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Abstract
It is well-known that kinetic energy produced artificially by an inadequate numerical dis-
cretization of nonlinear transport terms may lead to a blow-up of the numerical solution 
in simulations of fluid dynamical problems such as incompressible turbulent flows. How-
ever, the community seems to be divided whether this problem should be resolved by the 
use of discretely energy-preserving or dissipative discretization schemes. The rationale for 
discretely energy-preserving schemes is often based on the expectation of exact conserva-
tion of kinetic energy in the inviscid limit, which mathematically relies on the assump-
tion of sufficient regularity of the solution. There is the (contradictory) phenomenological 
observation in turbulence that flows dissipate energy in the limit of vanishing molecular 
viscosity, an “anomalous” phenomenon termed dissipation anomaly or the zeroth law of 
turbulence. As already conjectured by Onsager, the Euler equations may dissipate kinetic 
energy through the formation of singularities of the velocity field. With the proof of 
Onsager’s conjecture in recent years, a consequence for designing numerical methods for 
turbulent flows is that the smoothness assumption behind conservation of energy in the 
inviscid limit becomes indeed critical for turbulent flows. The velocity field rather has to 
be expected to show singular behavior towards the inviscid limit, supporting the dissipa-
tion of kinetic energy. Our main argument is that designing numerical methods against the 
background of this physical behavior is a strong rationale for the construction of dissipa-
tive (or dissipation-aware) numerical schemes for convective terms. From that perspective, 
numerical dissipation does not appear artificial, but as an important ingredient to overcome 
problems introduced by energy-conserving numerical methods such as the inability to rep-
resent anomalous dissipation as well as the accumulation of energy in small scales, which 
is known as thermalization. This work discusses stabilized H1, L2 , and H(div)-conforming 
finite element methods for incompressible flows with a focus on the energy-stability of the 
numerical method and its dissipation mechanisms to predict inertial dissipation. Finally, 
we discuss the achievable convergence rate for the kinetic energy in under-resolved turbu-
lent flow simulations.
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1 � Motivation

In recent years, significant progress has been made from a mathematical perspective 
regarding the understanding of the phenomenon of anomalous energy dissipation, i.e.  a 
non-vanishing dissipation rate in the limit � → 0 , and the occurrence of finite-time Euler 
singularities. The recent mathematical proof (Isett 2018) of Onsager’s conjecture — pro-
viding a link between the occurrence of anomalous dissipation and singular behavior in 
terms of irregularities of the velocity field — is an important milestone in this context. It 
appears as if these topics are not yet sufficiently reflected in the numerically oriented litera-
ture on simulating turbulent flows and large-eddy simulation (LES).

Mathematical results suggest that the Euler equations are not per se energy-conserv-
ing (and time-reservible), but that the solution regularity is key to the question regarding 
the occurrence of kinetic energy dissipation in the inviscid limit. As an important mes-
sage for researchers developing numerical discretization schemes, assumptions about the 
smoothness/regularity of the solution do not seem to be academic in the context of turbu-
lence flows. Instead, turbulent flows can be expected to exhibit a regularity that is critical 
w.r.t. the occurrence of anomalous dissipation, involving singular behavior. The CFD com-
munity is familiar with singular behavior in the form of shocks in hypersonic flows (com-
pressible regime). However, also incompressible flows in the inviscid limit  (Euler equa-
tions) can be expected to show singularities. We denote such singular behavior as turbulent 
singularities in the following, in order to distinguish them from shock singularities for 
compressible flows. While shock singularities are characterized by (strong) singularities 
with discontinuities/jumps in certain quantities, turbulent singularities can be considered 
more weak in comparison, i.e.  they have a higher degree of regularity or smoothness as 
compared to shock singularities, but strong enough to cause dissipation. According to the 
understanding stemming from Onsager’s conjecture, turbulent singularities are character-
ized by a continuous velocity field with infinite gradient.

Implicit large-eddy simulation is well-established as a numerical technique to simulate 
turbulent flows in a numerically under-resolved setting. The term implicit describes that 
the numerical method itself accounts for the numerical dissipation present in turbulence, 
instead of adding physically motivated turbulence models  (acting as energy sink) to the 
scheme. Numerical methods such as the MILES approach in the context of finite volume 
methods (Margolin and Rider 2002; Margolin et al. 2006) and stabilized methods or vari-
ational multiscale methods in the context of finite element methods (Bazilevs et al. 2007; 
Ahmed et al. 2017; Rasthofer and Gravemeier 2018) are well-known. A main motivation 
for the present work is to link implicit LES techniques with the topic of anomalous dis-
sipation, singular behavior and the new mathematical insight on Onsager’s conjecture. 
Important and remarkably early contributions in this otherwise rarely considered field are 
by Hoffman and Johnson (2008, 2010), a perspective we will discuss in more detail in this 
work.

Certainly, the phenomenon of anomalous energy dissipation has been internalized by 
the LES community in the sense that there is a need for representing/modeling dissipation 
in LES simulations. At the same time, the LES community seems to be divided regard-
ing the question whether a numerical method should be able to represent backscatter, or 
whether backscatter is essentially a detrimental property of a numerical scheme due to its 
potentially de-stabilizing behavior. In terms of singular behavior, there still exist mysteri-
ous imaginations of finite-time singularities. In particular the link between dissipation and 
singular behavior appears to be blurred. It is still a widespread assumption that solutions 
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to the Euler equations must preserve kinetic energy and will remain smooth. The imag-
ination of finite-time singularities as an event  (often termed blow-up) with catastrophic 
consequences for a numerical method, implying its unavoidable breakdown once such a 
singularity occurs, is not un-common, see e.g. Winters et al. (2018), Lee and Lee (2023). 
It seems as if the picture drawn currently in the literature contains further contradictions. 
To give one concrete example, the work by Hughes et al. (2000) on the variational mul-
tiscale method for LES expects a theoretical energy-conserving behavior for the convec-
tive term (−∇u, u⊗ u)Ω , while the need for stabilization terms is considered a peculiarity 
of continuous Galerkin discretizations rather than a consequence of the physical behavior 
related to the inertial dynamics of turbulent flows. In the literature on variational multiscale 
methods (Bazilevs et al. 2007; Ahmed et al. 2017; Rasthofer and Gravemeier 2018), the 
metric of energy stability and dissipation seems to be under-represented in the discussion 
of implicit LES methods as compared to multiscale aspects. Often, discretely energy-con-
serving numerical methods are designed without awareness of the phenomenon of anom-
alous energy dissipation (Charnyi et  al.  2017; Coppola et  al.  2019; Zhang et  al.  2022). 
The aim of the present paper is to shed light on these contradictions and add another 
perspective to the discussion, with a main focus on the metric of energy-stability (versus 
energy-conservation).

The present work discusses the design of numerical methods for simulation of incom-
pressible turbulent flows against the background of the novel mathematical insight 
described above. Of interest are conforming and non-conforming finite element methods 
for large-eddy simulation. The outline of this article is as follows. As a basis for subse-
quent discussions, we summarize the relevant theoretical background in Sect. 2. Section 3 
discusses the numerical technique of large-eddy simulation as well as different philoso-
phies and metrics employed within this wide field of research. Section 4 forms the core 
of the present work. We summarize and compare H1, L2 , and H(div)-conforming methods 
in terms of their stabilization mechanisms and their impact on consistency, mass conser-
vation, and energy stability. Section 5 shows numerical results for the three-dimensional 
Taylor–Green problem at infinite Reynolds number, investigating the kinetic energy evolu-
tion and dissipation under mesh refinement. Section 6 uses a simple scaling argument with 
the goal to explain convergence rates in the kinetic energy observed in practical numerical 
simulations of turbulent flows. We close this article with a discussion and open questions 
in Sect. 7.

2 � Theoretical Background

Hyperbolic balance laws in fluid dynamics have the fundamental characteristic that steep 
gradients may develop from smooth initial data. An important manifestation is the forma-
tion of small scale structures according to the dynamics of high-Re or infinite-Re turbu-
lence, typically described by the mathematical model of the incompressible Navier–Stokes/
Euler equations

with � = 0 for the Euler equations. For a physical understanding of turbulent flows and, in 
particular, a characterization of flow structures and energy-transfer mechanisms in terms 

(1)
𝜕u

𝜕t
+ ∇ ⋅ (u⊗ u) − 𝜈∇2u + ∇p = 0 ,

∇ ⋅ u = 0 ,
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of the velocity gradient tensor, we refer to two recent contributions by Hoffman (2021), 
Johnson and Wilczek (2024) and references therein. By analyzing velocity gradient sta-
tistics and dynamics, the review article  by  Johnson and Wilczek (2024) argues there is 
strong evidence that the energy cascade from large to small scales is not driven by viscous 
dissipation but by inertial dynamics  (strain-rate self-amplification and vortex stretching). 
State-of-the-art pictures of the turbulent energy cascade involve molecular dissipation as 
the final energy transfer mechanism during the energy cascade from large to small scales, 
acting as an energy sink for the above mathematical model of incompressible flow. Based 
on the observation that fluids typically involved in technical systems exhibit a finite, non-
vanishing viscosity, the Navier–Stokes equations with viscous term might be considered 
more relevant than the limit case of the Euler equations from a physical point of view.

From a numerical point of view, i.e. when computing numerical approximations to the 
Navier–Stokes equations at high Reynolds number, however, the situation is different. The 
circumstance that irreversible effects such as dissipation of kinetic energy are expected to 
happen at length scales much smaller than what can be resolved by a numerical scheme 
renders the robust and accurate numerical solution of such problems an outstanding chal-
lenge. For a finite spatial resolution at very high Reynolds number, molecular dissipation 
through the viscous term is impossible because the small scales relevant for molecular 
dissipation are not resolvable.1 Hence, the Euler equations are actually the mathematical 
model seen by the numerical discretization scheme. Due to finite resolution in numeri-
cal simulations, the computed solution can be thought of as a filtered or spatially coarse-
grained velocity field, for which the viscous term and the associated molecular dissipation 
vanishes for � → 0 . Mathematical arguments for this reasoning are given in (Eyink 2024, 
Equations  3.4 and 3.5). The dynamics of turbulent flows with energy transfer to small 
scales driven by inertial dynamics on a macroscopic scale lets one expect that a numerical 
approach resolving only large structures down to a numerical cutoff length scale is a fea-
sible approach to accurately compute quantities of engineering interest in turbulent flows.

2.1 � Anomalous Energy Dissipation

For incompressible flows, the kinetic energy is given as

Regarding the rate of dissipation of kinetic energy in turbulent flows  (considering 
e.g. homogeneous isotropic turbulence in a periodic box), there is widespread consensus to 
the theory that the dissipation rate does not tend to zero in the limit � → 0 , but takes a posi-
tive value with a finite amount of dissipation that is independent of � . This phenomenon 
was first described by Taylor (1935), a phenomenon also called inviscid/inertial dissipa-
tion or the zeroth law of turbulence. Also Kolmogorov’s 1941  (K41) theory is based on 
the assumption of a non-vanishing dissipation rate in the inviscid limit that is independ-
ent of viscosity  (� = O(U3∕L) ). Numerical results in  Sreenivasan (1998), Kaneda et  al. 
(2003) and experimental results  in Pearson et al. (2002) indicate evidence of anomalous 

(2)E =
1

2 ∫Ω

u ⋅ u dΩ .

1  A statement we consider valid as long as the compute power available is not sufficient to conduct direct 
numerical simulations for challenging problems.
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dissipation within numerical/experimental capabilities. According to recent review articles, 
anomalous dissipation appears to be well-accepted nowadays as an essential building block 
of turbulence theories (Eyink 2008; Dubrulle 2019).

2.2 � Onsager’s Conjecture–A Link Between Dissipation and Singular Behavior

Divergence terms in the differential form of a PDE, such as the nonlinear convective term 
in the incompressible Euler equations, suggest a physical conservation property. Integrat-
ing over the domain and applying Gauss’ divergence theorem indicate that only boundary 
faces contribute to the evolution of the (kinetic) energy and that energy has to be conserved 
in case of periodic boundary conditions (p.b.c.),

This is precisely the argument used e.g. in (Guermond et al. 2004, Equation 2.3), where the 
authors write that the nonlinear term does not contribute to the global kinetic energy bal-
ance due to

This relation relies on the essential assumption of differentiable solutions, which is often 
not sufficiently highlighted in the literature in this context.2 Following the smoothness 
assumption nevertheless, incompressible viscous flows on periodic domains then obey the 
classical dissipation equation

Equations (4) and (5) are often (mis-)interpreted as stating conservation of energy in the 
absence of viscosity,  �E(t, � = 0)∕�t = 0 . For example, Duponcheel et  al. (2008) write 
“Since there is no dissipation term, the energy should be conserved.” and “The three-
dimensional incompressible Euler equations are time-reversible.”. The review article by 
Coppola et  al. (2019) summarizes in the abstract that “The invariant character of quad-
ratic quantities such as global kinetic energy in inviscid incompressible flows is a particular 
symmetry [...].”. When it comes to the development of numerical methods for turbulent 
flows, another typical mis-interpretation of Eq. (4) is that the numerical discretization of 
the nonlinear convective term has to be discretely energy-preserving, an aspect discussed 
in detail in the present work. These mis-interpretations originate from the fact that the 
numerical PDE community has not been aware of the dissipation anomaly until recently, 
as explained e.g. in Eyink (2024). In the following, we want to briefly explain how the phe-
nomenon of the dissipation anomaly is related to the regularity of the velocity field.

Onsager (1949) pointed out that conservation of energy in the inviscid limit is an inva-
lid conclusion as the proof of the conservation of energy (according to Eq. 4) relies on a 
differentiable velocity field. To make this point more clear, we assume for now that the 

(3)∫Ω

∇ ⋅ f (u)dΩ = ∫
�Ω

f (u) ⋅ n dΓ
p.b.c.
= 0 .

(4)∫Ω

(u ⋅ ∇u) ⋅ u dΩ = ∫Ω

u ⋅ ∇
(

1

2
u2
)

dΩ = ∫Ω

∇ ⋅

(

1

2
u2u

)

dΩ = 0 .

(5)
�E(t, �)

�t
= −∫Ω

�∇u� ∶ ∇u� dΩ .

2  The attentive reader might be reminded of the words by G. C. Lichtenberg, “The most dangerous of all 
falsehoods is a slightly distorted truth.”. In the following, we comment in more detail on typical mis-inter-
pretations of Eq. (4).
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regularity assumptions behind Eq. (4) are fulfilled and consider the limit � → 0 in Eq. (5). 
Anomalous dissipation describes a non-vanishing dissipation rate in the inviscid limit,

Note that a positive dissipation rate D(t) > 0 would imply that the enstrophy ‖∇u�‖2
Ω
 tends 

to infinity in the limit � → 0 . Hence, bringing the above naive result on the kinetic energy 
balance in agreement with the phenomenon of anomalous energy dissipation requires a 
velocity field that is non-smooth. This should raise concerns regarding the assumptions 
underlying the naive kinetic energy balance. While this simple derivation might serve as a 
descriptive illustration of Onsager’s reasoning that energy dissipation in three-dimensional 
incompressible flows can take place for � = 0 by the formation of singularities of the veloc-
ity, we want to refer to important works by Duchon and Robert (2000) and Eyink (2024) 
for a comprehensive reasoning. By describing the spatial regularity of the velocity in terms 
of Hölder continuity3, Onsager postulated an important result that formulates precisely the 
relation between the occurrence of anomalous dissipation and the spatial regularity of the 
velocity. This is today known as Onsager’s conjecture (Eyink and Sreenivasan 2006)

•	 Energy is conserved if the velocity is Hölder continuous with Hölder exponent > 1∕3
•	 Energy may be dissipated if the velocity is Hölder continuous with Hölder exponent 

< 1∕3

To date, Onsager’s conjecture has been proven by a sequence of mathematical contribu-
tions, see e.g. Eyink (1994), Constantin and Titi (1994), De Lellis and Székelyhidi (2014), 
Buckmaster et al. (2018), Isett (2018). It has first been shown that Hölder continuity with 
exponent > 1∕3 implies conservation of energy. Later, dissipative weak Euler solutions 
have been constructed up to Onsager’s critical regularity of 1/3 using convex-integration 
techniques. The critical case 1/3 appears to be still open, where we want to refer to the 
recent result in De Rosa and Inversi (2024). The critical Hölder exponent 1/3 separates the 
range 0 < 𝛼 < 1 of singular behavior into dissipative singularities and non-dissipative sin-
gularities. Let us summarize here that today’s understanding of turbulence clearly includes 
the occurrence of singularities (Dubrulle 2019; Eyink 2024).

3 � Large‑Eddy Simulation

The methodology dealing with the numerical simulation of high-Reynolds number flows 
in an under-resolved setting, including the inviscid limit, is commonly known as large-
eddy simulation (LES). In our understanding, developing LES methods describes the art 
of finding a dissipation mechanism that is (i)  strong enough to ensure numerical robust-
ness and to produce physically-relevant dissipative solutions  (see below) for high Reyn-
olds numbers and (ii) weak enough to preserve high accuracy for smooth regions along 

(6)lim
𝜈→0

𝜕E(t, 𝜈)

𝜕t
= − lim

𝜈→0
𝜈 ∫Ω

∇u𝜈 ∶ ∇u𝜈 dΩ = −D(t) < 0 .

3  A function  f ∶ U ⊂ ℝ → ℝ is Hölder continuous with exponent � if there exists C > 0 ∈ ℝ such that it 
holds

|f (x) − f (y)| ≤ C|x − y|� for all x, y ∈ U.
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with a minimal dependency of numerical results on turbulence model parameters. The 
review article by Guermond et  al. (2004) takes a mathematical perspective on LES and 
emphasizes the important results by Duchon and Robert (2000) on dissipative solutions. 
The authors conclude that LES should select such “dissipative solutions” or “suitable weak 
solutions” (i.e. weak solutions satisfying an energy balance inequality locally in a distribu-
tional sense) to obtain physically relevant solutions.

3.1 � A Summary of Review Articles on LES

We surveyed review articles on large-eddy simulation with a particular focus on the aspect 
of energy conservation/dissipation of the numerical scheme. Different philosophies can be 
found in the literature:

•	 A group of review articles does not discuss the topic of energy-stability of discretiza-
tion schemes explicitly or identify this as a central topic in LES, see Lesieur and Metais 
(1996), Piomelli (1999), Ferziger (2000), Fureby (2008), Piomelli (2014), Georgiadis 
et al. (2010). For example, Ferziger (2000) writes “Almost any method used in compu-
tational fluid dynamics can be applied to LES.”. The early review article by Piomelli 
(1999) mentions briefly the development of high-order energy-conserving schemes as 
future goal.

•	 Another group advocates kinetic-energy-conserving discretization schemes, see Moin 
(2002), Zhiyin (2015). Discrete energy-conservation is typically considered both robust 
and accurate, while upwind fluxes are considered inappropriate for LES.4 Despite 
numerical robustness (i.e. no nonlinear blowup), we note that such a numerical method 
will not find dissipative solutions unless further/additional measures (such as sub-grid 
turbulence models) are taken.

•	 A group of articles explicitly addressing or highlighting the need for stable discretiza-
tion schemes, see e.g.  Drikakis et  al. (2009). These articles can typically be associ-
ated to the paradigm of implicit large-eddy simulation, see also  Margolin and Rider 
(2002), Margolin et al. (2006). Stabilized finite element methods (Hoffman and John-
son 2007) and related methods interpreted in the context of variational multiscale meth-
ods (Bazilevs et al. 2007; Principe et al. 2010; Codina et al. 2011) (see also the review 
articles by Gravemeier (2006), Ahmed et al. (2017), Rasthofer and Gravemeier (2018) 
on variational multiscale methods for incompressible turbulent flows) can also be asso-
ciated to this category.

Interestingly, the early review article by Lesieur and Metais (1996) puts the occurrence of 
enstrophy blow-up/singularities and inertial dissipation into a context. However, the trust 
in numerical discretization techniques reliably predicting turbulent dissipation was very 

4  A typical prejudice in the LES community is that upwinding is too dissipative. Research on high-
order methods in recent years has revealed that the order of numerical discretization schemes (high-order 
methods) strongly influence the amount of dissipation and the suitability of upwind fluxes. Hence, while 
upwinding is sometimes considered inappropriate for LES due to excessive dissipation  (in particular for 
low-order discretizations), upwinding as the only stabilization mechanism in a numerical scheme might 
also not be strong or dissipative enough to ensure stability  (in particular for high-order discretizations). 
This aspect appears to be blurred in the review articles on LES cited above; some indications can be found 
e.g. in Georgiadis et al. (2010).
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limited  (Lesieur and Metais 1996,  Section  9). The review article  by  Bouffanais (2010) 
points to the importance of the interplay between LES modeling and numerical discretiza-
tion schemes, but no connection to the need for dissipative discretization schemes is made 
in that work.

The developments in large-eddy simulation described above are also reflected in the 
ambivalence of how to judge the capability of LES techniques to represent backscatter, i.e., 
the transfer of energy from small to large scales. While some works strengthen the ability 
of a numerical method to represent this physical mechanism, a numerical failure of such 
schemes is often reported due to kinetic energy blow-up induced by negative dissipation. 
As a consequence, additional techniques such as averaging of certain quantities in homo-
geneous directions are typically required (Lesieur and Metais 1996). The article by Mason 
(1994) argues that a negative eddy viscosity (systematically enhancing resolved gradients) 
is not an adequate model for the physical process of backscatter. Guermond (2008) argues 
strongly that letting energy come back from under-resolved scales is not legitimate. Ras-
thofer and Gravemeier (2013) see one of the strengths of their multifractal sub-grid scale 
model in the ability to represent backscatter. Codina et al. (2011) argue similarly for the 
orthogonal subscales model with dynamic subscales. The recent review article by Johnson 
and Wilczek (2024) argues “that the incorporation of backscatter is not a necessary feature 
of accurate LES models.”.

3.2 � Physical (Explicit) Versus Numerical (Implicit) Sub‑Grid Modelling

The categorization of review articles on LES made above reflects an understanding gained 
over decades in our opinion, namely that the mathematical properties of numerical discre-
tization schemes are of outmost importance for robust and reliable LES simulations, while 
the impact of turbulence modeling and the attempt to address the problem by even better 
sub-grid models has been realized to be limited more severely than expected in the early 
days of LES. We summarize important properties that an LES method should fulfill:

•	 Ensure robustness of the numerical simulation, i.e.  avoid non-linear blow-up that 
causes a numerical simulation to terminate,

•	 Include mechanisms of dissipation in order for the LES method to be able to find dis-
sipative solutions, and

•	 Realize a dissipation mechanism that does not dominate numerical approximation 
errors for problems (or sub-regions within a problem) with smooth solution.

Regarding a realization of these properties in the design of a numerical solver for turbu-
lent flows, the literature distinguishes between two main approaches, namely physical (or 
explicit) LES versus numerical (or implicit) LES, even though a precise assignment to one 
of these groups might not always be possible, see e.g. Guermond et al. (2011), Dairay et al. 
(2017). Sticking to this binary distinction nevertheless, the LES community appears to be 
undecided whether one approach can generally be considered more appropriate than the 
other one.

Physical (explicit) LES On the one hand, it is a widespread concept that a computa-
tional method for LES should separate the numerical discretization method from the tur-
bulence model accounting for the dissipation of energy. The typical procedure is to fol-
low the design goal of constructing discretely energy-conserving schemes regarding the 
development of numerical methods, and to consider a proper treatment of turbulence as 
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a topic to be addressed subsequently/separately. This approach tries to separate the two 
aspects of robustness and dissipation mentioned above. Representatives of this concept in 
recent years are so-called skew-symmetric (Coppola et al. 2019), EMAC (energy, momen-
tum, angular momentum conserving) (Charnyi et al. 2017), etc.  formulations as numeri-
cal discretization schemes along with a nonlinear viscosity model such as a  (dynamic) 
Smagorinsky model (or more advanced techniques) as turbulence model. In the context of 
finite element methods discussed in the present work, explicit sub-grid models e.g. in the 
form of a (dynamic) Smagorinsky model are used in Hughes et al. (2000), Röhe and Lube 
(2010), Gravemeier et al. (2010), Lehmkuhl et al. (2019) in an H1-conforming setting, and 
e.g. in Marek et al. (2015), Ferrer (2012) in an L2-conforming setting. We further refer to 
Guermond et al. (2004), Guermond (2008) for a mathematical perspective on explicit LES.

Numerical (implicit) LES On the other hand, concerns are shared whether such a sepa-
ration of disciplines is appropriate regarding the overall goal of simulating turbulent flows 
in a robust, accurate, and computationally efficient manner. Dissipation may be represented 
directly by the numerical scheme according to the concept of implicit large-eddy simu-
lation. Boris et al. (1992) stated in a pioneering work on implicit large-eddy simulation: 
“I do not believe it is practical to separate the formulation of the LES problem from the 
numerical method used for its solution.”. Research on implicit LES techniques has demon-
strated that numerical schemes—due to their self-adaptive character (Drikakis 2003)—are 
able to correctly predict the physical dissipation rate. As an important result in this context, 
the work by Margolin et al. (2006) has shown that implicit LES results fulfill Kolmogo-
rov’s 4/5 law,5 which describes that the energy dissipation rate is independent of the vis-
cosity and is driven by the large scales of the flow. This might be seen as a demonstration 
that the numerical dissipation in implicit LES is not artificial or unphysical but controlled 
by resolved scales. In the context of finite element methods, the works by Hoffman et al. 
(2011), Fehn et al. (2022) indicate that inertial dissipation with grid-independent dissipa-
tion rates may be predicted by suitably stabilized (dis-)continuous Galerkin discretizations 
of the incompressible Euler equations. These results might be interpreted positively in the 
sense that they suggest there are physics-compatible numerical methods that are able to 
represent the phenomenon of anomalous dissipation (and other turbulence phenomena) 
without a physically motivated turbulence model. A detailed overview of finite element 
methods for incompressible flows that can be associated to the paradigm of implicit large-
eddy simulation is given in Sect. 4.

3.3 � On Energy‑Conserving Numerics and the Trust in Numerical Dissipation

There appears to be limited trust regarding the physical correctness or the predictive char-
acter of implicit LES with inbuilt numerical dissipation. We see the reasons for this mainly 
twofold:

Firstly, inappropriate mathematical assumptions such as Eq.  (4) formulate misleading 
design goals. Without further critical assessment, it seems to be natural to expect exact con-
servation of energy for the Euler equations. Several works on numerical discretization tech-
niques for incompressible Euler flows aim at conservation of energy, see e.g. Charnyi et al. 
(2017), Coppola et al. (2019), Zhang et al. (2022). Even benchmark problems (Duponcheel 

5  For deviations of real turbulence from K41 theory, we refer e.g. to Küchler et al. (2023).
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et  al. 2008) have been defined that aim at benchmarking numerical methods against the 
design goal of exact energy conservation. One may justify this perspective in the sense that 
grid-converged results for inviscid three-dimensional flows with dissipative dynamics are 
typically not available, so the best one can do is benchmarking against energy conserva-
tion. The consequence is that  (i) one is benchmarking against a  (potentially) physically 
inconsistent result in conflict with the phenomenon of anomalous dissipation, and/or—
even worse—that (ii) dissipative numerics are considered inaccurate or physically wrong.

Secondly, there seems be the expectation in parts of the literature that the numerical 
solution in space (and time) produced by energy-conserving discretization schemes for tur-
bulent flows would be qualitatively accurate apart from the missing dissipation. Instead, 
such schemes suffer from a problem more severe than just under-estimating turbulent dis-
sipation when applied to dissipative dynamics: they inherently lead to oscillatory solutions, 
a phenomenon also known as thermalization. The circumstance that energy-conserving 
numerical methods applied to hyperbolic problems are in itself plagued by small-scale 
noise has already been formulated by Leonard (1975): “Considerable ‘damming up’ of the 
turbulent energy in the large scales would occur, for example, if the unmodified equations 
were used with an energy-conserving finite-difference scheme on the advective term.”. The 
cause are small structures close to the resolution limit of a discretization scheme, which 
exhibit large dispersion errors that cannot be dissipated by the numerical scheme as no 
energy can leave the system. These oscillations do not remain localized, but spread over 
an increasingly large part of the domain. This implication of discretely energy-conserving 
schemes is well understood for pseudo-spectral solvers of the Galerkin-truncated Euler 
equations, preserving kinetic energy in the discrete case, see Ray et al. (2011), Murugan 
et  al. (2020) for the one-dimensional Burgers’ equation with formation of shocks and 
(Cichowlas et al. 2005; Murugan and Ray 2022; Kolluru et al. 2022) for the three-dimen-
sional Euler equations. Instead, one may consider it an important task of numerical meth-
ods for problems with dissipative hyperbolic dynamics to avoid such pollution effects and 
keep the numerical solution clean of small scale noise. However, this will be accompanied 
by (numerical) dissipation. There seems to be an inherent conflict to construct numerical 
methods for dissipative hyperbolic dynamics that are energy-conserving and at the same 
time free of thermalization. In our opinion, the one-dimensional Burgers’ equation with 
formation of shocks appears to be most illustrative to convince oneself regarding these 
conflicting goals of both energy-conserving (or dissipation-free) and thermalization-free 
numerics (Fehn et al. 2022; Murugan et al. 2020). The charm of the one-dimensional Burg-
ers equation over three-dimensional turbulence regarding such considerations is that dis-
sipative solutions are—supported by the existence of analytical solutions for this 1D prob-
lem–generally accepted.

3.4 � On the Notion of Physics‑Compatible or Structure‑Preserving Numerical Meth‑
ods

The present contribution emerged from a conference talk by Fehn and Kronbichler (2023) 
held at ETMM14 in a minisymposium on “Physics-compatible numerical methods for fluid 
flow”. In this section, we want to briefly comment on the notions of physics-compatible or 
structure-preserving numerical methods and how these terms are used (at the time of writ-
ing) by the scientific community in our experience. In a significant number of cases, we 
observed that these terms are used synonymously to discretely energy/entropy-preserving 
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numerical schemes (typically realized e.g. by so-called skew-symmetric formulations). In 
the conference talk, the first author of the present work mentioned that seven talks in the 
minisymposium used the wording energy/entropy-conserving or non-dissipative in their 
title, while only two talks used the wording energy/entropy-stable or dissipative in their 
title. We shall therefore define what we mean by physics-compatible or structure-preserving 
methods for three-dimensional turbulence. The present work expects physics-compatible 
or structure-preserving numerical methods for incompressible turbulent flows to conserve 
mass and to fulfill an energy dissipation inequality  (rather than a strict energy conserva-
tion property). We believe that inbuilt numerical dissipation mechanisms are desirable for 
compatibility with irreversible or dissipative hyperbolic dynamics. In contrast, a scheme 
fulfilling a discrete energy conservation property is per se not compatible with the physics 
of inertial energy dissipation. To strengthen the aspect of irreversibility or dissipation, we 
think a numerical method fulfilling an energy dissipation inequality (with the possibility of 
dissipation) is described best by the notion physics-compatible (or, alternatively, dissipa-
tion-aware as used in Fehn and Kronbichler 2023) rather than structure-preserving.

3.5 � On Identifying Singularities by Energy Dissipation Arguments

The goal of identifying finite-time singularities in numerical simulations of Euler flows 
has a long history. The main categories of methods for singularity detection applied in 
numerical studies are the vorticity blow-up criterion according to the theorem by Beale 
et  al. (1984) and the analyticity strip method by Sulem et  al. (1983). The work  by  Luo 
and Hou (2014) reported numerical evidence of a finite-time singularity, results supported 
very recently by mathematical proofs in Chen and Hou (2022). To not make the present 
contribution exhaustive, we want to refer to the study by Fehn et al. (2022) and references 
therein for a more detailed overview of techniques and numerical studies. Here, we want 
to focus in particular on techniques exploiting the connection between singular behavior 
and anomalous dissipation according to Onsager’s conjecture. First ideas to exploit this 
connection for blowup detection in numerical Euler simulations were formulated in Hoff-
man and Johnson (2008) termed global blowup criterion. In a similar direction, an indirect 
approach for the detection of dissipative singularities was proposed by Fehn et al. (2022), 
which exploits the connection between anomalous dissipation and singularities accord-
ing to Onsager’s conjecture. By the weak–strong uniqueness property (Wiedemann 2017), 
indirect evidence of a dissipative singularity is given by demonstrating convergence to a 
dissipative Euler solution according to this technique.

We want to emphasize that numerical blow-up of a non-robust numerical scheme is 
not indicative of physical blow-up. Instead, we consider numerical robustness a prerequi-
site for physical blow-up detection, i.e. numerical methods for hyperbolic terms describ-
ing inviscid flows  (as well as under-resolved high-Re flows) should be able to deal with 
singular behavior without numerical blow-up. In our opinion, there is also the following 
mathematical argument supporting singularity detection by the indirect approach based on 
energy arguments  (compared to direct blow-up criteria based on diverging velocity gra-
dients). Numerical simulations necessarily operate in a filtered or coarse-grained regime 
with regularized velocity gradients. Now, considering numerical convergence as the tool 
of providing evidence for a certain hypothesis, it is principally feasible to obtain numerical 
convergence in the kinetic energy in a coarse-grained setting (due to the spectral distribu-
tion of energy in three-dimensional fluid dynamics where only the tail of the spectrum is 
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affected by coarse-graining). In contrast, numerical convergence in maximum vorticity, a 
quantity affected by coarse-graining in an essential manner, is actually not feasible in a 
coarse-grained setting. This understanding is in line with the notion of computability of 
certain mean-value output of turbulent flows by weak Galerkin methods (Hoffman and 
Johnson 2006; Hoffman et al. 2011, 2015).

4 � Stabilized Finite Element Methods for Incompressible Turbulent 
Flows

This section discusses finite element methods for incompressible turbulent flows. In the fol-
lowing, we take the perspective that the numerical method itself should be physics-compatible 
in terms of the capability to represent/predict inertial dissipation through inherent numerical 
dissipation mechanisms. Compared to physically motivated LES models, a main motiva-
tion for incorporating dissipation directly into the numerical discretization scheme (implicit 
LES) is to obtain a more accurate filter with the numerical resolution limit (e.g. the wave-
number  k1% defined in  Moura et  al.  2017) as close as possible to the Nyquist wavenum-
ber khp,Ny (see Sect. 6 for a definition). The polynomial degree of the shape functions might 
be considered a parameter of the implicit LES approach. Motivated by results on dispersion-
dissipation analysis, the work by Moura et al. (2017) suggests an improved resolution capa-
bility of high-order discontinuous Galerkin discretizations compared to low-order discre-
tizations in a numerically under-resolved setting. (Fehn 2021, Figures 2.23, 2.24) confirmed 
these results for the viscous Taylor–Green vortex. These results foster a perspective where the 
polynomial degree of the method is chosen such that the implicit LES characteristics of the 
method are optimized. In comparison, mathematical results on regularization/filtering of the 
Navier–Stokes equations in the sense of explicit LES might indicate that the discretization 
length scale h should be significantly smaller than the regularization/filtering length scale, 
see (Guermond and Prudhomme 2005, Section 4), such that the numerical resolution might 
be unnecessarily high for explicit LES. The general goal of a minimal dependency of flow 
results on turbulence model constants (or even the absence of turbulence model constants) 
serves as a further motivation to explore the technique of implicit LES.

4.1 � On the Mechanism of Numerical Dissipation

In the above setting of implicit LES, numerical methods for turbulent flows should trans-
port large structures accurately, but control and actively dissipate the smallest resolvable 
scales as a means to reflect the physics of turbulent fluid dynamics. We consider here (dis-)
continuous Galerkin methods (potentially using a high-order polynomial basis on each ele-
ment) with inbuilt mechanisms of numerical dissipation  (typically called stabilization in 
variational methods). To qualify for implicit large-eddy simulation, small-scale structures 
close to the resolution limit, which cannot be transported accurately on a given grid, need to 
be damped by dissipative mechanisms. These dissipative mechanisms should only become 
active if a non-smooth numerical solution is detected locally. Residuals of the incompress-
ible Navier–Stokes/Euler equations typically serve as indicators of non-smoothness. Suitable 
terms in the weak formulation that are based on these residuals, e.g.  terms that are sym-
metric w.r.t. the test and solution functions and thus appear as quadratic terms in the energy 
dissipation equation, act as dissipation mechanisms. Having the picture in mind of a locally 
dissipative solution according to Duchon and Robert (2000), such a numerical approach 
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should principally allow to find suitable dissipative weak solutions to the Euler equations. 
A numerical scheme with a finite-dimensional function space for the velocity, equipped with 
suitable dissipation mechanisms ensuring that the kinetic energy remains bounded, yields 
a solution with finite velocity gradients. Hence, the overall technique can be thought of as 
regularising the Euler equations without involving an explicit form of filtering/coarse-grain-
ing or physically motivated turbulence model. The chosen approach is thus in line with the 
philosophy of implicit turbulence modeling. According to the numerical studies by  Hoff-
man et al. (2011) and Fehn et al. (2022), stabilized (dis-)continuous Galerkin methods might 
indeed be suitable candidates to predict the phenomenon of anomalous dissipation numeri-
cally and, thereby, qualify as physics-compatible numerical methods. Let us note that this 
discretization approach differs in its philosophy rather fundamentally from the goals persued 
e.g. in Charnyi et al. (2017), Zhang et al. (2022), where the authors aim at energy conserva-
tion on the discrete level.

4.2 � Notation and Discrete Velocity/Pressure Spaces

We address the numerical solution of the incompressible Navier–Stokes/Euler equations on a 
domain Ω ∈ ℝ

d , which is approximated by the computational domain Ω
h
=
∑n

e=1
Ω

e
 consist-

ing of non-overlapping elements of hexahedral shape. In order to avoid technicalities related to 
the imposition of boundary conditions, we assume a periodic domain with �Ωh = � , i.e. there 
are only interior faces, where Γint

h
 denotes the set of all interior faces. In addition to periodic 

boundary conditions, we assume a vanishing body force  f = 0 according to Eq. (1), in order 
to keep the formulation simple when studying aspects like energy stability. As usual, we 
denote by (⋅, ⋅)Ωe

 and (⋅, ⋅)�Ωe
 the L2 inner product over an element Ωe and its boundary �Ωe , 

respectively.
In the following, we denote the velocity function space by Vu

h
 and the pressure function space 

by Vp

h
 . We denote by L2(Ω) the Sobolev space of square-integrable functions and by H1(Ω) the 

Sobolev space of square-integrable functions with square-integrable derivatives. In this article, 
the term finite element method shall denote velocity function spaces that are H1-conforming 
(classical continuous Galerkin methods),  L2-conforming (so-called discontinuous Galerkin 
methods), and H(div)-conforming  (a hybrid version particularly relevant for incompressible 
flows allowing to construct discretization methods that lead to an exactly divergence-free veloc-
ity field). An H(div)-conforming function space for the velocity is defined as

i.e. both the velocity uh and its divergence ∇ ⋅ uh are in L2 . A practical implication of this 
rather abstract definition is that the velocity field is continuous in normal direction between 
elements, u−

h
⋅ n = u+

h
⋅ n or 

[

uh
]

⋅ n = (u−
h
− u+

h
) ⋅ n = 0 . Due to the discontinuity of tan-

gential velocity components in H(div)-conforming methods, they need similar discretiza-
tion concepts as the (fully) non-conforming discontinuous Galerkin methods based on the 
concept of numerical fluxes to connect the elemental sub-problems. From this perspec-
tive, H(div)-conforming methods might be considered a sub-class of discontinuous Galer-
kin methods with a constrained velocity function space.
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4.3 � On the Interplay of Mass Conservation and Inf‑Sup Stability

A fundamental aspect in the design of finite element methods for the incompressible 
Navier–Stokes/Euler equations is the choice of the velocity function space w.r.t. the pressure 
function space. The resulting formulation should be both inf-sup stable and mass-conserving, 
see the review article by John et al. (2017) for a comprehensive summary. The term inf-sup 
stability describes the phenomenon of spurious pressure modes in case the space of velocity 
test functions is not sufficiently rich to exclude such modes from the numerical solution. In 
the present work, we merely mention that for each class of velocity function space introduced 
above, the velocity function space shall be combined with a pressure function space such 
that an inf-sup stable scheme is obtained or, alternatively, the method shall be equipped with 
suitable pressure stabilization terms circumventing the inf-sup condition. For H1 and L2-con-
forming methods, inf-sup stability is typically achieved by selecting mixed-order polynomials 
of degree p for the velocity and degree p − 1 for the pressure.6 However, the resulting scheme 
is then in general not exactly mass-conserving, because the pressure space is not rich enough 
to ensure an exact fulfillment of the mass conservation equation. For this reason, stabiliza-
tion terms are typically added to the variational formulation for improved mass conservation, 
as detailed in the following. We will also discuss the role of H(div)-conforming methods 
as an optimal choice w.r.t.  the fulfillment of both inf-sup stability and mass conservation. 
Finally, note that exactly mass-conserving methods are also known to exist for certain com-
binations of H1-conforming velocity spaces with L2-conforming pressure spaces, such as the 
Scott–Vogelius element for simplicial elements.

4.4 � Motivation for Stabilized Methods

Straight-forward weak finite element formulations of the incompressible Navier–Stokes 
equations and in particular the nonlinear term do not lead to an energy-stable discretiza-
tion scheme in an H1-conforming setting, and similarly in an L2-conforming setting with 
typical upwind or Lax-Friedrichs fluxes. This is due to the nonlinearity of the convective 
term and the fact that these function spaces typically do not lead to a pointwise or exactly 
divergence-free velocity field. Being of fundamental importance for the present work, we 
detail these steps in the following, where we will make use of the identity

Considering a continuous Galerkin formulation with the nonlinear term written in convec-
tive form

we obtain the contribution of this term to the discrete energy balance

(8)∇ ⋅

(

uh
(

uh ⋅ uh
))

= ∇ ⋅ uh
(

uh ⋅ uh
)

+ 2uh ⋅
((

uh ⋅ ∇
)

uh
)

.

(9)ce
h,conv

(

vh, uh
)

=
(

vh,
(

uh ⋅ ∇
)

uh
)

Ωe

,

6  Note that the aspect of inf-sup stability can be seen in analogy to the staggered arrangement of velocity 
and pressure unknowns in finite volume methods, see e.g. Ferziger and Peric (2002).



361Flow, Turbulence and Combustion (2025) 115:347–388	

by replacing the test function vh by uh

where we reformulated the convective term by splitting it according to Eq. (8), resulting 
in a term to be transformed into a surface integral by Gauss’ divergence theorem as well 
as a volume integral containing a residual vanishing in the continuous case, ∇ ⋅ u = 0 . Let 
us note that integration-by-parts is unproblematic in the discrete case with space Vu

h
 also 

in the inviscid limit, as opposed to the continuous problem (with the discussion related to 
Eq. 4). The second term vanishes when summing over all elements due to the continuity 
of the discrete velocity uh at element boundaries, while the first term does not vanish due 
to ∇ ⋅ uh ≠ 0 in general in the discrete case,

Considering alternatively the divergence formulation of the convective term with the weak 
form

the contribution to the energy balance is

For both formulations, the discrete convective term might produce energy and thereby cause 
numerical instabilities, in particular when applied to problems at high Reynolds number and 
in a spatially under-resolved setting. This potential instability is a fundamental property of 
the incompressible Navier–Stokes equations and the discretization errors of the finite ele-
ment spaces (leading to a velocity field that is not exactly divergence-free in general). Note 
that inexact numerical quadrature of the nonlinear convective term in a practical numerical 
solver is an independent source of instability (commonly termed aliasing).

Comparing Eqs. (11) and (14), it is easy to see that the discrete nonlinear term does not 
contribute to the energy balance when using the so-called skew-symmetric formulation

The use of skew-symmetric formulations is a classical way to achieve discrete energy-
conservation for nonlinear convective terms. For further details, we refer to review arti-
cles on this particular topic (Coppola et al. 2019). Discretely energy-conserving schemes 
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constructed this way are attractive because they provide robust schemes and, therefore, 
appear superior as compared to schemes that bear the potential of nonlinear blow-up. How-
ever, as emphasized previously, the discrete energy-conservation property is not suitable 
as a metric to describe accuracy in case dissipative anomalies are present physically. For 
turbulent flows, energy-conserving skew-symmetric schemes can therefore not be expected 
to yield accurate results e.g.  in agreement with the dissipation anomaly unless additional 
mechanisms of dissipation are used. Hence, we do not consider skew-symmetric formula-
tions as the distinctive feature of a numerical LES approach in the present work, but rather 
as a certain feature or ingredient used in combination with the essential mechanisms of 
stabilization.

4.5 � A Brief Summary of Methods

Figure 1 gives a brief overview of the development of finite element methods for the incom-
pressible Navier–Stokes equations with suitable stabilization or dissipation mechanisms 
for the under-resolved simulation of turbulent flows (large-eddy simulation). From left to 
right, we categorize methods w.r.t. the velocity function space. For a detailed overview of 
the development of H1-conforming methods, we refer to the review articles by Gravemeier 
(2006), Ahmed et al. (2017), Rasthofer and Gravemeier (2018). An overview of the devel-
opment of L2-conforming methods can be found in Fehn (2021), and of H(div)-conforming 
methods in Schroeder (2019). From left to right, this figure presents roughly the historical 
development of finite element methods for turbulent flows. For example, stabilized tech-
niques developed for H1-conforming methods have partly been adapted to L2-conforming 

(2007, 2009)

(2018, 2019)

(2016)

(2019)
(2017)

(2022)

(2006, 2017)

(2006, 2009)

(2001)

(2007)

(2006)
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Fig. 1   An overview of dissipation mechanisms / variational stabilization techniques for (high-order) (dis-)
continuous Galerkin discretizations of incompressible flows. (Abbreviations: SUPG: streamline-upwind 
Petrov–Galerkin; PSPG: pressure stabilizing Petrov–Galerkin; GLS: Galerkin least squares; VMS: vari-
ational multiscale; OSS: orthogonal subscales; LPS: local projection stabilization; CIP: continuous interior 
penalty; GJP: gradient jump penalty)



363Flow, Turbulence and Combustion (2025) 115:347–388	

methods developed later. Numerical fluxes and in particular upwind-like fluxes for convec-
tive terms used in L2-conforming methods  (and having their origin in the finite volume 
community), have been adapted to H(div)-conforming methods. As we show in the fol-
lowing, mathematical properties of the discretization schemes e.g.  in terms of mass con-
servation and energy stability appear to be most sophisticated for the category of H(div)

-conforming methods. However, we do not want to insinuate that this clarity and stringency 
in analytical results necessarily implies a higher level of sophistication or accuracy as a 
practical simulation tool for under-resolved turbulent flows. We rather consider this topic 
an open research question.

Stabilization techniques or dissipation mechanisms not discussed in the present 
work are spectral vanishing viscosity (SVV) methods, employed for continuous 
Galerkin methods e.g. in Karamanos and Karniadakis (2000), Kirby and Karniadakis 
(2002) and for discontinuous Galerkin methods e.g.  in Manzanero et al. (2020). The 
recent work by Moura et  al. (2022) argues that GJP is superior over SVV and com-
petitive to upwind-like DG for under-resolved turbulent flow simulations regarding 
the balance of accuracy and robustness. We also do not discuss filtering techniques, 
employed for continuous Galerkin methods e.g. in Fischer and Mullen (2001), Fischer 
et al. (2002) and for discontinuous Galerkin methods e.g. in Hesthaven and Warburton 
(2008), and entropy-viscosity methods (Guermond 2008; Guermond et al. 2011).

4.6 � Continuous Galerkin Methods ( H1‑Conforming)

In this section, we discuss a family of stabilized continuous Galerkin discretizations of 
the incompressible Navier–Stokes equations, mainly of Galerkin least squares (GLS) 
type. These methods include the well-known streamline-upwind stabilization (for 
convection-dominated problems), pressure stabilization (for inf-sup stability prob-
lems), and grad-div stabilization (for improved mass conservation) as basic stabiliza-
tion ingredients. Regarding the velocity/pressure function spaces, examples are the 
pair Qp∕Qp with pressure stabilization (where Qp denotes the polynomial basis of ten-
sor degree p on the elements), the Taylor–Hood pair Qp∕Qp−1 , or the pair Qp∕P

disc
p−1

 
with polynomials of complete degree up to p − 1 for the pressure, which is globally L2

-conforming. The Scott–Vogelius element for simplicial elements (with discontinuous 
pressure space) might also be attributed to this category of methods.

4.6.1 � Variational Formulation
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for all (vh, qh) ∈ V
u
h
× V

p

h
 . The forms corresponding to the different terms of the PDE (vis-

cous, pressure gradient, velocity divergence) and an additional stabilization term  se
h
 are 

given as

where the viscous term and the pressure gradient term have been integrated by parts, while 
the velocity divergence term is kept in its original form. For the convective term ce

h
 , one 

of the forms discussed in Sect.  4.4 may be used. The stabilization term se
h
 consists of a 

momentum stabilization term and a continuity stabilization term. The continuity stabiliza-
tion term with Rc(u) = ∇ ⋅ u is the so-called grad-div stabilization term. In the context of 
variational multiscale methods, this stabilization term is interpreted as a model for the pres-
sure sub-grid scales (Olshanskii et al. 2009; Bazilevs et al. 2007). Regarding the momen-
tum stabilization, various formulations can be found in the literature w.r.t. the choice of the 
“residuals” R̂m(u, v, q),

̂̂
Rm(u, v, q) . Table 1 provides an overview of the different formula-

tions for the momentum stabilization term discussed in the following.
From the perspective of Galerkin least squares (GLS) stabilization, it appears natural 

to consider the full residual on the test function and solution function

Remark 4.1  Note that the temporal derivative applied to the test function gives rise to 
space–time formulations (Hughes et al. 2017), i.e. one would actually need an additional 
integral over time in Eqs. (16) and (17), which we omit here for ease of presentation. As 
noted in Hoffman et al. (2011, 2015), space-time formulations with time-dependent veloc-
ity test functions result in a significant increase in the number of unknowns. Moreover, 
second spatial derivatives applied to the test and solution function are needed in case of 
the incompressible Navier–Stokes equations with the viscous term, see also Table 1. These 
ingredients might not be straightforward to realize in every CFD software project, and may 
cause additional computational costs.

The complications mentioned in the above remark, in particular the time deriva-
tive of the test function, are partially overcome by truncating the residual on the test 

ve
h

(

vh, uh
)

= 𝜈
(

∇vh,∇uh
)

Ωe

,

ge
h

(

vh, ph
)

= −
(

∇ ⋅ vh, ph
)

Ωe

,

de
h
(qh, uh) =

(

qh,∇ ⋅ uh
)

Ωe

,

se
h

(

vh, qh, uh, ph
)

=
(

R̂m(uh, vh, qh), 𝜏
e
M
̂̂
Rm(uh, uh, ph)

)

Ωe

+
(

Rc(vh), 𝜏
e
C
Rc(uh)

)

Ωe

,

(18)R̂m(u, v, q) =
̂̂
Rm(u, v, q) = Rm(u, v, q) = 𝜕v∕𝜕t + (u ⋅ ∇)v − 𝜈∇2v + ∇q .

Table 1   Properties of different variants of the momentum stabilization term for stabilized continuous Galer-
kin discretizations of the time-dependent incompressible Navier–Stokes equations

momentum stabilization term Consistency Energy stability �vh∕�t , ∇2vh ∇2uh

(

Rm(uh, vh, qh), �
e
M
Rm(uh,uh, ph)

)

Ωe

✓ ✓ ✓ ✓

((

uh ⋅ ∇
)

vh + ∇qh, �
e
M
Rm(uh,uh, ph)

)

Ωe

✓ ✓

((

uh ⋅ ∇
)

vh + ∇qh, �
e
M
(
(

uh ⋅ ∇
)

uh + ∇ph)
)

Ωe

✓
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function. This leads to a widely used residual-based formulation, see e.g. Bazilevs et al. 
(2007), Rasthofer and Gravemeier (2013),

Remark 4.2  This non-symmetric formulation uses the full residual for the solution func-
tion and corresponds to the original (steady-state) streamline-upwind and pressure-stabiliz-
ing Petrov–Galerkin stabilization (for which the abbreviations SUPG/PSPG are established 
in the literature).

In addition to the truncated residual on the test function, Hoffman and Johnson (2006), 
Hoffman et al. (2015) consider a truncated residual also on the solution function

Table 1 compares the three variants of the momentum stabilization term in Eqs. (18), (19) 
and (20) w.r.t. different properties discussed in more detail in the following.

Remark 4.3  The formulation  (20) achieves energy-stability for any positive stabilization 
parameter due to the symmetric design of the stabilization term, see also Sect. 4.6.4. How-
ever, this method is no longer residual-based, which has an important implication on con-
sistency, see Sect. 4.6.2. Note that this method is also inconsistent for the special case of 
the unsteady incompressible Euler equations (which is the main target of the present work), 
since no time derivative is applied to the solution function in the momentum stabilization 
term.

Remark 4.4  A classical interpretation of SUPG methods (originally proposed in Brooks 
and Hughes  1982) appears to be the incorporation of upwind-mechanisms into H1-con-
forming methods via Petrov–Galerkin methods, thereby avoiding wiggles that are well-
known to form in an unstabilized method in the convection-dominated regime. More 
recent contributions (Hughes et al. 2017; Hoffman and Johnson 2006; Hoffman et al. 2011; 
Codina et al. 2011) seem to provide motivation for SUPG stabilization also from the per-
spective of energy dissipation, see Table 1 and Sect. 4.6.4.

Remark 4.5  The work by Röhe and Lube (2010) skips the momentum stabilization term 
and uses the grad–div stabilization term only, se

h

(

vh, qh, uh, ph
)

=
(

�e
C
∇ ⋅ vh,∇ ⋅ uh

)

Ωe

 . 
However, numerical results indicate that this numerical scheme leads to an accumulation 
of energy in small scales, which is why an additional Smagorinsky-like variational multi-
scale model is used in  Röhe and Lube (2010). Similarly, the work  by  Gravemeier et  al. 
(2010) uses grad–div stabilization and a Smagorinsky-like variational multiscale model, 
but additionally the PSPG term due to equal-order polynomial approxima-
tions,  R̂m(u, v, q) = ∇q . It is argued that the Smagorinsky-like model renders additional 
velocity stabilization superfluous (Gravemeier et al. 2010, Remark 2.3). In terms of turbu-
lence modeling, these two works pick up the idea by Hughes et al. (2000) of a Smagorin-
sky-like multiscale model.

(19)
R̂m(u, v, q) = (u ⋅ ∇)v + ∇q ,

̂̂
Rm(u, v, q) = Rm(u, v, q) .

(20)R̂m(u, v, q) =
̂̂
Rm(u, v, q) = (u ⋅ ∇)v + ∇q .
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Remark 4.6  The works by Hughes et al. (1998, 2017) on variational multiscale methods 
distinguish between the so-called smooth case and the rough case, where the rough case 
refers to the circumstance that derivatives of the solution are discontinuous between ele-
ments for continuous Galerkin approximations. The rough case accounts for these disconti-
nuities by additional face integrals with jump terms. However, the related works by Hughes 
et  al. (2000), Bazilevs et  al. (2007) on turbulent flows and the incompressible Navier–
Stokes equations do not discuss the rough case in detail.

Remark 4.7  (Bazilevs et al. 2007, Section 4) argue that their (full) variational multiscale 
method is an advancement over classical stabilized finite element methods, since the vari-
ational multiscale method accounts not only for one cross-stress term, but for both cross-
stress terms and also the Reynolds stress term  (note that Eq.  19  shows the stabilization 
terms stemming from the first cross stress term, while we do not show here the additional 
stabilization terms stemming from the other cross-stress term and the Reynolds stress 
term). However, the terms with the temporal derivative and second spatial derivative to 
be applied to the test function are skipped in Bazilevs et al. (2007) without detailed expla-
nation. In this sense, this  (full) variational multiscale method is similar to classical sta-
bilized methods. Similarly, the work by Rasthofer and Gravemeier (2013) considers only 
the classical SUPG/PSPG and grad–div stabilization terms, while the authors argue that 
the cross stress terms and Reynolds stress term are addressed by multifractal subgrid-scale 
modeling. For both works (Bazilevs et al. 2007; Rasthofer and Gravemeier 2013), energy-
stability of the final LES approach appears to be unclear.

4.6.2 � Consistency

The standard Galerkin method without stabilization terms is derived as a weighted residual 
formulation using integration by parts. Hence, the consistency of the stabilized method is 
driven by the consistency of the stabilization terms. They are consistent if they are residual-
based. The grad-div stabilization term is based on the continuity residual Rc(u) = ∇ ⋅ u . 
Regarding the momentum stabilization term, consistency of the stabilized finite ele-
ment method is given if  ̂̂Rm(u, v, q) = Rm(u, v, q) . As summarized in Table  1, Eqs. (18) 
and (19) result in a consistent method, while Eq. (20) results in general in an inconsistent 
method (only for the narrow case of the steady Euler equations, it would result in a consist-
ent method).

Consistency has an important impact on achievable convergence rates for problems with 
smooth solution. The stabilization parameters typically scale like � ∼ h or � ∼ h2 , imply-
ing that the rate of convergence is limited to low-order when using high-order polyno-
mial approximations for velocity and pressure if the momentum stabilization term is not 
residual-based.

Remark 4.8  The stabilization term contains two stabilization parameters �e
M
, �e

C
 . For sta-

bilized methods, the general approach is to derive these stabilization parameters based on 
dimensional analysis, using scaling factors of order unity. To obtain physical units consist-
ent with the other terms of the PDE, the stabilization parameters must have physical units 
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of 
[

�e
M

]

= s and 
[

�e
C

]

= m2∕s , see also  Ahmed et  al. (2017). This aspect is not followed 
stringently in many works, see e.g. Hoffman and Johnson (2006), Hoffman et al. (2015), 
with the consequence that the results of a numerical simulation for the same flow problem 
with the same Reynolds number will be different when conducting the simulation in dif-
ferent physical units, or that the scaling factor has to be adjusted from one flow problem to 
another.

4.6.3 � Mass Conservation

According to the weak formulation described above, the mass conservation equation in 
incompressible flows  (divergence-free constraint) is fulfilled in a weak sense. From the 
weak continuity Eq. (17), we can derive the global mass-conservation equation by choos-
ing qh = 1 as pressure test function and performing integration-by-parts

i.e.  the mass flux over all boundaries of the domain sums up to zero. Mass conservation 
in the above sense is not fulfilled on a single element (the reason behind is that for pres-
sure functions in H1 we cannot choose the pressure test function qh = 1 on a single ele-
ment and qh = 0 on all other elements), unless an L2-conforming pressure space is used (as 
briefly mentioned above and as summarized in Table 2). In particular, the method is not 
pointwise divergence-free, ∇ ⋅ uh ≠ 0 . The grad-div stabilization term aims at improved 
mass conservation. We note that the above statements on mass-conservation are not 
affected by the chosen variant of the momentum stabilization term.

4.6.4 � Energy Stability

Under the assumptions of vanishing body forces, periodic boundary conditions, and van-
ishing viscosity (� = 0 ), the following energy dissipation equation can be derived for the 
stabilized continuous Galerkin method (when using ce

h

(

vh, uh
)

= ce
h,conv

(

vh, uh
)

)

(21)0 =

n
∑

e=1

(

1,∇ ⋅ uh
)

Ωe

=

n
∑

e=1
∫
�Ωe

uh ⋅ ndΓ = ∫
�Ω

uh ⋅ ndΓ ,

Table 2   Overview of mass conservation properties for different classes of function spaces (Abbreviations: 
SV: Scott–Vogelius; CR: Crouzeix–Raviart; RT: Raviart–Thomas; BDM: Brezzi–Douglas–Marini)

mass conservation 
property

H1
H

1∕L2(Q
p
∕Pdisc

p−1
) H1∕L2 (SV) L2 L2 (CR) H(div) 

(RT/
BDM)

∫
�Ω

uh ⋅ ndΓ = 0 ✓ ✓ ✓ ✓ ✓

∫
�Ω
{{uh}} ⋅ ndΓ = 0 ✓ ✓ ✓ ✓ ✓ ✓

∫
�Ωe

uh ⋅ ndΓ = 0 ✓ ✓ ✓ ✓

∫
�Ωe

{{uh}} ⋅ ndΓ = 0 ✓ ✓ ✓ ✓ ✓

∇ ⋅ uh = 0 (pointwise) ✓ ✓
[

uh
]

⋅ n = 0 (point-
wise)

✓ ✓ ✓ ✓
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Note again that the convective term does not vanish since ∇ ⋅ uh ≠ 0 in the discrete case. It 
vanishes, however, when choosing a skew-symmetric formulation, Eq. (15).

From the above equation, it becomes clear that a symmetric choice of the momentum 
stabilization term has a dissipative character  (see also the summary in Table  1), while 
energy stability w.r.t.  this term would need further estimates and assumptions for other 
choices of the momentum stabilization term. The continuity stabilization term is by design 
quadratic and, therefore, represents a mechanism of numerical dissipation. Thus, the math-
ematical  (mathe-matical) statement on energy stability becomes strict when consider-
ing a skew-symmetric formulation of the convective term and a symmetric variant of the 
momentum stabilization term

From this equation, the interpretation of the stabilization terms as an implicit turbulence 
model becomes obvious, see also  Hoffman and Johnson (2006), Hoffman et  al. (2011). 
Table 1 highlights that formulations of the momentum stabilization term that are trivially 
energy-stable  (due to a symmetric design of this term) make a compromise in terms of 
consistency, or need to deal with the time derivative and second spatial derivative of the 
test function. While this might explain why non-consistent, energy-stable formulations 
(Hoffman and Johnson 2006; Hoffman et al. 2011) or consistent stabilization variants with 
unproven energy-stability (Rasthofer and Gravemeier 2013; Bazilevs et al. 2007) are used 
as well, we see this need for compromises as one of the driving forces for the development 
of other H1-conforming methods  (such as the orthogonal subscales method discussed in 
Remark 4.9 or gradient jump penalty discussed in Sect. 4.9) as well as the development 
of L2 and H(div)-conforming methods.

Remark 4.9  Codina et  al. (2011) show that their orthogonal subscales method  (in the 
context of variational multiscale methods) is dissipative  (energy-stable) with numerical 
dissipation 

for the inviscid limit � = 0 if so-called quasi-static subscales are used, where P⟂

h
 is the 

projection orthogonal to the finite element space Vh . This dissipation term seems to be 
designed very similarly to–and might be interpreted as a  (consistent) multiscale variant 
of – the stabilization by Hoffman and Johnson (2006), Hoffman et al. (2011) based on Eq. 
(20). The proof of energy-stability for the case with dynamic subscales seems to be open.

(22)

dEh(t)

dt
=

n
∑

e=1

(

+
1

2

(

∇ ⋅ uh, uh ⋅ uh
)

Ωe

− 𝜏e
M

(

R̂m(uh, uh, ph),
̂̂
Rm(uh, uh, ph)

)

Ωe

− 𝜏e
C

(

Rc(uh),Rc(uh)
)

Ωe

)

.

(23)

dEh(t)

dt
=

n
∑

e=1

(

−𝜏e
M

(

̂̂
Rm(uh, uh, ph),

̂̂
Rm(uh, uh, ph)

)

Ωe

− 𝜏e
C

(

Rc(uh),Rc(uh)
)

Ωe

)

≤ 0.

(24)�e
M

(

P⟂

h

((

u∗ ⋅ ∇
)

uh + ∇ph
)

,P⟂

h

((

u∗ ⋅ ∇
)

uh + ∇ph)
))

Ωe
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4.7 � Discontinuous Galerkin Methods ( L2‑Conforming)

In this section, we describe a stablized discontinuous Galerkin method for the incompressi-
ble Navier–Stokes equations developed by Fehn et al. (2018), Fehn (2021). Inf-sup stability 
is assumed by choosing a Taylor–Hood-like element with polynomials of tensor degree p 
for the velocity and tensor degree p − 1 for the pressure.

4.7.1 � Variational Formulation

The variational formulation of the stabilized  L2-conforming method reads: 
Find uh ∈ V

u
h
, ph ∈ V

p

h
 such that it holds

for all (vh, qh) ∈ V
u
h,e

× V
p

h,e
 and for all elements e = 1,… , n . Due to the discontinuity of the 

test functions, the weak formulation may be stated in an element-wise manner. The nonlin-
ear convective term is discretized by the local Lax–Friedrichs flux

with  F∗
c
(uh) = {{Fc(uh)}} +

Λ

2
[[uh]] and  Fc(uh) = uh ⊗ uh , where  Λ is the stabilization 

parameter of the Lax–Friedrichs flux, see e.g. Fehn (2021). The viscous term is discretized 
by the symmetric interior penalty method (Arnold 1982) with stabilization parameter �SIPG

Central flux functions are used for the pressure gradient term and velocity divergence term

The stabilization terms weakly enforcing the divergence-free constraint and normal conti-
nuity of the velocity are defined as

where the penalty factors  �e
D
, �

f

C
 are derived by dimensional analysis, see  Fehn 

et  al. (2018). The average and jump operators are defined as  {{a}} = (a− + a+)∕2,   
[[a]] = a− ⊗ n− + a+ ⊗ n+ and [a] = a− − a+ with interior information  − on element Ωe 
and exterior information + as well as outward normal vector n.

(25)

(

vh,
�uh

�t

)

Ωe

+ ce
h

(

vh, uh
)

+ ve
h

(

vh, uh
)

+ ge
h

(

vh, ph
)

+ ae
D,h

(

vh, uh
)

+ ae
C,h

(

vh, uh
)

= 0 ,

(26)−de
h
(qh, uh) = 0 ,

(27)ce
h

(

vh, uh
)

= −
(

∇vh,Fc(uh)
)

Ωe

+
(

vh,F
∗
c
(uh) ⋅ n

)

�Ωe

,

(28)
veh
(

vh,uh
)

=
(

∇vh, �∇uh
)

Ωe
−
(

∇vh,
�
2
[[uh]]

)

�Ωe

−
(

vh, �{{∇uh}} ⋅ n
)

�Ωe
+
(

vh, � �SIPG [[uh]] ⋅ n
)

�Ωe
.

ge
h

(

vh, ph
)

= −
(

∇ ⋅ vh, ph
)

Ωe

+
(

vh, {{ph}}n
)

�Ωe

,

de
h

(

qh, uh
)

= −
(

∇qh, uh
)

Ωe

+
(

qh, {{uh}} ⋅ n
)

�Ωe

.

ae
D,h

(vh, uh) =
(

∇ ⋅ vh, �
e
D
∇ ⋅ uh

)

Ωe

,

ae
C,h

(vh, uh) =
(

vh ⋅ n, �
f

C

[

uh
]

⋅ n
)

�Ωe

,
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4.7.2 � Consistency

The method is consistent since  (i) it is derived as a weighted residual formulation using 
integration-by-parts, (ii) all numerical fluxes are consistent, and (iii) the additional stabili-
zation terms are based on residuals of the incompressible Navier–Stokes equations, ∇ ⋅ uh 
for the divergence penalty term and 

[

uh
]

⋅ n for the continuity penalty term, which will van-
ish when replacing uh by u . The method including these stabilization terms is therefore 
naturally high-order accurate when using high-order polynomial approximations for veloc-
ity and pressure and for problems with sufficiently smooth solution (Fehn et al. 2018).

Remark 4.10  In the mathematically oriented literature, stabilization parameters for  L2
-conforming methods are often chosen such that they have physical units inconsistent with 
the equations at hand (Akbas et al. 2018; Schroeder and Lube 2017; Guzmán et al. 2016; 
Montlaur et al. 2008). While the overall method can be considered a consistent discretiza-
tion of the incompressible Navier–Stokes equations due to the residual structure of the sta-
bilization terms, stabilization parameters of inconsistent physical units might in fact impact 
robustness and accuracy of the numerical method in practice.

4.7.3 � Mass Conservation

To study global mass conservation across the boundaries of the domain, we consider the weak 
continuity equation (26) and choose qh(x) = 1 as test function

The mass flux over interior faces between elements cancels since the numerical flux {{uh}} 
is conservative and since n+ = −n− . The above equation states that global conservation of 
mass across the boundaries of the domain is fulfilled in the sense of the average veloc-
ity {{uh}} (which depends on the interior solution uh and prescribed boundary data on Dir-
ichlet boundaries). In general, global mass conservation in terms of the interior velocity is 
not fulfilled, ∫

�Ωh
uh ⋅ ndΓ ≠ 0.

For the L2-conforming case, the weak continuity equation holds also element-wise. We 
obtain the element-wise mass conservation equation

Again, mass conservation over the boundaries of element is fulfilled in the sense of the 
average velocity {{uh}} , but not in the sense of the interior velocity, ∫

�Ωe
uh ⋅ ndΓ ≠ 0 , see 

also Table 2. By performing integration-by-parts, we obtain an alternative weak continuity 
equation equivalent to Eq. (26)

(29)0 =

n
∑

e=1

(

−
(

∇1, uh
)

Ωe

+
(

1, {{uh}} ⋅ n
)

�Ωe

)

= ∫
�Ωh

{{uh}} ⋅ ndΓ .

(30)0 = −
(

∇1, uh
)

Ωe

+
(

1, {{uh}} ⋅ n
)

�Ωe

= ∫
�Ωe

{{uh}} ⋅ ndΓ .

(31)0 =
(

qh,∇ ⋅ uh
)

Ωe

−
1

2

(

qh,
[

uh
]

⋅ n
)

�Ωe

.
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From this equation, we can deduce that jumps in the normal velocity between ele-
ments 

[

uh
]

⋅ n ≠ 0  (that occur in general for an L2-conforming approach) as well as local 
divergence errors ∇ ⋅ uh ≠ 0 balance each other in a weak sense, with the consequence that 
the scheme is not locally or point-wise mass-conserving. This alternative continuity equa-
tion serves as a main motivation for the two stabilization terms ae

D,h
, ae

C,h
.

4.7.4 � Energy Stability

Under the assumptions of vanishing body forces, periodic boundary conditions, and vanishing 
viscosity (� = 0 ), the following energy dissipation equation can be derived for the above stabi-
lized L2-conforming method

The divergence and continuity stabilization terms have a dissipative character and aim to 
control the sign-indefinite terms stemming from the discrete convective term. The stabili-
zation term of the Lax–Friedrichs flux also has a dissipative character. As noted in Fehn 
(2021), Fehn et al. (2019), the proof of energy-stability of this scheme appears to be open 
for finite stabilization parameters. In the context of implicit LES, the upwind term and the 
additional stabilization terms form the implicit turbulence model.

Remark 4.11  L2-conforming formulations relying on upwind-like fluxes only  (without 
additional stabilization terms  ae

D,h
, ae

C,h
 ) as proposed e.g.  in  Hesthaven and Warburton 

(2008), Shahbazi et al. (2007) have been found to lack robustness for under-resolved simu-
lations of turbulent flows  (Fehn et  al. 2018). The above scheme with additional stabili-
zation terms ae

D,h
, ae

C,h
 has been demonstrated to exhibit promising properties in terms of 

energy-stability for under-resolved simulations of turbulent flows (Fehn et al. 2018).

Remark 4.12  The energy stability of the L2-conforming formulation with artificial com-
pressibility flux by Bassi et al. (2006, 2016), Massa et al. (2022) (and without stabilization 
terms ae

D,h
, ae

C,h
 ) appears to be unclear. The L2-conforming approach for implicit LES by 

Ferrer (2017) is based on scaling the parameter of the interior penalty discretization of the 
viscous term (and using SVV in the periodic direction for typical turbulent flow examples 
with extruded two-dimensional geometry), while no divergence and continuity stabiliza-
tion terms as presented here are used. Since the viscous term (and the associated stabiliza-
tion) will vanish for � = 0 , robustness of this scheme remains unclear in the inviscid limit.

Remark 4.13  Both  H1 and  L2-conforming methods seem to require stabilization of the 
mass conservation equation, where the divergence and normal-continuity stabilization 
terms of  L2-methods can be seen in analogy to the grad–div stabilization of  H1-meth-
ods (Akbas et al. 2018). Interestingly, L2-conforming methods do not suffer from over-sta-
bilization like H1-conforming methods according to Akbas et al. (2018). The stabilization 

(32)

dEh(t)

dt
= −

1

2
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−
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∇ ⋅ uh, �D∇ ⋅ uh
)

Ωh
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1

2
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⋅ u+
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]

⋅ n
)

Γint
h

−
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⋅ n, �C,f
[

uh
]
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−
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Λ

2
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)
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.
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terms ae
D,h

, ae
C,h

 of L2-methods mimick the constraints built directly into the function space 
of H(div)-methods discussed in Sect. 4.8. For this reason, the stabilization terms ae

D,h
, ae

C,h
 

of  L2-methods might be interpreted as an  H(div)-stabilization or a weak enforcement 
of H(div)-conformity  (Fehn et al. 2019; Fehn 2021).

Remark 4.14  As in the H1-conforming case, sign-indefinite terms in the energy balance 
stemming from the convective term could potentially be healed by a “skew-symmetric” for-
mulation. The DG community focusing on the compressible Navier–Stokes equations has 
developed split-form schemes based on a collocation-basis with a so-called summation-by-
parts property, see e.g. Gassner (2013), Gassner et al. (2016), ensuring energy stability for 
suitable flux formulations. However, surprisingly few research in this direction has been 
conducted so far for the incompressible Navier–Stokes equations. One reason for this could 
be that such a formulation does not render the stabilization terms related to the continu-
ity equation obsolete, despite achieving energy stability without these stabilization terms. 
According to our understanding, the structure of the incompressible Navier–Stokes equa-
tions with the divergence-free constraint as continuity equation requires these stabilization 
terms for improved mass conservation in an L2-conforming setting. Further research in this 
direction could certainly bring further insight. Another reason (for not exploring split-form 
DG schemes in the incompressible case) could be that there exist problem-tailored finite 
element spaces for the incompressible case (see Sect. 4.8) that solve both problems of mass 
conservation and energy stability in a possibly more elegant way.

4.8 � H(div)‑Conforming Methods

This section discusses exactly mass-conserving methods by the use of problem-tailored 
function spaces. The mass conservation Eq. (31) and the energy dissipation Eq. (32) of the 
stabilized L2 method serve as a main motivation for such methods. The H(div)-conform-
ing velocity function space defined in Eq. (7) is combined with an L2-conforming pressure 
function space. For ease of presentation, we may restrict the discussion in this section to 
a mesh consisting of undeformed (Cartesian) hexahedral elements (to avoid technicalities 
related to additional transformations such as the Piola transform required in the general 
case). If there holds the additional condition

between the velocity and pressure function spaces, it can be shown that the velocity is 
pointwise divergence-free, ∇ ⋅ uh ≡ 0 , as detailed below. For the hexahedral element shape 
considered in the present work, a prominent example fulfilling conditions (7) and (33) is 
the anisotropic Raviart–Thomas element for the velocity together with a discontinuous 
pressure space (for simplicial elements, see the Brezzi–Douglas–Marini element). The vec-
torial Raviart–Thomas velocity space is constructed such that velocity component uh,i has 
degree p + 1 in coordinate direction xi and degree p in the other d − 1 directions. The scalar 
pressure space has uniform polynomial degree p in all directions. These spaces might be 
considered an optimal choice w.r.t. inf-sup stability and mass-conservation, and we refer to 
e.g. Fehn et al. (2019) for more details and further references to the literature.

(33)∇ ⋅ V
u
h
⊆ V

p

h
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4.8.1 � Variational Formulation

The variational formulation of the H(div)-conforming method reads: Find uh ∈ V
u
h
, ph ∈ V

p

h
 

such that it holds

for all (vh, qh) ∈ V
u
h
× V

p

h
 . The convective term ce

h

(

vh, uh
)

 and the viscous term ve
h

(

vh, uh
)

 
are given by Eq. (27) and Eq. (28), respectively. The pressure gradient term and velocity 
divergence term are given as

using a central flux formulation for the pressure gradient term as in the L2-conforming 
case. Integration-by-parts of the velocity divergence term with corresponding flux func-
tion is superfluous in the H(div)-conforming case, due to the normal continuity of the 
velocity built into the function space. This can also be seen from continuity Eq. (31) for 
the (more general) L2-conforming formulation, where the face integral is identically zero 
when restricting the L2-conforming space to an H(div)-conforming space.

4.8.2 � Consistency

The H(div)-conforming space is a modification of the L2-conforming space that is con-
sistent with the incompressible Navier–Stokes equations. The H(div)-conforming approach 
is therefore also consistent, and naturally high-order accurate in a setting of sufficiently 
smooth solutions and high-order polynomial approximations.

4.8.3 � Mass Conservation

Condition  (33) on the velocity and pressure function spaces together with the continuity 
Eq. (35) immediately leads to the result

i.e.  the discrete velocity field is pointwise divergence-free  (see also Table 2). This result 
shows that additional stabilization terms as used in the L2-conforming case are not required 
here.

4.8.4 � Energy Stability

Under the assumptions of vanishing body forces, periodic boundary conditions, and van-
ishing viscosity (� = 0 ), an H(div)-conforming velocity space with pointwise divergence-
free velocity (∇ ⋅ V

u
h
⊆ V

p

h
 ) leads to the result

(34)
n
∑

e=1

(

(

vh,
�uh

�t

)

Ωe

+ ce
h

(

vh, uh
)

+ ve
h

(

vh, uh
)

+ ge
h

(

vh, ph
)

)

= 0 ,

(35)−

n
∑

e=1

de
h
(qh, uh) = 0 ,

ge
h

(

vh, ph
)

= −
(

∇ ⋅ vh, ph
)

Ωe

+
(

vh, {{ph}}n
)

�Ωe

,

de
h

(

qh, uh
)

=
(

qh,∇ ⋅ uh
)

Ωe

.

(36)∇ ⋅ uh = 0 ∀x ∈ Ωh ,



374	 Flow, Turbulence and Combustion (2025) 115:347–388

i.e.  the scheme is provably energy-stable. It might be considered an advantage that this 
method does not involve stabilization parameters � as in the H1 - and L2-conforming case. 
From the perspective of dissipation mechanisms, only the jump of the velocity  (in tan-
gential direction) acts as an indicator of non-smoothness  (with associated dissipation 
for [[uh]] ≠ 0 ) in the H(div)-conforming case. Additional divergence and continuity penalty 
terms would not have an effect, since ∇ ⋅ uh = 0 and 

[

uh
]

⋅ n = 0 are not suitable as an indi-
cator of non-smoothness in this case.

Remark 4.15  It appears to be an open question whether the pure upwind stabiliza-
tion via face terms as dissipation mechanism is sufficient in the limit of high polynomial 
degrees p → ∞ , a limit in which this method tends to become a spectral method. Works on 
high-order discontinuous Galerkin methods with upwind stabilization for the compressible 
Navier–Stokes equations (Collis and Chang 2002; Chapelier et al. 2016; Flad and Gassner 
2017; Manzanero et  al. 2020) might point to the need for additional volume dissipation 
mechanisms, where a dynamic  (or multiscale) Smagorinsky model has been a popular 
choice in the literature.

Remark 4.16  The Scott–Vogelius element for simplicial elements is also exactly mass-
conserving, see Table  2. This (unstabilized) method with H1-conforming velocity does, 
however, not have a mechanism of dissipation e.g. through upwinding as in L2, H(div)-con-
forming methods or penalization of the divergence-free constraint as in H1, L2-conforming 
methods that are not exactly mass-conserving. This raises concerns regarding physics-com-
patibility of the unstabilized Scott-Vogelius element for three-dimensional Euler flows with 
dissipative hyperbolic dynamics.

4.9 � Stabilization of Gradient Jumps Across Faces

The three categories of function spaces (H1, L2,H(div)-conforming) discussed so far dif-
fer w.r.t. the continuity of the discrete velocity field between elements. Another stabiliza-
tion technique or dissipation mechanism relies on detecting non-smoothness of the velocity 
field in the sense of discontinuities of the velocity gradient across elements. Corresponding 
stabilization terms weakly enforce C1-continuity and—if designed symmetrically—act as 
a dissipative mechanism. This method has been proposed by Douglas and Dupont (1976) 
for linear convection–diffusion problems considering conforming finite element meth-
ods (see e.g. Burman (2005) for non-conforming methods) and is today known as continu-
ous interior penalty, edge stabilization, or gradient jump penalty method. In the context of 
incompressible flows, this technique has been proposed first for continuous Galerkin meth-
ods (Burman and Fernández 2007, Burman 2007), and later also for non-conforming meth-
ods considering Crouzeix–Raviart elements (Burman et al. 2006). In elementwise notation, 
this stabilization term reads

for the full gradient. For continuous Galerkin methods, the gradient jump in tangential 
direction vanishes and only the normal gradient may be 

(37)
dEh(t)

dt
= −

(

[[uh]],
Λ

2
[[uh]]

)

Γint
h

≤ 0 ,

(38)se
GJP,h

(
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)

=
(

∇vh, �GJP
[
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])

�Ωe
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used, se
h

(

v
h
, u

h

)

=
(

∇v
h
⋅ n, �GJP

[

∇u
h

]

⋅ n
)

�Ω
e

. A similar gradient jump penalty term can be 
used for the pressure to ensure inf–sup stability. Burman et al. (2006) design the convective 
term in an energy-conserving manner (Burman et al. 2006, Lemma 11). By the symmetric 
design of the gradient jump penalty term, this terms contributes to the kinetic energy 
balance

as a numerical dissipation mechanism or implicit turbulence model.

Remark 4.17  While multiple stabilization terms with different physical units are used 
in  Burman and Fernández (2007), Burman (2007), a single stabilization term with con-
sistent physical unit is used in Moura et al. (2022) penalizing the normal gradient jump. 
Even though gradient-jump penalty appears suitable also for L2 and H(div)-conforming 
approaches, the practical implications of this stabilization approach in terms of robustness, 
accuracy, interaction with other stabilization terms, and the sensitivity of results on stabili-
zation parameters appear to be open questions.

5 � Numerical Results–Inviscid Taylor–Green Vortex Problem

In this section we present numerical results for the inviscid Taylor–Green vortex problem. 
The recent study by Fehn et al. (2022) has simulated the three-dimensional inviscid Tay-
lor–Green problem using the stabilized L2-conforming method presented in Sect.  4.7. A 
numerical convergence study has been performed, increasing the spatial resolution from 83 
up to 81923 degrees of freedom per velocity component  (defined w.r.t. 2�-periodic box) 
using a fixed polynomial degree p = 3 of the shape functions on each hexahedral element. 
To reduce computational costs and minimize the number of unknowns, the problem has 
been simulated on  1/8th of the periodic box using symmetry boundary conditions. The 
time step size has been chosen according to the CFL condition and therefore reduces 
as Δt ∼ h under mesh refinement.

The results of this convergence study (Fehn et al. 2022) are shown in Fig. 2 in terms 
of the temporal evolution of the kinetic energy and the kinetic energy dissipation rate. 

(39)
dEh(t)

dt
= …−

([

∇uh
]

, �GJP
[

∇uh
])

Γint
h

Fig. 2   3D inviscid Taylor–Green problem: temporal evolution of kinetic energy  (left) and kinetic energy 
dissipation rate (right) for increasing resolution, reprinted with permission from Fehn et al. (2022)
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Remarkably, a stable numerical solution has been obtained in all cases despite the cir-
cumstance that the result  (32) is not strictly dissipative. In terms of anomalous dissipa-
tion of energy, these numerical results suggest grid-convergence to a solution with non-
vanishing dissipation rate. These results are novel compared to studies reporting nonlinear 
blowup (Chapelier et al. 2012; Winters et al. 2018) or studies preferring exactly energy-
conserving numerical solutions (Shu et al. 2005; Schroeder 2019; Lehmkuhl et al. 2019; 
Coppola et  al. 2019) for this infinite-Re flow problem with laminar-turbulent transition. 
For a more quantitative assessment, Fig. 3 shows the relative L2-errors over time (see Fehn 
et al. (2022) for a definition) of all the coarse resolution simulations against the finest reso-
lution taken as reference. Figure 3 indicates a clear convergence trend to the fine resolution 
simulation at a relatively slow rate of convergence < 1 , a topic we want to analyze and 
discuss in more detail in Sect. 6. We note that this convergence trend is obtained by purely 
numerical dissipation mechanisms, i.e. there is no physically motivated turbulence model 
involved in the simulations.

6 � On Achievable Convergence Rates for the Kinetic Energy in Turbu‑
lent Flows

While we have mentioned above that stabilized finite element methods principally pre-
serve high-order of accuracy of the numerical method when applied to problems with 
smooth solutions (Burman and Fernández 2007; García-Archilla et al. 2021), an impor-
tant question is which rate of convergence we may expect for practical turbulence sim-
ulations, problems for which the solution can be considered non-smooth. (Guermond 
et  al. 2004,  Section  5.3.3) argue that “If one really wants to use spectral methods to 
do LES and if one really expects to achieve spectral accuracy, then the cutoff wave-
number should be chosen large enough for the large scales to be resolved.”. As we dis-
cuss in this section, this expectation about high-order or spectral convergence in under-
resolved turbulence simulations might be too optimistic. For the kinetic energy as the 
quantity of interest, we argue that one needs to resolve (almost) the whole spectrum of 
scales to observe high-order or spectral convergence and that LES is by definition in 

Fig. 3   3D inviscid Taylor–Green problem: relative L2-errors over time of kinetic energy E (left) and kinetic 
energy dissipation rate dE(t)∕dt (right) for resolutions of 83 to 40963 (measured against resolution of 81923 ), 
reprinted with permission from Fehn et al. (2022)
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conflict with high-order convergence. A recent work by  García-Archilla et  al. (2021) 
analyzed the theoretical rate of convergence in the kinetic energy for main types of finite 
element discretization methods for the incompressible Navier–Stokes equations in a 
high-Reynolds-number scenario (assuming sufficient regularity). To complement these 
results, we want to discuss an idea proposed independently in Burman (2007), Fehn and 
Kronbichler (2023) that aims to explain why the convergence rate in the kinetic energy 
is severely limited  (essentially smaller than one independently of the formal approxi-
mation order of a high-order discretization scheme) if the regularity of the solution is 
typical of high-Re number or inviscid flows, which are by nature turbulent. By turbu-
lent, we mean a solution involving a spectrum of spatial scales significantly exceeding 
the numerical resolution limit. For this purpose, we assume the kinetic energy in spec-
tral space to follow the classical −5∕3 decay  (see Fig.  4) according to Kolmogorov’s 
statistical theory of turbulence, a model we consider sufficient for this consideration. 
The argument based on the spectral decay of the kinetic energy as provided below has 
already been presented in (Burman 2007, Section 4) for flows with multiscale features, 
with the difference that the splitting into physical dissipation and artificial dissipation 
as in (Burman 2007, Equations 17 and 18) appears somewhat inappropriate for the case 
of three-dimensional turbulence with anomalous/inertial dissipation in the inviscid limit 
discussed here (where numerical dissipation is not artificial but instead aims to predict 
physical dissipation).

We describe the resolution limit of an  hp-finite element discretization scheme by 
the wavenumber  khp < khp,Ny ∶= 2𝜋∕(𝜆Ny(h, p)) . The wave length  �Ny(h, p) describes 
the minimum wavelength as two times the distance between discretization points 
and takes into account both the element length  h as well as the degree  p of the pol-
ynomial approximation on an element. The Nyquist wavenumber is typically written 
as �Ny(h, p) = 2 h∕p or 2 h∕(p + 1)  (typically, the former for continuous and the latter 
for discontinuous Galerkin schemes). Evidence for khp < khp,Ny is given by dispersion-
dissipation analysis, see e.g. Moura et al. (2017) for upwind-like DG methods, where khp 
comes closer to khp,Ny for higher polynomial degrees p (i.e. high-order methods can be 

Fig. 4   Kolmogorov energy spectrum E(k) ∼ k
−5∕3 (log-log plot) for infinite Reynolds number with illustra-

tion of unresolved scales (grey area)
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expected to be more accurate for the same number of unknowns). Then, the energy that 
can not be resolved by a discretization scheme is given as

Similarly, the overall energy with integral length scale L is approximately given as

It follows that the interpolation error of a finite element approximation in the kinetic energy 
is

From this result one might conjecture that the h-convergence rate in the kinetic energy is 
limited by 2/3 (for a Kolmogorov spectrum of slope −5∕3 ) in the limit Re → ∞ , and also 
for all finite Reynolds numbers large enough so that the Kolmogorov length scale 𝜂 ≪ 𝜆Ny . 
The argument presented here might contribute to the question “of whether or not there is 
a robust method with optimal convergence order for the kinetic energy” raised in García-
Archilla et  al. (2021). Even if such a method with robust error estimates can be con-
structed (under the assumption of sufficient regularity of the solution), the rate of conver-
gence has to be expected to be < 1 even for formally high-order methods in the turbulent 
regime, i.e.  in a regime where asymptotic rates of convergence cannot be reached due to 
the broad spectrum of spatial scales.

The above theoretical estimate could explain the numerical results in Fehn et al. (2022) 
for the 3D inviscid Taylor–Green problem, where the experimentally determined average 
convergence rate in the kinetic energy as an L2-error over time (see Fig. 3) is close to the 
theoretical value of 2/3 estimated above.

7 � Discussion and Open Questions

According to the argumentation in this work, the imagination that the convective term 
transports energy while energy can only be dissipated by the viscous term, does not hold 
in the inviscid limit. The same is the case when approaching high-Reynolds number flows 
numerically, for which a numerical simulation of finite resolution can be though of as 
behaving like an inviscid flow. In a numerical simulation, the required physical dissipation 
can not be represented by the numerical discretization of the viscous term. A discretiza-
tion scheme with dissipation mechanisms stemming from the nonlinear convective term (or 
from additional variational stabilization terms) is in agreement with the continuous prob-
lem, which may in fact dissipate energy in the Euler limit. Following the technique known 
as implicit large-eddy simulation, a consistent numerical method for incompressible turbu-
lent flow problems qualifies as physics-compatible if it conserves mass and is energy-stable 
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with numerical mechanisms of dissipation to suppress high-wavenumber content, while a 
discretely energy-conserving method (without additional dissipation models) is per se not 
physics-compatible. The metric of discrete conservation of energy is not suitable to judge 
the accuracy of discretization schemes for turbulent flows, because:

•	 The metric is insensitive to the spatial resolution. Arbitrarily coarse spatial resolu-
tions can achieve exact conservation of energy and, therefore, vanishing errors accord-
ing to this metric, but it is generally accepted that coarse spatial resolutions yield poor 
approximations with large “true errors” (e.g. as compared to experimental evidence).

•	 Energy-conserving schemes cause thermalization, the solution is polluted by small-
scale noise and an unphysical equipartitioning of energy across Fourier modes occurs. 
Quantities such as the maximum vorticity or the enstrophy (used to investigate finite-
time singularities) get, therefore, falsified by the use of energy-conserving schemes. 
This can be expected to happen prior to the formation of potential finite-time singulari-
ties, i.e. at a time where the solution might still be expected to conserve energy from a 
theoretical perspective. The conception that energy-conserving schemes form a discre-
tization scheme yielding a “clean solution” to investigate finite-time singularities lacks 
justification.

The metric of global energy-stability appears to be an established concept to assess the 
suitability of numerical methods for under-resolved turbulence simulations of incom-
pressible flows. Mathematically, the proof of energy-stability for practical discretization 
schemes often consists of proving an energy-conserving behavior of a preliminary scheme 
as a first step, which then needs to be equipped with additional explicit or implicit mecha-
nisms of dissipation. However, this procedure might appear artificial since exact conser-
vation of energy is essentially based on the existence of a strong solution. Against the 
phenomenon of anomalous energy dissipation, it appears legitimate to raise the question 
whether there are other mathematical concepts that do not rely on this separation of con-
cerns. Generally, one might formulate the goal that discretization schemes should be able 
to converge to dissipative weak solutions, in the sense that results for computable quanti-
ties in turbulent flows are in agreement with physical observations. It appears to be an open 
question whether the mathematical criteria for numerical discretization schemes should 
be formulated globally (in the sense of an integral over the domain), or locally. Hoffman 
et  al. (2015) investigated a local version of energy stability in the sense of Duchon and 
Robert (2000). It appears to be an open question to which extent such statements carry 
more information than the global statements on energy stability. More research in this 
direction could bring further insight. In particular, we want to raise the question to which 
extent established global statements  (e.g.  on energy-stability) should be replaced and/or 
extended by local statements. Concepts of monotonicity and positivity of certain quantities 
appear to be established in the compressible Navier–Stokes/Euler community with strong 
singularities in the form of shocks. Is there an analogy for incompressible Navier–Stokes/
Euler flows with turbulent singularities? Mathematically, a challenge appears to be proving 
convergence of discretization schemes such as the ones presented here to dissipative weak 
Euler solutions. Recently, the work by Lukáčová-Medvid’ová and Öffner (2023) addressed 
this problem for the compressible regime, and the work  by  Hajduk et  al. (2024) for the 
incompressible regime. Likewise, higher-order numerical methods capable of reproducing 
the relevant invariant domains near shocks of the compressible Euler equations based on 
convex-limiting techniques have been developed (Guermond et  al. 2018; Kuzmin 2020). 
Theoretically, an open question appears to be whether wild weak solutions (where current 



380	 Flow, Turbulence and Combustion (2025) 115:347–388

theoretical results point to the existence of infinitely many weak solutions) collapse to the 
same solution in terms of computable quantities of a turbulent flow, which are averaged in 
space and/or time, see also the recent essay by Eyink (2024).

In the present work, we discussed the three categories of H1, L2 , and H(div)-con-
forming finite element methods for large-eddy simulation w.r.t. properties such as con-
sistency, mass conservation, and energy-stability (or dissipation mechanisms). Dissipa-
tion mechanisms can be realized by volume and surface terms in the weak form. The 
incompressible Navier–Stokes equations with the continuity equation being as simple 
as ∇ ⋅ u = 0 allow for volume dissipation via penalization of the divergence-free con-
straint. This is not trivially applicable to the compressible Navier–Stokes equations, 
where volume dissipation mechanisms originating from explicit LES techniques have 
been explored frequently in the past (Collis and Chang 2002; Chapelier et al. 2016; Flad 
and Gassner 2017; Manzanero et al. 2020). Stabilization via orthogonal sub-scales is a 
volume dissipation mechanism preserving consistency of the method. Upwinding is a 
classical surface dissipation mechanism for  L2 and H(div)-conforming methods. Gra-
dient-jump penalty can be described as a (surface) dissipation mechanism that appears 
generic with respect to the category of function space (H1, L2, H(div) ) and with respect 
to the PDE model problem (e.g.  incompressible vs. compressible flows), and therefore 
deserves further attention in our opinion. For certain high-order finite element methods, 
the interplay of both volume and surface dissipation mechanisms might be important to 
qualify as good implicit LES technique over a wide range of polynomial degrees p of the 
shape functions. While the focus of the present work is on three-dimensional turbulent 
flows, we note that the recent study by von Wahl and Scott (2024) argues that numerical 
dissipation is also beneficial for two-dimensional flows (theoretically conserving energy 
in the Euler limit) to improve accuracy at coarse resolutions, while energy-conserving 
schemes would require very fine resolutions to achieve accurate results.

We also discussed that certain stabilizations would require space-time formulations, 
while a method-of-lines approach is often preferred in practical implementations for 
reasons of computational efficiency. For incompressible flows, so-called projection (or 
operator-splitting or fractional-step) methods are often used as efficient temporal discre-
tization schemes (Kronbichler et al. 2021; Moxey et al. 2020; Fischer et al. 2022). Fehn 
et  al. (2018), Fehn (2021) developed projection methods for stabilized L2-conforming 
methods as discussed in this work. Piatkowski (2019) developed projection methods 
for H(div)-conforming methods. For H1-conforming discretizations with symmetric gra-
dient-jump stabilization, algebraic splitting methods (i.e. forming the pressure Poisson 
operator on the algebraic level after discretization in space) were developed in Burman 
et al. (2017), and operator-splitting methods with explicit treatment of viscous, convec-
tive, and stabilization terms (leading to a super-linear Courant condition) in  Burman 
et al. (2023). Codina (2001) discusses projection methods for H1-conforming methods 
with orthogonal sub-scales stabilization. The development of projection methods for H1

-conforming methods with residual-based stabilization (SUPG or variational multiscale) 
appears to be an open issue. State-of-the-art implementations of operator-splitting meth-
ods based on H1-conforming discretizations (Moxey et al. 2020; Fischer et al. 2022) typ-
ically use filtering or spectral-vanishing viscosity methods to realize dissipative mecha-
nisms rather than stabilized finite element methods.

Due to the rich spectrum of scales in turbulent flows, we expect the spatial conver-
gence rate to be severly limited in under-resolved turbulence simulations. Linear disper-
sion–diffusion analysis is typically used to explain the cutoff behavior in spectral space 
of numerical schemes for large-eddy simulation, from which motivation is deduced for 
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high-order numerical methods due to an improved numerical resolution limit khp closer 
to khp,Ny than for low-order methods. The pre-conception that upwind schemes are infe-
rior in accuracy compared to central fluxes or symmetric schemes seems to originate 
from low-order methods and seems to lack justification for high-order methods. In the 
limit of very high polynomial degrees, pure upwind stabilization might not be suffi-
cient as dissipation mechanism. This supports the perspective that high-order methods 
provide the flexibility to choose the polynomial degree in a way that the dispersion-
dissipation behavior appears optimal as an implicit LES technique, where intermediate 
polynomial degrees of p = 2, ..., 7 have been identified most favorable in the literature in 
this regard. Despite the limitations in spatial convergence rates in a fully turbulent state 
with rough solution, we consider the consistency and high-order capability of numerical 
discretization schemes (for problems with smooth solution) an important property. The 
main reason for this is the desire for parameter-free computational fluid dynamics solv-
ers, which can be applied without a priori knowledge of a certain flow problem, which 
might involve regions of smooth solutions, laminar-turbulent transition and regions of 
fully turbulent, rough solutions. We think that comparative studies  (done in a blinded 
setup) will help the LES community to identify the most promising techniques among 
the great variety of implicit and explicit LES approaches.
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