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Abstract 

Acute myeloid leukemia with complex karyotype (ckAML) is characterized by high genomic 

complexity, including frequent TP53 mutations and chromothripsis. Genomic rearrangements 

can reposition active enhancers near proto-oncogenes, leading to their aberrant expression, 

however, a comprehensive understanding of these events in AML is still incomplete. To facilitate 

the discovery of such “enhancer hijacking” events, we developed pyjacker, a computational tool, 

and applied it to 39 ckAML samples. Pyjacker identified several enhancer hijacking events in 

AML patient samples, including aberrant expression of motor neuron and pancreas homeobox 1 

(MNX1), which can result from del(7)(q22q36) and is associated with hijacking of a CDK6 

enhancer. MNX1 activation occurred in 1.4% of AML patients and showed significant co-

occurrence with BCOR mutations. Through a xenograft mouse model, we demonstrated that 

MNX1 is required for leukemia cell fitness. Pyjacker is an easy-to-use, accurate, and broadly 

applicable tool for identifying consequences of genomic events driving tumorigenesis, especially 

when germline genomic data is missing. 

 

Statement of significance 

This study examines the consequences of structural alterations in AML and demonstrates that 

proto-oncogene activation by enhancer hijacking is an understudied pathomechanism. MNX1 

overexpression demonstrates that deletions on chromosome 7q can not only lead to 

haploinsufficiency, but also to activation of oncogenes by enhancer hijacking. 
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Introduction 

Acute myeloid leukemia (AML) is a disease characterized by a block in differentiation and 

uncontrolled proliferation of myeloid progenitor cells. AML is a very heterogeneous disease and 

has been divided into several subgroups based on recurrent cytogenetic alterations (e.g., 

t(15;17)(q24.1;q21.2), inv(16)(p13.1q22), or t(8;21)(q22;q22.1)) and mutations (e.g., in NPM1, 

TP53, or CEBPA) (1–3). Complex karyotype AML (ckAML) is a subtype with dismal prognosis 

and there is currently an incomplete understanding of the pathogenetic mechanisms driving this 

disease (4). ckAML is defined by the presence of at least three cytogenetic alterations, in the 

absence of any of the recurrent class-defining lesions. It accounts for 10-12% of all AML cases 

and is more frequent among older patients (4). ckAML samples often harbor TP53 mutations, 

which are associated with a high frequency of chromothripsis, defined as the shattering of 

certain chromosomes and refusion in random order, resulting in highly rearranged 

chromosomes with loss of chromosomal material (5–7). Deletions in ckAML are more frequent 

than gains and the most common deletions affect chromosome arms 5q, 7q, 17p, and 12p, 

while gains mostly occur on 8q, 11q and 21q (4,8,9). According to Knudson’s two-hit hypothesis, 

deletions in cancer usually lead to the complete inactivation of a tumor suppressor gene whose 

other copy is also inactivated, for example by a mutation. However, apart from TP53 on 17p, the 

search for tumor suppressor genes with both copies inactivated in ckAML has been 

unsuccessful (4), and the current paradigm is that copy number alterations (CNAs) in ckAML 

lead to gene dosage effects driving tumorigenesis (10), where a higher or lower gene copy 

number results in a higher or lower gene expression, respectively.  

 

Deletions of chromosomal segments on 7q are one of the most common structural alterations in 

AML, occurring in 10% of patients (2,11). 7q deletions are frequently seen in ckAML, but can 

also be found as a sole abnormality, where it is still associated with a poor prognosis (12). The 

clustering of these deletions in certain regions on 7q has been used for more than 20 years as 

an indication for the presence of a tumor suppressor gene within the minimally deleted region. 

However, the search for a gene with a second (epi)genetic hit has not been successful (13). 

Consequently, the most plausible explanation for these highly recurrent clustered deletions is 

that they lead to haploinsufficiency of the genes in the deleted region, where the lower copy 

number results in reduced gene expression, and that this haploinsufficiency is sufficient to drive 

cancer. Of note, many haploinsufficient genes located in the deleted regions of 7q encode 

enzymes that regulate genome-wide epigenetic patterns or transcription factors such as CUX1, 

EZH2, KMT2C or KMT2E (13–15). 

 

In addition to CNAs, structural variants (SVs) can create fusion proteins, or remove or create 

new enhancer-promoter interactions. For example, 5% of all AML cases harbor an 

inv(3)(q21q26.2) or a t(3;3)(q21;q26.2), which repositions the GATA2 enhancer in close vicinity 

of MECOM, leading to aberrant MECOM expression and GATA2 haploinsufficiency (16). A few 

other genes have been reported to be activated by enhancer hijacking in AML, including 

BCL11B in acute leukemias with a mixed phenotype (17) and MNX1 in pediatric AML with 

t(7;12)(q36;p13) (18,19). Since ckAML samples harbor many, often cytogenetically cryptic, 

genomic rearrangements, we hypothesized that some of them could lead to enhancer hijacking 

events, activating still-undiscovered oncogenes. 
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Recently, several computational methods have been developed to search for genes activated 

by enhancer hijacking. CESAM (20), SVExpress (21) and HYENA (22) perform a linear 

regression of gene expression depending on the presence of breakpoints nearby. These 

methods have successfully identified genes recurrently activated by enhancer hijacking, but 

they cannot detect genes activated in only a few samples. cis-X (23) can detect enhancer 

hijacking events in single samples using monoallelic expression, but this method is not very 

flexible and requires matched normal samples, which are rarely available for AML samples. 

NeoLoopFinder (24) follows a very different approach: it detects neo-loops in HiC data and does 

not use gene expression.  

 

Here, we developed a new method, “pyjacker”, which detects putative enhancer hijacking 

events occurring in single samples, using RNA-seq and whole genome sequencing (WGS) 

without matched normal samples. We applied pyjacker to 39 ckAML samples using WGS and 

RNA-seq, and identified genes known to be activated by enhancer hijacking as well as 

candidate genes that, to the best of our knowledge, have been previously overlooked. We 

focused on MNX1, a gene encoding a homeobox transcription factor, which is mapped to 

chromosome band 7q36.3, that is located outside of the most commonly deleted regions found 

in AML with del(7q). We profiled 31 MNX1-expressing cases with WGS and discovered that 

del(7q) can lead to hijacking of the CDK6 enhancer driving MNX1 expression, resulting in a 

shared gene expression profile with pediatric AML with MNX1 activation. We showed that MNX1 

knockdown reduces leukemic cell fitness in patient-derived xenograft (PDX) competition assays, 

demonstrating its essentiality. 

Results 

Pyjacker: detection of enhancer hijacking with WGS and RNA-seq 

We developed pyjacker, a computational method to detect enhancer hijacking events occurring 

in single samples using WGS, RNA-seq and enhancer information, without the need for 

matched normal samples (Supplementary Table 1). The aim of pyjacker is to detect 

rearrangements that lead to a very strong overexpression of a gene that is not typically 

expressed or only to a low level in the wild-type state. Detecting events leading to more 

moderate effects would not be feasible in single samples. For each gene, samples are divided 

into “candidate samples” which have breakpoints near the gene and “reference samples” which 

do not (see methods section for details). Reference samples are used to compute the mean and 

standard deviation of the expression of this gene in the absence of enhancer hijacking, and the 

candidate samples are tested for overexpression compared to this reference distribution 

(Fig. 1A). If a gene is activated by enhancer hijacking, we would expect most of the expression 

to come from the rearranged allele. Heterozygous SNPs are identified in the WGS data, and if 

these SNPs are covered in the RNA-seq data, pyjacker tests if the expression is mostly 

monoallelic (Fig. 1A). Using the breakpoint information and a list of putative enhancers, 

pyjacker identifies enhancers coming close to the gene, and scores the event depending on the 

strength of the enhancers coming close to the gene. As enhancers are cell type-specific, we 

D
ow

nloaded from
 http://aacrjournals.org/bloodcancerdiscov/article-pdf/doi/10.1158/2643-3230.BC

D
-24-0278/3563692/bcd-24-0278.pdf by guest on 06 M

ay 2025



 

6 

used in this study ChIP-seq data against H3K27ac and P300 from myeloid cell lines 

(Supplementary Table 2), because these marks are found on active enhancers (25,26). This 

enhancer information can be omitted if it is not available. The overexpression, monoallelic 

expression and enhancer scores are combined into an empirical score which reflects how likely 

the gene is to be expressed because of a genomic rearrangement. The scores are aggregated 

across samples for each gene in order to give more weight to the recurrently activated genes. 

To estimate the false discovery rate (FDR), “null scores” are computed by only including the 

“reference samples”, and randomly assigning some of them to the “candidate samples”, thus 

reflecting the distribution of scores in the absence of enhancer hijacking. Finally, the Benjamini-

Hochberg method is used to correct for multiple testing and provides a ranked list of genes 

putatively activated by a structural rearrangement, with corresponding FDR. Pyjacker is flexible 

and we provide an end-to-end nextflow pipeline to run pyjacker, starting from bam files. We note 

that fusion transcripts can also result in monoallelic overexpression, when the 3’ fusion partner 

is not normally expressed, although this would be a different mechanism than enhancer 

hijacking. Various methods can be used to detect fusion transcripts from RNA-seq data, like 

STAR-Fusion (27) or Arriba (28). If a list of fusions generated by these methods is given as 

input to pyjacker, it will annotate candidate genes with the fusion status, allowing the 

identification of true enhancer hijacking events. Since pyjacker needs reference samples without 

breakpoints near a gene to estimate the reference expression distribution, it should be run with 

at least ten samples as input but works best with large cohorts. We tested pyjacker on two 

existing datasets, with known enhancer hijacking events: ten AML cell lines and 120 

medulloblastoma samples (29,30). Pyjacker identified known events, like the activation of 

MECOM (16), MNX1 (31), and MN1 (32) in some AML cell lines, and of GFI1, GFI1B, and 

PRDM6 in some medulloblastoma samples, as previously reported by Northcott et al. (29,30) 

(Supplementary Tables 3-5). Cis-x also identified GFI1, GFI1B and PRDM6, but these events 

did not particularly stand out among the many candidate genes reported, whereas they were all 

among the top 10 genes identified by pyjacker, thanks to pyjacker’s aggregation of scores 

across samples, which give more weight to recurrently activated genes. 

 

Putative enhancer hijacking events in 39 ckAML samples 

We profiled 39 ckAML samples with WGS and RNA-seq. These were diagnostic blood or bone 

marrow samples from patients enrolled in the ASTRAL-1 clinical trial which included older AML 

patients (median age: 77 years, Supplementary Table 6) (33). These samples carried some of 

the alterations most frequently found in ckAML (34), including bi-allelic TP53 alterations (64%, 

N=25), del(7q) (69%, N=27), del(5q) (67%, N=26), and chromothripsis (43%, N=17) 

(Supplementary Fig. 1 and Supplementary Tables 6-10). 

Pyjacker was applied to these 39 samples and detected 19 candidate genes with an FDR <20% 

(Fig. 1B and Supplementary Table 11). Among them were many of the genes which had 

previously been reported to be activated by enhancer hijacking in AML, including MECOM (two 

samples), MNX1 (one sample), and BCL11B (one sample). In addition, pyjacker identified 

several genes that had not been reported before and which represent interesting candidate 

oncogenes to be verified in future studies. For 9 of the 19 genes, no fusion transcript was 

detected, suggesting enhancer hijacking as the underlying activation mechanism: MECOM, 
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MNX1, BCL11B, SLC22A10, EPO, ISM2, GSX2, CLEC10A and P2RY12. In order to evaluate 

how recurrent the upregulation of these genes is in AML, we used data from the TCGA-LAML 

(1), BEAT-AML (35) and TARGET-AML (36) cohorts. We found that most of the genes identified 

by pyjacker were recurrently overexpressed in these other AML cohorts, albeit at low 

frequencies (Supplementary Fig. 2). However, some genes were not found overexpressed in 

these three other AML cohorts, which suggests either that their activation is a very rare event in 

AML, that they are false positives, or that their overexpression in our cohort was a passenger 

event of chromothriptic rearrangements. For example, the activations of TEKT1 (in 16PB3075) 

and of SLC22A10 (in 15KM20146) were due to complex rearrangements which also contained 

SVs within TP53 (Supplementary Fig. 3A-F). Thus, these rearrangements might have been 

selected for because of the TP53 disruption rather than TEKT1 or SLC22A10 activation.  

 

Activation of MECOM and its homolog PRDM16 by the GATA2 enhancer 

The only gene identified by pyjacker in more than one sample from this cohort was MECOM, 

found to be monoallelically overexpressed in two samples (Fig. 2A-B and Supplementary Fig. 

4A-C). In both cases, the rearrangements were more complex than those found in samples with 

inv(3) or t(3;3) AML which are the most frequent rearrangements responsible for MECOM 

activation. One sample had chromothripsis on chromosome 3 (Fig. 2C), while the other one had 

several rearrangements between chromosome 3 and chromosome 14 (Supplementary Fig. 4A). 

Even though these rearrangements were very complex, they still resulted in the juxtaposition of 

MECOM to a GATA2 enhancer (next to RPN1) harboring enhancer marks in myeloid cell lines 

(Fig. 2D), which is the same enhancer that activates MECOM in the more common inv(3) and 

t(3;3) (16). Interestingly, the GATA2 enhancer was also reported by pyjacker to activate 

PRDM16 in another sample (16KM11270) through a translocation t(1;3)(p36;q21) (Fig. 2E-G). 

PRDM16 is a homolog of MECOM (also known as PRDM3) (37), and they are both H3K9me1 

methyltransferases (38), so their overexpression could play a similar role in AML. This t(1;3) 

translocation has been reported before as a rare event (37), and PRDM16 has also recently 

been reported to be overexpressed as a result of a rare t(1;2)(p36;p21) translocation (39). Even 

though the expression of PRDM16 was monoallelic in this sample (Fig. 2F), which is a strong 

indicator of activation by enhancer hijacking, the FDR reported by pyjacker was high (47%) 

because several samples without breakpoints near PRDM16 had a higher expression than this 

sample (Fig. 2E). MECOM is also expressed in samples without breakpoints nearby (40), 

although to a lesser extent, suggesting an additional activation mechanism for MECOM and 

PRDM16 besides enhancer hijacking. 

Aberrant EPO expression and EPOR amplification in acute erythroleukemia 

Among the genes identified by pyjacker, an interesting candidate was EPO. To our knowledge, 

this gene has never been reported to be activated by enhancer hijacking in human leukemias, 

although it has been found to be overexpressed due to genomic rearrangements in a mouse 

model of erythroleukemia (41,42). EPO is not expressed in normal hematopoietic cells, but it is 

instead produced in the kidneys when blood oxygen levels are low, and it stimulates red blood 

cell proliferation by binding to its receptor (EPOR) and activating the JAK/STAT pathway (43–
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45). Since EPO promotes survival, proliferation and differentiation of erythroid progenitor cells 

(46), it may drive acute erythroleukemia (AEL), a rare subtype of AML enriched for complex 

karyotypes. In this ckAML cohort, the AEL sample 15KM18875 had high EPO expression (Fig. 

3A). Although no samples from the TCGA-LAML, BEAT-AML and TARGET-AML cohorts 

expressed EPO, we found that among three AEL cohorts profiled with RNA-seq (47–49), one 

sample from each cohort expressed EPO (Fig. 3B), indicating that EPO expression is a rare but 

recurrent event in AEL. In sample 15KM18875, a 100 kb region on chromosome 7 around EPO 

was duplicated and fused with a region on chromosome 11 (Fig. 3C) such that an 

extrachromosomal circular DNA (eccDNA) was formed (Fig. 3D). eccDNAs are rather common 

in cancer, but they are often amplified, whereas sample 15KM18875 displayed an average copy 

number of less than one eccDNA per cell. This eccDNA is therefore subclonal, but it is unclear 

whether most cells have one copy, or whether a small percentage of cells contain numerous 

copies. The chromosome 11 portion of the eccDNA contains a putative enhancer with P300 and 

H3K27ac peaks in the leukemic cell line K562 with erythroid features (50), so this enhancer 

might be responsible for the activation of EPO in this sample. In addition to high EPO 

expression, we also observed very high expression of the EPO receptor (EPOR) in 15KM18875 

(Fig. 3E), which was due to a massive amplification of EPOR on chromosome 19 (Fig. 3F). 

Chromosome 19 harbored patterns of chromothripsis, as well as foldback inversions, 

suggesting that the amplifications were caused by breakage-fusion-bridge cycles (51). 

Rearrangements of EPOR are well-known in acute lymphoblastic leukemia (52) and 

amplification of EPOR has recently been reported as a recurrent driver event in AEL (49). High 

EPOR expression could make the cells very sensitive to EPO, thus increasing the fitness 

advantage provided by endogenous EPO expression by the leukemic cells. In both the 

Iacobucci et al. (47) and Fagnan et al. (48) cohorts, the sample with EPO expression also had 

outlier high EPOR expression, indicating that EPO is recurrently overexpressed together with 

EPOR. 

 

 

 

The homeobox genes GSX2 and MNX1 can be activated by atypical rearrangements 

Among the top pyjacker hits were two homeobox genes, GSX2 and MNX1, which were 

overexpressed in samples 16PB5693 and 15PB8708, respectively. Both samples have 

breakpoints near the respective genes, and in sample 15PB8708, heterozygous SNPs in MNX1 

confirmed monoallelic expression (Fig. 4A-C). Homeobox genes are often upregulated in 

AML (53), so the activation of homeobox genes by enhancer hijacking could be a driver event. 

Both GSX2 and MNX1 are known to be activated by rare but recurrent translocations to the 

ETV6 locus; GSX2 by t(4;12)(q11-q12;p13) in adult AML (54) and MNX1 by t(7;12)(q36;p13) in 

pediatric AML (19). Here, however, GSX2 and MNX1 were activated by atypical mechanisms. 

Sample 16PB5693 was affected by a chromothripsis event involving multiple chromosomes, 

and several genomic segments, including GSX2, were amplified (Fig. 4D). In the wild-type 

state, the putative enhancer is located less than 1Mb away from GSX2, but in a different 

topologically-associating domain (TAD) (Fig. 4E). In sample 16PB5693, a deletion removed the 

TAD boundary, which likely enabled GSX2 to interact with the enhancer. In addition to GSX2 
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upregulation, the recurrent t(4;12) translocation frequently leads to PDGFRA activation and to 

an ETV6::CHIC2 fusion transcript (55). Sample 16PB5693 only had GSX2 expression without 

PDGFRA expression and without fusion transcript, suggesting that GSX2 expression is the 

driving event. In sample 15PB8708, a 230 kb segment in the CDK6 region, containing two 

putative enhancers, was duplicated and inserted next to MNX1 (Fig. 4F-G). The breakpoints 

were verified by genomic PCR (Supplementary Fig. 5A-C and Supplementary Table 12). This 

hematopoietic super-enhancer has already been reported to be involved in enhancer hijacking 

events in AML, activating BCL11B (17) or EVI1 (56). MNX1 was expressed in a rather high 

proportion of the TCGA-LAML and BEAT-AML cohorts (2/179 and 17/707 samples with MNX1 

expression, respectively), and in some cases, the karyotype contained rearrangements near 

MNX1 on 7q36 (del(7)(q21q36) for TCGA-AB-2847, del(7)(q22q36) for BA2921, and 

t(7;7)(q22;q36) for BA2802), indicating that MNX1 expression could be due to enhancer 

hijacking in some of these samples. 

  

D
ow

nloaded from
 http://aacrjournals.org/bloodcancerdiscov/article-pdf/doi/10.1158/2643-3230.BC

D
-24-0278/3563692/bcd-24-0278.pdf by guest on 06 M

ay 2025



 

10 

MNX1 is expressed in 1.4% of all AML cases, often with del(7)(q22q36) 

To estimate the frequency of aberrant MNX1 expression in AML cases, we performed an 

unbiased qRT-PCR screen of three different AML cohorts (Rotterdam, Ulm, Jena) (Fig. 5A). In 

a total of 2,293 cases across five cohorts (three qRT-PCR cohorts and public RNA-seq from 

TCGA-LAML (1) and BEAT-AML (35), we estimated the frequency of MNX1-expressing 

samples to be 1.4% of all AML cases (Supplementary Table 13). We also screened del(7q) and 

ckAML cases and found a higher proportion of MNX1-expressing samples in these selected 

groups (8.70% in del(7q) and 2% in ckAML; Supplementary Table 13). 

We performed WGS on 23 MNX1-expressing primary AML samples (whole blood or bone 

marrow) taken at diagnosis, which we combined with WGS data of 8 samples provided by the 

Munich Leukemia Laboratory (MLL), resulting in a total of 31 MNX1-expressing samples profiled 

with WGS. The data for the 8 samples from the MLL were processed with the MLL pipeline as 

previously described (57), while the 23 other samples were processed in the same way as the 

39 ckAML samples described in this article. Fifteen samples had a large del(7)(q22q36) starting 

within CDK6 and ending before MNX1 (Fig. 5B, Supplementary Table 14), indicating that MNX1 

could be activated by an enhancer in the CDK6 region in those samples. Interestingly, this is the 

same region that is duplicated and inserted next to MNX1 in sample 15PB8708 (Fig. 4F-G). 

Four samples had other rearrangements near MNX1, including a smaller del(7q) between the T-

cell receptor beta locus and MNX1 (Supplementary Fig. 6A-D, Supplementary Fig. 7A-B), which 

supports the notion that other enhancers apart from CDK6 might activate MNX1. Indeed we had 

previously found a MYB enhancer in GDM-1 cells (31) and an ETV6 enhancer in 

t(7;12)(q36;p13) pediatric AML (19) to drive aberrant MNX1 expression. Twelve samples had no 

rearrangements near MNX1, suggesting that MNX1 may also be activated through other 

mechanisms.  

Samples with MNX1 rearrangements had a unique mutational spectrum with an absence of 

NPM1 and FLT3 mutations (0/19), as well as a very high frequency of BCOR mutations (10/19) 

which are usually rare in AML (2/200 in TCGA-LAML), although they have recently been 

reported to have a frequency of about 10% in AML with del(7q) (11) (Fig. 5C and 

Supplementary Table 15). BCOR mutations were accompanied by BCORL1 (2/10) and NCOR2 

(1/10) mutations indicating a potential synergistic effect of multiple hits on this gene family. We 

also found NCOR1 (1/9) and NCOR2 (1/9) mutations in BCOR-wt cases, indicating that they 

might play a similar role as BCOR mutations. MNX1-expressing samples without breakpoints 

near MNX1 did not share this mutational landscape, but had a particularly high frequency of 

mutations in NPM1 (8/12) (58). MNX1, however, has not been shown to be in the NPM1 gene 

signature in previous studies. In pediatric AML, MNX1 can be expressed as a result of a 

translocation t(7;12), which very often co-occurs with trisomy 19 (19). However, trisomy 19 was 

not found in this cohort of adult MNX1-expressing samples. 

We profiled 22/31 MNX1-positive samples with RNA-seq and found that they had a different 

gene expression signature, depending on whether the sample had a breakpoint near MNX1 or 

not (Supplementary Fig. 8A-F, Supplementary Fig. 9, Supplementary Table 16). MNX1-

rearranged samples had a gene expression signature similar to t(7;12)(q36;p13) pediatric AML 

(19,59,60), with for example an upregulation of AGR2, KRT72 and KRT73. Downregulated 

genes included several key cancer and hematopoiesis associated genes: HLX, TFEC, GFI1, 

GAPT, SPRY2, TLE4, ACVR1B, BIK, EVI2B, PIK3CG, INPPL1 (SHIP2), MYD88, MACC1, 
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CSF3, and CD177. MNX1-non-rearranged samples had a different gene expression signature 

with a significant upregulation of HOXA13, CCL1, CX3CR1 and a downregulation of DLK1 and 

DDIT4L. MNX1 expression was slightly lower than in MNX1-rearranged cases and some of the 

downregulated genes also showed intermediate levels in MNX1-non-rearranged samples. 

Next we performed single-cell RNA sequencing (scRNA-seq) on eight AML samples (four 

MNX1-positive (MNX1+) and four MNX1-negative (MNX1-) with del(7q); Supplementary Fig. 10) 

to investigate the expression of MNX1 and the presence of del(7q) at the single-cell level. We 

integrated scRNA-seq data for 53,479 cells across all patients and annotated the cell types by 

projecting the data onto a reference atlas (61) (Fig. 5D). We mainly captured myeloid 

progenitors and leukemic blasts, consistent with the disease phenotype. We observed that 

del(7q) was present in virtually all leukemic blasts across both groups (MNX1- and MNX1+), 

suggesting that this genomic alteration was an early event in leukemogenesis in these patients. 

In MNX1+ cases, MNX1 was constitutively expressed in all blasts, indicating that cells with 

MNX1 activation might have a proliferative advantage. 

 

 

 

Putative enhancers in the CDK6 region interact with MNX1 in del(7q) AML 

Since most samples with MNX1 activation have breakpoints in CDK6, we set out to identify the 

corresponding enhancer. To investigate whether MNX1 may interact with the CDK6 locus in 

selected del(7)(q22q36) samples, we performed circular chromosome conformation capture 

(4C) using a 5’ part of MNX1 as viewpoint, in two primary AML samples (2KFQ and MTM9) and 

one human PDX (AML-661) with del(7q). In all three cases analyzed, we detected interactions 

between MNX1 and the CDK6 locus (Fig. 6A). We confirmed these interactions by reciprocal 

4C using the CDK6 locus as viewpoint (Supplementary Fig. 11). We further narrowed down the 

CDK6-derived enhancer to roughly 200 kb by combining the genomic information from the 

CDK6 duplication of ckAML sample 15PB8708 and from the deletion margins of the del(7q) 

samples (Fig. 6B). Open chromatin profiling by ATAC-seq and enhancer mark profiling by ACT-

seq in two patient samples and one PDX sample with del(7)(q22q36) revealed several enhancer 

candidates, two of which coincided with P300 and H3K27ac peaks in the MOLM-1 cell line (Fig. 

6B). Comparing intensities of common peaks, we considered the rightmost enhancer 

(chr7:92384001-92385000, hg19) located immediately at the deletion border as the strongest 

candidate and inserted it as a homology directed repair donor template via CRISPR/Cas close 

to MNX1 into one of the two chromosomes 7 of the induced pluripotent stem cell (iPSC) line 

ChiPSC22 (Fig. 6C-D). Two heterozygous cell lines were confirmed by WGS. Upon 

differentiation into hematopoietic stem and progenitor cells (HSPCs), the engineered, but not 

the wild-type HSPCs showed MNX1 expression as validated by RNA-seq, although at a 

significantly lower level than in patient samples (Fig. 6E). Therefore, this rightmost enhancer is 

not sufficient to induce the high MNX1 expression observed in del(7)(q22q36) patients alone, 

and might require additional enhancers from this region. To recapitulate the genomic 

configuration of MNX1 expressors with del(7q), we generated a heterozygous del(7)(q22q36) in 

the iPSC/HSPC model. However, del(7q) iPSCs could not be differentiated into HSPCs and 

therefore did not show MNX1 activation. Taken together, MNX1 activation in del(7q)(q22q36) 
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AML could be traced to a region of 200 kb including parts of CDK6. Identifying the precise 

location of the enhancer(s) will require future work. 

 

 

 

 

Knockdown of MNX1 reduces tumor load of AML PDX cells in vivo 

After having demonstrated that MNX1 can be activated by enhancer hijacking in AML, we 

investigated whether MNX1 plays a role in the maintenance of established leukemias. To 

approximate the clinical situation, we studied a patient’s AML cells growing in mice, using PDX 

model AML-661 which harbors a del(7)(q21.13;q36.3) and expresses MNX1. Using lentiviruses, 

we stably expressed two different constructs in each cell, namely CRE-ERT2 in which CRE 

becomes activated by addition of Tamoxifen (TAM) and a CRE-inducible shRNA cassette in two 

different versions, for knockdown of either MNX1 or a control gene. The two knockdown 

constructs were molecularly marked by different fluorochromes to distinguish the two 

populations by flow cytometry, before and after induction of the knockdown by TAM. In vivo 

experiments were performed in a competitive approach, injecting a mixture of cells with MNX1 

or control knockdown in a 1:1 ratio into the same mouse (Fig. 7A) (62). In the first, constitutive 

experiment, MNX1 and control knockdowns were induced by TAM in vitro before transplantation 

of PDX cells into mice (Fig. 7A). After a period of several weeks of leukemic growth in mice, 

allowing initial engraftment in the orthotopic niche and later following substantial proliferation 

within the bone marrow and dissemination to extramedullary sites in the blood, cells with MNX1 

knockdown showed a pronounced disadvantage compared to cells with control knockdown in all 

organs studied (Fig. 7B), suggesting that lack of MNX1 reduced fitness of PDX AML-661 cells 

in vivo. To distinguish the effect of MNX1 knockdown on engraftment versus proliferation, a 

second experiment was performed where MNX1 and control knockdowns were induced after 

the leukemic disease was readily established in mice, by systemic treatment of mice with TAM 

(Fig. 7C). Again, cells with MNX1 knockdown had a remarkable disadvantage over control cells, 

most prominently in spleen and peripheral blood, indicating that MNX1 knockdown reduced in 

vivo growth of AML-661 cells (Fig. 7D). As the effect was stronger in the first constitutive 

compared to the second inducible experiment, both biologic processes of cell engraftment and 

in vivo proliferation might rely on expression of MNX1. 

 

 

 

Discussion 

Reports have indicated enhancer hijacking as a mode of proto-oncogene activation in AML 

(16,17,19). Here, we developed pyjacker, a computational method for the systematic detection 
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of enhancer hijacking events using WGS, RNA-seq data and enhancer information. Pyjacker is 

versatile and applicable to many cancer types, but here we focused on ckAML. In 39 ckAML 

samples, pyjacker detected 19 genes putatively activated by SVs in at least one sample with 

FDR<20%. This indicates the importance of enhancer hijacking in ckAML, although it is not as 

frequent as the most recurrent deletions in 5q and 7q. We found known genes activated by 

enhancer hijacking such as MECOM, BCL11B and MNX1, and identified multiple potential novel 

oncogenes in AML.  

 

GSX2 is a homeobox gene which is overexpressed in AML samples with the rare 

t(4;12)(q12;p13) translocation (54), but this translocation also often leads to overexpression of 

PDGFRA and fusions involving ETV6, the most frequent being ETV6::CHIC2 (55). Here, we 

found a different rearrangement causing only GSX2 overexpression without these additional 

effects, suggesting that activation of GSX2 might be the driver event in the t(4;12) translocation 

and that understanding the role of GSX2 in leukemogenesis could be important for therapeutic 

targeting.  

 

EPO is another putative novel oncogene, activated by enhancer hijacking in a small fraction of 

AEL samples. EPO had already been found to be activated by structural rearrangements in a 

mouse model of erythroleukemia, resulting in growth factor independence (41,42). Here, we 

found one human AEL sample with EPO overexpression linked to a genomic rearrangement. 

Although EPO activation is rare, it appears to be recurrent in AEL, as we identified it in three 

additional cohorts (47–49), including a previously reported out-of-frame fusion transcript 

YWHAE::EPO which was probably selected for because it led to EPO upregulation (48). In 

addition, EPO overexpression seems to cooperate with amplifications of the gene coding for its 

receptor, a phenomenon recently described in AEL (49), since expression of EPO was found to 

co-occur with EPOR amplification. 

 

Some identified genes were not found to be expressed in other cohorts, indicating that they may 

be very rare driver events, false positives, or passenger events which were selected for as part 

of a complex rearrangement. For example, both TEKT1 and SLC22A10 overexpression co-

occurred with complex genomic rearrangements involving multiple chromosomes, which also 

disrupted TP53.  

 

We focused validation experiments on MNX1 since it was, among the top pyjacker hits, the 

second (behind MECOM) most recurrently expressed gene in other cohorts (1,35). We found 

that MNX1 is expressed in 1.4% of all AML cases, often with del(7)(q22q36). Activation of 

MNX1 with del(7q) had been reported before (63), and here we showed that the mechanism 

underlying the activation is a hijacking of a CDK6 enhancer. Del(7q) is a recurrent event in AML 

and currently explained by haploinsufficiency of one or several genes, including EZH2, KMT2C, 

KMT2E, and CUX1 (11,13–15). Our findings show that, in addition to haploinsufficiency of the 

deleted genes, del(7q) can also lead to enhancer hijacking of MNX1. In one sample, a CDK6 

enhancer was duplicated and inserted next to MNX1, without deletion, which makes it very likely 

that MNX1 activation is important for leukemogenesis, and not merely a passenger side effect of 

del(7q). MNX1 upregulation had previously been observed in infant AML with t(7;12)(q36;p13) 
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and was shown to transform fetal HSPCs in mice (19,64). Here, we showed that both 

constitutive and in vivo inducible knockdown of MNX1 in competitive assays in an AML PDX 

model greatly reduced the fitness of the leukemic cells, which demonstrates that MNX1 is a 

dependency gene in adult AML. However, only 8% of del(7q) AML cases have MNX1 

expression, so enhancer hijacking cannot explain all del(7q) cases and haploinsufficiency of 

genes in the deleted region remains the likely main consequence of del(7q). We found that this 

subgroup of MNX1-rearranged adult AML samples have a unique mutational profile with a much 

higher rate of BCOR mutations (53%) than other AML samples (1%), and also higher than 

del(7q) AML (10%) (11). This differs from pediatric AML cases with t(7;12) which do not have 

these co-occurring BCOR mutations but instead frequently harbor trisomy 19 (19), an alteration 

that we did not detect in adult MNX1-rearranged cases. This group of adult MNX1-rearranged 

patients had a gene expression signature that is similar to t(7;12) pediatric AML (59), suggesting 

that therapeutic strategies targeting MNX1 could be jointly investigated for both pediatric and 

adult MNX1-rearranged AML cases. Suppression of key genes involved in hematological 

malignancies including HLX, TFEC, GFI1, EVI2B, TLE4, MYD88, all shared with pediatric AML, 

suggest a transcriptional repressor activity for MNX1 in AML affecting cell proliferation and 

myeloid differentiation. As pediatric AML with MNX1 activation has a different activation event, 

does not have chr7q deletions or BCOR mutations, and is seen in infants at a different 

developmental state, the overlap of dysregulated key genes strongly connects the observed 

gene dysregulation to MNX1 activity and not to confounding factors. We also identified a 

subgroup of MNX1-expressing cases without genomic rearrangements near MNX1, which do 

not share the gene expression signature of the MNX1-rearranged cases. The expression of 

MNX1 in these samples remains unexplained, but we observed that they have a very high 

frequency of NPM1 mutations (67%), which might be linked to MNX1 expression, as NPM1 

mutations have been shown to upregulate homeobox genes (58).  

 

Taken together, our data suggest that the numerous genomic rearrangements in ckAML often 

lead to enhancer hijacking, a molecular event that may have been previously underestimated 

compared with onco-fusions and CNAs. Understanding how the genes activated by this 

mechanism drive leukemia, or finding ways to stop this aberrant expression, could pave the way 

for personalized treatments targeting specific oncogenes. 

Methods 

Pyjacker details 

Identification of “candidate samples” with breakpoints near a gene 

Only genes whose expression is greater than 1 TPM (transcript per million) in at least one 

sample are considered. For each gene, pyjacker identifies “candidate samples” with a 

breakpoint near the gene, and which may therefore overexpress this gene because of the 

rearrangement. Since promoter-enhancer interactions occur within TADs, pyjacker selects 

samples which have a breakpoint in the same TAD as the gene. Any list of TADs can be 

provided, and in the present analysis we used TADs derived from publicly available HiC data 

from HSPCs (Supplementary Table 17) (19). To avoid missing events due to imprecise TAD 
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boundaries, pyjacker extends the TADs by 80 kb on each side. We note that this TAD extension 

did not impact the results on the ckAML cohort, as all reported events had breakpoints within 

the TAD of the activated gene, but it might improve the robustness in other cohorts. If a list of 

TADs is not provided as input, pyjacker will instead consider all samples with breakpoints within 

a user-specified distance to the gene (1.5Mb by default). All “candidate samples” for a particular 

gene will be scored to test if these samples express this gene because of a structural 

rearrangement. 

 

Overexpression score 

If a gene is activated by enhancer hijacking in a sample, we expect this sample to have a higher 

expression for this gene, compared to “reference samples” which do not have breakpoints near 

the gene. In order to remove the effect of amplifications and to focus on genes activated by 

enhancer hijacking, the expression values in TPM are corrected for copy number, if CNA data is 

provided: the expression values are multiplied by 2/(copy number). The expression values are 

then log transformed: 𝑙𝑜𝑔(0.5 + 𝐸). Then, pyjacker computes the mean � and standard 

deviation σ of the gene expression in reference samples (which do not have breakpoints near 

the gene). For each candidate sample, pyjacker computes the number of standard deviations 

away its expression lies from the mean, where the standard deviation is increased in order to 

avoid extreme scores when all reference samples have the same expression: 𝑡 = (𝐸 − 𝜇)/(𝜎 +

0.3) where 𝐸 is the expression of the gene in the candidate sample. This overexpression score 

is then transformed so that it is positive when the expression is more than two standard 

deviations above the mean and negative otherwise, and to avoid very high or very low 

overexpression scores which would have a disproportionate effect on the final score: if 𝑡 > 2, 

𝑆𝑜𝑣𝑒𝑟𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑙𝑜𝑔(𝑡 − 1), else 𝑆𝑜𝑣𝑒𝑟𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = −2 𝑙𝑜𝑔(3 − 𝑡).  

 

Allele-specific expression (ASE) score 

If a gene is activated by enhancer hijacking, we would expect only the allele on the rearranged 

chromosome to be expressed, resulting in monoallelic expression. For each gene and each 

sample, heterozygous SNPs are identified in the WGS data, and if there is coverage in the 

RNA-seq, the number of reference and alternative reads in the RNA-seq data are counted. For 

each SNP, pyjacker computes the log-likelihood ratio between monoallelic and bi-allelic 

expression. For monoallelic expression, we assume a mixture of two beta-binomial distributions 

for the allelic read counts, with means centered on 2% and 98% (to account for possible low 

expression from the other allele). For biallelic expression, we assume a beta binomial 

distribution centered on 50%. The log-likelihood ratios from all SNPs in the gene are then 

combined to get the allele-specific expression score, by averaging the log-likelihood ratios, but 

still giving a higher score if several SNPs are present. : 𝑆𝑎𝑠𝑒 = (∑𝑛
𝑖=0 𝑙𝑙𝑟𝑖  )/(𝑛 + 2), where 𝑛 is 

the number of SNPs in the gene. This score is positive if the allelic information supports a 

monoallelic expression, negative if it supports a biallelic expression, and close to 0 if it is 

unclear. We note that if no heterozygous SNPs are present in a gene in a sample, the allele-

specific expression score will be 0, but this does not preclude the gene from being identified by 

pyjacker, if the overexpression and enhancer scores are positive. The allele-specific expression 

score is set to 0 for genes with copy number lower than two or greater than four, for genes on 

sex chromosomes, and for imprinted genes (if a list of imprinted genes is provided as input). If 
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allelic read counts are not provided as input, pyjacker can still be run and will in this case not 

use the allele-specific expression score, which will result in higher FDR. 

 

Enhancer score 

A genomic rearrangement is more likely to result in enhancer hijacking if it brings a strong 

enhancer close to the target gene. Pyjacker can optionally take as input a list of enhancers, 

scored for enrichment of enhancers marks by ROSE (65,66) (see section “Identification of 

myeloid enhancers” for the ChIP-seq data that we used in this study). The list of enhancers 

provided must be derived from the same cell type as the cancer samples studied. If no 

enhancer data is available, the enhancer score will be set to 0. 

 

Pyjacker identifies all enhancers which, after the rearrangement, likely come to the same TAD 

as the gene. This is done by considering the position and orientation of the breakpoints, but 

each breakpoint is considered independently, which might miss some enhancers in case of 

complex rearrangements with clustered breakpoints. Enhancers are ranked according to their 

enrichment, and pyjacker computes the enhancer score by adding all scores, but putting more 

weight on the strongest enhancers: 𝑆𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 = ∑𝑛
𝑖=0 𝐸𝑖/(𝑖 + 1) where 𝑛 is the number of 

enhancers and 𝐸𝑖 is the enrichment for the 𝑖-th strongest enhancer. 

 

Combined score 

The overexpression, allele-specific expression and enhancer scores are then combined with a 

weighted sum. Pyjacker also penalizes if the gene is deleted in the sample, because 

rearrangements leading to enhancer hijacking should not delete the activated gene. This results 

in a score for each pair of (gene, candidate sample): 

𝑆 = 𝜔𝑜𝑣𝑒𝑟𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑆𝑜𝑣𝑒𝑟𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝜔𝑎𝑠𝑒𝑆𝑎𝑠𝑒  + 𝜔𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟𝑆𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟  − 𝜔𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛1𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 

The weights can be set by the user, but their default values which should work well in all cases 

are 𝜔𝑜𝑣𝑒𝑟𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 4, 𝜔𝑎𝑠𝑒 = 2,𝜔𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 = 1 and 𝜔𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 = 1. 1𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 is 1 if the gene is 

deleted in the sample and 0 otherwise. 

 

Aggregated gene score across samples 

In order to give more weight to genes which are activated in multiple samples, pyjacker 

aggregates the scores from all samples for each gene: 

𝑆𝑔𝑒𝑛𝑒 = 5 ∑𝑛
𝑖=0 𝑆𝑖  /(𝑛 + 4) where 𝑆𝑖 is the score from sample 𝑖. 

 

False discovery rate 

The gene scores reflect how likely a gene is to be activated by structural rearrangements in the 

cohort studied, but the values are somewhat arbitrary. In order to get a more interpretable FDR, 

pyjacker computes a null distribution for these scores in the absence of enhancer hijacking. For 

each gene, the true “candidate samples” are excluded, and instead 1, 2, or 3 (number chosen 

randomly) random samples are chosen from the reference samples (without breakpoints near 

the gene) to be considered as candidate samples and scored. This results in a list of null 

scores, where only pairs of (gene, sample) without enhancer hijacking are used. The length of 

this list is equal to the number of genes (𝑛𝑔𝑒𝑛𝑒𝑠), so to increase the size of the list (and thus get 

more precise P values), this process is repeated 𝑛𝑖𝑡𝑒𝑟 times (𝑛𝑖𝑡𝑒𝑟 = 50 by default), where each 
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time different random samples are selected for each gene, resulting in a list of 𝑛𝑖𝑡𝑒𝑟 ∗ 𝑛𝑔𝑒𝑛𝑒𝑠 null 

scores. This null distribution is used to compute an empirical P value for each gene. Finally, the 

Benjamini-Hochberg correction is used to correct for multiple testing, which results in an FDR. 

AML cell lines used to test pyjacker 

We tested pyjacker using 10 AML cell lines: THP-1, LAMA-84, MONOMAC-1, MV-4-11, 

HEL92.1.7, EOL-1, OCI-AML3, GDM-1, MOLM-1, and MUTZ-3. Some of these cell lines had 

known enhancer hijacking events: MECOM in MOLM-1 and MUTZ-3 (16), MNX1 in GDM-1 (31) 

and MN1 in MUTZ-3 (32). WGS and RNA-seq data for THP-1, LAMA-84, MONOMAC-1, MV-4-

11, HEL92.1.7, and EOL-1 were retrieved from the Cancer Cell Line Encyclopedia (67). RNA-

seq and WGS of GDM-1 were retrieved from GEO accession GSE221753 and SRA accession 

SRR23087016 (31). RNA-seq of OCI-AML3 was retrieved from GEO accession GSE209777 

(68). WGS for OCI-AML3 and WGS and RNA-seq for MOLM-1 and MUTZ-3 were performed for 

this study (see data availability statement). The sequencing data from cell lines was processed 

in the same way as patient samples (see below). 

 

Medulloblastoma dataset 

To evaluate the accuracy and efficacy of pyjacker compared to cis-x, we applied them to a 

cohort of 120 medulloblastoma samples, which had been used by Northcott et al. to show that 

GFI1 and GFI1B could be activated by enhancer hijacking in some cases of medulloblastoma 

(29,30). 

AML patient samples 

The 39 ckAML samples were derived from a prospective clinical trial (NCT02348489) conducted 

in older, unfit, previously untreated patients with newly diagnosed AML (69). This clinical trial 

was conducted according to the Declaration of Helsinki and written consent was obtained from 

the patients. Patient sex, age at diagnosis, and karyotype information are provided in 

Supplementary Table 6, but race, ethnicity, risk category, and disease stage were not available. 

Data on targeted DNA sequencing of this cohort and in part of EPIC BeadChip arrays analysis 

were previously reported by Jahn et al. (33). For this study, we selected 39 ckAML blood or 

bone marrow samples (median age: 77 years), which had at least three CNAs detectable from 

the EPIC array data, and for which sufficient material was still available for further profiling. 

Detailed patient characteristics, including sex, age, and cytogenetics, is provided in 

Supplementary Table 6. 

Generation and processing of whole genome sequencing data 

For both primary patient samples (blood or bone marrow) and cell lines, DNA was isolated as 

previously described (19). The DNA was sequenced with NovaSeq 6000 S4, with read length of 

2x150bp and a coverage of 50-70x for each sample. The WGS data was aligned to the GRCh37 

reference genome using bwa-mem (arXiv:1303.3997v2 [q-bio.GN]). SVs were called with manta 
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(70), CNAs were called with Control-FREEC (71) and SNVs with mutect2 (bioRxiv 

10.1101/861054). Since no matched normal samples were available to identify somatic 

mutations, we only looked for SNVs in 52 genes known to be recurrently mutated in AML, as 

previously described (19). Chromothripsis was determined using shatterseek (72), using a 

criterion of at least 10 copy number switches in one chromosome. The WGS data processing, 

starting from the aligned bam files, was done using a nextflow workflow: 

https://github.com/CompEpigen/wf_WGS. All WGS plots were made using figeno (73). 

RNA sequencing 

RNA was isolated as previously described (19). The RNA was sequenced with NovaSeq 6000 

S2, with read length 2x101bp and 180-250 million reads per sample. The RNA-seq data was 

processed using the nf-core rnaseq workflow v3.9, with alignment using STAR (74) and 

quantification using Salmon (75). Fusion transcripts were detected using Arriba (28). For allele-

specific expression, we detected heterozygous SNPs in WGS data using HaplotypeCaller, and 

used GATK ASEReadCounter to get allele-specific read counts in RNA-seq data, at positions 

where a heterozygous SNP was found. Differential gene expression analysis was run using the 

deseq2 (76) package v1.42.0 with log fold change shrinkage applied by the ashr (77) algorithm 

v2.2-63. Batch correction was applied for the MLL cohort following the generation of vst-

transformed gene expression values for single gene expression visualization. The TARGET 

pediatric AML RNA-seq dataset was downloaded from UCSC XENA and analyzed using the 

same approach as the adult AML cohort. For cases with multiple sample points, primary 

specimens were selected over recurrent samples. Bone marrow samples were preferentially 

used over blood-derived samples, yielding overall two unique cases with the t(7;12)(q36;p13) 

karyotype. The IDs of the samples from the TARGET-AML that were used, together with their 

t(7;12) status, origin (blood or bone marrow), and recurrence, are provided in Supplementary 

Table 18. The Balgobind et al. (59) pediatric AML cohort and its corresponding GEO GSE17855 

Affymetrix U133 Plus 2.0 microarray dataset was analyzed using the Limma (78) package 

v3.58.1 using the empirical Bayes algorithm with default settings. Cases with unknown 

karyotype were not considered.   

Validation of breakpoints by genomic PCR 

PCR to confirm translocation t(1;3) in sample 16KM11270 was done with 10 cycles touch-down 

from 59-54.5 °C and 30 cycles at 54 °C annealing temperature. PCR to confirm breakpoint 1 in 

sample 15PB8708 was done with 69 °C annealing temperature for 35 cycles and PCR for 

breakpoint 2 with 10 cycles touch-down from 70-65 °C and 30 cycles at 65 °C.  The Q5 High-

Fidelity PCR Kit (NEB,  #E0555)  and, depending on the PCR reaction (primers in 

Supplementary Table 12), 20-160 ng genomic DNA were used. PCR products were analyzed on 

1.2% Tris-borate, ethidium-bromide stained agarose gels and gel images were recorded using a 

Bio-Rad Geldoc GO system (#12009077). 
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Single-cell RNA sequencing of del(7q) AML patients 

Single-cell RNA sequencing was performed for 8 AML samples: 4 MNX1-positive samples (3 

with del(7q) and one with an alternative rearrangement) and 4 control MNX1-negative samples 

with del(7q). Only the MNX1-positive sample with alternative rearrangement (15PB8708) was 

part of the initial 39 ckAML samples, the 7 others come from other AML samples. Names and 

provenance (bone marrow or peripheral blood) for these 8 samples are provided in 

Supplementary Fig. 10. Cryopreserved samples from bone marrow and peripheral blood were 

thawed at 37°C for 2 min before transferring to a 50 mL tube. Cells were diluted by adding 

incremental 1:1 volumes of DMEM/F12 media (Thermo Fisher Scientific) for five times with one-

minute wait in between each step. Cells were centrifuged at 300 rcf for 5 min and resuspended 

in 2 mL PBS (Thermo Fischer Scientific) + 0.04% BSA (Milteny Biotec). Libraries were 

generated using 20,000 single cells as input to the Chromium Controller with the Chromium 

Next GEM Single Cell 3' Kit v3.1 (10x Genomics). From the single-cell sequencing libraries, we 

generated between 632 and 803M (between 60,000 and 80,000 reads per cell) reads per 

sample using an Illumina NovaSeq 6000 S4 FlowCell. For processing (alignment to reference 

genome GRCh38, generation of count matrix) raw sequencing reads, cell ranger v7.1.0 was 

used. Subsequent analysis, including normalization (log-normalize), generation of a low 

dimensional representation, and cluster annotation was conducted using the Seurat v5 software 

package (79). Batch integration was performed with Canonical Correlation Analysis using 

Seurat’s IntegrateData function (80). For facilitating cluster annotation, we projected our data to 

the Triana et al. reference atlas (61) using scMap (81). We used numbat (82) for inferring copy 

number losses and gains from the single-cell transcriptomic data. A cell was annotated as 

having del(7q), if the probability of the deletion as returned by numbat was larger than 0.5. 

 

Identification of myeloid enhancers 

We used public ChIP-seq data for H3K27ac and P300 from three myeloid cell lines: K562 (data 

from the ENCODE project (83), accessions ENCSR000AKP and ENCSR000EGE), MOLM-1 

[data from array express accession E-MTAB-2224 (16)] and Kasumi-1 (data from GEO 

accession GSE167163; bioRxiv 10.1101/2022.09.14.507850). We used ROSE (65,66) to score 

and rank super enhancers, where transcription start sites were excluded. ROSE normally takes 

as input a single ChIP-seq experiment, but we found that the ranking was very variable 

depending on the dataset being used, so we used the six ChIP-seq datasets mentioned above 

and averaged the ROSE scores. The average ROSE scores were used as input to pyjacker, in 

order to compute the enhancer score. 

 

MNX1 expression screen 

For public cohorts profiled with RNA-seq, we considered a sample to be MNX1-positive if its 

expression of MNX1 was higher than 5 TPM, as it was 0 in most samples. Since most MNX1-

positive samples had expression values for MNX1 greater than 100 TPM, we chose this 

threshold of 5 TPM to avoid noise from samples with very low MNX1 expression. 
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For qRT-PCR, cDNA was generated from blood or bone marrow AML samples with random 

hexamers and Superscript III reverse transcriptase (Invitrogen, #56575). Analysis (primers in 

Supplementary Table 12) was done with a primaQUANT CYBR mix (Steinbrenner Laborsyteme 

GmbH, #SL-9902) on a Roche Lightcycler 480. Relative expression was determined with the 2-

Δ(Ct) method using Ct-values of GAPDH or PBGD for normalization. For each cohort, we 

computed the mean and standard deviation for these values, and considered samples to be 

MNX1-positive if their values were higher than the mean plus three times the standard 

deviation. 

Patient-derived xenograft (PDX) model 

Peripheral blood (PB) samples from an AML patient at first and second relapse were obtained 

from the Department of Internal Medicine III, Ludwig-Maximilians-Universität, Munich, Germany. 

Specimens were collected for diagnostic purposes. Written informed consent was obtained from 

the patient under the AMLCG Registry study (DRKS00020816). The study was performed in 

accordance with the ethical standards of the responsible committee on human experimentation 

(written approval by the Research Ethics Boards of the medical faculty of Ludwig-Maximilians-

Universität, Munich, number 068-08 and 222-10) and with the Helsinki Declaration of 1975, as 

revised in 2013. 

The PDX models AML-491 and AML-661 were established from primary patient cells at first and 

second relapse. The PDX cells harbored a del(7)(q21.13q36.3) and several AML related 

mutations (Supplementary Table 19). Positive MNX1 expression was determined via RNA-seq 

and PDX cells were genetically modified as previously outlined in Zeller et al. (84). Tamoxifen-

inducible shRNA constructs were generated as described in Carlet et al. (62) for two individual 

MNX1 shRNAs (76 & 82) and Renilla control shRNAs. CreERT2 and the shRNA cassettes were 

stably integrated into the AML-661 PDX model via lentiviral transduction using third generation 

packaging plasmids (pMDLg/pRRE (Addgene#12251), pRSV-Rev (Addgene#12253), and the 

VSV-G envelope expressing plasmid pMD2.G (Addgene#12259)) with the addition of polybrene 

(Sigma Aldrich, order no. H9268). CreERT2/shMNX1-76, CreERT2/shMNX1-82, CreERT2/shRenilla-

1, and CreERT2/shRenilla-2 transgenic cells were enriched with a BD FACSAria™ III Cell Sorter 

(BD Biosciences, Heidelberg) and serially transplanted into donor mice for amplification.  

Animal trials were performed in accordance with the current ethical standards of the official 

committee on animal experimentation (written approval by Regierung von Oberbayern, 

tierversuche@reg-ob.bayern.de; ROB-55.2Vet-2532.Vet_02-16-7 and ROB-55.2-2532.Vet_02-

20-159). In general, PDX cells were amplified in 10-26 weeks old male or female NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory, Bar Harbor, Maine, USA). Mice 

were kept in animal rooms of the Laboratory Animal Breeding and Husbandry Unit of Helmholtz 

Zentrum München under specified pathogen-free (SPF) conditions with a 12/12-hour light cycle. 

The animal rooms of the barriers were fully air-conditioned with a temperature of 20-24 °C and 

45-65% humidity according to Annex A of the European Convention 2007/526 EC. The 

maximum stocking density of the cages corresponds to Annex III of the 2010/63 EU. The cages 

were constantly filled with structural enrichment and the animals had unlimited access to food 

and water. During the experiment, mice were kept in individually ventilated cages (IVCs). The 
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cages were only opened one at a time at a cage changing station, the experimenter's gloves 

were disinfected with disinfectant each time before a mouse was removed from the cage. 

Hygiene monitoring was carried out at least quarterly in accordance with the current FELASA 

recommendation: In the animal housing areas equipped with IVC systems, exhaust dust from 

the IVC ventilation units was tested for all FELASA-listed pathogens by PCR. 

Circular chromosome conformation capture (4C) 

About two million cells per sample were used for circular chromosome conformation capture 

(4C) essentially according to van de Werken et al. (85). Two rounds of restriction digestion/T4 

DNA ligation were applied, using BglII in combination with NlaIII. In a first PCR step, second 

ligation products, inverse primers (Supplementary Table 20) and Q5 high fidelity enzyme (New 

England Biolabs, Frankfurt am Main, #M0491) were used with reaction conditions 98°C for 30 

sec, 10 cycles with 98°C for 15 sec, 63°C, 57°C or 54°C, depending on the viewpoint, for 20 sec 

with 0.5°C touch-down per cycle, 72°C for 2 min, then 30 or 25 cycles with 98°C for 15 sec, 

58°C, 52°C or 49°C, depending on the viewpoint, for 20 sec, 72°C for 2 min, finally followed by 

72°C for 1 min. Purification of PCR products, generation of sequencing libraries and sequencing 

were done as described previously (31). PCR products were purified with HighPrep beads 

(Biozym, cat.no. 220002, Hessisch Oldendorf, Germany) and their concentrations determined 

by Qubit dsDNA HS Assay (Thermo Fisher Scientific, cat.no. Q32854). The sequencing libraries 

were generated with about 5 ng purified PCR products by real-time PCR to monitor amplification 

progress with a Lightcycler 480 (Roche) and 25 µl reaction volumes using Kapa 2G Robust Hot 

Start ReadyMix (Merck, cat.no. KK5702, Darmstadt, Germany), 95°C, 3 min (initial melting) and 

95°C, 20 sec, 62°C, 15 sec, 72°C, 40 sec (cycling). Each 0.75 µl of primers (stock concentration 

10 µM) Tn5mCP1n (AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTC) and 

Tn5mCBar (CAAGCAGAAGACGGCATACGAGAT[barcode]GTCTCGTGGGCTCGG) were 

used. Sequencing libraries resulting from PCR products were bead-purified, DNA concentration 

was determined with the Qubit dsDNA HS Assay and products sizes were determined by 

TapeStation 4150 analysis with D1000 High Sensitivity Assay (Agilent, cat.no. 5067- 5585, 

Waldbronn, Germany). Sequencing libraries were pooled in equimolar ratios and analyzed on a 

NextSeq 550 machine (Illumina), midoutput, 75 PE mode. 

 

Antibody-guided Chromatin Tagmentation (ACT-seq) 

Genome-wide targeting of histone modifications was done by ACT-seq according to Carter et 

al. (86) with some modifications using a self-prepared pA-Tn5ase protein (31), and using the 

antibodies listed in Supplementary Table 21. To generate a pA-Tn5 transposome (pA-Tn5ome), 

pA-Tn5ase and Tn5ME-A+B load adaptor were mixed such that both components had a 

concentration of 3.3 µM in complex formation buffer (CB). pA-Tn5ome-antibody (pA-Tn5ome-

ab) complexes were generated by mixing 1 µl pA-Tn5ome with 0.8 µl CB and 0.8 µl antibody 

solution. Per tagmentation and pA-Tn5ome-ab complex binding, 50,000 cells were used. For 

normalization of sequence reads between biological replicates, about 4,000 permeabilized 

nuclei of yeast Saccharomyces cerevisiae, prepared according to (87) and incubated with pA-

Tn5ome-ab complex targeting yeast H2B, were spiked into each pA-Tn5ome-ab complex/cell 
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mix. Tagmentation at 37 °C for 30 min was started by addition of 10 µM MgCl2 (final 

concentration) followed by a 30 min proteinase K (20 µg; Qiagen, #19133) treatment at 55 °C. 

DNA was purified with a MinElute kit (Qiagen, #28004) and eluted with 20 µl elution buffer (EB). 

Sequencing libraries were generated under real-time conditions to monitor amplification 

progress with a LightCycler 480 in 50 µl reaction mixes consisting of 20 µl tagmented DNA 

eluate, 25 µl NEBNext High Fidelity 2X Mix (New England Biolabs, cat.no. M0541), 0.5 µl 

100xSYBRGreen and each 2.5 µl primer Tn5McP1n and Tn5mCBar (stock concentration 10 

µM, see above). Reaction conditions were 72°C for 5 min; 98°C, 30 sec; cycling with 98°C, 10 

sec, 63°C, 10 sec, 72°C, 10 sec. PCR products were purified with HighPrep beads. DNA 

concentration and fragment size were determined as described above. Six to eight differently 

barcoded libraries were multiplexed and sequenced as described above on a Nextseq 550 

system.. 

Assay for transposase-accessible chromatin by sequencing (ATAC-seq) 

ATAC-seq was done essentially as described by Corces et al. (88) using about 50,000 cells and 

the Nextera DNA library prep kit (Illumina, Berlin, #15028212). In brief, cells were lysed in 

ATAC-RSB buffer containing 0.5 µl NP40 10%, 0.5 µl Tween 20 10% and 0.5 µl Digitonin 1% 

followed by short incubation in ATAC-RSB containing 0.1% Tween-20. Tagmentation was done 

in a 50 µl mix at 37°C for 30 minutes in a thermomixer (Eppendorf, comfort 5355) with 1000 

rpm. Reactions were stopped by addition of 20 µl 5 M guanidinium thiocyanate, and DNA was 

purified with 140 µl HighPrep beads. Libraries were generated under real-time conditions and 

processed as described for ACT-seq, but cycling conditions were 98°C, 10 sec, 63°C, 30 sec, 

72°C, 30 sec. 

4C-seq, ACT-seq and ATAC-seq data analysis 

4C-seq data processing and analysis was done with the pipe4C pipeline (89) using single reads 

starting with a BglII-site containing viewpoint primer; the pipe4C pipeline was applied with 

default parameters under R v3.6.2. ACT-seq and ATAC-seq data were analyzed as described 

previously (31). Upstream processing of ATAC-seq and ACT-seq data was performed using 

TrimGalore v0.4.4 (RRID:SCR_011847) together with Cutadapt v1.14 (RRID:SCR_011841) 

applying the non-default parameters “--paired”, “--nextera”, “--length_1 35”, and “--length_2 35” 

to perform adapter and quality trimming. Bowtie2 v2.2.6 (RRID:SCR_016368) was used with the 

“--very-sensitive” flag and a maximum insertion length of 2500 bp to map trimmed reads against 

the GRCh37/hg19 reference genome. Aligned reads belonging to the same lane-multiplexed 

library were combined using SAMtools merge v1.5 (RRID:SCR_006525). PCR duplicates were 

removed by means of Picard MarkDuplicates v2.17.4 for ATAC-seq but not ACT-seq data. 

Discordant mappings and alignments with a Phred score below 20 were removed using 

SAMtools view. For Trimmed ACT-seq reads were additionally aligned against the S. cerevisiae 

R64 reference genome and post-aligned as described above. To derive a library-specific scaling 

factor, the multiplicative inverse of the number of filtered alignments against the yeast genome 

were calculated. This normalization leads to signal ranges in bigwig-files and IGV-browser 

tracks close to zero. Coverage tracks were generated using the bamCoverage functionality of 

Deeptools v3.1.1 (RRID:SCR_016366) with the non-default parameters “--

ignoreForNormalization chrM chrY chrX” and “--effectiveGenomeSize 2652783500” as well as 
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the “--scaleRatio” option to specify the spike-in-derived scaling factor. ATAC-seq accessibility 

signals were smoothed by centering a 73 bp window on the transposition event’s midpoint of 

each read using a custom script; the resulting tag coordinates were used for all downstream 

analyses. The analysis procedures were implemented as fully containerized workflows using the 

Common Workflow Language v1.0. Bigwig tracks were visualized using figeno (73). 

CRISPR/Cas9-mediated enhancer insertion  

A 1 kb region (chr7:92384001-92385000, GRCh37/hg19) containing a putative enhancer was 

inserted upstream of the MNX1 promoter (chr7:156816239, GRCh37/hg19) in ChiPSC22 

(Takara Bio Europe) by CRISPR/Cas9 editing as previously described (90). In short, ChiPSC22 

cells were nucleofected with the Cas9 ribonucleoprotein complex and a homology directed 

repair (HDR) donor template containing the putative enhancer sequence and 200 bp homology 

arms on each site. The CRISPR RNA was designed using the Alt-R Custom Cas9 crRNA 

Design Tool (Integrated DNA Technologies) and the HDR donor template were ordered as 

dsDNA HDR Donor Blocks (Integrated DNA Technologies). Per 20 µL transfection, 500 ng of 

the HDR Donor Block were used. Clones with successful integration of the enhancer on one 

allele were selected by PCR, using the following primers: AAAAGGACATGGGGATGCGT and 

GAAGCTGATCTTCCCTGAGGTT. Two cell lines were validated using WGS. Cell lines were 

differentiated to hematopoietic stem and progenitor cells as previously described (90). RNA was 

isolated from HSPCs using the RNeasy Plus Mini Kit (Qiagen) and sequenced as described 

above. 

Competitive MNX1 knockdown in vivo assays 

Constitutive Knockdown 

Transgenic AML PDX cells were isolated from bone marrow of donor mice and cultured in 

StemPro-34 medium (Thermo Fisher Scientific) with Pen/Strep, L-Glutamine (both Thermo 

Fisher Scientific), 10 ng/ml hrFLT3L (R&D Systems), 10 ng/ml hrSCF, 10 ng/ml hrTPO, and 

10 ng/ml hrIL3 (all Peprotech) (91) at a density of 106 cells/ml at 37 °C, 5% CO2. For ex vivo 

flipping of the shRNA cassettes, the cells were treated using 200nM (Z)-4-Hydroxytamoxifen 

(Sigma Aldrich, St. Louis, USA, #H7904). This induces flipping of the shRNA cassette, which 

leads to the expression of the respective shRNA and a switch of the expressed fluorochrome 

from mTagBFP to eGFP and from iRFP720 to T-Sapphire, respectively. Cells harboring the 

flipped cassette were enriched via FACS. MNX1 shRNA and Renilla control shRNA expressing 

cells were mixed in a 1:1 ratio and injected into three mice per MNX1 shRNA via tail vein 

injection (1*106 cells per population 2*106 per mouse). The individual input mixes were 

measured using flow cytometry for each animal before injection as an input sample 

(Supplementary Fig. 12A-E). Outgrowth of tumor cells was monitored by repeated blood 

samplings and staining for hCD33+ cells (BD PharmingenTM PE Mouse Anti-Human CD33, 

Clone WM53, Cat. No. 555450; RRID:AB_395843). At an advanced stage of leukemia (hCD33+ 

cells > 60%), mice were sacrificed and PDX cells were isolated from the bone marrow, spleen 

and blood. 
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Inducible Knockdown 

In vivo induction of the MNX1 shRNA expression was performed according to Carlet et al. (62). 

Transgenic AML PDX cells were isolated from bone marrow of donor mice. CreERT2/shMNX1 

and CreERT2/shRenilla transgenic cells were mixed in a 1:1 ratio and injected into mice via tail 

vein injection (N = 13; 1x106 cells per population and mouse). 50 mg/kg tamoxifen (Sigma 

Aldrich, St. Louis, USA, #T5648) was administered once 14 days post-transplantation via oral 

gavage as previously described. Mice were sacrificed on the day of TAM administration without 

receiving TAM, three days after TAM administration, and at an advanced stage of leukemia 

(hCD33+ cells > 60%).  

Statistical analyses 

The false discovery rate for pyjacker was computed by converting the scores into empirical P 

values and correcting for multiple testing, as described above. For the analysis of the MNX1 in 

vivo knockdown, we compare the ratio of the two flipped cell populations by performing two-

tailed unpaired t-tests using Prism 10 (GraphPad Prism, La Jolla, USA). 

Data availability 

WGS and RNA-seq data of patient samples are available at the EGA under the accession 

EGAS50000000743. All preprocessed data used as input to pyjacker for the ckAML cohort is 

provided in the GitHub repository at https://github.com/CompEpigen/pyjacker/tree/main/data. 

WGS of the cell line OCI-AML3 and WGS and RNA-seq of the cell lines MOLM-1 and MUTZ-3 

were uploaded to the SRA under project PRJNA1140384. 

Code availability 

The source code for pyjacker is available at https://github.com/CompEpigen/pyjacker. This 

manuscript describes pyjacker version 1.1.2, which is archived at zenodo 

https://doi.org/10.5281/zenodo.14516090. A Code Ocean capsule reproducing pyjacker’s 

results on the ckAML dataset is also available at https://codeocean.com/capsule/1742149. The 

nextflow workflow used to prepare pyjacker’s inputs, starting from bam files, is available at 

https://github.com/CompEpigen/wf_WGS. 
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Figure legends 

Figure 1. Detection of enhancer hijacking in 39 ckAML samples. A. Schematic 

representation of the main sources of information used by pyjacker: breakpoints, 

overexpression, monoallelic expression, and enhancers. B. Scatter plot of genes identified by 

pyjacker in 39 ckAML samples as being potentially activated by genomic rearrangements in one 

or more samples, where the x-axis shows the genomic location of the genes and the y-axis 

shows the FDR. Gene names for the enhancer hijacking candidates are written in bold, and if a 

fusion transcript was detected, the fusion partner is named.  

Figure 2. Activation of MECOM and its homolog PRDM16 by a GATA2 enhancer A. 

Expression of MECOM in all samples in transcript per million (TPM), ranked by expression of 

MECOM, where samples 15PB19457 and 15KM20146 with breakpoints near MECOM are 

highlighted in green. B. Variant allele frequencies in WGS (DNA) and RNA-seq for SNPs in 

MECOM, for sample 15PB19457 (major allele frequencies in blue and minor allele frequencies 

in red) . C. Copy numbers (CN) and SVs on chromosome 3 for sample 15PB19457. Copy 

number losses are indicated in blue and gains in red. SVs are shown as arcs at the top, where 

the color indicates the orientation of the breakpoint: blue for deletion, red for duplication, and 

purple for inversion. In the chromosome ideogram, the three regions that are displayed with a 

zoom in in panel D are highlighted in colors, with colors matching the arrows in panel D. D. 
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ChIP-seq tracks for P300 and H3K27ac in the myeloid cell lines MOLM-1 and Kasumi-1 in the 

region around MECOM for the rearranged chromosome of sample 15PB19457. The putative 

enhancer is highlighted in orange. E. Expression of PRDM16 in all samples, ranked by PRDM16 

expression, where sample 16KM11270 with a breakpoint near PRDM16 is highlighted in green. 

F. Variant allele frequencies in WGS (DNA) and RNA-seq for SNPs in PRDM16 in TPM for 

sample 16KM11270 (major allele frequency in blue and minor allele frequency in red). G. ChIP-

seq tracks for P300 and H3K27ac in the myeloid cell lines MOLM-1 and Kasumi-1 in the region 

around PRDM16 on the rearranged chromosome of sample 16KM11270. The putative enhancer 

is highlighted in orange. 

Figure 3. Aberrant EPO expression might cooperate with EPOR amplification in acute 

erythroleukemia. A. EPO expression in all samples in transcript per million (TPM), with the 

sample 15KM18875 with EPO overexpression highlighted in green. B. Proportion of samples 

with non-zero EPO expression in three AEL cohorts profiled with RNA-seq (47–49). C. Copy 

numbers (CN) and SVs on chromosome 7 (containing EPO) and chromosome 11 in sample 

15KM18875. Copy number losses are indicated in blue and gains in red. SVs are shown at the 

top, with arcs connecting breakpoints or lines indicating the chromosome of the other side of the 

breakpoint (for C, D, and F: The colors of SVs indicate the orientation: blue for deletion, red for 

duplication, purple for inversion, and green for interchromosomal SV). D. 300 kb circular piece 

of DNA containing EPO and a putative enhancer (highlighted in orange), with P300 and 

H3K27ac peaks in the erythroid cell line K562. E. EPOR expression in TPM in all samples, with 

sample 15KM18875 highlighted in green. F. Copy numbers and SVs on chromosome 19 for 

sample 15KM18875. 

Figure 4. The homeobox genes GSX2 and MNX1 can be activated by atypical 

mechanisms. A. GSX2 expression in all samples in transcript per million (TPM), with the 

sample 16PB5693 with GSX2 expression highlighted in green. B. MNX1 expression in all 

samples in TPM, with the sample 15PB8708 with MNX1 overexpression highlighted in green. C. 

Variant allele frequencies in WGS and RNA-seq for a SNP in MNX1 in sample 15PB8708 

(major allele frequency in blue and minor allele frequency in red). D. Circos plot showing CNAs 

and SVs in sample 16PB5693, for the chromosomes involved in a chromothripsis event. Copy 

number losses are indicated in blue and gains in red. SVs are shown as arcs at the center, with 

interchromosomal breakpoints in green, duplications in red, deletions in blue and inversion in 

purple. E. HiC data from hematopoietic stem and progenitor cells (19) and ChIP-seq data from 

myeloid cell lines in the region around GSX2. The putative enhancer is highlighted in orange 

and the region in gray is deleted in sample 16PB5693. F. Copy numbers (CN) and breakpoints 

on chromosome 7 for sample 15PB8708. In the chromosome ideogram, regions highlighted in 

red and teal correspond to the regions shown in panel G, with matching colors. G. ChIP-seq 

tracks for P300 and H3K27ac in the myeloid cell lines MOLM-1 and Kasumi-1 in the region 

around MNX1, on the rearranged chromosome of sample 15PB8708. Enhancers of the CDK6 

region are highlighted in orange.  

Figure 5. MNX1 is expressed in 1.4% of all AML cases, often with del(7)(q22q36). A. qRT-

PCR screen for MNX1 expression in three AML cohorts (Rotterdam, Ulm, Jena). B. 15 MNX1-

expressing samples with del(7)(q22q36) profiled with WGS, with a zoom-in around the 

breakpoints (hg19 reference). The blue rectangles indicate the genomic regions that are 

retained, and dashed lines represent breaks. C. Percentage of samples with mutations in 
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frequently mutated genes, for MNX1-positive samples with breakpoints near MNX1, MNX1-

positive samples without breakpoints, and TCGA-LAML samples. D. scRNA-seq analysis for 

MNX1-positive and control del(7q) AML samples. Left: UMAP showing cell type labels of 53,479 

cells integrated across eight patients. Right: UMAP highlighting MNX1 expression (top) and the 

presence of a del(7q) (bottom) as predicted for patients with del(7q) (n=4) and patients with 

del(7q) and MNX1 activation (n=4). 

Figure 6. Putative enhancers in the CDK6 region interact with MNX1 in del(7q) AML. A. 

Chromatin interaction detected with 4C in the region around CDK6 using MNX1 as viewpoint, 

for three different del(7)(q22q36) samples and one control sample (GDM-1 cell line) without 

del(7q). B. The 200 kb search region based on the enhancer duplication (sample 15PB8708) 

and the sample with the leftmost deletion (MLL215704), with tracks for enhancer marks: ATAC-

seq in del(7q) samples MTM9 and 2KFQ, ATAC-seq and ACT-seq against H3K27ac and 

H3K4me1 in the PDX sample AML-661 derived from a del(7q) patient, and ChIP-seq against 

P300 and H3K27ac in the MOLM-1 cell line. The putative enhancers were highlighted in orange. 

C. Copy number (CN) profile and SVs on chromosome 7 in the engineered cell line validating 

the insertion of the 1 kb region. D. Circos plot for the same cell line showing the absence of 

other rearrangements. Copy number losses are indicated in blue and gains in red. SVs are 

shown as arcs at the center, with interchromosomal breakpoints in green, duplications in red, 

deletions in blue, and inversion in purple. E. MNX1 expression in transcript per million (TPM) for 

the parental ChiPSC22 HSPCs (n=5, from independent differentiation experiments) compared 

to the engineered cell with the enhancer insertion (n=8, from independent differentiation 

experiments for 2 different cell lines). **P < 0.01 using two-sided t-test. 

Figure 7. Knockdown of MNX1 reduces tumor load of AML PDX cells in vivo. A. Scheme 

depicting the experimental setup of the in vivo constitutive experiment. AML-661 PDX cells 

expressing the cassettes for both CRE-ERT2 and the shRNA addressing MNX1 or a control 

gene were amplified in mice. Fresh PDX cells were stimulated with Tamoxifen (TAM, single 

dose, 200nM, 72h) to induce the knockdown in vitro. Cells with knockdown were enriched using 

flow cytometry gating on the respective fluorochrome markers GFP (knockdown of MNX1) and 

T-Sapphire (control knockdown). The two populations were mixed to a 1:1 ratio and injected into 

mice. The ratio between both populations was measured at advanced leukemic disease in 

different organs (more than 60% hCD33+ cells in peripheral blood). B. Results of the 

experiment described in A using 5 mice. **** P < 0.0001, ** P < 0.01 by one-tailed paired t-test. 

C. Scheme depicting the experimental setup of the in vivo inducible experiment. The cell 

populations described in A were mixed in a 1:1 ratio and injected into 13 mice. 14 days after 

injection, 3 mice were sacrificed (N=3) to quality control the 1:1 ratio of the two cell populations 

using flow cytometry. Tamoxifen (TAM, 50 mg/kg) was orally administered to the 10 remaining 

mice. 5 mice were sacrificed 3 days later to measure the rate of shRNA induction by TAM. At an 

advanced stage of leukemia, the remaining 5 mice were sacrificed to determine the ratio 

between the control versus MNX1 knockdown populations. D. Results of the experiment 

described in C. **** P < 0.0001 by one-tailed unpaired t-test. 
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