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We construct a full exceptional Lefschetz collection on 
the spinor 15-fold consisting of a connected component of 
the space of orthogonal 6-dimensional subspaces of a 12
dimensional complex vector space, isotropic with respect 
to a fixed non-degenerate quadratic form. The collection is 
made of 2 twists of a 4-item block and 8 twists of a 3-item 
block, confirming a conjecture of Kuznetsov and Smirnov. 
We speculate that a similar collection might work for the 
Freudenthal E7-variety.
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open access article under the CC BY license (http://
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1. Introduction

It is widely expected that, for any parabolic subgroup P of a reductive complex al
gebraic group G, the associated rational homogeneous variety X = G/P admits a full 
exceptional collection (E1, . . . , Er). This means that there is a sequence (E1, . . . , Er) of 
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objects of the derived category of coherent sheaves Db(X), which is exceptional, namely 
ExtpX(Ei, Ej) = 0 for all 1 ≤ i, j ≤ r for all p ∈ Z when i > j or when i = j and p �= 0, 
and which is full, i.e. the smallest triangulated subcategory 〈E1, . . . , Er〉 of Db(X) con
taining E1, . . . , Er is the whole Db(X). This implies that Db(X) admits a tilting bundle. 
Moreover (E1, . . . , Er) should consist of G-equivariant vector bundles and the collection 
should admit a natural partial order induced by the Bruhat-Chevalley order, see for in
stance [5] for an account. While full exceptional collections were given for flags of type An

and quadrics in [1,14], in the remaining classical types exceptional collections of maximal 
length were constructed much later, see [15]. Some more cases admitting full exceptional 
collections were studied, notably for isotropic Grassmannians in the symplectic case, 
we refer for instance to [27,25,12,21]. Full exceptional collections on some homogeneous 
varieties of exceptional type were studied in [23,10,29,3,19]. However, the questions of 
existence of a full exceptional collection, which is moreover G-equivariant and compatible 
with the Bruhat-Chevalley order (conjecturally consisting of vector bundles), has been 
settled in full generality for any rational homogeneous variety according to the authors 
of the very recent preprint [30].

A slightly different point of view on the structure of the derived category and on 
exceptional collections stems from homological projective duality, as in [20]. In this con
text, the emphasis is on Lefschetz properties with respect to a given ample line bundle 
OX(1), so that a full exceptional collection should be obtained from an initial set of 
objects by twisting them with OX(t), for t = 0, . . . , � − 1 and occasionally removing 
some objects. Here � is some integer which is often the Fano index of X, see below. Full 
exceptional Lefschetz collections were given in some classical and exceptional types in 
[21,11,10,3]. The question of when one should remove objects along the construction of 
a Lefschetz collection is a very interesting point giving rise to the study of residual cate
gories, conjecturally related to the structure of the quantum cohomology of X, according 
to a refinement of Dubrovin’s conjecture, see [16,17,28].

In this paper we focus on two specific varieties, one of classical type, namely the 
spinor 15-fold OG+(6, 12), which is one connected component of the variety of maximal 
isotropic subspaces for a non-degenerate quadratic form in 12 variables, and the other 
of exceptional type, namely Freudenthal’s 27-dimensional variety E7/P7. We construct 
a full exceptional Lefschetz collection on the first one and providing numerical evidence 
on the second one, based on the ansatz that they should share some common features as 
they sit on the same row of Freudenthal’s magic square related to real division algebras, 
cf. [22]. We write Xm for the varieties sitting in the third row of the Freudenthal’s magic 
square, where the index m refers to the dimension of the corresponding real division 
algebra Am. These varieties are homogeneous for the action of a group G listed below. 
They are Fano varieties whose Picard group is generated by a very ample line bundle 
OXm

(1), hence ωXm
� OXm

(−ιXm
) for some integer ιXm

called the Fano index of Xm. 
We have dim(Xm) = 3(m + 1) and ιXm

= 2(m + 1). Explicitly, we have the following 
table: 
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m 1 2 4 8
Am R C H O

G Sp3 GL6 Spin12 E7

Xm LG(3, 6) G(3, 6) OG+(6, 12) E7/P7

dim(Xm) 6 9 15 27
ιXm

4 6 10 18
rk(K0(Xm)) 8 20 32 56

Excluding LG(3, 6), that does not quite fit into this picture, we have rk(K0(Xm)) =
6m + 8. We would expect that for m = 2, 4, 8 the derived category of Xm has a full 
exceptional Lefschetz collection of the following form:

(A,A(1),B(2), . . . ,B(2m + 1))

with:

A = (OX , O, P,Q)

B = (OX , O, P )
(1.1)

Here, denoting by Uω the irreducible G-homogeneous bundle of maximal weight ω, 
the bundles O, P and Q should be, respectively, Uω1 , ∧2Uω1 and S2,1Uω1 with the 
caveat that, in case such bundles are not exceptional, we should replace them by some 
equivariant extension with homogeneous bundles of lower maximal weight (for precise 
definitions see the next section) or projections on the semiorthogonal summand we are 
interested in. For m = 2, i.e. for G(3, 6), no extension is necessary. The resulting full 
exceptional collection was studied in [8] in the attempt to verify Homological Projective 
Duality for G(3, 6). On the other hand, this gets more tricky for m = 4 and m = 8.

The goal of this paper is to prove the statement for m = 4 and provide a partial proof 
of a closely related statement for m = 8. For m = 4 we prove:

Theorem 1. Let X = OG+(6, 12) and set O = Uω1 . Then, there are unique Spin12
homogeneous exceptional bundles P and Q fitting into:

0 → OX → P → Uω2 → 0, 0 → Uω1 → Q → Uω1+ω2 → 0,

such that, defining A and B as in (1.1), we get a full Lefschetz exceptional collection:

Db(X) = 〈A,A(1),B(2), . . . ,B(9)〉.

Moreover, Q′ = L〈B〉(Q) is a homogeneous exceptional bundle and Q and Q′(1) are 
completely orthogonal.

This proves [17, Conjecture 1.3] and [16, Conjecture 1.2] for the spinor 15-fold, in
cluding the statement about the complete orthogonality of the generators of the residual 
category with respect to the rectangular part of the Lefschetz collection.
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The two conjectures above are related to Dubrovin’s conjecture and quantum coho
mology. Indeed, the structure of the small quantum cohomology of X = OG+(6, 12), 
which can be deduced from [6,4], should govern the structure of our exceptional col
lection. The fact that Q and Q′(1) are completely orthogonal corresponds to the fact 
that the operator of small quantum multiplication by −KX has zero as an eigenvalue of 
multiplicity two (see [2] for a nice picture of the spectrum). We refer to [16,17] for more 
details on these conjectures.

Let us notice that the nontrivial extensions that appear in our collections can be 
realised by the method of Kuznetsov and Polishchuk in [15]. For m = 8 and X := X8 =
E7/P7, we prove a weaker result. Let us define O as the unique non-trivial E7-equivariant 
extension fitting into

0 → OX → O → Uω1 → 0.

Let us define P as the projection of Uω3 to the left orthogonal of 〈OX(1), O(1), . . . , 
OX(18), O(18)〉, and Q as the projection (see Remark 7.3) of Uω1+ω3 to the left orthogonal 
of 〈OX(1), O(1), P (1), . . . ,OX(18), O(18), P (18)〉.

Theorem 2. On X = E7/P7 the collection (OX , O, . . . ,OX(17), O(17)) is exceptional. 
Moreover, defining A and B as in (1.1), we get a numerically exceptional collection of 
maximal length:

(A,A(1),B(2), . . . ,B(17)) , with K0(X) = K0(〈A,A(1),B(2), . . . ,B(17)〉).

Here, by numerically exceptional collection we mean a collection E1, . . . , Er whose 
numerical properties reproduce those of an exceptional collection: χ(Ei, Ej) = 0 if i > j

and χ(Ei, Ei) = 1 for all i. Of course having a numerically exceptional collection is a 
priori a much weaker condition than having an exceptional collection (not to mention 
having a full exceptional collection). However, due to the analogy with the other cases of 
the Freudenthal magic square, we believe that this collection is indeed a full exceptional 
collection. As a further element of comparison with the very interesting paper [30], let 
us note that the collections constructed in [30], besides being far from explicit, are not 
Lefschetz collections and that, a priori, the point of whether they consist of vector bundles 
remains conjectural. Our Lefschetz collection for OG+(6, 12) does consist of equivariant 
vector bundles, while for E7/P7 this is not clear.

The paper is organised as follows. In Section 2 we define our Lefschetz collection. The 
main tools are the theorem of Borel-Bott-Weil and a result about the non-degeneracy of 
a cup-product owing to Dimitrov and Roth. In Section 3 we outline our strategy to prove 
fullness and use if to reprove fullness of a natural Lefschetz collection on OG+(5, 10). Here 
we use a complex constructed in Section 4, where we also construct an analogous complex 
for OG+(6, 12) which in turn we use in Sections 5 and 6. In Section 5 we show that 
certain homogeneous bundles belong to the subcategory D generated by our exceptional 
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collection. We use this in Section 6 to prove fullness of our collection on OG+(6, 12). 
In Section 7 we provide some remarks on our numerically exceptional collection on the 
Freudenthal variety E7/P7.
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2. A Lefschetz exceptional collection on the spinor 15-fold

Here we begin by sketching the exceptional collection we want to work with. We first 
introduce the setting about spinor varieties and homogeneous bundles on them, then 
define the bundles appearing in the desired Lefschetz collection and finally show that 
this is indeed an exceptional Lefschetz collection.

By convention, we italicize varieties such as the Grassmannian G(k, n) of k
dimensional vector subspaces of Cn while groups are written in roman letters, with 
the exception of the Levi factor L, see below.

Concerning derived categories, here is the notation we use besides the elements defined 
in the introduction. We write LE(F) the left mutation of an object F along an object E
of Db(X). If B generated by an exceptional sequence (E1, . . . , Er) then, for an object 
E of Db(X), we write LB(E) = LE1 · · ·LEr

(E). In the same setting, we write B⊥ as the 
full subcategory of Db(X) whose objects E satisfy Extp(Ei,E) = 0 for all p ∈ Z and 
1 ≤ i ≤ r.

2.1. A lemma on non-degeneracy of cup product maps

We will use the following special case of [9, Theorem I]. Let G be a semisimple complex 
algebraic group, fix a Borel sugroup B of G, a parabolic subgroup P ⊃ B of G and let 
λ, μ be P-dominant weights of G. Write X = G/P. Set ρ for the sum of fundamental 
weights of G.

Lemma 2.1. Assume μ is G-dominant and H1(X,Uλ) �= 0 �= H1(X,Uλ+μ). Assume that 
λ+ ρ and λ+ μ+ ρ are sent to a dominant weight by the same reflection w in the Weyl 
group, i.e. w(λ + ρ) and w(λ + μ + ρ) are both dominant. Then the cup product map 
H1(X,Uλ) ⊗H0(X,Uμ) → H1(X,Uλ+μ) is a surjection.
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Proof. Put Y = G/B. For a B-dominant weight ν, we write Lν for the associated line 
bundle on Y = G/B. The inclusion B ⊂ P induces a G-equivariant projection π : Y → X. 
The weights λ, μ and λ+μ are B-dominant and we have natural isomorphisms π∗(Lλ) �
Uλ, π∗(Lμ) � Uμ and π∗(Lλ+μ) � Uλ+μ. Under these isomorphism, the cup product 
map under consideration is identified with the cup product:

H1(Y,Lλ) ⊗H0(Y,Lμ) → H1(Y,Lλ+μ).

Note that all these cohomology groups have natural structure of irreducible G
representation and that the cup product map under consideration is G-equivariant.

The inversion sets of λ and λ + μ (as defined in [9]) both consist of the fundamental 
root α defining the reflection w, as w(λ+ρ) and w(λ+μ+ρ) are dominant and H1(Y,Lλ)
and H1(Y,Lλ+μ) are non-zero. Therefore, by [9, Theorem I] the cup-product map under 
consideration is surjective. �
2.2. Homogeneous bundles on spinor varieties

We consider the group Spin2n, namely the universal cover of the group of linear auto
morphisms of C2n preserving a non-degenerate quadratic form q. Let Pn be the parabolic 
subgroup of Spin2n defining the spinor Grassmannian X = Spin2n /Pn := OG+(n, 2n), 
one of the two isomorphic connected components parametrizing n-dimensional isotropic 
subspaces of a 2n-dimensional subspace endowed with a non-degenerate symmetric form. 
We denote by L(Pn) its Levi factor.

We will denote by Uω the homogeneous bundle on Spin2n /Pn associated to the L(Pn)
weight ω. We write OX(1) := Uωn

and U := U∨
ω1

. These correspond to the ample 
generator of Pic(X), providing the equivariant embedding of X into P (V ωn), and to 
the tautological sub-bundle on G(n, 2n), restricted to X. Here we denoted by V λ the 
Spin2n-representation of highest weight λ.

Unless specified otherwise, we will set n = 6 from now on and work on X = Spin12 /P6. 
This is the spinor 15-fold that we are interested in. It is a Fano variety of Picard number 
one and index 10. The rank of its K0 group is 32. We note that

U = U∨
ω1

� Uω5(−1), ∧2U � U∨
ω2

� Uω4(−2), Σ2,1U � U∨
ω1+ω2

� Uω4+ω5(−3).
(2.1)

2.3. The bundles of the exceptional collection

Let us introduce the homogeneous vector bundles appearing in our exceptional col
lection.

Lemma 2.2. On X we have a canonical Spin2n-equivariant exceptional bundle P fitting 
into:
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0 → OX → P → Uω2 → 0. (2.2)

Moreover, P∨(2) is the normal bundle of X inside P (V ω6), while Uω2 is the tangent 
bundle of X.

Proof. The spinor 15-fold X is a cominuscule variety, which means that the tangent 
bundle of X is an irreducible homogeneous Spin12-bundle (we refer for instance to [26]). 
More precisely, the tangent bundle of X is isomorphic ∧2Uω1 � Uω2 . On the other 
hand, the tangent bundle of P (V ω6) restricted to X is the quotient V ω6 ⊗ OX(1)/OX . 
Since the irreducible factors of V ω6 ⊗OX(1) are OX , Uω2 , U∨

ω2
(2) and OX(2), we obtain 

that the normal bundle N of X inside P (V ω6) is a Spin12-equivariant extension γ ∈
Ext1X(Uω2 ,OX) giving:

0 → U∨
ω2

(2) → N → OX(2) → 0

Let us check that this extension is not trivial, which is to say, γ �= 0. By the Bott
Borel-Weil (BBW) Theorem, we have Ext1X(OX(2),U∨

ω2
(2)) = H1(X,U∨

ω2
) � C. Hence 

the sheaf fitting as middle term of a non-trivial extension as above is unique up to 
isomorphism. Since N(−1) is a quotient of V ω6 ⊗ OX of half its rank, by autoduality of 
V ω6 we get an exact sequence

0 → N∨(1) → V ω6 ⊗ OX → N(−1) → 0.

Since OX(−2) and Uω2(−2) have no cohomology, N∨ has no cohomology as well. From 
the short exact sequence above we deduce that N is a non-trivial extension, and thus 
N = P∨(2); indeed, if it were not the case, one would deduce that C � H0(OX) �
H0(N(−2)) � V ω6 ⊗H0(OX(−1)), which is false.

Since Uω2(−2) has no cohomology and Uω2 ⊗ Uω2(−2) has no cohomology except 
for H1(Uω2 ⊗ Uω2(−2)) = C, we get that Uω2 ⊗ P (−2) has no cohomology except for 
H1(Uω2 ⊗ P (−2)) = C. By twisting the exact sequence defining P by P (−2) we deduce 
that P ⊗P (−2) has no cohomology except for H1(P ⊗P (−2)) = C. Now let us consider 
the exact sequence

0 → P ⊗ P (−2) → V ω6 ⊗ P (−1) → P∨ ⊗ P → 0.

Since OX(−1) and Uω2(−1) have no cohomology, the same is true for P (−1) and V ω6 ⊗
P (−1). We deduce that H0(P∨ ⊗P ) = C and all other cohomologies of P∨ ⊗P vanish. 
So the bundle P is exceptional. �
Lemma 2.3. On X, we have a Spin12-homogeneous exceptional bundle Q fitting into a 
canonical equivariant extension:

0 → Uω1 → Q → Uω1+ω2 → 0 (2.3)
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Moreover, we have Ext•X(Q,Q(−1)) = 0.

Proof. We recall (2.1) and, using [31] to compute tensor products of representations (and 
homogeneous vector bundles), we obtain:

Uω4+ω5 ⊗ Uω1 � U2ω5(1) ⊕ Uω4(1) ⊕ Uω1+ω4+ω5 . (2.4)

We compute H•(U2ω5(−2)) = H•(Uω1+ω4+ω5(−3)) = 0, hence:

Ext•X(Uω1+ω2 ,Uω1) = Ext1X(Uω1+ω2 ,Uω1) � H1(Uω4+ω5 ⊗ Uω1(−3))

� H1(Uω4(−2)) = C. (2.5)

Choosing a nonzero element ζ of Ext1X(Uω1+ω2 ,Uω1) � C defines the desired equiv
ariant vector bundle Q.

To compute Ext•X(Q,Q), we consider:

U∨
ω1+ω2

⊗ Uω1 � Uω1 ⊗ Uω4+ω5(−3),

U∨
ω1

⊗ Uω1+ω2 � Uω1+ω2 ⊗ Uω5(−1), (2.6)

U∨
ω1+ω2

⊗ Uω1+ω2 � Uω1+ω2 ⊗ Uω4+ω5(−3). (2.7)

We computed the first item and its cohomology in (2.4) and (2.5). Using this, the fact 
that Uω1 is exceptional and that Q is defined by the non-zero extension ζ, applying 
Ext•X(−,Uω1) to the sequence (2.3) defining Q we get

Ext•X(Q,Uω1) = 0. (2.8)

Therefore:

Ext•X(Q,Q) � H•(Q∨ ⊗ Uω1+ω2).

To compute the term on the right-hand-side, we need to compute the cohomology of 
(2.6) and (2.7). For (2.6) we get:

Uω1+ω2 ⊗ Uω5 �Uω2(1) H•(Uω2) � H0(Uω2) � V ω2 , (2.9)

⊕U2ω1(1) H•(U2ω1) � H0(U2ω1) � V 2ω1 , (2.10)

⊕Uω1+ω2+ω5 H•(Uω1+ω2+ω5(−1)) = 0. (2.11)

Next, we compute the cohomology of Uω1+ω2 ⊗U∨
ω1+ω2

. We use the duality isomorphisms 
mentioned above and get:
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Uω1+ω2 ⊗ Uω4+ω5 �OX(3) H•(OX) = H0(OX) � C,

⊕Uω2+2ω5(1) H•(Uω2+2ω5(−2)) = 0,

⊕Uω2+ω4(1) H•(Uω2+ω4(−2)) = H1(Uω2+ω4(−2)) � V ω2 ,

⊕Uω1+ω5(2)⊕2 H•(Uω1+ω5(−1)) = 0,

⊕Uω1+ω2+ω4+ω5 H•(Uω1+ω2+ω4+ω5(−3)) = 0,

⊕U2ω1+2ω5(1) H•(U2ω1+2ω5(−2)) = 0,

⊕U2ω1+ω4(1) H•(U2ω1+ω4(−2)) = H1(U2ω1+ω4(−2)) � V 2ω1 .

Having computed this, we get that Hi(Q∨ ⊗ Uω1+ω2) = 0 for all i > 0 if and only if 
the boundary map induced by ζ:

V ω2 ⊕ V 2ω1 � H0(U∨
ω1

⊗ Uω1+ω2) → H1(U∨
ω1+ω2

⊗ Uω1+ω2) � V ω2 ⊕ V 2ω1

is an isomorphism, and in this case H0(Q∨ ⊗ Uω1+ω2) � C. In other words, Q is excep
tional if and only if the following Yoneda map is an isomorphism:

Ext1X(Uω1+ω2 ,Uω1) ⊗ HomX(Uω1 ,Uω1+ω2) → Ext1X(Uω1+ω2 ,Uω1+ω2).

In view of the cohomologies of Uω4+ω5 ⊗ Uω1(−3), Uω1+ω2 ⊗ Uω5(−1), Uω1+ω2 ⊗
Uω4+ω5(−3) computed above, this happens if and only if the cup-product maps below 
are isomorphisms:

H1(Uω4−2ω6) ⊗H0(Uω2) → H1(Uω2+ω4−2ω6),

H1(Uω4−2ω6) ⊗H0(U2ω1) → H1(U2ω1+ω4−2ω6).

However, this follows at once from Lemma 2.1, the required reflection being about the 
root α6.

Concerning Ext1X(Q,Q(−1)), it is sufficient to check that all irreducible bundles in 
U∨

ω1+ω2
⊗ Uω1(−1), U∨

ω1+ω2
⊗ Uω1+ω2(−1), U∨

ω1
⊗ Uω1(−1), U∨

ω1
⊗ Uω1+ω2(−1) have no 

non-vanishing cohomology (by BBW). �
2.4. The exceptional Lefschetz collection

Let us define the following collections of Spin12-homogeneous vector bundles

A = (OX ,Uω1 , P,Q) ,

B = (OX ,Uω1 , P ) .

Lemma 2.4. The following is an exceptional collection in Db(X):

(B,B(1), . . . ,B(9)) .
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Proof. Recall that OX and P are exceptional. We compute:

Uω5 ⊗ Uω1 � OX(1) ⊕ Uω1+ω5 (2.12)

We compute the largest intervals of integers where the twists of the bundles appearing 
in the right-hand-side have vanishing cohomology by BBW. This gives:

H•(OX(−t)) = 0, for t ∈ {1, . . . , 9},
H•(Uω1+ω5(−t)) = 0, for t ∈ {1, . . . , 11}.

Then, using (2.1), we get that Uω1 is exceptional. We also get the required van
ishing of twisted endomorphisms of OX and Uω1 . Also, we have the vanishing of 
Ext•X(OX(i),Uω1(j)) for 0 ≤ j < i ≤ 9 and of Ext•X(Uω1(i),OX(j)) for 0 ≤ j ≤ i ≤ 9.

It remains to deal with P . Looking at the extension defining P and using BBW, 
we get Ext•X(OX(i), P (j)) = 0 for 0 ≤ j < i ≤ 10, so Serre duality ensures also 
Ext•X(P (i),OX(j)) = 0 for 0 ≤ j ≤ i ≤ 9.

Next we show Ext•X(Uω1(i), P (j)) = 0 for 0 ≤ j < i ≤ 9 and note that the vanishing 
holds true even for i = 10. We recall (2.1) and use Uω5 ⊗Uω2 � Uω1(1)⊕Uω2+ω5 . Then, 
tensoring the sequence (2.2) defining P with Uω5(−1 − t), for 1 ≤ t ≤ 9, we get the 
desired vanishing by using:

H•(Uω5(−1 − t))) = H•(Uω1(−t))) = H•(Uω2+ω5(−1 − t))) = 0.

Now Serre duality gives Ext•X(P (i),Uω1(j)) = 0 for 0 ≤ j ≤ i ≤ 9.
Finally we check Ext•X(P (i), P (j)) = 0 for 0 ≤ j < i ≤ 9. We compute:

Uω2 ⊗ Uω4 � OX(2) ⊕ Uω1+ω5(1) ⊕ Uω2+ω4 .

Tensoring the sequence (2.2) defining P with its dual and using (2.1), we deduce the 
desired vanishing results from the following ones, which in turn are given by BBW for 
1 ≤ t ≤ 9:

H•(OX(−t)) = H•(Uω2(−t)) = H•(Uω4(−2 − t))

= H•(Uω2+ω4(−t)) = H•(Uω1+ω5(−1 − t)) = 0. �
Lemma 2.5. The following is an exceptional collection in Db(X):

(A,A(1),B(2) . . . ,B(9)) . (2.13)

Proof. By the previous lemma and thanks to Serre duality, we will be done once we 
prove Ext•X(Q,Q(−1)) = 0 (which we did in Lemma 2.3) and:

Ext•X(OX , Q(−t)) = Ext•X(Uω1 , Q(−t)) = Ext•X(P,Q(−t)) = 0,
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for 1 ≤ t ≤ 10. Looking at the sequence (2.3) defining Q, we see that BBW directly 
implies H•(Q(−t)) = 0 for 1 ≤ t ≤ 10. As for Ext•X(Uω1 , Q(−t)) = 0, note that the case 
t = 10 is (2.8) by Serre duality. On the other hand, for 1 ≤ t ≤ 9, this follows from (2.1)
and from the vanishing

H•(Uω5 ⊗ Uω1(−1 − t)) = 0, H•(Uω5 ⊗ Uω1+ω2(−1 − t)) = 0,

for 1 ≤ t ≤ 9, which in turn is a consequence of (2.9), (2.10), (2.11) and (2.12).
Finally, let us show that Ext•X(P,Q(−t)) = 0. For t �= 10, this follows from BBW, 

(2.1) and from the isomorphisms:

Uω4 ⊗ Uω1 � Uω5(1) ⊕ Uω1+ω4 ,

Uω4 ⊗ Uω1+ω2 � Uω1(2) ⊕ Uω2+ω5(1) ⊕ Uω1+ω2+ω4 ⊕ U2ω1+ω5 .

For t = 10, the statement is equivalent to Ext•X(Q,P ) = 0. To check this last vanishing, 
using the isomorphisms of the previous display, we are reduced to show Ext•X(Q,Uω2) = 0
and in turn to show that cupping with ζ ∈ Ext1X(Uω1+ω2 ,Uω1) � H1(Uω4(−2)) � C

induces an isomorphism:

V ω1 � H0(Uω1) � HomX(Uω1 ,Uω2) → Ext1X(Uω1+ω2 ,Uω2) � H1(Uω1+ω4(−2)) � V ω1

Then we have to show that the cup product map below is an isomorphism

H1(Uω4−2ω6) ⊗H0(Uω1) → H1(Uω1+ω4−2ω6).

This follows from Lemma 2.1, taking w to be the reflection about the root α6. �
3. Warmup for fullness

Let D be the full triangulated subcategory of Db(X) generated by our exceptional 
collection, i.e. define

D =
〈
A,A(1),B(2), · · · ,B(9)

〉
⊂ Db(X).

Thus, we have a semiorthogonal decomposition

Db(X) = 〈D⊥,D〉.

Our aim is to prove D⊥ = 0. To achieve this, we will restrict to a covering family of 
smaller spinor varieties whose derived category is well-known and prove that any object 
orthogonal to D restricts to zero over such varieties by showing that the structure sheaf 
of these subvarieties is resolved by objects in D. This technique has already been used 
in the literature, see for instance [27,21,10,13]. After describing such a covering family, 
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we will show fullness in the easier and well known case of spinor 10-folds as a warmup. 
In doing so, we will make use of an exact complex appearing in Section 4, pointing out 
that the existence of such complex is fundamental for our proof of fullness.

3.1. A covering family of spinor varieties

Let us come back to the general case of a vector space V of dimension 2n. Let

q : V × V → C

be the symmetric bilinear form defining X := Spin2n /Pn, i.e. we have

X = OG+(n, V ).

Recall that U = Uω1 we have

H0(X,U∨) = V ∨ 	 −→ V.

Since q is non-degenerate, there is a bijection between elements w ∈ V and sections 
sw ∈ H0(X,U∨) = V ∨ that sends w to sw = q(w, ·). It is easy to see that we have

q|W is non-degenerate ⇐⇒ q(w,w) �= 0, (3.1)

where W = ker sw. If sw satisfies (3.1), then we can define two things:

1. A morphism of algebraic varieties

ϕw : OG+(n, V ) → OG(n− 1,W )

U �→ U ∩W.
(3.2)

2. The natural morphism sw : OX → U∨ does not vanish anywhere (since there are no 
n-dimensional isotropic subspaces in W ) and, therefore, defines a short exact sequence 
of vector bundles

0 → OX
sw −−→ U∨ → E∨ → 0, (3.3)

where E∨ is a vector bundle of rank n− 1 with H0(X,E∨) = W∨.

Let us fix a section sw satisfying (3.1). First recall the very classical identification 
of OG+(n, 2n) and OG(n − 1, 2n − 1). We give a proof of it in the next lemma for the 
reader’s convenience.

Lemma 3.1. If sw satisfies (3.1), the morphism ϕw is an isomorphism.
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Proof. Since both varieties are smooth and we are in characteristic zero, it suffices to 
show that the morphism is one to one. Let [T ] ∈ OG(n − 1,W ); the preimage of [T ]
via ϕw is given by those [U ] ∈ OG+(n, V ) such that U ∩W = T . This is equivalent to 
T ⊂ U since isotropic subspaces of W have dimension at most equal to n− 1. Thus the 
set of isotropic subspaces U in V containing T are parametrized by the zero-dimensional 
quadric inside P (T⊥/T ) ∼ = P 1, i.e. two points U+ and U−. These spaces intersect exactly 
in T , i.e. in codimension one, so they must belong to different components of the set 
of maximal isotropic spaces in V ; we can assume that [U+] ∈ OG+(n, V ) and [U−] ∈
OG−(n, V ). Thus the preimage of [T ] via ϕw consists of the only point [U+] for every 
T ∈ OG(n− 1,W ), and the morphism is one to one. �
Lemma 3.2. Let s ∈ H0(X,E∨) = W∨ and consider the zero-locus Ys of s.

i) If s is general enough, then Ys � OG(n− 1, 2n− 2). Let us denote the inclusion by

is : Ys → X.

ii) For any section s as in i), we have

i∗U∨ = U∨
n−1 ⊕ OYs

iii) Varying s ∈ H0(X,E∨) as above we can cover X by copies of OG(n− 1, 2n− 2).
iv) If for any object F ∈ Db(X) the restrictions i∗sF vanish for all s ∈ H0(X,E∨) as 

above, then F = 0.

Proof. For s to be general enough, it is enough to satisfy the analogue of (3.1). i.e. the 
restriction of q to L := ker(s) ⊂ W should be non-degenerate.

i) Under (3.2) the vector bundle E∨ corresponds to the dual of the tautological sub
bundle on OG(n− 1,W ). Hence, we get the claim.

ii) Under (3.2) the sequence (3.3) shows that there is a non-trivial extension between 
the dual of the tautological subbundle and the structure sheaf on OG(n − 1,W ). 
However, by BBW on OG(n−1, L) = OG(n−1, 2n−2) such extensions vanish and 
the sequence splits.

iii) Indeed, for any (n− 1)-dimensional isotropic subspace Un−1 ⊂ W we can consider 
U⊥
n−1, take any element u ∈ U⊥

n−1\Un−1 and take L = u⊥. Clearly we have Un−1 ⊂ L

and q|L is non-degenerate by (3.1).
iv) This is [21, Lemma 4.5]. �
3.2. Full exceptional collection on the spinor 10-fold

The orthogonal Grassmannian Y = OG(5, 10) has two connected components that we 
denote by
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Y− = OG−(5, 10) and Y+ = OG+(5, 10).

These components are isomorphic to each other, we call them spinor 10-folds.
As usual, on Y = OG(5, 10) we can consider the tautological subbundle U5 of rank 5. 

We denote as U5,± := U5|Y± its restrictions to Y±.
We prove the following result as a useful warm-up to the case of X = Spin12 /P6 =

OG+(6, 12).

Theorem 3.3. We have

Db(Y±) =
〈
O,U∨

5,±,O(1),U∨
5,±(1), . . . ,O(7),U∨

5,±(7)
〉

Proof. Let us fix the + sign and let us define D5 := 〈O,U∨
5 ,O(1),U∨

5 (1), . . . ,O(7),U∨
5 (7)〉

on Y := Y+. Let us take an object F ∈ D⊥
5 , i.e. we have

Ext•X(A,F ) = 0 for any A ∈ D5.

Let s ∈ H0(Y,E∨) be a general section and is : Zs → Y the embedding of its zero locus, 
as in Lemma 3.2(1).

Let us consider the set of vector bundles on Y defined by

Υ5 := {OY (t) | t ∈ [2, 7]} ∪ {U∨
5 (2)}.

Let us denote by E∨
5 the vector bundle defined in (3.3). We claim that for any E ∈ Υ5

and any j the bundle E⊗∧jE∨
5 lies in D5. Let us for the moment assume that the claim 

is true. Then we have

Ext•X(E ⊗ ∧jE∨
5 , F ) = H•(Y,∧jE5 ⊗E∨ ⊗ F ) = 0 for all j,

and making use of the Koszul complex

0 → ∧4E5 → · · · → E5 → OY → is∗OZs
→ 0,

we obtain

H•(Y, (E∨ ⊗ F ) ⊗ is∗OZ) = 0.

Now, by the projection formula we rewrite

H•(Y, (E∨ ⊗ F ) ⊗ is∗OZ) = H•(Zs, is
∗ (E∨ ⊗ F )) = Ext•Z(is∗E, is

∗F ) = 0.

Recall that Zs � OG(4, 8) has two connected components Zs+ and Zs− which are 

two six-dimensional quadrics. We denote the compositions Zs± ⊂ Zs
is→ Y by is±. Using 

this notation we have
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Ext•Zs
(is∗E, is

∗F ) = Ext•Zs+
(is∗+E, is

∗
+F ) ⊕ Ext•Zs−(is∗−E, is

∗
−F ).

Hence, we have

Ext•Zs+
(is∗+E, is

∗
+F ) = 0 and Ext•Zs−(is∗−E, is

∗
−F ) = 0.

Applying Lemma 3.2(2) and the fact that the six-dimensional quadrics Zs± admit the 
following full exceptional collection (see [14])

Db(Zs±) =
〈
O(2),U∨

4,±(2),O(3), . . . ,O(7)
〉
,

we obtain

is
∗
+F = 0 and is

∗
−F = 0.

Hence, we conclude is∗F = 0. Finally, since the above argument works for any general 
s ∈ H0(Y,E∨

5 ), by Lemma 3.2(iii,iv) we obtain F = 0.
Now, let us prove the claim. We need to prove that ∧jE∨

5 (t) ∈ D5 for t ∈ [2, 7] and 
U∨

5 ⊗ ∧jE∨
5 (2) ∈ D5 for all possible j’s. From the exact sequence

0 → OY →U∨
5 → E∨

5 → 0

we deduce that our claim is implied by the fact that ∧jU∨
5 (t) ∈ D5 for t ∈ [2, 7] and 

U∨
5 ⊗ ∧jU∨

5 (2) ∈ D5 for all possible j’s.
The bundles O(t) and U∨

5 (t) for t ∈ [0, 7] generate D5. From the exact sequence 
0 → U5 → V10 ⊗OY → U∨

5 → 0, where V10 is a ten-dimensional vector space, we deduce 
that U5(t) ∈ D5 for t ∈ [0, 7]. Thus OY (t),U5(t),∧4U5(t) = U∨(t−2),∧5U5(t) = OY (t−2)
all belong to D5 for t ∈ [2, 7].

Denote by S+ (respectively S−) the even (resp. odd) Spin representation for the Spin 
group - see also Section 4.1.1. Recall that ss(S− ⊗OY ) = U5(−1)⊕∧3U∨

5 (−1)⊕OY (1), 
where ss denotes the semisimplification of the bundle, so we deduce that ∧3U∨

5 (t− 2) =
∧2U(t) ∈ D5 for t ∈ [2, 7]. Similarly the fact that ss(S+ ⊗OY ) = OY (−1)⊕∧2U∨

5 (−1)⊕
U5(1) implies that ∧2U∨

5 (t− 2) = ∧3U(t) ∈ D5 for t ∈ [2, 7].
Now we need to deal with U∨

5 ⊗∧jU5(2). When j = 0 and j = 5, U∨
5 ⊗∧jU5(2) ∈ D5. 

For j = 1 use the decomposition ss(∧2V10 ⊗ OY ) = ∧2U5 ⊕ U5 ⊗ U∨
5 ⊕ ∧2U∨

5 to deduce 
that U5 ⊗ U∨

5 (t) ∈ D5 for t ∈ [2, 5]. For j = 3 use the decomposition ss(S+ ⊗ U∨
5 ) =

U∨
5 (−1)⊕∧3U5⊗U∨

5 (1)⊕U5⊗U∨
5 (1) to deduce that ∧3U5⊗U∨

5 (t) ∈ D5 for t ∈ [2, 5]. The 
cases j = 2 and j = 4 can be dealt with in parallel. Indeed one can use the decomposition 
ss(S− ⊗U∨

5 ) = U∨
5 (1)⊕∧2U5 ⊗U∨

5 (1)⊕∧4U5 ⊗U∨
5 (1) to deduce that, if t ∈ [1, 6] then: 

∧2U5 ⊗ U∨
5 (t) ∈ D5 if and only if ∧4U5 ⊗ U∨

5 (t) ∈ D5.
Finally, we want to prove for instance that ∧2U5 ⊗ U∨

5 (2) ∈ D5. For this the exact 
sequence appearing in Proposition 4.2 is crucial (Section 4.2 is independent of this proof, 
so we can use the results therein), and in particular the extension R5 whose existence is 
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ensured by the same proposition. Indeed from that complex one deduces that R5(t) ∈ D5
for t ∈ [0, 5], which in turn implies that Uω1+ω2

5 (t) ∈ D5 for t ∈ [0, 3]. Then, using the 
decomposition ss(∧2U∨

5 ⊗ V10) = Uω1+ω2
5 ⊕ ∧3U∨

5 ⊕ U∨
5 ⊕ Uω2+ω4

5 (−2), we obtain that 
Uω2+ω4

5 (t) ∈ D5 for t ∈ [−2, 1]. Notice also that previously we showed that U5 ⊗U∨
5 (t) =

OY (t)⊕Uω1+ω4
5 (t−2) ∈ D5 for t ∈ [2, 5], so Uω1+ω4

5 (t) ∈ D5 for t ∈ [0, 3]. These two facts 
imply that Uω1+ω3

5 (t) ∈ D5 for t = 0, 1 because of the decomposition ss(Uω1+ω4
5 (−2) ⊗

V10) = Uω1+ω3
5 (−2) ⊕ Uω2+ω4

5 (−2) ⊕ U5 ⊕ U∨
5 . Then from the decomposition ss(∧2U5 ⊗

U∨
5 ) = Uω1+ω3

5 (−2) ⊕ U5 we deduce that ∧2U5 ⊗ U∨
5 (t) ∈ D5 for t = 2, 3. �

Remark 3.4. Theorem 3.3 was already known from [18, Section 6.2]. The proof given 
here is more direct and corresponds better to our approach.

4. Dissecting Spin bundles

In this section, we look more closely to the vector bundles on X = OG+(6, 12) induced 
by the spinor representations. The main goal is to prove Proposition 4.2 and 4.3, which 
in turn will be used in Section 5 in view of showing fullness of our collection. We often 
abbreviate OX to O.

4.1. The Spin representations

In the following we will recall a selection of generalities about the Clifford algebra 
and Spin representations that can be found, for instance, in [24]. Let us begin with an 
even-dimensional vector space V endowed with a non-degenerate symmetric form q. The 
Clifford algebra is defined as the quotient of the tensor algebra V ⊗ by all relations of 
the form v⊗ v− q(v, v) for v ∈ V . Notice that both V and ∧2V � soV embed inside the 
Clifford algebra.

4.1.1. The Spin representation and exterior powers
Let us fix a maximal isotropic subspace U of V . Any other maximal isotropic sub

space intersecting U transversally can be identified through q with U∨; we thus get a 
decomposition of V = U ⊕ U∨. The Spin representations can be identified, as vector 
spaces, as follows:

S+ := ∧+U∨ =
⊕
i 

∧2iU∨,

S− := ∧−U∨ =
⊕
i 

∧2i+1U∨.

There is a natural action

η± := V ⊗ S± → S∓
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defined as follows: η±(v ⊗ ω) = v ∧ ω if v ∈ U∨ and η±(v ⊗ ω) = v⌟ω if v ∈ U , 
where ⌟ is the contraction. This induces an action of the Clifford algebra, and hence of 
soV , on S±, which endows this vector space with a structure of Spin-representation; S±

are the so-called Spin representations. It turns out that, if the dimension of V is 2n, 
then (S±)∨ = S(−1)n± as representations. Moreover if n is odd then S+ = V ωn−1 and 
S− = V ωn while if n is even then S+ = V ωn and S− = V ωn−1 . Notice moreover that the 
action η± naturally induces a Spin-equivariant morphism η⊗i

± : V ⊗i ⊗ S± → S(−1)i±, 
and thus also a Spin-equivariant morphism

∧iη± : ∧iV ⊗ S± → S(−1)i±.

In the following we want to use the morphism ∧iη± to construct some exact complexes 
on Spin2n /Pn for n = 5, 6. Before doing so, we will recall basic linear algebra facts in 
order to explain how to rewrite ∧iη± as a morphism ξ : S±⊗(S(−1)i±)∨ → ∧iV ∨ � ∧iV .

4.1.2. Linear algebra digression
Let us begin with a linear morphism u : A⊗ B → C for three vector spaces A,B,C. 

This means that u ∈ A⊗B ⊗ C∨ = Hom(A⊗ C∨, B∨), so it defines another morphism 
t : A⊗ C∨ → B∨. Clearly one can recover u from t as well.

Lemma 4.1. Im(u)⊥ is identified with the subspace {x ∈ C∨ | t(a, x) = 0 ∀a ∈ A} ⊂ C∨.

Proof. Let us denote by D the above subspace. By definition of t, for any x ∈ C∨, a ∈ A

and b ∈ B, x(u(a⊗ b)) = t(a⊗ x)(b). It is straightforward to deduce that x ∈ Im(u)⊥ if 
and only if x ∈ D. �
4.2. Spinor bundles

Let us consider the variety Spin2n /Pn = OG+(n, 2n) which is one of the two isomor
phic connected components of the variety parametrizing maximal isotropic subspaces of 
V . Let us denote by ε := (n mod 2). The line bundle O(1) = Uωn

embeds Spin2n /Pn

inside P (V ωn) = P (S(−1)ε). Thus O(1) is a G-equivariant quotient of S(−1)ε ⊗O. In fact, 
one can construct a filtration of G-equivariant vector bundles

0 =: F0 ⊂ F1 ⊂ · · · ⊂ F�n
+ε := S(−1)ε

such that

Fi+1/Fi = (∧2i+εU∨)(−1).

This is the relative version of the filtration of S(−1)ε = ∧+U∨ given by the subspaces 
Fi+1 :=

∑
j≤i ∧2j+εU∨. A similar filtration exists for S−(−1)ε ⊗ O. For instance, we 

get that F1 = U∨(−1) is a subbundle of S− ⊗ O. This filtration was described in [21, 
Proposition 6.3].
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4.2.1. An exact complex in low dimension
We will now construct an exact complex of vector spaces using the morphisms ∧iη±

when n = 5 and n = 6. We believe that this type of complexes can be generalized for 
higher n and will be crucial in proving fullness of exceptional collections on Spin2n /Pn

for higher n. From now on we fix η := η+

4.2.2. The case n = 5
In this case we have the following decomposition of representations: S+ ⊗ S− =

C⊕∧2V ⊕V ω4+ω5 . This implies that there exists a unique G-equivariant morphism S+⊗
S− → ∧2V , which must then be equal to ∧2η (notice that (S−)∨ = S+ since n is odd). 
As a consequence of BBW H0(U(1)) = S− and thus there exists a unique G-equivariant 
morphism U∨(−1) ⊗ S+ → ∧2V . This morphism must then be the composition ∧2η ◦
(i⊗ id) where i is the inclusion i : U∨(−1) → S− ⊗ O. All in all we get a G-equivariant 
morphism ∧2η ◦ (i⊗ id) : U∨(−1) ⊗ S+ → ∧2V . The aim of this section is to prove the 
following:

Proposition 4.2. There exists a G-equivariant extension

0 → U∨(−2) → R5 → Uω1+ω2(−2) → 0

and a G-equivariant exact complex of vector bundles

0 → R5 → U∨(−1) ⊗ S+ → ∧2V ⊗ O → ∧2U∨ → 0,

where the central map is ∧2η ◦ (i⊗ id).

Proof. The morphism ∧2V ⊗O → ∧2U∨ above is the natural projection induced by the 
exact sequence

0 → U → V ⊗ O → U∨ → 0.

Since this map, as well as ∧2η ◦ (i⊗ id), is a G-equivariant morphism of G-homogeneous 
vector bundles, it is sufficient to restrict to any fiber of Spin10 /P5 to prove exactness. 
More precisely we will show that, if [U ] ∈ Spin10 /P5, the induced complex of vector 
spaces

(U∨(−1) ⊗ S+)|[U ] → (∧2V ⊗ O)|[U ] → (∧2U∨)|[U ] → 0 (4.1)

is exact. From this it will follow that the complex

U∨(−1) ⊗ S+ → ∧2V ⊗ O → ∧2U∨ → 0

is exact. The result will then follow by noticing that, since ss(U∨(−1)⊗S+) = U∨(−2)⊕
Uω1+ω2(−2) ⊕ ∧3U∨(−2) ⊕ sl(U) ⊕ O and ss(∧2V ) = ∧2U ⊕ O ⊕ sl(U) ⊕ ∧2U∨, the 
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semisimple reduction of the kernel of ∧2η ◦ (i ⊗ id) is necessarily equal to U∨(−2) ⊕
Uω1+ω2(−2).

Let [U ] ∈ Spin10 /P5 be any point. Then (U∨(−1))|[U ] � U∨ is a subspace of 
(S− ⊗ O)|[U ] = S− =

⊕
i ∧2i+1U∨ - here the last equality only holds as an equality of 

L(P5)-representations. Following the linear algebra digression, the morphism ξ ◦ (i⊗ id)
corresponds to the morphism ∧iη ◦ (i⊗ id). Moreover, letting

t := (∧2η ◦ (i⊗ id))[U ] : U∨ ⊗ ∧2V ∨ → S− =
⊕
i 

∧2i+1U∨

and

u := (ξ ◦ (i⊗ id))[U ] : U∨ ⊗ S+ → ∧2V

and applying Lemma 4.1, we deduce the following:

Im(u)⊥ = {v ∈ ∧2V ∨ | ∀f ∈ U∨ ⊂ S− =
⊕
i 

∧2i+1U∨, t(f ⊗ v) = 0} ⊂ ∧2V ∨.

We bothered going through all of this because we have a very explicit description of the 
map t, which is the one induced by η; let us see how to use it. First notice that t is a P5
equivariant morphism, so in particular let us treat it as a L(P5)-equivariant morphism. 
Thus we can decompose ∧2V = ∧2U ⊕ (U ⊗ U∨) ⊕ ∧2U∨ = ∧2U ⊕ C ⊕ sl(U) ⊕ ∧2U∨. 
By L(P5)-equivariance, each of these factors is either completely contained in Im(u)⊥ or 
intersects Im(u)⊥ trivially. In order to distinguish the two cases it is thus sufficient to 
decide whether a non-zero vector in a given factor belongs to Im(u)⊥ or not. We thus 
have four cases to deal with. We will denote by u1, . . . , u5 a basis of U and by w1, . . . , w5
the dual basis. We will denote by uij = ui ∧ uj and by wij = wi ∧ wj ; δi,j will denote 
Kronecker’s delta.

∧2U : Let 0 �= uij ∈ ∧2U and wk ∈ U∨. Then t(wk⊗uij) = ui⌟(uj⌟wk)−uj⌟(ui⌟wk) =
0, for any k = 1, . . . , 5, so ∧2U ⊂ Im(u)⊥.

C: Let 0 �=
∑

i ui ∧ wi ∈ C ⊂ ∧2V and wk ∈ U∨. Then t(wk ⊗ (
∑

i ui ∧ wi)) =∑
i(ui⌟(wik)−δi,kwk) =

∑
i((1−δi,k)wk−δi,kwk) =

∑
i(1−2δi,k)wk = 2wk �= 0, 

so C ∩ Im(u)⊥ = 0.
sl(U): Let 0 �= ui ∧ wj ∈ sl(U) for i �= j, and wk ∈ U∨. Then t(wk ⊗ ui ∧ wj) =

ui⌟(wjk) − (ui⌟wk)wj = −2δi,kwk �= 0, so sl(U) ∩ Im(u)⊥ = 0.
∧2U∨: Let 0 �= wij ∈ ∧2U∨ and wk ∈ U∨. Then t(wk ⊗ wij) = wijk �= 0, so ∧2U∨ ∩

Im(u)⊥ = 0.

The previous computations imply that Im(u)⊥ = ∧2U ⊂ ∧2V � ∧2V ∨. This is equivalent 
to the fact that Im(u) is the kernel of ∧2V → ∧2U∨. Moreover the latter morphism is 
clearly surjective, so we deduce that the complex in (4.1) is exact. The statement of the 
proposition follows. �
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4.2.3. The case n = 6
In this case we have the following decomposition of representations: S+ ⊗ S− =

V ⊕ ∧3V ⊕ V ω5+ω6 . This implies that there exists a unique G-equivariant morphism 
S+ ⊗ S− → ∧3V , which must then be equal to ∧3η (notice that (S+)∨ = S+ since n is 
even). As a consequence of the BBW Theorem H0(U(1)) = S− and thus there exists a 
unique G-equivariant morphism U∨(−1)⊗S+ → ∧3V . This morphism must then be the 
composition ∧3η ◦ (i⊗ id) where i is the inclusion i : U∨(−1) → S−⊗O. All in all we get 
a G-equivariant morphism ∧3η ◦ (i⊗ id) : U∨(−1)⊗ S+ → ∧3V . The aim of this section 
is to prove an analogue of Proposition 4.2. In order to do so, let us begin by defining the 
vector bundle C as the cokernel of the unique G-equivariant inclusion U∨ → V ⊗ ∧2U∨; 
we thus have an exact sequence

0 → U∨ → V ⊗ ∧2U∨ → C → 0.

Proposition 4.3. There exists a G-equivariant extension R6 whose semisimple reduction 
is

ss(R6) = U∨(−2) ⊕ Uω1+ω2(−2)

and a G-equivariant exact complex of vector bundles

0 → R6 → U∨(−1) ⊗ S+ → ∧3V ⊗ O → C → Uω1+ω2 → 0,

where the map U∨(−1) ⊗ S+ → ∧3V ⊗ O is ∧3η ◦ (i⊗ id).

Proof. The morphism ∧3V ⊗ O → C is the unique G-equivariant morphism and it is 
the one induced on the quotient from the natural one ∧3V ⊗ O → V ⊗ ∧2U∨. Since 
the cokernel of the latter is Uω1+ω2 , this is also the cokernel of the former. Since the 
morphism ∧2η ◦ (i⊗ id) is a G-equivariant morphism of G-homogeneous vector bundles, 
it is sufficient to restrict to any fiber of X to prove exactness, as we did in the proof of 
Proposition 4.2. More precisely we will show that, if [U ] ∈ X, the induced complex of 
vector spaces

(U∨(−1) ⊗ S+)|[U ] → (∧3V ⊗ O)|[U ] → C|[U ]

is exact. From this it will follow that the complex

U∨(−1) ⊗ S+ → ∧3V ⊗ O → C → Uω1+ω2 → 0

is exact. The result will then follow by noticing that, since ss(U∨(−1)⊗S+) = U∨(−2)⊕
Uω1+ω2(−2) ⊕ ∧3U∨(−2) ⊕ Uω1+ω4(−2) ⊕ U⊕ U∨ and ss(∧3V ) = ∧3U⊕ Uω1+ω4(−2) ⊕
U ⊕ Uω2+ω5(−2) ⊕ U∨ ⊕ ∧3U∨, the semisimple reduction of the kernel of ∧3η ◦ (i ⊗ id)
is necessarily equal to U∨(−2) ⊕ Uω1+ω2(−2).
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Let [U ] ∈ X be any point. Then (U∨(−1))|[U ] � U∨ is a subspace of (S− ⊗ O)|[U ] =
S− =

⊕
i ∧2i+1U∨ as L(P6)-representations. Letting

t := (∧3η ◦ (i⊗ id))[U ] : U∨ ⊗ ∧3V ∨ → S+ =
⊕
i 

∧2iU∨

and

u := (ξ ◦ (i⊗ id))[U ] : U∨ ⊗ S+ → ∧3V

and applying Lemma 4.1, we deduce the following:

Im(u)⊥ = {v ∈ ∧3V ∨ | ∀f ∈ U∨ ⊂ S− =
⊕
i 

∧2i+1U∨, t(f ⊗ v) = 0} ⊂ ∧3V ∨.

Since we can treat everything as L(P6)-equivariant/homogeneous, we can decompose 
∧3V = ∧3U⊕Uω1+ω4 ⊕U⊕Uω2+ω5 ⊕U∨⊕∧3U∨ (here, by abuse of notation, we denoted 
by Uω the SL(U)-representation with highest weight ω). By L(P6)-equivariance, each of 
these factors is either completely contained in Im(u)⊥ or it intersects Im(u)⊥ trivially. In 
order to distinguish the two cases it is thus sufficient to decide whether a non-zero vector 
in a given factor belongs to Im(u)⊥ or not. We thus have six cases to deal with. We will 
denote by u1, . . . , u6 a basis of U and by w1, . . . , w6 the dual basis. We will denote by 
uijk = ui ∧uj ∧uk, uij = ui ∧uj , wij = wi ∧wj and wijk = wi ∧wj ∧wk; δi,j will denote 
Kronecker’s delta.

∧3U : Let 0 �= uijk ∈ ∧3U and wh ∈ U∨. Then t(wh ⊗ uijk) = uij⌟(uk⌟wk) −
uik⌟(uj⌟wh) + uij⌟(uk⌟wh) = 0, for any k = 1, . . . , 6, so ∧3U ⊂ Im(u)⊥.

Uω1+ω4 : Let 0 �= uij∧wk ∈ Uω1+ω4 for i �= k and j �= k, and wh ∈ U∨. Then t(wh⊗uij∧
wk) = uij⌟(wkh)−(ui⌟wk)(uj⌟wh)+(uj⌟wk)(ui⌟wh) = 0, so Uω1+ω4 ⊂ Im(u)⊥.

U : Let 0 �=
∑

i uij ∧ wj ∈ U ⊂ ∧3V and wh ∈ U∨. Then t(wh ⊗ (
∑

i uij ∧ wj)) =∑
i(uij⌟wjh − (ui⌟wj)(uj⌟wh) + (uj⌟wj)(ui⌟wh)) =

∑
i(−2δi,h + δi,h) �= 0, so 

U ∩ Im(u)⊥ = 0.
U∨: Let 0 �=

∑
i ui ∧wij ∈ U∨ ⊂ ∧3V and wh ∈ U∨. Then t(wh ⊗ (

∑
i ui ∧wij)) =∑

i(ui⌟wijh−wi∧(ui⌟wjh)+wj∧(ui⌟wih)) =
∑

i(2wjh+δi,hwij) =
∑

i wjh �= 0, 
so U∨ ∩ Im(u)⊥ = 0.

Uω2+ω5 : Let 0 �= ui ∧wjk ∈ Uω2+ω5 for i �= j and i �= k, and wh ∈ U∨. Then t(wh⊗ui ∧
wjk) = ui⌟(wjkh) − wj ∧ (ui⌟wkh) + wjk(ui⌟wh) = 3δi,hwjk �= 0, so Uω2+ω5 ∩
Im(u)⊥ = 0.

∧3U∨: Let 0 �= wijk ∈ ∧3U∨ and wh ∈ U∨. Then t(wh ⊗ wijk) = wijkh �= 0, so 
∧3U∨ ∩ Im(u)⊥ = 0.

The previous computations imply that Im(u)⊥ = ∧3U ⊕ Uω4+ω1 ⊂ ∧3V � ∧3V ∨. This 
is equivalent to the fact that Im(u) is the kernel of ∧3V → C|[U ]. The statement of the 
proposition follows. �
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4.2.4. Complete orthogonality
Here we show the following result. We define Q′ using a left mutation (see soon before 

§2.2), as follows:

Q′ = L〈B〉(Q).

Proposition 4.4. The exceptional bundles Q and Q′(1) are completely orthogonal.

Proof. We know that Q′(1) is an exceptional object that Ext•X(Q′(1), Q) = 0, so we 
have to check that Q′ is concentrated in degree 0 and that Ext•X(Q,Q′(1)) = 0. First we 
check that:

Ext•X(P,Q) = HomX(P,Q) = V ω1 . (4.2)

To see this, recall (2.3) and use that (Uω1 , P ) is exceptional to get, for all p ≥ 0:

ExtpX(P,Q) � ExtpX(P,Uω1+ω2).

Next, apply HomX(−,Uω1+ω2) to the sequence (2.2) defining P and work as in 
Lemma 2.3 to show that:

Ext•X(OX ,Uω1+ω2) = H0(Uω1+ω2) � V ω1+ω2 ,

Ext>0
X (Uω2 ,Uω1+ω2) = Ext1X(Uω2 ,Uω1+ω2) � H1(Uω1+ω2+ω4(−2)) � V ω1+ω2 ,

HomX(Uω2 ,Uω1+ω2) = H0(Uω1) � V ω1 .

Hence (4.2) holds if and only if the cup-product map below is non-degenerate:

Ext1X(Uω2 ,OX) ⊗H0Uω1+ω2) → Ext1X(Uω2 ,Uω1+ω2)

However, by the above analysis, using the notation of the proof of Lemma 2.3, this map 
is the cup-product

H1(Uω4−2ω6) ⊗H0(Uω1+ω2) → H1(Uω1+ω2+ω4−2ω6)

and therefore it is non-degenerate by Lemma 2.1, once again using the reflection about 
the root α6. So (4.2) is proved. The resulting evaluation map V ω1 ⊗P → Q is surjective, 
as it results by tensoring (2.2) by V ω1 and considering the evaluation map to (2.3); more 
precisely LP (Q) is an exceptional homogeneous bundle fitting into:

0 → U∨
ω1

→ LP (Q) → N → 0, with 0 → Uω1
α−→ N → K → 0, (4.3)

where K is the kernel of the map C → Uω1+ω2 of Proposition 4.3. Note that N fits into:
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0 → N → V ω1 ⊗ Uω2 → Uω1+ω2 → 0. (4.4)

Next, we show that Uω1 is completely orthogonal to LP (Q), so we need to prove

Ext•X(Uω1 ,LP (Q)) = 0. (4.5)

Using (4.3) and (4.4), one checks that (4.5) is proved once we show that α induces a 
non-zero map:

Ext1X(N,U∨
ω1

) → Ext1X(Uω1 ,U
∨
ω1

) (4.6)

To achieve this, first note that, as a consequence of the definition of K in terms of C
and the definition of C, K is an extension

0 → Uω2+ω5(−1) → K → Uω3 → 0.

Next, we work as in the proof of Lemma 2.2 to check:

Ext•X(Uω2+ω5(−1),U∨
ω1

) = Ext1X(Uω2+ω5(−1),U∨
ω1

) � H1(Uω4(−2)) � H1(ΩX) � C,

(4.7)

Ext•X(Uω3 ,U
∨
ω1

) = Ext2X(Uω3 ,U
∨
ω1

) � H2(Uω3+ω5(−3)) � H2(Ω2
X) � C, (4.8)

Ext1X(Uω3 ,Uω2+ω5(−1)) � H1(Uω4(−2)) � H1(ΩX) � C. (4.9)

Then, Ext•X(K,U∨
ω1

) vanishes if and only if the following cup-product map is non
degenerate:

Ext1X(Uω3 ,Uω2+ω5(−1)) ⊗ Ext1X(Uω2+ω5(−1),U∨
ω1

) → Ext2X(Uω3 ,U
∨
ω1

)

But from the identifications (4.7), (4.8) and (4.9), this map is the cup-product in 
cohomology:

H1(ΩX) ⊗H1(ΩX) → H2(Ω2
X),

and therefore it is non-degenerate. This proves Ext•X(K,U∨
ω1

) = 0.
Now we can check that (4.6) is non-zero. Indeed, assume it was. Then α induces an 

exact sequence:

0 → Uω1 ⊕ U∨
ω1

→ LP (Q) → K → 0.

But then, since Ext1X(K,U∨
ω1

) = 0, U∨
ω1

is a direct summand of LP (Q), which cannot 
happen since LP (Q) is exceptional.
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We have now proved (4.5). Moreover, we get that α induces a diagram:

0 0

U∨
ω1

U∨
ω1

0 V ω1 ⊗ OX LP (Q) K 0

0 Uω1

α
N K 0

0 0 0

The leftmost column is the tautological sequence (5.5) because the cup-product above is 
non-degenerate and thus (4.5) is proved. Moreover we get, from the previous diagram:

Q′ = L〈B〉(Q) � LOX
(LP (Q)) � LOX

(K).

Finally using the definition of K we check H•(K) = H0(K) = V ω3 hence, by Proposi
tion 4.3, Q′ is concentrated in degree 0 and we obtain:

Q′(1) ∈ 〈Uω1(−1),Uω1+ω2(−1),Uω1〉.

Therefore, using Lemma 2.5 and (2.3) we get Ext•X(Q,Q′(1)) = 0. �
Remark 4.5. One can actually prove that the bundle R6 appearing in Proposition 4.3
satisfies:

R6 � Q(−2) � LUω1 (−1)(L〈B〉(Q)).

Indeed, we checked that K � L〈B〉(Q) and one can prove Ext•X(Uω1(−1),K) � Vω5 , so 
R6 � LUω1 (−1)(K) is exceptional, hence indecomposable, so by Proposition 4.3 it must 
be isomorphic to Q(−2).

5. Generating more objects

We come back to X = Spin12 /P6. The goal of this section is to show that the excep
tional full triangulated subcategory D of Db(X) generated by the exceptional Lefschetz 
collection of Section 3 contains a bunch of vector bundles, which will be needed in the 
proof that D⊥ = 0. From (2.13) we immediately have

O(t) ∈ D for t ∈ [0, 9], (5.1)
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U∨(t) ∈ D for t ∈ [0, 9], (5.2)

∧2U∨(t) ∈ D for t ∈ [0, 9], (5.3)

Σ2,1U∨(t) ∈ D for t ∈ [0, 1]. (5.4)

Often we are going to use the tautological exact sequence

0 → U → V ⊗ O → U∨ → 0. (5.5)

Twisting (5.5) by O(t) with t ∈ [0, 9] and using (5.1), (5.2) we immediately obtain

U(t) ∈ D for t ∈ [0, 9]. (5.6)

We also note that for j ∈ [0, 6] we have isomorphisms

∧jU∨ � ∧6−jU(2) and ∧j U � ∧6−jU∨(−2).

Lemma 5.1. Considering the spinor representations Vω5 and Vω6 as vector bundles on 
X, we have:

i) the vector bundle Vω5 ⊗ O has an increasing filtration, whose factors are of the form

∧2i+1 U∨(−1) for t ∈ [0, 2]

ii) the vector bundle Vω6 ⊗ O has an increasing filtration, whose factors are of the form

∧2i U∨(−1) for t ∈ [0, 3]

Proof. This follows from [21, Proposition 6.3] (and is the same filtration F• described in 
Section 4.2). �

As a corollary we obtain the following.

Corollary 5.2. We have

∧jU∨(t) ∈ D for

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t ∈ [0, 9] if j ∈ [0, 2],
t ∈ [0, 7] if j ∈ [3, 4],
t ∈ [−2, 7] if j = 5,
t ∈ [−2, 7] if j = 6.

(5.7)

Proof. The cases with j ∈ [0, 2] we have already considered. We treat each j ∈ [3, 6]
separately. 
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(1) Case j = 3. Twisting Vω5 ⊗ O by O(t) with t ∈ [1, 8], using Lemma 5.1, the isomor
phism U(1) � ∧5U∨(−1), (5.1), (5.2), (5.6), we obtain the claim.

(2) Case j = 4. Twisting Vω6 ⊗ O by O(t) with t ∈ [1, 8], using Lemma 5.1, (5.1), (5.3), 
we obtain the claim.

(3) Case j = 5. Twisting the isomorphism U(2) � ∧5U∨ by O(t) with t ∈ [−2, 7] and 
using (5.6), we obtain the claim.

(4) Case j = 6. Since ∧6U∨ � det(U∨) � O(2), the claim follows from (5.1). �
Lemma 5.3. We have

SjU∨(t) ∈ D for
{
t ∈ [0, 9] if j ∈ [0, 1],
t ∈ [2, 9] if j ≥ 2.

(5.8)

Proof. For j ∈ [0, 1] the statement are known by (5.1) and (5.2).

Case j = 2. From (5.5) we obtain the exact sequence

0 → ∧2U → ∧2V ⊗ O → V ⊗ U∨ → S2U∨ → 0.

Twisting this sequence by O(t) with t ∈ [2, 9], using (5.1), (5.2), the isomorphism 
∧2U � ∧4U∨(−2), (5.7), we see that all the terms of the sequence except for S2U∨(t)
are contained in D. Hence, the same holds for S2U∨(t).

Cases j ≥ 3. We argue by induction. For each j ≥ 3 we consider the exact sequence

0 → ∧jU → ∧jV ⊗ O → ∧j−1V ⊗ U∨ → ∧j−2V ⊗ S2U∨ → · · · → V ⊗ Sj−1U∨ → SjU∨.

All the middle terms twisted by O(t) with t ∈ [2, 9] are contained in D by the induction 
assumption. For j ∈ [3, 6] the term ∧jU(t) = ∧6−jU∨(t− 2) is also in D for t ∈ [2, 9] by 
(5.7). For j ≥ 7 this term vanishes. Hence, the claim follows. �
Lemma 5.4. We have

S2U(t) ∈ D for t ∈ [0, 9], (5.9)

U⊗ U∨(t) ∈ D for t ∈ [2, 9], (5.10)

U∨ ⊗ U∨(t) ∈ D for t ∈ [2, 9]. (5.11)

Proof. From (5.5) we get an exact sequence

0 → S2U → S2V ⊗ O → V ⊗ U∨ → ∧2U∨ → 0.

Twisting this sequence by O(t) with t ∈ [0, 9] and using (5.1), (5.2), (5.7) we obtain (5.9).
One can reformulate (5.5) by saying that the bundle V ⊗O has a filtration with factors 

U and U∨. Then, taking the symmetric square, we obtain on S2V ⊗ O a filtration with 
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factors S2U,U ⊗ U∨, S2U∨. Twisting it by O(t) with t ∈ [2, 9], using (5.1), (5.9), and 
(5.8), we get (5.10).

Finally, tensoring (5.5) with U∨ we get 0 → U ⊗ U∨ → V ⊗ U∨ → U∨ ⊗ U∨ → 0. 
Together with (5.2) and (5.10) it implies (5.11). �

Recall that from Proposition 4.3 and Remark 4.5 we have the exact sequence

0 → Q(−2) → U∨(−1) ⊗ S+ → ∧3V ⊗ O → C → Σ2,1U∨ → 0,

with C defined by 0 → U∨ → V ⊗ ∧2U∨ → C → 0. Twisting this sequence by O(2) and 
using (5.1)-(5.4), we obtain Σ2,1U∨(2) ∈ D. Iterating this process one shows

Σ2,1U∨ ∈ D for t ∈ [0, 9]. (5.12)

Lemma 5.5. We have

∧2 U⊗ U∨(t) ∈ D for t ∈ [2, 9], (5.13)

∧2 U⊗ U(t) ∈ D for t ∈ [2, 9], (5.14)

U∨ ⊗ ∧2U∨(t) ∈ D for t ∈ [0, 7], (5.15)

U⊗ ∧2U∨(t) ∈ D for t ∈ [0, 7]. (5.16)

Proof. To show (5.13) we consider the exact sequence

0 → ∧2U → ∧2V ⊗ O → V ⊗ U∨ → S2U∨ → 0

obtained from (5.5). Tensoring it by U∨ we obtain the exact sequence

0 → ∧2U⊗ U∨ → ∧2V ⊗ U∨ → V ⊗ U∨ ⊗ U∨ → S2U∨ ⊗ U∨ → 0.

Note that we have

U∨ ⊗ U∨ � ∧2U∨ ⊕ S2U∨,

S2U∨ ⊗ U∨ � S3U∨ ⊕ Σ2,1U∨.

Twisting by O(t) with t ∈ [2, 9] and using (5.7), (5.8), (5.12) we obtain the claim.
To show (5.14) we tensor the exact sequence (5.5) by ∧2U and get the exact sequence

0 → U⊗ ∧2U → V ⊗ ∧2U → U∨ ⊗ ∧2U → 0.

Twisting by O(t) with t ∈ [2, 9], using the isomorphism ∧2U � ∧4U∨(−2), (5.7), (5.13)
we get the claim.
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To show (5.15) we note

U∨ ⊗ ∧2U∨ � ∧3U∨ ⊕ Σ2,1U∨.

Twisting by O(t) with t ∈ [0, 7], using (5.12) and (5.7) we obtain the claim.
To show (5.16) we tensor the exact sequence (5.5) by ∧2U∨ to get

0 → U⊗ ∧2U∨ → V ⊗ ∧2U∨ → U∨ ⊗ ∧2U∨ → 0.

Twisting by O(t) with t ∈ [0, 7], using (5.15) and (5.7) we obtain the claim. �
At this point we have proved the following.

Corollary 5.6. We have:

i) U∨ ⊗ ∧0U∨(t) ∈ D for t ∈ [0, 9],
ii) U∨ ⊗ ∧1U∨(t) ∈ D for t ∈ [2, 9],
iii) U∨ ⊗ ∧2U∨(t) ∈ D for t ∈ [0, 7],
iv) U∨ ⊗ ∧4U∨(t) ∈ D for t ∈ [0, 7],
v) U∨ ⊗ ∧5U∨(t) ∈ D for t ∈ [0, 7],
vi) U∨ ⊗ ∧6U∨(t) ∈ D for t ∈ [−2, 7].

Proof. We already proved these statements. Indeed, i) is (5.2), ii) is (5.11), iii) is (5.15), 
iv) follows from U∨ ⊗ ∧4U∨(t) � U∨ ⊗ ∧2U(t + 2) and (5.13), v) follows from U∨ ⊗
∧5U∨(t) � U∨ ⊗ U(t + 2) and (5.10) and vi) follows from ∧6U∨ � O(2). �

Thus, we are still missing the objects U∨⊗∧3U∨(t), and the range of t for U∨⊗U∨(t)
needs to be extended. This is our next goal.

Lemma 5.7. We have

U∨ ⊗ ∧3U∨(t) ∈ D for t ∈ [2, 7], (5.17)

U⊗ ∧3U∨(t) ∈ D for t ∈ [2, 7], (5.18)

U∨ ⊗ ∧3U(t) ∈ D for t ∈ [4, 9]. (5.19)

Proof. To show (5.17) we proceed as follows. By Lemma 5.1 we have

ss(V ω5 ⊗ O) = U∨(−1) ⊕ ∧3U∨(−1) ⊕ U(1);

Tensoring this by U∨ we get

ss(V ω5 ⊗ U∨) = U∨ ⊗ U∨(−1) ⊕ ∧3U∨ ⊗ U∨(−1) ⊕ U⊗ U∨(1)).
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Twisting this by O(t) with t ∈ [3, 8] and using (5.2), (5.10), (5.11) we obtain the claim.
To show (5.18) one can tensor the exact sequence (5.5) by ∧3U∨ to get

0 → U⊗ ∧3U∨ → V ⊗ ∧3U∨ → U∨ ⊗ ∧3U∨ → 0.

Now we twist by O(t) with t ∈ [2, 7] and use (5.17) and (5.7).
To show (5.19) we use the inclusion (5.17) and the isomorphism ∧3U∨ � ∧3U(2). �

Lemma 5.8. We have

∧2U⊗ ∧2U∨(t) ∈ D for t ∈ [4, 7], (5.20)

∧2U∨ ⊗ ∧2U∨(t) ∈ D for t ∈ [2, 5]. (5.21)

Proof. To show (5.20) we consider the decomposition

ss(∧4V ⊗ O) = ∧2U∨(−2) ⊕ ∧3U⊗ U∨ ⊕ ∧2U⊗ ∧2U∨ ⊕ U⊗ ∧3U∨ ⊕ ∧4U∨.

Twisting by O(t) with t ∈ [4, 7] and using (5.1), (5.7), (5.18), (5.19) we get the claim.
To show (5.21) we consider decomposition Lemma 5.1

ss(V ω6 ⊗ O) = O(−1) ⊕ ∧2U∨(−1) ⊕ ∧2U(1) ⊕ O(1),

where we have used that ∧4U∨(−1) � ∧2U(1) and ∧6U∨(−1) � O(1). Tensoring it by 
∧2U∨ we get

ss(V ω6 ⊗ ∧2U∨) = ∧2U∨(−1) ⊕ ∧2U∨ ⊗ ∧2U∨(−1) ⊕ ∧2U⊗ ∧2U∨(1) ⊕ ∧2U∨(1).

Twisting it by O(t) with t ∈ [3, 6] and using (5.7), (5.20) we obtain the claim. �
Lemma 5.9. We have

Σ3,1U∨(t) ∈ D for t ∈ [2, 9], (5.22)

Σ2,1,1U∨(t) ∈ D for t ∈ [2, 7], (5.23)

Σ2,2U∨(t) ∈ D for t ∈ [2, 7]. (5.24)

Proof. Our first step is to note that by the Littlewood-Richardson rule we have

U∨ ⊗ ∧3U∨ � Σ2,1,1U∨ ⊕ ∧4U∨,

∧2U∨ ⊗ ∧2U∨ � Σ2,1,1U∨ ⊕ Σ2,2U∨ ⊕ ∧4U∨.

Hence, by (5.7) the inclusions (5.17) and (5.21) immediately imply

Σ2,1,1U∨(t) ∈ D for t ∈ [2, 7], (5.25)
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Σ2,2U∨(t) ∈ D for t ∈ [2, 5]. (5.26)

This proves (5.23), but it is not quite enough to prove (5.24).
Our second step is to deal with Σ3,1U∨. Let us consider the exact sequence

0 → ∧3U → ∧3V ⊗ O → ∧2V ⊗ U∨ → V ⊗ S2U∨ → S3U∨ → 0

obtained from (5.5). After twisting by O(2) and using the isomorphism ∧3U � ∧3U∨(−2)
we rewrite the above sequence as

0 → ∧3U∨ → ∧3V ⊗ O(2) → ∧2V ⊗ U∨(2) → V ⊗ S2U∨(2) → S3U∨(2) → 0.

Tensoring it by U∨ we obtain the exact sequence

0 → ∧3
U

∨ ⊗ U
∨ → ∧3

V ⊗ U
∨(2) → ∧2

V ⊗ U
∨ ⊗ U

∨(2) → V ⊗ S
2
U

∨ ⊗ U
∨(2) → S

3
U

∨ ⊗ U
∨(2) → 0.

Now we note that by the Littlewood-Richardson rule we have

S2U∨ ⊗ U∨ � S3U∨ ⊕ Σ2,1U∨ and S3U∨ ⊗ U∨ � S4U∨ ⊕ Σ3,1U∨

Therefore, tensoring the above sequence by O(t) with t ∈ [2, 7] and using (5.17), (5.2), 
(5.11), (5.8), (5.12), we conclude

Σ3,1U∨(t) ∈ D for t ∈ [4, 9]. (5.27)

It is not quite enough for (5.22), but we are going to fix this soon.
For the third step we proceed as follows. Recall again the exact sequence from Propo

sition 4.3 and Remark 4.5

0 → Q(−2) → U∨(−1) ⊗ S+ → ∧3V ⊗ O → C → Σ2,1U∨ → 0. (5.28)

Using the Littlewood-Richardson rule and the definitions of P and Q we have

ss(P ⊗ U∨) = U∨ ⊕ ∧3U∨ ⊕ Σ2,1U∨

and

ss(Q⊗ U∨) = Σ3,1U∨ ⊕ Σ2,2U∨ ⊕ Σ2,1,1U∨ ⊕ S2U∨ ⊕ ∧2U∨.

Hence, for P ⊗ U∨ we have

P ⊗ U∨(t) ∈ D for t ∈ [0, 7], (5.29)

as each individual factor is contained in D by (5.12) and (5.7).
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In the same way we have

Q⊗ U∨(t) ∈ D for t ∈ [4, 5], (5.30)

as each individual factor is contained in D by (5.7), (5.8), (5.25), (5.26), (5.27).
Tensoring (5.28) by U∨(t) with t ∈ [6, 7] and using (5.29), (5.30), (5.2), (5.11), (5.15)

we conclude that Q⊗ U∨(t) ∈ D for t ∈ [6, 7]. Similarly, tensoring (5.28) by U∨(t) with 
t ∈ [4, 5], we conclude Q ⊗ U∨(t) ∈ D for t ∈ [2, 3]. Finally, tensoring (5.28) by U∨(3), 
we obtain Q ⊗ U∨(1) ∈ D. Thus, we have shown Q ⊗ U∨(t) ∈ D for t ∈ [1, 7]. This 
inclusion, together with (5.8), (5.7), (5.25), (5.26), (5.27) allows to conclude first that 
Σ2,2U∨(t) ∈ D for t ∈ [6, 7], as all the other factors are already contained in D with 
these twists. Then, similarly, we conclude that Σ3,1U∨(t) ∈ D for t ∈ [2, 3]. �
Corollary 5.10. We have

∧3 U∨ ⊗ U∨(t) ∈ D for t ∈ [0, 7], (5.31)

Σ2,1,1U∨(t) ∈ D for t ∈ [0, 7], (5.32)

U∨ ⊗ U∨(t) ∈ D for t ∈ [0, 9]. (5.33)

Proof. Let us consider again the exact sequence

0 → ∧3
U

∨ ⊗ U
∨ → ∧3

V ⊗ U
∨(2) → ∧2

V ⊗ U
∨ ⊗ U

∨(2) →→ V ⊗ S
2
U

∨ ⊗ U
∨(2) → S

3
U

∨ ⊗ U
∨(2) → 0,

as in the proof of the previous lemma. From the previous lemma, (5.7), (5.8), (5.11), 
(5.12), we know that all its terms except for ∧3U∨ ⊗ U∨ are contained in D with twists 
in [0, 7]. Hence, the same holds for ∧3U∨ ⊗ U∨.

The inclusion (5.32) follows from

U∨ ⊗ ∧3U∨ = Σ2,1,1U∨ ⊕ ∧4U∨,

combined with (5.31) and (5.7).
Finally, we show (5.33). Let us consider the decomposition

ss(V ω5 ⊗ U∨) � U∨ ⊗ U∨(−1) ⊕ ∧3U∨ ⊗ U∨(−1) ⊕ U⊗ U∨(1)

provided by Lemma 5.1. Twisting it by O(t) with t ∈ [1, 2] and using (5.31), (5.10), (5.2)
we obtain U∨⊗U∨(t) ∈ D for t ∈ [0, 1]. Combining this with (5.11) we get the claim. �
Lemma 5.11. For any j ∈ [0, 5] we have

U∨ ⊗ ∧jE∨(t) ∈ D for t ∈ [0, 7]. (5.34)
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Proof. Let us consider the exact sequence

0 → OX → U∨ → E∨ → 0.

It implies that ∧jU∨ has a filtration with factors OX , E∨, ∧2E∨, . . . , ∧jE∨. Therefore, 
arguing inductively with respect to j, if we know the inclusions

U∨ ⊗ ∧jU∨(t) ∈ D for t ∈ [0, 7], (5.35)

for all j ∈ [0, 5], then we know (5.34). Now we note that (5.35) holds by Corollary 5.6, 
(5.31) and (5.33). �
6. Proof of fullness

We are now in position to prove fullness of our Lefschetz exceptional collection. Recall 
that this is defined in (2.13). We will use that X is covered by zero-loci of a general 
global sections of E, where E∨ is the cokernel bundle of a general global section of 
U∨ = Uω1 , which is nowhere vanishing. A section s of E vanishes along a spinor 10-fold 
Ys � OG(5, 10)+, as we recalled in §3.1.

Theorem 6.1. The semiorthogonal exceptional collection appearing in (2.13) is full.

Proof. Let us take an object F ∈ D⊥, i.e. we have

Ext•X(A,F ) = 0 for any A ∈ D.

Let s ∈ H0(X,E∨) be a general section and is : Ys → X the embedding of its zero locus, 
as in Lemma 3.2(1).

Let us consider the set of vector bundles on X defined by

Υ := {U∨(t) | t ∈ [0, 7]}.

By Lemma 5.11 for any E ∈ Υ and any j the bundle E⊗∧jE∨ lies in D. Hence, we have

Ext•X(E ⊗ ∧jE∨, F ) = H•(X,∧jE⊗E∨ ⊗ F ) = 0 for all j,

and making use of the Koszul complex

0 → ∧5E → · · · → E → OX → is∗OYs
→ 0,

we obtain

H•(X, (E∨ ⊗ F ) ⊗ is∗OY ) = 0.
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Now, by the projection formula we rewrite

H•(X, (E∨ ⊗ F ) ⊗ is∗OY ) = H•(Ys, is
∗ (E∨ ⊗ F )) = Ext•Y (is∗E, is

∗F ) = 0.

Recall that Ys � OG(5, 10) has two connected components Ys+ and Ys−. We denote 

the compositions Ys± ⊂ Ys
is→ X by is±. Using this notation we have

Ext•Ys
(is∗E, is

∗F ) = Ext•Ys+
(is∗+E, is

∗
+F ) ⊕ Ext•Ys−(is∗−E, is

∗
−F ).

Hence, we have

Ext•Ys+
(is∗+E, is

∗
+F ) = 0 and Ext•Ys−(is∗−E, is

∗
−F ) = 0.

Applying Lemma 3.2(2) and Theorem 3.3 we obtain is∗+F = 0 and is∗−F = 0. Hence, 
we conclude is∗F = 0. Finally, since the above argument works for any general s ∈
H0(X,E∨), by Lemma 3.2(3,4) we obtain F = 0. �
7. A collection on the Freudenthal variety

Recall from the introduction that, in the third row of Freudenthal magic square, the 
homogeneous varieties P 2 × P 2, G(3, 6), X = Spin12 /P6 and E7/P7 appear, so by the 
general philosophy of [22] these varieties should share a similar geometric behaviour. Our 
first observation here is that Lemma 2.2 can be transposed to E7/P7.

Lemma 7.1. On E7/P7 we have a canonical E7-equivariant extension

0 → OE7/P7 → O → Uω1 → 0

which is an exceptional object, with O∨(2) being the normal bundle of E7/P7 inside 
P (V ω7).

Proof. In the proof of Lemma 2.2 substitute: Spin12 with E7, P6 with P7, ω2 with ω1, 
ω6 with ω7 and P with O; the modified proof still holds. �
Lemma 7.2. The collection 〈OE7/P7 , O,OE7/P7(1), O(1), . . . ,OE7/P7(17), O(17)〉 is excep
tional.

Proof. By an application of the BBW Theorem, we get, for 1 ≤ i ≤ 17:

Ext•X(OE7/P7(i),OE7/P7) = Ext•X(O(i),OE7/P7) = Ext•X(O(i), O) = 0.

Since O is a non-trivial extension of OE7/P7 and Uω1 , we also get Ext•X(O,OE7/P7) =
0. �
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One can also define a G-equivariant extension

0 → O → P ′ → U2ω1 → 0

Let us define a numerical exceptional collection in the derived category Db(X) of any 
smooth projective variety X as a collection of objects E1, . . . , Er such that χ(Ei, Ej) = 0
if i > j and χ(Ei, Ei) = 1 for all i. Let us denote by

B′ :=
(
OE7/P7 , O, P ′) .

Moreover we will denote by Q′ the projection of Uω1+ω3(−5) to the left orthogonal of

〈B′, . . . ,B′(17)〉.

Remark 7.3. Here and later on by ``projection'' we mean that Q′ is obtained as an 
extension of Uω1+ω3(−5) with elements in the collection (B′, . . . ,B′(17)) so that, for 
any element E ∈ (B′, . . . ,B′(17)), χ(E,Q′′) = 0; if we knew that (B′, . . . ,B′(17)) were 
an exceptional collection, then it would be admissible and the ``projection'' to its left 
orthogonal would be well defined. Notice however that Q′ is uniquely defined in the 
Grothendieck group.

We consider the collection:

A′ :=
(
Q′,OE7/P7 , O, P ′) .

Proposition 7.4. The collection (A′,A′(1),B′(2), . . . ,B′(17)) is a numerically exceptional 
collection of maximal length, i.e. of length equal to 

∑
p h

p,p(E7/P7) = 56.

Proof. The projection Q′ can be computed numerically, i.e. in the Grothendieck group 
of E7/P7. Let us explain the strategy. Let us denote by R0 := Uω1+ω3(−5) and let 
us define R1, R2, . . . , R54 = Q′ inductively. Write the collection (B′, . . . ,B′(17)) as 
(E1, . . . , E54). The object Ri+1 will be an extension of Ri by χ(Ei+1, Ri)Ei+1(−18)
in the Grothendieck group. When this process finishes, by Serre duality one obtains an 
object Q′ which is by definition left orthogonal to 〈E1, . . . , E54〉, and one checks that 
χ(Q′, Q′) = −χ(Q′(2), Q′) = 1 and χ(Q′(1), Q′) = 0. Another computation with BBW 
Theorem yields the numerical exceptionality of the collection. �

Some observations are in order. Let us write the element in the Grothendieck group 
corresponding to Q′:

Uω1+ω3(−5) − P ′(−7) + O(−6) + 56P ′(−6) − 1673OE7/P7(−5) − 3137O(−5) + P ′(−5)+

− 94656OE7/P7 (−4) − 56P ′(−4) − 54342OE7/P7 (−3) + 3271O(−3) − P ′(−3) − 58576OE7/P7 (−2)+

− 968O(−2) + 56P ′(−2) + 54342OE7/P7 (−1) − 3137O(−1).
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Notice that by general properties of mutations we also obtain another numerically ex
ceptional collection:

(Q′,LBQ
′(1),B′,B′(1), . . . ,B′(17)) .

The peculiar fact about this collection is that its residual collection (Q′,LB′Q′(1)) is 
numerically completely orthogonal, meaning that χ(Q′,LB′Q′(1)) = χ(LB′Q′(1), Q′) =
0. Therefore, such a residual collection numerically satisfies Dubrovin’s refined conjec
ture, see [17, Conjecture 1.3] and [7, Corollary 1.2]. We believe that the collection above is 
an exceptional collection in Db(E7/P7) (of maximal length), but we could not prove our 
claim due to the big number of cohomologies between Hom’s of the irreducible factors 
of the extensions in play. We even suspect that the collection is full.

If the above collection has the advantage of respecting Dubrovin’s conjecture’s 
expectation, we will briefly describe another numerically exceptional collection on 
E7/P7 which is closer to the collection of (2.13) on Spin12 /P6. Let us begin with 
the usual collection 

(
OE7/P7 , O, . . . ,OE7/P7(17), O(17)

)
. Consider the projection P of 

Uω3 to the left orthogonal of 〈OE7/P7(1), O(1), . . . ,OE7/P7(18), O(18)〉. Moreover con
sider the projection (as in Remark 7.3) Q of Uω1+ω3 to the left orthogonal of 
〈OE7/P7(1), O(1), P (1), . . . ,OE7/P7(18), O(18), P (18)〉. Let us write

B := 〈OE7/P7 , O, P 〉, A := 〈OE7/P7 , O, P,Q〉.

By a repeated application of the BBW Theorem done with a Python script using [31] 
as in the proof of Proposition 7.4 one obtains the following result.

Proposition 7.5. The homogeneous bundles P and Q are numerically exceptional and the 
collection

D′ := (A,A(1),B(2), . . . ,B(17))

is numerically exceptional of maximal length. Moreover Q and LB(1)Q(1) are numerically 
completely orthogonal.

The computation is enclosed as an ancillary file in the arXiv version of this paper.

Remark 7.6. Notice that in the Python script, in order to obtain the result, it was 
easier to work with the projection (as in Remark 7.3) of Uω1+ω3(−9) to the left orthog
onal of 〈B,B(1), . . . ,B(17)〉. Then Q is easily obtained as the projection of F (9) to the 
left of 〈B(1), . . . ,B(8)〉. Similarly, if F ′ is the projection of Uω1+ω3(−8) to the left of 
〈B,B(1), . . . ,B(17)〉, then LB(1)Q(1) is obtained as the projection of F ′(9) to the left 
of 〈B(1), . . . ,B(8)〉. Since these operations preserve (numerical) orthogonality, we prove 
Proposition 7.5 using F and F ′.
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