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Abstract
We consider dynamical low-rank approximations to parabolic problems on higher-
order tensor manifolds in Hilbert spaces. In addition to existence of solutions and
their stability with respect to perturbations to the problem data, we show convergence
of spatial discretizations. Our framework accommodates various standard low-rank
tensor formats for multivariate functions, including tensor train and hierarchical ten-
sors.

Mathematics Subject Classification Primary 35K15 · 35R01; Secondary 15A69 ·
65M12

1 Introduction

Dynamical low-rank approximation (DLRA) is a nonlinear model for time evolution
of high-dimensional functions on low-dimensional submanifolds. In its simplest form
for matrices, as presented in the seminal work [20], one seeks approximate solutions
of matrix valued ODEs

Ẋ(t) = F(X(t), t), X(t) ∈ R
M×N

B Henrik Eisenmann
eisenmann@igpm.rwth-aachen.de

Markus Bachmayr
bachmayr@igpm.rwth-aachen.de

André Uschmajew
andre.uschmajew@uni-a.de

1 Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben
55, 52062 Aachen, Germany

2 Institute of Mathematics & Centre for Advanced Analytics and Predictive Sciences, University of
Augsburg, 86159 Augsburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-025-01465-8&domain=pdf


782 M. Bachmayr et al.

constrained to a low-rank model

X(t) = U (t)V (t)T,

whereU (t) ∈ R
M×r and V (t) ∈ R

N×r . Hence X(t) has rank atmost r for every time t ,
which if r � M, N allows for an efficient numerical treatment. From a geometric
perspective, by enforcing X(t) to have rank exactly r , the problem can be formulated
as an ODE on the manifold Mr of matrices of fixed rank r by projecting the vector
field F onto the tangent space TX(t)Mr at every time t ,

Ẋ(t) = PX(t)F(X(t), t). (1.1)

In this way, assuming a starting value X0 onMr , the time evolution is automatically
constrained to the manifold. This constrained problem admits the time-dependent
variational formulation

〈Ẋ(t), Y 〉 = 〈F(X(t), t), Y 〉 for all Y ∈ TX(t)Mr , (1.2)

which in physics is also called the Dirac–Frenkel principle [9, 15]. The state-of-the-art
tool for the numerical solution of these equations is based on a splitting of the tangent
space projector PX(t), see [24].

The DLRA approach can also be applied to time-dependent problems where the
solution X(t) is a tensor of size N1 × · · · × Nd . In this case, various low-rank models
are possible, notably those based on tree tensor networks [1, 21, 26]. The most basic
example is the low-rank Tucker format

X(t; i1, . . . , id) =
r1∑

j1=1

· · ·
rd∑

jd=1

C(t; j1, . . . , jd)U1(t; i1, j1) · · · Ud(t; jd , id)

with multilinear rank r = (r1, . . . , rd). Another example is the widely used tensor
train model [29], also known as matrix product states in physics, in which the tensor
X(t) element-wise reads as

X(t; i1, . . . , id) = G1(t; i1)G2(t; i2) · · · Gd(t; id) . (1.3)

Here Gμ(t, iμ) for μ = 1, . . . , d is a matrix of fixed size kμ−1 × kμ, with the con-
vention that k0 = kd = 1. Hence, the parameters in this model are the so-called
core tensors Gμ(t) ∈ R

kμ−1×Nμ×kμ . The componentwise minimal possible tuple
k = (k1, . . . , kd−1) is called the TT rank of X , and the set of tensors with a fixed
TT rank k = (k1, . . . , kd−1) can be shown to form an embedded manifold Mk in
R

N1×···×Nd , see [18, 33]. Note that for d = 2, one recovers matrices of rank k = k1.
The DLRA formulation then essentially takes the same form (1.1) or (1.2) with the
according tangent space projection, and the resulting problem again can be solved
numerically using a projector splitting approach [7, 25]. We refer to [34] for a survey
on DLRA for matrix and tensor problems.
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So far we have outlined DLRA for problems in finite-dimensional matrix and ten-
sor spaces. In applications of DLRA related to PDE problems, such as in [1, 5, 6,
8, 10, 11, 16, 19, 23, 27], a finite-dimensional problem appears as the second step
after a spatial discretization of multivariate functions. Then the natural question arises
whether the solutions of discrete problems converge to a meaningful solution of a
continuous DLRA formulation when the spatial discretization is refined. To the best
of our knowledge, this convergence issue has not been addressed in the existing litera-
ture. Since DLRA is based on a nonlinear variational formulation, the convergence of
spatial discretizations is a nontrivial matter and cannot be treated by classical results
from the numerical analysis of PDEs.

1.1 Dynamical low-rank approximation for parabolic problems

In this work, we establish such results for certain types of parabolic PDEs. As a model,
we consider the diffusion equation

∂

∂t
u(x, t) − ∇x · (B(t)∇x u(x, t)) = f (x, t) for (x, t) ∈ � × (0, T ),

u(x, t) = 0 for (x, t) ∈ ∂� × (0, T ),

u(x, 0) = u0(x) for x ∈ �

(1.4)

on the product domain � = (0, 1)d . Here B(t) is a d × d-matrix, which allows
for anisotropic diffusion in (1.4), and we assume it to be uniformly bounded and
positive definite, as well as Lipschitz continuous with respect to t . The problem (1.4)
is typically formulated in weak form on function spaces as follows: given u0 ∈ L2(�)

and f ∈ L2(0, T ; H−1(�)), find

u ∈ W (0, T ; H1
0 (�), H−1(�)) = {u ∈ L2(0, T ; H1

0 (�)) : u′ ∈ L2(0, T ; H−1(�))}

such that for almost all t ∈ (0, T ),

〈u′(t), v〉 + a(u(t), v; t) = 〈 f (t), v〉 for all v ∈ H1
0 (�),

u(0) = u0.
(1.5)

Here, by 〈·, ·〉 we denote the dual pairing on H−1(�) × H1
0 (�), and a : H1

0 (�) ×
H1
0 (�) × [0, T ] → R is the bounded, symmetric and coercive bilinear form

a(u, v; t) =
∫

�

(B(t)∇u(x)) · ∇v(x) dx .

Classical theory provides a unique solution to (1.5); see for example [37, Theorem
23.A] and [38, Theorem 30.A].

A DLRA formulation for (1.5) is obtained by selecting a low-rank model class

M ⊂ L2(�)
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based on the tensor product structure of L2(�) = L2(0, 1) ⊗ · · · ⊗ L2(0, 1), such
as the tensor train format in a Hilbert space setting to be made precise in Sect. 4, and
restricting the test function in (1.5) to the tangent space ofM at u(t). In other words,
the problem reads: given u0 ∈ M and f ∈ L2(0, T ; H−1(�)), find

u ∈ W (0, T ; H1
0 (�), H−1(�)):={u ∈ L2(0, T ; H1

0 (�)) : u′ ∈ L2(0, T ; H−1(�))}

such that u(t) ∈ M for all t ∈ (0, T ) and

〈u′(t), v〉 + a(u(t), v; t) = 〈 f (t), v〉 for all v ∈ Tu(t)M ∩ H1
0 (�),

u(0) = u0.
(1.6)

For the matrix case d = 2, existence and uniqueness of DLRA solutions on a
maximal time interval (0, T ∗) has been shown in [3] under the additional regularity
assumptions u0 ∈ H1

0 (�) and f ∈ L2(0, T ; L2(�)). The proof given there is carried
out in a more general framework of parabolic problems on manifolds in Gelfand
triplets and is based on a variational time stepping scheme in Hilbert space. As we
will verify in Sect. 4, this framework also applies to the tensor train model of d-variate
functions, and can analogously be used to other tree based low-rank tensor models.
To this end, we establish a general concept of tensor manifolds in Hilbert space which
allows to deduce the required manifold properties, such as curvature estimates, from
their finite-dimensional counterparts. As a result, we obtain a meaningful and rigorous
notion of a continuous DLRA solution for parabolic problems for higher-order tensors
based on the results from [3].

However, the existence proof in [3] does not provide the convergence of solutions
of spatial semidiscretizations to the continuous solution, and we address this open
problem in the present work as well. Spatial discretizations of low-rank problems
can be obtained in a very natural way via tensor products of discretization spaces.
By considering finite-dimensional subspaces V μ

h ⊂ H1
0 (0, 1) of dimension Nμ one

obtains a DLRA problem analogous to (1.6) by restricting to the tensor product space

Vh = V 1
h ⊗ · · · ⊗ V d

h .

We hence seek a solution uh(t) ∈ M ∩ Vh satisfying

〈u′
h(t), vh〉 + a(uh(t), vh; t) = 〈 f (t), vh〉 for all vh ∈ Tuh(t)M ∩ Vh,

u(0) = u0.
(1.7)

By writing uh(t) in a tensor product basis of Vh ,

uh(t) =
N1∑

i1=1

· · ·
Nd∑

id=1

X(t; i1, . . . , id)ϕ1
i1 ⊗ · · · ⊗ ϕd

id
,

123



Dynamical low-rank tensor approximations... 785

we obtain aDLRAproblem for the coefficient tensor X(t) ∈ R
N1×···×Nd . The question

is thenwhether for h → 0, the functions uh converge to the (unique) solution u of (1.7).

1.2 Contributions and outline

In this work, we extend the existence and uniqueness result for the DLRA evolution
obtained in [3] from the bivariate to the multivariate case. The abstract framework
from [3] is recalled in Sect. 2. This section also contains the new stability estimate
Theorem 2.5, which complements the uniqueness result of [3]. The main result of
Sect. 3 is the convergence result for spatial semidiscretizations (Theorem 3.2) in the
abstract framework of Gelfand triplets as developed in [3]. In Sect. 4, we present
a general notion of low-rank manifolds in Hilbert spaces and obtain new curvature
estimates.We then in Sect. 5 apply these results to dynamical low-rank approximations
of themodel problem (1.6) using the tensor train format. Based on the general setting of
Sect. 4, analogous results can be obtained for other low-rank manifolds; in particular,
our results apply directly also to the Tucker format. Note that in this work, we focus
on a theoretical framework for DLRA of parabolic problems and do not consider
specific numerical realizations. Numerical results for DLRA in the parabolic case can
be found, e.g., in [19, 28].

2 Abstract formulation

For developing the essential aspects of the theory we investigate the DLRA problem
in an abstract context as in [3]. We consider a Gelfand triplet

V ↪→ H ∼= H∗ ↪→ V∗

of Hilbert spaces, where V is compactly embedded inH. This implies that the embed-
ding is also continuous, that is,

‖u‖H � ‖u‖V. (2.1)

By 〈·, ·〉 : V∗ × V → R we denote the dual pairing of V∗ and V. Note that for
u ∈ H ⊂ V∗ and v ∈ V ⊂ H, the dual pairing and the inner product on H coincide,
that is, 〈u, v〉H = 〈u, v〉. We will frequently identify u ∈ V as an element ofH and in
turn also as an element in V∗.

For every t ∈ [0, T ], let a(·, ·; t) : V×V → R be a bilinear form which is assumed
to be symmetric,

a(u, v; t) = a(v, u; t) for all u, v ∈ V and t ∈ [0, T ],

uniformly bounded,

|a(u, v; t)| ≤ β‖u‖V‖v‖V for all u, v ∈ V and t ∈ [0, T ]
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786 M. Bachmayr et al.

for some β > 0, and uniformly coercive,

a(u, u; t) ≥ μ‖u‖2V for all u ∈ V and t ∈ [0, T ]

for some μ > 0. Under these assumptions, a(·, ·; t) is an inner product on V defining
an equivalent norm. Furthermore, it defines a bounded operator

A(t) : V → V∗ (2.2)

such that

a(u, v; t) = 〈A(t)u, v〉 for all u, v ∈ V.

We also assume that a(u, v; t) is Lipschitz continuous with respect to t . In other
words, there exists an L ≥ 0 such that

|a(u, v; t) − a(u, v; s)| ≤ Lβ‖u‖V‖v‖V|t − s| (2.3)

for all u, v ∈ V and s, t ∈ [0, T ], which in the model problem corresponds to the
Lipschitz continuity of the function t �→ B(t).

We deal with evolution equations on subsets M ⊂ H that are submanifolds in the
following sense: for every point u ∈ M there exists a closed subspace TuM ⊂ H
such that TuM contains all tangent vectors to M at u. Here a tangent vector is any
v ∈ H for which there exists a (strongly) differentiable curve ϕ : (−ε, ε) → H (for
some ε > 0) such that ϕ(t) ∈ M for all t and

ϕ(0) = u, ϕ′(0) = v.

By Pu : H → TuM we denote theH-orthogonal projection onto TuM. We will also
assumeM ∩ V to be nonempty as well as TuM ∩ V to be nonempty for u ∈ M ∩ V.
ByMw

we denote the weak closure of M inH.
The abstract problem takes the following form.

Problem 2.1 In the above setting, given f ∈ L2(0, T ;V∗) and u0 ∈ M ∩ H, find

u ∈ W (0, T ;V,V∗):={u ∈ L2(0, T ;V) : u′ ∈ L2(0, T ;V∗)}

such that for almost all t ∈ [0, T ],

u(t) ∈ M,

〈u′(t), v〉 + a(u(t), v; t) = 〈 f (t), v〉 for all v ∈ Tu(t)M ∩ V,

u(0) = u0.

(2.4)
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2.1 Basic assumptions and existence of solutions

The main challenge of the weak formulation in Problem 2.1 is that according to
the Dirac-Frenkel principle, the test functions are from the tangent space only. The
existence result in [3] requires several assumptions, including additional regularity of
the data as in assumption A0 below. The other assumption A1–A4 are abstractions of
corresponding properties of the model problem and will be discussed for the tensor
train format in Sect. 4, and hence the main results of this paper apply to this setting.
The assumptions are the following.

A0 (Regularity of data) We have f ∈ L2(0, T ;H) and u0 ∈ M ∩ V.
A1 (Cone property) M is a cone, that is, u ∈ M implies su ∈ M for all s > 0.
A2 (Curvature bound) For every subsetM′ ofM that is weakly compact inH, there

exists a constant κ = κ(M′) such that

‖Pu − Pv‖H→H ≤ κ‖u − v‖H
and

‖(I − Pu)(u − v)‖H ≤ κ‖u − v‖2H
for all u, v ∈ M′.

A3 (Compatibility of tangent spaces)

(a) For u ∈ M ∩ V and v ∈ TuM ∩ V an admissible curve with ϕ(0) = u,
ϕ′(0) = v can be chosen such that

ϕ(t) ∈ M ∩ V

for all |t | small enough.
(b) If u ∈ M ∩ V and v ∈ V then Puv ∈ TuM ∩ V.

A4 (Operator splitting) The associated operator A(t) in (2.2) admits a splitting

A(t) = A1(t) + A2(t)

into two uniformly bounded operators V → V∗ such that for all t ∈ [0, T ], all
u ∈ M ∩ V and all v ∈ V, the following holds:

(a) “A1(t) maps to the tangent space”:

〈A1(t)u, v〉 = 〈A1(t)u, Puv〉.

(b) “A2(t) is locally bounded from M ∩ V to H”: For every subset M′ of M
that is weakly compact inH, there exists γ = γ (M′) > 0 such that

A2(t)u ∈ H and ‖A2(t)u‖H ≤ γ ‖u‖η

V for all u ∈ M′

with an η > 0 independent of M′.

123
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The following existence and uniqueness result has been obtained in [3, Theo-
rem 4.3]. Here W (0, T ;V,H) denotes the subspace of W (0, T ;V,H) with u′ ∈
L2(0, T ;H).

Theorem 2.2 Let the Assumptions A0–A4 hold and let u0 have positive H-distance
from Mw\M. There exist T ∗ ∈ (0, T ] and u ∈ W (0, T ∗;V,H)∩ L∞(0, T ∗;V) such
that u solves Problem 2.1 on the time interval [0, T ∗], and its continuous representative
u ∈ C(0, T ∗;H) satisfies u(t) ∈ M for all t ∈ [0, T ∗). Here T ∗ is maximal for the
evolution on M in the sense that if T ∗ < T , then

lim inf
t→T ∗ inf

v∈Mw\M
‖u(t) − v‖H = 0.

In either case, u is the unique solution of Problem 2.1 in W (0, T ∗;V,H) ∩
Lη(0, T ∗;V).

In particular, let σ = distH(u0,Mw\M), then there exists a constant c > 0 such
that T ∗ ≥ min(σ 2/c, T ).

The solution satisfies the following estimates:

‖u‖2L2(0,T ∗;V) ≤ ‖u0‖2H + C1‖ f ‖2L2(0,T ∗;H), (2.5)

‖u′‖2L2(0,T ∗;H) ≤ C2

(
‖u0‖2V + ‖ f ‖2L2(0,T ∗;H)

)
, (2.6)

‖u‖2L∞(0,T ∗;V) ≤ C3

(
‖u0‖2V + ‖ f ‖2L2(0,T ∗;H)

)
, (2.7)

where C1, C2, and C3 are the constants from [3, Lemma 4.4].

Note that the energy estimates (2.5)–(2.7) are not explicitly stated in [3, Theo-
rem 4.3], but immediately follow from its proof in combination with [3, Lemma 4.4].

Remark 2.3 We can take c as the right-hand side of (2.6).

Remark 2.4 Our Assumption A2 is stronger than the one used in [3], which requires
the curvature estimates to be valid for ‖u − v‖H ≤ ε for some ε > 0 (the constant
κ then may depend on ε). The stronger assumption made here is used in the proof
of Theorem 2.5. As our new curvature estimates in Sect. 4.1.4 show, this stronger
assumption is in fact satisfied for the low-rank manifolds under consideration.

2.2 A stability estimate

As a first extension to the above existence and uniqueness theorem, we now provide
a stability estimate that in particular ensures continuity of the solution with respect
to the data. This result was obtained in [12]. The proof follows a similar idea as the
uniqueness result in [3, Theorem 4.1].

Theorem 2.5 Let u, v ∈ W (0, T ∗;V,H) be two solutions of Problem 2.1 on a time
interval [0, T ∗] corresponding to right-hand sides f , g ∈ L2(0, T ;H), and initial
values u0, v0 ∈ M, respectively. Assume that the continuous representatives u, v ∈
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C(0, T ∗;H) have values in a weakly compact subset M′ ⊂ M (in particular their
H-distance to Mw\M remains bounded from below). Moreover, assume that u, v ∈
Lη(0, T ∗;V) where η is from Assumption A4(b). Then for any ε > 0,

‖u(t) − v(t)‖2H ≤
(

‖u0 − v0‖2H + 1

ε

∫ t

0
‖ f (s) − g(s)‖2H ds

)
exp(�(t) + εt),

where

�(t) := 2κ
∫ t

0
‖u′(s)‖H + ‖v′(s)‖H + γ

(‖u(s)‖η

V + ‖v(s)‖η

V
) + ‖ f (s)‖H

+‖g(s)‖H ds < ∞

with κ = κ(M′) from Assumption A2.

Proof We use integration by parts in the sense of [37, Proposition 23.23(iv)]. This
results in

1

2

d

dt
‖u(t) − v(t)‖2H ≤ 〈u′(t) − v′(t) + A(t)(u(t) − v(t)) − f (t) + g(t)

+ f (t) − g(t), u(t) − v(t)〉

for almost all t ∈ [0, T ∗] by coercivity of A(t) and adding and subtracting 〈 f (t) −
g(t), u(t) − v(t)〉. We add and subtract (2.4) for the solutions u and v with w =
Pv(t)(u(t) − v(t)) and w = Pu(t)(u(t) − v(t)), respectively. This results in

1

2

d

dt
‖u(t) − v(t)‖2H

≤ 〈 f (t) − g(t), u(t) − v(t)〉 + 〈u′(t) + A(t)u(t) − f (t), (id−Pu(t))(u(t) − v(t))〉
−〈v′(t) + A(t)v(t) − g(t), (id−Pv(t))(u(t) − v(t))〉.

We use Young’s inequality to estimate

〈 f (t) − g(t), u(t) − v(t)〉 ≤ 1

2ε
‖ f (t) − g(t)‖2H + ε

2
‖u(t) − v(t)‖2H

and Assumption A4 to get

1

2

d

dt
‖u(t) − v(t)‖2H

≤ (‖u′(t)‖H + γ ‖u(t)‖η

V + ‖ f (t)‖H
) ‖(id−Pu(t))(u(t) − v(t))‖H

+ (‖v′(t)‖H + γ ‖v(t)‖η

V + ‖g(t)‖H
) ‖(id−Pv(t))(u(t) − v(t))‖H

+ 1

2ε
‖ f (t) − g(t)‖2H + ε

2
‖u(t) − v(t)‖2H.
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Finally, Assumption A2 implies

d

dt
‖u(t) − v(t)‖2H ≤

(
2κ

(
‖u′(t)‖H + ‖v′(t)‖H + γ

(‖u(t)‖η

V + ‖u(t)‖η

V
)

+‖ f (t)‖H + ‖g(t)‖H
)

+ ε

)
‖u(t) − v(t)‖2H + 1

ε
‖ f (t) − g(t)‖2H

and the result follows fromGrönwall’s lemma; see for example [31, Lemma 2.7]. Here
we take into account that L2(0, T ∗;H) ⊂ L1(0, T ∗;H). ��

3 Convergence of spatial discretizations

From the perspective of numerical analysis, an important question is whether the
unique solution of Problem 2.1 can be obtained as the limit of solutions of spatially
discretized problems. We now provide such a result under assumptions on the com-
patibility of the discrete spaces Vh ⊂ V with M. The spatially discretized problems
are of the following form.

Problem 3.1 Given f ∈ L2(0, T ;H) and u0,h ∈ M ∩ Vh , find uh ∈ W (0, T ;V,H)

such that for almost all t ∈ [0, T ],

uh(t) ∈ M ∩ Vh,

〈u′
h(t), vh〉 + a(uh(t), vh; t) = 〈 f (t), vh〉 for all vh ∈ Tuh(t)M ∩ Vh,

uh(0) = uh,0.

(3.1)

We require that the discrete subspaces Vh ⊂ V have the following properties.

B1 (Approximation property)

(a) For every v ∈ V, theV-orthogonal projections vh ∈ Vh satisfy ‖v−vh‖V → 0
as h ↘ 0.
(b) For every u ∈ M ∩ V there is a sequence (uh) with uh ∈ M ∩ Vh such that
uh converges to u in V as h ↘ 0 and ‖uh‖V ≤ ‖u‖V.

B2 (Compatibility of tangent spaces)

(a) For uh ∈ M ∩ Vh and vh ∈ TuM ∩ Vh a continuously differentiable curve
with ϕ(0) = uh , ϕ′(0) = vh can be chosen such that

ϕ(t) ∈ M ∩ Vh

for all |t | small enough.
(b) If uh ∈ M ∩ Vh and vh ∈ Vh then Puh vh ∈ TuhM ∩ Vh .

The model problem (1.5) allows for such a space discretization, as verified in
Sect. 5.1.3 for tensor train manifolds. The following result was obtained in [12].
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Theorem 3.2 Let the Assumptions A0–A4 and B1–B2 hold. Let u0,h ∈ M∩Vh define
a sequence that converges to u0 in V as h ↘ 0 and let u0 have positive H-distance
σ to the relative boundary Mw \M. Then there exists a constant c > 0 independent
of σ and a constant h0 > 0 such that there is a unique uh in W (0, T ∗;V,H) ∩
Lη(0, T ∗;V) that solves Problem 3.1 on the time interval [0, T ∗] when T ∗ < σ 2/c
for all h ≤ h0. Furthermore, uh converges to the unique solution u of Problem 2.1 in
W (0, T ∗;V,H) ∩ Lη(0, T ∗;V) weakly in L2(0, T ∗;V) and strongly in C(0, T ∗;H),
while the weak derivatives u′

h converge weakly to u′ in L2(0, T ∗,H).

Proof Since u0,h converges to u0 inV, there is an h0 > 0 such that ‖u0,h −u0‖V ≤ σ/2
and ‖u0,h − u0‖H ≤ σ/2 for all h ≤ h0 due to (2.1). Furthermore, we can choose
h0 small enough, such that ‖u0,h‖2V ≤ 2‖u0‖2V and ‖u0,h‖2H ≤ 2‖u0‖2H. Therefore,
the H-distance of u0,h from Mw\M is at least σ/2. Hence, applying Theorem 2.2
with Vh in place of V provides us with solutions uh to Problem 3.1 on a time interval
[0, T ∗] with T ∗ < σ 2/(4c) for every h ≤ h0, where c can be chosen as the right-hand
side of the following estimate (3.3). Theorem 2.2 provides us with the estimates

‖uh‖2L2(0,T ∗;V) ≤ 2‖u0‖2H + C1‖ f ‖2L2(0,T ∗;H), (3.2)

‖u′
h‖2L2(0,T ∗;H) ≤ C2

(
2‖u0‖2V + ‖ f ‖2L2(0,T ∗;H)

)
, (3.3)

‖uh‖2L∞(0,T ∗;V) ≤ C3

(
2‖u0‖2V + ‖ f ‖2L2(0,T ∗;H)

)
. (3.4)

Note that by (3.3), we can assume that for h sufficiently small, ‖uh(t) − u0‖H ≤
σ − δ for a δ > 0. As a consequence, there is a subsequence (uh) converging weakly
to ũ in L2(0, T ∗;V) and weakly∗ in L∞(0, T ∗;V) and the derivatives (u′

h) converging
weakly to w̃ in L2(0, T ∗;H).

We next show that w̃ is the weak derivative of ũ. For this, we need to verify that

∫ T ∗

0
〈w̃(t), v〉φ(t) + 〈ũ(t), v〉φ′(t) dt = 0

for arbitrary v ∈ V and φ ∈ C∞
0 (0, T ∗). For any vh ∈ Vh we may add and subtract

the weak derivative of uh to obtain

∫

T ∗
〈w̃(t), vh〉φ(t) dt + 〈ũ(t), vh〉φ′(t) dt

=
∫

T ∗
〈w̃(t) − u′

h(t), vh〉φ(t) + 〈ũ(t) − uh(t), vh〉φ′(t) dt .

Now let (vh) be a sequence converging to v in V. Then
∫

T ∗
〈w̃(t), v〉 φ(t) dt + 〈ũ(t), v〉 φ′(t) dt = lim

h↘0

∫

T ∗
〈w̃(t), vh〉 φ(t) dt + 〈ũ(t), vh〉 φ′(t) dt

= lim
h↘0

∫

T ∗
〈w̃(t) − u′

h(t), vh〉 φ(t) + 〈ũ(t) − uh(t), vh〉 φ′(t) dt = 0
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since vhφ converges strongly to vφ in L2(0, T ∗;V). Therefore, the sequence (uh)

converges weakly in W (0, T ∗;V,H) to ũ. Due to the Aubin-Lions theorem, and by
boundedness in L∞(0, T ∗;V), it also converges strongly in C(0, T ∗;H) to ũ, and
ũ(0) = limh↘0 uh(0) = limh↘0 u0,h = u0.

It remains to show that ũ satisfies (2.4) and therefore agrees with the unique solu-
tion u of Problem 2.1 in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V) provided by Theorem 2.2.
By a subsequence-of-subsequence argument, it then follows that the entire sequence
converges to ũ. Let Qh be the V-orthogonal projection onto Vh . For v ∈ Tũ(t)M ∩ V,
let vh = Qhv, which converges strongly to v in V by PropertyB1(a). This also implies
that the sequence is uniformly bounded inH. By (3.1), we have

〈u′
h(t), Puh(t)vh〉 + a(uh(t), Puh(t)vh; t) = 〈 f (t), Puh(t)vh〉

for almost every t , since Puh(t)vh ∈ Tuh(t)M∩Vh by Property B2(b). We have chosen
the time interval such that uh(t) ∈ M′ ⊂ M lie in a weakly compact subset for all
t ∈ [0, T ∗]. Hence, using Assumption A2,

‖v − Puh(t)vh‖H ≤ ‖v − Puh(t)v‖H + ‖Puh(t)(v − vh)‖H
≤ κ(M′)‖ũ(t) − uh(t)‖H‖v‖H + ‖(v − vh)‖H, (3.5)

and thus Puh(t)vh converges strongly to v in H. Using a similar argument as in the
proof of Theorem 2.2 in [3], it suffices to show

∫ T ∗

0
〈ũ′(t), v(t)〉 + a(ũ(t), v(t); t) − 〈 f (t), v(t)〉 dt = 0

for all v ∈ L∞(0, T ∗;V) with v(t) ∈ Tũ(t)M ∩ V for almost every t .
Since Puh(t)Qhv(t) converges to v(t) inH for almost all t ∈ [0, T ∗], and we have

the square integrable bound (3.5), the sequence Puh(t)Qhv(t) converges strongly to
v in L2(0, T ∗;H). This together with weak convergence of (u′

h) in L2(0, T ∗;H)

implies

lim
h↘0

∫ T ∗

0
〈u′

h(t), Puh(t)Qhv(t)〉 − 〈 f (t), Puh(t)Qhv(t)〉 dt

=
∫ T ∗

0
〈ũ′(t), v(t)〉 − 〈 f (t), v(t)〉 dt .

Finally, we use Assumption A4. We have

a(uh(t), Puh(t)Qhv(t); t) − a(ũ(t), v(t); t)

= 〈A1(t)uh(t), Puh(t)Qhv(t)〉 − 〈A1(t)ũ(t), v(t)〉
+〈A2(t)uh(t), Puh(t)Qhv(t)〉 − 〈A2(t)ũ(t), v(t)〉 (3.6)

123



Dynamical low-rank tensor approximations... 793

and due to Assumption A4(a)

〈A1(t)uh(t), Puh(t)Qhv(t)〉 = 〈A1(t)uh(t), Qhv(t)〉.
This implies

lim
h↘0

∫ T ∗

0

∣∣〈A1(t)uh(t), Puh(t)Qhv(t)〉 − 〈A1(t)u(t), v(t)〉∣∣ dt = 0

as uh converges weakly to ũ and Qhv converges strongly to v in L2(0, T ∗;V). For the
second summand in (3.6) we have

〈A2(t)uh(t), Puh(t)Qhv(t)〉 − 〈A2(t)ũ(t), v(t)〉
= 〈A2(t)uh(t), Puh(t)Qhv(t) − v(t)〉 + 〈A2(t)(ũ(t) − uh(t)), v(t)〉

where

∣∣〈A2(t)uh(t), Puh(t)Qhv(t) − v(t)〉∣∣ ≤ γ ‖uh(t)‖η

V‖Puh(t)Qhv(t) − v(t)‖H

and
∫ T ∗
0 ‖uh(t)‖η

V‖Puh(t)Qhv(t) − v(t)‖H dt → 0. Moreover,

∫ T ∗

0
〈A2(t)(ũ(t) − uh(t)), v(t)〉 dt → 0 as h ↘ 0,

since uh converges weakly to ũ in L2(0, T ∗;V). Taken together with (3.5) and the
uniform bound of uh in L∞(0, T ∗;V), we have

∫ T ∗

0
a(uh(t), Puh(t)Qhv(t); t) − a(ũ(t), v(t); t) dt → 0 as h ↘ 0

and hence

∫ T ∗

0
〈ũ′(t), v(t)〉 + a(ũ(t), v(t); t) − 〈 f (t), v(t)〉 dt

= lim
h↘0

∫ T ∗

0
〈u′

h(t), Puh(t)vh〉 + a(uh(t), Puh(t)vh; t) − 〈 f (t), Puh(t)vh〉 dt = 0

for all v ∈ L∞(0, T ∗;V) with v(t) ∈ Tũ(t)M ∩ V for almost every t . ��

4 Properties of low-rank tensor manifolds in Hilbert space

In this section we return to our model problem (1.4) in its weak formulation (1.5) and
apply the theory developed above for low-rank models of multivariate functions. In
the model problemH = L2(�) and V = H1

0 (�), the compact embedding V ↪→ H is
due to the Rellich-Kondrachov theorem and (2.1) is the Poincaré inequality.
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4.1 Low-rank tensor manifolds in function space

Let � = �1 × · · · × �d , where �μ is a bounded domain in a Euclidean space for
μ = 1, . . . , d. We write Hμ = L2(�μ) for abbreviation. The space H = L2(�1 ×
· · ·×�d) = H1⊗· · ·⊗ Hd is a tensor product Hilbert space. In DLRA, one considers
low-rank manifolds M in such spaces. We consider manifolds of the general form

M =
{

u =
r1∑

k1=1

· · ·
rd∑

kd=1

C(k1, . . . , kd) u1
k1 ⊗ · · · ⊗ ud

kd
:

C ∈ Mc ⊂ R
r1×···×rd∗ , G(uμ) is invertible

}
. (4.1)

Here Rr1×···×rd∗ denotes the dense and open subset of “regular” r1 × · · · × rd tensors
with full multilinear rank (r1, . . . , rd), and G(uμ) = [〈uμ

i , uμ
j 〉]i j ∈ R

rμ×rμ is the

Gramian of the system {uμ
1 , . . . , uμ

rμ
}. We assume that Mc is a smooth submanifold

in Rr1×···×rd∗ that we additionally assume to be invariant under changes of basis in the
sense that for all C ∈ Mc,

C ×1 T 1 ×2 · · · ×d T d ∈ Mc for all invertible matrices T 1, . . . , T d . (4.2)

Here we use the notation ×μ for left multiplication of a matrix onto the μ-th mode a
tensor [22].

The definition of M results in a constrained version of the Tucker format (for
whichMc = R

r1×···×rd∗ ), and covers continuous versions of general tree based tensor
formats, for example by letting Mc be a corresponding finite-dimensional low-rank
tensor manifold in Rr1×···×rd , such as manifolds of tensor trains [18, 34] or of hierar-
chical Tucker tensors [4, 33] with fixed ranks.

Note that it follows from the assumed properties of Mc, that this set is not closed
in R

r1×···×rd , and hence Mc\Mc �= ∅. To see this, let C ∈ Mc and T 1
n , . . . , T d

n be
invertible matrices converging to T 1∗ , . . . , T d∗ such that at least one of the limits is
not invertible. Then C ×1 T 1

n ×2 · · · ×d T d
n ∈ Mc for all n by (4.2), but the limit

C ×1 T 1∗ ×2 · · ·×d T d∗ does not have full multilinear rank, and hence is not inMc. This
example also shows that the set M is not closed in H, and in particular not weakly
closed. Moreover, in Lemma 4.4 we will see that the closure and weak closure of M
coincide with the set described in (4.1) withMc replaced by Mc.

For investigating the manifold properties ofM, the concepts of matricizations and
minimal subspaces play a crucial role. For everyμ = 1, . . . , d, we can identify u with
an element Mμ

u , called the μ-th matricization of u, in the subspace Hμ ⊗ H �=μ, where
H �=μ = ⊗

ν �=μ H ν . Assuming u ∈ M as above and letting

v
μ
kμ

=
r1∑

k1=1

· · ·
rμ−1∑

kμ−1=1

rμ+1∑

kμ+1=1

· · ·
rd∑

kd=1

C(k1, . . . , kd) u1
k1⊗· · ·⊗uμ−1

kμ−1
⊗uμ+1

kμ+1
⊗· · ·⊗ud

kd
,

(4.3)
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one has

Mμ
u =

rμ∑

kμ=1

uμ
kμ

⊗ v
μ
kμ

. (4.4)

Since the core tensor C has full multilinear rank by (4.1), one can show that the v
μ
kμ

are also linearly independent. Now define

Uμ = span{uμ
1 , . . . , uμ

rμ
}

and

Vμ = span{vμ
1 , . . . , vμ

rμ
},

then (4.4) expresses the fact, that Mμ
u is an element of the “matrix subspace” Uμ ⊗Vμ

and rank(Mμ
u ) = rμ. We call Uμ the μ-th minimal subspace of u ∈ M.

Choosing an orthonormal basis for each space Hμ = L2(�μ), we obtain an iso-
morphism between Hμ and �2(N) for each μ. This in turn defines a tensor space
isomorphism betweenH and �2(N) ⊗ · · · ⊗ �2(N). In what follows, in order to use a
more common matrix and tensor notation, we can thus assume without loss of gener-
ality that

H = �2(N
d) = �2(N) ⊗ · · · ⊗ �2(N),

and thus considerM as a set in the tensor product Hilbert space of square summable
infinite arrays. The definition of M remains the same as in (4.1), only that now
uμ

kμ
∈ �2(N).

We will, however, denote the elements of �2(N
d) as X instead of u, in order to

clearly distinguish these sequences from functions. The corresponding matricizations
are Mμ

X ∈ �2(N)⊗�2(N
d−1). The Tucker format (4.1) can then be written in the usual

abbreviated form

X = C ×1 U 1 ×2 · · · ×d U d

where Uμ = [uμ
1 , . . . , uμ

rμ
] ∈ (�2(N))rμ contains a basis for Uμ. Here the multiplica-

tions ×μ are defined as for finite tensors.

4.1.1 Manifold structure

Using the concept of manifolds in Banach space as presented in [36, Ch. 73] we can
prove the following result.

Theorem 4.1 Let X = C ×1 U 1 ×2 · · · ×d U d be in M defined as in (4.1) satisfying
(4.2). Then the following statements hold.
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(i) There exists an open neighborhood O of X and a submersion g defined on O such
that M ∩ O = g−1(0). Consequently, M ∩ O is a smooth submanifold in the
Hilbert space H. The tangent space TXM at X ∈ M ∩ O is the null space of
g′(X).

(ii) There exists a continuously Fréchet-differentiable homeomorphism ϕ from a neigh-
borhood of zero in TX∗M to M ∩ O satisfying ϕ(ξ) = X∗ + ξ + o(‖ξ‖H) for
all ξ in that neighborhood. Moreover, ϕ is also an immersion and hence a local
embedding for M.

(iii) The tangent space equals the subspace spanned by elements of the form

ξ = Ċ ×1U 1×2 · · ·×d U d +C ×1 U̇ 1×2 · · ·×d U d +· · ·+C ×1U 1×2 · · ·×d U̇ d

(4.5)
with Ċ ∈ TCMc and (Uμ)TU̇μ = 0rμ×rμ for μ = 1, . . . , d (that is, the columns
of U̇μ span a subspace orthogonal to Uμ).

The proof of this theorem is given in the appendix. For an alternative treatment of
low-rank manifolds in Banach spaces, see [13, 14].

4.1.2 Tangent space projection

We now consider the orthogonal projection onto the tangent space TXM at given
X = C ×1 U 1 ×2 · · · ×d U d . By Theorem 4.1(iii), TXM is spanned by elements
ξ = ξ0+ξ1+· · ·+ξd of the form (4.5). Here the elements ξ0 = Ċ ×1U 1×2 · · ·×d U d

with Ċ ∈ TCMc span a subspace of U1 ⊗ · · · ⊗ Ud which we denote by SX . For
μ = 1, . . . , d, the elements ξμ = C ×1 U 1 ×2 · · · ×μ U̇μ ×μ+1 · · · ×d U d with
(Uμ)TU̇μ = 0 are equivalently described via their matricization as

Mμ
ξμ

= U̇μ(V μ)T =
rμ∑

kμ=1

u̇μ
kμ

⊗ v
μ
kμ

due to the definition (4.3) of V μ. Since actually any element in the space (Uμ)⊥ ⊗Vμ

can be written in this way, the Mμ
ξμ

span this space. Treating the (Uμ)⊥ ⊗ Vμ as

subspaces of �2(N
d) (in a slight abuse of notation) we conclude that

TXM = SX ⊕ [(U1)⊥ ⊗ V1] ⊕ · · · ⊕ [(Ud)⊥ ⊗ Vd ], (4.6)

which indeed is an orthogonal decomposition as can be seen from the fact that Vμ ⊆
U1 ⊗ · · · ⊗ Uμ−1 ⊗ Uμ+1 ⊗ · · · ⊗ Ud for every μ.

In the following proposition, we compute the tangent space projection under the
assumption that the matrices Uμ have orthonormal columns; see Remark 4.3 for the
general formula.

Proposition 4.2 Let X = C ×1 U1 ×2 · · · ×d Ud ∈ M, and assume (Uμ)TUμ = id.
The orthogonal projection onto the tangent space TXM is given as

PX = P0
X + P1

X + · · · + Pd
X (4.7)
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with P1
X , . . . , Pd

X being implicitly defined via their action on matricizations as

Mμ

Pμ
X (Z)

= (I − PUμ)Mμ
Z PVμ, μ = 1, . . . , d. (4.8)

The projector P0
X is defined as

P0
X (Z) = PC (CZ ) ×1 U 1 ×2 · · · ×d U d , (4.9)

where PC is the orthogonal tangent space projector onto TCMc in R
r1×···×rd , and

CZ = Z ×1 (U 1)T ×2 · · · ×d (U d)T .

Proof By (4.6), the single terms ξ0, . . . , ξd in the tangent vector representation (4.5)
belong to mutually orthogonal subspaces. Therefore, the orthogonal projection
PX (Z) = ξ0 + ξ1 + · · · + ξd onto TXM can be decomposed accordingly as in (4.7).
Here the Pμ

X for μ = 1, . . . , d are the projections on (Uμ)⊥ ⊗ Vμ which have the
asserted form. We consider the projection ξ0 = P0

X (Z) of a given Z onto the space
SX in (4.6). We write

ξ0 = K ×1 U 1 ×2 · · · ×d U d

and need to determine K ∈ TCMc. The orthogonality condition for the projection is

0 = 〈Z − ξ0, Ċ ×1 U 1 ×2 · · · ×d U d〉

for all Ċ ∈ TCMc. Using properties of tensor-matrix multiplication, we rewrite this
as

0 = 〈Z ×1 (U 1)T ×2 · · · ×d (U d)T − ξ0 ×1 (U 1)T ×2 · · · ×d (U d)T, Ċ〉
= 〈Z ×1 (U 1)T ×2 · · · ×d (U d)T − K , Ċ〉 = 〈CZ − K , Ċ〉.

Since this holds for all Ċ ∈ TCMc, it follows that K equals the orthogonal projection
of CZ onto TCMc. ��

Remark 4.3 If the Uμ are not orthonormal, then the formula for P0
X (Z) needs to be

adjusted to

P0
X (Z) = �C (CZ ),

where �C is the orthogonal projection in R
r1×···×rd onto TCMc with respect to the

inner product induced by the operator A = (U 1)T U 1 ⊗ · · · ⊗ (U d)T U d , which is
symmetric and positive definite on R

r1×···×rd . This projection is given by �C =
(PCAPC )−1PCA, where (PCAPC )−1 denotes the inverse of PCAPC on TCMc.
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4.1.3 Distance to boundary

As we will see in Sect. 4.1.4, curvature estimates as in A2 for low-rank tensor man-
ifolds can be expressed in terms of inverses of smallest singular values of certain
matricizations. In this subsection, we therefore estimate the smallest singular values
of matricizations of a tensor X ∈ M from below by its distance to the boundary
Mw \ M. This will have the effect, that on every weakly compact subset M′ ⊆ M
these singular values remain bounded from below.

We first give a characterization of the weak closure ofM. In what follows, by ‖·‖
without further specification we denote the Frobenius norm of tensors.

Lemma 4.4 Let M be of the form (4.1) with Mc satisfying (4.2). Then

Mw = M =
{

X = C ×1 U 1 ×2 · · · ×d U d : C ∈ Mc, (Uμ)TUμ ∈ GLrμ

}
,

that is, the weak closure and closure of M coincide and are of the form (4.1) with Mc
replaced by Mc.

Proof Let (Xn) ⊂ M be a sequence converging weakly to X ∈ Mw
. By [17,

Thm. 6.29], there are rμ dimensional subspaces Uμ such that X ∈ U1 ⊗ · · · ⊗ Ud . In
particular, let Uμ ∈ (�2(N))rμ be orthonormal bases of the spaces Uμ. Then

X =
(

X ×1 (U 1)T ×2 · · · ×d (U d)T
)

×1 U 1 ×2 · · · ×d U d = C ×1 U 1 ×2 · · · ×d U d

with C ∈ R
r1×... × rd . Moreover, since Xn ∈ M, we have

Xn = Cn ×1 U 1
n ×2 · · · ×d U d

n

and by weak convergence, we have

lim
n→∞ Cn ×1 (U 1)TU 1

n ×2 · · · ×d (U d)TU d
n = C .

By the invariance condition (4.2) for Mc, it follows that C ∈ Mc. This shows

Mw =
{

X = C ×1 U 1 ×2 · · · ×d U d : C ∈ Mc, (Uμ)TUμ ∈ GLrμ

}
.

Now let (C̃n) ⊂ Mc be a sequence converging to C . Then the sequence defined by

X̃n = C̃n ×1 U 1 ×2 · · · ×d U d

converges strongly to X as ‖X̃n − X‖�2(N
d ) = ‖C̃n − C‖. This proves the

assertion. ��
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For X ∈ M and μ = 1, . . . , d, let {uμ
1 , . . . , uμ

rμ
} be the left singular vectors of the

matricization Mμ
X . Then

Mμ
X =

rμ∑

k=1

uμ
k ⊗ v

μ
k

with {vμ
1 , . . . , v

μ
rμ

} orthogonal in �2(N
d−1) such that

σ
μ
k = σ

μ
k (X) = ‖vμ

k ‖�2(N
d−1), k = 1, . . . , rμ, (4.10)

are the singular values of Mμ
X , for which we may assume

σ
μ
1 ≥ σ

μ
2 ≥ . . . ≥ σμ

rμ
.

Further, we define
σ = dist(X ,Mw \ M). (4.11)

Proposition 4.5 Let σ
μ
k for μ = 1, . . . , d and k = 1, . . . , rμ be defined as above.

Then

min
μ∈{1,...,d} σ

μ
rμ

≥ σ.

Proof Let μ ∈ {1, . . . , d} and let uμ
1 , . . . , uμ

rμ
be the left singular vectors of Mμ

X asso-

ciated to σ
μ
1 , . . . , σ

μ
rμ
, respectively. Then for the tensor X̃ defined by its matricization

Mμ

X̃
=

rμ−1∑

k=1

uμ
k (uμ

k )�Mμ
X ,

we have ‖X − X̃‖�2(N
d ) = σ

μ
rμ
, and X̃ /∈ M. Furthermore, we have

X = C ×1 U 1 ×2 · · · ×d U d ,

with Uμ = [uμ
1 , . . . , uμ

rμ
] and

X̃ = C ×1 U 1 ×2 · · · ×μ Uμ(Ũμ)�Uμ ×μ+1 · · · ×d U d

= (C ×μ (Ũμ)�Uμ) ×1 U 1 ×2 · · · ×d U d

with Ũμ = [uμ
1 , . . . , uμ

rμ−1, 0]. It follows from Lemma 4.4 that X̃ ∈ M and the claim
is proven. ��

It is important to note that the distance σ defined in (4.11) can be expressed as the
distance of the core tensor C to the relative boundary ofMc.
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Proposition 4.6 Let X = C ×1 U1 ×2 · · · ×d Ud with C ∈ Mc and orthonormal
U1, . . . , Ud. Then dist(C,Mc\Mc) = dist(X ,Mw\M).

Proof First, letY ∈ Mw\M satisfy ‖X−Y‖�2(N
d ) = dist(X ,Mw\M). Then the ten-

sor D = Y ×1U T
1 ×2 · · ·×d U T

d satisfies ‖C − D‖ ≤ ‖X −Y‖�2(N
d ) and by Lemma 4.4,

we also have D ∈ Mc\Mc, and hence dist(C,Mc\Mc) ≤ dist(X ,Mw\M). To
show equality, we consider a D ∈ Mc\Mc with ‖C − D‖ = dist(C,Mc\Mc). Set
Y = D ×1 U1 ×2 · · · ×d Ud ∈ Mw\M. Then ‖X − Y‖�2(N

d ) = ‖C − D‖ holds, and

thus dist(C,Mc\Mc) ≥ dist(X ,Mw\M). ��

4.1.4 Curvature estimates

We now turn to the curvature bounds in Assumption A2. We first derive an estimate
for the norm difference ‖PX − PY ‖�2(N

d )→�2(N
d ) of two such projections in operator

norm, which can be regarded as a curvature estimate for the manifold M. It will be
required for Assumption A2.

Proposition 4.7 Assume a curvature estimate

max‖Z‖=1
‖(PC − PC̃ )Z‖ ≤ c

σ̂
‖C − C̃‖ for all C, C̃ ∈ Mc, (4.12)

where σ̂ = dist(C,Mc\Mc) and where c > 0 is independent of C, C̃ . Let X , Y ∈ M
with corresponding tangent space projections PX and PY . Then

‖PX − PY ‖�2(N
d )→�2(N

d ) ≤
⎛

⎝
√
2c

σ
+ 2(

√
2 + 1)

d∑

μ=1

1

σ
μ
rμ

⎞

⎠ ‖X − Y‖�2(N
d )

where σ = dist(X ,Mw\M) and σ
μ
rμ

is the smallest singular value of the μ-th matri-
cization.

Note that σ
μ
rμ

≥ σ for each μ as a consequence of Proposition 4.5. Therefore, we
have the simpler estimate

‖PX − PY ‖�2(N
d )→�2(N

d ) ≤
√
2c + 2d

(√
2 + 1

)

σ
‖X − Y‖�2(N

d ).

Since on every weakly compact subset M′ ⊆ M the distance σ to the boundary is
bounded from below (recall that M itself is not weakly closed), we obtain the first
curvature estimate inA2. In the proof of Proposition 4.7, we use the following lemma.

Lemma 4.8 Let U , V ∈ [�2(N)]r be orthonormal (that is, U TU = V TV = id) such
that the r × r matrix U TV is symmetric and positive semidefinite.
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(i) The corresponding subspace projections PU = UU T and PV = V V T satisfy

‖UV ‖Rr →�2(N) ≤ √
2‖PU − PV‖�2(N)→�2(N).

(ii) For all x, y ∈ R
r , ‖x − y‖ ≤ √

2‖U x − V y‖�2(N).

Proof After orthogonal change of basis, we may assume the matrix U TV = � to be
diagonal with entries 1 ≥ σi ≥ 0, that is uT

jvi = σiδi j .
Ad (i).We define the spaces Wi = span{ui , vi } for i = 1, . . . , r . These are pairwise

orthogonal. Furthermore, let Wr+1 = (⊕r
i=1 Wi

)⊥. Then the difference of projections
is block-diagonal with respect to the spaces Wi , that is, (PU − PV)(xui + yvi ) =
(x + σi y)ui − (y + σi x)vi . Therefore, the operator norm is given by

‖PU − PV‖�2(N)→�2(N) = max
i

max
x �=0 �=y

1

‖xui + yvi‖�2(N)

‖(PU − PV)(xui + yvi )‖�2(N).

We note the norm equality ‖xui + yvi‖2�2(N)
= x2 + y2 + 2σi xy. Then on the one

hand,

‖(PU − PV)(xui + yvi )‖2�2(N) = (x + σi y)2 + (y + σi x)2 − 2σi (x + σi y)(y + σi x)

= x2 + y2 + 2σi xy − σ 2
i (x2 + y2 + 2σi xy)

= (1 − σ 2
i )‖xui + yvi‖2�2(N)

≥ (1 − σi )‖xui + yvi‖2�2(N),

that is, ‖PU − PV‖2
�2(N)→�2(N)

≥ 1 − σi . On the other hand, we have

(U − V )T(U − V ) = 2(idr −�),

and thus max‖w‖=1 ‖(U − V )w‖2
�2(N)

= 2maxi (1 − σi ), which leads to the desired
inequality.

Ad (ii). Using inequality (a − b)2 ≤ 2a2 + 2b2 componentwise, we get

‖x − y‖2 = (x − y)T�(x − y) + (x − y)T(idr −�)(x − y)

≤ (x − y)T�(x − y) + 2xT(idr −�)x + 2yT(idr −�)y

≤ 2‖x‖2 + 2‖y‖2 − 4xT�y

= 2‖U x‖�2(N) + 2‖V y‖�2(N) − 4(U x)T(V y) = 2‖U x − V y‖2�2(N),

which is the claim. ��
Proof of Proposition 4.7 Assume representations

X = C ×1 U1 ×2 · · · ×d Ud , Y = C̃ ×1 Ũ1 ×2 · · · ×d Ũd
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as in Proposition 4.2. By using polar decompositions (Uμ)TŨμ = QμSμ, where Qμ

is orthogonal and Sμ is positive semidefinite, we can replace the Uμ with UμQμ and
the core tensor C accordingly such that (Uμ)TŨμ is positive semidefinite, which we
assume to be the case for all μ = 1, . . . , d. By Proposition 4.2,

PX − PY = P0
X − P0

Y +
d∑

μ=1

Pμ
X − Pμ

Y .

We will estimate the single differences separately. Applying the triangle inequality
will then prove the assertion.

We first consider any of the projector differences Pμ
X − Pμ

Y for μ = 1, . . . , d.
By (4.8), they can be written in the μ-th matricization space as

Pμ
X − Pμ

Y = (id−PUμ) ⊗ PVμ − (id−PŨμ) ⊗ PṼμ

= (id−PUμ) ⊗ (PVμ − PṼμ) + (PŨμ − PUμ) ⊗ PṼμ.

We have

‖PŨμ − PUμ‖�2(N)→�2(N) ≤ 1

σ
μ
rμ

‖Mμ
X − Mμ

Y ‖�2(N
d−1)→�2(N) ≤ 1

σ
μ
rμ

‖X − Y‖�2(N
d ),

(4.13)
where again Mμ

X and Mμ
Y denote the matricizations of X and Y and σ

μ
rμ

= σ
μ
rμ

(X)

denotes the smallest positive singular value of Mμ
X as in (4.10). For the first inequality

see, for example, the proof of [3, Lemma A.2], the second one is trivial. The same
upper bound holds for ‖PṼμ − PVμ‖�2(N

d−1)→�2(N
d−1). Thus we conclude

‖Pμ
X − Pμ

Y ‖�2(N
d )→�2(N

d ) ≤ 2

σ
‖X − Y‖�2(N

d ).

We now proceed with estimating the operator norm of the difference P0
X − P0

Y .
By (4.9),

(P0
X − P0

Y )(Z) = PC (CZ ) ×1 U 1 ×2 · · · ×d U d − PC̃ (C̃Z ) ×1 Ũ 1 ×2 · · · ×d Ũ d

= [PC (CZ ) − PC̃ (C̃Z )] ×1 Ũ 1 ×2 · · · ×d Ũ d

+ PC (CZ ) ×1 [U 1 − Ũ 1] ×2 Ũ 2 ×3 · · · ×d Ũ d

...

+ PC (CZ ) ×1 U 1 ×2 · · · ×d−1 U d−1 ×d [U d − Ũ d ]

where CZ = Z ×1 (U 1)T ×2 · · · ×d (U d)T and similar for C̃Z . The first term in the
right sum is bounded by

‖PC (CZ ) − PC̃ (C̃Z )‖�2(N
d ) ≤ ‖(PC − PC̃ )CZ‖ + ‖CZ − C̃Z‖,
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since Uμ and Ũμ have orthonormal columns and hence spectral norm one. For the
other terms we use Lemma 4.8(i) and (4.13), which leads to

‖PC (CZ ) ×1 [U 1 − Ũ 1] ×2 Ũ 2 ×3 · · · ×d Ũ d‖�2(N
d )

≤ √
2‖PU1 − PŨ1‖�2(N)→�2(N)‖PC (CZ )‖

≤
√
2

σr11
(X)

‖X − Y‖�2(N
d )‖CZ‖ ≤

√
2

σ 1
r1

‖X − Y‖�2(N
d )‖Z‖�2(N

d )

and we proceed similarly for the further modes. So far we have shown

‖(P0
X − P0

Y )(Z)‖�2(N
d ) ≤ ‖(PC − PC̃ )CZ‖ + ‖CZ − C̃Z‖

+√
2

(
1

σ 1
r1

+ · · · + 1

σ d
rd

)
‖X − Y‖�2(N

d )‖Z‖�2(N
d ).

It remains to estimate ‖CZ − C̃Z‖ and ‖(PC − PC̃ )CZ‖. Using again a telescopic
expansion of

CZ − C̃Z = Z ×1 (U 1)T ×2 · · · ×d (U d)T − Z ×1 (Ũ 1)T ×2 · · · ×d (Ũ d)T ,

one obtains in a similar way as above that

‖CZ − C̃Z‖ ≤ √
2

(
1

σ 1
r1

+ · · · + 1

σ d
rd

)
‖X − Y‖�2(N

d )‖Z‖�2(N
d ).

We need to bound ‖(PC − PC̃ )CZ‖ in terms of ‖X − Y‖�2(N
d ). Note that

X − Y = C ×1 U1 ×2 · · · ×d Ud − C̃ ×1 Ũ1 ×2 · · · ×d Ũd

where Uμ and Ũμ satisfy the assumptions in Lemma 4.8. It follows that ‖C − C̃‖ ≤√
2‖X − Y‖�2(N

d ). Hence by (4.12) and Proposition 4.6 we have

‖(PC − PC̃ )CZ‖ ≤ c

σ
‖C − C̃‖‖CZ‖ ≤

√
2c

σ
‖X − Y‖�2(N

d )‖Z‖�2(N
d ).

In total, we have

‖(P0
X − P0

Y )(Z)‖�2(N
d ) ≤ √

2

(
c

σ
+ 2

σ 1
r1

+ · · · + 2

σ d
rd

)
‖X − Y‖�2(N

d )‖Z‖�2(N
d ).

In summary, this allows to conclude the asserted curvature estimate. ��
In Assumption A2 we also need an estimate for the projection id−PX .
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Proposition 4.9 Assume a curvature estimate of the form

‖(id−PC̃ )(C − C̃)‖ ≤ c

σ̂
‖C − C̃‖2 for all C ∈ Mc and C̃ ∈ Mc,

where σ̂ = dist(C,Mc\Mc) and where c > 0 is independent of C, C̃ . Let X , Y ∈ M
with corresponding tangent space projections PX and PY . Then

‖(id−PX )(X − Y )‖
�2(N

d )
≤

√√√√√
c2

σ 2 +
d∑

μ=1

1

(σ
μ
rμ)2

‖X − Y‖2
�2(N

d )
≤

√
d + c2

σ
‖X − Y‖2

�2(N
d )

where σ = dist(X ,Mw \ M).

Proof We use the same notation as in the proof of Proposition 4.7. We decompose the
identity into

id = PU1⊗···⊗Ud + P(U1)⊥⊗···⊗Ud + P�2(N)⊗(U2)⊥···⊗Ud + . . .+ P�2(N
d−1)⊗(Ud )⊥ . (4.14)

Then

(id−PX )(X − Y ) = (PU1⊗···⊗Ud − P0
X )(X − Y ) + (P(U1)⊥⊗···⊗Ud − P1

X )(X − Y )

+(P�2(N)⊗(U2)⊥⊗···⊗Ud − P2
X )(X − Y ) + . . . + (P�2(N

d−1)⊗(Ud )⊥ − Pd
X )(X − Y )

holds. For the first summand, we have

(PU1⊗···⊗Ud − P0
X )(X − Y ) =

(
(id−PC )(X − Y ) ×1 (U 1)T ×2 · · · ×d (U d)T

)

×1U 1 ×2 · · · ×d U d

where‖(X−Y )×1(U 1)T×2· · ·×d(U d)T‖ ≤ ‖X−Y‖�2(N
d ). Sincedist(X ,Mw\M) =

dist(C,Mc\Mc) by Proposition 4.6, we have

‖(PU1⊗···⊗Ud − P0
X )(X − Y )‖�2(N

d ) ≤ c

σ
‖X − Y‖2

�2(N
d )

,

where we use that Y ×1 (U 1)T ×2 · · · ×d (U d)T ∈ Mc. For the next summand, we
obtain

(P
(U1)⊥⊗···⊗Ud − P1

X )(X − Y ) = P
(U1)⊥ ⊗ (id

�2(N
d−1)

−PV1)(X − id�2(N) ⊗PU2⊗···⊗Ud Y ).

Then,‖X−id�2(N) ⊗PU2⊗···⊗Ud Y‖�2(N
d ) ≤ ‖X−Y‖�2(N

d ) and id�2(N) ⊗PU2⊗···⊗Ud Y ∈
Mw

. If id�2(N) ⊗PU2⊗···⊗Ud Y ∈ M, then we have corresponding spaces Ũ1
and Ṽ1

and

‖PV1 − PṼ1‖�2(N
d )→�2(N

d ) ≤ 1

σ 1
r1

‖X − id�2(N) ⊗PU2⊗···⊗Ud Y‖�2(N
d ) ≤ 1

σ 1
r1

‖X − Y‖�2(N
d ).

123



Dynamical low-rank tensor approximations... 805

As a consequence,

‖(P(U1)⊥⊗···⊗Ud − P1
X )(X − Y )‖�2(N

d ) ≤ 1

σ 1
r1

‖X − Y‖2
�2(N

d )
.

If id�2(N) ⊗PU2⊗···⊗Ud Y /∈ M, the same estimate follows by continuity of the linear
operator P(U1)⊥⊗···⊗Ud − P1

X . Similar considerations show

‖(P�2(N
μ−1)⊗(Uμ)⊥⊗···⊗Ud − Pμ

X )(X − Y )‖�2(N
d ) ≤ 1

σ
μ
rμ

‖X − Y‖2
�2(N

d )

for μ = 2, . . . , d. Finally, we obtain

‖(id−PX )(X − Y )‖�2(N
d ) ≤

√√√√ c2

σ 2 +
d∑

μ=1

1

(σ
μ
rμ

)2
‖X − Y‖2

�2(N
d )

utilizing that the images of the operators appearing in (4.14) are orthogonal. The final
inequality follows with Proposition 4.6. ��

4.2 Application to tensor train manifolds

In order to give the above estimates a more concrete meaning, we now consider the
popular example of the fixed-rank tensor-train (TT) format discussed in the intro-
duction. Here Mc = Mk consists of all finite dimensional tensors C ∈ R

r1×···×rd

with the fixed TT rank k of the form (1.3). We denote the resulting manifold M in
(4.1) by Mr,k. It thus contains infinite tensors in �2(N

d) of “outer” multilinear rank
r = (r1, . . . , rd) and “inner” TT rankk = (k1, . . . , kd−1). This can be seen as a special
case of the hierarchical tensor format with linear dimension tree, see [2, Rem. 2.27].

Proposition 4.10 Let X , Y ∈ Mr,k with corresponding tangent space projections PX

and PY . Then

‖PX − PY ‖�2(N
d )→�2(N

d ) ≤
2d

(
3
√
2 + 1

)

σ
‖X − Y‖�2(N

d ),

‖(id−PX )(X − Y )‖�2(N
d ) ≤

√
2d − 1

σ
‖X − Y‖2

�2(N
d )

,

where σ = dist(X ,Mr,k
w\Mr,k).

The result follows directly follows from Propositions 4.7 and 4.9 and the following
refined curvature estimates for the finite-dimensional TT manifoldMk, which under
the given assumptions seem to be new.
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Proposition 4.11 Let Mk ⊂ R
N1×···×Nd be a finite-dimensional TT manifold of fixed

TT rank k. Let X , Y ∈ Mk and σ = dist(X ,Mk\Mk). Then

max‖Z‖=1
‖(PX − PY )Z‖ ≤ 4d

σ
‖X − Y‖, ‖(id−PX )(X − Y )‖ ≤

√
d − 1

σ
‖X − Y‖2

and

‖(id−PX )(X − Y )‖ ≤
√

d − 1

σ
‖X − Y‖2.

Furthermore, the last inequality holds more generally for Y ∈ Mk.

The proof is given in the appendix.

5 Application to themodel problem

We now return to the model problem (1.6) under the regularity assumption A0.

Problem 5.1 Given f ∈ L2(0, T ; L2(�)) and u0 ∈ M ∩ H1
0 (�), find

u ∈ W (0, T ; H1
0 (�), L2(�)) = {u ∈ L2(0, T ; H1

0 (�)) : u′ ∈ L2(0, T ;V∗)}

such that for almost all t ∈ [0, T ],

u(t) ∈ M,

〈u′(t), v〉 + a(u(t), v; t) = 〈 f (t), v〉 for all v ∈ Tu(t)M ∩ H1
0 (�),

u(0) = u0.

(5.1)

Here

a(u, v; t) =
∫

�

(B(t)∇u(x)) · ∇v(x) dx

with a symmetric positive definite matrix B(t) that is entrywise Lipschitz continuous
in t and M is a manifold of functions in L2(�) = L2(�1 × · · · × �d) as described
in (4.1), that is, u ∈ M is of the form

u =
r1∑

k1=1

· · ·
rd∑

kd=1

C(k1, . . . , kd) u1
k1 ⊗ · · · ⊗ ud

kd
, (5.2)

with C ∈ Mc.
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5.1 Discussion of main assumptions

Our goal is to apply Theorems 2.2, 2.5 and 3.2 to Problem 5.1. It suffices to verify
the Assumptions A1–A4, B1, and B2. Assumption A1 holds since Mc is a cone,
which follows from the invariance assumption (4.2). We already proved A2 in Propo-
sition 4.7 and Proposition 4.9 assuming that corresponding curvature bounds forMc
are available. Indeed, in the special case where Mc is the manifold of tensors with
constant TT-rankMk, such curvature bounds are stated in Proposition 4.10. We now
consider the remaining Assumptions A3 and A4 as well as B1 and B2. We make use
of the following well-known technique for estimating norms of factors in low-rank
representations, see for example [32].

Lemma 5.2 Let u ∈ H1
0 (�) admit a singular value decomposition

u(x) =
rμ∑

k=1

σku1,k(xμ)u2,k(x{1,...,d}\{μ})

with respect to the μ-th variable. Then the singular vectors satisfy u1,k ∈ H1
0 (�μ)

and u2,k ∈ H1
0 (

Ś

ν �=μ �ν) with

‖u1,k‖H1
0 (�μ) ≤ 1

σk
‖u‖H1

0 (�) and ‖u2,k‖H1
0 (

Ś

ν �=μ �ν) ≤ 1

σk
‖u‖H1

0 (�).

Proof We state the proof for μ = 1. Then

σku1,k(x1) =
∫

Śd
ν=2 �ν

u(x1, x2, . . . , xd)u2,k(x2, . . . , xd) d(x2, . . . , xd)

and

σku2,k(x2, . . . , xd) =
∫

�1

u(x1, x2, . . . , xd)u1,k(x1) dx1.

By the Cauchy-Schwarz inequality, we have

σ 2
k ‖u1,k‖2H1

0 (�1)
= σ 2

k

∫

�1

∣∣∇x1u1,k
∣∣2 dx1 =

∫

�1

∣∣∣∣∣

∫
Śd

ν=2 �ν

∇x1u u2,k d(x2, . . . , xd )

∣∣∣∣∣

2

dx1

≤ ‖u2,k‖2L2((0,1)d−1)

∫

�

∣∣∇x1u
∣∣2 d(x1, . . . , xd ) = ‖u‖2

H1
0 (�1)⊗L2(

Śd
ν=2 �ν)

≤ ‖u‖2
H1
0 (�)

.

This proves the first estimate. The other one follows in analogy. ��

5.1.1 AssumptionA3: Compatibility of tangent spaces

We now verify A3(a).
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Lemma 5.3 Let u ∈ H1
0 (�) ∩ M and v ∈ H1

0 (�) ∩ TuM. Then there exists an
admissible curve ϕ(t) ∈ H1

0 (�) ∩ M for |t | small enough with ϕ(0) = u and
ϕ′(0) = v.

Proof Let u be of the form (5.2). Then by Lemma 5.2 all basis functions uμ
kμ

∈
H1
0 (�μ). We write v is in (4.5), that is, v = v0 + v1 + . . . + vd , where

v0 =
r1∑

k1=1

· · ·
rd∑

kd=1

Ċ(k1, . . . , kd) u1
k1 ⊗ · · · ⊗ ud

kd

with Ċ ∈ TCMc and

vμ =
r1∑

k1=1

· · ·
rd∑

kd=1

C(k1, . . . , kd) u1
k1 ⊗ · · · ⊗ uμ−1

kμ−1
⊗ u̇μ

kμ
⊗ uμ+1

kμ+1
⊗ · · · ⊗ ud

kd

where u̇μ
kμ

is orthogonal to all uμ
1 , . . . , uμ

rμ
. By similar reasoning as in Lemma 5.2 one

can show that u̇μ
kμ

∈ H1
0 (�μ).

Furthermore, there exists a curve D(t) ∈ Mc for |t | small enough such that D(0) =
C and D′(0) = Ċ . We now choose

ϕ(t) =
r1∑

k1=1

· · ·
rd∑

kd=1

D(k1, . . . , kd)(t) (u1
k1 + t u̇1

k1) ⊗ · · · ⊗ (ud
kd

+ t u̇d
kd

),

which is a differentiable curve in M ∩ H1
0 (�) for small enough |t |. By the product

rule, it satisfies ϕ(0) = u and ϕ′(0) = v. ��
Assumption A3(b), which states that for u ∈ H1

0 (�) ∩ M the L2-orthogonal
projection onto its tangent space is also a bounded operator with respect to the H1

0 -
norm, follows with a similar technique as Lemma 5.2.

Proposition 5.4 Let M be of the form (4.1), let u ∈ H1
0 (�)∩M and v ∈ H1

0 (�). Let
P0

u , . . . , Pd
u be the projections in (4.7). Then

‖Pμ
u v‖H1

0 (�) ≤ c‖v‖H1
0 (�)

Proof First, we consider P0
u . We note the norm bound

‖CZ‖ ≤ ‖Z‖�2(N
d )

in the definition of P0
X in Proposition 4.2. In terms of the represented function,

‖Cv‖ ≤ ‖v‖L2(�).
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Furthermore, we have

‖PC (Cv)‖ ≤ ‖Cv‖

since PC is an �2-orthogonal projection. We now consider the summands of

‖P0
u v‖2

H1
0 (�)

= ‖P0
u v‖2

H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

+ · · · + ‖P0
u v‖2

L2(
Śd−1

μ=1 �μ)⊗H1
0 (�d )

independently. Let

u(x) =
r1∑

k=1

r1∑

�=1

ak�u1,k(x1)u2,�(x2, . . . , xd) (5.3)

be a decomposition of u separating the first variable, where {u1,k} and {u2,�} are L2-
orthonormal (as, for example, in a singular value decomposition). After an orthogonal
change of basis, we may assume the vectors u1,k to be both L2-orthonormal and
H1
0 -orthogonal. Note that the basis vectors are given by

u1,k =
∫

Śd
μ=2 �μ

u
r1∑

�=1

bk�u2,� d(x2, . . . , xd) and u2,� =
∫

�1

u
r1∑

k=1

bk�u1,k dx1

where
∑r1

�=1 ak1�bk2� = δk1,k2 .
The singular values of the corresponding decomposition satisfy σk ≥ σ for k =

1, . . . , rν , and hence the vectors in (5.3) satisfy

σ‖u1,k‖H1
0 (�1)

≤ ‖u‖H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

,

σ‖u2,k‖H1
0 (

Śd
μ=2 �μ)

≤ ‖u‖L2(�1)⊗H1
0 (

Śd
μ=2 �μ)

,
(5.4)

since σ‖∑r1
k=1 bk�u1,k‖L2(

Śd
μ=2 �μ)

≤ 1, σ‖∑r1
�=1 bk�u2,�‖L2(�1) ≤ 1 and by the last

argument of the proof of Lemma 5.2. By L2- and H1
0 -orthogonality and (5.4), we

obtain the estimate

‖P0
u v‖2

H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

=
∥∥∥∥

r1∑

k1=1

· · ·
rd∑

kd=1

PC (Cv)(k1, . . . , kd) ∂x1u1
k1 ⊗ u2

k2 ⊗ · · · ⊗ ud
kd

∥∥∥∥
2

L2(�)

=
r1∑

k1=1

∥∥∥∥
r2∑

k2=1

· · ·
rd∑

kd=1

PC (Cv)(k1, . . . , kd) u2
k2 ⊗ · · · ⊗ ud

kd

∥∥∥∥
2

L2(
Śd

μ=2 �μ)

‖u1
k1‖2H1

0 (�1)

≤ 1

σ 2 ‖PC (Cv)‖2‖u‖2
H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

.
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Using the Poincaré inequality, we have

‖PC (Cv)‖ ≤ ‖Cv‖ = ‖v‖L2(�) ≤ c�‖v‖H1
0 (�)

with a c� > 0 depending only on �. We thus arrive at

‖P0
u v‖H1

0 (�1)⊗L2(
Śd

μ=2 �μ)
≤ c�

σ
‖v‖H1

0 (�)‖u‖H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

.

Similarly,

‖P0
u v‖

L2(
Śμ−1

ν=1 �ν)⊗H1
0 (�μ)⊗L2(

Śd
ν=μ+1 �ν)

≤ c�

σ
‖v‖H1

0 (�)‖u‖
L2(

Śμ−1
ν=1 �ν)⊗H1

0 (�μ)⊗L2(
Śd

ν=μ+1 �ν)
.

This yields

‖P0
u v‖H1

0 (�) ≤ c�

σ
‖v‖H1

0 (�)‖u‖H1
0 (�).

Next we consider P1
u ; the estimates for the projections P2

u , . . . , Pd
u follow in anal-

ogy. The action of P1
u is given by the tensor product of L2-orthogonal projections

P1
u (v) = (id−P1) ⊗ P2v,

where

(P1w)(x1) =
r1∑

k=1

u1,k(x1)
∫

�1

u1,k(y1)w(y1) dy1

and

(P2w)(x2, . . . , xd ) =
r1∑

k=1

u2,k (x2, . . . , xd )

∫
Śd

μ=2 �μ

u2,k

(y2, . . . , yd )w(y2, . . . , yd ) d(y2, . . . , yd ).

We again use the decomposition (5.3) with L2-orthonormal and H1
0 -orthogonal sets

of vectors {u1,k : k = 1, . . . , r1} and {u2,k : k = 1, . . . , r1}. Using orthogonality, we
get the estimate

‖P1w‖2
H1
0 (�1)

=
r1∑

k=1

‖u1,k‖2H1
0 (�1)

(∫ 1

0
u1,k(y1)w(y1) dy1

)2

≤ 1

σ 2 ‖u‖2
H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

‖w‖2L2(�1)
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and similarly

‖P2w‖H1
0 (

Śd
μ=2 �μ)

≤ 1

σ
‖u‖L2(�1)⊗H1

0 (
Śd

μ=2 �μ)
‖w‖L2(

Śd
μ=2 �μ)

.

We finally obtain

‖P1
u v‖2

H1
0 (�)

= ‖P1
u v‖2

H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

+ ‖P1
u v‖2

L2(�1)⊗H1
0 (

Śd
μ=2 �μ)

= ‖((id−P1) ⊗ P2)v‖2
H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

+ ‖((id−P1) ⊗ P2)v‖2
L2(�1)⊗H1

0 (
Śd

μ=2 �μ)

≤
(
1

σ
‖u‖H1

0 (�1)⊗L2(
Śd

μ=2 �μ)
‖v‖L2(�) + ‖v‖H1

0 (�1)⊗L2(
Śd

μ=2 �μ)

)2

+ 1

σ 2 ‖u‖2
L2(�1)⊗H1

0 (
Śd

μ=2 �μ)
‖v‖2L2(�)

≤ 2
(
1 + c�1

σ 2 ‖u‖2
H1
0 (�)

)
‖v‖2

H1
0 (�1)⊗L2(

Śd
μ=2 �μ)

,

where we have again used Poincaré’s inequality. ��
We have thus verified Assumption A3.

5.1.2 AssumptionA4: Operator decomposition

The bilinear form a(·, ·; t) can be written as a(·, ·; t) = a1(·, ·; t) + a2(·, ·; t) with

a1(u, v; t) =
∫

�

d∑

μ=1

(
bμμ(t)∇xμu(x)

) · ∇xμv(x) dx

and

a2(u, v; t) =
∫

�

d∑

μ,ν=1
μ�=ν

(
bμν(t)∇xμu(x)

) · ∇xν v(x) dx,

where bμν(t) are the corresponding blocks of the matrix B(t). These bilinear forms
in turn define linear operators A1 and A2. For A4(a), we can use a similar technique
as in [3], albeit on the more complicated manifold M. First, we show that the strong
version of A1, when defined, maps to the tangent space.

Lemma 5.5 Let M be of the form (4.1) and u ∈ H2(�) ∩ H1
0 (�) ∩ M. Then for

matrices aμ of the corresponding size, we have
∑d

μ=1 ∇xμ · (aμ∇xμu) ∈ TuM.
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Proof Since u ∈ M, we can write u as in (5.2) and

∇x1 · (a1∇x1u) =
r1∑

k1=1

· · ·
rd∑

kd=1

C(k1, . . . , kd)∇x1 · (a1∇x1u1
k1) ⊗ u2

k2 ⊗ · · · ⊗ ud
kd

.

We define ϕ(t) = u + t∇x1 · (a1∇x1u). For sufficiently small |t |, the Gramian of the
system {u1

1 + t∇x1 · (a1∇x1u1
1), u1

2 + t∇x1 · (a1∇x1u1
2), . . . , u1

r1 + t∇x1 · (a1∇x1u1
r1)} is

invertible and hence ϕ(t) ∈ M with ϕ′(t) = ∇x1 · (a1∇x1u). Thus ∇x1 · (a1∇x1u) ∈
TuM. Analogously, ∇xμ · (aμ∇xμu) ∈ TuM for μ = 1, . . . , d and by linearity,∑d

μ=1 ∇xμ · (aμ∇xμu) ∈ TuM. ��
The assumption A4(a) now follows by a density argument. For a proof, choose a

sequence (un) ⊂ M ∩ H2(�) ∩ H1
0 (�) converging to u in H1

0 (�)-norm. Then for
v ∈ H1

0 (�), we have

a1(un, v; t) = 〈A1(t)un, v〉 = 〈A1(t)un, Pun v〉 = a1(un, Pun v; t)

since A1(t)un ∈ TunM by Lemma 5.5. Moreover,

a1(un, Pun v; t) = a1(u, Puv) + a1(u, (Pun − Pu)v) + a1(un − u, Pun v).

Wehave Pun v → Puv strongly in L2(�) byProposition 4.7, and Proposition 5.4 yields
lim supn ‖Pun v‖H1

0
< ∞. Since L2(�) is dense in H−1(�) it follows that Pun v →

Puv weakly in H1
0 (�) by a standard argument; see for example [37, Prop. 21.23(g)].

Consequently, a1(un, Pun v; t) → a1(u, Puv; t). At the same time, a1(un, v; t) →
a1(u, v; t), so we have verified Assumption A4(a).

For AssumptionA4(b), it suffices to verify mixed smoothness for u ∈ H1
0 (�)∩M.

Lemma 5.6 LetMbe of the form (4.1), u ∈ H1
0 (�)∩M, andσ = distL2(u,Mw\M).

Then for ν �= μ, we have ‖∇xμ∇xν u‖L2(�) ≤ 1
2σ ‖u‖2

H1
0 (�)

.

Proof Let u(x) = ∑rμ

k=1 σku1,k(xμ)u2,k(x{1,...,d}\{μ}) be a singular value decomposi-
tion of u separating the μ-th variable. Then σk ≥ σ for k = 1, . . . , rν . We will use the
abbreviation �μc = Ś

λ�=μ �λ. On the one hand, by the triangle inequality, Young’s
inequality, and σ ≤ σk , we have

‖∇xμ∇xν u‖L2(�) ≤
rμ∑

k=1

σk‖∇xμ∇xν u1,k ⊗ u2,k‖L2(�)

=
rμ∑

k=1

σk‖∇xμu1,k‖L2(�μ)‖∇xν u2,k‖L2(�μc )

≤
rμ∑

k=1

σ 2
k

2σ

(
‖∇xμu1,k‖2L2(�μ) + ‖∇xν u2,k‖2L2(�μc )

)
.
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On the other hand, by L2-orthogonality of the singular vectors, we have

‖u‖2
H1
0 (�)

=
∫

�

d∑

λ=1

∣∣∇xλ u(x)
∣∣2 dx =

rμ∑

k=1

σ 2
k

⎛

⎝‖∇xμu1,k‖2L2(�μ) +
∑

λ �=μ

‖∇xλ u2,k‖2L2(�μc )

⎞

⎠ ,

and hence ‖∇xμ∇xν u‖L2(�) ≤ 1
2σ ‖u‖2

H1
0 (�)

as asserted. ��
Assumption A4(b) now follows directly by integration by parts.

5.1.3 AssumptionsB1 andB2: Spatial discretizations

We now exhibit space discretizations that can be used to achieve convergence to the
infinite dimensional solution as in Theorem 3.2. It turns out to be sufficient for the
discretization to allow the format (4.1). This is a natural requirement, since otherwise
one does not have the required product structure for using the low-rank approximation
in practice.

For short, let us denote H1
0 (�) = V = V 1 ⊗ H2 ⊗ · · · ⊗ Hd ∩ · · · ∩ H1 ⊗

· · · ⊗ Hd−1 ⊗ V d , where V μ = H1
0 (�μ) and Hμ = L2(�μ) for μ = 1, . . . , d.

Then V 1 ⊗ · · · ⊗ V d is a continuously and densely embedded subspace of V. As the
finite-dimensional subspaces, we choose

Vh = V 1
h ⊗· · ·⊗V d

h satisfying ‖PV μ
h
vμ−vμ‖V μ → 0 as h → 0 for all vμ ∈ V μ.

(5.5)
This can be a finite element space, but also any other discretization suitable for �μ.
As a consequence, for v ∈ V 1 ⊗ · · · ⊗ V d , we have

‖v − PV 1
h ⊗···⊗V d

h
v‖V ≤ C‖v − PV 1

h ⊗···⊗V d
h
v‖V 1⊗···⊗V d → 0 for h → 0.

Since V 1 ⊗ · · · ⊗ V d is a dense subspace of V, the V-orthogonal projection onto
V 1

h ⊗ · · · ⊗ V d
h satisfies B1(a). For assumption B1(b), let u ∈ V ∩ M. Then u ∈

V 1 ⊗ · · · ⊗ V d by Lemma 5.2. By (4.2), we have that PV 1
h ⊗···⊗V d

h
u ∈ Mw

. Hence

there exists uh ∈ V 1
h ⊗ · · · ⊗ V d

h ∩ M such that ‖uh − PV 1
h ⊗···⊗V d

h
u‖V ≤ ε for any

ε > 0. Thus ‖uh −u‖V → 0 as h → 0. Possibly after rescaling, we can thus construct
a sequence (uh) that converges to u in V as h ↘ 0 with ‖uh‖V ≤ ‖u‖V.

Assumption B2 follows immediately by noting thatM∩Vh is of the same form as
M and Theorem 4.1 can be applied.

Remark 5.7 In practical numerical realizations, the elements of the discretization sub-
spaces Vh in (5.5) need to be represented in terms of suitable basis functions, usually
obtained as tensor products of bases of each V ν

h . While the results given here refer to
the represented functions, the properties of the problem in terms of basis coefficients
depend also on the condition number of the chosen basis. For tensor product bases,
this condition number is the product of the condition number of the univariate bases,
and thus in general depends exponentially on d unless orthonormal bases are used for
each V ν

h . A possible remedy for large d is the use of nonstandard basis functions (such
as wavelets) for finite element spaces. We refer to [2] for further details.
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5.2 Main results

The main results for the model problem are the following specific versions of The-
orems 2.2, 3.2, and 2.5. They follow directly by applying the results of Sects. 4 and
5.1.

Theorem 5.8 (Existence and uniqueness of solutions)Let u0 have positive L2-distance
from Mw\M. There exist T ∗ ∈ (0, T ] and u ∈ W (0, T ∗; H1

0 (�), L2(�)) ∩
L∞(0, T ∗; H1

0 (�)) such that u solves Problem 5.1 on the time interval [0, T ∗], and its
continuous representative u ∈ C(0, T ∗; L2(�)) satisfies u(t) ∈ M for all t ∈ [0, T ∗).
Here T ∗ is maximal for the evolution on M in the sense that if T ∗ < T , then

lim inf
t→T ∗ inf

v∈Mw\M
‖u(t) − v‖L2(�) = 0.

In either case, u is the unique solution of Problem 5.1 in W (0, T ∗; H1
0 (�), L2(�)).

In particular, with σ = distL2(�)(u0,Mw\M), there exists a constant c > 0 such
that T ∗ ≥ min(σ 2/c, T ).

The solution satisfies the following estimates:

‖u‖2
L2(0,T ∗;H1

0 (�))
≤ ‖u0‖2L2(�) + C1‖ f ‖2L2(0,T ∗;L2(�)),

‖u′‖2L2(0,T ∗;L2(�)) ≤ C2

(
‖u0‖2H1

0 (�)
+ ‖ f ‖2L2(0,T ∗;L2(�))

)
,

‖u‖2
L∞(0,T ∗;H1

0 (�))
≤ C3

(
‖u0‖2H1

0 (�)
+ ‖ f ‖2L2(0,T ∗;L2(�))

)
,

where C1, C2, and C3 are the constants from [3, Lemma 4.4].

Theorem 5.9 (Convergence of spatial discretizations) Let Vh be of the form (5.5). Let
u0,h ∈ M ∩ Vh define a sequence that converges to u0 in H1

0 (�) as h ↘ 0 and

let u0 have positive L2(�)-distance σ to the relative boundary Mw\M. Then there
exists a constant c > 0 independent of σ and a constant h0 > 0 such that there is a
unique uh in W (0, T ∗; H1

0 (�), L2(�)) ∩ Lη(0, T ∗; H1
0 (�)) that solves Problem 3.1

on the time interval [0, T ∗] when T ∗ < σ 2/c for all h ≤ h0. Furthermore, uh

converges to the unique solution u of Problem 5.1 in W (0, T ∗; H1
0 (�), L2(�)) ∩

Lη(0, T ∗; H1
0 (�)) weakly in L2(0, T ∗; H1

0 (�)) and strongly in C(0, T ∗; L2(�)),
while the weak derivatives u′

h converge weakly to u′ in L2(0, T ∗, L2(�)).

Theorem 5.10 (Stability) Let u, v ∈ W (0, T ∗; H1
0 (�), L2(�)) be two solutions of

Problem 5.1 on a time interval [0, T ∗] corresponding to right-hand sides f , g ∈
L2(0, T ; L2(�)) and initial values u0, v0 ∈ M, respectively. Assume that the contin-
uous representatives u, v ∈ C(0, T ∗; L2(�)) have pointwise positive L2(�)-distance
to Mw\M of at least σ . Then for any ε > 0,

‖u(t) − v(t)‖2L2(�) ≤
(

‖u0 − v0‖2L2(�) + 1

ε

∫ t

0
‖ f (s) − g(s)‖2L2(�) ds

)
exp(�(t) + εt),
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where

�(t) := 2κ
∫ t

0
‖u′(s)‖L2(�) + ‖v′(s)‖L2(�) + γ

(
‖u(s)‖η

H1
0 (�)

+ ‖v(s)‖η

H1
0 (�)

)

+‖ f (s)‖L2(�) + ‖g(s)‖L2(�) ds < ∞

with κ = κ(σ ) =
√

d+c2
σ

from Proposition 4.9.

Appendix A. Proofs of Theorem 4.1 and Proposition 4.11

Proof of Theorem 4.1 Ad (i). We fix a particular X∗ = C∗ ×1 U 1∗ ×2 · · · ×d U d∗ . The
construction of the submersion follows [30], where this has been done for manifolds of
fixed multilinear rank in finite-dimensional tensor spaces. Here we additionally have
to take the constraint C ∈ Mc for the coefficient tensor into account. In the following,
O is an open neighborhood of X∗ in �2(N

d) that can always be chosen sufficiently
small to ensure that all maps are well defined.

Since X∗ ∈ M, the matricizations Mμ
X∗ admit low-rank decompositions (4.4),

which can be written in matrix product form as

Mμ
X∗ = Uμ∗ (V μ∗ )T.

Here the columns of Uμ∗ and V μ∗ are bases of the minimal subspaces Uμ∗ ⊂ �2(N) and
Vμ∗ ⊂ �2(N

d−1), respectively. For X ∈ M sufficiently close to X∗, it will be useful
to define a particular basis Uμ

X for the μ-th minimal subspace Uμ, μ = 1, . . . , d, as a
continuous function of X . To this end, we choose

Uμ
X = Mμ

X (V μ∗ )T+, (A.1)

where Y+ = [Y TY ]−1Y T denotes the pseudoinverse of a matrix with full column
rank. Then Uμ

X has full column rank for X close enough to X∗, which follows from
Uμ

X → Uμ∗ for all μ for X → X∗ and the lower semicontinuity of the rank. As a
result, every X in the neighborhood of X∗ can be written as

X = CX ×1 U 1
X ×2 · · · ×d U d

X .

Moreover, we can assume that for μ = 1, . . . , d, the rμ × rμ matrices (Uμ∗ )+Uμ
X are

invertible (again, since Uμ
X → Uμ∗ for all μ for X → X∗). We then also consider

C̄X = X ×1 (U 1∗ )+ ×2 · · ·×d (U d∗ )+ = CX ×1 (U 1∗ )+U 1
X ×2 · · ·×d (U d∗ )+U d

X . (A.2)

Clearly, C̄X∗ = C∗. Noting that by (4.2) the conditionCX ∈ Mc in (4.1) is independent
under invertible changes of basis, we arrive at the following local description ofM:

M ∩ O = {
X ∈ O : C̄X ∈ Mc, rank(Mμ

X ) = rμforμ = 1, . . . , d
}
. (A.3)
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We next describe the constraints as preimages of smooth maps. We begin with
the constraint C̄X ∈ Mc. Since Mc is assumed to be an embedded submanifold of
R

r1×···×rd∗ , there exists a submersion φ from an open neighborhood of C∗ ∈ Mc toRq

(here q is the co-dimension of Mc) such that the conditions C ∈ Mc and φ(C) = 0
are equivalent in this neighborhood. Considering

g0 : O → R
q , X �→ φ(C̄X ),

we then locally have C̄X ∈ Mc if and only if g0(X) = 0.
We now consider the rank constraints in (A.3), which first will be reformulated. Let

PUμ∗ = Uμ∗ (Uμ∗ )+ denote the orthogonal projections on the μ-th minimal subspaces
of X∗, and let

Pμ = PU1∗ ⊗ · · · ⊗ PUμ∗ ⊗ idμ+1 ⊗ · · · ⊗ idd ,

with the convention P0 = id. In the following we consider tensors Pμ−1(X), that

is, orthogonal projections of X onto the subspaces U∗
1 ⊗ · · · ⊗ Uμ−1∗ ⊗ �2(N

d−μ+1).
In particular, we claim that for any fixed 1 ≤ ν ≤ d there exists a neighborhood
of X∗ in which the condition rank(Mμ

X ) = rμ for μ = 1, . . . , ν is equivalent with
rank(Mμ

Pμ−1(X)
) = rμ for all μ = 1, . . . , ν. This is shown by induction over ν. For

ν = 1 the statement is trivial since P0 = id. In the induction step ν − 1 → ν, it
suffices to show that in some neighborhood of X∗, any X satisfying rank(Mμ

X ) = rμ

for μ = 1, . . . , ν −1 also satisfies rank(Mν
X ) = rank(Mν

Pν−1(X)
). Any such X lies in a

subspace U1 ⊗ · · · ⊗ Uν−1 ⊗ �2(N
d−ν+1), where Uμ are the minimal rμ-dimensional

subspaces of X . We choose a neighborhood of X∗ in which the restrictions of all
PUμ∗ to Uμ are necessarily invertible maps between Uμ and Uμ∗ (which is equivalent
with (Uμ∗ )+Uμ

X being invertible). Hence in this neighborhood the projection Pν−1 is
a tensor product of invertible operators between U1 ⊗ · · · ⊗ Uν−1 ⊗ �2(N

d−ν+1) and
U1∗ ⊗ · · · ⊗Uν−1∗ ⊗ �2(N

d−ν+1), which hence leaves all matricization ranks invariant.
Hence, for such X , we obtain that rank(Mν

X ) = rank(Mν
Pν−1X ), which completes the

induction.
Applying the above equivalence with ν = d allows us to replace the conditions

rank(Mμ
X ) = rμ in (A.3) with rank(Mμ

Pμ−1(X)
) = rμ for μ = 1, . . . , d. These latter

conditions are now handled via Schur complements as follows. Note that

Mμ

Pμ−1(X)
∈ �2(N) ⊗ [U1∗ ⊗ · · · ⊗ Uμ−1∗ ⊗ �2(N

d−μ)].

We consider orthogonal decompositions

�2(N) = Uμ∗ ⊕ (Uμ∗ )⊥

and

U1∗ ⊗ · · · ⊗ Uμ−1∗ ⊗ �2(N
d−μ) = Vμ∗ ⊕ Wμ∗ ,
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which is possible since Vμ∗ is even contained in the smaller subspace of U1∗ ⊗ · · · ⊗
Uμ−1∗ ⊗ Uμ+1∗ ⊗ · · · ⊗ Ud∗ (which in turn follows from X∗ ∈ U1∗ ⊗ · · · ⊗ Ud∗). Hence
in this notation

MPμ−1(X) ∈ [Uμ∗ ⊕ (U∗)⊥] ⊗ [Vμ∗ ⊕ Wμ∗ ].

By applying a block decomposition of Mμ

Pμ−1(X)
into the four corresponding parts,

Qμ
X = PUμ∗ Mμ

Pμ−1(X)
PVμ∗ ∈ Uμ∗ ⊗ Vμ∗ ,

Rμ
X = PUμ∗ Mμ

Pμ−1(X)
PWμ∗ ∈ Uμ∗ ⊗ Wμ∗ ,

Sμ
X = (id−PUμ∗ )Mμ

Pμ−1(X)
PVμ∗ ∈ (Uμ∗ )⊥ ⊗ Vμ∗ ,

T μ
X = (id−PUμ∗ )Mμ

Pμ−1(X)
PWμ∗ ∈ (Uμ∗ )⊥ ⊗ Wμ∗ ,

we can consider the Schur complement functions

gμ : O → (Uμ∗ )⊥ ⊗ Wμ∗ , X �→ T μ
X − Sμ

X (Qμ
X )−1Rμ

X . (A.4)

Note that Qμ
X is indeed invertible (as an rμ×rμ matrix inUμ∗ ⊗Vμ∗ ) for X close enough

to X∗, since Qμ
X∗ = PUμ∗ Mμ

X∗ PVμ∗ is invertible. As for finite matrices, we then have
gμ(X) = 0 if and only if rank(Mμ

Pμ−1(X)
) = rμ.

Defining

g = (g0, g1, . . . , gd) : O → R
q × [(U1∗)⊥ ⊗ W1∗] × · · · × [(Ud∗)⊥ ⊗ Wd∗]

we conclude from all the previous considerations that (A.3) can be written as

M ∩ O = g−1(0).

We need to show that g is a submersion in X∗, that is, g′(X∗) is surjective. First
note that for μ = 1, . . . , d we have

g′
μ(X∗)[H ] = T μ

H = (id−PUμ∗ )Mμ

Pμ−1(H) PWμ∗ , (A.5)

that is, g′
μ(X∗) is the orthogonal projection (of the μ-th matricization) onto the sub-

space (Uμ∗ )⊥ ⊗ Wμ∗ . This follows by applying a product rule to (A.4) and noting
that Rμ

X∗ = 0 and Sμ
X∗ = 0. When viewed as subspaces of �2(N

d), the subspaces

(Uμ∗ )⊥ ⊗ Wμ∗ are mutually orthogonal to each other, since they are contained in the
pairwise orthogonal subspaces U1∗ ⊗ · · · ⊗ Uμ−1∗ ⊗ (Uμ∗ )⊥ ⊗ �2(N

d−μ), respectively.
Moreover, all of them are orthogonal to the subspace U1∗ ⊗ · · · ⊗ Ud∗ . Regarding g0,
note that

g0(C ×1 U 1∗ ×2 · · · ×d U d∗ ) = φ(C) (A.6)
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(again withUμ
X∗ = Uμ∗ ), which shows that already the restriction of g0 toU1∗⊗· · ·⊗Ud∗

is a submersion in X∗, since φ′(C∗) is surjective to R
q . It is now easy to conclude

from these facts that g′(X∗) is altogether surjective.
By the local submersion theorem in Hilbert space, see [36, Thm. 73.C],M∩O =

g−1(0) is a smooth submanifold ofH. The tangent space TX∗M at X∗ is the null space
of the g′(X∗). The proof of part (i) is therefore completed.

Ad (ii). The existence of the continuously Fréchet-differentiable homeomorphism
ϕ of the asserted form is a consequence of Ljusternik’s submersion theorem as stated
in [35, Thm. 43.C]. To show that (in a possibly smaller neighborhood around zero) ϕ is
also an immersion, that is, ϕ′(ξ) : TX∗M → Tϕ(ξ)M is injective and its range splits, it
suffices to show that there exists c > 0 such that ‖ϕ′(ξ)h‖ ≥ c‖h‖ for all h ∈ TX∗M.
This, however, follows immediately from the continuity of ϕ′ and ϕ′(0)h = h. By
definition, ϕ is therefore a local embedding [36, Def. 73.43].

Ad (iii). Let ξ be an element of the form (4.5) (but at X∗ = C∗×1U 1∗ ×2 · · ·×d U d∗ ).
Since Ċ ∈ TC∗Mc, there exists a curve C(t) in Mc such that C(0) = C∗ and
C ′(0) = Ċ . For small enough t ,

X(t) = C(t) ×1 (U 1∗ + tU̇ 1) ×2 · · · ×d (U d∗ + tU̇ d)

then defines a curve inM because Uμ∗ + tU̇μ has full column rank for μ = 1, . . . , d.
Obviously X(0) = X∗, and by multilinearity it is easily seen that X ′(0) = ξ , which
shows ξ ∈ TX∗M.

In order to show that all tangent vectors are of the form (4.5), let ξ ∈ TX∗M and a
corresponding curve X(t) ∈ M with X(0) = X∗ and X ′(0) = ξ be given. For small
enough t we represent X(t) in the particular bases Uμ

X(t) defined in (A.1) as

X(t) = CX(t) ×1 U 1
X(t) ×2 · · · ×d U d

X(t),

where CX(t) is in Mc. Clearly, the curves t �→ Uμ

X(t) are smooth. It implies that for

small enough t the pseudoinverses t �→ (Uμ

X(t))+ are also smooth functions. It then
follows from (A.2), by applying an inverse transformation, that also t �→ CX(t) is a
smooth curve, since C̄X(t) is. By the product rule we then get that

ξ = X ′(0) = C̃ ×1U1∗ ×2 · · ·×d Ud∗ +C∗×1 Ũ1×2 · · ·×d Ud∗ +· · ·+C∗×1U1∗ ×2 · · ·×d Ũd ,

(A.7)
where C̃ ∈ TC∗Mc is the derivative of t �→ CX(t) in t = 0, and Ũμ ∈ (�2(N))rμ is the
derivative of t �→ Uμ

X(t) in t = 0 for μ = 1, . . . , d. By decomposing every column of

Ũμ into the span of Uμ∗ and its orthogonal complement, we can write

Ũμ = Uμ∗ Sμ + U̇μ∗ ,

where Sμ is some rμ × rμ matrix and (Uμ∗ )TU̇μ∗ = 0. Expanding the expression (A.7)
we then have

ξ = K ×1 U 1∗ ×2 · · · ×d U d∗ + C∗ ×1 U̇ 1∗ ×2 · · · ×d U d∗ + · · · + C∗
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×1U 1∗ ×2 · · · ×d U̇ d∗

where

K = C̃ + C∗ ×1 S1 ×2 id×3 · · · ×d id+ · · · + C∗ ×1 id×2 · · · ×d Sd .

It remains to show that K ∈ TC∗Mc to conclude that ξ is of the asserted form (4.5).
Since TC∗Mc is a linear space it suffices to show this for every term. For C̃ there is
nothing to show. The sum of the remaining terms equals the derivative of the curve

C(t) = C∗ ×1 (id+t S1) ×2 · · · ×d (id+t Sd)

at t = 0, which for small enough t lies inMc by the invariance condition (4.2). Hence
C ′(0) ∈ TC∗Mc. ��
Proof of Proposition 4.11 Let X {1,...,μ} ∈ R

N1···Nμ×Bμ+1···Nd be a matricization of X .
We can decompose

X {1,...,μ} = (U1 ⊗ idN2···Nμ) · · · (Uμ−1 ⊗ idNμ)Uμ�μV T
μ+1 · · · (idNμ+1···Nd−1 ⊗V T

d ),

with U T
ν Uν = idrν and V T

ν Vν = idrν . Furthermore, we define the spaces U{1,...,μ} and
V{μ+1,...,d} via their respective orthonormal bases

U{1,...,μ} = (U1 ⊗ idN2···Nμ) · · · (Uμ−1 ⊗ idNμ)Uμ

and

V T
μ+1,...,d = V T

μ+1 · · · (idNμ+1···Nd−1 ⊗V T
d ).

The projection PX can be decomposed as

PX = P X
1 + . . . + P X

d ,

where

P X
μ = (PU{1,...,μ−1} ⊗ idNμ −PU{1,...,μ}) ⊗ PV{μ+1,...,d}

for μ = 1, . . . , d − 1 and

P X
d = PU{1,...,d−1} ⊗ idNd ;

see, e.g. [25] or [34, Section 9.3.4]. Let Ũ{1,...,μ} and Ṽ{μ+1,...,d} be the analogous
spaces for Y . Then by (4.13),

‖P X
μ − PY

μ ‖ = ‖(PU{1,...,μ−1} ⊗ idNμ −PU{1,...,μ}) ⊗ PV{μ+1,...,d}
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− (PŨ{1,...,μ−1} ⊗ idNμ −PŨ{1,...,μ}) ⊗ PṼ{μ+1,...,d}‖
≤ ‖(PU{1,...,μ−1} − PŨ{1,...,μ−1}) ⊗ idNμ ⊗PV{μ+1,...,d}‖

+ ‖PŨ{1,...,μ−1} ⊗ idNμ ⊗(PV{μ+1,...,d} − PṼ{μ+1,...,d})‖
+ ‖(PU{1,...,μ} − PŨ{1,...,μ}) ⊗ PV{μ+1,...,d}‖
+ ‖PŨ{1,...,μ} ⊗ (PV{μ+1,...,d} − PṼ{μ+1,...,d})‖

≤ 4

σ
‖X − Y‖

holds and the first desired inequality readily follows. For the other inequalities, we
use the decomposition of the identity matrix

id = PU{1,...,d−1} ⊗ idNd +(PU{1,...,d−2} ⊗ idNd−1 −PU{1,...,d−1}) ⊗ idNd

+ . . . + (idN1 −PU{1}) ⊗ idN2...Nd

into orthogonal projections onto mutually orthogonal spaces. Then

(id−PX )(X − Y ) = (PU{1,...,d−2} ⊗ idNd−1 −PU{1,...,d−1}) ⊗ (idNd−1Nd −PV{d})(X − Y )

+ . . .

+ (idN1 − PU{1}) ⊗ (idN2...Nd −PV{2,...,d})(X − Y )

= (PU{1,...,d−2} ⊗ idNd−1 −PU{1,...,d−1}) ⊗ (PṼ{d} − PV{d})(X − Y )

+ . . .

+ (idN1 − PU{1}) ⊗ (PṼ{2,...,d} − PV{2,...,d})(X − Y )

holds. Note that the operators map onto orthogonal subspaces. Hence, we get the
desired estimate

‖(id−PX )(X − Y )‖ ≤
√

d − 1

σ
‖X − Y‖2.

By continuity of the projection and taking limits, the estimate also holds for Y ∈ Mc.
In a similar way, the second inequality follows. ��
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