρG)− ρG = 0.
Hence, we obtain the claimed result by Proposition 2.5.2.

µ is not trivial: µ3 need to be in the range from ⌈− 3
2 n + 9

2⌉ to −1 by inequality (4.36).

µ3 ∈ [−n + 3,−1]: µ + ρG is G-singular by condition (3.39) where i = 3.

µ3 ∈ [⌈− 3
2 n + 9

2⌉,−n + 2]: We mention the fact −2n + 6 ≤ − 3
2 n + 9

2 for n ≥ 3.
Hence, µ + ρG is G-singular by condition (3.41) where i = 3.

Case (4.31). We distinguish with respect to µ3 which ranges from ⌈− 7
2 n + 17

2 ⌉ to −1
by (4.43).

µ3 ∈ [−2n + 6,−1]: We apply conditions (3.39) or (3.41) where i = 3 and deduce that
µ + ρG is G-singular.

µ3 = −2n + 5: It follows −2n + 5 ≤ µ2 ≤ −1 from (4.47).

µ2 = −1: µ2 + µ3 = −2n + 4 = −2n − 1 + (2 + 3) is precisely condition (3.40).

µ2 ∈ [−2n + 5,−2]: We apply the conditions (3.39) or (3.41) where i = 2.

µ3 = −2n + 4: Similar to before, it follows −2n + 4 ≤ µ2 ≤ −2 from (4.47).

µ2 ∈ [−2n + 5,−2] : This is either condition (3.39) or (3.41) where i = 2.

µ2 = −2n + 4 : We observe −2n + 4 ≤ µ1 ≤ −2 from (4.45).

µ1 = −2: µ1 + µ2 = −2n + 2 = −2n − 1 + (1 + 2) is also condition (3.40).

µ1 ∈ [−2n + 4,−3]: We set i = 1 and apply (3.39) or (3.41) respectively.

µ3 ∈ [−3n + 7,−2n + 3]: We have −3n + 7 ≤ ⌊− 5
2 n + 11

2 ⌋ ≤ µ2 ≤ ⌊−3 due to (4.47).

µ2 ∈ [−2n + 4,−3]: We argue analogously as in the previous case.

µ2 ≤ −2n + 3: We have µ2 < −2n + 4 ≤ µ1 ≤ −3 because of (4.45). This
means as before, we apply (3.39) or (3.41) respectively for i = 1.
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µ3 ∈ [⌈− 7
2 n + 17

2 ⌉,−3n + 6]: The inequality (4.46) implies µ3 < −2n + 4 ≤ µ1 ≤
2⌊ 3

2 n − 9
2⌋ + µ3 ≤ −3. Hence, we have µ1 ∈ [−2n + 4,−3] and therefore

proceed as in previous cases.

4.3 Merging the parts

Construction. Finally, we form the tautological subcollection C(U ): Its starting block
is the union C(U )

0 = C(U ,1)
0 ∪ C(U ,2)

0 where we remain the lexicographical ordering, and
its support partition arises from summing up (4.1) and (4.27).

We present a few auxiliary lemmas for later computations. For this purpose, let λ be
a highest weight of an objects appearing in the tautological subcollection C(U ).

Lemma 4.3.1. λ1 + λ2 ≤ 2n − 6

Proof. For the first part C(U ,1) of the tautological subcollection (cf. section 4.1), the
statement is obvious. For the second part C(U ,2) (cf. section 4.1), we compute λ1 +

λ2 ≤ ⌊ 3
2 n − 9

2⌋+ ⌈ 1
2 n − 3

2⌉ ≤ 2n − 6.

Lemma 4.3.2. λ2 ≤ n − 3

Proof. For the first part C(U ,1) of the tautological subcollection (cf. section 4.1), the
statement is obvious. For the second part C(U ,2) (cf. section 4.1), we observe compute
λ2 ≤ ⌈ 1

2 n − 3
2⌉ ≤ n − 3 or equivalently 0 ≤ ⌊ 1

2 n − 3
2⌋.

Lemma 4.3.3. If λ2 = n − 3, then we need to have λ1 = n − 3 and accordingly λ =

(n − 3)ω2.

Proof. If λ appears in the first part C(U ,1) of the tautological subcollection (cf. sec-
tion 4.1), then we have n − 3 = λ2 ≤ λ1 ≤ n − 3. Otherwise, if λ appears in the
second part C(U ,2) (cf. section 4.2), then it needs to satisfy n − 3 = λ2 ≤ ⌈ 1

2 n − 3
2⌉

or equivalently ⌊ 1
2 n − 3

2⌋ ≤ 0. However, this fact implies n ≤ 4 which yields a
contradiction as the corresponding second part C(U ,2) is empty.

Proving exceptionality. In the following we show that the two parts C(U ,1) and
C(U ,2) can be combined. We continue with the notation introduced in the previous
sections.

Proposition 4.3.4. The tautological subcollection C(U ) is exceptional.

Proof. Thanks to Propositions 4.1.2 as well as 4.2.2, we are left to check the following
right orthogonal relations given by Lemma 4.3.6 as well as 4.3.8.
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Lemma 4.3.5. Let Uλ′
be from the starting block C(U ,2)

0 , x′ ranges in [0, 2n − 4], and let Uλ′′

be from the the starting block C(U ,1)
0 . We describe the weights µ appearing in the direct sum

decomposition of the tensor product Uµ′∨ ⊗Uµ′′
where µ′ = λ′ + x′ω3 and µ′′ = λ′′:

max{µ2,−2n + 4} ≤ µ1 ≤ n − 3, (4.49)

max{µ3, ⌊−5
2

n +
11
2
⌋} ≤ µ2 ≤ min{µ1, n − 3}, (4.50)

⌈−7
2

n +
17
2
⌉ ≤ µ3 ≤ min{µ2,−1}, (4.51)

µi = 0 for i ∈ [4, n], (4.52)

0 ≤ µ1 − µ2 ≤ ⌈3
2

n − 9
2
⌉, (4.53)

0 ≤ µ1 − µ3 ≤ ⌊5
2

n − 15
2
⌋, (4.54)

and

0 ≤ µ2 − µ3 ≤ 2n − 6. (4.55)

Proof. We aruge analogously as before in the proofs of Lemmas 4.1.3 or 4.2.3.

Lemma 4.3.6. Uλ′
(x′) is right orthogonal to Uλ′′

whenever Uλ′
is from the starting block

C(U ,2)
0 , x′ ranges in [0, 2n − 4], and Uλ′′

is from C(U ,1)
0 .

Proof. Let Uµ be an irreducible summand that appears in the direct sum decomposi-
tion of the tensor product Uµ′∨ ⊗Uµ′′

with µ′ = λ′ + x′ω3 and µ′′ = λ′′. We observe
⌈− 7

2 n + 17
2 ⌉ ≤ µ3 ≤ −1 by (4.51):

µ3 ∈ [−2n + 6,−1]: We apply the conditions (3.39) or (3.41) respectively where i = 3.

µ3 = −2n + 5: Due to (4.55), we have −2n + 5 ≤ µ2 ≤ −1.

µ2 = −1: We observe µ2 + µ3 = −2n + 4 = −2n − 1 + (2 + 3) and hence refer
to condition (3.40).

µ2 ∈ [−2n + 5,−2]: We apply the conditions (3.39) or (3.41) respectively where
i = 2.

µ3 ∈ [⌈− 7
2 n + 17

2 ⌉,−2n + 4]: We recall (4.50) for the lower bound and (4.55) for the
upper one. Thus, we see ⌊− 5

2 n + 11
2 ⌋ ≤ µ2 ≤ −2.

µ2 ∈ [−2n + 5,−2]: As before, we apply condition (3.39) or (3.41) respectively
where i = 2.

µ2 = −2n + 4: We compute −2n + 4 ≤ µ1 ≤ ⌈− 1
2 n − 1

2⌉ by (4.53). For n ≥ 3,
we have µ1 ≤ −2.

µ1 = −2: It is µ1 + µ2 = −2n + 2 = −2n − 1 + (1 + 2) and hence the
condition (3.40) holds.
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µ1 ∈ [−2n + 4,−3]: We apply condition (3.39) or (3.41) respectively where
i = 1.

µ2 ∈ [⌊− 5
2 n + 11

2 ⌋,−2n + 3]: We compute µ2 ≤ −2n + 3 < −2n + 4 ≤ µ1 ≤
⌈− 1

2 n − 3
2⌉ by (4.53). For n ≥ 3, we have µ1 ≤ −3. Hence, we proceed as

before.

Lemma 4.3.7. Let Uλ′
be from the starting block C(U ,1)

0 , x′ ranges in [1, 2n − 4], and let Uλ′′

be from the the starting block C(U ,2)
0 . We describe the weights µ appearing in the direct sum

decomposition of the tensor product Uµ′∨ ⊗Uµ′′
where µ′ = λ′ + x′ω3 and µ′′ = λ′′:

max{µ2,−2n + 4} ≤ µ1 ≤ ⌊3
2

n − 11
2
⌋, (4.56)

max{µ3,−3n + 7} ≤ µ2 ≤ min{µ1, ⌈1
2

n − 5
2
⌉}, (4.57)

−3n + 7 ≤ µ3 ≤ min{µ2,−1}, (4.58)

µi = 0 for i ∈ [4, n], (4.59)

0 ≤ µ1 − µ2 ≤ ⌊5
2

n − 15
2
⌋, (4.60)

0 ≤ µ1 − µ3 ≤ ⌊3
2

n − 9
2
⌋, (4.61)

and

0 ≤ µ2 − µ3 ≤ ⌈1
2

n − 3
2
⌉. (4.62)

Proof. Again we refer to the analogous proofs, namely Lemmas 4.1.3, 4.2.3, or 4.3.5.

Lemma 4.3.8. Uλ′
(x′) is right orthogonal to Uλ′′

whenever Uλ′
is from the starting block

C(U ,1)
0 , x′ ranges in [1, 2n − 4] and Uλ′′

is from the starting block C(U ,2)
0 .

Proof. We set µ′ = λ′ + x′ω3 and µ′′ = λ′′. Let Uµ be an irreducible summand
in the direct sum decomposition of the tensor product Uµ′∨ ⊗ Uµ′′

. We have µ3 ∈
[−3n + 7,−1] by (4.58). Then we do the same case distinction as in the proof of
Lemma 4.3.6.



45

Chapter 5

The spinor subcollection

Construction of the subcollection. The starting block C(S)
0 of the spinor subcollec-

tion C(S) consists of n − 1 objects, namely the spinor bundle

S (0) = Uωn (5.1)

as well as n − 2 non-splitting G-equivariant extensions

0 → Uωn →S (1) → Uω1+ωn → 0,
...

0 → U (n−4)ω1+ωn →S (n−3) → U (n−3)ω1+ωn → 0, and

0 → U (n−3)ω1+ωn →S (n−2) → U (n−2)ω1+ωn → 0.

(5.2)

The rows of objects S (0), · · · ,S (n−3) have length wmax = 2n − 3 and the last one
belonging to the object S (n−2) has length n − 2. This means, the collection C(S) has
support partition (h0, · · · , h2n−4) where

hx =

n − 1 , if x ∈ [0, n − 3]

n − 2 , if x ∈ [n − 2, 2n − 4]
. (5.3)

All in all, we establish the following Lefschetz collection C(S) on Db(X) consisting of
2n2 − 6n + 4 objects:

S (n−2) S (n−2)(1) · · · S (n−2)(n − 3)
S (n−3) S (n−3)(1) · · · S (n−3)(n − 3) S (n−3)(n − 2) · · · S (n−3)(2n − 4)

...
...

...
...

...
S (0) S (0)(1) · · · S (0)(n − 3) S (0)(n − 2) · · · S (0)(2n − 4)


(5.4)
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Example 5.0.1. For OGr(3, V) with n = 7, we have entirely

C(S) =


S (5) S (5)(1) · · · S (5)(4)
S (4) S (4)(1) · · · S (4)(4) S (4)(5) · · · S (4)(10)

...
...

...
...

...
S (0) S (0)(1) · · · S (0)(4) S (0)(5) · · · S (0)(10)

 (5.5)

Again, the Lefschetz structure is determined by the starting block, i.e. the first column
of (5.5), and the support partition (6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5).

Given y ∈ [0, n − 2], we conjecture that the object S (y) has rank

rk( S (y) ) = 2n−3 · (y + 1)2 (5.6)

and that it has determinant det( S (y) ) = O(t) with

t = 2n−4 · 1
3

n(2n2 + 1). (5.7)

Construction of the objects S (y). Initially, we claim that the objects S (y)(x) of the
spinor subcollection C(S) are well-defined. Therefore, we focus on the objects S (y) of
the starting block C(S)

0 . The statement is clear for the case y = 0 as the first object S (0)

is by construction (5.1) the spinor bundle S ; for the higher cases y > 0, we give the
following lemma.

Lemma 5.0.2. Let y be an integer greater than 0. Then there is non-splitting G-equivariant
extension

0 → U (y−1)ω1+ωn → S (y) → U yω1+ωn → 0 (5.8)

which is unique up to rescaling.

Proof. Our approach. We show that the first Ext-space Ext1(U yω1+ωn ,U (y−1)ω1+ωn)

contains exactly one k as summand. Hence, our desired extension S (y) is induced by
a non-negative value from this summand.

Identify the suitable summand. As we have

Ext•(U yω1+ωn ,U (y−1)ω1+ωn) = H•(X,U yω1+ωn∨ ⊗U (y−1)ω1+ωn), (5.9)
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we decompose the following tensor product into a direct sum of irreducible G-
equivariant vector bundles:

U yω1+ωn∨ ⊗U (y−1)ω1+ωn = U yω2+ωn(−y − 1)⊗U (y−1)ω1+ωn

= O(−y − 1)

⊗Uωn ⊗Uωn

⊗U yω2 ⊗U (y−1)ω1

= O(−y − 1)

⊗ (Uω3 ⊕ · · · ⊕ Uωn−1 ⊕U 2ωn)

⊗ (Uω2(y − 1)⊕ · · · )

(5.10)

If n = 4, we observe that Uω2+2ω4(−2) is a summand in the above tensor product;
otherwise if 5 ≤ n, it is for Uω2+ω4(−2). The corresponding highest weight is written
as

λ = (0, 0,−1, 1) or λ = (0, 0,−1, 1, 0, · · · , 0) (5.11)

respectively.

Compute cohomology partially. We apply Proposition 2.5.2 to compute the cohomology
H•(X,Uλ) = k[−1] for the summand Uλ of the previous step. Indeed, we recall (2.17)
as well as (5.11) and we consider the sum λ + ρG, namely

λ + ρG =

( 7
2 , 5

2 , 1
2 , 3

2 ) , if n = 4

(n − 1
2 , n − 3

2 , n − 7
2 , n − 5

2 , n − 9
2 , · · · , 1

2 ) , if 5 ≤ n
. (5.12)

In both cases, λ + ρG is G-regular and the third simple reflection w3 is the unique
element of the Weyl group WG mapping λ + ρG to the cone of dominant weights P+

G .
In particular, we have ℓG(w3) = 1 as well as w3 · λ = w3(λ + ρG)− ρG = 0.

Uniqueness of the summand k in degree 1. Let λ be the highest weight of a summand Uλ

appearing in the direct sum decomposition of the above tensor prodcut U yω1+ωn∨ ⊗
U (y−1)ω1+ωn . Hence, it is L-dominant. Now, we assume H•(X,Uλ) = k[−1] which
means precisely wi ·λ = wi(λ+ ρG)− ρG = 0 for a simple reflection wi. Consequently,
we need to compare the entries of λ + ρG and ρG. Let us explicitly mention that the j
-th entry of ρG can be written as n + 1

2 − j. If i ∈ {1, · · · , n − 1}, we compute λi = −1,
λi+1 = 1, and λj = 0 for all other entries where j ∈ [1, n] \ {i, i + 1}. Otherwise, if
i = n, then we obtain λj = 0 for all j ∈ [1, n − 1] and λn = −1. We conclude that
i needs to be 3 because for any other case we see that λ could not be L-dominant.
Hence, λ is exactly of the form (5.11).

Resolution of the objects S (y) for y ≥ 1. Our next aim is to characterize the
extensions S (y) for later computations by a handy resolution.
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Proposition 5.0.3. For y ∈ {1, · · · , n − 2}, the object S (y) is resolved by the following
exact sequence

0 → S (y) →S ⊗U (y−1)ω1(1) → S ⊗U (y−2)ω1+ω2(1) →
· · · → S ⊗U (y−1)ω2(1) → S (y)∨(y + 1) → 0. (5.13)

Proof. First, we construct the first part of the exact sequence (5.13) by Lemma 5.0.5,
the middle pieces by Lemma 5.0.7, and the last one by Lemma 5.0.9. Then we glue all
the short exact sequences to obtain the desired resolution.

Example 5.0.4. We consider the case OGr(3, V) with n = 7. Then we have the
following resolutions for the objects S (y):

0 → S (1) → S ⊗O(1) → S (1)∨(2) → 0

0 → S (2) → S ⊗Uω1(1) → S ⊗Uω2(1) → S (2)∨(3) → 0
...

0 → S (5) → S ⊗U 4ω1(1) → S ⊗U 3ω1+ω2(1) →
· · · → S ⊗U 4ω2(1) → S (5)∨(6) → 0

(5.14)

Before we start with the proof of the above exact sequence (5.13), let us introduce a
bunch of objects as well as labellings. Recall that F (1)

i is the ith component appearing
in the filtration (2.45) of Proposition 2.7.1 and let us write the factors in (5.13) as

Fy,i = U (y−1−i)ω1+iω2(1) (5.15)

where i ∈ [0, y − 1] – i.e. Fy,i is the irreducible G-equivariant vector bundle with
highest weight (y, i + 1, 1, 0, · · · , 0). We consider the short exact sequences appearing
in (2.45) and tensor it with Fy,i:

Fy,i,0 = S ⊗ Fy,i, (5.16)

0 → Fy,i,1 → Fy,i,0 → Uωn ⊗ Fy,i → 0, (5.17)

0 → Fy,i,2 → Fy,i,1 → Uω2+ωn(−1)⊗ Fy,i → 0, (5.18)

0 → Fy,i,3 → Fy,i,2 → Uω1+ωn(−1)⊗ Fy,i → 0, (5.19)

and

Fy,i,3 = Uωn(−1)⊗ Fy,i. (5.20)
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Then, we decompose the tensor products appearing in the above short exact sequences
(5.17)-(5.20), namely

Uωn ⊗ Fy,i = U (y−1−i)ω1+iω2+ωn(1) =: My,i,0, (5.21)

Uω2+ωn(−1)⊗ Fy,i = My,i,1,1 ⊕My,i,1,2 =: My,i,1, (5.22)

where

My,i,1,1 =

0 , if i = 0

U (y−i)ω1+iω2+ωn(1) , if i ≥ 1


My,i,1,2 = U (y−1−i)ω1+(i+1)ω2+ωn

⊕

U (y−2−i)ω1+iω2+ωn(1) , if i ≤ y − 2

0 , if i = y − 1

 ,

Uω1+ωn(−1)⊗ Fy,i = My,i,2,1 ⊕My,i,2,2 =: My,i,2, (5.23)

where

My,i,2,1 = U (y−i)ω1+iω2+ωn

⊕

0 , if i = 0

U (y−1−i)ω1+(i−1)ω2+ωn(1) , if i ≥ 1


My,i,2,2 =

U (y−2−i)ω1+(i+1)ω2+ωn , if i ≤ y − 2

0 , if i = y − 1

 ,

and

Uωn(−1)⊗ Fy,i = U (y−1−i)ω1+iω2+ωn =: My,i,3. (5.24)

Let us explicitly mention the following interweaving identities:

My,i,0 = My,i,3(1) (5.25)

and
My,i,1,2 = My,i+1,2,1 whenever (y, i) = (1, 0) or 1 ≤ i ≤ y − 2. (5.26)

We construct the resolution (2.45) of S (y) inductively. For this purpose, let us claim
that for any i ∈ [0, y − 1] it exists short exact sequences

0 → Cy,i−1,0 → S ⊗ Fy,i → Cy,i,0 → 0 (5.27)
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such that the first object Cy,−1,0 is precisely S (y) and later Cy,i,0’s are characterized by

0 → Cy,i,1 → Cy,i,0 → My,i,0 → 0, (5.28)

0 → Cy,i,2 → Cy,i,1 → My,i,1,2 → 0, (5.29)

and

Cy,i,2 = My,i,2,2. (5.30)

Furthermore, the short exact sequence (5.28) is a non-splitting G-equivariant extension
for all cases and the short exact sequence (5.29) is so whenever it is i ≤ y − 2.

Now, let us start with the base case, namely the first part from the left of the exact
sequence (5.13).

Lemma 5.0.5. For y ≥ 1, we have the short exact sequence

0 → S (y) → S ⊗ Fy,0 → Cy,0,0 → 0 (5.31)

with the following components

0 → Cy,0,1 → Cy,0,0 → U (y−1)ω1+ωn(1)︸ ︷︷ ︸
=My,0,0

→ 0, (5.32)

0 → Cy,0,2 → Cy,0,1 →
U (y−1)ω1+ω2+ωn

⊕

0 , if y = 1

U (y−2)ω1+ωn(1) , if y ≥ 2

︸ ︷︷ ︸
=My,0,1,2

→ 0, (5.33)

and

Cy,0,2 =

0 , if y = 1

U (y−2)ω1+ω2+ωn , if y ≥ 2︸ ︷︷ ︸
=My,0,2,2

. (5.34)

The object Cy,0,0 is a non-splitting G-equivariant extension for all y ≥ 1; and Cy,0,1 is so for
y ≥ 2 respectively.

Proof. Filtration on S ⊗ Fy,0. We recall (5.16)-(5.20) for the case i = 0:

Fy,0,0 = S ⊗ Fy,0, (5.35)

0 → Fy,0,1 → Fy,0,0 → U (y−1)ω1+ωn(1)︸ ︷︷ ︸
=My,0,0

→ 0, (5.36)

0 → Fy,0,2 → Fy,0,1 → My,0,1,1 ⊕My,0,1,2︸ ︷︷ ︸
=My,0,1

→ 0 (5.37)
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where

My,0,1,1 = 0

My,0,1,2 = U (y−1)ω1+ω2+ωn

⊕

0 , if y = 1

U (y−2)ω1+ωn(1) , if y ≥ 2

 ,

0 → Fy,0,3 → Fy,0,2 → My,0,2,1 ⊕My,0,2,2︸ ︷︷ ︸
=My,0,2

→ 0 (5.38)

where

My,0,2,1 = U yω1+ωn

My,0,2,2 =

0 , if y = 1

U (y−2)ω1+ω2+ωn , if y ≥ 2

 ,

and

Fy,0,3 = U (y−1)ω1+ωn︸ ︷︷ ︸
=My,0,3

. (5.39)

Embed S (y) into Fy,0,2 and construct Cy,0,2. We compose the projection of (5.38) with the
one onto My,0,2,2, namely

Fy,0,2 ↠ My,0,2,1 ⊕My,0,2,2︸ ︷︷ ︸
=My,0,2

↠ My,0,2,2. (5.40)

Snaking yields the short exact sequences

0 → S̃ (y) → Fy,0,2 → My,0,2,2 → 0 (5.41)

and
0 → U (y−1)ω1+ωn︸ ︷︷ ︸

=My,0,3

→ S̃ (y) → U yω1+ωn︸ ︷︷ ︸
=My,0,2,1

→ 0. (5.42)

We claim that S̃ (y) is isomorphic to the object S (y). In (5.41), the object S̃ (y) is
constructed as kernel of a G-equivariant morphism (5.40). Thus, it need to be G-
equivariant as well. If we show that the extension S̃ (y) does also not split, then it
needs to coincide with S (y) up to rescaling. In fact, both objects are an extension
of U yω1+ωn by U (y−1)ω1+ωn as we see from (5.8) and (5.42). Hence, the non-splitting
of S̃ (y) implies the stated isomorphism from the uniqueness proved in previous
Lemma 5.0.2. So, let us assume the opposite, namely that S̃ (y) splits – i.e. it is a direct
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sum. Then, we construct an G-equivariant morphism

U yω1+ωn ↪→ S̃ (y) ↪→ Fy,0,2 ↪→ Fy,0,1 ↪→ S ⊗ Fy,0 (5.43)

where the first embedding comes from the assumed splitting, the second one from
(5.41), and the remaining ones from (5.36) as well as (5.37). However, this contradicts
the fact that there are no non-trivial morphisms from U yω1+ωn to Fy,0. Indeed, we
will see this in (5.53) of Lemma 5.0.6 hereinafter. We finish this step by setting
Cy,0,2 = My,0,2,2 to see (5.34).

Embed S (y) into Fy,0,1 and construct Cy,0,1. We compose the embedding of (5.37) with
the one of (5.41), namely

S (y) ↪→ Fy,0,2 ↪→ Fy,0,1. (5.44)

Analogously as before, snaking gives us the short exact sequences

0 → S (y) → Fy,0,1 → Cy,0,1 → 0 (5.45)

and
0 → Cy,0,2 → Cy,0,1 → My,0,1,1 ⊕My,0,1,2︸ ︷︷ ︸

=My,0,1

→ 0. (5.46)

The last one is precisely (5.33) as the summand My,0,1,1 vanishes.
If y ≥ 2, then the G-equivariant extension Cy,0,1 does not split. Otherwise, if we
assume the opposite, then we have a non-trivial surjection

Fy,0,1 ↠ Cy,0,1 ↠ Cy,0,2 = U (y−2)ω1+ω2+ωn . (5.47)

However, this contradicts the fact that the Hom-space Hom(Fy,0,1, Cy,0,2) vanishes. In
fact, we apply Hom(−, Cy,0,2) to the short exact sequence (5.36) and obtain the long
exact sequence

· · · → Extp(My,0,0, Cy,0,2) → Extp(S ⊗ Fy,0, Cy,0,2) → Extp(Fy,0,1, Cy,0,2) → · · · .
(5.48)

Then, we observe the vanishing of the Hom-space Hom(S ⊗ Fy,0, Cy,0,2) by the later
computation (5.54) in Lemma 5.0.6 as well as the vanishing of the first Ext-space
Ext1(My,0,0, Cy,0,2) by (5.55).

Embed S (y) into Fy,0,0 = S ⊗ Fy,0 and construct Cy,0,0. We compose the embedding of
(5.36) with the one of (5.45), namely

S (y) ↪→ Fy,0,1 ↪→ S ⊗ Fy,0. (5.49)

We snake a third time and obtain the short exact sequences

0 → S (y) → S ⊗ Fy,0 → Cy,0,0 → 0 (5.50)
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and
0 → Cy,0,1 → Cy,0,0 → My,0,0 → 0. (5.51)

These are the desired sequences (5.31) and (5.32) respectively.
We claim that the G-equivariant extension Cy,0,0 does not split. If we assume the
opposite – i.e. it is a direct sum, then we have a non-trivial surjection

S ⊗ Fy,0 ↠ Cy,0,0 ↠ Cy,0,1 ↠ My,0,1 = My,0,1,2 ↠ U (y−1)ω1+ω2+ωn . (5.52)

The first comes from the projection in (5.50), the second from the assumed split-
ting, the third one from (5.46), the last one from the projection onto the summand
U (y−1)ω1+ω2+ωn . However, this contradicts the fact that there are no non-trivial mor-
phisms from Fy,0 to U (y−1)ω1+ω2+ωn . In fact, we refer to (5.56) in the subsequent
Lemma 5.0.6.

Lemma 5.0.6. We show the following vanishings:

Hom(U yω1+ωn , Fy,0) = 0 (5.53)

Hom(Fy,0, Cy,0,2) = 0 (5.54)

Ext1(My,0,0, Cy,0,2) = 0 (5.55)

Hom(Fy,0,U (y−1)ω1+ω2+ωn) = 0 (5.56)

Proof. (5.53): We apply Lemma 3.3.6 with µ′ = yω1, µ′′ = (y − 1)ω1 + ω3 and i = 3.
In fact, we check −(µ′

1 + µ′
2 + µ′

3) + (µ′′
1 + µ′′

2 + µ′′
3 ) = 2 and −µ′

3 + µ′′
3 = 1.

(5.54): We recall Cy,0,2 from (5.30): If y is one, then Cy,0,2 is by construction zero and
therefore the claimed statement follows obviously. Otherwise, if we assume
y ≥ 2, then we have Cy,0,2 = U (y−2)ω1+ω2+ωn . We apply Lemma 3.3.6 with
µ′ = (y − 1)ω1 + ω3, µ′′ = (y − 2)ω1 + ω2 and i = 3. For this purpose, we
check −(µ′

1 + µ′
2 + µ′

3) + (µ′′
1 + µ′′

2 + µ′′
3 ) = −2 and −µ′

3 + µ′′
3 = −1.

(5.55): We recall My,0,0 is the irreducible vector bundle U (y−1)ω1+ωn(1). Similar as in
the step before, the statement is obvious for y = 1. Hence, we assume y ≥ 2 for
the remaining part and therefore have Cy,0,2 = U (y−2)ω1+ω2+ωn . We start with
the following preparation where µ′ = (y − 1)ω1 + ω3 and µ′′ = (y − 2)ω1 + ω2

(see (3.47)):

Ext•(My,0,0, Cy,0,2) = Ext•(Uµ′+ωn ,Uµ′′+ωn) = · · · =
n⊕

l=3

Ext•(Uµ′
,Uµ′′+νl )

(5.57)
with νl = ∑l

i=4 ei. We apply Lemma 3.3.8 to compute the vanishing of the Ext-
spaces Extp(Uµ′

,Uµ′′ ⊗U νl ) for p ∈ [0, 1] and l ∈ [3, n]. Indeed, it is −µ′
3 + µ′′

3 =

−1 < 0 as well as −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) = −2 ≤ −l + 2 for
l ∈ [3, 4].
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(5.56): We apply Lemma 3.3.6 a third time with µ′ = (y − 1)ω1 + ω3, µ′′ = (y −
1)ω1 + ω2 and i = 3. Clearly, it is −(µ′

1 + µ′
2 + µ′

3) + (µ′′
1 + µ′′

2 + µ′′
3 ) = −1 and

−µ′
3 + µ′′

3 = −1.

Next, we do the induction step from the case i to i + 1.

Lemma 5.0.7. For y ≥ 2 and i ∈ [0, y − 2], we have the short exact sequence

0 → Cy,i,0 → S ⊗ Fy,i+1 → Cy,i+1,0 → 0 (5.58)

with the following components

0 → Cy,i+1,1 → Cy,i+1,0 → U (y−2−i)ω1+(i+1)ω2+ωn(1)︸ ︷︷ ︸
=My,i+1,0

→ 0, (5.59)

0 → Cy,i+1,2 → Cy,i+1,1

→
U (y−2−i)ω1+(i+2)ω2+ωn

⊕

U (y−3−i)ω1+(i+1)ω2+ωn(1) , if i ≤ y − 3

0 , if i = y − 2

︸ ︷︷ ︸
=My,i+1,1,2

→ 0, (5.60)

and

Cy,i+1,2 =

U (y−3−i)ω1+(i+2)ω2+ωn , if i ≤ y − 3

0 , if i = y − 2

︸ ︷︷ ︸
=My,i+1,2,2

. (5.61)

The object Cy,i+1,0 is a non-splitting G-equivariant extension for all y ≥ i + 2; and Cy,i+1,1

is so for y ≥ i + 3 respectively.

Proof. Filtration on S ⊗ Fy,i+1. We start similar as in the base case. For this purpose,
we consider (5.16)-(5.20) for the case i + 1:

Fy,i+1,0 = S ⊗ Fy,i+1, (5.62)

0 → Fy,i+1,1 → Fy,i+1,0 → U (y−2−i)ω1+(i+1)ω2+ωn(1)︸ ︷︷ ︸
=My,i+1,0

→ 0, (5.63)

0 → Fy,i+1,2 → Fy,i+1,1 → My,i+1,1,1 ⊕My,i+1,1,2︸ ︷︷ ︸
=My,i+1,1

→ 0 (5.64)

where

My,i+1,1,1 = U (y−1−i)ω1+(i+1)ω2+ωn(1)

My,i+1,1,2 = U (y−2−i)ω1+(i+2)ω2+ωn
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⊕

U (y−3−i)ω1+(i+1)ω2+ωn(1) , if i ≤ y − 3

0 , if i = y − 2

 ,

0 → Fy,i+1,3 → Fy,i+1,2 → My,i+1,2,1 ⊕My,i+1,2,2︸ ︷︷ ︸
=My,i+1,2

→ 0 (5.65)

where

My,i+1,2,1 = U (y−1−i)ω1+(i+1)ω2+ωn

⊕U (y−2−i)ω1+iω2+ωn(1)

My,i+1,2,2 =

U (y−3−i)ω1+(i+2)ω2+ωn , if i ≤ y − 3

0 , if i = y − 2

 ,

and

Fy,i+1,3 = U (y−2−i)ω1+(i+1)ω2+ωn︸ ︷︷ ︸
=My,i+1,3

. (5.66)

Induction hypothesis. Let us assume that the statement holds for the previous case i.
This means that we have (5.27)-(5.30). We define Cy,i−1,0 recursively for i > 0; and if
i = 0, we set Cy,−1,0 = S (y) as in the previous Lemma 5.0.5.

Cy,i,2 coincides with Fy,i+1,3. Due to our assumption i ≤ y − 2, we conclude the identity
if we compare (5.66) with (5.30).

Embed Cy,i,1 into Fy,i+1,2. We combine the projection of (5.65) with the one onto the
summand My,i+1,2,2 and consider the G-equivariant projection

Fy,i+1,2 ↠ My,i+1,2 ↠ My,i+1,2,2. (5.67)

Snaking yields the short exact sequences

0 → C̃y,i,1 → Fy,i+1,2 → My,i+1,2,2 → 0 (5.68)

and
0 → Cy,i,2 → C̃y,i,1 → My,i+1,2,1 → 0. (5.69)

In the remaining part of this step, let us show that C̃y,i,1 is already Cy,i,1. So, (5.68)
gives the desired embedding. The object C̃y,i,1 is constructed in (5.68) as kernel of the
above projection (5.67) and consequently a G-equivariant object. If we assume that
the short exact sequence (5.69) characterising C̃y,i,1 splits, i.e. C̃y,i,1 is a direct sum of
its components, then we have the following G-equivariant embedding

U (y−1−i)ω1+(i+1)ω2+ωn ↪→ My,i+1,2,1 ↪→ C̃y,i,1 ↪→ Fy,2,2 ↪→ Fy,2,1 ↪→ S ⊗ Fy,i+1. (5.70)
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However, this contradicts to the fact that there are no morphisms from the component
U (y−1−i)ω1+(i+1)ω2+ωn to Fy,i+1 thanks to the later computation (5.95) in Lemma 5.0.8.
Hence, we see that C̃y,i,1 does not split and accordingly it needs to coincide with
Cy,i,1 up to a scalar. In fact, we recall that Cy,i,1 is by our induction hypothesis a
non-splitting G-equivariant extension.

Embed Cy,i,1 into Fy,i+1,1. We compose the embedding of (5.64) with (5.68) and obtain
the G-equivariant embedding

Cy,i,1 ↪→ Fy,i+1,2 ↪→ Fy,i+1,1. (5.71)

Snaking a further time yields the short exact sequences

0 → Cy,i,1 → Fy,i+1,1 → N1 → 0 (5.72)

and
0 → My,i+1,2,2 → N1 → My,i+1,1 → 0. (5.73)

Do the technical transition and construct Cy,i+1,2. We take (5.73) and consider the G-
equivariant projection onto the component My,i+1,1,2, namely

N1 ↠ My,i+1,1 ↠ My,i+1,1,2. (5.74)

Then snaking yields the short exact sequences

0 → N2 → N1 → My,i+1,1,2 → 0 (5.75)

and
0 → My,i+1,2,2 → N2 → My,i+1,1,1 → 0. (5.76)

Let us observe that the later sequence (5.76) splits and therefore N2 needs to be the
direct sum of its components. If i ≤ y − 3, then we compute the first Ext-space

Ext1(U (y−1−i)ω1+(i+1)ω2+ωn(1)︸ ︷︷ ︸
=My,i+1,1,1

,U (y−3−i)ω1+(i+2)ω2+ωn︸ ︷︷ ︸
=My,i+1,2,2

) = 0 (5.77)

Indeed, in the case where i = y − 2, it is obvious as My,i+1,2,2 vanishes; otherwise see
the later computation (5.96) in Lemma 5.0.8. We set

Cy,i+1,2 :=

0 , if i = y − 2

U (y−3−i)ω1+(i+2)ω2+ωn , if i ≤ y − 3︸ ︷︷ ︸
=My,i+1,2,2

. (5.78)

We combine (5.72) with (5.75) and therefore obtain the G-equivariant projection

Fy,i+1,1 ↠ N1 ↠ My,i+1,1,2. (5.79)
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We deduce from snaking the short exact sequences

0 → N3 → Fy,i+1,1 → My,i+1,1,2 → 0 (5.80)

and
0 → Cy,i,1 → N3 → N2 → 0. (5.81)

Embed Cy,i,0 into Fy,i+1,1 and construct Cy,i+1,1. We take the short exact sequence (5.81)
and the projection in (5.76) onto My,i+1,2,2 coming from the splitting to obtain the
G-equivariant projection

N3 ↠ N2 ↠ Cy,i+1,2. (5.82)

This gives us by snaking the short exact sequences

0 → C̃y,i,0 → N3 → Cy,i+1,2 → 0 (5.83)

and
0 → Cy,i,1 → C̃y,i,0 → My,i+1,1,1 → 0. (5.84)

Now, let us show that C̃y,i,0 is already Cy,i,0. The object C̃y,i,0 is constructed in (5.83) as
kernel of the above projection (5.82) and consequently a G-equivariant object. If we
assume that the short exact sequence (5.84) characterising C̃y,i,0 splits, i.e. C̃y,i,0 is a
direct sum of its components, then we have the following G-equivariant embedding

U (y−1−i)ω1+(i+1)ω2+ωn(1)︸ ︷︷ ︸
=My,i+1,1,1

↪→ C̃y,i,0 ↪→ N3 ↪→ Fy,i+1,1 ↪→ S ⊗ Fy,i+1 (5.85)

However, this contradicts to the fact that there are no morphisms from the compo-
nent My,i+1,1,1 to Fy,i+1. Indeed, we refer to the subsequent computation (5.97) in
Lemma 5.0.8. Hence, we see that C̃y,i,0 does not split and accordingly it needs to
coincide with Cy,i,0 up to a scalar. In fact, we recall that Cy,i,0 is by our induction
hypothesis a non-splitting G-equivariant extension.
Next, we construct Cy,i+1,1. For this purpose, we combine (5.80) with (5.83) and obtain
the G-equivariant embedding

Cy,i,0 ↪→ N3 ↪→ Fy,i+1,1. (5.86)

We apply the snake lemma and write the short exact sequences

0 → Cy,i,0 → Fy,i+1,1 → Cy,i+1,1 → 0 (5.87)

and
0 → Cy,i+1,2 → Cy,i+1,1 → My,i+1,1,2 → 0. (5.88)

We claim that Cy,i+1,1 is a non-splitting G-equivariant extension. It is a G-equivariant
object since it is by construction of (5.87) the cokernel of a G-equivariant morphism.
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Let i be smaller than or equal to y − 3. If we assume that (5.88) splits, then we have
the projection

Fy,i+1,1 ↠ Cy,i+1,1 ↠ U (y−3−i)ω1+(i+2)ω2+ωn︸ ︷︷ ︸
=Cy,i+1,2

. (5.89)

However this contradicts to the fact that there are no morphisms from Fy,i+1,1 to
Cy,i+1,2. In fact, we apply Hom(−, Cy,i+1,2) to the short exact sequence (5.63) and
obtain the long exact sequence

· · · → Hom(S ⊗ Fy,i+1, Cy,i+1,2)︸ ︷︷ ︸
=0 by (5.98)

→ Hom(Fy,i+1,1, Cy,i+1,2)

→ Ext1(My,i+1,0, Cy,i+1,2)︸ ︷︷ ︸
=0 by (5.99)

→ · · · . (5.90)

Embed Cy,i,0 into Fy,i+1,0 and define Cy,i+1,0. We combine (5.63) and (5.87) to obtain the
G-equivariant embedding

Cy,i,0 ↪→ Fy,i+1,1 ↪→ S ⊗ Fy,i+1. (5.91)

A last snaking yields the short exact sequences

0 → Cy,i,0 → S ⊗ Fy,i+1 → Cy,i+1,0 → 0 (5.92)

and
0 → Cy,i+1,1 → Cy,i+1,0 → My,i+1,0 → 0. (5.93)

By construction of (5.92), Cy,i+1,0 is a G-equivariant object. If we assume that (5.93)
splits, we have the projection

S ⊗ Fy,i+1 ↠ Cy,i+1,0 ↠ Cy,i+1,1 ↠ My,i+1,1,2 → U (y−2−i)ω1+(i+2)ω2+ωn . (5.94)

However, this contradicts to the fact that there are no morphisms from Fy,i+1 to
U (y−2−i)ω1+(i+2)ω2+ωn due to the computation (5.100) below in Lemma 5.0.8.

Lemma 5.0.8. We show the following vanishings:

Hom(U (y−1−i)ω1+(i+1)ω2+ωn , Fy,i+1) = 0 (5.95)

Ext1(My,i+1,1,1,My,i+1,2,2) = 0 (5.96)

Hom(My,i+1,1,1, Fy,i+1) = 0 (5.97)

Hom(Fy,i+1, Cy,i+1,2) = 0 (5.98)

Ext1(My,i+1,0, Cy,i+1,2) = 0 (5.99)

Hom(Fy,i+1,U (y−2−i)ω1+(i+2)ω2+ωn) = 0 (5.100)
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Proof. We proceed analogously as in the proof of Lemma 5.0.6.

(5.95): We check −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) = 2 and −µ′
3 + µ′′

3 = 1. and
therefore apply Lemma 3.3.6 with µ′ = (y − 1 − i)ω1 + (i + 1)ω2, µ′′ = (y −
2 − i)ω1 + (i + 1)ω2 + ω3 and i = 3.

(5.96): We recall My,i+1,1,1 is the irreducible vector bundle Uµ′+ωn with µ′ = (y − i −
1)ω1 + (i + 1)ω2 + ω3 and My,i+1,2,2 is the irreducible vector bundle Uµ′′+ωn

with µ′′ = (y − 3 − i)ω1 + (i + 1)ω2. Then we observe the following similar as
for (5.55) in the proof of Lemma 5.0.6 (see (3.47)):

Ext•(My,i+1,1,1,My,i+1,2,2) = Ext•(Uµ′+ωn ,Uµ′′+ωn) = · · · =
n⊕

l=3

Ext•(Uµ′
,Uµ′′+νl )

(5.101)
with νl = ∑l

i=4 ei. We apply Lemma 3.3.8 to compute the vanishing of the Ext-
spaces Extp(Uµ′

,Uµ′′ ⊗U νl ) for p ∈ [0, 1] and l ∈ [3, n]. Indeed, it is −µ′
3 + µ′′

3 =

−1 < 0 as well as −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) = −5 ≤ −l + 2 for
l ∈ [3, 4].

(5.97): We recall My,i+1,1,1 = U (y−i−1)ω1+(i+1)ω2+ωn(1) from (5.22) and apply again
Lemma 3.3.6 with µ′ = (y − 1 − i)ω1 + (i + 1)ω2 + ω3, µ′′ = (y − 2 − i)ω1 +

(i + 1)ω2 + ω3 and i = 3. It is −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) = −1 and
−µ′

3 + µ′′
3 = 0.

(5.98): We recall Cy,i+1,2 from (5.30): If i + 1 = y, then Cy,i+1,2 is zero and the desired
vanishing follows immediately. Otherwise, if i + 1 ≤ y − 1, then Cy,i+1,2 =

U (y−3−i)ω1+(i+2)ω2+ωn . We apply as before Lemma 3.3.6 with µ′ = (y − 2 −
i)ω1 + (i + 1)ω2 + ω3, µ′′ = (y − 3 − i)ω1 + (i + 2)ω2 and i = 3. We check
−(µ′

1 + µ′
2 + µ′

3) + (µ′′
1 + µ′′

2 + µ′′
3 ) = −2 and −µ′

3 + µ′′
3 = −1.

(5.99): We recall My,i+1,0 is the irreducible vector bundle Uµ′+ωn with µ′ = (y − i −
2)ω1 + (i + 1)ω2 + ω3 and Cy,i+1,0 is the irreducible vector bundle Uµ′′+ωn with
µ′′ = (y− 3− i)ω1 + (i + 2)ω2. Then we observe the following similar as before
(see (3.47)):

Ext•(My,i+1,0, Cy,i+1,2) = Ext•(Uµ′+ωn ,Uµ′′+ωn) = · · · =
n⊕

l=3

Ext•(Uµ′
,Uµ′′+νl )

(5.102)
with νl = ∑l

i=4 ei. We apply Lemma 3.3.8 to compute the vanishing of the Ext-
spaces Extp(Uµ′

,Uµ′′ ⊗U νl ) for p ∈ [0, 1] and l ∈ [3, n]. In fact, it is −µ′
3 + µ′′

3 =

−1 < 0 as well as −(µ′
1 + µ′

2 + µ′
3) + (µ′′

1 + µ′′
2 + µ′′

3 ) = −2 ≤ −l + 2 for
l ∈ [3, 4].

(5.100): We apply Lemma 3.3.6 at last time. Hence, we take µ′ = (y − 2 − i)ω1 +

(i + 1)ω2 + ω3, µ′′ = (y − 2 − i)ω1 + (i + 2)ω2 as well as i = 3, and we check
−(µ′

1 + µ′
2 + µ′

3) + (µ′′
1 + µ′′

2 + µ′′
3 ) = −1 and −µ′

3 + µ′′
3 = −1.
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Finally, we check the last part of the resolution 5.13.

Lemma 5.0.9. For y ≥ 1, we have the isomorphism

Cy,y−1,0
∼= S (y)∨(y + 1). (5.103)

Proof. We construct the object Cy,y−1,0 through the previous lemma 5.0.7 and therefore
obtain the following G-equivariant extensions

0 → Cy,y−1,1 → Cy,y−1,0 → My,y−1,0 → 0, (5.104)

0 → Cy,y−1,2 → Cy,y−1,1 → My,y−1,1,2 → 0, (5.105)

and

Cy,y−1,2 = My,y−1,2,2. (5.106)

Since we have

My,y−1,0 = U (y−1)ω2+ωn(1), (5.107)

My,y−1,1,2 = U yω2+ωn , (5.108)

and

My,y−1,2,2 = 0, (5.109)

we deduce that Cy,y−1,0 needs to be non-splitting G-equivariant extension

0 → U yω2+ωn → Cy,y−1,0 → U (y−1)ω2+ωn(1) → 0. (5.110)

Thus, it coincides with S (y)∨(y + 1) up to rescaling.

Proving exceptionality. Throughout this paragraph, let S (i′) = S (y′)(x′) and S (i′′) =

S (y′′)(x′′) be two objects from the spinor subcollection such that i′′ ≤ i′ – i.e. we have
either the case i′ = i′′ which is

x′ = x′′ and y′ = y′′ (5.111)

or the case i′′ < i′ which means

x′ = x′′ and y′′ < y′, or x′′ < x′. (5.112)

We recall the defining short exact sequence (5.2) to write

0 → U (y′−1)ω1+ωn(x′) → S (y′)(x′) → U y′ω1+ωn(x′) → 0 (5.113)
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and
0 → U (y′′−1)ω1+ωn(x′′) → S (y′′)(x′′) → U y′′ω1+ωn(x′′) → 0. (5.114)

Proposition 5.0.10. The spinor subcollection C(S) is exceptional.

Proof. Case (5.111). We check that the objects S (i′) = S (y′)(x′) in the spinor subcollec-
tion C(S) are exceptional. We write E ′ = S (y′) in the following. If y′ = 0 – i.e. S (0) is
the spinor bundle S , we refer to [20, Proposition 6.8.] before we start decomposing
S∨ ⊗ S and fall back on Proposition 2.5.2 with respect to the appearing summands.
Otherwise, if y′ ∈ [1, n − 2], we apply the Hom-functor Hom(−, E ′) to the resolution
(5.13) for y′ given in Proposition 5.0.3. Accordingly, we obtain families of long exact
sequences:

· · · → Extp(E ′, E ′) → Extp(S ⊗ Fy′,0, E ′) → Extp(Cy′,0,0, E ′) → · · ·
· · · → Extp(Cy′,0,0, E ′) → Extp(S ⊗ Fy′,1, E ′) → Extp(Cy′,1,0, E ′) → · · ·

...

· · · → Extp(Cy′,y′−1,0, E ′) → Extp(S ⊗ Fy′,y′−1, E ′) → Extp(F ′, E ′) → · · ·

(5.115)

where F ′ = S (y′)∨(y′ + 1). As the Ext-spaces Ext•(Fy′,i, E ′) for i ∈ [0, y′ − 1] vanish
by the later computation (5.122) of Lemma 5.0.11, we deduce the isomorphisms

Extp(E ′, E ′) ∼= Extp−1(Cy′,0,0, E ′) ∼= Extp−2(Cy′,1,0, E ′) ∼= · · ·
∼= Extp−y′(Cy′,y′−1,0, E ′) ∼= Extp−y′−1(F ′, E ′). (5.116)

The last Ext-space computes as

Extp(F ′, E ′) ∼= Extp(S (y′)∨(y′ + 1),S (y′)) =

K , if p = y′

0 , else
. (5.117)

thanks to the computation (5.125) in Lemma 5.0.12.

Case (5.112). We check that the object S (i′) = S (y′)(x′) is right orthogonal to the object
S (i′′) = S (y′′)(x′′). Let us write E ′ = S (y′) as well as E ′′ = S (y′′).

1. If we are in the subcase x′ = x′′ and y′′ < y′, then we argue analogously as in
the case before. First we apply Hom(−, E ′′) to the resolution (5.13) for y′ and
then we deduce the vanishings

Extp(E ′, E ′′) ∼= Extp−y′−1(F ′, E ′′) = 0 (5.118)

where F ′ = S (y′)∨(y′ + 1). In fact, we refer to the subsequent computations
(5.122) of Lemma 5.0.11 and (5.125) of Lemma 5.0.12.

2. Let us assume the subcase x′′ < x′.
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First, if y′′ equals zero, we consider the Ext-space Ext•(E ′(x′),S(x′′)) and there-
fore skip the following long exact sequence. Otherwise, if y′′ is from [1, n − 2],
we apply the Hom-functor Hom(E ′(x′),−) to (5.114):

· · · → Extp(E ′(x′),U (y′′−1)ω1+ωn(x′′)) →
Extp(E ′(x′), E ′′(x′′)) →
Extp(E ′(x′),U y′′ω1+ωn(x′′)) →· · ·

(5.119)

Second, if y′ equals zero, we consider the outer Ext-spaces. Notice that the
one on the left hand side does only appear if 1 ≤ y′′. Accordingly, we skip
(maybe a second time) the following long exact sequence. Otherwise, if y′

is from [1, n − 2], we apply the Hom-functors Hom(−,U (y′′−1)ω1+ωn(x′′)) and
Hom(−,U y′′ω1+ωn(x′′)) to (5.113):

· · · → Extp(U y′ω1+ωn(x′),U (y′′−1)ω1+ωn(x′′)) →
Extp(E ′(x′),U (y′′−1)ω1+ωn(x′′)) →

Extp(U (y′−1)ω1+ωn(x′),U (y′′−1)ω1+ωn(x′′)) →· · ·

(5.120)

as well as

· · · → Extp(U y′ω1+ωn(x′),U y′′ω1+ωn(x′′)) →
Extp(E ′(x′),U y′′ω1+ωn(x′′)) →

Extp(U (y′−1)ω1+ωn(x′),U y′′ω1+ωn(x′′)) →· · ·

(5.121)

Again, let us mention that the first one does only appear if 1 ≤ y′′. Finally, we
refer to the subsequent computations (5.135) of Lemma 5.0.14.

Lemma 5.0.11. Recall the irreducible G-equivariant vector bundle Fy,i = U (y−1−i)ω1+iω2(1)
with i ∈ [0, y − 1] from (5.15). If y′ ∈ [0, n − 2] and y′′ ∈ [0, y′], then we have the vanishing

Ext•(Fy′,i,S (y′′)) = 0 (5.122)

Proof. Preparations if y′′ ∈ [1, n − 2]. If y′′ equals zero, then we drop this step and
proceed immediately to the next one. Otherwise, if y′′ ∈ [1, n − 2], then we apply the
Hom-functor Hom(Fy′,i,−) to the short exact sequence (5.114) that defines S (y′′) with
x′′ = 0. This gives us the long exact sequences of Ext-spaces, namely

· · · → Extp(Fy′,i,U (y′′−1)ω1+ωn) → Extp(Fy′,i,S (y′′)) → Extp(Fy′,i,U y′′ω1+ωn) → · · ·
(5.123)

By the subsequent computation, we see that the outer Ext-spaces vanish, and therefore
also the middle term as desired.
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Fy′,i is right orthogonal to U y′′ω1+ωn whenever y′ ∈ [1, n − 2] and y′′ ∈ [0, y′]. First, we
check that Fy′,i = U (y′−1−i)ω1+iω2(1) is right orthogonal to U y′′ω1 in any mentioned
cases of y′ and y′′:

1. y′ ∈ [1, n − 3]: We observe that Fy′,i = U (y′−1−i)ω1+iω2(1) is right orthogonal to
U y′′ω1 due to Proposition 4.1.2. Let us mention that it is µi − µj ≤ µ1 − µ3 ≤
−µ′

3 +µ′′
1 +µ′

1 −µ′′
3 = y′′+ y′− 1 ≤ 2n− 7 ≤ 2n− 5+ i− j for any i < j ∈ [1, 3].

2. y′ = n − 2: Let Uµ be an irreducible summand in the direct sum decomposition
of the tensor product U (n−3−i)ω1+iω2+ω3∨ ⊗U y′′ω1 . Then we estimate the entries
of µ thanks to Lemma 3.3.1 and Corollary 3.3.2:

−1 ≤ µ1 ≤ y′′ − 1

−i − 1 ≤ µ2 ≤ −1

−n + 2 ≤ µ3 ≤ −1

µi = 0 for i ∈ [4, n]

(5.124)

If we have µ3 + n + 1
2 − 3 ∈ [ 1

2 , n − 7
2 ] or equivalently µ3 ∈ [−n + 3,−1], then

the third entry of µ + ρG coincides with the jth ones where j is from [4, n].
Otherwise, if µ3 = −n + 2 or equivalently µ3 + n − 5

2 = − 1
2 , then the third

entry equals the nth one up to a sign. In both cases, we refer to (2.24) and deduce
that µ + ρG is G-singular.

Let us check that the difference µi − µj can be estimated by 2n − 5 + i − j
whenever µi + µj = −2n − 1 + i + j for i < j ∈ [1, 3]. In fact, due to 4 ≤ n we
have −2n + 2 + j ≤ −2n + 5 ≤ −n + 2 and therefore −2n + 2 + j ≤ µ3 ≤ µj.
So, it follows µi − µj = −2µj − 2n − 1 + i + j ≤ 2n − 5 + i − j.

Next, Lemma 3.3.4 implies that Fy′,i is even right orthogonal to U yω1 ⊗ S = U yω1+ωn .

Lemma 5.0.12. We compute

Ext•(S (y′)∨(y′ + 1),S (y′′)) =

K[−y′] , if y′ = y′′

0 , if y′′ < y′
(5.125)

Proof. y′ = 0. In this case, we need to have y′′ = 0 likewise. We have S (0)∨(1) =

S∨(1) = S as the spinor bundle S is self-dual up to a O(1)-twist (see (3.1) or [20,
Proposition 6.6.]) and it is also exceptional (see [20, Proposition 6.8.]). All in all, this
gives us Ext•(S∨(1),S) = K[0].



64 Chapter 5. The spinor subcollection

y′ ∈ [1, n − 2]. First we dualize and twist the short exact sequence (5.2) defining the
object S (y′):

0 → U y′ω1+ωn∨(y′ + 1)︸ ︷︷ ︸
=U y′ω2+ωn

→ S (y′)∨(y′ + 1) → U (y′−1)ω1+ωn∨(y′ + 1)︸ ︷︷ ︸
=U (y′−1)ω2+ωn (1)

→ 0. (5.126)

Then we apply the Hom-functor Hom(−,S (y′′)) and obtain the following:

· · · → Extp(U (y′−1)ω2+ωn(1),S (y′′)) →
Extp(S (y′)∨(y′ + 1),S (y′′)) →

Extp(U y′ω2+ωn ,S (y′′)) →· · ·

(5.127)

Thanks to the subsequent steps, we compute the outer terms in (5.127) and therefore
deduce the claimed statement of the Lemma. In fact, if y′′ equals zero, then we
skip the remaining part of this step and argue immediately to the corresponding
statements as it is S (0) = S . Otherwise, if y′′ ∈ [1, y′], we apply the Hom-functors
Hom(U (y′−1)ω2+ωn(1),−) or Hom(U y′ω2+ωn ,−) respectively to (5.114) with x′′ = 0.
This gives us

· · · → Extp(U (y′−1)ω2+ωn(1),U (y′′−1)ω1+ωn) →
Extp(U (y′−1)ω2+ωn(1),S (y′′)) →

Extp(U (y′−1)ω2+ωn(1),U y′′ω1+ωn) →· · ·

(5.128)

as well as
· · · → Extp(U y′ω2+ωn ,U (y′′−1)ω1+ωn) →

Extp(U y′ω2+ωn ,S (y′′)) →
Extp(U y′ω2+ωn ,U y′′ω1+ωn) →· · · .

(5.129)

Left term in (5.127). Let y′′ be from [0, y′]. We claim that U (y′−1)ω2+ωn(1) is right
orthogonal to U y′′ω1+ωn – i.e.

Ext•(U (y′−1)ω2+ωn(1),U y′′ω1+ωn) = 0. (5.130)

Due to (3.47) we consider the subspaces Ext•(Uµ′
,Uµ′′+νl ) where µ′ = (y′, y′, 1, 0, · · · , 0),

µ′′ = (y′′, 0, 0, 0, · · · , 0), νl = ∑l
i=4 ei, and l ∈ [3, n] and we intend to apply Lemma 3.3.7

for each possible l. For this purpose, let us show the following aspects:

• Uµ′
is right orthogonal to Uµ′′

. If y′′ ∈ [0, n − 3], then we refer to Proposi-
tion 4.3.4; and if y′′ = y′ = n − 2 – i.e. Ext•(U (n−3)ω2(1),U (n−2)ω1), then we
refer to the later computation (5.133) in Lemma 5.0.13.

• Let µ be a highest weight of an irreducible summand Uµ appearing in the direct
sum decomposition of Uµ′∨ ⊗ Uµ′′

. If µ contains an entry µi = −l + i where
i ∈ [1, 3], then we can check that µ + νl + ρG is G-singular. In fact, if l = 3 and
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hence νl = 0, µ + νl + ρG = µ + ρG is G-singular as we checked previously the
corresponding right orthogonal relation and therefore Uµ has no cohomology.
Otherwise, if 4 ≤ l, we distinguish the following cases with respect to i:

1. i = 3 – i.e. µ3 = −l + 3: We have −l + 3 = µ3 ≤ µ2 ≤ −1 and therefore
µ2 ∈ [−l + 3,−1]. This gives us µ2 + n − 3

2 ∈ [n + 3
2 − l, n − 5

2 ]. So, the
second entry of µ + νl + ρG coincides with the jth one where j is from [4, l].

2. i = 2 – i.e. µ2 = −l + 2: If µ3 = −n + 2, then the third entry of µ + νl + ρG

is calculated as − 1
2 and therefore it coincides up to a sign with the nth one if

l < n or with the second one if l = n. Otherwise, if µ3 ∈ [−n+ 3,−l + 2] or
equivalently µ3 + n − 5

2 ∈ [ 1
2 , n − 1

2 − l], then the third entry of µ + νl + ρG

equals the jth one where j is from [l + 1, n].

3. i = 1 – i.e. µ1 = −l + 1: This case can not occur as −1 ≤ µ1 = −l + 1 and
accordingly l ≤ 2 contradicts to the fact 4 ≤ l.

• Let Uµ be as before. If µ contains an entry µi = 2n − 1 + i + l where i ∈ [1, 3],
then we can check likewise that µ+ νl + ρG is G-singular. However, this case can
never occur as µi = 2n − 1 + i + l contradicts to the fact µ3 ≤ µ2 ≤ µ1 ≤ n − 3.

Right term in (5.127). Let y′′ be from [0, y′]. We claim that U y′ω2+ωn is right orthogonal
to U y′′ω1+ωn if y′′ < y′ and Ext•(U y′ω2+ωn ,U y′ω1+ωn) has only a trivial component in
degree y′ if y′′ = y′ – i.e.

Extp(U y′ω2+ωn ,U y′′ω1+ωn) =

0 , if y′′ < y′

K[−y′] , if y′′ = y′
. (5.131)

Due to (3.47) we consider the subspaces Ext•(Uµ′
,Uµ′′+νl ) where µ′ = (y′, y′, 0, 0, · · · , 0),

µ′′ = (y′′, 0, 0, 0, · · · , 0), νl = ∑l
i=4 ei, and l ∈ [3, n] and we are going to show

Ext•(Uµ′
,Uµ′′+νl ) =



0 , if y′′ < y′

0 , if y′′ = y′ ≤ n − 3 and l ̸= y′ + 3

K[−y′] , if y′′ = y′ ≤ n − 3 and l = y′ + 3

0 , if y′′ = y′ = n − 2 and l ̸= n

K[−y′] , if y′′ = y′ = n − 2 and l = n

. (5.132)

For this purpose, let us consider the five cases separately:

1. y′′ < y′: The claimed statement follows from Lemma 3.3.7 as we check the
necessary assumptions:

• Uµ′
is right orthogonal to Uµ′′

. If y′ ∈ [1, n − 3], then we refer to Propo-
sition 4.3.4; otherwise, if y′ = n − 2, then we refer to the subsequent
computation (5.134) in Lemma 5.0.13.
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• Let µ be a highest weight of an irreducible summand Uµ appearing in the
direct sum decomposition of Uµ′∨ ⊗Uµ′′

. If µ contains an entry µi = −l + i
where i ∈ [1, 3], then we can check that µ + νl + ρG is G-singular. Indeed, if
l = 3 and hence νl = 0, we have µ + νl + ρG = µ + ρG. Due to the previous
right orthogonal relation the irreducible summand Uµ has no cohomology
and therefore µ + ρG is G-singular. Otherwise, if 4 ≤ l, we distinguish the
following cases with respect to i:

(a) i = 3 – i.e. µ3 = −l + 3: If µ2 = 0, then we have µ1 + 0 + (−l + 3) =
−2y′ + y′′ < −y′ or equivalently µ1 < l − 3 − y′. However this
contradicts the fact −y′ ≤ µ3 = −l + 3 or equivalently l − 3 − y′ ≤ 0
as we need to have 0 ≤ µ1 by Corollary 3.3.2. Otherwise, if µ2 ∈
[−l + 3,−1] or equivalently µ2 + n − 3

2 ∈ [n + 3
2 − l, n − 5

2 ], then the
second entry of µ + νl + ρG coincides with the jth one where j is from
[4, l].

(b) i = 2 – i.e. µ2 = −l + 2: If µ3 = −n + 2, then the third entry of
µ + νl + ρG, namely − 1

2 , equals up to a sign with the nth one if l < n
or with the second one if l = n. Otherwise, if µ3 ∈ [−n + 3,−l + 2]
or equivalently µ3 + n − 5

2 ∈ [ 1
2 , n − 1

2 − l], then the third entry of
µ + νl + ρG coincide with the jth one where j is from [l + 1, n].

(c) i = 1 – i.e. µ1 = −l + 1: This case can not occur as µ1 = −l + 1 < 0
contradicts to the fact 0 ≤ µ1 coming from Corollary 3.3.2.

• Let Uµ be as before. If µ contains an entry µi = 2n − 1 + i + l where i ∈
[1, 3], then we can check likewise that µ + νl + ρG is G-singular. However,
this case can not occur as we always have µ3 ≤ µ2 ≤ µ1 ≤ y′′ < y′ ≤ n − 2.

2. y′′ = y′ ≤ n − 3 and l ̸= y′ + 3: Again, we apply Lemma 3.3.7:

• Uµ′
is right orthogonal to Uµ′′

. Again, we refer to Proposition 4.3.4.

• Let µ be a highest weight of an irreducible summand Uµ appearing in the
direct sum decomposition of Uµ′∨ ⊗Uµ′′

. If µ contains an entry µi = −l + i
where i ∈ [1, 3], then we can check that µ + νl + ρG is G-singular. In fact,
we follow the arguments both for l = 3 and 4 ≤ l as in the previous
case y′′ < y′ straightforward. Let us just mention the case where µ3 =

−l + 3 and µ2 = 0, then we have µ1 + 0 + (−l + 3) = −y′ or equivalently
µ1 = l − 3 − y′ = l − (y′ + 3). Hence, we deduce µ1 ̸= 0 from our
current assumption l ̸= y′ + 3 and therefore 1 ≤ µ1 by Corollary 3.3.2.
However, this contradicts to the fact −y′ ≤ µ3 = −l + 3 or equivalently
l − 3 − y′ ≤ 0.

• Let Uµ be as before. If µ contains an entry µi = 2n − 1 + i + l where
i ∈ [1, 3], then we can check likewise that µ + νl + ρG is G-singular. Thanks
to µ3 ≤ µ2 ≤ µ1 ≤ y′′ = y′ ≤ n − 3 there is nothing to check.
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3. y′′ = y′ ≤ n − 3 and l = y′ + 3: Let Uµ be an irreducible summand appearing
in the direct sum decomposition of Uµ′∨ ⊗Uµ′′

. We compute the cohomology
of Uµ+νy′+3 . First, recall Corollary 3.3.2 to estimate the ranges of entries of µ:

(a) µ3 ∈ [−y′ + 1, 0] or equivalently µ3 + n − 5
2 ∈ [n − 3

2 − y′, n − 5
2 ]: The third

entry of µ + νy′+3 + ρG coincides with the ith one where i is from [4, y′ + 3].

(b) µ3 = −y′: It is µ1 + µ2 + µ3 = −y′ and therefore in this subcase even
µ2 = −µ1. If µ1 is from [1, y′], then µ2 need to be from [−y′,−1] and hence
µ2 + n − 3

2 lies in [n − 3
2 − y′, n − 5

2 ]. So, the second entry of µ + νy′+3 + ρG

is equal to the ith one where i is from [4, y′ + 3]. Otherwise, if µ1 is zero
and equivalently µ2 likewise, then the entries of µ + νy′+3 + ρG are of the
form

(n − 1
2

1st

, n − 3
2

2nd

, n − 5
2
− y′

3rd

, n − 5
2

4th

, · · · , n − 3
2
− y′

(y′+3)th

, n − 7
2
− y′

(y′+4)th

, · · · ,
1
2

nth

).

This means, the unique Weyl element w ∈ WG mapping µ + νy′+3 + ρG to
the dominant cone P+

G is given by the composition of simple reflections
from the third entry to the (y′ + 2)th, namely w = wy′+2 ◦ · · · ◦ w3. Cer-
tainly, w has length y′ and it maps µ+ νy′+3 + ρG to ρG. By Proposition 2.5.2
we compute the desired cohomology.

4. y′′ = y′ = n − 2 and l ̸= n: Again, we apply Lemma 3.3.7:

• Uµ′
is right orthogonal to Uµ′′

. We refer to the subsequent computation
(5.134) in Lemma 5.0.13.

• Let µ be a highest weight of an irreducible summand Uµ appearing in the
direct sum decomposition of Uµ′∨ ⊗Uµ′′

. If µ contains an entry µi = −l + i
where i ∈ [1, 3], then we can check that µ + νl + ρG is G-singular. Indeed,
we proceed similar as before in the first case y′′ < y′.

• Let Uµ be as before. If µ contains an entry µi = 2n − 1 + i + l where
i ∈ [1, 3], then we can check likewise that µ + νl + ρG is G-singular. We
mention µ3 ≤ µ2 ≤ µ1 ≤ y′′ = y′ = n − 2 and thus finish this subcase.

5. y′′ = y′ = n − 2 and l = n: Similar as before, let Uµ be an irreducible summand
appearing in the direct sum decomposition of Uµ′∨ ⊗ Uµ′′

and we compute
the cohomology of Uµ+νn . By Corollary 3.3.2 we estimate the lower and upper
bounds on the entries of µ:

(a) µ3 ∈ [−n + 3, 0]: Due to −n + 3 ≤ µ3 ≤ µ2 ≤ 0 we have µ2 ∈ [−n + 3, 0].
If µ2 = 0, then it follows from µ1 + µ2 + µ3 = −n + 2 the inequality
µ1 = −n + 2 − µ3 ≤ −1. However this contradicts to the fact 0 ≤ µ1.
Otherwise, if µ2 is in [−n + 3,−1] or equivalently µ2 + n − 3

2 ∈ [ 3
2 , n − 5

2 ],
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then the second entry of µ + νn + ρG is equal to the ith one where i is from
[4, n].

µ3 = −n+ 2 : It is µ1 +µ2 +µ3 = −n+ 2 and consequently even µ2 = −µ1.
If µ1 = n − 2 and equivalently µ2 = −n + 2, then the second and third
entry of µ + νn + ρG coincide up to a sign, namely µ2 + n − 3

2 = 1
2 =

−µ3 − n + 5
2 . If µ1 is from [1, n − 3] and thus µ2 from [−n + 3,−1], then

µ2 + n − 3
2 need to be an element of [ 3

2 , n − 5
2 ]. In this case, the second

entroy of µ + νn + ρG equals the ith one where i is from [4, n]. Finally, if µ1

vanishes and µ2 is zero likewise, then the entries of µ + νn + ρG are of the
form

(n − 1
2

1st

, n − 3
2

2nd

,−1
2

3rd

, n − 5
2

4th

, · · · ,
3
2

nth

).

The unique Weyl element w ∈ WG mapping µ + νn + ρG to the dominant
cone P+

G is given by the composition of simple reflections from the third
entry to the nth, namely w = wn ◦ · · · ◦w3. The first n− 3 reflections mutate
the third entry to the last positon and then the last reflection switches the
sign. Certainly, w has length n − 2 and it maps µ + νn + ρG to ρG. By
Proposition 2.5.2 we compute again the desired cohomology.

Lemma 5.0.13.

Ext•(U (n−3)ω2(1),U (n−2)ω1) = 0 (5.133)

Ext•(U (n−2)ω2 ,U y′′ω1) = 0 y′′ ∈ [0, n − 2] (5.134)

Proof. (5.133): Let Uµ be an irreducible summand in the direct sum decomposition
of the tensor product Uµ′∨ ⊗ Uµ′′

where µ′ = (n − 2, n − 2, 1, 0, · · · , 0) and
µ′′ = (n − 2, 0, 0, 0, · · · , 0). The third entry of µ can be estimate from below by
−n + 2 and from above by −1 by Corollary 3.3.2 – i.e. µ3 ∈ [−n + 2,−1]. If
µ3 ∈ [−n + 3,−1], then we apply condition (3.39) for i = 3; and if µ3 = −n + 2,
then we refer to (3.41) for i = 3.

(5.134): Let Uµ be an irreducible summand in the direct sum decomposition of the
tensor product Uµ′∨ ⊗ Uµ′′

where µ′ = (n − 2, n − 2, 0, 0, · · · , 0) and µ′′ =

(y′′, 0, 0, 0, · · · , 0). The third entry of µ ranges from −n + 2 to 0. If µ3 = 0, then
we have µ1 + µ2 + µ3 = −2n + 4 + y′′ and hence µ1 + µ2 = −2n + 4 + y′′ ≤
−n + 2. However this contradicts to 0 ≤ µ1 + µ2 as we have 0 = µ3 ≤ µ2 ≤ µ1.
Otherwise, if µ3 ∈ [−n + 3,−1], we apply condition (3.39) for i = 3; or if
µ3 = −n + 2, then condition (3.41) for i = 3.
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Lemma 5.0.14. Let x′′ < x′ be in [0, 2n − 4], let y′ be from[0, n − 2] , if x′ ∈ [1, n − 3]

[0, n − 3] , if x′ ∈ [n − 2, 2n − 4]
,

and let y′′ be from [0, n − 2] , if x′′ ∈ [0, n − 3]

[0, n − 3] , if x′′ ∈ [n − 2, 2n − 5]
.

Then we have the vanishing

Ext•(U y′ω1+ωn(x′),U y′′ω1+ωn(x′′)) = 0 (5.135)

Proof. We recall (3.47) and then write µ′ = (y′ + x′, x′, x′, 0, · · · , 0), µ′′ = (y′′ +
x′′, x′′, x′′, 0, · · · , 0), and νl = ∑l

i=4 ei with l ∈ [3, n]. Let µ be a highest weight of an
irreducible summand Uµ appearing in the direct sum decomposition of Uµ′∨ ⊗Uµ′′

.
Now, we check the necessary conditions of Lemma 3.3.7 to show the desired right
orthogonal relation.

• If y′ and y′′ are both from [0, n − 3], then Uµ′
= U y′ω1(x′) is right orthogonal to

Uµ′′
= U y′′ω1(x′′) by Proposition 4.3.4; otherwise, if y′ = n − 2 or y′′ = n − 2,

then we refer to the subsequent computation (5.136) in Lemma 5.0.15.

• If µ contains an entry µi = −l + i where i ∈ [1, 3], then we can check that
µ + νl + ρG is G-singular. In fact, if l = 3 and hence νl = 0, we have µ + νl +

ρG = µ + ρG which G-singular as any irreducible summand Uµ is without
cohomology by the previous right orthogonal relation. Otherwise, if 4 ≤ l, we
distinguish the following cases with respect to i:

1. i = 3 – i.e. µ3 = −l + 3: We have −l + 3 ≤ µ3 ≤ µ2 ≤ −x′ + x′′ ≤ −1 and
therefore µ2 ∈ [−l + 3,−1] or equivalently µ2 + n − 3

2 ∈ [n + 3
2 − l, n − 5

2 ].
So, the second entry of µ + νl + ρG coincides with the jth one where j is
from [4, l].

2. i = 2 – i.e. µ2 = −l + 2: It is −x′ + x′′ = −µ′
2 + µ′′

3 ≤ µ2 ≤ −µ′
3 + µ′′

2 =

−x′ + x′′ by Corollary 3.3.2. Thus, we deduce −l + 2 = µ2 = −x′ + x′′.
Furthermore, this gives us −2n + 4 ≤ −n − l + 4 ≤ µ3 ≤ µ2 = −l + 2, i.e.
µ3 lies in the integer interval [−2n + 4,−l + 2].

(a) µ3 ∈ [−n + 3,−l + 2] or equivalently µ3 + n − 5
2 ∈ [ 1

2 , n − 1
2 − l]: We

compare the third entry of µ + νl + ρG to the jth one where j is from
[l + 1, n].

(b) µ3 ∈ [−2n + 3 + l,−n + 2] or equivalently µ3 + n − 5
2 ∈ [−n + 1

2 +

l,− 1
2 ]: The third entry of of µ+ νl + ρG is up to a sign the jth one where

j is from [l + 1, n].
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(c) µ3 = −2n + 2 + l or equivalently µ3 + n − 5
2 = −n − 1

2 + l: The
third entry of µ + νl + ρG is up to a sign the second one which is
µ2 + n − 3

2 = n + 1
2 − l.

(d) µ3 ∈ [−2n + 5,−2n + 1 + l] or equivalently µ3 + n − 5
2 ∈ [−n +

5
2 ,−n − 3

2 + l]: The third entry of µ + νl + ρG coincides up to a sign the
jth one for some j from [4, l]. In fact, it is µj + 1+ n + 1

2 − j = n + 3
2 − j.

(e) µ3 = −2n + 4: We start with µ1 + (−l + 2) + (−2n + 4) = −y′ +
y′′ + 3(−x′ + x′′) = −y′ + y′′ + 3(−l + 2) = −y′ + y′′ − 3l + 6 or
equivalently µ1 = −y′ + y′′ + 2n − 2l. Then we consider −y′ + y′′ +
2n − 2l = µ1 ≤ −l + 2 + y′′ and therefore 2n − l − 2 ≤ y′ ≤ n − 2. So,
this case can only occur if l = n and accordingly y′ = n − 2 as well as
x′ ∈ [1, n − 3]. As we have x′′ = x′ − n + 2 ≤ −1 this contradicts to
the fact 0 ≤ x′′.

3. i = 1 – i.e. µ1 = −l + 1: Due to −2n + 4 ≤ −x′ + x′′ = µ2 ≤ µ1 ≤ −l + 1,
we have µ2 ∈ [−2n + 4,−l + 1].

(a) µ2 ∈ [−n + 2,−l + 1] or equivalently µ2 + n − 3
2 ∈ [ 1

2 , n − 1
2 − l]: We

compare the second entry of µ + νl + ρG to the jth one where j is from
[l + 1, n].

(b) µ2 ∈ [−2n + 2 + l,−n + 1] or equivalently µ2 + n − 3
2 ∈ [−n + 1

2 +

l,− 1
2 ]: The second entry of µ + νl + ρG equals up to a sign to the jth

one where j is from [l + 1, n].

(c) µ2 = −2n + 1 + l: We compute µ2 + n − 3
2 = −n − 1

2 + l = −(µ1 +

n − 1
2 ).

(d) µ2 ∈ [−2n + 4,−2n + l] or equivalently µ2 + n − 3
2 ∈ [−n + 5

2 ,−n −
3
2 + l]: The second entry of µ + νl + ρG coincides up to a sign with the
jth one where j is from [4, l].

• If µ contains an entry µi = 2n − 1 + i + l where i ∈ [1, 3], then we can check
likewise that µ + νl + ρG is G-singular. However, this case can not occur as we
always have µ3 ≤ µ2 ≤ µ1 ≤ −x′ + x′′ + y′′ < n − 2.

Lemma 5.0.15. Let x′′ < x′ be from [0, 2n − 4] and let y′ as well as y′′ from [0, n − 2] such
that y′, y′′ or both are equal to n − 2.

Ext•(U y′ω1(x′),U y′′ω1(x′′)) = 0 (5.136)

Proof. (5.136): Let Uµ be an irreducible summand in the direct sum decomposition
of the tensor product Uµ′∨ ⊗Uµ′′

where µ′ = (y′ + x′, x′, x′, 0, · · · , 0) and µ′′ =

(y′′ + x′′, x′′, x′′, 0, · · · , 0). For the second entry of µ we observe −x′ + x′′ ≤
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µ2 ≤ −x′ + x′′ by Corollary 3.3.2 – i.e. µ2 = −x′ + x′′ ∈ [−2n + 4,−1]. We
distinguish with respect to µ2:

1. µ2 = −1: We have −n + 1 ≤ µ3 ≤ µ2 = −1 – i.e. µ3 ∈ [−n + 1,−1].
If µ3 ∈ [−n + 3,−1], then we refer to condition (3.39) for i = 3. Given
µ3 = −n + 2, we apply condition (3.41) for i = 3. If µ3 = −n + 1, we
need to distinguish if either n = 4 or 5 ≤ n. In the first subcase, we
compare the second entry of µ + ρG, namely −1 + 4 + 1

2 − 2 = 3
2 , to the

third one, namely −3 + 4 + 1
2 − 3 = − 3

2 – see also condition (3.40) for
i = 2 < j = 3 ∈ [1, 3]. In the second subcase, we refer to condition (3.41)
as before.

2. µ2 ∈ [−n + 2,−2]: We apply condition (3.39) for i = 2.

3. µ2 ∈ [−2n + 5,−n + 1]: We refer to condition (3.41) for i = 2.

4. µ2 = −2n + 4: It is −2n + 4 = µ2 ≤ µ1 ≤ −n + 2 – i.e. µ1 ∈ [−2n +

4,−n + 2]. If µ1 = −n + 2 and n = 4, we compare the first and the second
entry of µ + ρG – i.e. condition (3.40) for i = 1 < j = 2 ∈ [1, 3]. For the case
where µ1 = −n + 2 and 5 ≤ n or where µ1 = −n + 1, we apply condition
(3.39) for i = 1. For µ1 = −n + 1, we apply condition (3.39) for i = 1
likewise. Finally, if µ1 ∈ [−2n + 4,−n], then we refer to condition (3.41)
for i = 1.
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Chapter 6

Merging the subcollections

6.1 Consecutive composition

We merge our two collections by concatenating the tautological one C(U ) with the
spinor one C(S). This means concretely, the starting block C(Con) is the ordered set
C(U )

0 ∪ C(S)
0 and summing up the support partitions (4.1), (4.27), and (5.3) yields

(h0, · · · , h2n−4) with

hx =
5
8

n2 − 7
8

n +
1
8

n · (−1)n +

− 5
16 , if x ∈ [0, n − 3]

− 21
16 , if x ∈ [n − 2, 2n − 4]

− 11
16

· (−1)n. (6.1)

Consequently, we count

5
4

n3 − 29
8

n2 +
1
4

n2 · (−1)n + n − 7
4

n · (−1)n +
31
16

+
33
16

· (−1)n (6.2)

objects for the total collection C(Con). Comparing this amount to the expected length
lmax in (2.1), we have a difference of the form

1
12

n3 − 3
8

n2 − 1
4

n2 · (−1)n +
5
3

n +
7
4

n · (−1)n − 31
16

− 33
16

· (−1)n

=
( 1

24
n2 − 1

8
n − 1

8
n · (−1)n +

31
48

+
11
16

· (−1)n
)(

2n − 3
)

.
(6.3)

Example 6.1.1. For OGr(3, V) with n = 7, we combine (4.2) and (5.5) such that we
obtain

C(Con) =



S (5) S (5)(1) · · · S (5)(4)
S (4) S (4)(1) · · · S (4)(4) S (4)(5) · · · S (4)(10)

...
...

...
...

...
S (0) S (0)(1) · · · S (0)(4) S (0)(5) · · · S (0)(10)

U 4ω1+2ω2 U 4ω1+2ω2 (1) · · · U 4ω1+2ω2 (4) U 4ω1+2ω2 (5) · · · U 4ω1+2ω2 (10)
U 3ω1+2ω2 U 3ω1+2ω2 (1) · · · U 3ω1+2ω2 (4) U 3ω1+2ω2 (5) · · · U 3ω1+2ω2 (10)
U 4ω1+ω2 U 4ω1+ω2 (1) · · · U 4ω1+ω2 (4) U 4ω1+ω2 (5) · · · U 4ω1+ω2 (10)

U 4ω2 U 4ω2 (1) · · · U 4ω2 (4) U 4ω2 (5) · · · U 4ω2 (10)
...

...
...

...
...

O O(1) · · · O(4) O(5) · · · O(10)



(6.4)
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This means, the support partition is (24, 24, 24, 24, 24, 23, 23, 23, 23, 23, 23).

Proposition 6.1.2. The collection C(Con) is exceptional.

Proof. First of all. We refer to Proposition 4.1.2 for the semi-orthogonal relations of
the tautological subcollection C(U ) and to Proposition 5.0.10 for the semi-orthogonal
relations of the spinor subcollection C(S). Hence, we are left to show the necessary
relations among these two subcollections. For this purpose, we fix throughout this
proof the following: Let Uλ be an object from the starting block C(U )

0 of the tautological
subcollection C(U ) (see section 4) and let S (y) be an object from the starting block C(S)

0

of the spinor subcollection C(S) (see section 5).

S (y)(x) is right orthogonal to Uλ for suitable x and y. If y = 0 – i.e. we consider S (0), we
skip the next intermediate step and argue immediately to the later claim. Otherwise,
for y ∈ [1, n − 2] we apply Hom(−,Uλ) to a O(x)-twisted version of short exact
sequence (5.8) defining S (y)(x) and obtain the long exact sequence of Ext-spaces:

· · · → Ext•(U yω1+ωn(x),Uλ) → Ext•(S (y)(x),Uλ) →
Ext•(U (y−1)ω1+ωn(x),Uλ) → · · · (6.5)

As the outer Ext-spaces vanish by the following computations, we see the desired
right orthogonal relation.

We claim that U yω1+ωn(x) is right orthogonal to Uλ and therefore refer to Lemma 6.1.3.

Uλ(x) is right orthogonal to S (y) for suitable x and y. Similarly as before, if y = 0 – i.e. the
object S (0), then we skip the following intermediate step. Otherwise, if y ∈ [1, n − 2],
the desired vanishing follows from the long exact sequence of Ext-spaces:

· · · → Ext•(Uλ(x),U (y−1)ω1+ωn) → Ext•(Uλ(x),S (y)) →
Ext•(Uλ(x),U yω1+ωn) → · · · (6.6)

We claim that Uλ(x) is right orthogonal to U yω1+ωn and accordingly refer to the later
Lemma 6.1.6.

Lemma 6.1.3. The vector bundle U yω1+ωn(x) is right orthogonal to the vector bundle Uλ

whenever (x, y) ∈ [0, 2n − 4]× [0, n − 3] ∪ [0, n − 3]× {n − 2} and λ is highest weight of
a vector bundle appearing in the starting block C(U )

0 of the tautological subcollection C(U ).

Proof. x ∈ [0, 2n − 5] and y ∈ [0, n − 3]: We refer to Propositions 4.3.4 and observe
the vanishing of the Ext-space from U yω1(x + 1) to Uλ. Hence, we apply
Lemma 3.3.4. Its technical assumption is covered by the following consid-
erations.
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i = 1 and j = 2: We estimate µ1 − µ2 ≤ λ1 ≤ ⌊ 3
2 n − 9

2⌋ ≤ 2n − 6 = 2n − 5 +

i − j.

i = 2 and j = 3: We compute µ2 − µ3 ≤ λ2 + y ≤ 2n − 6 = 2n − 5 + i − j.

i = 1 and j = 3: We start with µ1 − µ3 ≤ λ1 + n − 2 ≤ ⌊ 5
2 n − 15

2 ⌉ and we can
often estimate µ1 − µ3 ≤ 2n − 7 = 2n − 5 + i − j.
However, let us give a proof for this case which works always: We show
that µi∗ ranges between −2n + 5 = −2n + 3 + i∗ and −2 = −4 + i∗ for
i∗ = 2. For this purpose, we assume µ1 + µ3 = −2n − 1 + i + j = −2n + 3.
If −1 ≤ µ2, then we have 2n − 5 ≤ µ1 + µ2 + 2n − 3 = µ2 − µ3 and
this contradicts with the previous observations in the case i = 2, j = 3.
Otherwise, if µ2 ≤ −2n + 4, then 2n − 5 ≤ −µ2 − µ3 − 2n + 3 = µ1 − µ2

contradicts with the previous computation of the case i = 1, j = 2.

x = 2n − 4 and y ∈ [0, n − 3]: We distinguish with respect to the form of λ.

λ ̸∈ {0, ω1, · · · , yω1}: This means, we have 1 ≤ λ2 if λ1 ∈ [0, y].
We refer to the vanishing statement of the later computation (6.7) in
Lemma (6.1.4). Hence, we apply Lemma 3.3.4 and therefore check the
necessary technical condition analogously to the previous case.

λ ∈ {0, ω1, · · · , yω1}: It is y ≥ λ1 ≥ λ2 = 0.
We refer to the vanishing statement of the later computation (6.8) in
Lemma (6.1.4).

x ∈ [0, n − 3] and y = n − 2: We consider the following subcases.

x ̸= n − 4 or λ ̸= (n − 3)ω2: If λ ̸= (n− 3)ω2, then we need to have λ2 ≤ n− 4.
Indeed, either λ is a highest weight appearing in the starting block C(U ,1)

0

of the first part C(U ,1) of the tautological subcollection C(U ) and then it
follows from n − 3 ≥ λ1 ≥ λ2; or λ appears in the starting block C(U ,2)

0 of
the second part C(U ,2) such that λ2 ≤ ⌈ 1

2 n − 3
2⌉ ≤ n − 4 as 5 ≤ n. (Recall

that the second part C(U ,2) is empty if n ≤ 4.)
We refer to the later computation (6.9) in Lemma 6.1.4, namely that U (n−2)ω1(x+
1) is right orthogonal to Uλ. Thus, we apply Lemma 3.3.4 and convince
ourselves that the technical assumption holds. For this purpose, let us
write µ′ = (n − 1 + x, x + 1, x + 1, 0, · · · , 0) and µ′′ = (λ1, λ2, 0, 0, · · · , 0).

i = 1 and j = 2: It is µ1 − µ2 ≤ λ1 ≤ ⌊ 3
2 n − 9

2⌋ ≤ 2n − 6 = 2n − 5 + i − j.

i = 2 and j = 3: We consider various cases with respect to x:

x ∈ [0, n − 5]: We compute −2n + 6 ≤ −n + 1 − x ≤ µ3 ≤ −x −
2 ≤ −1. This means, the third entry µ3 lives in the interval
[−2n + 6,−1] and therefore µ satisfies the conditions (3.39) or
(3.41) respectively with i∗ = 3.
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x = n − 4: We need to have λ ̸= (n − 3)ω2 due to the above assump-
tion. Consequently, it is λ2 ≤ n − 4 and therefore it follows imme-
diately µ2 − µ3 ≤ λ2 + n − 2 ≤ 2n − 6 = 2n − 5 + i − j.

x = n − 3: First, we observe that −2n + 4 ≤ µ3 ≤ −n + 2 ≤ µ2 ≤
−1 as well as µ1 + µ2 + µ3 ≤ −2n + 2 (since λ1 + λ2 ≤ 2n − 6).
Second, if we assume µ2 + µ3 = −2n − 1 + i + j = −2n + 4, then
we sharpen the upper bound to µ2 ≤ µ1 ≤ −2. Accordingly, we
estimate µ2 − µ3 ≤ 2n − 6 = 2n − 5 + i − j as desired.

i = 1 and j = 3: We start with µ1 − µ3 ≤ λ1 + n − 2 ≤ ⌊ 5
2 n − 13

2 ⌉ and we
can often estimate µ1 − µ3 ≤ 2n − 7 = 2n − 5 + i − j.
Nevertheless, let us present a proper proof.

x ∈ [0, n − 5]: We proceed the same way as in the corresponding sub-
case of (i, j) = (2, 3).

x = n − 4: The third entry µ3 ranges between −2n + 5 and −x − 1 ≤
−1. For the case µ3 ∈ [−2n + 6,−1] we argue similar as before. If
µ3 = −2n + 5, then we have −n + 3 ≤ µ2 ≤ µ1 = −2n + 3− µ1 =

−2 and therefore µ satisfies the condition (3.39) with i∗ = 2.

x = n − 3: Again we start with µ1 + µ2 + µ3 ≤ −2n + 2. If we assume
µ1 + µ3 = −2n − 1 + i + j = −2n + 3, then we deduce −n + 2 ≤
µ2 ≤ −1.

µ2 = −1: We have −1 = µ2 ≤ µ1 = −2n + 3 − µ3 ≤ −1 and ac-
cordingly µ3 = −2n+ 4. This means, we have µ = (−1,−1,−2n+

4, 0, · · · , 0) and accordingly µ + ωn + ρG = (n − 1, n − 2,−n +

2, n − 3, · · · , 1) is G-singular as its second and third entry coin-
cide up to sign.

µ2 ∈ [−n + 2,−2]: µ satisfies the condition (3.39) with i∗ = 2.

x = n − 4 and λ = (n − 3)ω2: It is λ1 = λ2 = n − 3. We refer to the later
computation (6.10) presented in Lemma 6.1.4.

Lemma 6.1.4. Let Uλ be an object from the starting block C(U )
0 of the tautological subcollec-

tion C(U ). We show the following vanishings:

Ext•(U yω1(2n − 3),Uλ) = 0 λ ̸∈ {0, ω1, · · · , yω1} (6.7)

Ext•(U yω1+ωn(2n − 4),Uλ) = 0 λ ∈ {0, ω1, · · · , yω1} (6.8)

Ext•(U (n−2)ω1(x + 1),Uλ) = 0 x ̸= n − 4 or λ ̸= (n − 3)ω2 (6.9)

Ext•(U (n−2)ω1+ωn(n − 4),U (n−3)ω2) = 0 (6.10)
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Remark 6.1.5. One can compute Ext•(U yω1(2n − 3),Uλ1ω1) = V(y−λ1)ω1
G [−d] whenever

λ1 ≤ y in [0, n − 3] as well as Ext•(U (n−2)ω1(n − 4),U (n−3)ω2) = K[−2n + 5]. Hence,
we can not show the desired vanishing of Ext-spaces presented in (6.8) and (6.10)
respectively as we did several times before via Lemma 3.3.4. However, we need to
check these Ext-spaces explicitly.

Proof. (6.7): Let µ′ be the weight (y + 2n − 3, 2n − 3, 2n − 3, 0, · · · , 0) and let µ′′ be
the weight (λ1, λ2, 0, 0, · · · , 0) with 1 ≤ λ2 if λ1 ∈ [0, y]. Given an irreducible
summand Uµ from the direct sum decomposition of the tensor product Uµ′∨ ⊗
Uµ′′

, we estimate for the second entry by Corollary 3.3.2 the range −2n + 3 ≤
µ2 ≤ −2n + 3 + λ2 ≤ −n.

µ2 ∈ [−2n + 5,−n]: µ is satisfies condition (3.41) with i = 2. Thus, the cor-
responding summand Uµ does not have any cohomology by Proposi-
tion 2.5.2.

µ2 ∈ [−2n + 3,−2n + 4]: We compute µ1 − µ2 ≤ λ1 and hence obtain −2n +

3 ≤ µ2 ≤ µ1 ≤ λ1 − 2n + 4 ≤ ⌊− 1
2 n − 1

2⌋ ≤ −3.

µ1 ∈ [−2n + 4,−3]: µ + ρG is G-singular by conditions (3.39) or (3.41) re-
spectively with i = 1. Again, we can state that the corresponding
summand Uµ has vanishing cohomology by Proposition 2.5.2.

µ1 = −2n + 3: This means, we have −4n+ 6+ µ3 = µ1 + µ2 + µ3 = −y−
6n + 9 + λ1 + λ2 and accordingly deduce µ3 = −y + λ1 + λ2 − 2n + 3.
Therefore we first write µ = (−2n + 3,−2n + 3,−y + λ1 + λ2 − 2n +

3, 0, · · · , 0) and then likewise µ + ρG = (−n + 5
2 ,−n + 3

2 ,−y + λ1 +

λ2 − n + 1
2 , n − 7

2 , · · · , 1
2 ). Thus, we are left to check that the third

entry of µ + ρG coincides with one of the other entries up to a sign,
namely

−y + λ1 + λ2 − n +
1
2
∈
{
−n +

3
2

,−n +
5
2

,−n +
7
2

, · · · ,−1
2

,

1
2

, · · · , n − 7
2

, n − 5
2

, n − 3
2

}
or equivalently

−y + λ1 + λ2 ∈ {1, 2, 3, · · · , n − 1,

n, · · · , 2n − 4, 2n − 3, 2n − 2}

λ1 ∈ [y + 1, ⌊ 3
2 n − 9

2⌋]: In this case, λ2 lies in the interval [0, n − 3] by
construction of λ in chapter 4. Thus, we have 1 ≤ −y + λ1 ≤
−y + λ1 + λ2 ≤ λ1 + λ2 ≤ 2n − 6.
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λ1 ∈ [0, y]: λ2 needs to be in the interval [1, λ1] by the initial assump-
tion of this case. So, we have µ3 = −y − 2n + 3 + λ1 < µ3 =

−y − 2n + 3 + λ1 + λ2 which contradicts to the assumption µ3 ≤
−y − 2n + 3 + λ1 arising by Corollary 3.3.2.

(6.8): We rewrite the tensor product U yω1+ωn(2n− 4)∨ ⊗Uλ = U yω1(2n− 3)∨ ⊗Uλ ⊗
Uωn due to Lemma 3.2.3. Hence, we need to check that any weight µ + ωn + ρG

is G-singular whenever µ is a highest weight of an irreducible summand appear-
ing in the direct sum decomposition of the tensor product U yω1(2n − 3)∨ ⊗Uλ.
For this purpose, let µ′ be (y + 2n − 3, 2n − 3, 2n − 3, 0, · · · , 0) and let µ′′ be
(λ1, 0, 0, 0, · · · , 0). Corollary 3.3.2 implies that any highest weight µ appearing in
the tensor product Uµ′∨ ⊗Uµ′′

need to be of the form (µ1,−2n + 3, µ3, 0, · · · , 0)
where µ1 ∈ [−2n + 3,−2n + 3 + λ1] and µ3 ∈ [−y − 2n + 3,−2n + 3]. Given
such a weight µ, then µ + ωn + ρG needs to be of the form (µ1 + n,−n + 2, µ3 +

n − 2, n − 3, · · · , 1). We consider the first entry of µ + ωn + ρG and observe that
it lies in the interval [−n + 3,−n + 3 + λ1] ⊆ [−n + 2, n − 2]. This means in
any case, µ + ωn + ρG is G-singular as its first entry is zero, coincides with the
second entry or one of the last n − 3 entries up to a sign.

(6.9): Let µ′ be the weight (n − 1 + x, x + 1, x + 1, 0, · · · , 0) and let µ′′ be the weight
(λ1, λ2, 0, 0, · · · , 0).

x ∈ [0, n − 5]: It is −2n + 4 ≤ −n + 1 − x ≤ µ3 ≤ −x − 1 ≤ −1. This means,
µ satisfies conditions (3.39) or (3.41) respectively with i = 3 and thus the
corresponding summand Uµ has no cohomology by Proposition 2.5.2.

x = n − 4: Due to our assumption we need to have λ ̸= (n − 3)ω3 and ac-
cordingly it is λ2 ≤ n − 4. (Recall the argument given in the case where
x ̸= n − 4 or λ ̸= (n − 3)ω2 of the proof of Lemma 6.1.3.) We rewrite
µ′ as the weight (2n − 5, n − 3, n − 3, 0, · · · , 0) and keep µ′′ as the weight
(λ1, λ2, 0, 0, · · · , 0). Then Corollary 3.3.2 gives us the estimation −n + 3 ≤
µ2 ≤ −x − 1 + λ2 ≤ −1.

µ2 = −1: We mention −2n + 5 ≤ µ3 ≤ µ2 = −1.

µ3 ∈ [−2n + 6,−1]: µ satisfies conditions (3.39) or (3.41) respectively
with i = 3 and the vanishing cohomology of Uµ follows by Propo-
sition 2.5.2.

µ3 = −2n + 5: µ satisfies condition 3.40 for i = 2 and j = 3. In fact,
it is µ2 + µ3 = −2n + 4 = −2n − 1 + 2 + 3. Hence, we apply
Proposition 2.5.2.

µ2 ∈ [−n + 3,−2]: µ satisfies condition (3.39) with i = 2 and Proposi-
tion 2.5.2 gives rise to the vanishing of the cohomology of the corre-
sponding summand Uµ.
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x = n − 3: Let µ′ be the weight (2n − 4, n − 2, n − 2, 0, · · · , 0) and let µ′′ be as
before the weight (λ1, λ2, 0, 0, · · · , 0). It is −n + 2 ≤ µ2 ≤ −n + 2 + λ2 ≤
−1.

µ2 = −1: We observe −2n + 4 ≤ µ3 ≤ µ2 = −1.

µ3 ∈ [−2n + 5,−1]: We argue analgously as in the previous case where
x = n − 4, µ2 = −1, and µ3 as assumed.

µ3 = −2n + 4: On the one hand we have µ1 + µ2 + µ3 = −4n + 8 +

λ1 + λ2 and on the other hand µ2 + µ3 = −2n + 3. Combining
this two facts yields −1 ≤ µ2 ≤ µ1 = −2n + 5 + λ1 + λ2 ≤ −1.
This means, it is µ1 = −1 and we see immediately µ1 + µ3 =

−2n + 3 = −2n − 1 + 1 + 3. So, µ satisfies condition 3.40 for i = 1
and j = 3. Proposition 2.5.2 provides vanishing cohomology for
Uµ.

µ2 ∈ [−n + 2,−2]: We argue analogously as in the corresponding subcase
of x = n − 4.

(6.10): We proceed similar as in the previous computation for (6.8). It is U (n−2)ω1+ωn(n−
4)∨ ⊗U (n−3)ω2 = U (n−2)ω1(n − 3)∨ ⊗U (n−3)ω2 ⊗Uωn by Lemma 3.2.3. First, let
Uµ be an irreducible summand from the direct sum decomposition of the ten-
sor product Uµ′∨ ⊗ Uµ′′

where µ′ = (2n − 5, n − 3, n − 3, 0, · · · , 0) and µ′′ =

(n − 3, n − 3, 0, 0, · · · , 0). We apply Corollary 3.3.2 to see that its third entry µ3

ranges between −2n+ 5 and −n+ 3. Now, we consider the weight µ+ωn + ρG:
It needs to be of the form (µ1 + n, µ2 + n − 1, µ3 + n − 2, n − 3, · · · , 1). Thus, its
third entry lives in the interval [−n + 3, 1] ⊆ [−n + 3, n − 3]. So, µ + ωn + ρG

is G-singular as its third entry is zero or coincides with one of the last n − 3
entries up to a sign.

Lemma 6.1.6. The vector bundle Uλ(x) is right orthogonal to the vector bundle U yω1+ωn

whenever (x, y) ∈ [1, 2n − 4] × [0, n − 3] ∪ [1, 2n − 4] × {n − 2} and λ is the highest
weight of a vector bundle appearing in the starting block C(U )

0 of the tautological subcollection
C(U ).

Proof. x ∈ [1, 2n − 4] and y ∈ [0, n − 3]: We refer to Propositions 4.3.4 and observe
the vanishing of the Ext-space from Uλ(x) to U yω1 . Then we proceed similarly
as before. This means that we apply Lemma 3.3.4. For the technical assumption,
we consider the differences µi − µj and argue analogously as before in the proof
of Lemma 6.1.3.

i = 1 and j = 2: It is µ1 − µ2 ≤ λ2 + y ≤ 2n − 6 ≤ 2n − 5 + i − j.

i = 2 and j = 3: We deduce µ2 − µ3 ≤ λ1 ≤ ⌈ 3
2 n− 9

2⌉ ≤ 2n− 6 = 2n− 5+ i− j.
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i = 1 and j = 3: We start with µ1 − µ3 ≤ λ1 + y ≤ ⌊ 5
2 n − 15

2 ⌋ and we can often
estimate µ1 − µ3 ≤ 2n − 7 = 2n − 5 + i − j but unfortunately not always.
However, we show similar as before that µi∗ ∈ [−2n + 3 + i∗,−4 + i∗]
where i∗ = 2. In fact, if we assume µ1 + µ3 = −2n + 3, then both cases
−1 ≤ µ2 and µ2 ≤ −2n + 4 lead to contradictions with respect to the
differences µi − µj where (i, j) = (2, 3) or (i, j) = (1, 2) respectively.

x ∈ [1, 2n − 4] and y = n − 2: We distinguish with respect to x and λ.

x ̸= n or λ ̸= (n − 3)ω2: Uλ(x) is right orthogonal to U (n−2)ω1 by the later com-
putation (6.11) of Lemma 6.1.7. Thus we are left to check the technical
assumption of Lemma 3.3.4.

i = 1 and j = 2: It is µ1 − µ2 ≤ λ2 + n − 2.

λ2 = n − 3: Due to Lemma 4.3.3 we have λ = (n − 3)ω2 and in par-
ticular x ̸= n. This means, we are working with the weights
µ′ = (n − 3 + x, n − 3 + x, x, 0, · · · , 0) as well as µ′′ = (n −
2, 0, 0, 0, · · · , 0). So, µ1 + µ2 + µ3 = −n + 4 − 3x.
We assume µ1 + µ2 = −2n + 2 and therefore deduce µ3 = n + 2 −
3x. Corollary 3.3.2 gives us −n + 3 − x ≤ µ3 = n + 2 − 3x ≤ −x.
Rewriting yields 1

2 n + 1 ≤ x ≤ n − 1
2 . As x is an integer we

see that it must lie in the interval [⌈ 1
2 n⌉ + 1, n − 1] ⊆ [3, n − 1].

Consequently µ3 ranges from −2n + 4 to −3.

µ3 ∈ [−2n + 6,−3]: We have µi∗ in the interval [−2n+ 3+ i∗,−4+
i∗] for i∗ = 3.

µ3 ≤ −2n + 5: It is x = n − 1 because of −n + 4 − 3x = µ1 + µ2 +

µ3 ≤ −4n + 7 and hence −2n + 5 = µ3 ≤ µ2 ≤ −n + 1. This
means, we have µi∗ ∈ [−2n + 3 + i∗,−4 + i∗] for i∗ = 2.

λ2 ∈ [0, n − 4]: We see µ1 − µ2 ≤ 2n − 6 ≤ 2n − 5 + i − j.

i = 2 and j = 3: We argue the same way as in the corresponding case of
x ∈ [1, 2n − 4] and y ∈ [0, n − 3].

i = 1 and j = 3: The estimation µ1 − µ3 ≤ λ1 + n − 2 ≤ ⌊ 5
2 n − 13

2 ⌋ does
not work to deduce µ1 − µ3 ≤ 2n − 7 = 2n − 5 + i − j.
However, we follow the same arguements as in the corresponding
case of x ∈ [1, 2n − 4] and y ∈ [0, n − 3].

x = n and λ = (n − 3)ω2: We refer to the later computation (6.12) given in
Lemma 6.1.7.



6.1. Consecutive composition 81

Lemma 6.1.7. Let Uλ be an object from the starting block C(U )
0 of the tautological subcollec-

tion C(U ). We show the following vanishings:

Ext•(Uλ(x),U (n−2)ω1) = 0 x ̸= n or λ ̸= (n − 3)ω2 (6.11)

Ext•(U (n−3)ω2(n),U (n−2)ω1+ωn) = 0 (6.12)

Remark 6.1.8. We claim Ext•(U (n−3)ω2(n),U (n−2)ω1) = K[−4n + 7] without proof.
Nevertheless, we can not deduce desired vanishing of the Ext-spaces stated in (6.12)
just by applying the Lemma 3.3.4. Therefore, we are going to check this Ext-space
explicitly analogously as before.

Proof. (6.11): x ∈ [n + 1, 2n − 4]: Corollary 3.3.2 implies for the first entry of µ: −2n+

4 ≤ −x ≤ µ1 ≤ −x + n − 2 ≤ −3. Hence, µ satisfies conditions (3.39) or
(3.41) respectively with i = 1.

x = n: We need to have λ ̸= (n − 3)ω2 and therefore see λ2 ≤ n − 4. (Recall
the argument given in the case where x ̸= n − 4 or λ ̸= (n − 3)ω2 of the
proof of Lemma 6.1.3.) It is −2n + 4 ≤ −λ2 − n ≤ µ2 ≤ −n

µ2 ∈ [−2n + 5,−n]: We need condition (3.41) with i = 2.

µ2 = −2n + 4: The first entry µ1 is in the interval [−n,−2].

µ1 = −2: We have µ1 + µ2 = −2n + 2 = −2n − 1 + 1 + 2 and conse-
quently apply condition (3.40) with i = 1 and j = 2.

µ1 ∈ [−n,−3]: We refer to conditions (3.39) or (3.41) respectively with
i = 1.

x = n − 1: We distinguish with respect to λ2 ∈ [0, n − 3].

λ2 = n − 3: Recall Lemma 4.3.3 and we state that in this case λ needs to
be (n − 3)ω2.
Let µ′ be the weight (2n − 4, 2n − 4, n − 1, 0, · · · , 0) and let µ′ be the
weight (n − 2, 0, 0, 0, · · · , 0). It is −2n + 4 ≤ µ2 ≤ −n + 1.

µ2 ∈ [−2n + 5,−n + 1]: We refer to condition (3.41) with i = 2.

µ2 = −2n + 4: Due to µ1 + µ2 + µ3 = −4n + 7 we see immediately
µ1 + µ3 = −2n + 3 = −2n − 1 + 1 + 3. So, µ satisfies condi-
tion (3.40) with i = 1 and j = 3.

λ2 ∈ [0, n − 4]: We observe −2n + 5 ≤ −λ2 − x ≤ µ2 ≤ −x ≤ −n + 1 by
Corollary 3.3.2 and accordingly µ satisfies condition (3.41) with i = 2.

x ∈ [⌈ 1
2 n − 1

2⌉, n − 2]: Similar as in the previous computation for x = n − 1 and
λ2 ∈ [0, n − 4], we observe −2n + 5 ≤ −λ2 − x ≤ µ2 ≤ −x ≤ −⌈ 1

2 n −
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1
2⌉ ≤ −2 by Corollary 3.3.2 and accordingly µ satisfies conditions (3.39) or
(3.41) respectively with i = 2.

x ∈ [1, ⌈ 1
2 n − 3

2⌉]: It follows −2n + 6 = −⌊ 3
2 n − 9

2⌋ − ⌈ 1
2 n − 3

2⌉ ≤ −λ1 − x ≤
µ1 ≤ −x ≤ −1 from Corollary 3.3.2. Thus, µ satisfies conditions (3.39) or
(3.41) respectively with i = 3.

(6.12): We proceed similar as in the previous computations for (6.8) or (6.10) re-
spectively. Lemma 3.2.3 allows us to write U (n−3)ω2(n)∨ ⊗ U (n−2)ω1+ωn =

U (n−3)ω2(n)∨ ⊗ U (n−2)ω1 ⊗ Uωn . We start with an irreducible summand Uµ

from the direct sum decomposition of the tensor product Uµ′∨ ⊗ Uµ′′
where

µ′ = (2n − 3, 2n − 3, n, 0, · · · , 0) and µ′′ = (n − 2, 0, 0, 0, · · · , 0) and then
we apply Corollary 3.3.2 to conclude for the entries of µ: µ1 ∈ [−n,−2],
µ2 ∈ [−2n + 3,−n], and µ3 ∈ [−2n + 3,−n].

µ2 ∈ [−2n + 4,−n]: We see µ2 + n − 1 ∈ [−n + 3,−1] and therefore the second
entry of µ + ωn + ρG coincides with one of the last n − 3 entries up to a
sign.

µ2 = −2n + 3: It is −2n + 3 ≤ µ3 ≤ µ2 = −2n + 3 and hence µ1 needs to be
−2 as µ1 + µ2 + µ3 = −4n + 4. So, µ is the weight (−2,−2n + 3,−2n +

3, 0, · · · , 0) and µ + ωn + ρG is certainly the weight (n − 2,−n + 2,−n +

1, n − 3, · · · , 1) which is G-singular as its first and second entry coincide
up to a sign.

6.2 Alternating composition

A second pattern arises when we intertwine the subcollection: Let C(Alt)
0,y be the

ordered set { Uλ ∈ C(U )
0 : λ1 = y } ∪ { S (y) }. Certainly, the subset of the left hand

side inherits the lexicographical ordering induced from the tautological part. Then
the starting block of C(Alt) is the ordered set C(Alt)

0 = C(Alt)
0,0 ∪ C(Alt)

0,1 ∪ · · · ∪ C(Alt)
0,n−2. The

corresponding support partition is again (6.1) for sure.
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Example 6.2.1. For OGr(3, V) with n = 7, we combine again (4.2) and (5.5) such that
we obtain

C(Alt) =



U 4ω1+2ω2 U 4ω1+2ω2 (1) · · · U 4ω1+2ω2 (4) U 4ω1+2ω2 (5) · · · U 4ω1+2ω2 (10)

S (5) S (5)(1) · · · S (5)(4)
U 3ω1+2ω2 U 3ω1+2ω2 (1) · · · U 3ω1+2ω2 (4) U 3ω1+2ω2 (5) · · · U 3ω1+2ω2 (10)
U 4ω1+ω2 U 4ω1+ω2 (1) · · · U 4ω1+ω2 (4) U 4ω1+ω2 (5) · · · U 4ω1+ω2 (10)

S (4) S (1)(4) · · · S (4)(4) S (4)(5) · · · S (4)(10)
U 4ω2 U 4ω2 (1) · · · U 4ω2 (4) U 4ω2 (5) · · · U 4ω2 (10)

...
...

...
...

...
U 3ω1+ω2 U 3ω1+ω2 (1) · · · U 3ω1+ω2 (4) U 3ω1+ω2 (5) · · · U 3ω1+ω2 (10)

U 4ω1 U 4ω1 (1) · · · U 4ω1 (4) U 4ω1 (5) · · · U 4ω1 (10)

...
...

...
...

...

S (1) S (1)(1) · · · S (1)(4) S (1)(5) · · · S (1)(10)
Uω2 Uω2 (1) · · · Uω2 (4) Uω2 (5) · · · Uω2 (10)
Uω1 Uω1 (1) · · · Uω1 (4) Uω1 (5) · · · Uω1 (10)

S (0) S (0)(1) · · · S (0)(4) S (0)(5) · · · S (0)(10)
O O(1) · · · O(4) O(5) · · · O(10)



(6.13)

Proposition 6.2.2. The collection C(Alt) is exceptional.

Proof. We start with the consecutive collection C(Con) which is exceptional by Proposi-
tion 6.1.2. Let us show that the object S (y) is even orthogonal to the objects Uλ where
λ1 > y and therefore the objects S (y)(x) can be mutated easily to the appropriate po-
sitions: The vanishing Ext•(S (y),Uλ) = 0 is clear from the right orthogonal relations
of C(Con) and the vanishings Ext•(Uλ,S (y)) = 0 need to be checked in the following.

If we consider S (0), then skip the following intermediate step; otherwise, if y ∈
[1, n − 2], we apply the Hom-fucntor Hom(Uλ,−) to the short exact (5.8) defining
S (y):

· · · → Ext•(Uλ,U (y−1)ω1+ωn) → Ext•(Uλ,S (y)) → Ext•(Uλ,U yω1+ωn) → · · · (6.14)

As the outer Ext-spaces vanishes by the subsequent computations, it follows also for
the middle one. In fact, we claim that Uλ is right orthogonal to U yω1+ωn with λ1 > y
by Lemma 6.2.3).

Lemma 6.2.3. The vector bundle Uλ is right orthogonal to the vector bundle U yω1+ωn

whenever y ∈ [0, n − 2] and λ is the highest weight of a vector bundle appearing in the
starting block C(U )

0 of the tautological subcollection C(U ) such that λ1 > y.

Proof. If y ∈ [0, n − 3], then we refer to Propositions 4.3.4; and otherwise if y = n − 2,
then we refer to the later computation (6.15) in Lemma 6.2.4. In both cases, we observe
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the vanishing of the Ext-space from Uλ to U yω1 . Hence, we apply Lemma 3.3.4. The
technical assumption is covered by the following observations.

i = 1 and j = 2: We start with µ1 − µ2 ≤ y + λ2.

y ∈ [0, n − 3]: As we have y ≤ n − 3 and λ2 ≤ n − 3 likewise, it is certainly
µ1 − µ2 ≤ 2n − 6 = 2n + 5 + i − j.

y = n − 2: Due to λ1 > y = n − 2, we have −2n − 6 ≤ −λ1 ≤ µ3 ≤ −1. Hence,
there is some µi∗ ∈ [−2n + 3 + i∗,−4 + i∗] for i∗ = 3.

i = 2 and j = 3: It is µ2 − µ3 ≤ λ1 ≤ ⌊ 3
2 n − 9

2⌋ ≤ 2n − 6 = 2n − 5 + i − j.

i = 1 and j = 3: We have −λ2 ≤ µ2 ≤ 0. However, if we assume µ1 +µ3 = −2n− 1+
i + j = −2n + 3 this leads to a contradiction. It is µ2 − 2n + 3 = µ1 + µ2 + µ3 =

−λ1 − λ2 + y or equivalently µ2 = 2n − 3 − λ1 − λ2 + y. Then, 0 < 3 + y ≤ µ2

since λ1 + λ2 ≤ 2n − 6.

Lemma 6.2.4. Let Uλ be an object from the starting block C(U )
0 of the tautological subcollec-

tion C(U ) such that λ1 > n − 2. We show the following vanishings:

Ext•(Uλ,U (n−2)ω1) = 0 (6.15)

Proof. Let µ′ be the weight (λ1, λ2, 0, 0, · · · , 0) as well as µ′′ the weight (n− 2, 0, 0, 0, · · · , 0).
Given an irreducible summand Uµ in the direct sum decomposition of the tensor
product Uµ′∨ ⊗Uµ′′

, then the third entry µ3 of its highest weight µ can be estimated
as −2n + 6 ≤ −⌊ 3

2 n − 9
2⌋ ≤ −λ1 ≤ µ3 ≤ −λ1 + n − 2 ≤ −1. Thus, µ is G-singular

by conditions (3.39) or (3.41) respectively with i = 3. The summand Uµ has trivial
cohomology by Proposition 2.5.2.
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Chapter 7

An exceptional collection on
OGr(3, 9) of maximal expected
length

We fix n = 4 and consequently N = 2n + 1 = 9. Hence, X = OGr(3, V9) parame-
terizes 3-dimensional isotropic subspaces in a 9-dimensional vector space V9. The
invariants (2.1) are computed as

d := dim(X) = 12,

wmax := indx(X) = 5, and

lmax := rk K0(X) = 32.

(7.1)

The bounded derived category Db(OGr(3, V9)) admits two exceptional collections
consisting of 27 objects (cf. the previous chapter 6.1):

C(Con) =



S (2) S (2)(1)
S (1) S (1)(1) S (1)(2) S (1)(3) S (1)(4)
S (0) S (0)(1) S (0)(2) S (0)(3) S (0)(4)

∧2U∨ (∧2U∨)(1) (∧2U∨)(2) (∧2U∨)(3) (∧2U∨)(4)
U∨ U∨(1) U∨(2) U∨(3) U∨(4)
O O(1) O(2) O(3) O(4)


(7.2)

as well as

C(Alt) =



S (2) S (2)(1)
S (1) S (1)(1) S (1)(2) S (1)(3) S (1)(4)

∧2U∨ (∧2U∨)(1) (∧2U∨)(2) (∧2U∨)(3) (∧2U∨)(4)
U∨ U∨(1) U∨(2) U∨(3) U∨(4)
S (0) S (0)(1) S (0)(2) S (0)(3) S (0)(4)
O O(1) O(2) O(3) O(4)


(7.3)
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From a numerical point of view we are left to construct a further exceptional orbit
consisting of 5 objects.

7.1 The missing link

In the following, we will construct step-by-step objects M(i). We start with the
filtration on S ⊗ S as presented in Proposition 2.7.2. In later sections, we will then
work with the last object M(3) and therefore abbreviate this just by M.

Step 0 We consider the quotient Q∨/U in (2.34): It is the irreducible G-equivariant
vector bundle (Sym2S)(−1) – i.e. it has highest weight −ω3 + 2ω4. This object is
self-dual, of rank 3 and has trivial determinate. Furthermore, we observe the fact
S⊗2 = Q∨/U (1)⊕O(1).

We combine Lemma 2.6.1 with Proposition 2.7.2 and deduce the short exact sequences

0 → (∧2Q∨)(1) → F (2)
2 → O(1) → 0

0 → ∧2Q → F (2)
1 → F (2)

2 → 0

0 → O → S ⊗ S → F (2)
1 → 0.

(7.4)

Furthermore, we recall the exact sequence

0 → Sym2U → V ⊗U → ∧2V ⊗O → ∧2Q → 0 (7.5)

which arise if we apply ∧2 to the tautological sequence (2.31).

Lemma 7.1.1. Let x be in [0, 4] and let p be in [0, 2].

Ext•((SympU∨)(x),∧2Q) =



∧2V[0] , if x = p = 0

K[−1] , if x = 0, p = 1

V[−2] , if x = 0, p = 2

K[−3] , if x = 1, p = 2

0 , else

(7.6)

Proof. First, we compute by Proposition 2.5.2 the Ext-spaces from (SympU∨)(x) =
U pω1(x) to SymqU = U qω2(−q) for p, q ∈ [0, 2]:

Ext•((SympU∨)(x), SymqU ) =



K[0] , if x = p = q = 0

K[−3] , if x = 0, p = 1, q = 2

K[−3] , if x = 0, p = 2, q = 1

K[−5] , if x = 1, p = q = 2

0 , else

. (7.7)
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Then we apply Hom((SympU∨)(x),−) to the exact sequence (7.5) and obtain the
following two long exact sequences of Ext-spaces:

· · · → Exti((SympU∨)(x), Sym2U ) → Exti((SympU∨)(x), V ⊗U ) →
Exti((SympU∨)(x), K) → · · · (7.8)

and

· · · → Exti((SympU∨)(x), K) → Exti((SympU∨)(x),∧2V ⊗O) →
Exti((SympU∨)(x),∧2Q) → · · · (7.9)

The object K is the cokernel of SympU → V ⊗ U and likewise the kernel of ∧2V ⊗
O → ∧2Q.

Second, we distinguish the following cases:

x = p = 0: Since O is right orthogonal to both Sym2U and U , it follows that it is also
right orthogonal to K. Hence we have the isomorphisms

Exti(O,∧2V ⊗O) = Exti(O,∧2Q) (7.10)

and accordingly Ext•(O,∧2Q) = ∧2V[0].

x = 0, p = 1: We have the isomorphisms

Exti(U∨,∧2Q) = Exti+1(U∨, K)

= Exti+2(U∨, Sym2U )
(7.11)

since U∨ is right orthogonal to both U and O.

x = 0, p = 2: We have the isomorphisms

Exti(Sym2U∨,∧2Q) = Exti+1(Sym2U∨, K)

= Exti+1(Sym2U∨, V ⊗U )
(7.12)

since Sym2U∨ is right orthogonal to both Sym2U and O.

x = 1, p = 2: We have the isomorphisms

Exti((Sym2U∨)(1),∧2Q) = Exti+1((Sym2U∨)(1), K)

= Exti+2((Sym2U∨)(1), Sym2U )
(7.13)

since (Sym2U∨)(1) is right orthogonal to U as well as O.

x and p otherwise: The Ext-space Ext•((SympU∨)(x),∧2Q) vanishes since (SympU∨)(x)
is right orthogonal to all three components SymqU where q ∈ [0, 2].



88 Chapter 7. An exceptional collection on OGr(3, 9) of maximal expected length

Lemma 7.1.2. Let x be in [0, 4] and let q be in [0, 2].

Ext•((∧2Q)(x), SymqU∨) =


SymqV[−1] , if x = 0

K[−9] , if x = 4, q = 2

0 , else

(7.14)

Proof. x = 0: We apply the functor ∧2 to the dualized version of the sequence (2.34).
This yields the exact sequence

0 → Sym2(Q∨/U )︸ ︷︷ ︸
=(Sym4S)(−2)⊕O

→ Q⊗ (Q∨/U ) → ∧2Q → ∧2U∨ → 0. (7.15)

Then we compute the Ext-spaces from the three remaining terms into SymqU∨:

Ext•(∧2U∨, SymqU∨) = 0: We refer to Proposition 4.1.2 to see that ∧2U∨ is
right orthogonal to O or U∨. We refer to Proposition 2.5.2 to cover the case
involving Sym2U∨.

Ext•(Q⊗ (Q∨/U ), SymqU∨) = 0: We tensor (Q∨/U ) to the tautological se-
quence (2.31), namely

0 → U ⊗ (Q∨/U )︸ ︷︷ ︸
=Uω2+2ω4 (−2)

→ V ⊗ (Q∨/U )︸ ︷︷ ︸
=U 2ω4 (−1)

→ Q⊗ (Q∨/U ) → 0, (7.16)

and check by Proposition 2.5.2 that both U 2ω4(−1) and Uω2+2ω4(−2) are
right orthogonal to SymqU∨. Hence, we see the desired right orthogonal
relation.

Ext•((Sym4S)(−2), SymqU∨) = 0: The vector bundle (Sym4S)(−2) has high-
est weight −2ω3 + 4ω4 and it is right orthogonal to SymqU∨ by Proposi-
tion 2.5.2.

Ext•(O, SymqU∨) = SymqV[0]: We recall Proposition 2.5.2.

Finally, we apply Hom(−, SymqU∨) to exact sequence (7.15) and obtain two
long exact sequences of Ext-spaces. It follows precisely Ext•(∧2Q,O) = K[−1]
due to the above relations.

x ∈ [1, 4]: First, we compute by Proposition 2.5.2 the Ext-spaces from (SympU )(x) =
U pω2(−p + x) to SymqU∨ = U qω1 for p, q ∈ [0, 2]:

Ext•((SympU )(x), SymqU∨) =

K[−7] , if x = 4, p = q = 2

0 , else
. (7.17)
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Then we apply Hom(−, SymqU∨) to the O(x)-twisted version of the exact
sequence (7.5) and obtain the following two long exact sequences of Ext-spaces:

· · · → Exti((∧2Q)(x), SymqU∨) → Exti(∧2V ⊗O(x), SymqU∨) →
Exti(K, SymqU∨) → · · ·

(7.18)

and

· · · → Exti(K, SymqU∨) → Exti(V ⊗U (x), SymqU∨) →
Exti((Sym2U )(x), SymqU∨) → · · ·

(7.19)

Second, we distinguish the following cases:

x = 4, q = 2: We have the isomorphisms

Exti((∧2Q)(4), Sym2U∨) = Exti−1(K, Sym2U∨)

= Exti−2((Sym2U )(4), Sym2U∨)
(7.20)

since both components O(4) and U (4) are right orthogonal to Sym2U∨.

x and q otherwise: The Ext-space Ext•((∧2Q)(x), SympU∨) vanishes since each
of the components (SympU )(x) where p ∈ [0, 2] is right orthogonal to
SymqU∨.

Lemma 7.1.3. Let x be in [0, 4] and let p be in [0, 2].

Ext•((∧pU∨)(x),∧2Q) =



∧2V[0] , if x = p = 0

K[−1] , if x = 0, p = 1

K[−10]⊕ V[−11] , if x = 4, p = 2

0 , else

(7.21)

Proof. First, we compute by Proposition 2.5.2 the Ext-spaces from (∧pU∨)(x) to
SymqU = U qω2(−q) for p, q ∈ [0, 2]:

Ext•((∧pU∨)(x), SymqU ) =



K[0] , if x = p = q = 0

K[−3] , if x = 0, p = 1, q = 2

K[−12] , if x = 4, p = 2, q = 1

K[−12] , if x = 4, p = q = 2

0 , else

. (7.22)
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Let us mention that ∧pU∨ = Uωp if p ∈ {1, 2}. Then we analogously as in the proof
of the previous Lemma 7.1.1. This yields the two long exact sequences of Ext-spaces:

· · · → Exti((∧pU∨)(x), Sym2U ) → Exti((∧pU∨)(x), V ⊗U ) →
Exti((∧pU∨)(x), K) → · · · (7.23)

and

· · · → Exti((∧pU∨)(x), K) → Exti((∧pU∨)(x),∧2V ⊗O) →
Exti((∧pU∨)(x),∧2Q) → · · · (7.24)

Second, we distinguish the following cases:

x = 0 and p ∈ {0, 1}: We refer to arguments in the corresponding case appearing in
the proof of Lemma 7.1.1.

x = 4, p = 2: It is Ext•((∧2U∨)(4), K) = K[−11]⊕ V[−12]. Since (∧2U∨)(4) is right
orthogonal to O, it follows the appropriate result.

x and p otherwise: The Ext-space Ext•((∧pU∨)(x),∧2Q) vanishes since (∧pU∨)(x)
is right orthogonal to all three components SymqU where q ∈ [0, 2].

Lemma 7.1.4. Let x be in [0, 4].

Ext•(S(x),∧2Q) = 0 (7.25)

Proof. The spinor bundle S = Uω4 and its higher twists are right orthogonal to each
component SympU = U pω2(−p) where p ∈ [0, 2] which appear in (7.5).

Lemma 7.1.5. Let x be in [0, 4].

Ext•((∧2Q)(x),S) = 0 (7.26)

Proof. We apply ∧4 to the tautological sequence (2.31) and recall Lemma 2.6.1 for the
last term, namely

0 → Sym4U → V ⊗ Sym3U → ∧2V ⊗ Sym2U →
∧3V ⊗U → ∧4V ⊗O → ∧4Q︸︷︷︸

=(∧2Q∨)(1)

→ 0. (7.27)

Since S(x) is right orthogonal to any term SympU = U pω2(−p), we deduce the
claimed vanishing Ext•((∧2Q)(x),S) = Ext•(S(x), (∧2Q∨)(1)) = 0.
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Lemma 7.1.6.
Ext•((∧2Q∨)(1),∧2Q) = K[−1] (7.28)

Proof. We dualize (7.5) and twist it by O(1):

0 → (∧2Q∨)(1) → ∧2V ⊗O(1) → V ⊗U∨(1) → (Sym2U∨)(1) → 0. (7.29)

Then we apply Hom(−,∧2Q) and recall the previous computations of Lemma 7.1.1
with x = 1 and p ∈ [0, 2]. Consequently, it follows that Exti((∧2Q∨)(1),∧2Q) is
isomorphic to Exti+2((Sym2U∨)(1),∧2Q).

Lemma 7.1.7. Let x be in [1, 4].

Ext•((∧2Q)(x),∧2Q) = 0 (7.30)

Proof. First, we check that the Ext-space Ext•((∧2Q)(x), SymqU ) vanishes for any
q ∈ [0, 2]. Indeed, each component (SympU )(x) = U pω2(−p + x) where p ∈ [0, 2]
appearing in a O(x)-twisted version of (7.5) is right orthogonal to SymqU .

Next, we apply Hom((∧2Q)(x),−) to (7.5) and deduce the desired vanishing.

Step 1 We refer to (7.4) and say that the object M(1) := F (2)
2

∨(1) is defined by the
short exact sequence

0 → O → M(1) → ∧2Q → 0. (7.31)

Lemma 7.1.8. The object M(1) is a non-splitting G-equivariant extension of ∧2Q by O.

Proof. First, we compute the Ext-space from ∧2Q to O: see Ext•(∧2Q,O) = K[−1]
by the computation in Lemma 7.1.2 where x = 0 and q = 0.

Second, we check that (7.31) is not-splitting. Therefore, we assume the opposite –
i.e. there is G-equivariant embedding of ∧2Q∨ into M(1). Thus, concatenating with
the appropriate embeddings of the dualized versions of (7.4) yields a non-trivial
morphism

∧2Q∨ ↪→ M(1) := F (2)
2

∨(1) ↪→ F (2)
1

∨(1) ↪→ S ⊗ S .

However, this contradicts the fact that ∧2Q∨ is right orthogonal to S – see the
computation in Lemma 7.1.5 where x = 0.

Lemma 7.1.9. The object M(1) is resolved by the short exact sequence

0 → M(1) → S ⊗ S → M(1)∨(1) → 0. (7.32)
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Proof. We concatenate the surjection onto F (2)
1 with the one onto M(1)∨(1) = F (2)

2

which are both from (7.4). Thus, we obtain a G-equivariant surjection

S ⊗ S ↠ F (2)
1 ↠ F (2)

2 = M(1)∨(1). (7.33)

Then, snaking gives us the two short exact sequences

0 → K → S ⊗ S → M(1)∨(1) → 0 (7.34)

and
0 → O → K → ∧2Q → 0. (7.35)

We observe that the kernel K is likewise as the object M(1) a G-equivariant extension
of ∧2Q by O – we compare (7.31) with (7.35).

Now, we are left to show that both objects are isomorphic. Indeed, K does not split
and accordingly it coincides with M(1) up to a scalar. Otherwise, we would have a
G-equivariant embedding

∧2Q ↪→ K ↪→ S ⊗ S (7.36)

contradicting the fact Ext•(∧2Q,S) = 0 as we computed in the previous Lemma 7.1.5
for x = 0.

Lemma 7.1.10. 1. The object M(1) is exceptional.

2. The twists M(1)(x) are right orthogonal M(1) whenever x ∈ [1, 4] – i.e. the object
M(1) has an exceptional orbit of length 5.

Proof. 7.1.10.(1): We apply Hom(−,M(1)) to the resolution (7.32):

· · · → Exti(M(1)∨(1),M(1)) → Exti(S ⊗ S ,M(1)) →
Exti(M(1),M(1)) → · · ·

(7.37)

The middle term vanishes by computation (7.40) in the following Lemma 7.1.11
and consequently we have isomorphisms

Exti(M(1),M(1)) = Exti+1(M(1)∨(1),M(1)). (7.38)

Finally we refer to the computation (7.41) in Lemma 7.1.11.

7.1.10.(2): We apply Hom(−,M(1)) to the O(x)-twisted version of the short exact
sequence (7.31) defining M(1):

· · · → Exti((∧2Q)(x),M(1)) → Exti(M(1)(x),M(1)) →
Exti(O(x),M(1)) → · · · .

(7.39)
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By the later computations (7.42) and (7.43) in the following Lemma 7.1.11 we
observe the vanishing of the outer Ext-spaces. Hence, we also deduce the
vanishing of the desired Ext-space in the middle.

Lemma 7.1.11.

Ext•(S(x),M(1)) = 0 , if x ∈ [0, 4] (7.40)

Ext•(M(1)∨(1),M(1)) = K[−1] (7.41)

Ext•(O(x),M(1)) = 0 , if x ∈ [1, 4] (7.42)

Ext•((∧2Q)(x),M(1)) = 0 , if x ∈ [1, 4] (7.43)

Proof. (7.40): The object S(x) is right orthogonal to the component O by Proposi-
tion 6.1.2 and it is also to the component ∧2Q by computation in Lemma 7.1.4
where x = 0.

(7.41): First, we apply Hom(−,M(1)) to the short exact sequence defining M(1)∨(1) =
F (2)

2 in (7.4), namely

· · · → Exti(O(1),M(1)) → Exti(M(1)∨(1),M(1)) →
Exti((∧2Q∨)(1),M(1)) → · · · ,

(7.44)

and see the isomorphisms

Exti(M(1)∨(1),M(1)) = Exti((∧2Q∨)(1),M(1)) (7.45)

since O(1) is right orthogonal to M(1) by the later computation (7.42).

Second, we apply Hom((∧2Q∨)(1),−) to the short exact sequence (7.31), namely

· · · → Exti((∧2Q∨)(1),O) → Exti((∧2Q∨)(1),M(1)) →
Exti((∧2Q∨)(1),∧2Q) → · · · ,

(7.46)

and deduce the isomorphisms

Exti((∧2Q∨)(1),M(1)) = Exti((∧2Q∨)(1),∧2Q) (7.47)

since (∧2Q∨)(1) is right orthogonal to O. In fact, Ext•((∧2Q∨)(1),O) is iso-
morphic to Ext•(O(1),∧2Q). Thus, we refer again to the computation in
Lemma 7.1.1 with x = 1 and p = 0.

Third, we finish with a reference to Lemma 7.1.6.

(7.42): We observe that O(x) is right orthogonal to both components of M(1): For
Ext•(O(x),O) = 0 we refer to Propositon 4.1.2 and for Ext•(O(x),∧2Q) = 0
we refer to the computation in Lemma 7.1.1 where x = 0 and p = 0.
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(7.43): The object (∧2Q)(x) is right orthogonal to both components of M(1): We refer
to the computation in Lemma 7.1.2 with q = 0 and to Lemma 7.1.7.

Remark 7.1.12. The object M(1) can already be used to extend our consecutive collec-
tion from chapter 6 in the third row. This means that the bounded derived category
Db(OGr(3, 9)) admits an exceptional collection of maximal expected length with
starting block (

O , U∨ , M(1) , ∧2U∨ , S (0) , S (1) , S (2)
)

.

The object M(1)∨(1) does an analogous job for the alternating collection from chap-
ter 6. It induces a starting block of the form(

O , S (0) , U∨ , M(1)∨(1) , ∧2U∨ , S (1) , S (2)
)

.

Step 2

Lemma 7.1.13. The object ∧2U∨ is right orthogonal to M(1) – i.e. the pair (M(1),∧2U∨)

is exceptional.

Proof. We show that ∧2U∨ is right orthogonal to both components appearing in (7.31).
For Ext•(∧2U∨,O) = 0 we refer to Proposition 4.1.2 and for Ext•(∧2U∨,∧2Q) = 0
we refer to the computation in Lemma 7.1.3 with x = 0 and p = 2.

Lemma 7.1.14. The right mutation of M(1) through ∧2U∨ is described by the short exact
sequence

0 → M(2) → M(1) → ∧2U∨ → 0 (7.48)

such that M(2) is characterized as the non-splitting G-equivariant extension defined by the
short exact sequence

0 → O⊕ (Q∨/U ) → M(2) → U∨ ⊗ (Q∨/U ) → 0. (7.49)

Proof. First, we apply ∧2 to the dualized version of the short exact sequence (2.34):

0 → Sym2(Q∨/U ) → Q⊗ (Q∨/U ) → ∧2Q → ∧2U∨ → 0. (7.50)

Breaking up this into short exact sequenes gives rise to the non-splitting G-equivariant
extension K: The left side is

0 → Sym2(Q∨/U ) → Q⊗ (Q∨/U ) → K → 0, (7.51)

the right side is
0 → K → ∧2Q → ∧2U∨ → 0, (7.52)
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and the kernel K appearing in the middle is precisely of the form

0 → Q∨/U → K → U∨ ⊗ (Q∨/U ) → 0. (7.53)

Indeed, ∧2Q has semi-simplification

∧2U∨︸ ︷︷ ︸
=Uω2

⊕ U∨ ⊗ (Q∨/U )︸ ︷︷ ︸
=Uω1+2ω4 (−1)

⊕ Q∨/U︸ ︷︷ ︸
=U 2ω4 (−1)

(7.54)

and one can compute easily the following Ext-spaces Ext•(U∨ ⊗ (Q∨/U ),Q∨/U ) =
K[−1] as well as Ext•(Q∨/U ,U∨ ⊗ (Q∨/U )) = 0. If we assume that (7.53) splits,
then there a G-equivariant surjection

V ⊗ (Q∨/U ) ↠ Q⊗ (Q∨/U ) ↠ K ↠ Q∨/U . (7.55)

However, there are no non-trivial G-equivariant morphisms from V ⊗ (Q∨/U ) to
Q∨/U since we compute Ext•(V ⊗ (Q∨/U ), (Q∨/U )) = V[0].

Second, we concatenate the surjection M(1) ↠ ∧2Q in (7.31) with the surjection
∧2Q ↠ ∧2U∨ in (7.52). Snaking yields the two short exact sequences

0 → M(2) → M(1) → ∧2U∨ → 0 (7.56)

and
0 → O → M(2) → K → 0. (7.57)

Thanks to the fact Ext•(M(1),∧2U∨) = K[0] (cf. following Lemma 7.1.15), the short
exact sequence (7.52) induces the mutation triangle defining the object M(2) as right
mutation of M(1) through ∧2U∨.

Third, we combine the surjection of (7.53) with the one of (7.57) and obtain by the
snake lemma the desired short exact sequence (7.49). We explicitly mention that the
kernel of M(2) ↠ U∨ ⊗ (Q∨/U ) is the direct sum O ⊕ (Q∨/U ) as both Ext-spaces
from one component to the other one vanishes.

Lemma 7.1.15.
Ext•(M(1),∧2U∨) = K[0] (7.58)

Proof. First, we apply Hom(−,∧2U∨) to resolution (7.32) and obtain the long exact
sequence of Ext-spaces:

· · · → Exti(M(1)∨(1),∧2U∨) → Exti(S ⊗ S ,∧2U∨) → Exti(M(1),∧2U∨) → · · · .
(7.59)

Since S is right orthogonal to ∧2U∨ by Proposition 6.2.2, we have the isomorphism

Exti(M(1),∧2U∨) = Exti+1(M(1)∨(1),∧2U∨). (7.60)
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Second, we observe the isomorphisms

Exti(M(1)∨(1),∧2U∨) = Exti(U∨,M(1)) (7.61)

by dualisation and we are left to show Exti(U∨,M(1)) = K[−1]. In fact, the object
U∨ is right orthogonal to the component O by Propositon 4.1.2. This induces the
isomorphisms

Exti(U∨,M(1)) = Exti(U∨,∧2Q) (7.62)

and we refer to the computation in Lemma 7.1.1 with x = 0 and p = 1.

Lemma 7.1.16.

1. The object M(2) is exceptional.

2. The twists M(2)(x) are right orthogonal M(2) whenever x ∈ [1, 4] – i.e. the object
M(2) has an exceptional orbit of length 5.

Proof. Mutating M(1) through ∧2U∨ preserves the exceptional orbit we checked
before in Lemma 7.1.10.

Remark 7.1.17. Assuming the exceptional collection mentioned in the previous Re-
mark 7.1.12, then one can modify this to an exceptional collection with the starting
block (

O , U∨ , ∧2U∨ , M(2) , S (0) , S (1) , S (2)
)

.

Furthermore, let us state that we could generalize this pattern to higher orthogonal
Grassmannians OGr(3, 2n + 1) with n = 5, 6, 7, · · · . This means, we could construct
non-splitting G-equivariant extensions of the form

0 → Uωn−1(−1)⊕U 2ωn(−1) → M(2) → Uω1+2ωn(−1) → 0 (7.63)

and check at least numerically that these objects are exceptional.

Step 3

Lemma 7.1.18. The object S (0) is right orthogonal to M(2) – i.e. the pair (M(2),S (0)) is
exceptional.

Proof. We apply Hom(S (0),−) to the short exact sequence (7.48) defining M(2). The
object S (0) is right orthogonal to M(1) by Lemma 7.40 and likewise right orthogonal
to ∧2U∨ by Proposition 6.1.2.

Lemma 7.1.19. The right mutation of M(2) through S (0) is described by the short exact
sequence

0 → M(2) → S ⊗ S (0) → M(3) → 0 (7.64)
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such that M(3) is characterized as the non-splitting G-equivariant extension defined by the
short exact sequence

0 → ∧2U∨ → M(3) → M(1)∨(1) → 0. (7.65)

Proof. We concatenate the embedding M(2) ↪→ M(1) in (7.48) with the embedding
M(1) ↪→ S ⊗ S in (7.1.9). Then snaking yields both (7.64) and (7.65).

It is Ext•(M(1)∨(1),∧2U∨) = K[−1] as we computed earlier in the proof of Lemma 7.1.15.

If we assume that (7.65) splits, then we have a G-equivariant surjection

S ⊗ S (0) ↠ M(3) ↠ ∧2U∨ (7.66)

if we combine the splitting with the surjection in (7.64). However, this contradicts the
fact that S (0) is right orthogonal to ∧2U∨ by Proposition 6.1.2.

As we have Ext•(M(2),S (0)) = S[0] (cf. following Lemma 7.1.20), the short exact se-
quence (7.64) induces the mutation triangle defining the object M(3) as right mutation
of M(2) through S (0).

Lemma 7.1.20.
Ext•(M(2),S (0)) = S[0] (7.67)

Proof. Since ∧2U∨ is right orthogonal to S (0), the short exact sequence (7.48) yields
the isomorphisms

Exti(M(2),S (0)) = Exti(M(1),S (0)). (7.68)

Moreover, ∧2Q is right orthogonal to S (0) by the computation in Lemma 7.1.5 where
x = 0. Therefore, it follows from (7.31) the isomorphisms

Exti(M(1),S (0)) = Exti(O,S (0)). (7.69)

Due to Proposition 2.5.2 we compute Ext•(O,S (0)) = S[0].

Lemma 7.1.21.

1. The object M(3) is exceptional.

2. The twists M(3)(x) are right orthogonal M(3) whenever x ∈ [1, 4] – i.e. the object
M(3) has an exceptional orbit of length 5.

Proof. Mutating M(2) through S (0) preserves the the exceptional orbit we checked
before in Lemma 7.1.16.
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7.2 The collection

We set M = M(3) as constructed in Lemma 7.1.19 and recall the necessary construc-
tion by the exact sequences

0 → ∧2U∨ → M → F (2)
2 → 0, (7.70)

0 → (∧2Q∨)(1)
=∧4Q

→ F (2)
2 → O(1) → 0, (7.71)

and

0 → (∧2Q∨)(1) → ∧2V ⊗O(1) → V ⊗U∨(1) → (Sym2U∨)(1) → 0. (7.72)

Moreover, we can resolve the component F (2)
2 appearing in (7.70) by

0 → F (2)
2

∨(1) → S ⊗ S → F (2)
2 → 0, (7.73)

0 → O → F (2)
2

∨(1) → ∧2Q → 0, (7.74)

and

0 → Sym2U → V ⊗U → ∧2V ⊗O → ∧2Q → 0. (7.75)

The bounded derived category Db(OGr(3, V9)) admits two exceptional collections
consisting of maximal expected length, namely

M M(1) M(2) M(3) M(4)
S (2) S (2)(1)
S (1) S (1)(1) S (1)(2) S (1)(3) S (1)(4)
S (0) S (0)(1) S (0)(2) S (0)(3) S (0)(4)

∧2U∨ (∧2U∨)(1) (∧2U∨)(2) (∧2U∨)(3) (∧2U∨)(4)
U∨ U∨(1) U∨(2) U∨(3) U∨(4)
O O(1) O(2) O(3) O(4)


(7.76)

and 

M M(1) M(2) M(3) M(4)
S (2) S (2)(1)
S (1) S (1)(1) S (1)(2) S (1)(3) S (1)(4)

∧2U∨ (∧2U∨)(1) (∧2U∨)(2) (∧2U∨)(3) (∧2U∨)(4)
U∨ U∨(1) U∨(2) U∨(3) U∨(4)
S (0) S (0)(1) S (0)(2) S (0)(3) S (0)(4)
O O(1) O(2) O(3) O(4)


(7.77)

respectively. Moreover, the object M is even orthogonal to S (1) as well as S (2).
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Proving exceptionality.

Proposition 7.2.1. Both the consecutive collection (7.2) and the alternating one (7.3) can
be extended by the exceptional orbit (M , · · · , M(4) ) after the fourth, fifth or sixth row
respectively.

Proof. We refer to the following three Lemmas 7.2.2, 7.2.3, and 7.2.4.

Lemma 7.2.2. Let E ′′ be an element from the starting block of the consecutive collection (7.2)
– i.e. E ′′ is from (O , U∨ , ∧2U∨ , S (0) , S (1) , S (2) ) – and let x be from [0, 4]. Then M(x)
is right orthogonal to E ′′.

Proof. x ∈ {0, 1}: x = 0 and E ′′ = ∧2U∨: We combine Proposition 6.1.2 with the pre-
vious section 7.1. This means that the triple (M(1),∧2U∨,S (0)) is excep-
tional. Furthermore, M = M(3) is the right-mutation of M(1) through
(∧2U∨,S (0)). In particular, M is right orthogonal to ∧2U∨.

Otherwise: We apply Hom(−, E ′′) to O(x)-twisted versions of (7.71) and (7.72)
respectively. The components (SympU∨)(1 + x) where p ∈ [0, 2] are right
orthogonal to E ′′. In fact, for p ∈ {0, 1}, we refer to Proposition 6.1.2;
and for p = 2, we check by Proposition 2.5.2 that (Sym2U∨)(1 + x) =

U 2ω1(1 + x) is right orthogonal to each irreducible component of E ′′. So,
we see that (∧2Q)(1+ x) is right orthogonal to E ′′ and the same holds also
for F (2)

2 .

Next, we move on to (7.70) and recall that (∧2U∨)(x) is right orthogo-
nal to E ′′ by Proposition 6.1.2. Accordingly, it follows the desired right
orthogonal relation from M(x) to E ′′.

x ∈ [2, 4]: First, we point out that (∧2Q)(x) is right orthogonal to E ′′ due to (7.75). In
fact, (SympU )(x) is right orthogonal to E ′′ as we can either refer back to Proposi-
tion 6.1.2 or we compute by Proposition 2.5.2 that (Sym2U )(x) = U 2ω2(−2 + x)
is right orthogonal to each irreducible component of E ′′.

Second, F (2)
2

∨(1 + x) is right orthogonal to E ′′ by (7.74).

Third, we see that S(x) is right orthogonal to E ′′ by Proposition 6.1.2 and we
deduce by (7.73) the similar statement for F (2)

2 (x).

Finally, (7.70) yields that M(x) is right orthogonal to E ′′ since each of its com-
ponents is right orthogonal to E ′′.

Lemma 7.2.3. Let E ′(x) be an object from the consecutive collection (7.2) such that E ′ is an
element of the starting block (O , U∨ , ∧2U∨ , S (0) , S (1) , S (2) ) and x is from [1, 4]. Then
E ′(x) is right orthogonal to M.



100 Chapter 7. An exceptional collection on OGr(3, 9) of maximal expected length

Proof. x = 1 and E ′ ∈ {O,U∨}: First, we consider (7.74) and (7.75) and we show that
E ′(1) is right orthogonal to SymqU = U qω2(−q) where q ∈ [0, 2]. In fact, for
q ∈ {0, 1}, we recall the fact U = (∧2U∨)(−1) and refer to Proposition 4.1.2;
and for q = 2, we check by Proposition 2.5.2. Thus, E ′(1) is right orthogonal to
∧2Q and likewise it is also right orthogonal to F (2)

2
∨(1).

Second, we consider (7.73) and we recall that E ′(1) is right orthogonal to S by
Proposition 6.1.2. So, it follows that E ′(1) is right orthogonal to F (2)

2 .

Third, we work with (7.70) and we recall that E ′(1) is right orthogonal to ∧2U∨

by Proposition 4.1.2. This yields finally that E ′(1) is also right orthogonal to M
as desired.

Otherwise: The object E ′(x) appears in the consecutive collection (7.2) after U∨(1) –
i.e. we have either x = 1 and E ′ ∈ {∧2U∨,S (0),S (1),S (2)} or it is x ∈ [2, 4] and
E ′ ∈ {O,U∨,∧2U∨,S (0),S (1)}.

First, we start with (7.71) and (7.72). We observe that E ′(x) is right orthogonal
to (SymqU∨)(1) where q ∈ [0, 2]. In fact, for q ∈ {0, 1}, we refer to Proposi-
tion 6.1.2; and for q = 2, we check by Proposition 2.5.2 that any irreducible
component of E ′(x) is right orthogonal to (Sym2U∨)(1) = U 2ω1(1). Hence, we
deduce that E ′(1) is right orthogonal to (∧2Q∨)(1) and likewise F (2)

2 .

Second, let us mention that E ′(x) is also right orthogonal to ∧2U∨ by Proposi-
tion 6.1.2.

All in all, we see that E ′(x) is right orthogonal to any component of M and
therefore it is also right orthogonal to M itself.

Lemma 7.2.4. The two objects S (1) and S (2) of the spinor subcollection are each even
orthogonal to M.

Proof. We already showed in the previous Lemma 7.2.2 that M is right orthogonal to
the objects S (y) where y ∈ {1, 2}. Hence, we are left to show the opposite direction,
namely the objects S (y) where y ∈ {1, 2} is right orthogonal to M.

First, we apply Hom(S (y),−) to (7.74) as well as (7.75). The object S (y) is right
orthogonal to SymqU since we have for q ∈ {0, 1} Proposition 6.1.2 and the fact U =

(∧2U∨)(−1) as well as for q = 2 Proposition 2.5.2 and the fact Sym2U = U 2ω2(−1).
So, S (y) is right orthogonal to ∧2Q and also to F (2)

2
∨(1).

Second, we focus to (7.73) and recall that S (y) where y ∈ {1, 2} is right orthogonal to
S by Proposition 5.0.10. Therefore, S (y) is likewise right orthogonal to F (2)

2 .

Finally, we mention that S (y) is right orthogonal to ∧2U∨ by Proposition 6.1.2 and
thus it follows from (7.70) that S (y) is right orthogonal to M.
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Chapter 8

Outlook

We present an overview of our remaining open problems concerning the family
of orthogonal Grassmannians OGr(3, V2n+1) where V2n+1 is a 2n + 1-dimensional
vector space. First, we take up the case OGr(3, V9) which has been considered in the
previous chapter 7 explicitly. Then, we shortly outline some computational results
for the cases OGr(3, V2n+1) with higher n.

8.1 Fullness for OGr(3, 9)

The bounded derived category Db(X) where X = OGr(3, V9) admits two exceptional
collections (7.76) and (7.77). Let D be their full triangulated subcategory. A priori,
we have a semi-orthogonal decomposition Db(X) = ⟨D⊥,D⟩ where D⊥ is the right
orthogonal of D in Db(X), namely

D⊥ =
{
F ∈ Db(X) : HomDb(X)(E ,F ) = 0 for any E ∈ D

}
. (8.1)

It is an open question whether D⊥ vanishes and consequently whether we have the
identity D = Db(X). Nevertheless, let us present our most advanced approach which
relies on the embedding

Y = OGr(3, V7) = B3/P3 ⊆ X = OGr(3, V9) = B4/P3 (8.2)

and proceeds analogously as in [20].

Set-up of the embedding. Let v1 and v2 be two arbitrary but fixed vectors from V9

such that the span ⟨v1, v2⟩ ⊆ V9 is a 2-dimensional subspace and the quantity ⟨v1, v2⟩
does not vanish. We introduce the associated section ϕ : V⊕2

9 → K⊕2 defined via
ϕ = (⟨v1,−⟩, ⟨v2,−⟩). Write δ for the diagonal morphism V9 → V⊕2

9 via v 7→ (v, v).
Then we obtain the following zero loci:

• The orthogonal complement of ⟨v1, v2⟩ in V9, namely

V7 := ⟨v1, v2⟩⊥ := { v ∈ V : (ϕ ◦ δ)(v) = 0 }.
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It is a 7-dimensional vector space equipped with a non-degenerate, symmetric
bilinear form ⟨−,−⟩ |V⊕2

7
.

• The space

Y := { U ∈ X : (ϕ ◦ δ)(u) for any u ∈ U } = { U ∈ X : U ⊆ V7 }

is the orthogonal Grassmannian OGr(3, V7). We have the tautological short
exact sequence

0 → UY → V7 ⊗OY → QY → 0 (8.3)

on Y and observe that the tautological quotient bundle QY is a non-splitting
GY-equivariant extension of UY

∨ by OY. Furthermore, there is the Koszul
resolution

0 → K6 → · · · → K1 → K0 → ιϕ∗OY → 0 (8.4)

where Ki is the bundle ∧i(U⊕2) and ιϕ the embedding Y ↪→ X.

We deduce from Kapranov’s collection on the quadric 6-fold Q6 which is isomorphic
to Y = OGr(3, V7) the full exceptional Lefschetz collection(

QY QY(1)
OY OY(1) OY(2) · · · O(5)

)
. (8.5)

The crucial open issue. Now, we present the following lifting from Db(Y) to Db(X):

Db(X)
ιϕ

∗

−→ Db(Y)
OX(t) 7→ OY(2t) for t ∈ [0, 2]
S(t) 7→ OY(2t + 1)⊕2 for t ∈ [0, 2]
UX

∨ 7→ UY
∨

UX
∨ ⊗ S 7→ U∨(1)⊕2

(8.6)

We mention that we can find every irreducible component (maybe as a summand)
that appears in the collection (8.5) on the right side, and every lift on the left side lies
in the subcategory D.
Let us assume that we could check the containment:

Assumption 8.1.1. F ′′′ ⊗F ′′ ⊗F ′ ∈ D where F ′ is from the left side of (8.6) and where
F ′′ and F ′′′ are of the form ∧iUX

∨.

In other words, it means F ′ ⊗F ′′ ⊗F ′′′ ∈ D whenever

F ′ ∈ { OX,OX(1),OX(2),S ,S(1),S(2),Ux
∨,UX

∨ ⊗ S }

and

F ′′,F ′′′ ∈ { 0,OX,UX
∨,∧2UX

∨,OX(1) }.



8.1. Fullness for OGr(3, 9) 103

Then, it follows clearly Ki
∨ ⊗F ′ =

⊕i
j=0 ∧jU∨ ⊗∧i−jU∨ ⊗F ′ ∈ D.

Remark 8.1.2. We could show many of the necessary containments F ′′′⊗F ′′⊗F ′ ∈ D.
However, we are still left with a handful of open issues. In fact, it boils down to prove
that the following vector bundles lie in D:

OX(m) for m ∈ [0, 4] (8.7)

SX(m) for m ∈ [0, 4] (8.8)

UX
∨(m) for m ∈ [0, 3] (8.9)

(∧2UX
∨)(m) for m ∈ [0, 3] (8.10)

S ⊗ UX
∨(m) for m ∈ [0, 3] (8.11)

SX ⊗ (∧2UX
∨)(m) for m ∈ [0, 3] (8.12)

(Sym2UX
∨)(m) for m ∈ [0, 2] (8.13)

(Σ2,1UX
∨)(m) for m ∈ [0, 2] (8.14)

(Σ2,2UX
∨)(m) for m ∈ [0, 2] (8.15)

SX ⊗ (Sym2UX
∨)(m) for m ∈ [0, 2] (8.16)

SX ⊗ (Σ2,1UX
∨)(m) for m ∈ [0, 2] (8.17)

SX ⊗ (Σ2,2UX
∨)(m) for m ∈ [0, 2] (8.18)

Sym3UX
∨ (8.19)

Σ3,1UX
∨ (8.20)

Σ3,2UX
∨ (8.21)

SX ⊗ Sym3UX
∨ (8.22)

SX ⊗ Σ3,1UX
∨ (8.23)

SX ⊗ Σ3,2UX
∨ (8.24)

We are left to prove the cases Sym2UX
∨ which is the case m = 0 in (8.13), SX ⊗

(Sym2UX
∨)(2) which is the case m = 2 in (8.16), (Sym3UX

∨)(m) for m ∈ [0, 2] which
is the case (8.19) if m = 0, (Σ3,1UX

∨)(1), and SX ⊗ Sym3UX
∨ which is the case (8.22).

Final conclusion. Let R be an object from the right orthogonal complement D⊥;
that is, HomDb(X)(E ,R) = 0 for any generator appearing in our collection (7.76) or
(7.77) respectively.

Lemma 8.1.3. Assuming 8.1.1, the restriction ιϕ
∗R is right orthogonal to any ιϕ

∗F as
introduced on the right side of (8.6).

Proof. Let F be some object from the set { OX,OX(1),OX(2),S ,S(1),S(2),Ux
∨,UX

∨⊗
S }. Tensoring F∨ ⊗R to the resolution (8.4) yields the complex

0 → K6 ⊗F∨ ⊗R → · · · → K1 ⊗F∨ ⊗R →
K0 ⊗F∨ ⊗R → ιϕ∗(OY)⊗F∨ ⊗R → 0.

(8.25)
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We claim that ιϕ∗(OY)⊗ F∨ ⊗R has no cohomology as it computes for any term
Kj ⊗F∨ ⊗R in (8.25) where j ∈ [0, 6] the following:

H•(X, Kj ⊗F∨ ⊗R) = HomDb(X)(O, Kj ⊗F∨ ⊗R)

= HomDb(X)(Kj
∨ ⊗F ,R)

= 0

(8.26)

The vanishing follows from combining the fact that the object Kj
∨ ⊗F lies in D and

R lies in D⊥.
Thanks to the projection formula, we prepare

ιϕ∗ιϕ
∗(F∨ ⊗R) = (ιϕ∗OY)⊗F∨ ⊗R. (8.27)

Finally, we deduce the desired statement:

HomDb(X)(ιϕ
∗F , ιϕ

∗R) = HomDb(X)(ιϕ
∗OX, ιϕ

∗(F∨ ⊗R)) (8.28)

= HomDb(X)(OX, ιϕ∗ιϕ
∗(F∨ ⊗R)) (8.29)

(8.27)
= HomDb(X)(OX, (ιϕ∗OY)⊗F∨ ⊗R) (8.30)

= H•(X, (ιϕ∗OY)⊗F∨ ⊗R) (8.31)
(8.26)
= 0 (8.32)

Lemma 8.1.4. Assuming 8.1.1, the restriction ιϕ
∗R is right orthogonal to any generator of

our Lefschetz collection (8.5) on Db(Y).

Proof. First, we show that ιϕ
∗R is right orthogonal to every irreducible component of

any generator of our Lefschetz collection (8.5) on Db(Y). In fact, every such object can
be found (maybe as summand) in (8.6). Hence, we apply the previous Lemma 8.1.3.
If necessary, we rely on the fact that the functor HomDb(Y)(−, ιϕ

∗R) is additive.

Second, we conclude that ιϕ
∗R needs to be right orthogonal to every generator as it

is so for every of its irreducible components.

Corollary 8.1.5. Assuming 8.1.1, the restriction ιϕ
∗R vanishes for any section ϕ.

Proof. We deduce

ιϕ
∗R

8.1.4
∈
〈
OY,QY;OY(1),QY(1);OY(2); · · · ;OY(5)

〉⊥
= Db(Y)⊥ = 0.

Proposition 8.1.6. Assuming 8.1.1, it holds D⊥ = 0.
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We argue analogously as in [20, Lemma 7.6.].

Proof. We show that for any non-trivial R there is some ϕ such that the restriction
ιϕ

∗R does not vanish. Hence, it follows from the previous corollary 8.1.5 that R is
not an object from D⊥.

Let us assume R ̸= 0. We find a maximal integer j such that the jth cohomology of
the cochain complex R does not vanish. This means,

0 ̸= Hj(R) = H j(X,R) = Extj(OX,R) = HomDb(X)(OX,R[j]). (8.33)

Furthermore, we find a point x ∈ suppHj(R) ⊆ X. Now, we can choose a 2-
dimensional subspace ⟨v1, v2⟩ ⊆ V9 such that x ∈ Y – i.e. we have ⟨v1, w⟩ = 0
and ⟨v2, w⟩ = 0 for any w from the 3-dimensional subspace of V corresponding
to x ∈ X = OGr(3, V9). Since the pullback functor ιϕ

∗ is left exact, we see that
jth cohomology of the restricted cochain complex ιϕ

∗R remains non-trivial – i.e.
Hj(ιϕ

∗R) ̸= 0. So, we deduce ιϕ
∗R ̸= 0 as desired.

8.2 The residual category of OGr(3, 9)

Throughout this section, we assume that the subcategory D, which as been introduced
in the previous section 8.1, is full. We mutate the two objects S (2) and S (2)(1) to the
far left position: First, we collect those objects in the starting block with maximal
orbit length 5, namely the block B = ⟨O,U∨,∧2U∨,S (0),S (1),M⟩. Then we write
the left mutations R(1) := LB( S (2) ) and R(2) := L⟨B,B(1)⟩( S (2)(1) ). This yields an
exceptional collection

M M(1) M(2) M(3) M(4)
S (1) S (1)(1) S (1)(2) S (1)(3) S (1)(4)
S (0) S (0)(1) S (0)(2) S (0)(3) S (0)(4)

∧2U∨ (∧2U∨)(1) (∧2U∨)(2) (∧2U∨)(3) (∧2U∨)(4)
U∨ U∨(1) U∨(2) U∨(3) U∨(4)
O O(1) O(2) O(3) O(4)

R(2)

R(1)


. (8.34)

Hence, we obtain a semi-orthogonal decomposition of the form

Db(X) = ⟨D(Res),D(Rec)⟩

where D(Rec) := ⟨B,B(1), · · · ,B(4)⟩ is the subcategory arising from the rectangular
part and D(Res) is the right orthogonal complement to D(Rec) (the residual subcategory).
Due to the assumed fullness, we conclude D(Rec) = ⟨R(1),R(2)⟩.
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We imitated the left mutations of S (2) and S (2)(1) numerically. This means, we
considered [S (2)] and [S (2)(1)] as objects of K0(X) and computed the left mutations
[R(1)] and [R(2)] respectively on this level. Finally, we observed that the Gram matrix
is of the form (

1 1
0 1

)

which is in accordance with the conjecture that D(Res) is equivalent to the bounded
derived category of A2-quivers.

8.3 Cases OGr(3, 2n + 1) for higher n

Let n be in the integer intervall [5, 11] and therefore set X = OGr(3, V2n+1). We had
some progress to extend the corresponding collections in 6.1 or 6.2 respectively on the
level of K0(X). This means, we say a bundle E is numerically exceptional if χ(E, E) = 1,
and we say for a pair that E ′′ is numerically right orthogonal to E ′ if χ(E ′′, E ′) = 0.
With this notions in mind, we can show that there is a non-splitting G-equivariant
extension arising by the irreducible components

Uω1+2ωn(−1), U 2ωn(−1), and Uωn−1(−1)

which is numerically exceptional. It seems to be a counterpart of the missing link
M(2) as in (7.63). It extends numerically our corresponding collection from 6.1 or 6.2
respectively. Furthermore, we repeat an analogous mutation as in Lemma 7.1.19 on
the level of K0(X) and therefore construct numerically an analogous counterpart of
M(3).

The upper bound of considered cases n ≤ 11 arise from our limits of computational
power.

If one considers the difference between the expected maximal length of a full excep-
tional collection on Db(X) and the length of our collections in 6.1 or 6.2 respectively
as in (6.3), then one observes that this gap grows with order O(n2). This means at the
present point in time that we have a lack of support by further exceptional objects if
n ≥ 9.
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