
Advanced
STG

Decomposition

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat)
der Fakultät für Angewandte Informatik

der Universität Augsburg

Vorgelegt von

Mark Schäfer

Gutachter

Erstgutachter: Prof. Dr. Walter Vogler

Zweitgutachter: Prof. Dr. Bernhard Möller

Mündliche Prüfung

28. Februar 2008

To my wife Maren and my daughter Charlotte

I would like to thank everybody who supported and entertained me

during this four years and all the years before.

Thank you all!

Brina, as ever — Elmar, for explaining objects — Frank, for pizza

Gabriele, for all that libraries — Heinz, for bed and breakfast — Hilli, for smoking

Jan & Thomas, for määääääh — Jonathan & Victor, for many discussions

Jürgen, for da brainz — Minna, for math — Peter, for the games

Stephan, for the ketchup — Ute, for the fun — Walter, for being sensei

Werner, for showing the way — Willi, for welding

Advanced STG Decomposition

Advanced
STG

Decomposition

Mark Schaefer
University of Augsburg

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.d-nb.de abrufbar.

c© 2008 Mark Schaefer
mark @ markschaefer.de

Herstellung und Verlag
Books on Demand GmbH, Norderstedt

ISBN: 978-3-8370-4604-5

CONTENTS

Contents

1 Introduction 11

1.1 Scope . 12

1.2 Related Work . 12

1.3 Contribution and Organisation . 13

2 Asynchronous Circuits 15

2.1 Digital Circuits . 15

2.1.1 Sequential Circuits . 17

2.1.2 Synchronous Circuits . 18

2.2 Asynchronous Circuits . 20

2.2.1 Timing Assumptions . 24

2.2.2 Operating Modes . 26

2.2.3 Handshake Circuits . 27

3 Basic Definitions 31

3.1 Petri Nets . 31

3.1.1 Labelled Petri Nets . 35

3.1.2 Implicit and Redundant Places 38

3.1.3 Unfoldings . 40

3.2 Signal Transition Graphs . 40

3.2.1 State Graph and Complete State Coding 43

3.2.2 Parallel Composition, Renaming and Hiding 47

3.3 Decomposition . 52

3.3.1 Purpose . 52

3.3.2 Algorithm . 55

3.4 Properties of Transition Contractions 65

3.5 Some Considerations about Consistency 70

7

4 Determinate Decomposition 75
4.1 Redundant Places in Marked Graphs 76
4.2 Determinacy of Petri Net Operations 81

4.2.1 Decomposition as Reduction System 81
4.2.2 Reduction is Locally Confluent 83

5 Internal Signals 95
5.1 Extended Correctness Definition . 96
5.2 Hierarchical Decomposition . 100
5.3 CSC Solving . 108
5.4 Comparison with other Approaches . 114
5.5 Other Implementation Relations . 116

5.5.1 Conformance . 117
5.5.2 I/O-Compatibility . 119
5.5.3 Strictness of Inclusions . 121

6 Advanced Decomposition Strategies 123
6.1 Correctness of New Strategies . 124
6.2 Reordering Transition Contractions . 125
6.3 Lazy Backtracking . 125
6.4 Tree Decomposition . 130

6.4.1 Component Aggregation . 134
6.5 Undo Stack and Self-Triggering . 135
6.6 CSC-Aware Decomposition . 135

6.6.1 CSC-Aware Decomposition . 137
6.6.2 Safeness-Preserving Contractions 141
6.6.3 Implicit Places and Dynamic Auto-Conflicts 146

6.7 Conclusion . 147
6.7.1 Results . 147
6.7.2 Application to other Decomposition Approaches 157
6.7.3 Conclusion . 158

7 Output-Determinacy 161
7.1 Definitions . 163

7.1.1 Output-Determinacy . 165
7.2 Decomposition into Output-Determinate Comp. 169

7.2.1 Valid STG transformations . 173
7.2.2 New Algorithm . 181

7.3 Output-Determinacy and Internal Signals 185
7.4 Results . 188

CONTENTS

8 The Tool DesiJ 191
8.1 Implementation . 193

8.1.1 STG Undo Implementation . 193
8.1.2 Calculation of Decomposition Trees 196
8.1.3 Conditions, Collectors and Operations 199
8.1.4 Verification of the Implementation 200

8.2 Command Line Options and Parameters 202

9 Conclusion and Future Research 209

Appendix 213
Bibliography . 213
List of Figures . 218
List of Tables . 220
List of Examples . 221
Index . 222

9

Chapter 1

Introduction

Asynchronous and synchronous circuits are subclasses of digital circuits. While the
latter class is well understood and forms the base of almost all modern microcomput-
ers, this is not the case for asynchronous circuits, and they are only used for special
purposes so far. This is despite their many advantages like reduced power consump-
tion and peak current, less emission and an average case delay rather than a worst
case delay, as it is typical for synchronous circuits.

However, actually building asynchronous (or clockless) circuits is much more com-
plicated and computationally harder than for synchronous circuits. This problem
emerged – or at least became more apparent – during the last 60 years. In fact, at
the beginning of the digital area in the 1950’s [CKK+97]:

. . . computers were either asynchronous, or had significant asyn-
chronous components. This was due to the fact that computer design
was still mostly an art . . .

Together with the growing automation of circuit design, synchronous circuits became
more and more established due to their comparatively easy analysis. At present, the
synchronous design flow embraces all stages of development, from the first informal
description to the final chip layout.

Nevertheless, the research on asynchronous logic was continued during the last 60
years. Especially during the last ten years there was a tendency to include asyn-
chronous parts in synchronous designs – today there even exist some completely
asynchronous microprocessors. Now, there is some strong evidence and strong believe
throughout the asynchronous community that clockless circuit design starts turning
from art to engineering as it happened to synchronous design before.

11

1 Introduction

One of the main problems of asynchronous circuits is that every event in some part
of a circuit potentially influences other parts of the circuit. Therefore, one has to
absolutely avoid spurious and non-digital events. In order to deal with such effects,
one has to analyse the timing of a circuit, which is quite complicated; to simplify
this, timing assumptions are made which lead to several subclasses, formal models
and synthesis algorithms of asynchronous circuits. All that is not important for
synchronous circuits, where not events but rather states of the circuit at certain
times (determined by a clock signal) are important for the behaviour of the circuit;
hence, spurious events are allowed which simplifies the analysis.

Another problem arises from the fact that events can happen and are propagated all
the time – in synchronous circuits events of a clock cycle are ‘collected’ and propa-
gated together. Hence, asynchronous circuits usually exhibit a lot of concurrency, i.e
independent events can happen in arbitrary orders. This leads to a large state space
and makes it impossible to efficiently synthesise large circuits, i.e. to derive Boolean
equations from the formal description. The aim of this thesis is to improve a method
with which also large asynchronous specifications can be synthesised and smaller ones
can be synthesised faster.

1.1 Scope

This thesis deals with Signal Transition Graphs (STGs), which are a Petri net based
formalism for the description of asynchronous circuits. In particular, it deals with the
STG decomposition algorithm of Vogler, Wollowski and Khangsah [VW02, VK06],
which tackles the state explosion encountered during circuit synthesis. This is done
by generating several smaller STGs from a large STG which together exhibit the
same behaviour as the initial one. STGs were invented by Wendt [Wen74,Wen77] and
became better known due to the work of Chu [Chu87a,Chu87b], who also described
a first STG decomposition algorithm. This first algorithm was quite restrictive and
was significantly improved by Vogler and Wollowski.

Here, this algorithm is investigated in greater detail, its range of application is ex-
tended and its efficiency is improved. Additionally, the tool DesiJ, which implements
the decomposition algorithm is presented.

1.2 Related Work

STGs are widely used and there are several approaches to their synthesis (i.e. the
derivation of a physical implementation), as well as a lot of research groups using
them by some means or other.

12

1.3 Contribution and Organisation

In the following, we present five approaches, research groups resp. which are closely
related to this thesis:

• The PhD thesis Trace Theory for Automatic Hierarchical Verification of Speed-
Independent circuits [Dil88] by D. Dill introduces a language based formalism
for the modelling of asynchronous circuits called trace structures. Some of the
concepts described there are still important within the asynchronous community.
In Section 5.5 we compare our implementation relation with the one defined
there.

• The book Logic Synthesis of Asynchronous Controllers and Interfaces [CKK+97]
summarises the theoretical background of STGs and their synthesis. It is one of
the sources for Section 3.2. It is also the base for the tool Petrify by J. Car-
mona, one of the book’s authors. Although Petrify is quite old today (the
last version is from 2003), it is still a reference for new algorithms.

• J. Carmona and J. Cortadella are working on the decomposition of STGs with
the help of integer linear programming (ILP) [Car03,CC03]. Their algorithm is
similar to the one described here, but uses a different approach to determine the
necessary signals for the single components. In Section 5.4, we explain it in more
detail, give a correctness proof for it and compare it to our approach. Lately,
the group has started working on a new direct synthesis algorithm (i.e. without
using decomposition), which is also based on ILP.

• C. Myers and T. Yoneda also work on a decomposition algorithm [YOM04].
They use a method different from ours and from the approach of Carmona and
Cortadella to determine the sets of necessary signals. They also work on timed
STGs, i.e. STGs with time annotations for the events, and the synthesis thereof,
which tries to harness the additional timing information [YMKM05,YM06].

• V. Khomenko has developed a complete design flow for STG synthesis based
on STG unfoldings [KK01,Kho03,KKY06]. The corresponding tools are Punf

for the efficient generation of unfoldings and Mpsat for synthesis and other
related tasks. In Section 6.6 we describe how our decomposition approach can
be combined with this unfolding approach.

1.3 Contribution and Organisation

The thesis is organised as follows: Chapter 2 is about asynchronous circuits in general
and their relation to digital and synchronous circuits; mainly, it is a tour d’horizon
containing well-known facts and some examples. There is no specific source for this

13

1 Introduction

chapter, except for the asynchronous part which is mainly based on the book Logic
Synthesis of Asynchronous Controllers and Interfaces mentioned above. Chapter 3
explains the basics of Petri nets, STGs and STG decomposition. The latter part is
a summary of the related papers of Vogler, Wollowski and Khangsah [VW02,VK06].
The former parts are well-known and have been enhanced with some additional ex-
amples.

The main contribution of the thesis can be found in the succeeding chapters. They are
based on articles in which the present author participated. Section 3.4 also contains
new contributions, which are loosely connected and presented together there.

Chapter 4 (based on [SVJ05]) is about the decomposition of so-called marked graphs,
which are a practically important subclass of STGs. It is shown that for marked
graphs the result of the non-deterministic decomposition algorithm is always uniquely
determined. Chapter 5 (based on [SV07]) applies the original decomposition approach
to STGs with internal signals. A suitable generalised correctness notion is given
and justified; furthermore, the concept of hierarchical decomposition is explained and
proven correct. Additionally, correctness notions of other authors are investigated
and compared.

Chapter 6 (based on [SVWK06, KS07]) introduces several decomposition strategies
and heuristics, i.e. methods to execute the non-deterministic decomposition algorithm
in a more deterministic way in order to improve its efficiency. In its second part, this
chapter deals with the problem that decomposition can easily introduce Complete
State Coding conflicts into the components. A combination of our tool DesiJ with
the tool Mpsat is introduced and the theoretical foundations thereof are given. In
particular, it is important here to preserve safeness of the STGs. Sufficient structural
conditions, as well as an efficient dynamic method to guarantee this, are given.

Chapter 7 (based on [KSV07]) presents output-determinacy, which is a relaxation
of determinacy. This new concept is first justified and then applied to improve the
decomposition algorithm as well as its correctness proof. Furthermore, the improved
algorithm is applied to large benchmark STGs (more than 4000 signals). Chapter 8
gives an overview of the decomposition tool DesiJ developed by the present author.
Some special algorithms are discussed and an overview of its functionality is given.

Finally, Chapter 9 gives a conclusion of the thesis and an outlook to future research.

Mainly in the first half of the thesis, the reader will find boxed examples. Usually, they
are longer and more detailed than a figure and a simple explanation. Although they
are not absolutely necessary to understand the main text, it is strongly recommended
to read them.

14

Chapter 2

Asynchronous Circuits

In this chapter, asynchronous (or clockless) circuits are introduced; their main prop-
erty is the absence of a special clock signal which enforces a synchronisation of all
operations of a circuit, as it is the case for synchronous circuits.

This chapter is organised as follows: the first three sections give a tour d’horizon
on digital circuits, their classification and the properties of asynchronous circuits.
Although this chapter is essentially self-contained, the reader should have seen a
diagram of a digital circuit before, and he should know basic Boolean functions like
AND or XOR.

2.1 Digital Circuits

The main property of digital circuits is the binary, Boolean resp. interpretation of
electric voltage, i.e. voltages in some range are considered as 0, FALSE or logical low
and voltages in a disjoint range are considered as 1, TRUE or logical high. In most
cases these voltage intervals are separated by a ‘forbidden’ interval, which should only
be entered shortly when switching the values. The behaviour of a circuit is undefined
when its inputs are impressed with such a voltage. For the rest of the thesis, the term
‘digital’ will be omitted.

Typically, circuits are built from basic elements, called (logical) gates. These gates
work under the interpretation described above and perform Boolean functions like
AND, NOT or other functions of arbitrary complexity. The gates themselves are
built from transistors, capacitors etc.; here, we consider them as atomic and do not
discuss their ‘inner life’. The gates are connected by wires. These wires have a natural

15

2 Asynchronous Circuits

direction: there is one source which determines the current voltage of the wire, but
there may be several sinks, which listen to the current value of the wire. In this
context, sources are the outputs of a gate or the inputs provided by the environment
of a circuit, and sinks are inputs to a gates or outputs to the environment.

A wire carries the (Boolean) value of a signal ; a change in this signal is called a signal
edge or just edge. There are raising edges (from 0 to 1) and falling edges (from 1 to
0); they are denoted by +, − resp. We also talk about e.g. input signal edges or
input edges for short. If the context is clear, we will just use the term input to denote
an input edge. We also frequently identify a wire with the signal it carries.

&

≥1

6=1

a

b

c

f(a,b,c)

a b c f(a,b,c)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Figure 2.1: Simple circuit and corresponding truth table

For an example, have a look at Figure 2.1 where a simple circuit with three gates
is depicted. There is an AND (&), an OR (≥ 1) and an XOR gate (6= 1). They
are connected such that the signals a and b are inputs of the AND gate, b and c are
inputs of the OR gate and the outputs of these gates are inputs of the XOR gate.
The output of the latter is also the single output of the circuit, which calculates the
Boolean function f(a, b, c). The values of f are given in the truth table on the right.

Asynchronous circuits form – together with synchronous ones – the group of sequential
circuits which is itself part of the digital circuits, see Figure 2.2.

One can observe that the output value of the circuit from Figure 2.1 does only depend
on the current1 values of the inputs. Hence, such a combinatorial circuit cannot store
an internal state. The characteristic of a combinatorial circuit is the absence of
feedback (loops)2, where feedback means that the output of a gate A is the input of

1Of course, if an input value changes, it takes some time till the output value changes.
2In other words, if we consider the circuit as a graph with the gates as nodes and the wires as

directed edges (with multiple targets however), the resulting graph is acyclic. This is not necessarily
obvious from a diagram as in Figure 2.1, because more complex building blocks may contain internal
feedback loops.

16

2.1 Digital Circuits

Digital

CombinatorialSequential

SynchronousAsynchronous

Figure 2.2: Digital circuit classification. Note that there are asynchronous specifications
which have a combinatorial implementation; hence, the respective classes overlap for such
cases.

a gate B whose output affects the output of A again. Such feedback loops constitute
the ‘state-memory’ of a circuit.

Combinatorial circuits are well understood and easy to analyse and synthesise, and
it is also possible that an STGs can be implemented by a combinatorial circuit.
Nevertheless, this is not the intended purpose of an STG, and therefore, we will not
consider combinatorial circuits further and concentrate on the two types of sequential
circuits.

2.1.1 Sequential Circuits

A circuit with a feedback loop is called sequential . One of its simplest examples is a
flip-flop, whose only purpose is to store a single bit, see Figure 2.3.

In the flip-flop core, there is one feedback-loop, starting at the output of the upper
NOT gate, going to the lower gate and from its output back to the upper gate. As one
can easily see, there are two stable states of this circuit. The output of the upper gate
is 1 causing the output of the lower gate to be 0 which causes the output of the upper
gate to be 1 and so forth. In the other stable state, the output values are reversed.
After initialisation, the circuit is in an instable state: both outputs are initially 0,
causing both gates switching their output to 1, causing both outputs switching to
0 and so on. In practice, the gates are not perfectly equal and eventually one gate
will win this so-called race. However, this can take an arbitrarily long time and the
resulting stable state is undefined.

17

2 Asynchronous Circuits

1 ◦

1 ◦

& ◦

& ◦

set

reset

q

q̄

set reset action
0 0 not allowed
0 1 set
1 0 reset
1 1 keep value

Figure 2.3: Flip-flop core — NAND-Flip-flop — operations of the latter

To control the state of a flip-flop core, the NOT gates are replaced by NAND gates.
As long as the two additional inputs set and reset have value 1, the behaviour of
the core is not affected and it is in a stable state. If, for instance, the set input is
lowered, the upper gate’s output is forced to 1, and hence the lower gate’s output is
forced to 0 – the flip flop stores the value 1. If instead reset is lowered, eventually
the other stable state is reached – the flip flop stores the value 0. Since the outputs
are expected to have opposite values all the time, the input (0,0) is forbidden, since
it would result in the output values (1,1).

2.1.2 Synchronous Circuits

Synchronous circuits make heavy use of flip-flops to store their current state explicitly.
The basic structure of a synchronous circuit is depicted in Figure 2.4.3

The state of the circuit is stored in a number of flip-flops.4 These flip-flops are clocked,
i.e. they change their state only when a certain edge of the clock signal occurs. The

3This circuit is a Medwedew automaton, i.e. the current state is also the output of the circuit.
A Moore automaton has an additional (combinatorial) output function which calculates the output
from the current state. A Mealy automaton has an output function which also considers the current
input.

4There are various types of flip-flops, differing in their state-controlling signals, e.g. the D(ata)-
flip-flop which has only one input whose value is stored directly.

18

2.1 Digital Circuits

next
state

function

flip-
flops

input output

clock

Figure 2.4: Basic structure of synchronous circuit. Double lines denote multiple wires.

clock signal itself is assumed to change its value in a periodic manner; a clock cycle
is the interval between two equal edges (including only one).

Besides the feedback-loop in the flip-flops, there is also a feedback loop in the circuit
itself: the states of the flip-flops are also inputs of the next-state-function, which
usually is a combinatorial function. If the active edge of the clock signal occurs,
the calculated next state is stored in the flip-flops and eventually propagated to the
outputs of the flip-flops and therefore to the next-state-function. The input values
might change now and a new next state is calculated and so forth.

There are two important problems:

• The value of the next-state-function has to be calculated within a single clock
cycle to guarantee a proper behaviour. However, the delay of the next-state-
function circuit depends on the input values. Therefore, the clock-cycle has to
be long enough to cover the worst-case-delay of the function. This decreases
the efficiency of the overall circuit.

• The next-state-function can only be stable if the inputs are stable. If the inputs
change their value late within a clock cycle, the next-state-circuit also needs
more time to become stable. To guarantee correctness and increase efficiency,
the inputs should therefore only change at the beginning of a clock cycle.

For large synchronous circuits there are also problems on the physical level, mainly
resulting from the generation and distribution of the clock signal throughout the
circuit:

19

2 Asynchronous Circuits

Energy In modern microprocessors about 1/3 of the chip area and the chip energy
consumption is used to distribute the clock signal. Since the energy consumption
of such processors can be up to 130W, this is a severe problem, e.g. for cooling
or from an ecological point of view.

The energy is also consumed unevenly, i.e. with peaks after the active clock
edges, when a new clock cycle begins.

EMI (electromagnetic influence) The clock signal is some form of alternating voltage,
which induces electromagnetic radiation. This is worsened by the special form
of the clock signal, which is not described by some sine function, but rather has
sharp (digital) edges. This results in a whole spectrum of radiation, rather than
an emission with the clock frequency only (as it would be the case for a sine
function).

2.2 Asynchronous Circuits

Asynchronous circuits neither have a clock signal nor do they store their current state
explicitly in flip-flops. The current state is stored implicitly in the value of all signals.
A state change is not triggered by a clock signal, but is caused by the change of input
signals. The circuit might observe this change without a visible reaction or change
the values of its output signals. This is observed by the environment, which might as
reaction change another inputs and so forth.5 Observe that a state change has to be
propagated through the circuit, but it is possible to start the next state change while
a previous one is still in progress, e.g. if two inputs have changed their value roughly
at the same time. However, this feature can be restricted by the operating mode of
the circuit as described in section 2.2.2.

An example of an asynchronous circuit is a C-element [MB59], see Figure 2.5. Like
a flip-flop, a C-element is a storage element for one bit: in the initial state all signals
are low; if both inputs a and b have the same value the output c is set to this value,
otherwise c keeps its old value. Therefore, a C-element is an implementation of the
function [c] = (a ∧ b) ∨ (c ∧ (a ∨ b)), where [c] is the next value of c.

In practice, C-elements are used to build asynchronous circuits with a structure like
the synchronous circuit from Figure 2.4, i.e. there are some C-elements to store the
state explicitly and a combinatorial next-state function which calculates proper input
values for these elements. This approach makes logic decomposition and technology
mapping, i.e. the mapping of functions to actually existing gates, easier. Still there are
more problems than in the synchronous case, see [CKK+97] for a detailed discussion.

5An autonomous circuit has only output signals, which change their values in a predefined manner.

20

2.2 Asynchronous Circuits

C
a

b
c

&

≥ 1
&

≥ 1
a

b c

u
v

Figure 2.5: C-Element and non-atomic implementation

In practice, a C-element is implemented as a complex gate,6 i.e. as an atomic gate
whose inner structure and inner signals do not have to be considered. During tech-
nology mapping, it is not always possible to implement complicated functions with
complex gates, but one has to combine available gates. The problem with the latter
is that new internal signals between the gates have to be introduced, which have to
be considered during analysis, which can easily lead to problems as described below.

Here, we will consider the non-atomic implementation of a C-element shown in Fig-
ure 2.5 to demonstrate a so-called hazard . The term hazard is used in a broad sense,
denoting any kind of malfunction caused by the non-instantaneous propagation of
signal values within a circuit. A much more detailed classification and discussion of
hazards can be found in [Cav07].

For the following discussion cf. the timing diagrams in Figure 2.6, in which the values
of all relevant signals are shown in the course of time (b = 0). At the beginning, the
circuit is in the stable state (a, b, u, v, c) = (1, 0, 1, 1, 1). For simplicity, we assume
that each gate delays the propagation of signal edges for a certain time which is equal
for all four gates.

To set c = 0 correctly (left), the environment has to set a = 0 and then has to wait a
certain time. This triggers u going down (1), which triggers v going down (2), which
finally triggers c going down (3). If a is raised later, this triggers u going up again

6They are called ‘complex’ because they implement a complex Boolean function.

21

2 Asynchronous Circuits

1

a
0

1

u
0

1

v
0

1

c
0

1

2

3

4

5

1

a
0

1

u
0

1

v
0

1

c
0

1

2

3

4

5

6

7

Figure 2.6: Setting c = 0 for a C-Element (with b = 0). top: correct behaviour. bottom:
hazard caused by a too short low-phase of input a.

22

2.2 Asynchronous Circuits

(4) which triggers nothing (5).

If the down-phase of a is too short (right), a hazard occurs: the initial down-phase of a
triggers a down-phase of u (1), which triggers a down-phase of v (2), which eventually
triggers a down-phase of c (3). Since the down-phase of v is shorter than the delay of
of the last OR-gate, v is high again when c is set to 0. Therefore, a new down-phase
of v is triggered (4), which triggers a new down-phase of c (5) and so on (6,7). In
real life, the C-element will eventually reach a stable but unpredictable state (observe
that for a = 1 and b = 0, v = c = 0 and v = c = 1 are both possible). This situation
is called a race and it can also result in meta-stability of the signals, i.e. v and c are
impressed with voltages in the forbidden interval.

Another example of an hazard is a glitch: an input edge which should not produce
an output edge, causes two of them. The circuit shown in Figure 2.7 can produce a
glitch in the following situation all inputs have value 1 when the value of b changes
to 0 – obviously, this should not change the value of x. However, the value of the
upper AND gate changes to 0, before the value of the lower AND gate changes to
1, since the latter signal edge is delayed by the NOT gate. This results in a short
period in which both inputs of the OR gate are low and also x goes down shortly. In
practice, this period can be so short that the OR gate does not produce proper signal
edges, but a more or less distinctive voltage breakdown which cannot be interpreted
digitally because it enters the forbidden voltage interval without crossing it.

&

&

1 ≥ 1

a

b

c

x

Figure 2.7: Circuit with possible glitch. The gate labelled with 1 is a NOT gate.

In synchronous circuits, such errors will cause no problems as long as the circuit is
stable when the next clock edge occurs. To cope with these problems in asynchronous
design, one works with timing assumptions of the gates and wires as described in the
next subsection.

At the end of this subsection, we introduce the VME bus controller, which will be
used a an example throughout this thesis.

23

2 Asynchronous Circuits

B
u
s

Data
Tranceiver

VME Bus

Controller

D
ev

ice
d

dsr

dtack

lds

ldtack

Figure 2.8: VME Bus Controller

The VME bus controller (VERSAmodule Eurocard bus) in Figure 2.8 is based on
the VERSAbus specification, which was developed in 1979 for Motorola 68000 based
systems, (see www.vita.com for more details). Nowadays, the VME bus and its
derivatives are widely used, in particular in the aerospace industry. For instance, the
computer system of the international space station (ISS) uses the VME bus.

The VME bus controller connects a device to a VME bus; to do this, also a data
transceiver is needed, which connects the data path of the bus with the data channel
of the device and controls the data flow direction.

The read cycle of the controller (in which data is read from the device by the bus)
works as follows: a request to read is made by the signal edge dsr+. This request is
propagated to the device through lds+. When the device has the data ready (ldtack+),
the controller must open the transceiver to transfer data to the bus (d+) and inform
the bus that the data can be read from the transceiver (dtack+). If the bus has read
the data, a dsr− edge is sent and the transaction is complete. Afterwards, all interface
signals must return to zero with maximum concurrency.

2.2.1 Timing Assumptions, Speed-Independence
and Output-Persistency

To analyse the potential for hazards one has to make timing assumptions about the
propagation of signal edges and the delays of gates.

Here, the unbounded gate delay is used: the signal propagation is considered as instan-

24

2.2 Asynchronous Circuits

taneous, i.e. it is assumed that there is no delay on wires. On the other hand, the gates
are allowed to have an arbitrarily large (or short) and varying delay. Asynchronous
circuits have to be synthesised such that they work correct under these assumptions.7

There are some justifications for this model: the wire delay is only important if a
specific gate output is the source of more than one input. If an output is connected to
several inputs, the unbounded gate delay model is still correct if there is an isochronic
fork : the wire length from the output to every input is the same, such that an output
change arrives at every input with the same delay. In either case, the delay of the
wire can be added to the delay of the gate.

Otherwise, there will be a skew in the propagation of a signal. However, this problem
can be ignored for small circuits, cf. [CKK+97].

The unbounded gate delay model is the base for speed-independent (SI) circuits: a
circuit is speed-independent if its functional behaviour does not depend on the delay
of its gates.

Speed-independence can be characterised as follows: a circuit is speed-independent
if it is output-persistent in all possible states for a given environment. Output-
persistency is very important for the robust behaviour of an asynchronous circuit;
informally, it means that once an output edge is activated, it has to occur and must
not be deactivated by the occurrence of other signals.

Formally, a violation of output-persistency is raised by a conflict , i.e. two signal edges
are activated but only one of them can occur. Since we distinguish input and output
signals, there are three cases for a conflict:

Output-output conflict Such a conflict can easily result in a race with all its con-
sequences, as it was described for the flip-flop and C-element above. However,
there are situations where a circuit has to make a random decision between two
outputs8; for this purpose arbiters or ME-elements [YKK+96] are used which
make this decision safely.9 Typically, the specification of an asynchronous cir-
cuit will not contain an output-output conflict. The decision is ‘outsourced’ to
an external arbiter which becomes therefore part of the environment, and the
output-output conflict is transformed into an input-input conflict (see below).

Input-output conflict This conflict leads to undefined behaviour: in practice, the
delay of the environment is greater than the delay of the circuit itself. Therefore,

7In other models the delay is associated with the wires. Independent of this, the delay can be
bounded or unbounded.

8For example, a bus controller has to choose between two requesting bus devices.
9An arbiter is realised non-digitally, and can also show an arbitrarily long period of meta-stability

before the decision is made.

25

2 Asynchronous Circuits

the output will be definitely produced, but the environment will not wait for
this output and produce the conflicting input signal anyway. Then, either the
circuit is in a stable state, but does not expect the input edge anymore or the
circuit is not stable and the unexpected edge leads to a hazard.

Input-input conflict This conflict is no problem for an asynchronous circuit; it
will wait until one of the inputs will arrive, and it is the responsibility of the
environment to produce exactly one of the possible input edges.

2.2.2 Operating Modes

During the history of asynchronous circuits, several design methodologies and for-
malisms were developed. They correspond to different operating modes, i.e. assump-
tions about the interaction of the circuit with its environment. The main question is:
when are inputs and outputs allowed to change their value?

The fundamental mode [Huf64,Ung69] makes the following assumptions:

• Only one input changes at a time

• Afterwards, no input will change until the circuit is in a stable state

Since it is unknown how many output edges (if any) will be produced in response to
an input edge, the environment has to wait a certain time to be sure that the circuit
has reached a stable state. Although there is no clock signal, the situation is therefore
similar to synchronous circuits.

In Huffman mode [Huf64], it is possible that more than one input edge occurs before
outputs are produced. Depending on the specific properties of the underlying physical
implementation, there are two delay values δ1 and δ2 (δ1 < δ2): if two input edges
are separated by less than δ1 they belong to the same phase and are considered as
simultaneous. When all input edges of a phase have occurred, the circuit can stabilise
and produce output edges. If two inputs are separated by more than δ2 they belong to
different phases. Time values in the interval [δ1, δ2] are illegal and lead to undefined
circuit behaviour.

The design flow in fundamental or Huffman mode starts with flow tables. In these
tables, possible states of the circuit – resulting from all the signal values – are listed
together with possible input edges. From them, the equations of all output signals
are derived. This process is quite complex in order to avoid failures of the operating
circuit. For a detailed description of the design process see [Cav07].

In burst mode every state of a circuit enables different input bursts, i.e. a set of input
edges which can occur in any order. A signal must not occur more than once in

26

2.2 Asynchronous Circuits

each burst, and for every state no burst can be a subset of another burst. The latter
condition ensures that the end of a burst can be detected without using a timeout.
It is possible that the circuit starts changing its state and produces outputs when an
input burst is still in progress as long as the environment is not disturbed with the
running burst, e.g. if the environment is slow enough to ignore these outputs for the
moment.

Finally, in input-output mode, input and output edges can be mixed arbitrarily in
time; the only restriction is the protocol of the circuit-environment behaviour itself.
Prominent examples of corresponding design formalisms are STGs and handshake
circuits. The latter are described below and will be considered again as a source of
benchmark examples for decomposition, and in Chapter 9 as a future research topic.

2.2.3 Handshake Circuits

Handshake circuits [Ber93] (HS circuits for short) are a special design methodology
for asynchronous circuits. An HS circuit is built from a collection of handshake com-
ponents which are connected via handshake channels. Such a channel consists of two
wires, signals resp.: the request (req) and the acknowledge (ack) signal. The for-
mer is produced by the active component of the channel, the latter by the passive
component.

For most applications the 4-phase protocol is used for communication on a channel:
the active ports of a channel raises the req signal to initiate the handshake. This is
received by the passive ports of the channel, which sends a raising ack edge back to
the active port, which in turn lowers the req signal which eventually lowers ack.

This handshake sequence may be interleaved with handshakes of other channels of
the respective components or data-transfers between them. A component might have
more than one active port, and when and on which channel a handshake is performed
depends on the specific component, but the handshake itself always works as described
above.

There are two types of channels: synchronisation-only and data channels. The first
type only transfers control from one component to another, while the second addi-
tionally has data signals to transfer information from one component to another.

We will clarify this explanation with the example in Figure 2.9. The HS components
are drawn as large circles, the channels as lines between them, a filled dot attached
to a component denotes an active port, an empty dot a passive port. If a channel
is drawn as an arrow, it denotes a data channel, and the arrow direction denotes
the direction of the data. Observe, that the dataflow direction is independent of the
active/passive port.

27

2 Asynchronous Circuits

∗

;

→ →

[0..7]

Figure 2.9: 8 bit Buffer out of handshake components

procedure buffer (input i : byte; output o : byte) is

variable x : byte

begin

loop

i -> x ; o <- x

end

end

Figure 2.10: Textual description of the 8 Bit Buffer

28

2.2 Asynchronous Circuits

Here, there are four kinds of HS components:

Loop component (∗) After an initial handshake on its passive port, the compo-
nent only performs complete handshakes on its single active port. The initial
handshake however, is never completed, i.e. control will never return from the
loop component. This component is used to trigger infinite behaviour of some
other components.

Sequencer component (;) The handshake on the passive port is split up into two
sequential handshakes on the active ports. The first of these handshakes is com-
pleted before the second starts, and only if the latter is finished the handshake
on the passive port is also finished, i.e. the active handshakes are embedded into
the passive one.

Fetch component (→) This component performs a data transfer from one active
port to another when triggered on its passive port.

Observe that the components connected to the active ports may delay the hand-
shakes till the data is available from left component, or the data was received
by the right component.

Buffer component ([0..7]) Just stores some data (8 bit here) for later use. There
are two passive ports but only one handshake may be in progress at a time.

The example in Figure 2.9 models an 8-bit buffer: the loop component ensures that
one cycle (reading, storing and passing of an 8-bit value) is repeated infinitely often.
The sequencer component first activates a fetch component which reads a value from
the environment or another component10 and stores it in the buffer. Only if this has
happened, the value can be transfered by the second fetch component to the environ-
ment or another component; then the cycle starts again. The sequencer guarantees
the buffer functionality, i.e. only if a value is in the buffer it can be read, and only if
it was read a new value can be stored.

The similarity of the handshake components to programming language constructs is
no coincidence. In fact, the HS component graph is derived nearly one-to-one and
very efficiently from a textual description; this is called syntax-directed translation.
For instance, the buffer is described as in Figure 2.10.

The main advantage of HS circuits are their relaxed timing assumptions. The hand-
shake communication is actually delay-insensitive, i.e. every delay in the wire of a sig-
nal edge is tolerated by the circuit. The components itself are usually very small and

10If necessary, the active port can be out-shorted, i.e. the req output is directly connected to the
ack input. This guarantees the 4-phase protocol, but not that the data is actually valid.

29

2 Asynchronous Circuits

can be realised, as speed-independent (or even delay-insensitive) circuits very easily
(cf. also the discussion about the usefulness of speed-independence in Section 2.2.1).

The main disadvantage is the overall complexity of the resulting circuits. Usually,
they are heavily over-encoded, i.e. there are far more signals than necessary to store
the internal state of the circuit. Furthermore, the handshake communication is rather
time consuming.

Despite of this, handshake circuits are the only asynchronous circuits which are ac-
tually used for industrial designs, because other models do not allow as large specifi-
cations as they can be synthesised from HS circuits.

Handshake circuits were first developed in [Ber93], where the corresponding program-
ming language is called Tangram. A recent successful approach is Balsa [EB02]
(see also intranet.cs.man.ac.uk/apt). Balsa was used to develop several asyn-
chronous versions of the ARM RISC microprocessor design.

The company ‘Handshake Solutions’ (www.handshakesolutions.com) has also de-
veloped the Tangram approach further and has developed asynchronous versions of
ARM microprocessors as well as asynchronous embedded controllers.

The above program is written in Balsa, Tangram resp.; these languages look alike
for the constructs used. We will encounter handshake circuits again in Section 6.6, in
Chapter 7 and in the future research part of the conclusion.

30

Chapter 3

Basic Definitions

Petri nets were invented 1962 by Carl Adam Petri in his PhD thesis [Pet62]. They
allow the representation of a distributed system, i.e. a system in which the global
state is comprised of several local states which can change independently. Besides for
the modelling of asynchronous circuits, they are used e.g. for workflow management,
software engineering and verification.

In this chapter their basic notions as well as signal transitions graphs (STGs) and
other related topics are introduced. We assume basic mathematic and computer
science knowledge, e.g. sets, functions, graphs, languages and automata theory. A
detailed introduction into Petri nets can be found e.g. in [Pet81, Rei85, Mur89]. A
first introduction to STGs can be found in [CKK+02]. [Wol97] presents a much more
detailed analysis of STGs and their properties.

3.1 Petri Nets

A Petri net is a 4-tuple N = (P, T,W,MN) with

• P is the finite set of places and T is the finite set of transitions with P ∩ T = ∅

• W : (P × T) ∪ (T × P) → N0 is the weight function

• MN : P → N0 is the initial marking

W defines weighted and directed connections between places and transitions (and
vice versa); by the definition of W , places cannot be connected with other places and
transitions cannot be connected with other transitions. As a consequence, a Petri net

31

3 Basic Definitions

can be considered as a weighted and directed bipartite graph. We say that there is
an arc between x and y if W (x, y) > 0.

A place can be considered as a ‘container’ which stores an arbitrary number of tokens.
The state of a Petri net is completely described by the number of tokens in each place,
and a marking is a function M : P → N0 which describes this state. We say that
a place p is marked under M if M(p) > 0. The initial marking MN defines the
initial state of a Petri net. Whenever a Petri net N , N ′, N1 etc. is introduced, the
corresponding elements (P, T,W,MN), (P ′, T ′,W ′,MN ′), (P1, T1,W1,MN1

) etc. are
defined implicitly.

In the graphical representation of a Petri net, places are drawn as circles enclosing
their marking; for each token, a small filled circle is drawn. Transitions are drawn as
boxes and arcs as arrows labelled with their weight (if it is greater 1). See Figure 3.1
for an example.

Transitions can be considered as events which can occur if the current marking (i.e. the
current state of the net) fulfils certain properties. A transition t is enabled under a
marking M written as M [t〉 if

∀p ∈ P.M(p) ≥ W (p, t).

This gives a meaning to the weight of an arc from a place p to a transition t: it is the
number of tokens which have to be in p to enable t. Keep in mind that a transition
has to be enabled by all places to become enabled at all.

Usually, for a given transition t there are a lot of places p with W (p, t) = 0; these
places never prevent the enabling of t. Therefore, only the places for which actually
an arc to t exists have to be considered for the enabling of t. These places are called
the preset of t, which is denoted with •t. They are defined by

•t = {p ∈ P | W (p, t) > 0}.

Analogously, the postset t• of t is defined by

t• = {p ∈ P | W (t, p) > 0}.

The pre- and postset of a place is defined analogously. The enabledness condition can
now be written as

∀p ∈ •t.M(p) ≥ W (p, t).

An enabled transition can fire (or occur) resulting in a new marking M ′. This is
denoted as M [t〉M ′. The firing of t removes some tokens from •t according to the
respective arc weight, i.e. just the tokens which enabled t. After this, new tokens

32

3.1 Petri Nets

produce

produced

remove

ready

inventory

fetch
2

available

consumed

consume

2

2

Figure 3.1: Producer-consumer Petri net.

are put into the places of t•, again according to the respective arc weight. Formally,
M [t〉M ′ if:

M [t〉 ∧ ∀p ∈ P.M ′(p) = M(p) − W (p, t) + W (t, p)

The new marking M ′ might enable some other transitions, the firing thereof leads
to other markings and so forth. Therefore, we generalise the firing rule to transition
sequences: a transition sequence v = t1t2 . . . tn (n ≥ 0) is enabled under a marking
M , denoted as M [v〉 if there are markings M1,M2, . . . ,Mn such that

M [t1〉M1 ∧ M1[t2〉M2 ∧ . . . ∧ Mn−2[tn−1〉Mn−1 ∧ Mn−1[tn〉

or for short
M [t1〉M1[t2〉M2[t3〉 . . . [tn−1〉Mn−1[tn〉.

Analogously, we write M [v〉M ′ if M [v〉 and the firing of v results in the marking M ′,
i.e. Mn−1[tn〉M

′. A transition sequence is called firing sequence if it is enabled under
the initial marking. The set of all firing sequences of a Petri net N is denoted as
FS(N).

A marking M ′ is called reachable from a marking M if there is a transition sequence
v such that M [v〉M ′. The set of all markings which are reachable from M is denoted
as [M〉. A marking is just called reachable if it is reachable from the initial marking,
and [MN 〉 is the set of all reachable markings.

A place p is called k-bounded for k ≥ 0 if for every reachable marking M , M(p) ≤ k,
i.e. the marking of p cannot exceed k, and it is just called bounded if such a k exists.
A place is called safe if it is 1-bounded. A Petri net is called (k-)bounded if every
place is (k-)bounded, and it is called safe if every place is safe. One can easily see that
a (finite) Petri net is bounded if and only if the set of reachable markings is finite.

A marking is called home state if it is reachable from every reachable marking. A
Petri net is called reversible if the initial marking is a home state. Obviously, in a
reversible Petri net every reachable marking is a home state.

33

3 Basic Definitions

As mentioned at the beginning of this chapter, Petri nets are widely used for design and
modelling of distributed systems with independent parts. The Petri net in Figure 3.1 is a
variation of the well-known producer-consumer example.
It models the following system: in a factory, a machine A produces items. If an item was
produced it has to be removed and put into an inventory in order to make the machine
ready to produce the next item. The items are consumed by a machine B and are fetched

– always two at a time – to make them available to B. If all available items are consumed,
the next two items are fetched.
In the initial state, only the transition produce is enabled; firing it leads to the marking M1

below. Now, only remove can fire resulting in marking M2. If this is repeated once more,
a marking M3 is reached where both, produce and fetch, can fire. This demonstrates that
there are actually independent parts. If fetch fires, the inventory is emptied and the tokens
can finally be consumed, see M4.

M1

produce

produced

remove

ready

inventory

fetch
2

available

consumed

consume

2

2

M2

produce

produced

remove

ready

inventory

fetch
2

available

consumed

consume

2

2

M3

produce

produced

remove

ready

inventory

fetch
2

available

consumed

consume

2

2

M4

produce

produced

remove

ready

inventory

fetch
2

available

consumed

consume

2

2

Example 3.1: Producer-Consumer

34

3.1 Petri Nets

A transition t is called live if ∀M ∈ [MN 〉.∃M ′ ∈ [M〉.M ′[t〉. Thus, a live transition
can always fire again, no matter what happened before. A net N is live if every
transition is live. A transition t is called 1-live if there is a firing sequence v ∈ T ∗

with MN [vt〉, i.e. t can fire at least once. A net N is 1-live if every transition is 1-live.

Two different transitions t1 and t2 are in structural conflict if •t1 ∩
•t2 6= ∅. They are

in (dynamic) conflict under a marking M if

M [t1〉 ∧ M [t2〉 ∧ ∃p ∈ •t1 ∩
•t2 : M(p) < W (p, t1) + W (p, t2).

This means that both transitions are activated but only one can actually fire. We say
t1 and t2 are in conflict if they are in conflict under some reachable marking.

Two transitions t1 and t2 are enabled concurrently under a marking M if

∀p ∈ P : M(p) ≥ W (p, t1) + W (p, t2).

This means that they are both activated under M and could fire in principle at the
same time. In particular, M [t1t2〉 and M [t2t1〉.

Some firing sequences of the producer-consumer example from Figure 3.1 are:

• produce remove produce remove fetch consume consume
This firing sequence reaches the initial marking again.

• (produce remove)k for k ≥ 0.
This firing sequence puts k tokens on place inventory, which is therefore unbounded.

Since the place inventory is unbounded the Petri net itself is also unbounded, the other
places are safe, 2-bounded resp.
Although there are infinitely many reachable markings, the net is reversible: starting from
an arbitrary marking, fire produce and remove until there is an even number k of tokens on
inventory and ready is marked. Then fire consume until available is empty and then fire

(fetch consume consume)
k
2 , which empties inventory and reaches the initial marking.

Example 3.2: Producer-Consumer continued

3.1.1 Labelled Petri Nets

A labelled Petri net is a 6-tuple N = (P, T,W,MN ,Σ, l) where

• (P, T,W,MN) is a Petri net

• Σ is an alphabet of labels

• l : T → Σ ∪ {λ} is a labelling function where λ /∈ Σ denotes the empty word .

35

3 Basic Definitions

The labelling function l is extended to transition sequences as usual:
l(t1t2 . . . tn) = l(t1)l(t2) . . . l(tn), deleting λ automatically. The notion of enabledness
is lifted to labels: we write M [w〉〉 if M [u〉 and w = l(u) for some u ∈ T ∗. A sequence
w ∈ Σ∗ is called a trace of a marking M if M [w〉〉 and it is called a trace (of N) if
MN [w〉〉.1 The language L(N) of N is the set of all traces.

The notions of conflict and concurrency are extended to labels as follows: e.g. two
labels v, w ∈ Σ are in (dynamic) conflict if there are two transitions t1 and t2 with
l(t1) = v, l(t2) = w and t1 and t2 are in conflict. If v = w, this is called an auto-
conflict . Structural auto-conflicts and auto-concurrency are defined analogously. A
Petri net is deterministic if it has no λ-labelled transitions and no auto-conflict or
auto-concurrency.

The notions defined above for unlabelled Petri also apply for labelled Petri nets. For
the rest of the thesis, we only consider labelled nets and frequently omit the term
‘labelled’.

Often, nets are considered to have the same behaviour if they are language equivalent.
Bisimulation (see [Mil89]) is a finer behaviour equivalence; it is based on simulation.

Definition 3.1 (Simulation)
A simulation from N to N ′ is a relation S between the markings of N and N ′ such
that (MN ,MN ′) ∈ S and for all (M1,M2) ∈ S and M1[t〉M

′
1 there is some M ′

2 with
M2[l1(t)〉〉M

′
2 and (M ′

1,M
′
2) ∈ S. △

If such a simulation exists, then N ′ can go on simulating all events of N forever, and
therefore we have L(N) ⊆ L(N ′).

A relation B is a bisimulation between N and N ′ if it is a simulation from N to N ′

and B−1 is a simulation from N ′ to N . If such a bisimulation exists, we call the nets
bisimilar; intuitively, the Petri nets can work side by side such that in each stage,
each net can simulate the events of the other one, and we have L(N) = L(N ′).

Observe that if S1 is a simulation between N and N ′ and S2 one in the other direction,
N and N ′ have the same language, but it does not imply that they are also bisimilar.
However, for deterministic nets, language equivalence and bisimulation coincide.

1Note that a (finite) trace may correspond to a firing sequence which contains arbitrarily many
λ-labelled transitions.

36

3.1 Petri Nets

In the first producer consumer example, every possible action corresponds to exactly one
transition, which is not sufficient for more elaborate scenarios. For instance, two producers
which can produce items and put them in the inventory concurrently, have to be modelled by
two transitions produce1 and produce2 (and remove1 and remove2). However, this method
is kind of inconvenient and, more important, does not allow to abstract the behaviour, e.g. to
consider the produce1 and produce2 as a single produce event as in the labelled Petri net on
the left. Here, only an abstract produce event occurs independent of the actual producer.

produce remove

Y

produce remove

fetch
2 consume

2

2

produce λ

produce λ

λ
2 consume

2

2

The labelling of transitions with λ allows to suppress the corresponding actions. (Normally
the term ‘hiding’ would be used here, but later we define hiding in a special way.) For
instance, in the net on the right side, we abstracted from the details of the internal storage
and transportation system. A possible trace is:
produce produce consume produce consume produce consume consume,
and in general, every trace, where the k-th consume event is preceded by at least k + k % 2
produce events.

Example 3.3: Producer-Consumer continued

37

3 Basic Definitions

The reachability graph RG(N) of a net N is the edge-labelled directed graph (V,E)
with:

• V = [MN 〉

• E = {(M,u,M ′) ∈ V × (Σ ∪ {λ}) × V | M [t〉M ′ ∧ u = l(t)}

Therefore, the nodes represent all reachable markings and the edges all possible tran-
sitions between them; observe that each edge represents the firing of a single transition
(M [t〉M ′) rather than the firing of a label (M [u〉〉M ′). The reachability graph is finite
exactly if [MN 〉 is finite, i.e. N is bounded. A Petri net is deterministic exactly if its
reachability graph can be considered as a deterministic automaton.

The reachability graph is an example for an interleaving semantics of a Petri net,
i.e. even if two events could happen at the same time (like the two produce-labelled
transitions in Example 3.3), this is not apparent in the reachability graph, because
only single events are shown. Instead, only all possible interleavings of the concurrent
events can be found.

3.1.2 Implicit and Redundant Places

Definition 3.2 (Implicit and Redundant Places)
Let N be a Petri net. The place p ∈ P is called implicit if it can be removed from N
without changing the set of firing sequences.

The place p is (structurally) redundant [Ber87] if there is a set of places Q – called
reference set – with p 6∈ Q, a valuation V : Q ∪ {p} → N and some d ∈ N0 which
satisfy the following properties for all transitions t:

(1) V (p)MN (p) −
∑

q∈Q V (q)MN (q) = d

(2) V (p)(W (t, p) − W (p, t)) −
∑

q∈Q V (q)(W (t, q) − W (q, t)) ≥ 0

(3) V (p)W (p, t) −
∑

q∈Q V (q)W (q, t) ≤ d

We call V balanced if for all transitions t ∈ T (2) is an equality, i.e.

V (p)(W (t, p) − W (p, t)) −
∑

q∈Q

V (q)(W (t, q) − W (q, t)) = 0 △

Removing implicit places is an important operation of the STG decomposition algo-
rithm (see below). However, implicitness is hard to decide, and therefore we actually
consider only redundant places, since detecting them does not require to generate the
reachability graph.

38

3.1 Petri Nets

Remark: It is well-known that the reachability problem (RP) for Petri nets is Exp-
Space-hard [Esp98]. This even holds for SPZ-RP (Single-Place-Zero RP) where we
ask if a given place p can be emptied; we can also assume arc-weights to be 1. Given
an instance of SPZ-RP, we can add a fresh t and the arcs (p, t), (t, p), and observe
that p is implicit if and only if no marking with zero tokens in p is reachable. This
shows ExpSpace-hardness of the implicitness problem.

Checking redundancy however, can be transformed easily into a linear programming
problem [STC98] which is infeasible in the case of redundancy. Since redundancy is
defined over N, one might expect that this results in an integer linear programming
problem, which is known to be NP-complete (e.g. [Sch86]). However, observe that
in this case, a solution over Q suffices, since the solution can be multiplied with the
common denominator. Hence, redundancy can be solved with well-known linear pro-
gramming algorithms in polynomial time (e.g. [Ren95]). However, since this approach
is still not efficient enough, DesiJ looks only for a subset of redundant places, called
shortcut places, cf. Definition 4.3 and the discussion on page 80.

To understand that each redundant place is implicit, observe that the first two items
of the redundancy definition ensure that p is something like a linear combination of
the places in Q with factors V (q)/V (p). Indeed, for the case d = 0, the first item says
that p is such a combination initially; the second item, in the case of equality, says
that this relationship is preserved when firing any transition.

The proof that a redundant place p is indeed implicit argues that initially the valuated
token number of p is at least d greater than the valuated token sum on Q by the first
item, and that this difference can only get greater when firing transitions by the second
item; the third item says that each transition needs at most d ‘valuated tokens’ more
from p than from the places in Q. This shows that for the enabling of a transition
the presence or absence of p does not matter.

Since deletion of p preserves the firing sequences it also preserves liveness and 1-
liveness. In general, implicitness does not imply redundancy, but in Chapter 4 we will
show that these notions coincide for a subclass of Petri nets, called marked graphs.2

Throughout this paper, if a place p (p′, p1, . . .) is considered to be redundant, a
corresponding reference set Q (Q′, Q1, . . .) and valuation function V (V ′, V1, . . .) are
implicitly given. If some valuation function V is given explicitly, the reference set is
implicitly determined by Q = {s ∈ P | V (s) > 0} \ {p}.

2 [CCJS94] shows that the second redundancy item characterises that p is structurally implicit,
i.e. each marking of the other places can be extended to p such that p is implicit.

39

3 Basic Definitions

3.1.3 Unfoldings

A finite and complete unfolding prefix of a Petri net N is a finite acyclic net which
implicitly represents all reachable markings of N together with the transitions enabled
under those markings. Intuitively, it can be obtained through unfolding N , i.e. by
successively firing transitions, under the following assumptions: (1) for each new firing
a fresh transition (called an event) is generated; (2) for each newly produced token
a fresh place (called a condition) is generated. This process is started at the places
which are marked under the initial marking, see also Example 3.4.

An unfolding is infinite whenever N has an infinite firing sequence. Actually, Petri
nets have to be finite, but since we only use finite unfolding prefixes (see below),
we make an exception here. However, if N has finitely many reachable states, the
unfolding eventually starts to repeat itself and can be truncated (by identifying a set
of cut-off events) without loss of information, yielding a finite and complete prefix.

Efficient algorithms exist for building such prefixes [Kho03], and they ensure that the
number of non-cut-off events in a complete prefix can never exceed the number of
reachable states of N [ERV02].

In most cases (in particular for highly concurrent Petri nets), complete prefixes are
exponentially smaller than the corresponding reachability graphs, because they rep-
resent concurrency directly rather than by multidimensional ‘diamonds’ as it is done
in reachability graphs. For example, if the original Petri net consists of 100 transi-
tions which can fire once in parallel, the reachability graph will be a 100-dimensional
hypercube with 2100 markings, whereas the complete prefix will coincide with the net
itself.

Since many practical STGs (see below) usually exhibit a lot of concurrency, but
have rather few choice points, their unfolding prefixes are often exponentially smaller
than the corresponding reachability graphs. In fact, in many of the experiments
conducted in [Kho03,KKY04] they were just slightly bigger then the original STGs
themselves. Therefore, unfolding prefixes are well-suited for both, visualisation of an
STG’s behaviour and alleviating the state space explosion problem.

In Section 6.6 we will explain how decomposition can be combined with the unfolding
based synthesis of [Kho03,KKY04,KKY06].

3.2 Signal Transition Graphs

In this section we introduce Signal Transition Graphs or STGs for short. They are a
formalism for the modelling of asynchronous circuits, and describe both, the proper
behaviour of a circuit as well as the corresponding proper environment. We distinguish

40

3.2 Signal Transition Graphs

Below one can see the ‘classic’ version of the consumer-producer Petri net; the capacity of
the inventory is limited and only one token at a time is fetched by the consumer.

produce

produced

remove

ready storage

inventory

fetch

available

consumed

consume

This is a prefix of the unfolding of the above net. Observe, that each transition now represents
an occurrence of the original transition and can fire only once. Although an unfolding
is infinite in principle, this prefix contains every reachable marking of the net, i.e. every
reachable marking is also reachable here when considering the place labels.

ready storage consumed

produce

produced

remove

ready inv.

produce

produced

fetch

storage available

remove

ready inv.

consume

consumed

produce

produced

fetch

storage available

Example 3.4: Unfolding Example

41

3 Basic Definitions

three kind of signals: In, Out and Int are the disjoint sets of input, output and internal
signals, where an internal signal is also an output of the circuit, but one which is
unknown to the environment. The term ‘signature’ refers to this partition of the
signals of an STG. Additionally, we define the set of all signals Sig = In∪Out∪ Int,
the set of external signals Ext = In∪Out and the set of local signals Loc = Out∪Int.
Usually, a, b, c are input signals, x, y, z are output signals, u, v, w are internal signals
and s is an arbitrary signal.

A signal edge is the combination of a signal and the direction of the edge: + for a
rising edge, and − for a falling one; Sig± = Sig ×{+,−} is the set of all signal edges
(analogously for the other signal subsets). Instead of (a,+) we write a+ and we write
a± if the direction of the edge is unknown or does not matter – if a± occurs more
than once in the same context, the same direction is denoted.

Hence, an STG N is an 8-tuple (P, T,W,MN , In,Out, Int, l) where
(P, T,W,MN , Sig±, l) is a labelled Petri net. If an STG has no internal signals,
the Int = ∅ entry will be omitted. Since for synthesis the reachability graph of an
STG has to be generated, we consider only bounded STGs.

An input transition is labelled with an input edge and analogously for the other signal
types. A transition which is labelled with λ does not correspond to a signal change
of the modelled circuit; it is called dummy transition or just dummy . In specification
STGs, dummy transitions are used as a design simplification; in the decomposition
algorithm they are introduced in intermediate stages and play a different role (see Sec-
tion 3.3). A formal semantics for them is introduced in Section 7.

The graphical representation is naturally quite similar to ordinary Petri nets, except
for two differences:

• The colour of a transition reflects the type of the corresponding signal. Input
transitions are red, output transitions are blue, internal transitions are green
and dummy transitions are white.

• Unmarked places with only one transition in the preset as well as in the postset,
the respective arcs having weight 1, can be omitted; the respective transitions
are connected directly.

An STG describes the behaviour of a circuit and the proper environment as follows:
each reachable marking corresponds to a state of the circuit. If an input edge is
activated under a given marking, the environment is allowed to produce it and the
circuit must be ready to receive it; if an output is activated, the circuit is required to
produce it and the environment must be ready to receive it; if an internal signal is
activated, the circuit is required to produce it.

In practice, if the circuit or the environment (which is usually a different circuit

42

3.2 Signal Transition Graphs

as well) activates some signal edge, the speed-independent model allows that it is
produced immediately (and usually this is the case). This is the reason for some
pitfalls:

• Input-output and output-output conflicts: cf. Section 2.2.1

• Dummy-input conflicts: the environment produces the input edge while in the
meantime, the circuit decides that this input is undesired

• Activation of input signals by internal signals, i.e. M [u±〉〉M ′[a±〉〉 but ¬M [a±〉〉:
since the environment cannot see the internal signals, it might produce the input
edge before the internal edge was produced.

3.2.1 State Graph and Complete State Coding

While the state of an STG is described by a marking, the state of the corresponding
circuit is described by signal values (in contrast to synchronous circuits there are no
explicit storage elements like flip-flops). This is captured formally in the following way:
for an STG N , a state vector is a function Sig → {0, 1} where ’0’ denotes logical low
and ’1’ logical high. A state assignment assigns a state vector svM to each reachable
marking M of N . The state assignment must satisfy the following conditions for every
signal s ∈ Sig and every pair of reachable markings M,M ′ ∈ [MN 〉 with M [t〉M ′:

l(t) = s+ implies svM (s) = 0, svM ′(s) = 1

l(t) = s− implies svM (s) = 1, svM ′(s) = 0

l(t) = s′
±

for s′ 6= s implies svM (s) = svM ′(s)

l(t) = λ implies svM = svM ′

If such an assignment exists, it is uniquely defined by these properties,3 and the
reachability graph and the underlying STG are called consistent . For a consistent
STG the state graph SGN is defined as the corresponding reachability graph where
each marking M is labelled with svM .

In contrast to this state based definition, the language based consistency notion de-
mands that in every possible trace of an STG the edges of each signal have to alternate,
i.e a+ must be followed by a− must be followed by a+ and so forth, and that the first
edge of every signal is the same in every trace.

Clearly, the state based notion implies the language based one, and except for patho-
logical cases, the opposite is also true. It was proven in [VW02, VK06] that the

3At least for every signal s ∈ Sig which actually occurs, i.e. M [s±〉〉 for some reachable marking
M .

43

3 Basic Definitions

The STG on the left models the C-element from Figure 2.5, its state graph is shown in the
middle. However, there are four input-output conflicts: between c+ and a−, b− resp. and
between c− and a+, b+ resp. The STG on the right has no such conflicts since it forbids
the respective input edges if c+, c− resp. is activated. Therefore the hazard described on
page 21 is explicitly forbidden.

a
+

b+
a
−

b−

c+

a
−

b−
a
+

b+

c−

0
0
/
0

1
0
/
0

0
1
/
0

1
1
/
0

1
1
/
1

0
1
/
1

1
0
/
1

0
0
/
1

a
+

a
−

b+

b−

b+

b−
a
+

a
−

c+

a
−

a
+

b−

b+

b−

b+
a
−

a
+

c−

a
+

b+
a
−

b−

c+

a
−

b−
a
+

b+

c−

Example 3.5: C-Element: State Graph and Input-Output Conflict

44

3.2 Signal Transition Graphs

language based notion is preserved by the decomposition operations discussed below.
Again, for pathological cases, this is not the case for the state-based notion. In gen-
eral however, these notions coincide, and if not explicitly mentioned, either of them
applies. See Section 3.5 for a detailed discussion.

From an inconsistent STG, one cannot synthesise a circuit. Nevertheless, the decom-
position algorithm and most of the results of this thesis do not require consistency;
exceptions will be mentioned explicitly. Note that a consistent STG cannot have auto-
concurrency, since this would imply that e.g. a+ can fire twice under some reachable
marking.

For v ∈ (Sig±N)∗, codeChange(S, v) is defined as the function over S ⊆ SigN which
maps each s ∈ S to the difference between the numbers of s+ and of s− in v;
for convenience, we define codeChange(v) = codeChange(Sig, v), and for v ∈ T ∗,
codeChange(v) = codeChange(l(v)).

Since the only state information of a circuit are the current values of its signals,
the next actions the circuit has to perform (i.e. the activated output edges) must be
derivable therefrom without ambiguity. This is captured by the following notion.

Definition 3.3 (Complete State Coding)
A consistent STG has Complete State Coding (CSC) if:

∀x ∈ Loc, M,M ′ ∈ [MN 〉 : svM = svM ′ ⇒ (M [x±〉〉 ⇔ M ′[x±〉〉) ,

i.e. markings with equal state vectors have to enable the same outputs, internals resp.
△

It is possible that different input signals are enabled in M and M ′ because these are
not controlled by the circuit. A more restrictive property is Unique State Coding
(USC) , which requires that no two markings have the same state vector.

From an STG without CSC one cannot synthesise a circuit. However, if an STG
does not have CSC, this can be achieved either by timing assumptions or – more
importantly – by the introduction of new internal signals.

• The first method makes further assumptions on the relative order of signals, e.g.
that an output is always faster than an input, even if they are concurrently en-
abled in the STG. Then, the state in which the input has occurred first will never
be reached and can be ignored. With such assumptions, states corresponding
to a CSC conflict can be deleted from the reachability graph. This method does
not lead to speed-independent implementations and is not considered further.

• An interpretation of a CSC conflict is that the circuit has not enough mem-

45

3 Basic Definitions

This is the STG model of the VME bus controller from Section 2.2.

dtack−

p1

dsr+

p2

lds+

p3 p4 p5

d−

p6

lds−

p7

ldtack− ldtack+

p8 p9

dsr−

p10

dtack+

p11

d+

Below the reachability graph and the corresponding state graph are drawn. The order of
signals is dsr ldatck / d dtack lds. The two marked states have the same state vector 11/001
but enable different outputs, hence the STG has no CSC.
(Example 5.1 demonstrates how CSC is achieved for VME.) For another CSC related exam-
ple, see Example 3.7.

{p3, p6}

{p1, p6} {p3, p7}

{p2, p6} {p1, p7} {p3, p4}

{p2, p7} {p1, p4}

{p2, p4} {p5} {p9}

{p11}

{p10}{p8}

dtack− lds−

dsr+ lds− dtack− ldtack−

lds− dsr+ ldatck− dtack−

ldtack− dsr+

lds+ ldtack+

d+

dtack+

dsr−d−

Example 3.6: (continued on next page) VME Bus Controller: Reachability Graph,
State Graph and CSC Conflict

46

3.2 Signal Transition Graphs

01/011

01/001 01/010

11/001 01/000 00/010

11/000 00/000

10/000 10/001 11/001

11/101

11/11101/111

dtack− lds−

dsr+ lds− dtack− ldtack−

lds− dsr+ ldatck− dtack−

ldtack− dsr+

lds+ ldtack+

d+

dtack+

dsr−d−

ory to store its state properly.4 The solution is therefore to increase this state
memory with additional signals. Usually, these are internal signals which are in-
troduced in a way such that the interaction with the environment is not affected,
cf. Example 3.7. This topic is further discussed in Chapter 5.

Note that not all CSC-conflicts can be resolved; such CSC conflicts are called irre-
ducible, see also Section 6.5 and Section 7.3.

3.2.2 Parallel Composition, Renaming and Hiding

The identity of the transitions or places of an STG, as well as the names of the
internal signals are not relevant. Hence, we regard STGs N and N ′ as equal if they
are externally isomorphic, i.e. if they have the same input and output signals, and
we can rename the internal signals of N and then map the transitions (places resp.)
of the resulting STG bijectively onto the transitions (places resp.) of N ′ such that
the weight function, the marking and the labelling are preserved. Altogether, the
external signals are preserved while the internal signals might be renamed.

For the modular construction of STGs, the operations hiding, relabelling and parallel

4While in principle, n signals allow for 2n different states, this state space cannot be used com-
pletely for asynchronous circuits, since the encoding of the states depends on the functionality of
the circuit. In synchronous circuits, n flip-flops do actually allow for 2n states, but in practice, often
more flip-flops than absolutely needed are used to simplify the next-state logic.

47

3 Basic Definitions

Handshake paralleliser component (left) as STG (middle). The paralleliser component is
quite similar to the sequencer component (see Section 2.2.3), except that the two active
handshakes are performed in parallel.
The paralleliser has 6 signals, an input and an output for each channel; the corresponding
STG shows the behaviour clearly. Observe the concurrent handshakes of the two active
ports. The corresponding reachability graph has (not shown) 20 states – a first example for
state explosion.

||

areq aack

xreq

xack

yreq

yack

a+
req

x+
req

x+
ack

x−
req

x−
ack

y+
req

y+
ack

y−
req

y−
ack

a+
ack

a−
req

a−
ack

a+
req

x+
req

x+
acku+

x

x−
req

x−
ack

y+
req

y+
ack

u+
y

y−
req

y−
ack

a+
ack

a−
requ−

x u−
y

a−
ack

However, the STG does not have CSC: let M be the marking after firing a+
req and let M ′

be the marking after firing then x+
req x+

ack x−
req x−

ack, i.e. the ‘left’ handshake only. The state
vectors of M and M ′ are obviously equal and M activates x+

req but M ′ not. There is an
analogous conflict when only the ‘right’ handshake is performed.
In the right STG, CSC was solved by the introduction of two new internal signals; here, they
are introduced fully concurrently, but it is also possible to insert them e.g. between x+

ack and
x−

req. Furthermore, the right STG is a correct implementation of the middle one, according
to Definition 5.2.

Example 3.7: Handshake Paralleliser: CSC Solving

48

3.2 Signal Transition Graphs

composition are of interest. Given an STG N and a set H of signals with H ∩ In = ∅,
the hiding of H results in the STG:

N/H = (P, T,W,MN , In,Out \ H, Int ∪ H, l)

Given a bijection φ defined at least for the external signals of N , the relabelling of N
is

φ(N) = (P, T,W,MN , φ(In), φ(Out), Int, φ l)

This assumes that, if necessary, the internal signals of N are renamed such that
Int∩ (φ(In)∪φ(Out)) = ∅ and φ is extended to be the identity on the internal signals
otherwise.

Observe that hiding and relabelling preserve determinism as defined above and the
same will apply for parallel composition. In particular, hiding does not change the
identity of signals or removes them completely from the STG as it is done in other
settings.

In reality, circuits are connected by connecting outputs of one circuit to inputs of
another with a wire, while internal signals are not connected to other circuits at all.

This is captured formally in the following definition of parallel composition ‖. Here,
the distinction between input, output and internal signals has to be considered. The
idea of parallel composition is that the composed systems run in parallel synchronising
on common signals. Since a system controls its outputs, we cannot allow a signal to
be an output of more than one component; input signals, on the other hand, can be
shared. An output signal of one component can be an input of one or several other
components, and in any case it is an output of the composition. Internal signals
are unique for each component, and we assume that the sets of internal signals are
disjoint; this can be achieved by a suitable renaming before the parallel composition.

A composition can also be ill-defined due to what e.g. Ebergen [Ebe92] calls com-
putation interference; this is a semantic problem, and we will consider it later in
Section 3.3.

Therefore, the parallel composition of STGs N1 and N2 is defined if Out1 ∩Out2 = ∅
and Int1 ∩ Sig2 = Int2 ∩ Sig1 = ∅. Then, let A = Sig1 ∩ Sig2 be the set of common
signals.

If e.g. s is an output of N1 and an input of N2, then an occurrence of s in N1 is ‘seen’
by N2, i.e. it must be accompanied by an occurrence of s in N2. Since we do not know
a priori which s±-labelled transition of N2 will occur together with some s±-labelled
transition of N1, we have to allow for each possible pairing.

Thus, the parallel composition N = N1 ‖ N2 is obtained from the disjoint union of
N1 and N2 by combining each s±-labelled transition t1 of N1 with each s±-labelled
transition t2 from N2 if s ∈ A; see Figure 3.2 for an example.

49

3 Basic Definitions

p1

t1 a+t1

p2

q1 q2

t2 a+t2

q3

q4

t2 a+t2

q5 q6

(⋆, q1) (⋆, q2) (p1, ⋆) (⋆, q4)

(t1, t2) a+(t1, t2)

(t1, t3)a+ (t1, t3)

(⋆, q3) (p2, ⋆) (⋆, q5) (⋆, q6)

Figure 3.2: Example of a parallel composition. left: Part of STG N1 with a single output
edge a+ in t1. middle: Part of STG N2 with two input edges a+ in t2 and t3. right: Part of
N1||N2 with two output edges a+ in the combined transitions (t1, t2) and (t1, t3).

In the formal definition of parallel composition, ⋆ is used as a dummy element, which
is formally combined with those transitions that do not have their label in the syn-
chronisation set A. (We assume that ⋆ is not a transition or a place of any net.) Thus,
N is defined by

P =P1 × {⋆} ∪ {⋆} × P2

T ={(t1, t2) | t1 ∈ T1, t2 ∈ T2, l1(t1) = l2(t2) ∈ A±}

∪ {(t1, ⋆) | t1 ∈ T1, l1(t1) /∈ A±}

∪ {(⋆, t2) | t2 ∈ T2, l2(t2) /∈ A±}

W ((p1, p2), (t1, t2)) =

{

W1(p1, t1) if p1 ∈ P1, t1 ∈ T1

W2(p2, t2) if p2 ∈ P2, t2 ∈ T2

W ((t1, t2), (p1, p2)) =

{

W1(t1, p1) if p1 ∈ P1, t1 ∈ T1

W2(t2, p2) if p2 ∈ P2, t2 ∈ T2

l((t1, t2)) =

{

l1(t1) if t1 ∈ T1

l2(t2) if t2 ∈ T2

MN =MN1
∪̇MN2

where ∪̇ is the disjoint union, i.e.

MN ((p1, p2)) =

{

MN1
(p1) if p1 ∈ P1

MN2
(p2) if p2 ∈ P2

Int = Int1 ∪ Int2 Out =Out1 ∪ Out2 In = (In1 ∪ In2) − Out

50

3.2 Signal Transition Graphs

It is not hard to see that parallel composition is associative and commutative up to
external isomorphism and ||i∈INi is defined if each Ni||Nj is defined. Furthermore,
one can consider the place set of the composition as the disjoint union of the place sets
of the components. Therefore, we can consider markings of the composition (regarded
as multisets) as the disjoint union of markings of the components as exemplified for
MN above; the latter makes clear what we mean by the restriction M Pi

for a marking
M of the composition.

STGs together with the three operations defined above form a circuit algebra as
defined in Dill’s PhD thesis [Dil88]. In Figure 3.3, their laws are given in our notation.

(CA1) : (N1||N2)||N3 = N1||(N2||N3) = N1||N2||N3

(CA2) : N1||N2 = N2||N1

(CA3) : φ2(φ1(N)) = (φ2 φ1)(N)

(CA4) : φ(N1||N2) = φ(N1)||φ(N2)
(∗)

(CA5) : id(N) = N

(CA6) : (N/H1)/H2 = N/(H1 ∪ H2)

(CA7) : N/∅ = N

(CA8) : N1/H1||N2/H2 = (N1||N2)/(H1 ∪ H2)

if Hi ∩ Sig3−i = ∅, i = 1, 2

(CA9) : φ(N/H) = φ′(N)/φ′(H)

for φ = φ′|Sig\H and φ(Sig \ H) ∩ φ′(H) = ∅ (∗)

Figure 3.3: Laws of a circuit algebra. (∗) only holds if both sides are defined.

For our further considerations we will use the properties (CA6) and (CA8). While the
first is obvious, we will give a short proof for (CA8). Observe that (N1||N2)/{x} =
(N1/{x})||N2 if x 6∈ Sig2: since x 6∈ Sig2, the transitions labelled with x± in N1

are not paired with transitions of N2 and it is therefore not important weather the
hiding is done before or after the parallel composition. The main proof is by in-
duction. Obviously, (CA8) is fulfilled for H1 = H2 = ∅. Let now (CA8) be ful-
filled for some sets H1 and H2 and let w.l.o.g. H ′

1 = H1 ∪ {x} with x 6∈ Sig2 ⇒

(N1||N2)/(H ′
1 ∪ H2) = (N1||N2)/(H1 ∪ H2 ∪ {x})

(CA6)
= ((N1||N2)/(H1 ∪ H2))/{x}

= ((N1/H1)||(N2/H2))/{x} = ((N1/H1)/{x})||(N2/H2)
(CA6)

= (N1/H ′
1)||(N2/H2).

We will come back to Dill’s approach to asynchronous circuits in Section 5.5, where
we compare his correctness notion to our one.

51

3 Basic Definitions

3.3 Decomposition

In this section, the STG decomposition algorithm of Vogler, Wollowski and Khangsah
[VW02,VK06] is outlined, in order to understand the new contributions of this thesis
properly. In the first part, the main idea of decomposition – making circuit synthesis
from STGs faster – is explained. In the second part, the decomposition algorithm
itself is presented. For more details and the corresponding proofs, see [VW02,VK06].

This algorithm is for deterministic STGs only. In particular, an STG must not have
dynamic auto-conflicts (while structural ones are allowed). An algorithm for the
decomposition of non-deterministic STGs is presented in Chapter 7.

3.3.1 Purpose

One of the most important problems in STG synthesis is the large computational
effort: to perform synthesis for an STG N , one has to generate a representation of
the state graph SGN . As discussed above, SGN can be exponentially large in the size
of N itself. In particular, STGs often exhibit concurrent behaviour, which, on the
one hand, makes the resulting circuits faster, but, on the other hand, blows up the
state space. Furthermore, once SGN is calculated, the computational effort to derive
the final equations is greater than linear in |SGN |.

Although practical implementations do not use näıve state space representations,
there are hard constraints on the size of synthesisable STGs:

• Petrify generates a representation of SGN based on binary decision diagrams
(BDD) [Bry86]. In principle, BDDs can also be exponentially large, but on
average their size is comparatively small. Nevertheless, Petrify can only han-
dle STGs with about 20-30 signals; larger ones will usually lead to a memory
overflow.

• Mpsat works on an unfolding prefix of the STG, which in most cases is quite
small, in particular, if compared to the reachability graph. The actual synthesis
algorithm is exponential in the number of signals. Due to a low constant factor,
Mpsat can handle small examples very fast, but is unable to synthesise STGs
with more than 40-50 signals.

• In general, it seems unlikely that there are fast and memory efficient algorithms
for the synthesis of STGs, since even checking whether an STG is synthesisable
is PSpace-complete (cf. Chapter 7).5

5This is no contradiction to decomposition combined with synthesis being fast: for many com-
putationally hard problems like Sat, there are heuristic algorithms which perform quite well on

52

3.3 Decomposition

Decomposition tries to overcome these problems by splitting the original specification
into several components. Together, they form an implementation, i.e. in the environ-
ment they are designed for, they show the same behaviour as the specification; this
property is captured in a formal correctness notion, which is introduced below.

There are three advantages of decomposition:

• The components usually have less concurrency than the specification and in any
case they are not larger. Their state graphs are therefore much smaller and since
the components are synthesised separately, synthesis becomes much faster.

• Even if some components are not much smaller than the specification, this can
at least help to reduce the peak memory usage during synthesis.

• Finally, for large examples (≥ 60 signals) decomposition makes synthesis pos-
sible in the first place. In Chapter 7, we will see benchmarks with more than
4000 signals which can be decomposed and synthesised.

Now, we come to the formal definition of the correctness notion for decompositions
(see also Examples 3.8 and 3.9). This notion is for STGs without internal signals; in
Chapter 5, an extended correctness notion for STGs with internal signals is presented.

Definition 3.4 (Correct Decomposition)
A collection of deterministic components (Ci)i∈I is a correct decomposition of (or
simply correct w.r.t.) a deterministic STG N – also called specification – if C = ||i∈ICi

is defined, InC ⊆ InN , OutC ⊆ OutN and there is an STG-bisimulation B between
the markings of N and those of C with the following properties:

1. (MN ,MC) ∈ B

2. For all (M,M ′) ∈ B, we have:

(N1) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC , M ′[a±〉〉M ′
1 and

(M1,M
′
1) ∈ B for some M ′

1 or a 6∈ InC and (M1,M
′) ∈ B.

(N2) If x ∈ OutN and M [x±〉〉M1, then M ′[x±〉〉M ′
1 and (M1,M

′
1) ∈ B

for some M ′
1.

(C1) If x ∈ OutC and M ′[x±〉〉M ′
1, then M [x±〉〉M1 and (M1,M

′
1) ∈ B

for some M1.

average. The same is true for decomposition: in most cases, decomposition and synthesis are fast,
but sometimes the final components cannot be synthesised and one has to synthesise the specification
directly.

53

3 Basic Definitions

(C2) If x ∈ Outi for some i ∈ I and M ′
Pi

[x±〉〉, then M ′[x±〉〉. (no computation
interference)

Here, and whenever we have a collection (Ci)i∈I , Pi stands for PCi
, Outi for OutCi

etc.

In the most simple case, (Ci)i∈I consists of just one component C1 (immediately
implying (C2)); in this case, we say that C1 is a (correct) implementation of N. △

Essentially, the correctness notion is a bisimulation (i.e. specification and imple-
mentation can work side by side simulating the edges of each other) which respects
the different roles of inputs and outputs as well as the special conditions of speed-
independent asynchronous circuits:

• In general, the implementation is allowed to have fewer inputs and outputs than
the specification.

Outputs do not have to be in a component if they are never produced by N
actually; this case is somewhat pathological, and the decomposition algorithm
only produces implementations which contain all outputs of the specification.
If an output can be produced by N , it has to be matched by C due to (N2).

Inputs do not have to be in the implementation, even if they are actually possible
in the specification. They can be omitted if they are not necessary to produce
the proper behaviour and are just ignored then in (N1).

• Remarkably, there is no condition that requires a matching for an input occur-
ring in the implementation. On the one hand, if the specification allows such
an input in a matching marking, then the markings after the input must match
again by (N1) due to determinism. On the other hand, there are very natural de-
compositions which allow additional input edges compared to the specification,
and it does no harm to include these decompositions in our definition: since the
specification also describes which inputs are or are not allowed for the environ-
ment, the additional inputs will actually never occur if the decomposition runs
in an environment it is meant for,6 see also Example 3.11

As a consequence, the components might have behaviour and markings that
never turn up if the components run in an appropriate environment; also, these
markings do not appear in B.

• (C2) ensures that the components can work together without disturbing each
other, i.e. an output of one component is always expected by components lis-
tening to it.

6The additional inputs lead to states which in a way correspond to don’t-care entries in a
Karnaugh-diagram.

54

3.3 Decomposition

One might think that this requirement is a property of the parallel composition
itself without relation to the specification. But since the implementation allows
more behaviour due to additional inputs, the components might actually exhibit
computation interference outside a proper environment.

3.3.2 Algorithm

Now, we come to the presentation of the decomposition algorithm itself. In [VW02,
VK06], it was proven that it always calculates a correct decomposition of a deter-
ministic specification. Confer Example 3.11, for the decomposition of the VME bus
controller

STG decomposition works roughly as follows:

• A partition of the output signals of the specification STG N is chosen, such
that some properties are fulfilled. For each set in this partition, a component
producing these outputs will be generated.

• For each set of the partition, an initial component is produced as a copy of N
but with unnecessary signals being lambdarised.

• The components are reduced separately, i.e. certain reduction operations are
applied (mostly transition contractions).

• If all λ-transitions can be removed, a final component is produced. Otherwise,
backtracking is performed: the reduction is restarted at the respective initial
component in which some signals are delambdarised , i.e. their original label is
restored. These steps are repeated till the reduction is successful.

In the rest of this section, these operations are explained in more detail.

Initial Partition and Initial Components

A feasible partition is a family (Ini, Outi)i∈I for some set I such that the sets Outi,
i ∈ I, are a partition of OutN and for each i ∈ I we have Ini ⊆ In ∪ Out \ Outi, and
furthermore:

(F1) If signal s and output signal x of N are in structural conflict, then for each
i ∈ I, x ∈ Outi implies s ∈ Ini if s ∈ InN and s ∈ Outi if s ∈ OutN .

The rationale for this is the following: clearly, a component responsible for
output signal x must at least ‘see’ any signal that could be in dynamic conflict

55

3 Basic Definitions

Consider the VME bus controller from Example 3.6, which is shown with all places below.

dtack−

p1

dsr+

p2

lds+

p3 p4 p5

d−

p6

lds−

p7

ldtack− ldtack+

p8 p9

dsr−

p10

dtack+

p11

d+

Below is an example of a decomposition for this STG (generated with DesiJ) which is
correct according to Definition 3.4. Observe that the input d of component C2 is produced
by component C1 and is an output of the parallel composition.

p1

dsr+

p2

lds+

p3 p4

d−

p5

lds−

p6

ldtack− ldtack+

p7 p8

dsr−

p9

d+

Example 3.8: Decomposition of VME Bus Controller 1 (continued on next page)

56

3.3 Decomposition

dtack−

p1

d+

p2

dtack+

p3

d−

p4

The following is the parallel composition C = C1||C2 of the two components. The parts of
C2 are marked gray, the respective places are written as p′

1 etc. Remarkably, C looks quite
different to the specification N above: Now, C1 and C2 are mostly concurrent. In particular,
after the firing of d+ in C, not only dtack− is activated, but also dsr−; as described above
this additional activated input is allowed in a correct decomposition.

p1

dsr+

p2

lds+

p3 p4

d−

p5

lds−

p6

ldtack− ldtack+

p7 p8

dsr−

p9

d+

p′2dtack+p′3

p′4

dtack+ p′1

57

3 Basic Definitions

This is the corresponding STG-bisimulation B for the decomposition of VME from Exam-
ple 3.8. The nodes are the elements of B, an arrow indicates which element causes another
element to be in B. Arrows with a * denote that the corresponding reason is (N1), without
* it is (N2) or (C1). The element with the single arrow is for the initial markings.

({
p
3
, p

6
},
{p

1
, p

5
},
{p

4
})

({
p
1
, p

6
},
{p

1
, p

5
},
{p

1
})

({
p
3
, p

7
},
{p

1
, p

6
},
{p

4
})

({
p
2
, p

6
},
{p

2
, p

5
},
{p

1
})

({
p
1
, p

7
},
{p

1
, p

6
},
{p

1
})

({
p
3
, p

4
},
{p

1
, p

3
},
{p

4
})

({
p
2
, p

7
},
{p

2
, p

6
},
{p

1
})

({
p
1
, p

4
},
{p

1
, p

3
},
{p

1
})

({
p
2
, p

4
},
{p

2
, p

3
},
{p

1
})

({
p
5
},
{p

4
},
{p

1
})

({
p
9
},
{p

8
},
{p

1
})

({
p
1
1
},
{p

9
},
{p

2
})

({
p
1
0
},
{p

9
},
{p

3
})

({
p
8
},
{p

7
},
{p

3
})

*
*

*
*

* *

Example 3.9: Decomposition of VME Bus Controller 2

58

3.3 Decomposition

with x in N ; if such a signal is an output as well, the component should also
produce it, because two conflicting outputs cannot be produced by two different
components in a speed-independent way.

(F2) If there are t, t′ ∈ T such that l(t′) ∈ Outi and t is a syntactical trigger of t′,
i.e. t• ∩ •t′ 6= ∅, then the signal of t is in Ini ∪ Outi.

The latter signal l(t) might be in Ini even if it belongs to OutN ; in this case, it
will be produced by some other component, and the ith component just listens
to it.

As yet, it is not clear how to choose a feasible partition that gives an optimal decom-
position in some sense, e.g. one with the least overall size of the reachability graphs of
its components. But there is a canonical candidate: according to (F1), output signals
in structural conflict must be in the same Outi, and there is a finest partition of OutN
satisfying this; for each of the resulting Outi, there is a unique least set Ini such that
also (F2) is satisfied. In many practical cases, this canonical feasible partition will
have one (Ini, Outi) for each output signal of N .

All other feasible partitions can be obtained from this finest partition by either adding
input signals to a component or by merging some (In1, Out1) and (In2, Out2) to
((In1 ∪ In2) \ (Out1 ∪ Out2), Out1 ∪ Out2) (an output of a component might be an
input of another one).

Given an initial feasible partition, the initial components (Ci)i∈I are defined as follows:
each Ci is a copy of N with a modified labelling according to the partition, i.e.

Ci = (P, T,W,MN , Ini, Outi, l|Sigi
∪ lλ|SigN−Sigi

)

where lλ ≡ λ is restricted to the signals SigN − Sigi not occurring in the respective
component Ci; these signals are called lambdarised in the initial component.

In the context of decomposition and implementation, we can therefore distinguish the
origin of dummy or λ-transitions. A dummy which is already there in a specifica-
tion STG is called spec-dummy . If it is part of an intermediate component due to
lambdarisation of some signal s, it is called component-dummy or deco-dummy ; if one
wants to stress the type of s in the specification, it is called e.g. output-dummy if s is
an output of the specification.

For decomposition as considered in [VW02, VK06], the specification has to be de-
terministic; hence, no spec-dummies are allowed then. This condition is relaxed in
Chapter 7.

59

3 Basic Definitions

Reduction Operations

There are three reduction operations defined:

• Transition contraction A λ-transition is removed and the adjacent places are
merged, see below for the exact definition.

• Deletion of an implicit place It is often the case that after a transition
contraction implicit places are produced. Such places may prevent further tran-
sition contractions and should be deleted before the reduction proceeds.

• Deletion of a redundant transition There are two kinds of redundant tran-
sitions.

First, if there are two transitions with the same label which are connected to
every place in the same way, one of them can be deleted without changing the
traces of the STG.

Second, a λ-labelled transition t with W (p, t) = W (t, p) for all places p can also
be deleted, since its firing does not change the marking and is not visible on the
level of traces; observe, that this is valid for any marking of the adjacent places.

Intuitively, the contraction of a transition t removes t from the net, together with its
adjacent places •t∪ t•, and adds new places to the net, corresponding to the elements
of •t × t•. Each new place (p, q) ∈ •t × t• inherits the connectivity of both, p and q
(except that t is no longer in the net), and its initial marking is the total number of
tokens which were initially present in p and q.

In the formal definition of a transition contraction, labelled Petri nets instead of STGs
are considered, since we also apply contractions to these in Section 3.4.

Definition 3.5 (Transition contraction)
Let N be a labelled Petri net and t ∈ T with l(t) = λ. If t is not incident to an arc
with weight greater than 1 and •t ∩ t• = ∅, the contraction of t results in the net N ′

with:

T ′ =T − {t}

P ′ ={(p, ⋆) | p 6∈ •t ∪ t•} ∪ {(p1, p2) | p1 ∈ •t, p2 ∈ t•}

W ′((p1, p2), t
′) =W (p1, t

′) + W (p2, t
′)

W ′(t′, (p1, p2)) =W (t′, p1) + W (t′, p2)

M ′((p1, p2)) =M(p1) + M(p2)

60

3.3 Decomposition

In this definition ⋆ 6∈ P ∪ T is a dummy element used to make all places of N ′ to be
pairs; we assume M(⋆), W (⋆, t′) and W (t′, ⋆) to be 0.

Sometimes, we write N
t
instead of N ′, and if more than one contraction is applied to

a net N , e.g. for the transitions t1 and t2 this is denoted by N
t1,t2

.

For two different transitions t1, t2 with t1 6= t 6= t2, we call the unordered pair {t1, t2}
a new conflict pair whenever •t ∩ •t1 6= ∅ and t• ∩ •t2 6= ∅ in N (or vice versa); if
l(t1) = l(t2) 6= λ, we speak of a new structural auto-conflict.

The contraction is called secure if either (•t)• ⊆ {t} (type-1 secure) or •(t•) = {t}
and MN (p) = 0 for some p ∈ t• (type-2 secure).

We say that markings M of N and M ′ of N ′ satisfy the marking equality if for every
place (p1, p2) of N ′: M ′((p1, p2)) = M(p1) + M(p2). △

The nets before and after a reduction operation are closely related:

Theorem 3.6 (Reduction, Simulation and Language [VW02,VK06])
Let N ′ be obtained from N by . . .

(1) . . . the secure contraction of some transition.

Then the relation S = {(M,M ′) | M and M ′ satisfy the marking equality} is a
simulation between N and N ′ and there is a simulation S ′ ⊆ S−1 between N ′ and
N .

If the contraction is type-1 secure, S is a bisimulation.

If the contraction is type-2 secure, S ′ is a ready simulation from N ′ to N , i.e.
(M ′,M) ∈ S ′ implies M ′[s±〉〉 if and only if M [s±〉〉 for all signals s.

(2) . . . the deletion of a redundant place.

Then S = {(M,M |P ′)|M ∈ [MN 〉} is a bisimulation between N and N ′, and we
define S ′ = S−1.

(3) . . . the deletion of a redundant transition.

Then the identity S over [MN 〉 is a bisimulation between N and N ′, and we define
S ′ = S−1.

(4) In all cases, N and N ′ have the same language.

Note that (4) implies that all reduction operations preserves the language (and in
particular language based consistency).

61

3 Basic Definitions

Below one can see two examples of a transition contraction.

a+

p1

b−

p2 p3

c+ x−

a+

(p1, p2) (p1, p3)

c+ b− x−

a+ x−

p1 p2

p3

p4

p5

c− d+ y+

a+ x−

(p1, p3)

(p1, p4)

(p1, p5) (p2, p3)

(p2, p4)

(p2, p5)

c− d+ y+

Example 3.10: Transition Contraction

62

3.3 Decomposition

Finally, we define the place projection which gives us some information about the
structure of places after a contraction.

Definition 3.7 (Place Projection)
Let N ′ be obtained from N by a sequence of transition contractions. Every place p′

of N ′ is a pair, where each element is another pair etc., down to the level of places
from P . The function ΦN ′

N assigns to every place of N ′ the multiset of places of N

occurring in p′. We write ΦN ′

N (p′)(p) to denote the number of occurrences of p within

p′. [ΦN ′

N (p′)] denotes the support of ΦN ′

N (p′), i.e. the set of places occurring in this
multiset. △

For example:

ΦN ′

N (((p1, p2), (p1, p3))) ={2 · p1, p2, p3}

ΦN ′

N (((p1, p3), ⋆)) ={p1, p3}

ΦN ′

N (((p1, p3), ⋆)) ={(p1, p3)} if (p1, p3) ∈ P

Backtracking

As it was already mentioned, it is possible that not every component-dummy of an
initial component can be contracted by the decomposition algorithm. There are three
reasons for this:

• The contraction is not defined (e.g. because •t ∩ t• 6= ∅).

• The contraction is not secure (then the language of the STG might change).

• The contraction introduces a new dynamic auto-conflict, i.e. a new source of
non-determinism which was not present in the specification is introduced; the
interpretation is that the component has not enough information (viz. input
signals) to properly produce its outputs).

If none of the described reduction operations are applicable, but the component still
has some λ-labelled transitions, backtracking is applied: one of these λ-labelled transi-
tions is chosen and the corresponding original signal is delambdarised . Delambdarising
adds this signal as an input to the respective initial partition and the new corre-
sponding initial component is reduced from the beginning. This cycle of reduction
and backtracking is repeated until all λ-labelled transitions of the initial component
can be contracted. This means that backtracking is only needed to detect these ad-
ditional input signals; if they are known in advance, one can perform decomposition

63

3 Basic Definitions

completely without backtracking. (In the worst case, all the lambdarised signals are
delambdarised.)

Checking for dynamic auto-conflicts is expensive, and instead backtracking is per-
formed if a contraction generates a new structural auto-conflict. But it is also possible
to decompose with the risky strategy , i.e. each encountered structural auto-conflict is
assumed as not being dynamic. This strategy is feasible, because in [VK06] it was
shown that dynamic conflicts are preserved in some sense during reduction. Hence, if
the final component has no dynamic conflicts – which can be checked during synthesis
– the risky strategy was successful and the decomposition is correct. Unfortunately,
the risky approach is not very useful, i.e. it is not much faster than the normal ap-
proach and the components are not much smaller, cf. also the discussion in Section 6.7.

Furthermore, in Chapter 7 it is shown under which conditions backtracking can be
avoided even for λ-transitions which are not contractible due to syntactical reasons,
e.g. if the contraction is not secure.

Let us consider again the decomposition of the VME bus controller from Exam-
ples 3.8 and 3.9. We will show how the component C2 producing output dtack is
generated. The initial partition is {({dsr, ldtack}, {d, lds}), ({d}, {dtack})}. There-
fore, the initial component for C2 looks like the first STG below.
To generate the final component, 7 reduction operations are performed. They are
marked with a dotted rectangle; if a transition is marked it is contracted. In the third
STG, the marked place is implicit and deleted. (It is a shortcut place, see Defini-
tion 4.3.) In the fourth STG, three contractions are performed at once. Backtracking
is not needed here. Observe that the places are simplified here: (p1, ⋆) is just written
as p1.

dtack−

p1 p2

p3 p4 p5

d−

p6 p7

p8 p9

p10

dtack+

p11

d+

dtack−

p1 p2

p3 p4 p5

d−

(p6, p7)

p8 p9

p10

dtack+

p11

d+

Example 3.11: Decomposition of VME Bus Controller 3 (continued on next page)

64

3.4 Properties of Transition Contractions

dtack−

p1 p2

p3 p5

d−

((p6, p7), p4)

p8 p9

p10

dtack+

p11

d+

dtack−

p1 p2

p3 p5

d−

p8 p9

p10

dtack+

p11

d+

dtack−

(p1, p2)

p3

d− (p5, p9)

(p10, p8) dtack+

p11

d+

dtack−

p3

d−

((p1, p2), (p5, p9))

(p10, p8) dtack+

p11

d+

3.4 Properties of Transition Contractions

In this section, some additional properties of transition contractions are investigated.
Originally, they were distributed over several publications. They are somewhat related
and therefore presented together. Since they are also valid for ordinary Petri nets, we
only talk about such. In this context, transition contractions are applied to arbitrary
transitions.

A simulation as in Definition 3.1 is defined for labelled Petri nets, STGs resp. only,
and traces of one net have to be matched by the other net. Here, we will define and
use simulations on the transition level, which require that firing sequences have to be
matched in some sense. To allow this, the corresponding nets have to have (nearly)
the same set of transitions; this fits well to reduction where the set of transitions is
just decreased but not modified otherwise.

Definition 3.8 (Transition Simulation)
Let N and N ′ be Petri nets with T ′ ⊆ T . A relation S between the reachable markings
of N and N ′ is a transition simulation between N and N ′ if:

(1) (MN ,MN ′) ∈ S;

(2) (M,M ′) ∈ S and M [v〉M1 with v ∈ T ∗ implies M ′[v|T ′〉M ′
1 and (M1,M

′
1) ∈ S.

65

3 Basic Definitions

A relation S ′ between the reachable markings of N ′ and N is a transition simulation
between N ′ and N if:

(1) (MN ′ ,MN) ∈ S ′;

(2) (M ′,M) ∈ S ′ and M ′[v′〉M ′
1 with v′ ∈ T ′∗ imply that M [v〉M ′

1 with v|T ′ = v′

and (M ′
1,M1) ∈ S ′.

S is a transition-bisimulation between N and N ′ if it is a simulation in both directions.
△

A special case of a transition simulation arises if T = T ′.

Lemma 3.9
For two STGs N and N ′, the following properties are equivalent:

(1) There is a transition-simulation from N to N ′ and vice versa

(2) N and N ′ are transition-bisimilar

(3) FS(N) = FS(N ′)

Proof.

(3) → (2): B = {(M,M ′) | MN [v〉M, MN ′ [v〉M ′ for some v ∈ T ∗} is a transition-
bisimulation between N and N ′. Clearly, (MN ,MN ′) ∈ B (choose v = λ).

Let (M,M ′) ∈ B and w.l.o.g. M [v′〉M1 with v′ ∈ T ∗. Due to the definition of B,
MN [v〉M and MN ′ [v〉M ′ for some v ∈ T ∗. Hence, MN [v v′〉M1, and since FS(N) =
FS(N ′), also MN ′ [v v′〉M ′

1 with (M1,M
′
1) ∈ B for some M ′

1.

(2) → (1): obvious.

(1) → (3): v ∈ FS(N), i.e. MN [v〉, implies MN ′ [v〉 due to the simulation between N
and N ′. Hence, FS(N) ⊆ FS(N ′). Analogous for the other direction, and therefore
the claim follows.

Transitivity of simulations is kind of folklore. Here, we provide and prove it on the
level of transition simulations.

Lemma 3.10 (Transitivity of Transition Simulations)
Let N , N1 and N2 be nets with T2 ⊆ T1 ⊆ T . If S1 is a transition simulation between
N and N1, S2 between N1 and N2, S ′

1 ⊆ S−1
1 between N1 and N and S ′

2 ⊆ S−1
2

between N2 and N1, then S = S1 S2 is a transition simulation between N and N2

and S ′ = S ′
2 S ′

1 is one between N2 and N with S ′ ⊆ S−1 (cf. Figure 3.4).

66

3.4 Properties of Transition Contractions

N N1 N2

S1 S2

S′
2 ⊆ S−1

2S′
1 ⊆ S−1

1

S = S1 ◦ S2

S′ = S′
2 ◦ S

′
1 ⊆ S−1

Figure 3.4: Transitivity of Simulations

Proof. Obviously, (MN ,MN1
) ∈ S1 and (MN1

,MN2
) ∈ S2 implies

(MN ,MN2
) ∈ S.

Let now (M,M ′′) ∈ S. Hence, there is some M ′ such that (M,M ′) ∈ S1 and
(M ′,M ′′) ∈ S2. Then, M [v〉M1 implies M ′[v|T1

〉M ′
1 with

(M1,M
′
1) ∈ S1; this implies M ′′[v|T2

〉M ′′
1 with (M ′

1,M
′′
1) ∈ S2. Therefore, (M1,M

′′
1) ∈

S. With analogous reasoning, S ′ is a transition simulation between N2 and N . Fur-
thermore, S ′ = S ′

2 S ′
1 ⊆ S−1

2 S ′
1 ⊆ S−1

2 S−1
1 = (S1 S2)

−1 = S−1.

Now, we can give a corollary of Theorem 3.6 related to transition simulations.

Corollary 3.11 (Reduction and Transition Simulation)
Let N be a net and let N ′ be obtained from N by . . .

(1) . . . the contraction of some transition t. Then S = {(M,M ′) | M and M ′ satisfy
the marking equality} is a transition simulation between N and N ′ and there is
a transition simulation S ′ ⊆ S−1 between N ′ and N .

(2) . . . the deletion of a redundant place.

Then S = {(M,M |P ′)|M ∈ [MN 〉} is a transition bisimulation between N and
N ′, and we define S ′ = S−1.

(3) . . . the deletion of a loop-only transition.

Then the identity S over [MN 〉 is a transition bisimulation between N and N ′,
and we define S ′ = S−1.

67

3 Basic Definitions

Proof. (1) and (3) follow from Theorem 3.6 for the following labelling l of N and N ′.

l(t′) =

{

t′ for t′ 6= t
λ for t′ = t

(2) follows for the labelling l(t) = t for all t ∈ T = T ′.

Note that (3) is not valid for the deletion of duplicate transitions, this case has to be
handled separately if needed.

As an analogy to the marking equality for a single transition contraction, we show
that the extended marking equality holds after a sequence of contractions.

Proposition 3.12 (Extended marking equality)
Let N be a Petri net and let N ′ be obtained from it by a sequence of secure contractions
of some transitions. Then there is a transition simulation S from N to N ′ and a
transition simulation S ′ ⊆ S−1 from N ′ to N such that for every (M,M ′) ∈ S and
every place p′ of N ′, the extended marking equality holds:

M ′(p′) =
∑

p∈P

ΦN ′

N (p′)(p) · M(p) .

Proof. Let N0 = N , and for 1 ≤ i ≤ n, let Ni be the net after the i-th transition
contraction, with Nn = N ′. Proposition 3.6 implies that there is a transition simula-
tion Si between Ni−1 and Ni and a transition simulation S ′

i ⊆ S−1
i between Ni and

Ni−1. Recall that for every (M,M ′) ∈ Si, M and M ′ fulfil the marking equality. Let
now Si = S1 S2 . . . Si. Repeated application of Lemma 3.10 gives that for each i,
Si is a transition simulation between N and Ni; in particular S = Sn is a transition
simulation between N and N ′, and there is a transition simulation S ′ ⊆ S−1 between
N ′ and N .

Now, we show by induction that, for each i and for every place p′ of Ni, if (M,M ′) ∈ Si

then M ′(p′) =
∑

p∈P ΦNi

N (p′)(p) · M(p). For i = 1, this is directly implied by the

marking equality for S1 = S1. Now assume that the claim is fulfilled for some i. (M i
0

denotes the initial marking of Ni.) Let (M,Mi+1) ∈ Si+1 due to (M,Mi) ∈ Si and
(Mi,Mi+1) ∈ Si+1. For (p1, p2) ∈ Pi+1, we obtain (i = n proves the claim):

∑

p∈P

Φ
Ni+1

N ((p1, p2))(p) · M(p)

=
∑

p∈P

ΦNi

N (p1)(p) · M(p) +
∑

p∈P

ΦNi

N (p2)(p) · M(p) (def. of Φ)

= Mi(p1) + Mi(p2) (induction)

= Mi+1((p1, p2)) (marking equality for Si+1)

68

3.4 Properties of Transition Contractions

Proposition 3.13
Secure transition contractions and deletions of implicit places and redundant transi-
tions preserve 1-liveness, liveness and reversibility.

Proof. It suffices to show the claim for one application of these operations. If the
redundant transition is a duplicate transition, the claim is obviously true; thus we
only have to consider the deletion of loop-only transitions.

By Corollary 3.11, there is a transition simulation S between N and N ′ and a tran-
sition simulation S ′ ⊆ S−1 between N ′ and N . Let u′ be a firing sequence of N ′

such that MN ′ [u′〉M ′
1; then MN [u〉M1 for some firing sequence u of N such that

(M ′
1,M1) ∈ S ′.

Assume N is live. To show the liveness of N ′, suppose that one wants to enable some
transition t′ in N ′ starting from M ′

1 (note that t′ 6= t since t has been contracted).
Since N is live, one can enable t′ in N starting from M1 by some transition sequence
w: M1[w〉M2[t

′〉. Since (M1,M
′
1) ∈ S ′−1 ⊆ S, M ′

1[w|T ′〉M ′
2[t

′〉, which proves the
liveness of N ′. Preservation of 1-liveness follows with the same argumentation for
M ′

1 = MN .

If N is reversible then M1[v〉MN for some transition sequence v of N . Therefore,
M ′

1[v|T ′〉M ′
2 such that (MN ,M ′

2) ∈ S.

If the applied operation is a contraction then, by definition of S, MN and MN ′ as
well as MN and M ′

2 fulfil the marking equality, i.e. the following equations hold for
each place (p, q) of N ′:

MN ′((p, q)) = MN (p) + MN (q)

M ′
2((p, q)) = MN (p) + MN (q) ,

If the applied operation is an implicit place deletion, we get by definition of S,
MN ′(p′) = MN |P ′(p′) = M ′

2(p
′) for all places p′ ∈ P ′. If the applied operation is

a loop-only transition deletion, by definition of S, MN ′(p′) = MN (p′) = M ′
2(p

′) for
all places p′ ∈ P ′.

In all cases, M ′
2 = MN ′ and N ′ is reversible.

69

3 Basic Definitions

3.5 Some Considerations about Consistency

As shortly mentioned above (p. 43), state based consistency (sbc) and language based
consistency (lbc) do not coincide in general. In this section, we give some examples
for this, a sufficient condition for coincidence and a simple method to convert an lbc
STG into an sbc one.

We start with some easy observation about lbc STGs. For an lbc STG N , one can
define an initial state vector svMN

, which represents the initial value of each signal.
If the first edge of a signal s is s+ (s−), we have svMN

(s) = 0 (svMN
(s) = 1). Due

to the definition of lbc, this vector is uniquely defined for every signal which actually
can occur in N . The value for the ‘dead’ signals can be chosen arbitrarily; to achieve
uniqueness, one can define it to be 0.

Now, have a look at Figure 3.5. The STG on the left hand side is clearly lbc, but
the empty marking (reached via firing of either transition) corresponds to the states
(x, y) = (0, 1) and (x, y) = (1, 0), a violation of sbc. This is also the case for the
second STG, provided that after firing the first x+ or y+ no other x± or y± occurs.
However, if an x− transitions can be fired within the cloud, firing y+ first instead of
x+ would lead to a violation of lbc (and of sbc).

The problem in this example is that firing x+ or y+ leads to a violation of sbc which
becomes not apparent afterwards on the language level. This leads to the conjecture
that lbc and sbc coincide for signal-live STGs. An STG N is signal-live if for every
signal s and for every reachable marking M , there is a trace v such that M [v s±〉〉.
Clearly, a live STG is also signal-live, but not vice versa.

Proposition 3.14
A signal-live lbc STG is also sbc.

Proof. We define a state assignment sv for N as follows:

for M ∈ [MN 〉 let svM = svMN
+ codeChange(v) with MN [v〉〉M

Since N is lbc, svM (s) ∈ {0, 1} for every reachable M and every signal s (∗): for
svMN

(s) = 0, the first edge of s is s+ changing the value of s from 0 to 1, the
next edge has to be s− changing the value from 1 to 0, and so on (analogous for
svMN

(s) = 1).

sv is well-defined, i.e. the value of svM does not depend on the firing sequence v
reaching M . Assume the opposite: there are two traces v1 and v2 with MN [v1〉〉M
and MN [v2〉〉M such that codeChange(v1) 6= codeChange(v2), differing for some signal
s.

70

3.5 Some Considerations about Consistency

x+

y+

x+

y+

Figure 3.5: Two lbc but not sbc STGs. The cloud does not contain any x± or y± labelled
transitions.

Let svMN
(s) = 0. Then, (∗) implies codeChange(v1)(s), codeChange(v2)(s) 6= −1.

W.l.o.g. let codeChange(v1)(s) = 0 and codeChange(v2)(s) = 1. Since N is signal-
live, there is a firing sequence v not containing s with MN [v1〉〉M [vs+〉〉. However,
also MN [v2〉〉M [vs+〉〉, a contradiction to (∗). The case svMN

(s) = 1 is analogous.

Now, M [t〉M ′ with e.g. l(t) = s+ implies,

svM ′ = svMN
+ codeChange(vt) (for some v with MN [v〉M)

= svMN
+ codeChange(v) + codeChange(s+)

= svM + codeChange(s+)

In particular, svM ′(s) = svM (s) + 1, i.e. svM (s) = 0 and svM ′(s) = 1 (analogous for
the other cases).

As already discussed, liveness and therefore also signal-liveness are sensible assump-
tions on STGs. However, it is possible to transform every lbc STG into an equivalent
sbc one, if these assumptions are not fulfilled. For this purpose, level places are
inserted.

Definition 3.15 (Insertion of Level Places)
Let N be an lbc STG. The insertion of level places yields the STG N ′ with: (cf.
Figure 3.6)

P ′ = P + {s0, s1 | s ∈ SigN}

T ′ = T

W ′(s0, t) = W ′(t, s1) = 1 for l(t) = s+

W ′(s1, t) = W ′(t, s0) = 1 for l(t) = s−

W ′ = W otherwise

71

3 Basic Definitions

a+ b+

x+ x+

a− b−

x−

λ

a+ b+

x+ x+

a− b−

x−

λ

a0 a1 b0b1

x0

x1

Figure 3.6: Level place insertion. Observe that there are exactly two level places per signal,
even if more than two transitions are labelled with a respective signal edge; furthermore,
λ-transitions are not connected to new places.

MN ′(s0) = 1 − svMN
(s)

MN ′(s1) = svMN
(s)

MN ′ = MN otherwise

In ′ = I Out′ = Out Int′ = Int

l′ = l

The additional level places explicitly encode the state vector of an STG: M(s0) = 1
if the value of s is 0 under M , and M(s1) = 1 if the value of s is 1 under M . The
following proposition states that N and N ′ are equivalent in a very strong sense.

72

3.5 Some Considerations about Consistency

Proposition 3.16
Let N ′ be the result of a level place insertion into an lbc N .

(1) FS(N) = FS(N ′).

(2) N ′ is sbc.

Proof.

(1) Let svMN
be the initial state vector of N . The value for ‘dead’ signals can be

chosen arbitrarily. It is easy to show that

B = {(M,M ′) | M ′|P = M, MN [v〉M,

∀s ∈ Sig.M ′(s1) = (svMN
+ codeChange(v))(s)∧

M ′(s0) + M ′(s1) = 1}

is a transition bisimulation. The claim follows then from Lemma 3.9.

(2) The state encoding of N ′ can be read off directly from the inserted level places,
i.e. svM (s) = M(s1) (for all signals s) is a feasible state encoding.

In fact, it is not needed to add level places for all signals to get an sbc STG –
it is sufficient to insert them just for the signals which are not signal-live, or even
only for the ones which cause problems. In any case, the insertion leads to a state
duplication in the state graph, i.e. the states which can be reached by traces with
different code change, are split into several states. This can also be done on the fly
while generating the state graph without modifying the underlying STG. There is the
strong conjecture that the level place insertion does not introduce more states than
necessary while preserving the firing sequences.

Level places can also be inserted into non-lbc STGs; in this case they enforce consis-
tency but also change the behaviour of the STG.

Summing up, lbc and sbc coincide for practical STGs, and if this not the case sbc can
be achieved easily without changing the behaviour.

73

Chapter 4

Determinate Decomposition

The decomposition algorithm is non-deterministic in the sense that any of the valid
operations can be performed at a given time. So one might not expect the same
results (i.e. final components), when performing the operations in a different order.

In particular, one might find during the processing of a component that additional
signals are relevant; then, backtracking has to be performed for one of them. As a
result, even in simple cases, the order of operations may influence for which signals this
backtracking is performed, resulting in different components as shown in [VW02, Fig.
7]. Since this does not give much hope for a general determinacy-result, we will mostly
concentrate on the subclass of live marked graphs, for which backtracking is never
needed as already noted in [VW02].

Although marked graphs are a rather restricted subclass of Petri nets, the results for
this subclass are non-trivial. Marked graphs are definitely of practical importance for
asynchronous circuits and particularly prominent in benchmark examples studied in
the respective community.

Here, we abstract from all signals or signal edges, and study the problem under
which circumstances the following algorithm is determinate: given an unlabelled Petri
net where some transitions are marked as ‘to-be-contracted’ apply secure transition
contractions and redundant place deletions as long as possible.

We will show that for live marked graphs the algorithm is determinate, i.e. it produces
a unique component (up to isomorphism). Parts of this result apply to general Petri
nets, for which it is shown that secure transition contractions satisfy a weak diamond
property. We give an easy-to-apply graph-theoretic characterisation of redundant
places in marked graphs as so-called shortcut places; the result is a small generalisation
of a result in [CCJS94] and the contribution is a much simpler proof. This result is

75

4 Determinate Decomposition

an important ingredient to prove the main result.

The chapter is organised as follows. In the next section, we characterise redundant
places in marked graphs as shortcut places. The determinacy result is proven in
Section 4.2.

4.1 Redundant Places in Marked Graphs

This section deals with redundant and implicit places in live marked graphs. The
main result is that redundant and implicit places coincide in live marked graphs and
furthermore they are either loop-only places or shortcut places.

We start with the definition of a marked graph.

Definition 4.1 (Marked graph)
A Petri net N is a marked graph (MG) (or T-system) if:

(1) ∀p ∈ P. |•p| = 1 = |p•|

(2) ∀x, y ∈ P ∪ T.W (x, y) ≤ 1 △

Lemma 4.2 (e.g. [DE95])
A live marked graph is reversible.

Furthermore, it is useful to distinguish between different types of redundant places as
introduced in the following definition.

Definition 4.3
Let p be a place of a Petri net N .

(1) p is a loop-only place place if ∀t ∈ T. MN (p) ≥ W (p, t) ≤ W (t, p).

(2) If N is a marked graph, p is a shortcut place if a path w = •p . . . p• exists
containing at least one place and satisfying p 6∈ w and MN (p) ≥ MN (w ∩ P). △

A special case of a shortcut places are extended duplicates. The place p is an extended
duplicate if the corresponding path w only contains one place p′. In particular, if
MN (p) = MN (p′), they are both redundant with respect to each other and one can
delete either of them.

76

4.1 Redundant Places in Marked Graphs

Proposition 4.4

(1) Loop-only places and shortcut places are redundant.

(2) If p is a redundant place of a Petri net N , it is a loop-only place exactly if some
reference set Q is empty.

Proof. (1) For a loop-only place p set Q = ∅, V (p) = 1. For a shortcut place p with
corresponding path w, set Q = w ∩ P, V (p) = 1 and V (q) = 1 for q ∈ Q.

(2) The first direction follows from the proof of part (1). Therefore, assume the
reference set Q to be empty. Since p is redundant, we get immediately ∀t ∈ T :

V (p)MN (p) = d V (p)(W (t, p) − W (p, t)) ≥ 0 V (p)W (p, t) ≤ d

Dividing by V (p) and combining the first and the last (in)equation yields ∀t ∈ T :

MN (p) ≥ W (p, t) W (t, p) ≥ W (p, t)

This is equivalent to the definition of a loop-only place.

Shortcut-places can also be defined for nets which are not marked graphs; it is enough
that p itself and the places of the corresponding path w have the marked-graph
property.

The first part of the following proposition was used in an alternative proof of The-
orem 4.7, and we think that it is of independent interest. The second part will be
applied below.

Proposition 4.5

(1) Let p be a redundant place of a live Petri net N with at least one home state.
Then V is balanced.

(2) If, in an arbitrary net N , p is redundant under a marking M ∈ [MN 〉 with a
balanced valuation, it is also redundant under MN with the same valuation. In
particular, if p is a shortcut place under M , it is also one under MN .

Proof. (1) Let MH be a home state of N . Using part 2 of Definition 3.2, it can
be shown that ∀t ∈ T.M1[t〉M2 ⇒ V (p)M1(p) −

∑

q∈Q V (q)M1(q) ≤ V (p)M2(p) −
∑

q∈Q V (q)M2(q) (∗).

Let MH [v1〉M [v2〉MH , such that v1 contains every transition t ∈ T at least once.
Such a sequence v1 exists because N is live, v2 exists because MH is a home state.

77

4 Determinate Decomposition

Together with (∗) we get:

V (p)MH(p) −
∑

q∈Q

V (q)MH(q)

≤ V (p)M(p) −
∑

q∈Q

V (q)M(q)

≤ V (p)MH(p) −
∑

q∈Q

V (q)MH(q)

Since N is live, there exists a marking M1 ∈ [MH〉 for each transition t with M1[t〉M2

and

V (p)M1(p) −
∑

q∈Q

V (q)M1(q)

= V (p)M2(p) −
∑

q∈Q

V (q)M2(q)

Together with M2(s) = M1(s) − W (s, t) + W (t, s) ∀s ∈ P this leads to:

V (p)M1(p) −
∑

q∈Q

V (q)M1(q)

= V (p)(M1(p) − W (p, t) + W (t, p))

−
∑

q∈Q

V (q)(M1(q) − W (q, t) + W (t, q))

= V (p)M1(p) −
(

∑

q∈Q

V (q)M1(q)
)

+ V (p)(W (t, p) − W (p, t))

−
∑

q∈Q

V (q)(W (t, q) − W (q, t))

⇒ V (p)(W (t, p) − W (p, t)) −
∑

q∈Q

V (q)(W (t, q) − W (q, t)) = 0

This implies directly that V is balanced.

(2) Items 2 and 3 of Definition 3.2 do not depend on the marking and item 1 follows
directly from the valuation being balanced. If p is a shortcut place then the respective
path induces a balanced valuation V (as observed in the proof of 4.4) and, since item
(1) can be transferred from M to MN , the marking of this path is at most the marking
of p also under MN .

78

4.1 Redundant Places in Marked Graphs

Before we prove the main theorem of this section, we note an easy lemma about
liveness in marked graphs.

Lemma 4.6
Let c be a cycle of a marked graph N . For every reachable marking M , M(c) = MN (c).
If N is live, c is initially marked.

Proof. Let M [t〉M ′. We show that M(c) = M ′(c). For t ∈ c this is trivially true,
since all edge weights are 1 in marked graphs. Otherwise, t is not adjacent to any
place of c, since N is a marked graph.

The second statement now follows easily; if c is not marked under MN it is not
marked under any reachable marking and therefore no transition of c can ever fire, a
contradiction.

Remark: Actually, marked graphs are live if and only if every cycle is initially
marked, see e.g. [DE95]. This is a deeper result, which we do not need here. In fact,
our proof of the next theorem has the advantage that it does not require profound
knowledge about marked graphs, and we only proved the above lemma to demonstrate
that our proof of Theorem 4.7 is indeed elementary.

Theorem 4.7
Let N be a live marked graph and p ∈ P . The following properties are equivalent:

(1) p is a redundant place

(2) p is an implicit place

(3) p is a loop-only place or a shortcut place

Proof. ”1→2” even holds for arbitrary Petri nets – as we observed already –, and
”3→1” follows from Proposition 4.4.

”2→3”: Let p be an implicit place but not a loop-only one. We define {ti} = •p and
p• = {to}. Obviously, ti 6= to, because p not being a loop-only place would then imply
MN (p) = 0, which contradicts with liveness. Let N ′ be the net obtained from N by
deleting ti and all incident arcs. Observe that p is also implicit in N ′, since the set of
firing sequence of N ′ coincides with the set of those firing sequences of N which do
not contain ti.

In N ′, starting from the initial marking, we fire transitions until a maximal set D of
transitions is dead.1 From this marking fire every transition not in D at least once;

1D does not necessarily contain all transitions, since we do not assume boundedness or connect-
edness.

79

4 Determinate Decomposition

we denote the marking reached by M . Observe that (∗) M can be reached in N by
the same firing sequence.

Since to can fire at most MN (p) times in N ′, we must have to ∈ D. Furthermore,
there exists a p1 ∈ •to, p1 6= p with M(p1) = 0. If not, p would be the only place in
•to preventing the firing of to, hence would not be implicit in N ′.

This implies •p1 ∈ D; otherwise p1 would have been marked when every transition
not in D fired once. Now there is an unmarked place p2 in •(•p1) and so forth. This
leads either to a cycle not containing any tokens, which is by (∗) a contradiction
to N being live (cf. Lemma 4.6); or ends up in a place p′ with an empty preset in
N ′, hence p′ ∈ ti

• and so we have constructed an unmarked path from ti to to not
containing p. Therefore p is a shortcut place under M in N , cf. (∗), and we are done
by Proposition 4.5.2.

Remark: Javier Esparza pointed out (priv. comm.) that a weaker version of this
theorem could be proved as follows. Assume p is a redundant place of a live and
bounded marked graph N (or more generally: free-choice net N); then the removal of
p results again in a live and bounded marked graph N ′, which is (roughly speaking)
strongly connected by [Bes87]; in particular the transitions •p and p• are connected
by a path in N ′. This result is close to the above theorem, but it is in fact not useful
for the purpose of the present paper, as it does not make any statements about the
marking of such a path; the pure existence of a path is not sufficient for a place to be
redundant.

A result very close to Theorem 4.7 can be found in [CCJS94]. The difference is
that strong connectedness is assumed there – an assumption that we do not need.
Furthermore, the proof in [CCJS94] makes heavy use of deep results about marked
graphs, while our direct proof only needs elementary knowledge. [CCJS94] also con-
siders some form of decomposition of marked graphs; we will discuss the relationship
to our approach at the end of the next section.

To determine whether a place is structurally redundant, one can set up an instance
of linear programming as discussed after Definition 3.2. Our theorem leads to a more
efficient algorithm for live marked graphs as already noted in [CCJS94]2: to check
whether place p is structurally redundant, regard each place p1 as an edge from •p1

to p•1, weighted according to the initial marking. Remove the edge corresponding to p
and determine the shortest path from •p to p•; if its length (i.e. its cumulated weight)
is at most MN (p), p is redundant. With the basic version of Dijkstra’s algorithm, this
takes time O(n2), where n is the number of transitions.

2Actually, in [CCJS94], the addition of implicit places is considered.

80

4.2 Determinacy of Petri Net Operations

For deciding whether a given place is redundant we note the following improvement.
Dijkstra’s algorithm determines all distances from •p in increasing order. Hence, the
algorithm can already be finished with a negative answer, if all transitions with a
distance of no more than MN (p) have been found and if p• is not among them, and
indeed it is implemented in this way in DesiJ.

Furthermore, if MN (p) = 0, one can delete all edges corresponding to initially marked
places, and simply check for a path from •p to p• in the remainder e.g. with depth
first search in time linear in the number of transitions and places.

Observe that the above considerations can be extended easily to the detection of
shortcut places in nets which are not marked graphs.

4.2 Determinacy of Petri Net Operations

In this section, the determinacy of the decomposition method is studied. We only
consider the operations secure transition contraction and redundant place deletion,
since a marked graph cannot contain redundant transitions: the places adjacent to a
loop-only transition t cannot be adjacent to other transitions and therefore this part
of the net is not connected to the rest; since l(t) = λ this is pointless and t and its
adjacent places could be deleted in advance. Duplicate transitions cannot exist in a
marked graph.

To show determinacy, we view these Petri net operations as a terminating reduction
system, such that determinacy is related to confluence and local confluence. The
notion ‘reduction system’ comes from the field of term rewriting. The following defi-
nition and lemma are taken from [BN98], where a detailed introduction can be found.

4.2.1 Decomposition as Reduction System

Definition 4.8
Let A be a nonempty set with a, a′, . . . ∈ A.

(1) A reduction system is a pair (A,→) with →⊆ A × A. The relation → is called
reduction or reduction rule; →∗ denotes the reflexive and transitive closure of →,
and →= the reflexive closure.

(2) A reduction →

(a) is terminating if there exists no infinite chain a0 → a1 → a2 . . .

(b) is confluent if a →∗ a1, a →∗ a2 implies a1 →∗ a′, a2 →∗ a′ for some a′

81

4 Determinate Decomposition

(c) is locally confluent if a → a1, a → a2 implies a1 →∗ a′, a2 →∗ a′ for some a′

(d) has the diamond property if a → a1, a → a2 implies a1 → a′, a2 → a′ for
some a′

(3) An element a is

(a) in normal form if ¬∃a′. a → a′

(b) a normal form of a′ if a′ →∗ a and a is in normal form. △

Lemma 4.9
(1) A terminating reduction is confluent if and only if it is locally

confluent.

(2) For a terminating and confluent reduction, every element has a unique normal
form.

Next, we model the behaviour of the decomposition algorithm as a reduction system.
Since the components are independently reduced, we can restrict ourselves to the
processing of one net, where repeatedly structurally redundant places are removed
and transitions from a distinguished set are securely contracted. Also, we concentrate
on live marked graphs, although the reduction rules below can actually be defined for
general nets. Theorem 4.13 gives a result for general Petri nets.

Definition 4.10
Let MGR := {(N,Λ)|N is a live marked graph, Λ ⊆ T}, where Λ denotes the set of
transitions to be contracted. We define the following reduction rules on MGR:

(1) (N,Λ) →stc (N
t
,Λ − {t}), where secure contraction of t ∈ Λ is applied.

(2) (N,Λ) →rpd (N ′,Λ) if N ′ is obtained from N by deleting a redundant place.

(3) →red = →stc ∪ →rpd △

These reductions are well-defined as the following proposition shows.

Proposition 4.11
Applying →red preserves the marked graph properties (Definition 4.1) as well as live-
ness.

Proof. Deleting a redundant place does not change the firing sequences of the net and
therefore liveness is preserved. Since the other places are not affected, the marked
graph properties remain valid.

82

4.2 Determinacy of Petri Net Operations

Let p′ = (p1, p2) be a place resulting from a secure contraction of a transition t.
Since p1 has exactly one transition t′ in its preset and p2 none except t, we get
•p′ = {t′}, and analogously for the postset. Preservation of liveness follows from
Proposition 3.13.

Furthermore, →red is a terminating reduction, as noted in [VW02] for general Petri
nets: only finite nets are considered, →stc reduces the number of transitions, this
stays the same under →rpd, and →rpd reduces the number of places.

Each normal form of (N,Λ) ∈ MGR is a possible result of the decomposition algo-
rithm. Thus, by Lemma 4.9, it suffices to show that →red is locally confluent in order
to prove decomposition to be determinate; recall that we regard isomorphic nets as
equal.

To show the local confluence of →red, we need to show the local confluence for every
of the three combinations of →stc and →rpd; this is done in the next subsection.

4.2.2 Reduction is Locally Confluent

Local Confluence of →stc

Now, we will show the local confluence for secure transition contractions in live marked
graphs. Before that, a result for arbitrary transition contractions in arbitrary Petri
nets similar to local confluence is given, namely Theorem 4.13, which is something
like a weak diamond property.

Lemma 4.12
Let N be a Petri net, N ′ = N

t1,t2
and p′1, p

′
2 ∈ P ′. If N

t2,t1
is defined as well,

ΦN ′

N (p′1) = ΦN ′

N (p′2) implies p′1 = p′2.

Proof. This proof works with the Tables 4.1 and 4.2. In the first one, all possibilities
for the structure of a place after two transition contractions are listed. In the latter
one, these 6 cases are instantiated resulting in 30 combinations of places from the
original net.

As indicated in Table 4.2, many of the combinations are actually not possible for
simple reasons. For example, if (p1, p1) is part of the place from P ′ then p1 ∈ •t1
and p1 ∈ t1

•, a contradiction since the contraction of a transition with a loop is not
defined. As another example, case 23 drops out, because p1 belongs to the preset of
t1 due the occurrence of (p1, p2), and on the other hand p1 is element of its postset,
due to the occurrence of (p2, p1). Therefore, p1 forms a loop with the first contracted
transition. With the same argumentation cases 24 and 28 are impossible.

The remaining impossible cases 25, 27, and 30 are considered in more detail.

83

4 Determinate Decomposition

Group Structure

1 ((p, ⋆), ⋆)
2 ((p, p), ⋆)
3 ((p, ⋆), (p, ⋆))
4 ((p, ⋆), (p, p))
5 ((p, p), (p, ⋆))
6 ((p, p), (p, p))

Table 4.1: For the proof of Lemma 4.12. Structures of possible places after two transition
contractions. This table is obtained from all syntactically possible places by omitting cases
which contains a leading ⋆, e.g. (⋆, (p, ⋆)). Here, p is only a placeholder for an arbitrary
place; in Table 4.2 all possible instantiations are considered.

p2 p3

p1

t1t1 t2t2

p2 p3

p1

t1t1 t2t2

Figure 4.1: Case 25 - p′ = ((p1, p2), (p1, p3)). p1 has to be an element of •t1, p2 and p3

have to be elements of t1
•. Then there are 4 cases: (1) p1 ∈ •t2, p3 ∈ t2

•: loop after
contracting t1, (left) (2) p1 ∈ •t2, p1 ∈ t2

•: initial loop p1 − t1 (3) p2 ∈ •t2, p1 ∈ t2
•:

loop after contracting t1 (4) p2 ∈ •t2, p3 ∈ t2
•: weight 2 after contracting t2, (right).

Case 25 leads either to a loop after contracting t1 or to an arc with weight 2 after
contracting t2, see Figure 4.1. Case 27 is very similar to the previous one, only the
pre- and postsets of t1 are exchanged.

At last case 30 remains which is more complicated but nevertheless turns out to be
impossible, see Figure 4.2.

In summary, it suffices to consider the cases 1, 3, 5, 10 and 15 (also shown in Table 4.3,
middle column, the last column is used later). We distinguish three cases for ΦN ′

N (p′1).

Now we consider the resulting cases for ΦN ′

N (p′1) and ΦN ′

N (p′2):

(1) ΦN ′

N (p′1) = {p1} = ΦN ′

N (p′2).

This is only possible if both p′1 and p′2 are in the form of case 1 which implies
p′1 = p′2.

84

4.2 Determinacy of Petri Net Operations

No. Group Places Example Pos. If not, why?

N 1 1 1 ((p1, ⋆), ⋆) •
2 2 1 ((p1, p1), ⋆) - initial loop p1 − t1

N 3 2 2 ((p1, p2), ⋆) •
4 3 1 ((p1, ⋆), (p1, ⋆)) - initial loop p1 − t2

N 5 3 2 ((p1, ⋆), (p2, ⋆)) •
6 4 1 ((p1, ⋆), (p1, p1)) - type error
7 4 2 ((p1, ⋆), (p1, p2)) - type error
8 4 2 ((p1, ⋆), (p2, p1)) - type error
9 4 2 ((p2, ⋆), (p1, p1)) - initial loop p1 − t1

N 10 4 3 ((p1, ⋆), (p2, p3)) •
11 5 1 ((p1, p1), (p1, ⋆)) - type error
12 5 2 ((p1, p1), (p2, ⋆)) - initial loop p1 − t1
13 5 2 ((p1, p2), (p1, ⋆)) - type error
14 5 2 ((p2, p1), (p1, ⋆)) - type error

N 15 5 3 ((p1, p2), (p3, ⋆)) •
16 6 1 ((p1, p1), (p1, p1)) - initial loop p1 − t1
17 6 2 ((p1, p1), (p1, p2)) - initial loop p1 − t1
18 6 2 ((p1, p1), (p2, p1)) - initial loop p1 − t1
19 6 2 ((p1, p2), (p1, p1)) - initial loop p1 − t1
20 6 2 ((p2, p1), (p1, p1)) - initial loop p1 − t1
21 6 2 ((p1, p1), (p2, p2)) - initial loop p1− t1 and p2− t1
22 6 2 ((p1, p2), (p1, p2)) - loop after contracting t1
23 6 2 ((p2, p1), (p1, p2)) - initial loop p1 − t1
24 6 3 ((p1, p2), (p3, p1)) - initial loop p1 − t1

N 25 6 3 ((p1, p2), (p1, p3)) - loop after contracting t1 or
weight 2 after contracting t2

26 6 3 ((p1, p1), (p2, p3)) - initial loop p1 − t1
N 27 6 3 ((p2, p1), (p3, p1)) - loop after contracting t1 or

weight 2 after contracting t2
28 6 3 ((p2, p1), (p1, p3)) - initial loop p1 − t1
29 6 3 ((p2, p3), (p1, p1)) - initial loop p1 − t1

N 30 6 4 ((p1, p2), (p3, p4)) - loop or weight 2 after con-
tracting t2

Table 4.2: For the proof of Lemma 4.12. All possible places (up to isomorphism) after
contraction of t1 and t2. They are obtained from Table 4.1 by instantiating p. The places pi

are pairwise different. The rows with a ‘type error’ are impossible, since a place is treated
as being and at the same time as not being adjacent to a contracted transition; ’initial loop’
indicates a loop at one of the transitions initially. Rows with a N are explained in the text.

85

4 Determinate Decomposition

p1

p2

p3

p4

t1t1 t2t2

p1

p2

p3

p4

t1t1 t2t2

Figure 4.2: Case 30 - ((p1, p2), (p3, p4)). p1 and p3 have to be in the preset of the first
transition to be contracted (t1), p2 and p4 in the postset. For the connection to t2 there
are several possibilities; all of them satisfy that p1 or p2 (or both) are in the preset and p3

or p4 (or both) are in the postset, which leads to 9 sub-cases. Exemplarily two of them are
considered. left : leads to an arc with weight 2 when t2 is contracted first. right : leads
to a loop. The other cases are similar to these ones or contain them.

(2) ΦN ′

N (p′1) = {p1, p2} = ΦN ′

N (p′2).

Therefore, p′1, p
′
2 ∈ {((p1, p2), ⋆), ((p2, p1), ⋆), ((p1, ⋆), (p2, ⋆)),

((p2, ⋆), (p1, ⋆))}. If a fixed p′1 from this set occurs in the net N
t1,t2

it is not
possible that a different element from this set occurs, too; for example: if p′1 =
((p1, p2), ⋆) there is no place p′′1 = ((p2, p1), ⋆), since the existence of p′1 implies
that p1 is an element of •t1 but the existence of p′′1 implies p1 is an element of
t1

•; a contradiction, since the contraction was possible. With similar argumenta-
tions one can exclude the other combinations. Hence, ΦN ′

N (p′1) = ΦN ′

N (p′2) implies
p′1 = p′2 for this case.

(3) ΦN ′

N (p′1) = {p1, p2, p3} = ΦN ′

N (p′2).

Analogous to the second, case we obtain twelve possible structures for p′1, p
′
2 resp.

which all exclude each other as places of P ′, see the following table.

1 ((p1, p2), (p3, ⋆)) 7 ((p1, ⋆), (p2, p3))
2 ((p1, p3), (p2, ⋆)) 8 ((p1, ⋆), (p3, p2))
3 ((p2, p1), (p3, ⋆)) 9 ((p2, ⋆), (p1, p3))
4 ((p2, p3), (p1, ⋆)) 10 ((p2, ⋆), (p3, p1))
5 ((p3, p1), (p2, ⋆)) 11 ((p3, ⋆), (p1, p2))
6 ((p3, p2), (p1, ⋆)) 12 ((p3, ⋆), (p2, p1))

Without loss of generality, assume p′1 = ((p1, p2), (p3, ⋆)) (case 1) or p′1 = ((p3, ⋆),
(p1, p2)) (case 11). (p3, ⋆) implies that p3 is not adjacent to t1, and therefore the
existence of such a place excludes the existence of places 2,4-10.

86

4.2 Determinacy of Petri Net Operations

The remaining cases 3 and 12 can be excluded, since (p2, p1) implies p1 ∈ t1
•

whereas p′1 implies p1 ∈ •t1; in this case p1 would be a loop place which is
a contradiction. Case 1 cannot coexist with case 11, since the latter implies
(p1, p2) ∈ t2

• whereas the former case implies (p1, p2) ∈
•t2 after contracting t1,

also a contradiction.

No. N
t1,t2

N
t2,t1

1 ((p1, ⋆), ⋆) ((p1, ⋆), ⋆)
2 ((p1, p2), ⋆) ((p1, ⋆), (p2, ⋆))
3 ((p1, ⋆), (p2, ⋆)) ((p1, p2), ⋆)
4 ((p1, ⋆), (p2, p3)) ((p1, p2), (p3, ⋆)) / ((p2, ⋆), (p1, p3))
5 ((p1, p2), (p3, ⋆)) ((p1, ⋆), (p2, p3)) / ((p1, p3), (p2, ⋆))

Table 4.3: Possible places after two transition contractions. In the middle column one can
find the places from Table 4.2 which turned out to be possible according to Definition 3.5.

In each case, there exists a place in N
t2,t1 which uses the same places from N as the one in

the middle column. This place is shown in the last column; for line 4 and 5 there are two
possibilities, but only one of them exists.

Theorem 4.13
Let N be a Petri net and t1, t2 ∈ T . If both N

t1,t2
and N

t2,t1
are defined they are

isomorphic (even if the contractions are not secure).

Proof. For this proof Table 4.3 is used. The last column shows the place of N2 =

N
t2,t1

, which uses the same places from N as the place from N1 = N
t1,t2

in the
middle column. If there are two possibilities, only one of them exists. For lines 1-3,
it is quite clear that these places exist in N2, for line 4 see Figure 4.3: since the place

((p1, ⋆), (p2, p3)) exists in N
t1,t2

, N must contain the leftmost net fragment; observe
that exactly one of the dotted arcs exists but not both (in this case contracting t1

would generate an arc with weight 2). Depending on which arc exist in N
t2,t1

, exactly
one of the places in the last column exists. Line 5 is analogous.

We define a relation f ⊆ P1 × P2 ∪ T1 × T2 by f |T1×T2
= Id and (p′1, p

′
2) ∈ f ⇔

ΦN1

N (p′1) = ΦN2

N (p′2). We will show that f is an isomorphism.

a) f is a partial function: (p′1, p
′
2), (p

′
1, p

′′
2) ∈ f ⇒ ΦN2

N (p′2) = ΦN2

N (p′′2). Lemma 4.12
implies p′2 = p′′2 .

b) f is total (surjective): After two contractions each place p′1 ∈ P1 has a structure
shown in Table 4.3, middle column, and ΦN1

N (p′1) = ΦN2

N (p′2) holds for the correspond-
ing place p′2 in the last column. Analogous for surjective.

87

4 Determinate Decomposition

p2 p1

p3

(p1, p2)

(p1, ⋆)

(p2, ⋆)

(p1, p3)

t1t1 t2t2 t1t1 t1t1

a

b

Figure 4.3: For line 4 from Table 4.3. Since the place ((p1, ⋆), (p2, p3)) exists in N
t1,t2 , N

must contain the leftmost net fragment; observe that exactly one of the dotted arcs exists
but not both (in this case contracting t1 would generate an arc with weight 2). If arc a,
b resp. exists, contracting t2 first results in the middle, rightmost resp. fragment; the next
contraction results in ((p1, p2), (p3, ⋆)), ((p2, ⋆), (p1, p3)) resp. as it is written in the last
column.

c) f is injective: f(p′1) = f(p′′1) ⇒ ΦN1

N (p′1) = ΦN1

N (p′′1). From Lemma 4.12 follows
p′1 = p′′1 .

d) f preserves the structure, i.e. W1(p
′
1, t) = W2(f(p′1), f(t)) and W1(t, p

′
1) =

W2(f(t), f(p′1)) ∀p′1 ∈ P1, t ∈ T1. This follows from the definition of transition con-
traction. Since the weight of an arc incident to a composite place is the sum of the
related weights of the component places, we derive that

W1(p
′
1, t1) =

∑

p∈Φ
N1
N

(p′

1
)

W (p, t1) =
∑

p∈Φ
N2
N

(f(p′

1
))

W (p, t1) = W2(f(p′1), f(t1)) .

Observe that for every place p′1 of N1 shown in Table 4.3, ΦN1

N (p′1) is a set. Analogous
for the second case.

The proof for the following lemma uses Theorem 4.13; if this is not applicable, we
show that – since N ∈ MGR – in N1 and N2 loop-only places can be deleted such
that the contraction of t2 and t1 resp. is applicable afterwards. After the contraction,
extended duplicates can be deleted such that the results are isomorphic.

Lemma 4.14
For (N,Λ) ∈ MGR, let (N,Λ) →stc (N1,Λ1) and (N,Λ) →stc (N2,Λ2). Then, there
exists (N ′,Λ′) ∈ MGR with (N1,Λ1) →

∗
red (N ′,Λ′) and (N2,Λ2) →

∗
red (N ′,Λ′).

Proof. Let the contractions concern transition t1 and t2. If both N
t1,t2

and N
t2,t1

are defined, Theorem 4.13 implies that the results are isomorphic. In this case even
the diamond property is fulfilled.

88

4.2 Determinacy of Petri Net Operations

p1 p2 p3

p4 p5 p6

t1t1 t2t2

(p2, p4)

(p2, p5)

(p1, p5)

t2t2

(p3, ⋆)

(p6, ⋆)

(p1, p4)

(p1, ⋆)

(p6, p3)

(p4, ⋆)

t1t1

(p6, p2)

(p5, p2)

(p5, p3)

Figure 4.4: Top: Scheme of a net fragment where contraction generates a loop. Left : After
t1-contraction Right : After t2-contraction.

Therefore, assume that w.l.o.g. N
t1,t2

is not defined. Since N1 = N
t1

is defined by
hypothesis, the contraction of t2 is not possible in N1, although it is possible in N .
Since N1 is a marked graph — in particular no arc weight becomes greater than 1 —,
the contraction of t1 in N must have generated a loop place adjacent to t2, because
t1 and t2 form a cycle with two places in N . Since N is a live marked graph, this
cycle contains at least one token making the loop place redundant.

This situation is schematically shown in Figure 4.4(top): each place represents a set
of places connected to t1 and t2 in the same way, e.g. places of type p1 are in the
preset of t1 and not adjacent to t2. Figure 4.4(left) and (right) depict the results of
contracting t1 and t2 resp. in the same way, e.g. places of type (p2, p4) are pairs (p, p′)
with p of type p2 and p′ of type p4.

Places of type (p2, p5) and (p5, p2) are loop-only places, which can be removed as
noted above; afterwards, the other transition contraction becomes possible. These
contractions give places of types

((p1, p4), ∗), ((p1, p5), (p3, ⋆)), ((p1, p5), (p2, p4)),

((p6, ∗), (p2, p4)), ((p6, ∗), (p3, ∗))

in the first case and

((p1, ∗), (p4, ∗)), ((p1, ∗), (p5, p3)), ((p6, p2), (p5, p3)),

89

4 Determinate Decomposition

((p6, p2), (p4, ∗)), ((p6, p3), ∗)

in the second. We will argue that the resulting nets are isomorphic after removal of
some redundant places.

As noted in the proof of Theorem 4.13, the connections of these places to the remaining
transitions are determined by their at most four components, and analogously for the
initial marking. In particular, places of type ((p1, p5), (p2, p4)) are connected in the
same way as places of type ((p1, p4), ∗) in the first case – since t1 and t2 are not
present anymore – and they carry even more tokens, since at least one of a p2-type
and a p5-type place is marked in N . Therefore, places of type ((p1, p5), (p2, p4)) are
extended duplicates, and so are places of type (p6, p2), (p5, p3)); we remove them in
the two nets.

For the other types, we find a matching between ((p1, p4), ∗) and
((p1, ∗), (p4, ∗)), and also between ((p1, p5), (p3, ∗)) and ((p1, ∗), (p5, p3)) etc., which
matches each place of type ((p1, p4), ∗) to the place of type ((p1, ∗), (p4, ∗)) with the
same component-places etc. By the above, this gives an isomorphism between the
remaining nets when the above extended duplicates are removed.

Local Confluence of →rpd

Now, we will proceed to the next part of the local confluence proof. Although the
local confluence of redundant place deletion might seem rather obvious, in fact some
effort is already needed to prove it at least for marked graphs.

Let p1, p2 be redundant places of N ∈ MGR with p1 6= p2. If one of them, lets say
p1, is a loop-only place, then p2 6∈ Q1 = ∅ and p1 6∈ Q2, because p1 is only adjacent
to one transition. This case obviously fulfils the diamond property, since the deletion
of one of the redundant places does neither affect the other one nor its reference set.

Due to Theorem 4.7 we can now assume that p1 and p2 are shortcut places and the
reference sets consist of the places of the corresponding paths.

We will distinguish three cases: 1) p1 6∈ Q2, p2 6∈ Q1, 2) p1 6∈ Q2, p2 ∈ Q1 (w.l.o.g.)
and 3) p1 ∈ Q2, p2 ∈ Q1.

The first case is treated as above. For the second case take a look at Figure 4.5. Since
p1 is not a loop-only place, p2 lies on a Q1-path w1 = •p1q

1
1 . . . qm

1 p1
•. Since p2 is not a

loop-only place either, a Q2-path w2 = •p2q
1
2 . . . qn

2 p2
• exists. This implies that there

is a path w connecting •p1 and p1
• and using only places from q1

1 . . . qm
1 excluding p2

and from q1
2 . . . qn

2 . MN (p1) ≥
∑m

i=1 MN (qi
1) and MN (p2) ≥

∑n

i=1 MN (qi
2) (Defini-

tion 3.2(1)) directly imply that MN (p1) ≥
∑m

i=1 MN (qi
1) − MN (p2) +

∑n

i=1 MN (qi
2);

hence, w also shows that p1 is redundant; the corresponding reference set does not
contain p2 and we are done by case (1).

90

4.2 Determinacy of Petri Net Operations

q1
1

q1
2

p2

p1

qn
2

qm
1

Figure 4.5: Two redundant places p1, p2 with p1 6∈ Q2, p2 ∈ Q1

The last case p1 ∈ Q2, p2 ∈ Q1 is impossible, because it implies

MN (p1) ≥
∑

q∈Q1\{p2}

MN (q) + MN (p2) MN (p2) ≥
∑

q∈Q2\{p1}

MN (q) + MN (p1)

From this we get immediately:

MN (p1) = MN (p2) and
∑

q∈Q1\{p2}

MN (q) =
∑

q∈Q2\{p1}

MN (q) = 0 (∗)

Since p1 ∈ Q2, there are Q2-paths •p2 . . . •p1 and p1
• . . . p2

• not using p1, and analo-
gously there are Q1-paths •p1 . . . •p2 and p2

• . . . p1
• not using p2. Therefore, either a

cycle c using only places from (Q1 ∪ Q2) \ {p1, p2} exists which contradicts N being
live by Lemma 4.6, since (∗) implies MN (c) = 0; or (Q1 ∪ Q2) \ {p1, p2} = ∅. In
the latter case, p1 and p2 are extended duplicates of each other with the same initial
marking; thus, removing either of them gives the same net up to isomorphism.

Altogether the following lemma holds.

Lemma 4.15
Let (N,Λ) →rpd (N1,Λ1) and (N,Λ) →rpd (N2,Λ2) for some (N,Λ) ∈ MGR. Then
an (N ′,Λ′) ∈ MGR exists with (N1,Λ1) →

=
rpd (N ′,Λ′) and (N2,Λ2) →

=
rpd (N ′,Λ′).

Observe that two steps of →rpd fulfil the diamond property or lead to isomorphic
results; in particular we have not used →stc.

91

4 Determinate Decomposition

Local confluence of →stc and →rpd

Lemma 4.16
Let (N,Λ) →rpd (N1,Λ1) and (N,Λ) →stc (N2,Λ2) for some (N,Λ) ∈ MGR. Then,
there exists an (N ′,Λ′) ∈ MGR with (N1,Λ1) →∗

red (N ′,Λ′) and (N2,Λ2) →∗
red

(N ′,Λ′).

Proof. Let p be the redundant place and t the transition to be contracted. In live
marked graphs p is either a loop-only place or a shortcut place.

In the first case, t and p are not adjacent because the contraction of t is possible
for (N,Λ), i.e. p forms a loop with another transition and the operations can be
performed independently.

If p is a shortcut place, there are the following possibilities: 1) t is neither adjacent
to p nor part of the path making p redundant; then both operations are independent
of each other again. 2) t is part of the path but not adjacent to p. The contraction
of t shortens the path but does not interrupt it, and also the sum of the markings
remains unchanged; hence, the two operations are independent. 3) t is adjacent to
the path and p – leading to two sub-cases, one of them shown in Figure 4.6(left). In
the other one, analogously the path starts from t and p ∈ t•.

We will only consider the first case depicted on the left hand side, with the results
of contraction and deletion shown in the middle, right hand side resp.. Each place
(ps, pxi

) in the middle is a shortcut place of {(p1, ∗), . . . , (pn−1, ∗), (pn, pxi
)} because

they give a path and the initially marking of this path as well as MN (ps) are increased
by the same value MN (xi). Therefore, these shortcut places can be deleted yielding
a net which also results from the net on the right hand side when contracting t.

Altogether, our results can be collected in the central theorem of this chapter.

Theorem 4.17
The reduction →red is confluent and terminating for live marked graphs.

Corollary 4.18
The STG-decomposition algorithm is determinate for live marked graphs.

In [CCJS94] a decomposition of strongly connected live marked graphs into two com-
ponents is considered. In this approach, the nets are unlabelled, while our STG
decomposition is directed by the labelling with signal transitions. Therefore, the
decomposition of [CCJS94] is not applicable in our setting.

What is interesting is that in the decomposition of [CCJS94] a whole subnet is re-
moved and this could be used in our setting to remove several internal transitions

92

4.2 Determinacy of Petri Net Operations

u
1

u
1

u
k

u
k

(r
1
,⋆

)
(r

k
,⋆

)

tt

(p
n
,⋆

)t nt nt 2t 2

(p
1
,⋆

)t 1t 1

u
1

u
1

u
k

u
k

(p
n
,r

1
)

(p
n
,r

k
)

(s
,r

1
)

(s
,r

k
)

t nt nt 2t 2

(p
1
,⋆

)

t 1t 1

u
1

u
1

u
k

u
k

r 1
r k

tt

p
n

s

t nt nt 2t 2p
1

t 1t 1

Figure 4.6: Confluence of shortcut place deletion and transition contraction. left: ps is
a shortcut place of {p1, . . . , pn} and t is the transition to be contracted. middle: after
contraction of t right: after deleting s.

93

4 Determinate Decomposition

together. A result of [CCJS94] implies that this removal preserves the language, but
this does not immediately imply that subnet removal can be used to determine correct
STG decompositions in the sense of [VW02,VK06]. In fact, the correctness criterion
of [VW02, VK06] is of bisimulation type, but does not imply language equivalence.
Furthermore, redundant place deletion and secure transition contractions always lead
to a correct decomposition, while subnet removal presupposes liveness and strong
connectedness. In fact, liveness only is a precondition for determinacy of STG de-
composition but not for its correctness.

Nevertheless, subnet removal might be closely related to redundant place deletion and
secure transition contractions. If one could show some sort of coincidence this might
lead to an alternative proof of our determinacy result. Such a result would not imply
that subnet removal is more efficient; the latter involves solving an all-pairs shortest
paths problem, which takes time of O(n3) where n is the number of removed internal
transitions plus the number of ‘neighbouring’ non-internal transitions.

94

Chapter 5

Internal Signals and
STG-Bisimulation

Complete State Coding (CSC) is an important property of STGs and must be achieved
before an asynchronous circuit can be synthesised. While some decomposition meth-
ods [CC03,YOM04] have to assume that the original STG satisfies CSC, our decom-
position algorithm is more general since it does not presuppose this; on the other
hand, the methods in [CC03, YOM04] construct components with CSC, while our
components might not have CSC.

For each such component, one can solve CSC and synthesise a separate circuit; com-
pared to solving CSC for the original STG (with its potentially huge reachability
graph) and synthesising one circuit, this can be much faster, see experimental results
in [VK06, Chapter 5].

One would expect that the components generated by our decomposition algorithm are
still correct when they have been modified to achieve CSC, and in fact it would also be
very interesting in what sense CSC-solving with Petrify is correct – independently
of the issue of decomposition; it seems that no correctness for this has been proven so
far. For such correctness results, one needs a correctness definition that takes internal
signals into account.

The purpose of this chapter is to enhance the correctness notion of Definition 3.4 ap-
propriately, to study its properties and give applications in the area of decomposition
and CSC-solving.

As the main property of the new correctness notion, we show that it is preserved when
decomposition is performed hierarchically . This correctness of top-down decomposi-

95

5 Internal Signals

tion is of interest in itself, but it also implies that the implementation relation arising
from our correctness notion is a preorder, and it can in particular be used to im-
prove the efficiency of our decomposition algorithm; an application of this and other
methods can be found in Chapter 6. Then we prove that CSC-solving for speed-
independent circuits as performed by Petrify is correct in our sense. With our
result on the correctness of top-down decomposition, we then conclude that speed-
independent CSC-solving can indeed be combined with the decomposition algorithm
described in Section 3.3. As another contribution, we prove that the decomposi-
tion method in [CC03] is correct in the sense of our enhanced correctness definition;
in [CC03] itself, no correctness proof is given. Finally, we compare our implementation
relation with existing concepts.

The chapter is organised as follows. In the next section, the new correctness definition
with internal signals is introduced. In Section 5.2, we prove top-down decomposition
correct in terms of our enhanced correctness definition; the succeeding section studies
correctness of speed-independent CSC solving on its own and in combination with
decomposition. Section 5.4 shows the correctness for the approach of [CC03], which
is followed by the comparison of our implementation relation with the one of Dill,
Carmona and Cortadella respectively.

5.1 Extended Correctness Definition

Before we come to our new correctness definition for decomposition, we introduce an
important notion, which is related to the speed-independent model. As mentioned
before, Petrify can modify an STG such that CSC is satisfied. If one is interested
in speed-independent circuits, as we are here, one can require that Petrify preserves
the following important property.

Definition 5.1 (Input Properness)
An STG is input proper if no input signal becomes enabled by the occurrence of an
internal signal, i.e. M1[s

±〉〉M2 with M1 a reachable marking, ¬M1[a〉〉 and M2[a〉〉,
a ∈ In, implies s 6∈ Int. △

Recall that an STG also specifies which inputs the environment may perform; if the
environment performs an input that is not enabled in the current marking of the STG,
then such an unexpected input may lead to a malfunction of the circuit as described
previously. To meet this specification, the environment must ‘know’ whether an
input is expected or not. Therefore, speed-independent asynchronous circuits have
to be input proper: as an example where input-properness is violated, consider the
case when the environment will produce an input signal after the circuit produced a

96

5.1 Extended Correctness Definition

certain output, but the circuit must produce some internal signal before it is ready
to receive this input. Since the SI-model allows that the production of the internal
signal is delayed, the input from the environment might arrive too early.

Actually, the implementation of non-input-proper STGs is still possible, but one has
to make timing assumptions about the relative order of signal transitions, e.g. one
might assume that an input is slower than an internal signal if both are triggered by
the same output.

Now, we give our improved correctness definition, which considers internal signals;
afterwards, we will explain its specific properties and why they are sound. In addition
to internal signals of the components, we allow for the components to communicate
with each other internally.1 Such signals have to be outputs of a component, but
internal signals from the perspective of the specification. Thus, we allow such signals
to be hidden globally on the level of the parallel composition using the signal set H.

Definition 5.2 (Correct Decomposition with Internal Signals)
A collection of deterministic components (Ci)i∈I is a correct decomposition of (or
simply correct w.r.t.) a deterministic STG N – also called specification – when hid-
ing H, if C = (||i∈ICi)/H is defined, InC ⊆ InN , OutC ⊆ OutN and there is an
STG-bisimulation B between the markings of N and those of C with the following
properties:

1. (MN ,MC) ∈ B

2. For all (M,M ′) ∈ B, we have:

(N1) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC , M ′[a±〉〉M ′
1 and

(M1,M
′
1) ∈ B for some M ′

1 or a 6∈ InC and (M1,M
′) ∈ B.

(N2) If x ∈ OutN and M [x±〉〉M1, then M ′[vx±〉〉M ′
1 and

(M1,M
′
1) ∈ B for some M ′

1 with v ∈ (Int±C)∗ .

(N3) If u ∈ IntN and M [u±〉〉M1, then M ′[v〉〉M ′
1 and (M1,M

′
1) ∈ B for some

M ′
1 and v ∈ (Int±C)∗.

(C1) If x ∈ OutC and M ′[x±〉〉M ′
1, then M [vx±〉〉M1 and

(M1,M
′
1) ∈ B for some M1 with v ∈ (Int±N)∗.

(C2) If x ∈ Outi for some i ∈ I and M ′
Pi

[x±〉〉, then M ′[x±〉〉. (no computation
interference)

(C3) If u ∈ IntC and M ′[u±〉〉M ′
1, then M [v〉〉M1 and (M1,M

′
1) ∈ B for some

M1 and v ∈ (Int±N)∗.

1For the time being, our decomposition method does not produce such components, but this is
definitely a future research topic. A recent approach can be found in [WW07].

97

5 Internal Signals

In the most simple case, (Ci)i∈I consists of just one component C1 (immediately im-
plying (C2)) and H is empty; in this case we say that C1 is a (correct) implementation
of N. △

All the remarks after Definition 3.4 concerning InC ⊆ InN , OutC ⊆ OutN , computa-
tion interference and no matches for inputs of the implementation are also valid here.
Regarding the last item, (C2) is actually also satisfied for x ∈ Inti, since internal
signals of one component are by the definition of parallel composition unknown to
the other components.

The new features deal with internal signals; they extend the Definition 3.4 conserva-
tively: for STGs without internal signals, the two correctness notions coincide. The
consequence will be that the result about top-down decomposition in the next section
also applies in the setting of the presented decomposition algorithm, where internal
signals are not considered.

First of all, we allow the hiding of some output signals H in the parallel composition
of the components; this concerns additional signals to enable communication between
the components. It is no problem that we allow hiding at the ‘top-level’ only: by
way of an example, assume that the components C1 and C2 communicate via a sig-
nal x which should not be visible to the other components; this would be modelled
by

(

((C1||C2)/{x}) || (||i∈I\{1,2}Ci)
)

/H. Now this equals (||i∈ICi)/(H ∪ {x}) by the
properties (CA8) and (CA6) of a circuit algebra (p. 51), where (CA8) is applica-
ble since x is only known to C1 and C2 and hence assumed to be not a signal of
||i∈I\{1,2}Ci. We will use similar reasoning in Section 5.2 where a component will be
replaced by a decomposition of its own.

In (N2) and (C1) outputs do not have to be matched directly; (N2) allows the compo-
nents to prepare the production of this output by some internal signals, e.g. to achieve
CSC or to inform other components; (C1) allows the specification to perform also in-
ternal signals. In any case, from an external point of view each output is matched by
the same output.

In contrast, input signals must be matched directly; if the implementation could
precede the input by some internal signals, the environment could produce the input
as specified in N at a stage where the implementation is not ready yet to receive
it, which could lead to malfunction as discussed above in connection with speed-
independence and input properness. As for computation interference, the absence of
this malfunction is only checked for markings appearing in B, since only for these the
problem is practically relevant.

In fact, the direct matching of inputs implies that the implementation is in a sense
input proper, at least in its ‘reachable behaviour’: assume that M1[u

±〉〉M2 with

98

5.1 Extended Correctness Definition

u ∈ IntC , M1 a reachable marking of C, and M2[a
±〉〉 for some a ∈ InC ; then either

there is no pair (M,M1) in the STG-bisimulation (hence, M1 will not be reached if
C works in a proper environment) or ¬M [a〉〉 (a proper environment will not produce
a) or M1[a〉〉 by (N1).

Finally, (N3) and (C3) prescribe the matching of an internal signal by a sequence of
internal signals – just as in ordinary weak bisimulation. Note that we have several
internal signals, since these have to be implemented physically; but regarding external
behaviour, the identity of an internal signal does not matter. In principle, performing
an internal signal could make a choice, e.g. by disabling an output; according to these
clauses, this choice has to be matched.

Translating the treatment of internal signals in the definition of the somewhat related
notion of I/O-compatibility [CC02] to our setting (see also Section 5.5), one would
require that e.g. in (N3) (M1,M

′) ∈ B without involving any u – and analogously
in (C3); the idea is that internal signals cannot make decisions in digital circuits.
There are several reasons not to follow this idea. First of all, this concerns a property
one might like all STGs to have and it is not related to comparing STGs or to the
communication between circuits – in contrast to e.g. computation interference; if one
wants this property in order to ensure physical implementability, it has to hold also
for markings not appearing in B. Therefore, this property has no adequate place in
a correctness definition and should be required separately. Second, one might want
to use ME-elements (see p. 25), which can make decisions; the respective signals
could be internal to the parallel composition. We see it as an advantage that we
can cover such cases. Finally, the alternative definition turned out to be technically
inconvenient.

Observe that the alternative definition coincides with ours if the specification does
not have internal signals; then, (N3) is never applicable, and in (C3) we have v = λ
and M = M1.

There is another important comment. Our correctness definition concerns the cor-
rectness of a decomposition, but it also covers the question whether one STG is an
implementation of another. With this notion, we will prove in Section 5.3 that speed-
independent CSC-solving with Petrify produces a correct implementation.

One would like this implementation relation to be a preorder. Reflexivity is obvious
(choose B as the identity), and transitivity will follow from our first main result in
the next section. One would also like it to be a precongruence for the operations
of interest. This is obvious for relabelling and easy for hiding (use the same STG-
bisimulation). The much more important case of parallel composition will be discussed
in the next section.

Actually, one can see a more general result for hiding just as easily: (∗) if (Ci)i∈I is

99

5 Internal Signals

correct w.r.t. N when hiding H, then (Ci)i∈I is also correct w.r.t. N/H ′ when hiding
H ∪H ′. As a consequence, we can apply our decomposition algorithm [VW02,VK06]
also to an STG N1 with internal signals as follows. Since the algorithm can only
decompose STGs without internal signals, we change the internal signals of N1 to
outputs obtaining an STG N2 with N1 = N2/Int1. Then we decompose N2, obtaining
a correct decomposition (Ci)i∈I of N2. After that, the formerly internal signals are
hidden in N2 and in ||i∈ICi and from (∗) we get that (Ci)i∈I is a correct decomposition
of N1 = N2/Int1 when hiding Int1.

5.2 Hierarchical Decomposition

In this section, we will show that correctness is preserved when we decompose a com-
ponent of an STG decomposition into subcomponents. This result makes it possible
to design and implement STGs in a top-down fashion.

In particular, such top-down decomposition can be useful for efficiency of our de-
composition algorithm. For example, consider a case where only one component Ci

of a decomposition needs a specific input signal a, which therefore will be removed
from every other component by the decomposition algorithm. Alternatively, the algo-
rithm could first construct a component Cj which generates every output signal that
is not produced by Ci, and afterwards decompose it into smaller components. This
way, the signal a will only be removed from one component Cj , which can improve
performance. This and other strategies for decomposition are studied in Chapter 6.

Top-down decomposition as described above is possible under two minor conditions
stated in the following theorem: the parallel composition of the subcomponents must
have all output signals of the decomposed component and its internal signals must
be unknown to the other components. The first condition is often automatically
true or can be achieved easily by adding outputs just formally, the latter one is an
obvious restriction required by our definition of parallel composition and can trivially
be fulfilled by renaming internal signals.

Theorem 5.3 (Correctness of top-down Decomposition)

(1) Let N be an STG and (Ci)i∈I a correct decomposition of N when hiding HC .
Furthermore let (Ck)k∈K be a correct decomposition of some Cj when hiding
HK (j ∈ I, I ∩ K = ∅). Then (Ci)i∈I′ with I ′ := I ∪ K − {j} is a correct
decomposition of N when hiding HC ∪ HK if

⋃

k∈K OutCk
\ HK = OutCj

and
(
⋃

k∈K IntCk
∪ HK) ∩

⋃

i∈I\{j} SigCi
= ∅.

(2) The implementation relation is a preorder.

100

5.2 Hierarchical Decomposition

Proof.
(1) Let C = (||i∈ICi)/HC , CK = (||k∈KCk)/HK and C ′ = (||i∈I′Ci)/H, where H :=
HC ∪ HK . Without loss of generality assume I = {1, 2, . . . , | I |}, j =| I | and
K = {| I | +1, | I | +2, . . . , | I | + | K |}. We will write Outi for OutCi

etc.

First, we show that the parallel composition of (Ci)i∈I′ is defined.
Obviously, Loci ∩Loci′ for different i, i′ with either i, i′ ∈ I \ {j} or i, i′ ∈ K, because
||(Ci)i∈I and ||(Ck)k∈K are defined. Therefore let k ∈ K, i ∈ I\{j}; then Lock∩Loci =
(Intk ∪ Outk) ∩ Loci = Intk ∩ Loci ∪ Outk ∩ Loci = ∅ ∪ Outk ∩ Loci, by assumption
about Intk. Outk ∩ Loci ⊆ (Outj ∪ HK) ∩ Loci = (Outj ∩ Loci) ∪ (HK ∩ Loci) ⊆
(Locj ∩ Loci) ∪ (HK ∩ Loci) = ∅ by the assumption about HK and because ||i∈ICi is
defined.

For i, i′ as above, Inti ∩ Ini′ = ∅. Let therefore i, k be as above, then Ink ∩ Inti ⊆
Inj ∩ Inti = ∅ and Intk ∩ Ini = ∅ by the assumptions.

Next, we show the requirements for the sets of output and input signals.

OutC′ =
⋃

i∈I′

Outi \ H

= (
⋃

i∈I\{j}

Outi ∪
⋃

k∈K

Outk) \ H

= (
⋃

i∈I\{j}

Outi ∪ (
⋃

k∈K

Outk \ HK)) \ HC

= (
⋃

i∈I\{j}

Outi ∪ Outj) \ HC

=
⋃

i∈I

Outi \ HC

⊆ OutN

The third equality holds by the second assumption on HK .

For the input signals, we have

InC =
⋃

i∈I

Ini \
⋃

i∈I

Outi ⊆ InN

and
⋃

k∈K

Ink \
⋃

k∈K

Outk ⊆ Inj

101

5 Internal Signals

It follows that

InC′ =
⋃

i∈I′

Ini \
⋃

i∈I′

Outi

= (
⋃

i∈I\{j}

Ini ∪
⋃

k∈K

Ink) \ (
⋃

i∈I\{j}

Outi ∪
⋃

k∈K

Outk)

⊆ (
⋃

i∈I\{j}

Ini ∪ Inj) \ (
⋃

i∈I\{j}

Outi ∪
⋃

k∈K

Outk)

(∗)

⊆
⋃

i∈I

Ini \ (
⋃

i∈I\{j}

Outi ∪ Outj) = InC ⊆ InN

The inclusion (∗) might fail if we had only (
⋃

k∈K Outk) \HK ⊆ Outj . Observe that
we do not need to consider hiding here.

We proceed with the main part of this proof: the requirements for an STG-bisimula-
tion between the markings of N and C ′.
Let B1 be the STG-bisimulation between the markings of N and C and B2 the one
between the markings of Cj and CK . We define a relation B between the markings
of N and C ′ as follows:

(M1,M2,M3) ∈ B

⇔ (M1,M2,Mj) ∈ B1 and (Mj ,M3) ∈ B2 for some Mj

where M1 denotes a marking of N , M2 a marking of C1|| . . . ||C|I|−1, Mj one of Cj

and M3 a marking of C|I|+1|| . . . ||C|I|+|K|; thus (M2,Mj) can be regarded as marking
of C and (M2,M3) as one of C ′ and we write (M1,M2,M3) instead of (M1, (M2,M3))
etc. We will show that (Ci)i∈I′ is a correct decomposition of N when hiding H due
to STG-bisimulation B.

(1): Obviously fulfilled by definition of B.

(2): Let (M1,M2,M3) ∈ B due to (M1,M2,Mj) ∈ B1 and (Mj ,M3) ∈ B2 for some
marking Mj of Cj .

(N1): a ∈ InN and M1[a
±〉〉M̂1.

1. Let a ∈ InC′ ⊆ InC (see above) and therefore (B1) (M2,Mj)[a
±〉〉 (M̂2, M̂j)

and (M̂1, M̂2, M̂j) ∈ B1 for some (M̂2, M̂j).

(a) If a 6∈ Inj we get Mj = M̂j and immediately (M2,M3)[a
±〉〉 (M̂2,M3) with

(M̂1, M̂2,M3) ∈ B.

102

5.2 Hierarchical Decomposition

(b) a ∈ Inj with Mj [a
±〉〉M̂j implies (B2) either a ∈ InK and M3[a

±〉〉M̂3,

(M̂j , M̂3) ∈ B2 for some M̂3 or a 6∈ InK and (M̂j ,M3) ∈ B2.

In the first case, we get (M2,M3)[a
±〉〉(M̂2, M̂3) with

(M̂1, M̂2, M̂3) ∈ B.
In the latter one we get (M2,M3)[a

±〉〉(M̂2,M3) with
(M̂1, M̂2,M3) ∈ B.

2. Let a 6∈ InC′ . There are two reasons for this:

(a) a 6∈ InC . Then, (M̂1,M2,Mj) ∈ B1 and by definition

(M̂1,M2,M3) ∈ B.

(b) a ∈ Inj , but a 6∈ Ini for i 6= j and a 6∈ InK (a only element of Cj).

Therefore, a ∈ InC and (M2,Mj)[a
±〉〉(M2, M̂j) with (M̂1,M2, M̂j) ∈ B1,

since a cannot be a signal of any other component. a 6∈ InK implies
(M̂j ,M3) ∈ B2 and by definition (M̂1,M2,M3) ∈ B.

(N2): Let x ∈ OutN and M1[x
±〉〉M̂1.

Then (B1) (M2,Mj)[vx±〉〉(M̂2, M̂j) and (M̂, M̂2, M̂j) ∈ B1 for some (M̂2, M̂j) and
v ∈ (Int±C)∗. Let v′ = vx± = v1v2 . . . vn with vi ∈ Sig±C for i = 1, . . . , n and

(M2,Mj) = (M0
2 ,M0

j)[v1〉〉(M
1
2 ,M1

j)[v2〉〉(M
2
2 ,M2

j) . . .

(Mn−2
2 ,Mn−2

j)[vn−1〉〉(M
n−1
2 ,Mn−1

j)[vn〉〉(M
n
2 ,Mn

j) = (M̂2, M̂j)

We will show by induction over m ∈ {0, . . . , n} that

∃wm ∈ (Int±C′)
∗{x±, λ},Mm

3 : (M2,M3)[wm〉〉(Mm
2 ,Mm

3)

∧wm↓ExtC′
= (v1 . . . vm)↓ExtC

∧(Mm
j ,Mm

3) ∈ B2

Observe that the case m = n proves our claim.

For m = 0 let M0
3 = M3 and w0 = λ. By assumption (M0

j ,M0
3) ∈ B2.

Let now m < n and:

• (M2,M3)[wm〉〉(Mm
2 ,Mm

3)

• wm↓ExtC′
= (v1 . . . vm)↓ExtC

• (Mm
j ,Mm

3) ∈ B2

• (Mm
2 ,Mm

j)[vm+1〉〉(M
m+1
2 ,Mm+1

j)

103

5 Internal Signals

We distinguish several cases, where in items (3) - (5) we have either vm+1 ∈ HC or
vm+1 = vn = x±:

1. vm+1 ∈ Inti for i ∈ I \ {j} ⇒ Mm+1
j = Mm

j ,Mm+1
3 = Mm

3 , wm+1 = wmvm+1

and (Mm+1
j ,Mm+1

3) ∈ B2.

2. vm+1 ∈ Intj ⇒ Mm+1
2 = Mm

2 ,Mm
3 [w′

m〉〉Mm+1
3 , w′

m ∈ (Int±K)∗, wm+1 = wmw′
m

and (Mm+1
j ,Mm+1

3) ∈ B2.

3. vm+1 ∈ Outi for i ∈ I \ {j} and vm+1 6∈ Inj : ref. item (1).

4. vm+1 ∈ Outi for i ∈ I \ {j} and vm+1 ∈ Inj : (N1) implies

(a) vm+1 ∈ InK ⇒ Mm
3 [vm+1〉〉M

m+1
3 with (Mm+1

j ,Mm+1
3) ∈ B2 and wm+1 =

wmvm+1.

(b) vm+1 6∈ InK ⇒ Mm+1
3 = Mm

3 with (Mm+1
j ,Mm+1

3) ∈ B2 and wm+1 =
wmvm+1.

5. vm+1 ∈ Outj : this implies Mm
3 [w′

m+1vm+1〉〉M
m+1
3 with w′

m+1 ∈ (Int±K)∗,

(Mm+1
j ,Mm+1

3) ∈ B2 and wm+1 = wmw′
m+1vm+1.

(N3): Let u ∈ IntN and M1[u
±〉〉M̂1. Therefore (M2,Mj)[v〉〉(M̂2, M̂j) with

(M̂1, M̂2, M̂j) ∈ B1 and v ∈ (Int±C)∗ for some (M̂2, M̂j). At this point the proof
can be continued analogously to the previous item.

(C1): Let x ∈ OutC′ and (M2,M3)[x
±〉〉(M̂2, M̂3).

1. If x ∈ OutK \HK = Outj it follows that Mj [vx±〉〉M̂j , (M̂j , M̂3) ∈ B2 for some

M̂j and v ∈ (Int±j)∗.

Let Mj [v〉〉M
′
j [x

±〉〉M̂j ; then (M2,Mj)[v〉〉(M2,M
′
j) and by (C3) M1[w1〉〉M

′
1

with w1 ∈ (Int±N)∗ and (M ′
1,M2,M

′
j) ∈ B1 for some M̂ ′

1.

Since (M2,M
′
j)[x

±〉〉(M̂2, M̂j) (where M2[x
±〉〉M̂2 or M̂2 = M2), we get by

(C1) for B1 that M ′
1[w2x

±〉〉M̂1 and (M̂1, M̂2, M̂j) ∈ B1 for some M̂1 and w2 ∈

(Int±N)∗. Altogether, we get that M1[w1w2x〉〉M̂1 with w1w2 ∈ (Int±N)∗ and

(M̂1, M̂2, M̂3) ∈ B.

2. If x 6∈ OutK \ HK = Outj , there exists an m ∈ I \ {j} such that x ∈ Outm ⊆
OutC .

104

5.2 Hierarchical Decomposition

(a) x 6∈ Inj implies that neither M3 nor Mj are changed when firing x±:

M̂3 = M3 and (M2,Mj)[x
±〉〉(M̂2,Mj); we get directly (B1) M1[wx±〉〉M̂1,

(M̂1, M̂2,Mj) ∈ B1 for some M̂1 and w ∈ (Int±N)∗, and by definition of B:

(M̂1, M̂2, M̂3) ∈ B.

(b) If x ∈ Inj then Mj [x
±〉〉M̂j by (C2) for B1 and by (N1)

i. x 6∈ InK , M̂3 = M3 and (M̂j ,M3) ∈ B2.

ii. x ∈ InK and (M̂j , M̂3) ∈ B2.

In any case, (M2,Mj)[x
±〉〉(M̂2, M̂j) and M1[wx±〉〉M̂1 with w ∈ (Int±N)∗

and (M̂1, M̂2, M̂j) ∈ B1, hence (M̂1, M̂2, M̂3) ∈ B.

(C2): Let x ∈ Outm,m ∈ I ′ and (M2,M3)|Pm
[x±〉〉.

1. x ∈ Outm for some m ∈ I \ {j} and M2|Pm
[x±〉〉. Then (B1) (M2,Mj)[x

±〉〉
and therefore (M2,M3)[x

±〉〉, because either x 6∈ Inj and x 6∈ Sigk for k ∈ K or
x ∈ Inj , and by (N1) for B2 either M3[x

±〉〉 or x 6∈ Sigk, k ∈ K.

2. x ∈ Outm for some m ∈ K and M3|Pm
[x±〉〉. Hence, M3[x

±〉〉 by (C2) for B2.

(a) If x ∈ OutK , then Mj [v〉〉M
′
j [x

±〉〉 by (C1) for B2 for some v ∈ (Int±j)∗ and
M ′

j . Since Cj can fire its internal signals without changing the state of the
other components, we get (M2,Mj)[v〉〉(M2,M

′
j) and (M ′

1,M2,M
′
j) ∈ B1

for some M ′
1. Applying (C2) for B1 we get (M2,M

′
j)[x

±〉〉 and therefore
(M2,M3)[x

±〉〉, too.

(b) If x ∈ IntK , i.e. x ∈ HK , then M3[x
±〉〉 proves immediately (M2,M3)[x

±〉〉.

(C3): Let u ∈ IntC′ and (M2,M3)[u
±〉〉(M̂2, M̂3).

(1) If u ∈ Inti for i ∈ I \{j}, then M̂3 = M3, (M2,Mj)[u
±〉〉(M̂2,Mj) and by (C3) for

B1: M1[v〉〉M̂1, w ∈ (Int±N)∗ and (M̂1, M̂2,Mj) ∈ B1 for some M̂1 and therefore

(M̂1, M̂2, M̂3) ∈ B.

(2) If u ∈ Intk for k ∈ K, then M̂2 = M2 and by (C3) for B2: Mj [v〉〉M̂j , v ∈

(Int±j)∗ and (M̂j , M̂3) ∈ B2 for some M̂j . Let v = v1v2 . . . vn, vi ∈ Int±j and

Mj = M0
j [v1〉〉M

1
j . . . Mn−1

j [vn〉〉M
n
j = M̂j . By (C3) for B1 we get that M1 =

M0
1 [w1〉〉M

1
1 [w2〉〉 . . . Mn−1

1 [wn〉〉 Mn
1 = M̂1 with wi ∈ (Int±N)∗ and

(Mm
1 , M̂2,M

n
j) ∈ B2 for every m = 0, . . . , n. In particular, M1[w1 . . . wm〉〉M̂1,

(M̂1, M̂2, M̂j) ∈ B1 and therefore (M̂1, M̂2, M̂3) ∈ B.

105

5 Internal Signals

(3) If u ∈ Outi ∩ HC for i ∈ I \ {j}.

(a) u ∈ Inj . Then (M2,Mj)[u
±〉〉(M̂2, M̂j) and by (C3) for B1: M1[v〉〉M̂1,

v ∈ (Int±N)∗ and (M̂1, M̂2, M̂j) ∈ B1; (N1) for B2 implies either M3[u
±〉〉M̂3

or u 6∈ InK and M̂3 = M3; in both cases (M̂j , M̂3) ∈ B2 and it follows that

(M̂1, M̂2, M̂3) ∈ B.

(b) u 6∈ Inj . Analogous to item (1)

(4) If u ∈ Outk ∩HC for k ∈ K. Then, M3[u
±〉〉M̂3 and by (C1) for B2 Mj [vu±〉〉M̂j

and (M̂j , M̂3) ∈ B2 for v ∈ (Int±j)∗. Furthermore, (M2,Mj)[vu±〉〉(M̂2, M̂j) and

by (C3) for B1 we get M1[w〉〉M̂1, w ∈ (Int±N)∗ and (M̂1, M̂2, M̂j) ∈ B1 (with

M̂2 = M2 if u 6∈ Inm for m ∈ I \ {j}). It follows that (M̂1, M̂2, M̂3) ∈ B.

(5) If u ∈ Outk ∩ HK for k ∈ K. Then, by (C3) for B2: Mj [v〉〉M̂j , v ∈ (Int±j)∗ and

(M̂j , M̂3) ∈ B2 and M̂2 = M2. Thus, (M2,Mj)[v〉〉 (M̂2, M̂j) and by (C3) for B1:

M1[w〉〉M̂1, w ∈ (Int±N)∗ and (M̂1, M̂2, M̂j) ∈ B1. Therefore by definition of B,

(M̂1, M̂2, M̂3) ∈ B.

Regarding (2), we already know that the implementation relation is reflexive; transi-
tivity is just a special case of (1), where both hiding sets are empty and the decompo-
sitions have just one component each. So (1) tells us that, if C is an implementation
of N and C ′ an implementation of C, then C ′ is an implementation of N – except
that we do not have the two extra conditions required in (1). Observe that the sec-
ond condition is trivially true since

⋃

i∈I\{j} SigCi
is empty. The first condition is

only needed to prove claims that are obvious for this restricted case, namely that
the parallel composition C ′ (which has only one component here) is defined and that
InC′ ⊆ InN .

Remark: One might expect that refining a component Cj of

(||i∈ICi)/HC with (||k∈KCk)/HK

would give the STG

(

||i∈I\{j}Ci || (||k∈KCk/HK)
)

/HC ,

where there is not just one hiding on the top-level as in the theorem. With the same
reasoning already used in the discussion of Definition 5.2, we can derive from the
properties (CA8) (use the second assumption on HK) and (CA6) of a circuit algebra

106

5.2 Hierarchical Decomposition

that for H = HC ∪ HK :

(

||i∈I\{j}Ci || (||k∈KCk/HK)
)

/HC

= ((||i∈I′Ci) /HK) /HC

= ||i∈I′Ci/H

As explained after Definition 5.2, our correctness definition coincides with Defini-
tion 3.4 if we restrict ourselves to STGs without internal signals; hence, the above
theorem also holds in this setting (where of course no hiding is applied, i.e. the hiding
sets are taken to be empty). Therefore, the theorem can indeed be used to improve
our decomposition algorithm as explained at the beginning of this section.

Surprisingly, the theorem has also an impact on the question whether the implemen-
tation relation between STGs is a precongruence for parallel composition, which we
will show under some mild restrictions now. Recall that, for some N1||N2 to be de-
fined, we only had some syntactic requirements regarding the signal sets; but the
composition only makes sense in the area of circuits, if we also ensure absence of
computation interference; for the following definition cf. the discussion on condition
(C2) of Definition 5.2.

Definition 5.4 (Interference-free)
A parallel composition N1||N2 is interference-free if, for all its reachable markings
M1

.
∪ M2, i ∈ {1, 2} and x ∈ Outi, Mi[x

±〉〉 implies (M1

.
∪ M2)[x

±〉〉. △

Corollary 5.5
If N2 is a correct implementation of N1, N1 and N2 have the same output signals,
and N1||N is a well-defined and interference-free parallel composition, then (N2, N)
is a correct decomposition of N1||N , i.e. N2||N is a well-defined and interference-free
parallel composition and a correct implementation of N1||N .

Proof. Since the composition is interference-free, the identity is an STG-bisimulation
showing that the family (N1, N) is a correct decomposition of N1||N ; note that in this
setting all conditions for an STG-bisimulation are trivially fulfilled except for (C2).
With this observation, the claim follows from Theorem 5.3.

Note that each of our operations hiding, renaming and parallel composition with
another STG changes the set of output signals in the same way, such that equality of
these sets is preserved.

107

5 Internal Signals

Corollary 5.6 (Implementation relation as precongruence)

The implementation relation is a precongruence for hiding, relabelling and parallel
composition when restricted to STGs with the same output signals and interference-
free parallel compositions.

5.3 CSC Solving

In this section, we will prove that speed-independent CSC-solving fits into our cor-
rectness definition, i.e. that it leads to a correct implementation. Theorem 5.3 then
implies that speed-independent CSC-solving can be combined with our decomposition
algorithm. The latter could be shown directly without this theorem, but its use makes
the following proof much easier, because we have to consider only one component.
First, we will introduce the operation of input proper event insertion, which e.g. is
used by the tool Petrify to achieve CSC.

Given an STG without CSC, one can (in many cases) insert internal signals into the
STG such that their values distinguish between the markings with equal state vectors
but different enabled outputs. This insertion takes place on the level of reachability
graphs. It is also possible to derive an STG for the modified reachability graph, and
although this is not important for the synthesis of a circuit, it fits our manner-of-
speaking well. In Example 5.1, CSC is solved for the VME controller of the previous
examples according to the following considerations.

We take the following definition of input proper event insertions from [CKK+02]. One
can perform a number of these operations, arriving at an STG with CSC, and this
we call speed-independent CSC-solving.

Definition 5.7 (Event insertion)
Let N be a deterministic STG, u± a signal transition not appearing in N for a
(possibly new) internal signal u and R ⊆ [MN 〉. The event insertion of u± at region
R into N modifies the reachability graph RGN (and results in a corresponding STG
N ′) as follows (cf. Fig. 5.1):

(1) For every marking M ∈ R add a duplicate M ′ and add the transition M [u±〉〉M ′.

(2) If M1,M2 ∈ R and M1[s
±〉〉M2, add the transition M ′

1[s
±〉〉M ′

2.

(3) If M1 ∈ R, M2 6∈ R and M1[s
±〉〉M2, remove this transition and add M ′

1[s
±〉〉M2.

(4) The initial marking of N ′ is the same as that of N . Add u to Int.

108

5.3 CSC Solving

a x c

d

1 2

3 4

5 6

c

a

c

x

c

a

x

d

1
2

2’

3
4 4’

5
6

c u

a

c u

x

c

a a

x

d

Figure 5.1: Example of an event insertion. left: A Petri net (to keep it small, transitions
are labelled with signals) middle: Its reachability graph. The two gray states are the region
R where the new event u will be inserted. right: The reachability graph with the inserted
event u. The marking relation is M = {(1, 1), (2, 2), (2, 2′), (3, 3), (4, 4), (4, 4′), (5, 5), (6, 6)}.

The insertion is called input proper, if there is no M1[a
±〉〉M2 in RGN with a ∈ In,

M1 ∈ R and M2 6∈ R.

We define the marking relation M between the markings of N and of N ′ such that
(M1,M2) ∈ M if M2 = M1 or M2 = M ′

1.

It is not hard to see that N ′ as above is deterministic again. An example for an event
insertion can be found in Figure 5.1.

The following result explains the definition of an input proper event insertion and
why we speak of speed-independent CSC-solving.

Of course, the insertion of just a single signal edge will generate an inconsistent
STG. This is no problem for our correctness notion, but for practical purposes event
insertions are always performed in pairs (u+ and u− for a new internal signal u), such
that the result is consistent again; this is called signal insertion.

The following proposition is needed to prove the main theorem of this section and it
explains why we speak of an input proper insertion.

Proposition 5.8
Let N be an input proper STG and let N ′ be obtained by the insertion of u± at R.
Then N ′ is input proper if and only if the insertion is.

The proof needs the following lemma.

109

5 Internal Signals

Lemma 5.9
Let N be an STG and N ′ be obtained from N by the event insertion of u± at region
R. Let (M1,M2) ∈ M and a ∈ SigN .

(1) If M2 = M ′
1, then M1[a

±〉〉M̂1 in N implies M2[a
±〉〉M̂2 in N ′ with (M̂1, M̂2) ∈

M.

(2) M2[a
±〉〉M̂2 in N ′ implies M1[a

±〉〉M̂1 in N with (M̂1, M̂2) ∈ M.

Proof.

(1) M2 = M ′
1 implies M1 ∈ R and by Definition 5.7.2,3 M2[a

±〉〉M̂2 in N ′ with
(M̂1, M̂2), where we have M̂2 = M̂ ′

1 if case 2 is applicable and M̂2 = M̂1 if case 3
is applicable.

(2) The reasoning is similar.

Now, we come to the main results of this section.

Proof of Proposition 5.8. Assume the insertion is not input proper because of
M1[a

±〉〉M2; then we have in N ′: M1[u
±〉〉M ′

1 due to Definition 5.7.1 and ¬M1[a
±〉〉

and M ′
1[a

±〉〉M2 due to 3.

Vice versa, assume that N ′ is not input proper due to M1[v
±〉〉M2, ¬M1[a

±〉〉 and
M2[a

±〉〉M3 for some a ∈ In. If v± is the newly inserted u±, then M2 = M ′
1; we

cannot have M2[a
±〉〉M3 due to Definition 5.7.2 because then M1[a

±〉〉, and thus we
must have M2[a

±〉〉M3 due to Definition 5.7.3, i.e. the insertion is not input proper
because of M1[a

±〉〉M3 in N .

Otherwise, there are M̂1 and M̂2 with (M̂1,M1) ∈ M, (M̂2,M2) ∈ M,
M̂1[v

±〉〉M̂2 in N and M̂2[a
±〉〉 in N by Lemma 5.9.2. Since N is input proper, this im-

plies M̂1[a
±〉〉; since ¬M1[a

±〉〉 in N ′, this in turn implies M̂1 = M1 by Lemma 5.9.1.
Thus, M̂1 has lost an a±-transition during the event insertion; this can only be due
to Definition 5.7.3, and also in this case, the insertion is not input proper.

Theorem 5.10 (Correctness of CSC solving)
Let N be an STG and N ′ be obtained from N by speed-independent CSC-solving, then
N ′ is a correct implementation of N and vice versa.

Proof. N ′ is obtained from N by a sequence of input proper event insertions. It suf-
fices to show the claims for one such insertion, and then the theorem follows from
Theorem 5.3.2. Thus, assume that N ′ is obtained from N by the input proper inser-
tion of u± at R, with M being the corresponding marking relation. Obviously, we
have InN = InN ′ , OutN = OutN ′ .

110

5.3 CSC Solving

N ′ is a correct implementation of N : we will show that M is an STG-bisimulation
for N and N ′.

(1): Fulfilled by definition of event insertion.

(2): For this part, observe that (C2) is trivially fulfilled, because we consider only one
component. Let now (M1,M2) ∈ M.

For (N1)–(N3), we only have to consider M2 = M1 due to Lemma 5.9.1. If a ∈ InN

and M1[a
±〉〉M̂1 in N , then Definition 5.7.3 cannot be applicable since the insertion is

input proper, hence M1[a
±〉〉M̂1 in N ′ as well with (M̂1, M̂1) ∈ M and (N1) follows.

Now let x ∈ LocN and M1[x
±〉〉M̂1 in N . Then we have in N ′ that M1[x

±〉〉M̂1 if
M1 6∈ R or M2 ∈ R and M1[u

±x±〉〉M̂1 otherwise; obviously (M̂1, M̂1) ∈ M and (N2)
and (N3) follow.

(C1/C3): Let x ∈ LocN ′ and M2[x
±〉〉M̂2 in N ′. If x± is not the inserted u±,

Lemma 5.9.2 implies M1[x
±〉〉M̂1 and (M̂1, M̂2) ∈ M. Otherwise, we have M2 = M1,

M̂2 = M ′
1 and (M1, M̂2) ∈ M.

N is a correct implementation of N ′: we will argue that M−1 is an STG-bisimulation
for N ′ and N .

(1): Fulfilled by definition of event insertion.

(2): For this part, observe that (C2) is trivially fulfilled, because we consider only one
component. Furthermore, N2/N3/C1/C3 are dual to C1/C3/N2/N3 above, so we only
have to check (N1), which follows directly from Lemma 5.9.2, since InN = InN ′ .

Now we can conclude that speed-independent CSC-solving can be combined with
decomposition.

Corollary 5.11
Let (Ci)i∈I be a correct decomposition of N when hiding H, and let C ′

i be obtained
from Ci by speed-independent CSC-solving for all i ∈ I. Then (C ′

i)i∈I is a correct
decomposition of N when hiding H.

Proof. It is sufficient to consider one component Cj and to apply induction afterwards.
By Theorem 5.10, C ′

j is a correct decomposition of Cj . Furthermore it fulfils the
preconditions of Theorem 5.3.1, esp. the crucial first one on HK since HK = ∅ and
event insertion does not change the sets of output and of input signals. Therefore,
((Ci)i∈I\{j}, C

′
j) is a correct decomposition of N .

111

5 Internal Signals

In Example 3.6 it was shown that the VME bus controller does not fulfil CSC. Consequently,
also component C1 (left, see Example 3.9) does not have CSC.
Solving CSC in C1 yields C′

1 (right). This is done by adding one new internal signal csc in
the form of two new events csc+, csc− as described in Definition 5.7.

p1

dsr+

p2

lds+

p3 p4

d−

p5

lds−

p6

ldtack− ldtack+

p7 p8

dsr−

p9

d+

dsr+

p2

csc+

p′2

lds+

p1 p3 p4

d−

p5

lds−

p6

ldtack− ldtack+

p′7 p8

csc−

p7

dsr−

p9

d+

Example 5.1: VME Bus Controller: CSC solving (continued on next page)

112

5.3 CSC Solving

C′
1 is a correct implementation of C1 due to the following STG bisimulation B′. The two

elements b′1, b′2 of B′ not belonging to the identity relation over [MC1
〉 are shaded.

({p1, p5}, {p1, p5})

({p2, p5}, {p2, p5}) ({p1, p6}, {p1, p6})

({p2, p6}, {p2, p6}) ({p1, p3}, {p1, p3})

({p2, p3}, {p2, p3})

({p2, p3}, {p′2})

({p4}, {p4})

({p8}, {p8})

({p9}, {p9})

({p7}, {p7})

({p7}, {p′7})

The following STG-bisimulation B′′ for the correct decomposition (C′
1, C2) of VME, which

fulfils CSC, can be derived from B (Example 3.9) and B′ as described in the proof of Theo-
rem 5.3. The elements of B′′ not belonging to B are shaded; they correspond to the shaded
elements of B′.

({p3, p6}, {p1, p5}, {p4})

({p1, p6}, {p1, p5}, {p1}) ({p3, p7}, {p1, p6}, {p4})

({p2, p6}, {p2, p5}, {p1}) ({p1, p7}, {p1, p6}, {p1}) ({p3, p4}, {p1, p3}, {p4})

({p2, p7}, {p2, p6}, {p1}) ({p1, p4}, {p1, p3}, {p1})

({p2, p4}, {p2, p3}, {p1})

({p2, p4}, {p′2}, {p1})

({p5}, {p4}, {p1}) ({p9}, {p8}, {p1})

({p11}, {p9}, {p2})

({p10}, {p9}, {p3})({p8}, {p7}, {p3})

({p8}, {p′7}, {p3})

113

5 Internal Signals

5.4 Comparison with other Approaches

In this section we will show that the decomposition method of Carmona and Cor-
tadella [Car03,CC03], which has not been proven correct so far, yields components
which are a correct decomposition according to our definition. For this method, it is
assumed that an STG with CSC is given, where CSC can also be achieved by mod-
ifications on the STG-level, i.e. without considering the reachability graph. (It can
also be given due to a suitable translation from a description in a high-level language
to STGs as in [YOM04]). As explained on p. 100, we can assume that there are no
internal signals.

The method of [Car03,CC03] works roughly as follows. Starting with a deterministic
STG N that already has CSC, for every output signal x a CSC support is determined;
this is a set of signals, which guarantees CSC for x. Here is the formal definition:

Definition 5.12 (CSC Support)
For an STG N , S ⊆ SigN is called CSC support for the output signal x if MN [v1〉〉M1,
MN [v2〉〉M2 for some v1, v2 ∈ (Sig±N)∗ with codeChange(S, v1) = codeChange(S, v2)
implies M1[x

±〉〉 ⇔ M2[x
±〉〉.

From the previous definition one can derive an integer linear programming problem
(ILP) for an output x and a signal set S. The infeasibility of this problem then implies
that S is a CSC support for x. Actually, the algorithm of Carmona and Cortadella
uses a slightly weaker definition of CSC support, which nevertheless coincides with
the given one for most practical STGs.2 The ILP problem in [CC03] can easily be
modified to match the more accurate Definition 5.12, see also [GVC97].

The algorithm starts for every output x with the set including the syntactical triggers
of x and x itself, and iteratively adds signals until it is a CSC support for x, which is
checked with the ILP problem mentioned above. Since the original STG has CSC, this
algorithm is always successful. An advantage is therefore that this method produces
components with CSC.

After that, for every output signal the original STG is projected onto the corresponding
CSC support: the other signals are considered as dummies, and as far as possible these
dummies and redundant places are removed much as in our decomposition algorithm.
If the resulting component still contains dummies, then [priv. comm.]: the reachability
graph is generated and viewed as a finite automaton with dummies regarded as the
empty word. Now the automaton is made deterministic with well-known methods,
which in particular remove all λ-labelled edges. Finally, we can regard this automaton

2In [CC03], S is called CSC support for the output x if for all reachable markings M1, M2 with
M1[v〉〉M2 and svM1

|S = svM2
|S one has: M1[x±〉〉 ⇔ M2[x±〉〉. This definition is equivalent to

ours for a reversible STG, i.e. if MN is reachable from every reachable marking.

114

5.4 Comparison with other Approaches

as an STG again, which has the edges of the automaton as transitions.

The projection part is similar to our algorithm, the difference is where backtracking
is performed: the method of [Car03, CC03] uses some form of backtracking when
determining the CSC support as described above — our algorithm uses backtracking
when the contraction of a dummy signal is not possible.

The CSC-support algorithm produces components (Ci)i∈I with the following proper-
ties, which we use for the proof of Theorem 5.13. Actually, Item 2 allows components
with more than one output signal, making our result stronger.

(1) Every component is deterministic

(2) The signals of every Ci are a CSC support of their output signals

(3) ∀i ∈ I : L(Ci) = L(N)↓i

In the last item, L(N)↓i denotes the projection of L(N) onto the signals of Ci, i.e. all
signal transitions s± for which s 6∈ Sigi are removed from the words in L(N). Note
that this item is not equivalent to L(||i∈ICI) = L(N). Now we can prove that (Ci)i∈I

is a correct decomposition according to Definition 5.2.

Theorem 5.13 (Correctness of the CSC-support algorithm)

Let N be an STG and (Ci)i∈I be given as above. Then, (Ci)i∈I is correct w.r.t. N .
The approach of [CC03] is correct.

Proof. The second claim is a corollary of the first. Let C = ||i∈ICi. We define a
relation B between the markings of N and C by

(M, (Mi)i∈I) ∈ B ⇔ ∃w : MN [w〉〉M ∧ ∀i ∈ I : MCi
[w↓i〉〉Mi

where (Mi)i∈I denotes the disjoint union of the Mi, i.e. a marking of ||i∈ICi.

We will show that B is an STG-bisimulation.

(1): Obviously fulfilled for w = λ.

(2): Let (M, (Mi)i∈I) ∈ B. Therefore ∃w : MN [w〉〉M ∧ ∀i ∈ I : MCi
[w↓i〉〉Mi. Since

there are no internal signals, we do not have to consider (N3) and (C3).

(N1): Let a ∈ InN and M [a±〉〉M̂ . This implies wa± ∈ L(N) and therefore ∀i ∈ I :
(wa±)↓i∈ L(Ci). If a 6∈ InC we are done, otherwise it follows from the determinism
of the components that every Ci with a ∈ Ini can fire a±: there is only one transition
sequence v with l(v) = w↓i and one sequence v′ with l(v′) = w↓ia

±, obviously v is a
prefix of v′ and reaches Mi, and therefore Mi[a

±〉〉M̂i.

115

5 Internal Signals

This holds for every component with a ∈ Ini and therefore:
(Mi)i∈I [a

±〉〉(M̂i)i∈I where M̂i = Mi if a 6∈ Ini, and by definition of B we get
(M̂, (M̂i)i∈I) ∈ B.

(N2): Analogous to (N1), since we do not have to consider internal signals.

(C2): Let x ∈ Outj and Mj [x
±〉〉. Therefore, w↓jx

± ∈ L(Cj) = L(N)↓j which implies
that there exists a w′ ∈ (Sig±N)∗ with MN [w′〉〉M ′[x±〉〉 and w↓j= w′↓j∈ (Sig±j)∗.
Since Sigj is a CSC-support for x ∈ Outj and obviously codeChange(Sigj , w) =
codeChange(Sigj , w

′), we conclude that M [x±〉〉. Applying (N2) proves the claim:
(Mi)i∈I [x

±〉〉.

(C1): Let x ∈ OutC and (Mi)i∈I [x
±〉〉(M̂i)i∈I .

If x± is produced by component j, we get Mj [x
±〉〉; then our considerations for (C2)

imply M [x±〉〉M̂ . By definition of B: (M̂, (M̂i)i∈I) ∈ B.

5.5 Other Implementation Relations

As mentioned at the end of Definition 5.2, the simplest decomposition of a specification
N1 consists of only one component N2, such that no hiding is needed.3 We write
N1 ⊳sv N2 and say that N1 is SV-implemented by N2, if N2 is correct w.r.t. N1.
Since the other two implementation relations introduced below require In1 = In2 and
Out1 = Out2, we assume further that N1 ⊳sv N2 only if these equations hold; this is
no real restriction since missing signals can be added easily to N2.

4

We have already shown that ⊳sv is a preorder, and in this section we will compare it to
two other implementation relations. Recall that we require STGs to be deterministic.

The second implementation relation ⊳Dill is based on the notion of prefix-closed trace
structures, defined by Dill [Dil88]. Trace structures do not have internal signals, and
therefore we will restrict ourselves in Theorem 5.18 to STGs for which this holds, too.

The third implementation relation ⊳cc is based on the notion of I/O-compatibility
[CC03] which defines when an STG works safely together with another STG, which can
be considered as environment. Since no implementation relation is defined in [CC03],
we have decided to base one on I/O-compatibility in the spirit of Dill. Since I/O-
compatibility requires the STGs to be livelock-free (see below), we restrict ourselves
to STGs with this property in Theorem 5.21.

3If one wants to hide some signals, one can directly do so in N2; the external hiding of Defini-
tion 5.2 was introduced for inter -component communication, cf. the discussion before the definition.

4Output signals can be added formally to Out2; for every missing input signal a, the transitions
a+, a− resp., can be added such that one of them is always activated and consistency is preserved,
e.g. as a ring with two transitions.

116

5.5 Other Implementation Relations

5.5.1 Conformance

To define and study ⊳Dill, we first repeat the basic definitions of [Dil88].

Definition 5.14 (Prefix-Closed Trace Structures)
A prefix-closed trace structure is a tuple T = (In,Out,S,F). In is the set of input
signals, Out the set of output signals. We define Sig := In ∪ Out. S,F ⊆ (Sig±)∗

are the sets of success traces, failure traces respectively. We define the set of possible
traces P := S ∪ F . S and P must be prefix-closed, and the trace structure has to be
receptive, i.e. P·In± ⊆ P. △

A trace structure5 represents an asynchronous circuit of which the traces are partial
executions. Success traces do not lead to malfunction of the circuit, while failure
traces do. Obviously, prefix-closedness is a sound requirement, because a circuit has
to perform all prefixes of v in order to perform v itself. Receptiveness means that
every possible trace can be extended by an input signal, i.e. there are no restrictions
for the environment, but such an extension can turn a success trace into a failure
trace. In the original definition of Dill, traces are sequences over a set of signals
instead of signal transitions, which is obviously not a real change.

There are two problems with prefix-closed trace structures. First, they can have
inherent non-determinism in the form of traces v ∈ S ∩F , i.e. traces which could lead
to malfunction or not. Second, there can exist success traces s which can be extended
by a sequence w of only output signals to a failure trace f = sw, i.e. the malfunction
of the circuit is caused by the circuit itself and cannot be avoided by the environment.

These problems can be corrected by removing traces as s and v from the success set
and adding them to the failure set. The resulting trace structures are called canonical
prefix-closed trace structures.

Definition 5.15 (Canonical Prefix-Closed Trace Structures)
A trace structure T = (In,Out,S,F) is called canonical if S ∩ F = ∅, F/Out± ⊆ F
6 and F·Sig± ⊆ F . △

For a canonical trace structure, the failure set is completely determined by the success
set:

F = ((S·In±) − S)·(Sig±)∗

Hence, failure traces are success traces which are extended with an ‘unexpected’ input
and possibly with additional signal edges. It is therefore sufficient to give (In,Out,S).

5We will frequently omit ’prefix-closed’.
6Let X and Y be two sets of strings; the quotient X/Y is defined as {x | ∃y ∈ Y : xy ∈ X}.

Actually, F/Out± ⊆ F is equivalent to F/(Out±)∗ ⊆ F .

117

5 Internal Signals

Clearly, a deterministic STG N without internal signals can be transformed into the
canonical trace structure (In,Out, L(N)), and for the rest of this section we will
identify an STG with its corresponding canonical trace structure.

Dill also defines the operations parallel composition, hiding and renaming for trace
structure, which can be used together with trace structures to build expressions, e.g.
(T1||(T2 \ {a, b}))||T3, where the Ti are trace structures. An expression context ε[] is
such an expression which contains one free variable which can be replaced by some
trace structure T , written ε[T]. An expression context can be interpreted as an
environment for the trace structure T which is inserted; T fits into this environment
if the resulting trace structure is failure free, i.e. the environment works perfectly
together with T . This is the base for the following definition of conformance.

Definition 5.16 (Conformance, ⊳Dill)
Let T1 and T2 be two trace structures. T2 conforms to T1, written T1 ⊳Dill T2 if:
In1 = In2, Out1 = Out2 and for every expression context ε[]: ε[T1] is failure free
implies ε[T2] is failure free.

Implementation in the sense of conformance means therefore that the implementation
T2 works at least in every environment which is suitable for the specification T1.

In the sense of this implementation relation, each trace structure is equivalent to
a canonical one, such that we can restrict attention to these. Finally, Dill gives a
characterisation of his implementation relation for canonical trace structures, and we
use this to define the implementation relation ⊳Dill.

Definition 5.17
Let T1 and T2 be two canonical trace structures. T1 is Dill-implemented by T2, T1⊳Dill

T2, if In1 = In2, Out1 = Out2, F2 ⊆ F1 and P2 ⊆ P1. △

Since STGs without internal signals can be identified with canonical trace structures,
we can apply ⊳Dill to such STGs.

Theorem 5.18
For deterministic STGs without internal signals we have ⊳sv ⊆ ⊳Dill.

Proof. Let N1, N2 be two STGs with N1 ⊳sv N2. Due to the definition of ⊳sv we
have In1 = In2 =: In and Out1 = Out2 =: Out. Furthermore, there exists an
STG-bisimulation B between the markings of N1 and N2.

(1) F2 ⊆ F1. Since Fi·Sig±i ⊆ Fi, it is sufficient to show that all minimal (regarding
prefix) failure traces of N2 are also failure traces of N1. Let f ∈ F2 be a minimal
failure trace of N2. Clearly, f = sa± with a ∈ In and s ∈ S2.

118

5.5 Other Implementation Relations

If s ∈ F1, so is f and we are done. If otherwise s ∈ S1, the existence of B implies by
(N1) and (N2) that MN1

[s〉〉M1 and MN2
[s〉〉M2 (observe that there are no internal

signals) with (M1,M2) ∈ B. M1[a
±〉〉 would imply by (N1) M2[a

±〉〉 and f ∈ S2,
therefore ¬M1[a

±〉〉 and f ∈ F1.

If s 6∈ S2, let s = s′b±s′′ with b ∈ Sig and s′ the longest prefix of s with s′ ∈ S1. As
above, the existence of B implies that MN1

[s′〉〉M1 and MN2
[s′〉〉M2. Since s′b± ∈ S2,

M2[b
±〉〉. Therefore, b cannot be an output signal, because (C1) would imply that

M1[b
±〉〉. Hence, b ∈ In and s′b± ∈ F1 implying f ∈ F1.

(2) P2 ⊆ P1. Let p ∈ P2 be a trace of N2. If p ∈ F2, using (1) we get p ∈ F1 ⊆ P1.
So assume p ∈ S2. If p ∈ S1 we are done, if not let p = p′a±p′′ with p′ the longest
prefix of p with p′ ∈ S1. As above, p′ ∈ S2 and (C1) implies a ∈ In and therefore
p′a± ∈ F1 and p ∈ F1 ⊆ P1.

5.5.2 I/O-Compatibility

We come now to the comparison of ⊳sv and ⊳cc. As mentioned above, we define
⊳cc in the spirit of Dill (cf. Definition 5.16) where now a systems works well in an
environment when both are I/O-compatible, defined as follows.

Definition 5.19 (Livelock-Free and I/O-Compatibility)

(1) An STG is livelock-free if there is no reachable marking which enables an infinite
sequence of internal edges.

(2) Let N1 and N2 be two livelock-free STGs with In1 = Out2, In2 = Out1 and
Int1 ∩ Int2 = ∅. N1 and N2 are I/O-compatible, denoted N1 ⇌ N2, if there is a
relation R between the markings of N1 and N2 such that (i = 1, 2):

(IO1) (MN1
,MN2

) ∈ R

(IO2) Receptiveness

(a) If (M1,M2) ∈ R and M1[x
±〉〉M ′

1 with x ∈ Out1,
then M2[x

±〉〉M ′
2 with (M ′

1,M
′
2) ∈ R.

(b) vice versa for M2

(IO3) Internal Progress

(a) If (M1,M2) ∈ R and M1[u
±〉〉M ′

1 with u ∈ Int1,
then (M ′

1,M2) ∈ R.

(b) vice versa for M2

(IO4) Deadlock-freeness

119

5 Internal Signals

(a) If (M1,M2) ∈ R and {a ∈ Sig1 | M1[a
±〉〉} ⊆ In1,

then {a ∈ In2 | M2[a
±〉〉} 6⊆ In2.

(b) vice versa for M2 △

The idea is that the two circuits described by N1 and N2 are working together without
failures or deadlocks, one producing the signals which are received by the other one as
inputs. (IO2) requires that outputs must be matched immediately – without preceding
internal signals – by the other circuit, and (IO3) means that the components can
produce internal signals unobserved by the other. (IO4) forbids deadlocks, i.e. at
least one circuit must activate an output or internal signal, and because they are
livelock-free, eventually an output must be produced.

Definition 5.20 (of ⊳cc)
Let N1 and N2 be livelock-free deterministic STGs. We write N1 ⊳cc N2 if for all
livelock-free and deterministic STGs N , N1 ⇌ N implies N2 ⇌ N .

Theorem 5.21
For deterministic livelock-free STGs: ⊳sv ⊆ ⊳cc.

Proof. Let N1⊳sv N2 due to STG-bisimulation B and let N be an arbitrary STG with
N ⇌ N1 due to relation R. We will show that N ⇌ N2 due to relation R′ = R B.
In the following (M,M2) ∈ R′ implies therefore the existence of some marking M1 of
N1 with (M,M1) ∈ R and (M1,M2) ∈ B.

(IO1) Obviously, (MN ,MN2
) ∈ R′.

(IO2) Receptiveness

(a) Let (M,M2) ∈ R′ and M [x±〉〉M̂ for x ∈ OutN . This implies x ∈
InN1

and M1[x
±〉〉M̂1 with (M̂, M̂1) ∈ R; furthermore (N1) for (B) im-

plies M2[x
±〉〉M̂2 with (M̂1, M̂2) ∈ B. By definition of R′, we also have

(M̂, M̂2) ∈ R′.

(b) Let (M,M2) ∈ R′ and M2[x
±〉〉M̂2 for x ∈ OutN2

. This implies by (C1)
for B: M1[v〉〉M

′
1[x

±〉〉M̂1, v ∈ (Int±N1
)∗ and (M̂1, M̂2) ∈ B. By (IO3).(b)

of R we know that (M,M ′
1) ∈ R, and by (IO2)(b) for R we get M [x±〉〉M̂

and (M̂, M̂1) ∈ R; hence (M̂, M̂2) ∈ R′.

(IO3) Internal Progress

(a) Let (M,M2) ∈ R′ and M [u±〉〉M̂ for u ∈ IntN . Then, we get immediately
(M̂,M1) ∈ R and (M̂,M2) ∈ R′.

120

5.5 Other Implementation Relations

(b) Let (M,M2) ∈ R′ and M2[u
±〉〉M̂2 for u ∈ IntN2

. By (C3) for B we get
M1[v〉〉M̂1, (M̂1, M̂2) ∈ B and v ∈ (Int±N1

)∗. Then, repeated application of
(IO3)(b) for R implies
(M,M̂1) ∈ R and (M,M̂2) ∈ R′.

(IO4) Deadlock-freeness

(a) Let (M,M2) ∈ R′ and {a | M [a±〉〉} ⊆ InN . If M2[u
±〉〉 for some u ∈

IntN2
we are done. So assume this is not the case.

By (IO4)(a) for R, we have that {s | M1[s
±〉〉} 6⊆ InN1

. Let v ∈ (Int±N1
)∗

be a maximal sequence (w.r.t. prefix) such that M1[v〉〉M̂1; v exists be-
cause N1 is livelock-free. (IO3)(b) for R implies (M,M̂1) ∈ R and (N3)
for B implies (M̂1,M2) ∈ B by assumption. As above (IO4)(a) implies
{s | M̂1[s

±〉〉} 6⊆ InN1
; since v is maximal, there exists a signal x ∈ OutN1

with M̂1[x
±〉〉 and by (N2) and assumption we get: M2[x

±〉〉.

(b) Let (M,M2) ∈ R′ and {a | M2[a
±〉〉} ⊆ InN2

(∗).

This implies that no output signal is enabled at M1, since otherwise a local
signal would be enabled at M2. As in the previous item, let v ∈ (Int±N1

)∗

be a maximal sequence (w.r.t. prefix) such that M1[v〉〉M̂1.

Then (∗) and (N3) for B imply (M̂1,M2) ∈ B, and (IO3)(b) for R implies
(M,M̂1) ∈ R. As above, in M̂1 no output signal is enabled and since v is
maximal, no internal signal either, i.e. {a | M̂1[a

±〉〉} ⊆ InN1
and due to

(IO4).(b): {a | M [a±〉〉} 6⊆ InN .

5.5.3 Strictness of Inclusions

Finally, we prove prove that the inclusions of Theorem 5.18 and 5.21 are strict.

Theorem 5.22
For deterministic STGs without internal signals (which are therefore livelock-free) we
have: (1) ⊳cc 6⊆ ⊳sv (2) ⊳Dill 6⊆ ⊳sv.

Proof. Consider the counterexample in Figure 5.2. To keep it simple, we do not
consider signal edges, which makes no difference for the purpose of this proof.

(1) Obviously, ¬(N1 ⊳sv N2), because in the initial marking N1 activates the output
y which is not activated in N2, violating Condition (N2).

On the other hand, N1 ⊳cc N2: consider an STG N with N ⇌ N1. In the initial state,
N must be ready to receive the signals x and y as inputs due to condition (IO2).
After x (y resp.) occurred, N1 only activates the input a (b resp.) and (IO4) implies

121

5 Internal Signals

x y

a b

x

a

Figure 5.2: Counterexample for the proof of Theorem 5.22.

that N has to activate an output. This output can only be a (b resp.) because any
other signal would violate condition (IO2). Therefore, the reachability graph of N
is bisimilar to the one of N1. It is therefore sufficient to show N1 ⇌ N2, where N1

denotes the mirror of N1, i.e. the STG which is exactly the same as N1 but inputs
and outputs are exchanged.

In the initial state, N2 only activates the output x which is expected by N1. Then
N1 activates the output a which is expected by N2. Observe that it is not relevant
that N1 activates the input y in the initial state.

(2) The Universal Do-Nothing Module U is a system which accepts all inputs and
produces no output. The corresponding canonical trace structure U over (In,Out) is
given by SU = (In±)∗ for arbitrary In and Out. Clearly, ¬N2 ⊳sv U . On the other
hand, for any STG N it is valid that N ⊳Dill U ([Dil88]): by Definition 5.15 we
get FU = ((SU ·In

±) − SU)·(Sig±)∗ = ∅·(Sig±)∗ = ∅ ⊆ FN . Consider now a trace
p ∈ PU = (In±)∗. If p ∈ SN , we are done. Otherwise, let p = p′a±p′′, such that p′ is
the longest prefix of p with p′ ∈ SN . Since a is an input, p′a± and therefore also p
are failure traces.

For (1), it is essential that N1 has a dynamic conflict between outputs, while for (2),
it is essential that Dill requires an implementation to produce only allowed outputs,
but does not prescribe to produce all of them.

122

Chapter 6

Advanced
Decomposition Strategies

As it was mentioned in Chapter 3, the decomposition algorithm is non-deterministic
and does not make any further specifications for an implementation. Hence, a tech-
nically simple implementation can be easily achieved, but the performance might not
be so good.

In this chapter, we will investigate how the original decomposition algorithm – called
Basic here – can be modified such that the efficiency is improved. This modifications
are partially on the level of heuristics, i.e. in most – but not all – cases they will
improve the efficiency, but in any case the results are correct.

An issue of non-deterministic algorithms is whether they are determinate; this ques-
tion was answered positively for marked graphs in Chapter 4. Another issue is whether
the worst-case performance of a non-deterministic algorithm can be improved by (par-
tially) determinising it. The first section is devoted to this last question; there, a
simple but efficient heuristic (Reordering) to speed up reduction is introduced.

In Section 6.3 an optimised backtracking algorithm (LazyBack) is presented which
avoids the restarting of a reduction at the very beginning.

Decomposition reduces each component separately although for ‘similar’ components
similar steps have to be performed. The third section shows how the reduction of all
component can be performed together in order to exploit such similarities (Tree and
Aggregation).

In Section 6.5, two improvements independent of these new strategies are presented.

123

6 Advanced Decomposition Strategies

The first decreases the runtimes of all strategies significantly, and the second has
positive effects on the synthesisability of the components.

Another method of alleviating state space explosion are Petri net analysis techniques
based on causal partial order semantics, in the form of Petri net unfoldings and their
complete prefixes.1

The papers [KKY04,KKY06,Kho07] present a complete and efficient design flow for
complex-gate logic synthesis based on Petri net unfoldings, which avoids generating
the state graph at any stage. This unfolding-based approach can often synthesise
specifications which are by orders of magnitude larger than those which can be syn-
thesised by the state-space based techniques. However, this is still not enough for
practical circuits. On the other hand, decomposition can introduce encoding conflicts
in the components, thus causing problems for subsequent logic synthesis.

As the second contribution of this chapter, it is shown in Section 6.6 how to combine
the decomposition and the unfolding approach.

6.1 Correctness of New Strategies

Since the correctness of the decomposition algorithm was proven for the non-deter-
ministic version, the correctness proofs for the new strategies are quite simple: one
only has to show that the result could have been generated by Basic, too. Further-
more the following lemma is needed.

Lemma 6.1
If the reduction operations are applied to some initial component, and this gives an
STG C without structural auto-conflicts, then no structural auto-conflict encountered
during this partial reduction is dynamic, and hence the reduction is correct so far.

Proof. The reduction operations are auto-cc-preserving [VK06], i.e. a reduction op-
eration turns an STG with auto-concurrency or a dynamic auto-conflict into an STG
which also has one of these properties.

Assume now that some intermediate STG C ′ has a dynamic auto-conflict. Then, auto-
cc-preservation implies that C has to contain an auto-conflict or auto-concurrency.
The former is impossible since C has no structural auto-conflicts; the latter implies
that C is not consistent, which is also impossible, since consistency is preserved during
reduction.

1Confer the discussion on p. 40 why unfoldings are very suitable for the synthesis of asynchronous
circuits.

124

6.2 Reordering Transition Contractions

In fact, auto-cc-preservation implies for consistent STGs that dynamic auto-conflicts
are preserved.

6.2 Reordering Transition Contractions

Although reduction is meant to be performed automatically, it can be done with pen
and paper. To keep this simple, one would contract those transitions first which
generate the smallest number of new places. In the optimal case a divining transition
has only one place in its pre- and postset, thus its contraction would generate one
new place while removing both old ones. But the contraction of a transition, with
for instance 4 places in its pre- and 6 places in its postset would increase the number
of places by 14. These 14 places may be adjacent to other divining transitions and
so on. Hence, contracting transitions in an unsuitable order can lead to an enormous
increase in the number of places.

Contracting ‘easy’ transitions first turned out to be a good heuristic also for the
automatic reduction of large STGs. In Reordering, the divining transitions are
sorted by the number of additional places their contraction would generate in the
initial component. Then reduction works as in Basic, following this precalculated
list of transition contractions. In order to avoid repeated calculation after every
reduction operation, this list is not updated during reduction; the benchmark results
are good nevertheless.

Obviously, Reordering is correct in the sense of Lemma 6.1, because the chosen
order of contractions is just a concrete instance of an arbitrary one.

6.3 Lazy Backtracking

In the original implementation, backtracking was performed by discarding all the op-
erations performed so far and restarting the reduction for a modified initial component
with more inputs, cf. also Figure 6.1. This way of backtracking plays an important
part in the correctness proof in [VW02,VK06]. But it can obviously be rather ineffi-
cient, e.g. in extreme cases backtracking might occur for the last divining transition
and result in repeating a large number of operations. To guarantee correctness of
this approach, the deletion of redundant transitions has to be restricted : the deletion
of a λ-labelled duplicate transition is only performed if the former labels of the re-
spective transitions are equal. If this is not the case, the specification is in general
ill-formed anyway, but this error is not visible in the components. Correspondingly, if
the specification is guaranteed to be 1-live and consistent, this check can be omitted
(see below).

125

6 Advanced Decomposition Strategies

N N0 N1 N2 N3 Nk
λ t0 t1 t2 t3 tk

N ′
0 N ′

l

tk

t′0 t′l

N ′′
0 N ′′

l

t′l
t′′0 t′′m

C

Figure 6.1: Ordinary Backtracking: in the specification N some signals are lambdarised

(
λ
⇒), then some transition contractions are performed (

t0→). If a transition tk cannot be

contracted the corresponding signal is delambdarised in N0 (
tk⇒) resulting in a new initial

component N ′
0 and the reduction starts anew.

Naturally, if the reduction should not start anew from the beginning, one has to
introduce savepoints for intermediate STGs. Since backtracking affects signals rather
than single transitions, lazy backtracking (LazyBack) contracts all transitions of
signal s0, then all transitions of signal s1 and so on. After a signal was successfully
contracted (i.e. all corresponding transitions), the resulting intermediate STG is used
as a savepoint.

If backtracking has to be performed, it is unnecessary now to start from the very
beginning. Instead, it is possible to use the last suitable savepoint. While this basic
idea is simple, there is a complication to consider.

Starting from N , all initially useless signals are lambdarised yielding the initial com-
ponent N0. Instead of contracting the corresponding transitions in an arbitrary order
as in Basic, the divining transitions are contracted grouped by their former signals
as described above and depicted in Figure 6.2.

If contracting all s0-transitions is possible, i.e. all contractions are secure and no
new structural auto-conflict is generated, save the resulting STG as N1. Next, try to
contract signal s1 in N1 and so on. This results in a sequence (Ni) of savepoints and a
sequence (si) of contracted signals. If every signal contraction is possible, LazyBack

is obviously correct.

126

6.3 Lazy Backtracking

N
N

0
N

1
N

2
N

k
−

1
N

k
N

j
−

1
N

j
λ

s 0
s 1

s 2
s k

−
1

s k
s j

−
1

s j

N
′ js j

N
′ j
−

1

s j

N
′ ks j

N
′′ ks k

N
′ k
−

1

s j
, s

k

N
′′ k
−

1

s k
−

1

1

2
3

4 5
6 7

8

Figure 6.2: Backtracking of LazyMulti. Conventions as in Figure 6.1, except that
si→

denotes the contraction of signal.

127

6 Advanced Decomposition Strategies

Assume now that backtracking has to be performed since the contraction of signal
sj is not possible in Nj (1). In Basic, one would delambdarise sj in N0 and start
anew from there. Instead, we delambdarise sj in Nj resulting in N ′

j (2); the critical
point is that we have to check for a structural auto-conflict of sj in N ′

j now. (Such a
conflict might exist, because conflicts between divining transitions are ignored during
reduction.)

First, we study the case where no such conflict exists: in this case, delambdarise
sj also in all preceding savepoints and proceed from N ′

j with a new signal s′j to be
contracted. This is correct for the following more general claim which is also used
later on.

Proposition 6.2
Let N ′

j be obtained from an intermediate savepoint Nj by delambdarising some set of
signals S′ not containing s0, . . . , sj−1, and let N ′

0 be obtained from N0 by delambdaris-
ing S′, too. If N ′

j does not have any structural auto-conflicts, N ′
j can be constructed

during a correct reduction for the initial component N ′
0.

Proof. We will argue inductively that actually the same operation sequence which
reached Nj can be performed reaching N ′

j , at least if we ignore structural auto-conflicts

for the time being; during this, every original intermediate STG N̂ is matched with
some new intermediate STG N̂ ′ obtained from N̂ by delambdarising S′.

We clearly have this match before the first operation, i.e. for N0 and N ′
0. Assume we

have reached some N̂ ′ matching N̂ in the original sequence.

If the operation applied to N̂ is an implicit place deletion, then this can also be
applied to N̂ ′ with a matching result, since place redundancy does not depend on
the labelling. If the operation is the contraction of transition t, we first note that
the former signal of t is in {s0, . . . , sj−1} and that thus t is also a λ-transition in

N̂ ′. Secondly, the contraction is still secure since this is independent of the labelling.
Hence, the contraction can be applied with a matching result (maybe generating a
new structural auto-conflict).

If the operation applied to N̂ is the deletion of a redundant transition t, there are
several cases:

(1) t is not labelled with λ but a duplicate of some other transition with the same
label. Then, it is also a duplicate of this transition in N̂ ′ and can be deleted.

(2) t is labelled with λ in N̂ and was removed because its former signal is in
{s0, . . . , sj−1}. In this case (same argumentation as above) it is a λ-transition

in N̂ ′ as well. We consider two cases:

128

6.3 Lazy Backtracking

(a) t is a loop-only transition in N̂ and therefore also in N̂ ′ and can be deleted.

(b) t is a duplicate of another λ-transition t′ in N̂ . If l(t′) 6∈ S′±, t′ is still a
λ-transition in N̂ ′ and t can be deleted.

But if l(t′) = s± ∈ S′±, t is no longer a duplicate of t′, but a structural
duplicate., i.e. the structural preconditions are fulfilled but the labels differ.
This case will not happen if – as mentioned at the beginning of this section – a
duplicate λ-transitions is only deleted if the respective former labels coincide.

Otherwise, the specification and hence N ′
0 are guaranteed to be consistent

and 1-live. Furthermore, the reduction operations preserve consistency and
1-liveness. Thus, in N̂ ′, t and t′ are 1-live and there is a reachable marking
M which enables both with M [t〉M ′ and M [t′〉M ′. If t fires, the state vector
of M and M ′ are equal, but if t′ fires, they differ for signal s; this contradicts
our notion of consistency.

This finishes the inductive proof – to conclude the main proof, we simply point out
that, if the reduction of N ′

0 is possible, the operation sequence reaching N ′
j is correct

according to Lemma 6.1. In particular, the newly generated structural conflicts in
N ′

0 . . . N ′
j−1 are not dynamic.

The last argument of the proof also shows that LazyBack can additionally help to
keep the components small, because some unnecessary backtracking due to structural-
but-not-dynamic auto-conflicts might be avoided.

We proceed with the description of LazyBack. We look now at the case where there
is at least one structural auto-conflict for signal sj in N ′

j . Then we cannot proceed
from this savepoint; instead, we have to find the signals whose contraction caused
these conflicts. To do this, consider STG Nj−1 with sj delambdarised resulting in
N ′

j−1 (3). If there is no conflict for sj , it is clear that the conflicts were generated by
the contraction of sj−1.

If some conflicts still exist in N ′
j−1, go back to savepoint Nj−2, delambdarise sj again

and check for a conflict for sj , and so on. Observe that the signals sj−1, sj−2, . . .
are not delambdarised while going back in this way, they are contracted again if the
reduction is continued eventually2.

If eventually a savepoint Nk is reached where the respective N ′
k does not have a struc-

tural auto-conflict for sj (4), it is clear that the contraction of signal sk caused at least
some conflict of sj , which is visible in N ′

k+1. Therefore, sk has to be delambdarised
in N ′

k, too, resulting in N ′′
k (5).

At this point there are two possible substrategies:

2Of course, it is possible that they are delambdarised during another backtracking.

129

6 Advanced Decomposition Strategies

• LazyMulti: If there is no structural auto-conflict for sk in N ′′
k , proceed from

there; differing from LazySingle, sj is not lambdarised again. If there is a
structural auto-conflict for sk in N ′′

k , go back to savepoint Nk−1, delambdarise
sk and sj (6) and check for structural auto-conflicts, and so on. In general, go
back with all signals delambdarised so far until a suitable savepoint is found.

In Figure 6.2, in N ′
k−1 the delambdarisation created a structural auto-conflict

for signal sk−1 which is therefore also delambdarised, yielding STG N ′′
k−1 (7).

Now there are no more structural conflicts, and the reduction proceeds from
there (8).

• LazySingle: If there is no structural auto-conflict for sk in N ′′
k , lambdarise

sj in N ′′
k again and proceed from there with reduction. If there is a structural

auto-conflict for sk in N ′′
k , go back to savepoint Nk−1, delambdarise sk (but not

sj) and check for structural auto-conflicts, and so on. In general, go back with
the last delambdarised signal until a suitable savepoint is found.

Since N does not have any structural auto-conflicts, we will eventually reach a save-
point which has the same property when we delambdarise the signals in the respective
set S′. We then proceed with reduction from this modified savepoint, after having
modified all preceding savepoints in the same way.

Both strategies are correct due to Proposition 6.2. LazySingle is the more opti-
mistic strategy: the hope is that preventing the ‘initial’ structural auto-conflict by
making one signal visible might also prevent the resulting conflicts including the one
for sj . Backtracking in LazyMulti mimics Basic, which would restart with sj de-
lambdarised after a structural auto-conflict was encountered, then restart with also
sk delambdarised, and so on.

The implementation of LazyBack in DesiJ differs slightly from the above descrip-
tion: if during backtracking a savepoint is found from which reduction can proceed,
the corresponding signals are not delambdarised in the preceding savepoints in order
to improve runtime. Instead, all signals which have been chosen for delambdarisation
by LazyBack are stored separately, and they are delambdarised in the components
on-the-fly when going back. It is in fact not hard to see that this is also correct due
to Proposition 6.2.

6.4 Tree Decomposition

The strategies described so far are improvements for the reduction of a single compo-
nent. This section deals with the method Tree, which improves the overall efficiency
of the reduction of all components .

130

6.4 Tree Decomposition

Considering example decompositions, it turned out that in most cases some com-
ponents had many lambdarised signals in common. Therefore, there should be an
intermediate STG C ′, from which these components could be derived: instead of re-
ducing both components independently, it is sufficient to generate C ′ only once and
to proceed separately with each component afterwards, thus saving a lot of work.
If this principle is iteratively applied, it results in a decomposition tree which com-
bines intermediate results to reduce the overall number of reduction operations. As
in LazyBack, Tree performs the contractions signal-wise.

Tree itself has two phases: building the decomposition tree and actually performing
tree decomposition. We demonstrate these phases by means of an example (see Fig-
ure 6.3): let N be an STG with the signal set {1, 2, 3, 4, 5}. Furthermore, let there
be 3 components C1, C2, C3, and {1, 2, 3}, {2, 3, 4}, {3, 4, 5} be the signals which are
lambdarised initially in these components. A possible intermediate STG C ′ for C1

and C2 would be the STG in which signals 2 and 3 have been contracted.

In (a) the initial situation is depicted. There are three independent leaves labelled with
the signals which should be contracted to get a component. In (b) C ′ is introduced
as a common intermediate result of C1 and C2. In (c) one can see nearly the same
situation as in (b), but signals which were already contracted earlier are commented
out; they are shown in brackets, and the actual labels of the respective leaves are
{1} and {4}. The following is a more operational view: each node u is labelled with
the signals su which should be contracted when it is entered with some STG, see
below. In (d) we added a common intermediate result for C ′ and C3 with label {3},
yielding the final decomposition tree. In (i) there is another possible tree for the same
components.

Tree decomposition according to a given decomposition tree works as follows: enter
the root node with the initial STG N without lambdarised signals. If entering a
node u with an STG Nu, lambdarise the signals su in Nu, perform reduction as usual
and enter each child node with its own copy of the resulting STG. If u is a leaf, the
resulting STG is a final component.

From this use of a decomposition tree, it is clear that in an optimal decomposition
tree the sum of all |su| should be minimal. Because of this, a decomposition tree is
the same as a preset tree defined in [KK01]. There it is shown that finding an optimal
preset tree is NP-complete, and a heuristic bottom-up algorithm is described which
performs reasonably well and works roughly as in the example above. We use this
algorithm for the automatic calculation of decomposition trees.

But there is a twist in our setting: since this tree is precalculated from the initial
feasible partition, it is likely that not all signal contractions are possible. If signal
s ∈ su cannot be contracted in Nu, we have to backtrack and s will be visible in the

131

6 Advanced Decomposition Strategies

(a)

1, 2, 3 2, 3, 4 3, 4, 5

(b)

1, 2, 3 2, 3, 4 3, 4, 5

2, 3

(c)

1 (2, 3) (2, 3) 4 3, 4, 5

2, 3
(d)

1 (2, 3) (2, 3) 4 (3) 4, 5

2 (3)

3

(e)

1 (2, 3) (2, 3) 4 (3) 4, 5

2 (3)

[3]

(f)

1 (2, 3) (2, 3) 4 3, 4, 5

2, 3

[3]

(g)

1 (2) 3 (2) 3, 4 3, 4, 5

2 [3]

[3]

(h)

1 (2) [3] (2) 3, 4 3, 4, 5

2 [3]

[3]

(i)

1, 2 (3) 2,(3, 4) (3, 4) 5

(3) 4

3

Figure 6.3: Tree Decomposition: the numbers denote signals, (1) denotes that signal 1 is
removed from a node during the construction, [1] denotes that signal 1 cannot be contracted
and is postponed.

132

6.4 Tree Decomposition

intermediate component resulting from Nu; now the easiest thing would be to leave
the tree as it is (and making s visible for the whole subtree of u).

But there is a way to obtain better results: we postpone s, i.e. we add s to every
child node of u (if there are any). This is promising for the following reason: the
contraction of s may have caused a structural auto-conflict for a signal s′, which is
lambdarised deeper in this subtree. When s′ is eventually contracted, the contraction
of s may become possible, making at least some of the final components smaller.

In our example, assume that the contraction of signal 3 in the root node is not possible,
because its contraction causes a conflict for signal 4, see Figure 6.3(e). Signal 3 is
therefore added to the inner node and the rightmost leaf in (f). In the rightmost leaf
the contraction of signal 3 becomes eventually possible after the contraction of signal
4, but not in the inner node so that 3 is added to the leftmost and middle leaves (g).
In the first one the contraction is again not possible, but in the latter one it finally
is (h). Therefore, the components C2 and C3 were generated as prearranged, only
component C1 has the additional signal 3, considered as an additional input.

Observe that – in contrast to LazyBack– once the decomposition of a node is finished,
it is not necessary to come back to this node and to delambdarise additional signals.
Since signals are lambdarised just in time when entering a node, there are no λ-
transitions left after the reduction in a node is finished and every potential auto-
conflict has become visible.

Backtracking with or without postponing changes the precalculated decomposition
tree, possibly decreasing its quality. In future work we will study how to interleave
the generation of the decomposition tree with the calculation of the components:
in [KK01] also a top-down algorithm for generating preset-trees is given, which starts
at the root node of the tree. After this algorithm has calculated the root node, Tree

is applied just to this node and maybe postpones some signals, thus changing the
root node. Then the children of this modified node are calculated (by the preset tree
algorithm) and reduced by Tree and so on. With this method postponing is taken
into account and the resulting tree might be better than for the current approach.

We now argue why Tree is a correct strategy. Consider the final decomposition tree
resulting from postponing some signals, cf. Figure 6.3(h); consider a final component
C (possibly having additional input signals due to postponing) and the path from
the root to the corresponding leaf. The reduction operations on this path can be
performed in the same order without backtracking by Basic. The only difference is
that in Tree signals are lambdarised ‘just in time’ and not at the beginning. This
could only result in more structural auto-conflicts, but Tree does not encounter any,
which implies correctness by Lemma 6.1.

133

6 Advanced Decomposition Strategies

6.4.1 Component Aggregation

An open problem of decomposition is how to find a good partition of the output signals
of an STG N , i.e. one that would result in components which are small enough to
be synthesised and which at the same time would yield small and efficient circuits.
A natural partition is of course the finest partition (cf. Section 3.3), whose members
usually contain only one output signal. However, this finest partition is not always
the best one, since it may be difficult to resolve CSC conflicts in it, and even when this
is not the case, having more output signals in a component can simplify the circuit.
Hence, it often makes sense to merge a number of small components (or components
sharing many signals) into one, provided that the resulting STG is not too big for
the synthesis tool to handle. Using Tree, this can be accomplished by aggregating
subtrees of a decomposition tree. We perform Tree as described above for the finest
partition, but with one difference: after a node u is reduced yielding STG C, we check
if we should stop at this point. If so, instead of generating all the components for the
leaves of u in the original decomposition tree, only C is returned, which produces all
the output signals of the leaves of this subtree.

By this method we get a reduced decomposition tree corresponding to a new coarser
partition, and clearly the correctness of Aggregation follows from the correctness
of Tree. Observe that the reduced decomposition tree corresponds to a feasible
partition, since all other feasible partitions can be derived from the finest one as
described on page 59.

It remains to explain under which conditions a subtree u should be aggregated. Since
the main purpose of decomposition is to make the components small enough for the
synthesis tool to handle, we propose two sensible criteria:

• u can be aggregated if the STG C has not too many signals, such that synthesis
can be performed in a reasonable time. In practice this is the same as not having
too many transitions.

• Consider the case that u has a leaf u′ which can be reached by contracting only
a small number of additional signals. This means that the component of u′ has
nearly the same size as C and the same might easily be true for the corresponding
reachability graphs. Therefore, instead of generating the component C ′ of u′

and some additional components, it might be better to aggregate u and to
synthesise C, which is only slightly larger than C ′. (Furthermore, the potential
speedup due to generating C ′ might not materialise due to backtracking.)

For our benchmark examples, we implemented the first criterion with bounds on
the signal number ranging from 3 to 15. These values could be tailored to specific
synthesis tools in future experiments.

134

6.5 Undo Stack and Self-Triggering

6.5 Undo Stack and Self-Triggering

During decomposition, one often has to copy large STGs as savepoints for backtrack-
ing; this actually has quite an influence on runtimes. Also, some of the described
strategies store quite a number of copies, which increases the memory usage. The
following simple implementation idea considerably improves the efficiency: during re-
duction, one keeps an undo stack of the operations performed; instead of copying a
previous STG, one recomputes it by undoing the reduction operations as needed, see
Chapter 8 for a detailed explanation. In the result section, we show experimentally
that this idea can decrease the runtimes of decomposition by factor 12, depending on
the size of the specification.

The second idea concerns a specific issue of circuit synthesis: for synthesis, the STG
must have CSC. Unfortunately, decomposition might easily introduce new CSC con-
flicts. A special type of CSC conflict is self-triggering, which means that, for some
reachable marking M , we have M [t〉M ′[t′〉M ′′ such that ¬M [t′〉 and t and t′ are la-
belled with complementary edges of the same input signal and M and M ′′ enable
different outputs. CSC conflicts have to be resolved by insertion of internal signals,
but the ones resulting from self-triggering of input transitions are irreducible (in the
speed-independent framework), thus self-triggering should be avoided.

However, checking for self-triggering requires a reachability analysis. The implemen-
tation of decomposition uses a conservative structural overapproximation: structural
self-triggering means that there are transitions t and t′ which are labelled with com-
plementary edges of the same input signal and satisfy t ∈ •(•t′). Analogously to
new structural auto-conflicts, the algorithm checks whether a contraction would cre-
ate a new structural self-triggering; such a contraction is not allowed and leads to
backtracking. This approach also gives correct decompositions, since backtracking is
allowed in Basic at any stage. In Section 6.7, we will show that this simple structural
approach has a very beneficial effect on the synthesisability of the components.

6.6 CSC-Aware Decomposition

Often, one can assume that the original STG has CSC, e.g. if it was derived from
a Balsa specifications. Unfortunately, decomposition can introduce new CSC con-
flicts; in such cases, it is preferable to delambdarise more signals than necessary for
correctness, in order to preserve CSC rather than to resolve CSC conflicts with new
internal signals.

In the previous section, it was discussed that already avoiding self-triggering can
help to preserve CSC, but often this is not enough. In this section, it is described

135

6 Advanced Decomposition Strategies

how STG decomposition can be combined with unfolding-based STG synthesis – in
particular with the tool Mpsat – to generate components which preserve CSC of the
specification.

The strategy we adopted is as follows. A variation of Tree (see below) is used
to detect signals which help to preserve CSC, and while the STGs are large, only
structural conservative checks are made, as it may be computationally very expensive
to perform the exact tests. After some reductions have been performed, it becomes
feasible to check exact reachability-like properties using Punf and Mpsat (logic
synthesis is still not feasible at this stage). Eventually, when the components are
small enough, logic synthesis is performed.

While DesiJ can handle and produce non-safe nets, Punf and Mpsat need safe nets.
Therefore, we accept only safe nets as specifications (which is no serious restriction)
and perform only safeness-preserving contractions (Subsection 6.6.2) during decom-
position.

During the decomposition process the decomposition algorithm checks from time to
time the following reachability-like properties:

• The decomposition algorithm should backtrack if a new dynamic auto-conflict
is produced. The corresponding conservative test is the presence of a new struc-
tural auto-conflict.

• It is also helpful to remove implicit places. The corresponding conservative test
looks for redundant places, which are defined by a system of linear inequalities.
Checking this condition with a linear program solver is not NP-complete but
still quite expensive, and therefore DesiJ looks only for the subset of shortcut
places, cf. Section 3.1.2.

• In order to apply Mpsat, the STG must be safe. In general, a transition con-
traction can transform a safe STG into an non-safe (2-bounded) one. The cor-
responding conservative structural conditions guaranteeing that a contraction
preserves safeness are developed below.

All of the mentioned dynamic properties can be checked with a reachability analysis,
which can be performed by Mpsat. Since we only consider safe nets here, reachability-
like properties can be expressed as Boolean expressions over the places of the net. For
example, a net fulfils the property p1∧p2∧¬p3 iff some reachable marking has a token
on p1 and p2 and no token on p3. (Such properties can be checked by Mpsat.) Below
we give Boolean expressions and a conservative test for safeness-preservation.

In the next subsection the general approach of CSC preservation is introduced. In
Subsection 6.6.2 it is described how safeness is preserved during reduction, since

136

6.6 CSC-Aware Decomposition

non-safe STGs cannot be analysed at all, or only with a greatly reduced efficiency.
Unfortunately, transition contractions do not preserve safeness in general, and here it
is shown how this can be guaranteed by an efficient reachability analysis as well as by
proper structural preconditions. In Subsection 6.6.3 the detection of implicit places
and dynamic auto-conflicts with a reachability analysis is described.

6.6.1 CSC-Aware Decomposition

On the base of tree decomposition, we now introduce CSC-aware decomposition.
Our aim is to reduce the number of CSC conflicts in the components generated by
the decomposition algorithm. Ideally, if the original specification is free from CSC
conflicts then this should be the case also for the components.

First, we describe how CSC conflicts can be detected on unfoldings. Due to its
structural properties (such as acyclicity) the unfolding can represent the reachable
states of an STG using configurations. A configuration C is a downward-closed set
of events (i.e. transitions) without conflicts. Being downward-closed means that if
e ∈ C and f is a predecessor of e then f ∈ C; without conflicts, means that for all
distinct events e, f ∈ C, •e∩ •f = ∅. Intuitively, a configuration is a partially ordered
firing sequence, i.e. a firing sequence where the order of firing of some of its events
(viz. concurrent ones) is not important.

A CSC conflict can be represented in the unfolding prefix as an unordered conflict
pair of configurations 〈C1, C2〉 whose final states are in CSC conflict, as shown in
Figure 6.4. It was shown in [KKY04] that the problem of checking if there is such a
conflict pair is reducible to SAT, and an efficient technique for finding all CSC conflict
pairs was proposed.

Let 〈C1, C2〉 be a conflict pair. The corresponding complementary set CS is defined as
the symmetric set difference of C1 and C2. CS is a core if it cannot be represented as
the union of several disjoint complementary sets. For example, the core corresponding
to the conflict pair shown in Figure 6.4 is {e4, . . . , e8, e10}.

An important property of complementary sets is that for each signal s ∈ Sig, the
differences between the numbers of s+– and s−–labelled events are the same in the two
parts C1 \C2 and C2 \C1 (and are 0 if C1 ⊂ C2). This suggests that a complementary
set can be eliminated (resolving thus the corresponding encoding conflict), e.g. by
introduction of a new internal signal csc, and insertion of a csc+ labelled transition
into one part, as then the stated property would be violated. (Note that the circuit has
to implement this new signal, and so for the purpose of logic synthesis it is regarded
as an output, though it is ignored by the environment.) To preserve the consistency
of the STG, the transition’s counterpart, csc−, must also be inserted outside the core,
in such a way that it is neither concurrent to nor in structural conflict with csc+.

137

6 Advanced Decomposition Strategies

Another restriction is that an inserted signal transitions must not trigger an input
signal transition in order to preserve input-properness.

For example, the core in Figure 6.4 can be eliminated by inserting a new signal edge
csc+, somewhere in the core, e.g. concurrently to e5 and e6 between e4 and e7, and
by inserting its complement outside the core, e.g. concurrently to e11 between e9 and
e12. (Note that the concurrent insertion of these two transitions avoids an increase
in the latency of the circuit, where each transition is assumed to contribute a unit
delay.) After adding this signal to the STG, the CSC property is satisfied.

Now, we present CSC-aware decomposition, cf. Figure 6.5. The new algorithm tra-
verses the decomposition tree in a depth-first order starting at the root node. When
entering a node u from above, i.e. coming from its parent, the respective reduction
operations are performed as in Tree, generating an STG Nu. Additionally, when
entering a node from below, i.e. coming back from one of its children, additional
operations are performed to resolve CSC conflicts (if any). These operations are
encapsulated as CSC-jobs, which are created in the leafs.

When a leaf is reached, Mpsat checks the corresponding component for CSC conflicts.
If there are none, the component is immediately saved as final result. Otherwise, a
CSC-job is created, containing the signature of the respective component as well as a
conflict pair for each CSC conflict generated by Mpsat. Additionally, the job contains
an initially empty set of signals D; in general, D contains signals which should be
added to the component to destroy CSC conflicts. The leaf does not know about any
additional signals, so it cannot know about signals destroying the conflicts detected
in the leaf; consequently, D is empty. This CSC-job is stored within the parent node
of the leaf.

If the algorithm enters an inner node u from below, all CSC-jobs present there are
processed: for each CSC-job J , a new one J ′ is created as a copy of J but with an
empty set of conflict pairs. Then, the algorithm checks for each CSC conflict pair in
J , if the corresponding conflict is also present in the STG Nu associated with u, as
follows. The firing sequences of the conflict pair are mapped to firing sequences of
Nu by inverse projection (see below). If these new firing sequences do not lead to a
CSC conflict in Nu, analysing the inverse projection shows which signals helped to
destroy the conflict, and one of them is added to D′ in J ′. Otherwise, the new firing
sequences are added as conflict pair to J ′.

If, after handling all conflict pairs of J , J ′ does not contain any, then one adds D′

to the inputs of J ′ and generates the final component with this modified signature
from Nu with reduction (using strategy Reordering); this component may contain
new CSC conflicts, for which a new CSC-job is created and stored in the parent of u.
Otherwise, J ′ is stored in the parent of u in the hope that more signals might help to
destroy the remaining conflicts.

138

6.6 CSC-Aware Decomposition

co
re

e 1

d
sr

+

e 1
e 2

ld
s+e 2

e 3

ld
ta

ck
+

e 3
e 4 d
+e 4

e 5

d
ta

ck
+

e 5
e 6

d
sr

−

e 6
e 7 d
−e 7

e 8

d
ta

ck
−

e 8
e 1

0

d
sr

+

e 1
0

e 9

ld
s− e 9

e 1
1

ld
ta

ck
−

e 1
1

e 1
2

ld
s+

e 1
2

cs
c+

cs
c−

C
1

C
2

[lds]=csc·(ldtack·dsr+lds)+d [dtack]=d
[d]=lds·csc·ldtack+d·dsr [csc]=d+lds·csc

Figure 6.4: Unfolding prefix of VME bus controller: the unfolding prefix with the cor-
responding conflict core, and a way to resolve it by adding a new signal csc (top), and a
complex-gate implementation (bottom).

139

6 Advanced Decomposition Strategies

Node

Node

Leaf

other nodes

other nodes

1 contract signals

2 go to child node

3 contract signals

4 go to child node

5 contract signals 6 check CSC

if fulfilled, then the component finished

if not fulfilled, store a new CSC-job in parent

7 go up to parent node

8 handle CSC-jobs from last child

store remaining jobs in parent

9 go to next child

10 eventually go up, and so on

Figure 6.5: Outline for CSC-aware decomposition. Step 8 is repeated every time a node is
entered from a child, step 9 possibly includes the generation of new CSC-jobs.

If all CSC-jobs stored in u are processed, the depth-first traversal is continued and
the next child of u is entered. This may result in new jobs stored in u, which are
processed before its next child is entered, and so on. If all children of u have been
considered and the last CSC-job was handled, the decomposition algorithm returns
to the parent of u and deals with the respective CSC-jobs, etc.

To sum it up, for each final component containing CSC conflicts, a CSC-job is created
containing the necessary information to produce a component where these conflicts
have been resolved with signals contained in the specification.3 For this, additional
inputs are determined by ‘pushing’ the CSC-job upwards in the tree and determining
helpful signals in each node. This CSC-job handling is interleaved with the actual
tree decomposition.

We now explain inverse projection: let N and N ′ be two STGs such that N ′ is
obtained from N by a sequence of reduction operations. If v′ is a firing sequence of
N ′, we call a firing sequence v of N an inverse projection of v′ if v′ is the projection
of v on the transitions of N ′.

3In contrast, ordinary CSC conflict resolution adds new internal signals.

140

6.6 CSC-Aware Decomposition

For a conflict pair (v′
1, v

′
2) of N ′ the corresponding signal change vectors bv′

1 and bv′

2

coincide. If the inverse projection (v1, v2) of this pair is such that bv1 = bv2 , then
also these sequences lead to a CSC conflict; otherwise, the corresponding conflict is
destroyed by delambdarising any of the signals s for which bv1(s) 6= bv2(s).

Hence, let N ′ be obtained from N by the secure contraction of t. (The case of deletion
of an implicit place or a redundant transition is trivial.) The inverse projection v of
v′ is obtained by firing the transitions of v′ in N , one by one, while possible. If, at
some point, a transition of v′ cannot be fired then t is fired (it is guaranteed to be
enabled in such a case due to Corollary 3.11).4 This process is continued until all the
transitions of v′ are fired, yielding v. One can see that a shortest inverse projection
is computed by the described procedure.

A sequence of contractions can be processed in the reverse order one-by-one. However,
for efficiency the inverse projection is computed in one step in this case: if a transition
t of v′ cannot be fired in N , a breadth-first search is started at the corresponding
marking of N to get a shortest sequence of transitions from N \ N ′ which enables t.

This algorithm is complete, i.e. it guarantees for a specification with CSC that each
component has CSC, too. This is due to the fact that a CSC-job can be pushed up
to the root node, where CSC is fulfilled initially. In practice, however, one should
stop this after a fixed number of levels and try to resolve the remaining CSC conflicts
with new internal signals instead. Therefore, the algorithm is also applicable to
specifications which have CSC conflicts initially.

Furthermore, if some conflict of a CSC-job can be destroyed with any of several signals,
one could determine a minimal set of signals which destroys all conflicts of this job.
This has not been investigated for the time being and is left as future research.

6.6.2 Safeness-Preserving Contractions

A transition contraction preserves boundedness, but, in general, it can turn a safe
net into a non-safe one, as well as introduce weighted arcs. However, since unfolding
techniques are not very efficient for non-safe net, we assume that the initial STG
is safe, and perform only safeness-preserving contractions, i.e ones which guarantee
that if the initial STG was safe then the transformed one is also safe. (Note that the
transitions with weighted arcs must be dead in a safe Petri net, and so we can assume
that the initial and all the intermediate STGs contain no such arcs.)

We now give a sufficient structural condition for a contraction being safeness-preser-

4A detailed proof would have to consider the subtle case that the simulation of Corollary 3.11
could have ‘fired’ t earlier than necessary; such a firing of t can be moved to the end of v reaching
the same marking.

141

6 Advanced Decomposition Strategies

ving. Then we will show how this can be checked with a partial reachability analysis
and also how a single unfolding prefix can be used for checking if a sequence of
contractions is safeness-preserving.

Lemma 6.3
Let N be a safe net and let N ′ be obtained from N by the secure contraction of a
transition t. Then all places which are not generated by the contraction (i.e. all places
from P ′ \ (•t × t•)) are safe.

Proof. Let S ′ be the transition simulation between N ′ and N from Corollary 3.11,
and let M ′ be a reachable marking with MN ′ [v′〉M ′. Then MN [v〉M with v′ = v|T ′

and (M ′,M) ∈ S ′. If p′ ∈ P ′ is not generated by the contraction, it is of the form
(p, ⋆) for some p ∈ P . The marking equality now implies M ′(p′) = M ′((p, ⋆)) =
M(p) + M(⋆) ≤ 1.

Theorem 6.4 (Structural safeness-preservation)
The secure transition contraction of t in a net N is safeness-preserving if

(1) |•t| = 1 or

(2) |t•| = 1, •(t•) = {t} and

(a) N is live and reversible
or

(b) MN (p) = 0 with t• = {p}

(or equivalently: the contraction is type-2 secure)

Proof. Let S and S ′ ⊆ S be the corresponding transition simulations from Corol-
lary 3.11. Observe that a transition contraction turns a safe net into a 2-bounded
one, which does not have to be safe.

(1) |•t| = 1: let •t = {p}. If N is safe but N ′ is not, one of the places generated
during contraction is non-safe (Lemma 6.3), e.g. (p, q) with q ∈ t•. Hence, a marking
M ′ of N ′ exists with MN ′ [u〉M ′ and M ′((p, q)) = 2. Corollary 3.11 implies that there
is a marking M of N with (M ′,M) ∈ S ′. Hence M(p) + M(q) = 2, and so due to the
safeness of N , M(p) = M(q) = 1. Therefore t is enabled due to M(p) = 1, and firing
it puts a token on q which already contained one, contradicting the safeness of N .

(2) |t•| = 1 and •(t•) = {t}: let N be safe and N ′ be non-safe, and let t• = {p}.
Analogously to the first case, Lemma 6.3 implies that there is a reachable marking
M1 of N such that M1(q) = M1(p) = 1 for some place q ∈ •t; the picture below shows
a corresponding fragment of N . Observe that, by safeness of N , some places of •t
must be empty.

142

6.6 CSC-Aware Decomposition

q

t

p

M1

q

t

p

M2

q

t

p

M3

If (a) holds, i.e. N is live, there must be a reachable marking M2 which enables t;
since N is safe, M2 puts exactly one token in every place in •t and no token on p.
The marking M3 which is reachable from M2 by firing t puts one token in p and no
tokens in the places in •t. Since N is reversible, M1 is reachable from M3.

If (b) holds, i.e. p is initially unmarked, M1 can only be reached via markings M2 and
M3, since only t can put a token on p.

In both cases there are transition sequences v1 and v2 such that

MN [v1〉M2[t〉M3[v2〉M1 .

Moreover, without loss of generality, one can assume that v2 does not contain t; indeed,
if v2 = v′

2tv
′′
2 with v′′

2 not containing t, one finds that MN [v1tv
′
2〉M

′
2[t〉M

′
3[v

′′
2 〉M1 with

the required properties.

Since v2 does not contain t, the token on p cannot be removed by the transitions in v2

because only t can put it there again. Hence M2[v2〉M with M(q) = 2, because the
firing of v2 increases the marking of q by 1. This contradicts N being safe.

Figure 6.6 shows two counterexamples: the leftmost net violates the condition that
either the pre- or postset of t has to contain a single place; one can see that, the
contraction of t generates an non-safe net. The net in the middle violates the condition
•(t•) = {t} of the second case of Theorem 6.4 (i.e. that the place in the postset of t
must not have incoming arcs other than from t); the rightmost net is obtained by
contracting t in the net in the middle.

In practice, the decomposition algorithm checks the condition 2(b) which makes no
assumptions about the net which are difficult to verify. This is important since there
exist STGs which are neither live nor reversible, e.g. ones which have some initialisa-
tion part which is executed only once in the beginning.

If the specification is guaranteed to be live and reversible, it is also possible to use
condition 2(a); then Proposition 3.13 is needed to apply such contractions repeatedly.

143

6 Advanced Decomposition Strategies

t

t 2

Figure 6.6: Examples of non-safeness-preserving contractions

Theorem 6.4 gives us a sufficient structural condition to check whether a contraction
is safeness-preserving. To be sure one has to perform a reachability analysis; the rest
of this section shows this can be achieved on the unfolding of a net.

Theorem 6.5
Let N be a safe STG and t ∈ T be such that the contraction of t is secure. The
contraction of t is safeness-preserving iff the following property does not hold:

(

∨

r∈•t

r

)

∧

(

∨

s∈t•

s

)

. (∗)

Proof. Let N ′ be the resulting STG, S be the transition simulation between N and
N ′, and S ′ ⊆ S−1 be the transition simulation between N ′ and N from Corollary 3.11.

(⇒) Suppose there is a reachable marking M of N fulfilling the Boolean expression.
Then there are two places r ∈ •t and s ∈ t• with M(r) = M(s) = 1. Since the
contraction is defined, r 6= s. Since M is reachable, MN [v〉M for some firing sequence
v of N . Hence, M ′

N [v|T ′〉M ′ with (M,M ′) ∈ S. Since t was contracted, M ′((r, s)) =
M(r) + M(s) = 2, i.e. N ′ is not safe.

(⇐) Suppose now that N ′ is non-safe due to a place p′ and a reachable marking M ′ of
N ′. Lemma 6.3 implies that p′ is newly generated by the contraction, i.e. p′ ≡ (r, s)
with r ∈ •t and s ∈ t•. Since M ′ is reachable, M ′

N [v′〉M ′ for some firing sequence
v′ of N ′. Hence, MN [v〉M ′ with v′ = v|T ′ and (M ′,M) ∈ S ′. Then, the marking
equality implies M ′((r, s)) = M(r) + M(s) > 1. Since N is safe, M(r) = M(s) = 1
and M fulfils the Boolean expression.

To check the safeness of a sequence of contractions on a single unfolding, one has to
build expressions over the original net, which are derived from the intermediate nets.

144

6.6 CSC-Aware Decomposition

For this, we use place-projection (Definition 3.7) and the extended marking equality
(Proposition 3.12).

Theorem 6.6
Let N be a safe STG and let N ′ be an STG obtained from it by a sequence of secure
safeness-preserving transition contractions. Then the contraction of a transition t in
N ′ is safeness-preserving iff the following property does not hold in N :

∨

r∈Φ•t

r

 ∧

∨

s∈Φt•

s

 (∗∗)

With ΦX =
⋃

p∈X [ΦN ′

N (p)] with X ⊆ P ; recall that [.] denotes the support of a multiset.

Proof. We will show that the equation (∗∗) can be fulfilled in N if and only if the
equation (∗) from Theorem 6.5 can be fulfilled in N ′. Let S be the transition simu-
lation between N and N ′ and S ′ ⊆ S−1 be the transition simulation between N ′ and
N , whose existence is implied by Corollary 3.11.

(⇐) Suppose (∗∗) is fulfilled for the marking M reached by some firing sequence v of
N . Then there are two places r ∈ Φ•t and s ∈ Φt• with M(r) = M(s) = 1. Moreover,
by Proposition 3.12 and safeness of N ′, M ′

N [v|T ′〉M ′ with (M,M ′) ∈ S and M ′(q′) =
∑

q∈P ΦN ′

N (q′)(q) · M(q) ≤ 1 for each place q′ ∈ P ′. Since M(r) = 1, r ∈ [ΦN ′

N (q′)]

then implies M ′(q′) = 1 for q′ ∈ P ′ (†). In particular, since r ∈
⋃

p∈•t[Φ
N ′

N (p)] there

is a place r′ ∈ •t with r ∈ [ΦN ′

N (r′)], and then by (†) M ′(r′) = 1.

Analogously there is a place s′ ∈ t• with M(s′) = 1 and therefore (∗) is fulfilled for
M ′.

(⇒) Suppose now that (∗) is fulfilled for the marking M ′ reached by some firing
sequence v′ of N ′, i.e. there are two places r′ ∈ •t and s′ ∈ t• with M ′(r′) = M ′(s′) =
1. Then there is a firing sequence v of N such that v′ = v|T ′ and MN [v〉M with
(M ′,M) ∈ S ′. Moreover, by Proposition 3.12, M ′(q′) =

∑

q∈P ΦN ′

N (q′)(q) · M(q) for

each place q′ ∈ P ′. In particular, 1 = M ′(r′) =
∑

q∈P ΦN ′

N (r′)(q) ·M(q). This implies

that there is a place r ∈ [ΦN ′

N (r′)] with M(r) = 1. Analogously, one can show that

there is a place s ∈ [ΦN ′

N (s′)] with M(s) = 1, and thus (∗∗) is fulfilled for M .

The last result makes it possible to use one unfolding prefix to check that a given
sequence of contractions is safeness-preserving. This works as follows:

(1) Starting with N , check if the first contraction is safeness-preserving using Theo-
rem 6.5.

145

6 Advanced Decomposition Strategies

(2) Perform the contraction resulting in a new STG.

(3) To check if the next contraction is safeness-preserving in the new STG, build an
expression over N using Theorem 6.6.

(4) Repeat steps 2 and 3 until all the desired contractions are performed.

Observe that all the new nets are generated and used to build an expression over the
original net, thus the original unfolding prefix can be used in step (3), which avoids
the expensive generation of several unfolding prefixes.

6.6.3 Implicit Places and Dynamic Auto-Conflicts

As it was already mentioned, the deletion of implicit places is important for the success
of decomposition. As a conservative condition and as discussed in previous chapter,
DesiJ only looks for shortcut and loop only places. Unfolding-based reachability
analysis makes it possible to check exactly whether a place is implicit: a place p of N
is implicit iff the following property does not hold:

¬p ∧

∨

t∈p•

∧

q∈•t\{p}

q

 , (∗ ∗ ∗)

i.e. there is a reachable marking such that only p being unmarked prevents the firing
of a transition in p•.

It is possible to detect all implicit places of a net with a single unfolding: observe first
that the unfolding of a net in which an implicit place was deleted can be obtained
from the original unfolding by deleting all occurrences of this place5, because the sets
of reachable markings and firing sequences do not change. In fact, it is not even
necessary to modify the original unfolding to check the implicitness of another place,
since previously deleted implicit places will simply not occur in the corresponding
instantiation of (∗ ∗ ∗).

It is furthermore sufficient to check (∗ ∗ ∗) once for each place p (and to delete p
where applicable) in order to delete as much implicit places as possible. To see this,
observe that the deletion of an implicit place cannot turn a non-implicit place into
an implicit one. Indeed, suppose p1 is implicit and deleted in N , yielding N1, and
p2 is implicit and deleted in N1, yielding N2. Then FS(N) = FS(N1) = FS(N2) by
definition of implicit places. Suppose now that p2 is deleted first in N , yielding N ′

1,
and p1 is deleted in N ′

1, yielding N2 again. Then FS(N) ⊆ FS(N ′
1) ⊆ FS(N2) =

5This is in general not true for the deletion of arbitrary places.

146

6.7 Conclusion

FS(N), since deleting places can only increase the set of firing sequences. Therefore
FS(N) = FS(N ′

1) = FS(N2), which shows that p2 is implicit in N .

On the other hand, deletion of an implicit place may render a different implicit place
non-implicit, e.g. if two places are duplicates of each other (a common situation during
decomposition). Hence, it is not correct to calculate all implicit places first and to
delete them all afterwards.

Additionally, it is possible to detect dynamic auto-conflicts with unfoldings. A con-
servative test for the presence of an auto-conflict is the presence of a structural auto-
conflict. Unfolding-based reachability analysis makes it possible to check exactly for
the presence of an auto-conflict as follows. In a safe STG, distinct transitions t1 and
t2 in structural auto-conflict are in dynamic conflict iff the following property holds:

∧

p∈•t1∪•t2

p .

Using this exact test for each suitable pair of transitions can reduce the number of
times the decomposition algorithm has to backtrack, which ultimately can result in
an improved runtime and smaller final components.

However, in our experience, structural auto-conflicts are in most cases also dynamic
ones (cf. also the discussion for the risky strategy in the next section). Hence, we
think the additional computational effort of performing the dynamic check is lost,
and the dynamic test for dynamic auto-conflicts is not used in DesiJ.

6.7 Conclusion

6.7.1 Results

The strategies and other implementation improvements of the previous sections have
been implemented in the tool DesiJ. This section presents the experimental results
for a number of benchmark examples circulating in the STG community as well as for
some newly generated benchmarks based on Balsa [EB02] handshake components.
In [SVWK06], similar benchmarks for DesiJ were presented; however, the results
there differ very much from the present ones. The reason is that the undo stack
was not implemented then and also several other smaller optimisations have been
implemented since then.

The algorithm for the CSC-aware approach to decomposition is denoted by DeMpSy

(DEcomposition and MPsat for SYnthesis); it uses the undo-stack, forbids self-trigger-
ing and includes the dynamic checking of implicitness and safeness-preservation.

147

6 Advanced Decomposition Strategies

All experiments were performed on a Pentium 4 HT with 3 GHz and 2 GB RAM. The
runtimes in the tables are given in seconds (rounded). We start with a table showing
the basic parameters of these benchmarks. Then a comparison of our decomposition
strategies using the newly developed undo stack in contrast to copying STGs at the
respective savepoints is presented in Table 6.2. Then we compare the detection of
implicit places with unfolding and structural methods in Table 6.3. Table 6.4 presents
a more extensive comparison of the different decomposition strategies, which shows
that Tree is the fastest one. This is followed by a presentation of the impact of
Aggregation on the size of a decomposition in Table 6.5. In Table 6.6 we compare
Tree (with and without allowing self-triggering) with DeMpSy. Finally, in Table 6.7
the results of the decomposition of large STGs with DeMpSy are presented.

The risky auto-conflict detection was tested with Basic, Reordering, LazyBack

and Tree, but turned out to be not very successful in general: for most decomposi-
tions, there are some final components with at least one auto-conflict; this is also the
case for nearly every benchmark of the dup.x series (see below) even when using the
conservative approach, but risky worsens this problems. Furthermore, the runtimes
are not much smaller than for the conservative conflict detection. Nevertheless, if at
least most of the components are free from auto-conflicts, the risky approach might
be useful for semi-automatic decomposition. Here we only present results for the con-
servative approach. Also, there is no difference between the results of LazySingle

and LazyMulti and therefore only the results for the former are given.

All benchmarks were performed using safeness-preserving contractions (Section 6.6.2)
to keep the comparison fair and to allow for the synthesis with Mpsat. In particular,
DeMpSy has to use safeness-preserving contractions to allow the dynamic checking
of properties (like implicitness) with Mpsat, and also safeness-preservation is checked
dynamically there. The other strategies only use the respective structural tests.

In Table 6.1, all the benchmarks we used are presented together with the respective
number of signals, places, transitions and arcs. The series 2pp.x, 3pp.x and dup.x

were used by other authors before, whereas the STGs from the seqpartree.x series
are newly generated. Observe that the latter series contains some very large STGs.
They are derived from Balsa specifications as described below, and we produced
them in two variants: with and without CSC initially. Similar benchmarks were used
before in [CC06]. The benchmark seqpartree(21,10) from there is nearly the same
as seqpartree.05 here; the difference is that we did not hide the internal handshake
signals between the components.

148

6.7 Conclusion

N
a
m

e
|S

ig
|

|P
|

|T
|

|W
|

2
p
p
.a

rb
.n

ch
.0

3
.c

sc
1
1

4
0

2
4

8
4

2
p
p
.a

rb
.n

ch
.0

6
.c

sc
1
7

6
4

3
6

1
3
2

2
p
p
.a

rb
.n

ch
.0

9
2
3

8
6

4
8

1
7
6

2
p
p
.a

rb
.n

ch
.1

2
.c

sc
2
9

1
1
2

6
0

2
2
8

2
p
p
.w

k
.0

3
.c

sc
7

2
4

1
4

4
8

2
p
p
.w

k
.0

6
.c

sc
1
3

4
8

2
6

9
6

2
p
p
.w

k
.0

9
.c

sc
1
9

7
2

3
8

1
4
4

2
p
p
.w

k
.1

2
.c

sc
2
5

9
6

5
0

1
9
2

3
p
p
.a

rb
.n

ch
.0

3
.c

sc
1
6

5
9

3
6

1
2
6

3
p
p
.a

rb
.n

ch
.0

6
.c

sc
2
5

9
5

5
4

1
9
8

3
p
p
.a

rb
.n

ch
.0

9
.c

sc
3
4

1
3
1

7
2

2
7
0

3
p
p
.a

rb
.n

ch
.1

2
.c

sc
4
3

1
6
7

9
0

3
4
2

3
p
p
.w

k
.0

3
.c

sc
1
0

3
6

2
0

7
2

3
p
p
.w

k
.0

6
.c

sc
1
9

7
2

3
8

1
4
4

3
p
p
.w

k
.0

9
.c

sc
2
8

1
0
8

5
6

2
1
6

3
p
p
.w

k
.1

2
.c

sc
3
7

1
4
4

7
2

2
8
8

d
u
p
.m

st
.m

o
d
.1

2
2

1
2
9

1
0
0

2
9
6

d
u
p
.m

st
.m

o
d
.2

2
1

1
1
3

8
8

2
6
4

d
u
p
.m

st
.m

o
d
.3

2
2

1
3
4

9
8

3
0
8

d
u
p
.m

st
.m

o
d
.3

.1
2
3

1
4
0

1
0
0

3
2
1

d
u
p
.m

st
.m

o
d
.3

.3
2
2

1
3
5

9
8

3
1
0

d
u
p
.m

st
.m

o
d
.3

.4
2
6

1
4
5

1
0
7

3
3
0

d
u
p
.m

st
.m

o
d
.3

.5
2
8

1
5
3

1
1
5

3
4
6

d
u
p
.m

st
.m

o
d
.3

.6
.1

2
8

1
5
3

1
1
5

3
4
6

d
u
p
.m

st
.m

o
d
.3

.6
2
8

1
5
3

1
1
5

3
4
6

d
u
p
.m

st
.m

o
d
.3

.7
2
9

1
5
9

1
1
9

3
5
9

d
u
p
.m

st
.m

o
d
.3

.8
2
9

1
5
9

1
1
9

3
6
9

d
u
p
.4

.p
h
.d

t.
p
l.
1

2
7

1
3
3

1
2
3

2
8
6

d
u
p
.4

.p
h
.d

t.
p
l.
2

2
7

1
3
5

1
2
3

2
9
0

N
a
m

e
|S

ig
|

|P
|

|T
|

|W
|

d
u
p
.4

.p
h
.d

t.
p
l.
3

2
7

1
3
6

1
2
3

2
9
2

d
u
p
.4

.p
h
.d

t.
p
l.
m

st
.3

2
6

1
1
4

1
0
5

2
4
2

d
u
p
.4

.p
h
.d

t.
p
l.
m

st
.4

.a
2
3

1
0
9

9
6

2
3
4

d
u
p
.4

.p
h
.d

t.
p
l.
m

st
.4

2
6

1
1
3

1
0
0

2
4
2

d
u
p
.4

.p
h
.d

t.
p
l.
sl

v
.3

2
6

1
2
1

1
1
2

2
5
8

d
u
p
.4

p
h
.c

sc
2
7

1
3
5

1
2
3

2
9
0

d
u
p
.4

p
h

2
7

1
3
3

1
2
3

2
8
6

d
u
p
.4

p
h
.m

tr
.c

sc
2
6

1
1
4

1
0
5

2
4
2

d
u
p
.4

p
h
.m

tr
2
3

1
0
9

9
6

2
3
4

d
u
p
.m

tr
.m

o
d
.c

sc
2
8

1
5
3

1
1
5

3
4
6

d
u
p
.m

tr
.m

o
d

2
2

1
2
9

1
0
0

2
9
6

se
q
p
a
rt

re
e.

0
2

1
4

3
8

2
8

7
6

se
q
p
a
rt

re
e.

0
2
.c

sc
1
9

4
8

3
8

9
6

se
q
p
a
rt

re
e.

0
3

3
0

8
6

6
0

1
7
2

se
q
p
a
rt

re
e.

0
3
.c

sc
2
9

1
0
4

7
8

2
0
8

se
q
p
a
rt

re
e.

0
4

6
2

1
9
0

1
2
4

3
8
0

se
q
p
a
rt

re
e.

0
4
.c

sc
8
7

2
4
0

1
7
4

4
8
0

se
q
p
a
rt

re
e.

0
5

1
2
6

3
8
2

2
5
2

7
6
4

se
q
p
a
rt

re
e.

0
5
.c

sc
1
6
7

4
6
4

3
3
4

9
2
8

se
q
p
a
rt

re
e.

0
6

2
5
4

7
9
8

5
0
8

1
5
9
6

se
q
p
a
rt

re
e.

0
6
.c

sc
3
5
9

1
0
0
8

7
1
8

2
0
1
6

se
q
p
a
rt

re
e.

0
7

5
1
0

1
5
6
6

1
0
2
0

3
1
3
2

se
q
p
a
rt

re
e.

0
7
.c

sc
6
7
9

1
9
0
4

1
3
5
8

3
8
0
8

se
q
p
a
rt

re
e.

0
8

1
0
2
2

3
2
3
0

2
0
4
4

6
4
6
0

se
q
p
a
rt

re
e.

0
8
.c

sc
1
4
4
7

4
0
8
0

2
8
9
4

8
1
6
0

se
q
p
a
rt

re
e.

0
9

2
0
4
6

6
3
2
0

4
0
9
2

1
2
6
0
4

se
q
p
a
rt

re
e.

0
9
.c

sc
2
7
2
7

7
6
6
4

5
4
5
4

1
5
3
2
8

se
q
p
a
rt

re
e.

1
0

4
0
9
4

1
2
9
5
8

8
1
8
8

2
5
9
1
6

se
q
p
a
rt

re
e.

1
0
.c

sc
5
7
9
9

1
6
3
6
8

1
1
5
9
8

3
2
7
3
6

Table 6.1: The benchmark STGs used in this section together with their number of signals,
places, transitions and arcs.

149

6 Advanced Decomposition Strategies

||

; ;

||

; ;

;

Figure 6.7: seqpartree.03. Filled dots denote active handshake ports (they can start a
handshake), blank nodes denote passive ones. Each port is implemented by two signals, req
and ack. If two ports are connected then the parallel composition merges these four signals
into two outputs.

The seqpartree.x STGs are generated from two basic Balsa handshake compo-
nents: the 2-way sequencer, which performs two subsequent handshakes on its two
child ports when activated on its parent port, and the 2-way paralleliser, which per-
forms two parallel handshakes on its two child ports when activated on its parent
port; either can be described by a simple STG, see also the discussion of handshake
circuits in Section 2.2.3 and Example 5.1. The benchmark examples seqpartree.x

are complete binary trees with alternating levels of sequencers and parallelisers, as
illustrated in Figure 6.7 (x is the number of levels of the tree). They are generated
by the parallel composition of the elementary STGs corresponding to the individual
sequencers and parallelisers in the tree. We also worked with other benchmarks made
of handshake components (e.g. trees of parallelisers only); the results did not differ
much, so we exemplarily present seqpartree.x only. Due to their construction, the
resulting STGs contain a lot of implicit places which were not contracted in advance,
cf. also the discussion of Table 6.3.

The first experimental results can be found in Table 6.2. For them, we performed
decomposition with the four variants Basic, Reordering, LazyBack and Tree,
when using the undo stack and when using copying of savepoint STGs. (Only a
representative selection of benchmarks is presented.) As expected, the undo stack
increases the efficiency of decomposition a lot, especially for large STGs; in particular,

150

6.7 Conclusion

in every case the first approach is faster. Hence, the undo stack was used in all
further experiments. Observe also that in nearly every case, Tree with copying is
faster than the other approaches with the undo stack. It turns out that the Tree

strategy benefits most from this heuristic (up to factor 12). Somewhat surprisingly,
the Basic and Reordering strategies also benefit from it (factors up to 7.5 and
6.5, respectively), even though their only savepoint is the original STGs. This can
be explained by the fact that backtracking might be performed early in the reduction
process, when undoing changes is much more efficient then copying the entire STG.
It was however unexpected that LazyBack benefits least from the undo stack (the
factor of only about 1.5); an explanation of this phenomenon is yet to be found.

This results already indicate that it is most worthwhile to study Tree in greater
detail.

Basic Reorder Lazy Tree

Name Undo Copy Undo Copy Undo Copy Undo Copy

2pp.wk.12.csc < 1 2 < 1 2 3 3 < 1 1
2pp.arb.nch.12.csc 2 4 1 4 4 5 < 1 1
3pp.arb.nch.12.csc 3 13 3 13 12 15 1 2
3pp.wk.12.csc 2 7 2 7 9 11 1 1
seqpartree.05 2 8 2 8 38 49 1 3
seqpartree.05.csc 3 10 3 9 70 96 1 5
seqpartree.06 18 99 39 212 476 623 1 13
seqpartree.06.csc 25 187 26 171 1294 1998 2 24

Table 6.2: Comparison between undo stack and copying STGs.

In Table 6.3 the detection of implicit places with unfoldings (see Section 6.6.3) is
compared to the structural detection. The seqpartree.x series is especially useful
for this comparison, because these STGs are marked graphs, for which it was shown
in Section 4.1 that all their implicit places are shortcut or loop-only places. The
latter ones are also detected by the structural approach, hence the results are the
same in both cases. As mentioned above, the seqpartree.x STGs contain a lot of
implicit places, and their number is printed in the second column. Note also that
these runtimes are for the detection of the implicit places only and do not include
decomposition.

Only for the first two benchmarks the dynamic detection with Mpsat is faster (when
considering the unrounded runtimes for several runs). As a consequence, DeMpSy

uses the structural approach for STGs with more than 100 nodes and the dynamic
one otherwise. The same applies to the structural/dynamic detection of safeness-
preserving contractions.

The dynamic detection of implicit places might be more advantageous for STGs which

151

6 Advanced Decomposition Strategies

Name impl. Places unfolding structural

seqpartree.02 8 < 1 < 1
seqpartree.03 24 < 1 < 1
seqpartree.04 56 < 1 < 1
seqpartree.05 120 2 < 1
seqpartree.06 248 4 < 1
seqpartree.07 504 11 < 1
seqpartree.08 1016 45 2
seqpartree.09 2040 164 7
seqpartree.10 4088 745 26

Table 6.3: Detection of implicit places with unfoldings and structural methods. (Just
detection without decomposition.)

are not marked graphs, where implicit places might lead to unnecessary backtracking
if they are not deleted.

Now, we come to the main benchmarks in Table 6.4. In columns two to five, the
decomposition time of the respective strategy is printed. The resulting components
are the same in every case, and hence the synthesis time of the components with
Mpsat (including CSC resolution if needed), the number of successfully generated
components (denoted as successful/all components) and the overall number of new
internal signals (for achieving CSC in the components) are only printed once in the
last three columns.

All STGs (except the seqpartree.x ones) were decomposed using the finest possi-
ble partition, i.e. usually each component produces one output. Since Reordering

turned out to be faster then Basic, it is used as the reduction algorithm in the
intermediate stages of LazyBack and Tree, i.e. when a set of signals has to be con-
tracted in an intermediate STG. For these benchmarks, self-triggering was forbidden
and backtracking was performed in this case.

In contrast to the decomposition method of [CC03,CC06] we also allow components
with more than one output. This was utilised for the seqpartree.x series, where the
initial partitions were chosen such that each component corresponds to one handshake
component. Other partitions of the outputs might lead to further speedups. (This
approach conforms to the intended use for resynthesis [CC06], cf. also the discussion
in Chapter 9.)

Using Basic as a reference point for the other strategies is somewhat problematic: due
to its ‘random’ order, the results for different benchmarks may vary. However, this
seems to be not the case here. LazyBack does not meet the expectations concerning
the runtime. For small STGs, its performance does not differ much from that of

152

6.7 Conclusion

Name Basic Reord. Lazy Tree Synth. Comp. Int.

2pp.arb.nch3.csc < 1 < 1 < 1 < 1 < 1 10 / 10 0
2pp.arb.nch6.csc < 1 < 1 < 1 < 1 < 1 16 / 16 0
2pp.arb.nch9.csc 1 < 1 2 < 1 < 1 22 / 22 0
2pp.arb.nch.12.csc 1 1 4 < 1 < 1 28 / 28 0
2pp.wk3.csc < 1 < 1 < 1 < 1 < 1 7 / 7 0
2pp.wk6.csc < 1 < 1 < 1 < 1 < 1 13 / 13 0
2pp.wk9.csc < 1 < 1 1 < 1 < 1 19 / 19 0
2pp.wk.12.csc < 1 < 1 3 < 1 < 1 25 / 25 0
3pp.arb.nch3.csc < 1 < 1 < 1 < 1 < 1 14 / 14 0
3pp.arb.nch6.csc 3 1 2 < 1 < 1 23 / 23 0
3pp.arb.nch9.csc 8 2 5 < 1 < 1 32 / 32 0
3pp.arb.nch.12.csc 3 3 12 1 < 1 41 / 41 0
3pp.wk3.csc < 1 < 1 < 1 < 1 < 1 10 / 10 0
3pp.wk6.csc < 1 < 1 1.3 < 1 < 1 19 / 19 0
3pp.wk9.csc 1 1 4 < 1 < 1 28 / 28 0
3pp.wk.12.csc 2 2 9 < 1 < 1 37 / 37 0
dup.mst.mod.1 2 1 2 1 15 1 / 10 1
dup.mst.mod.2 1 1 1 1 11 1 / 9 1
dup.mst.mod.3 2 2 2 1 147 1 / 11 1
dup.mst.mod.3.1 3 2 2 2 3 3 / 11 0
dup.mst.mod.3.3 3 2 2 2 53 2 / 11 0
dup.mst.mod.3.4 5 3 5 2 1 4 / 14 0
dup.mst.mod.3.5 5 4 6 3 1 6 / 15 0
dup.mst.mod.3.6.1 5 4 6 3 1 6 / 15 0
dup.mst.mod.3.6 5 4 6 3 1 6 / 15 0
dup.mst.mod.3.7 6 4 7 3 1 6 / 16 0
dup.mst.mod.3.8 6 4 7 3 1 6 / 16 0
dup.4.ph.dt.pull.1 3 2 2 2 < 1 13 / 15 0
dup.4.ph.dt.pull.2 3 2 2 2 < 1 15 / 15 0
dup.4.ph.dt.pull.3 3 2 2 2 < 1 12 / 15 0
dup.4.ph.dt.pull.mst.3 2 2 2 1 < 1 14 / 16 0
dup.4.ph.dt.pull.mst.4.a 1 1 1 1 < 1 8 / 11 1
dup.4.ph.dt.pull.mst.4 2 2 2 2 < 1 10 / 13 0
dup.4.ph.dt.pull.slv.3 2 2 2 2 1 12 / 16 0
dup.4ph.csc 3 2 2 2 < 1 15 / 15 0
dup.4ph 3 2 2 2 < 1 13 / 15 0
dup.4ph.mtr.csc 2 2 2 1 < 1 14 / 16 0
dup.4ph.mtr 1 1 1 1 < 1 8 / 11 1
dup.mtr.mod.csc 5 4 6 3 1 6 / 15 0
dup.mtr.mod 2 1 2 1 16 1 / 10 1
seqpartree5 2 2 36 < 1 1 31 / 31 41
seqpartree5.csc 3 3 70 < 1 < 1 31 / 31 0
seqpartree6 11 11 442 3 2 63 / 63 105
seqpartree6.csc 17 17 738 2 2 63 / 63 0
seqpartree7 73 72 – 14 4 127 / 127 169
seqpartree7.csc 92 96 – 14 4 127 / 127 0

Table 6.4: Comparison of the decomposition strategies.

153

6 Advanced Decomposition Strategies

the other methods, but for the large ones it deteriorates; there is no satisfactory
explanation for this yet. As expected, the runtimes of Tree are always minimal, and
this effect is most obvious for the seqpartree.x series at the end of Table 6.4.

Regarding the synthesis, the dup.x series seems to be unsuitable for decomposition: in
every case there are components which could not be synthesised, and sometimes this
even holds for the majority of the components. Furthermore, the large synthesis times
for some STGs indicate that the decomposition was also not successful when regarding
the size of the components. For the other series, the decomposition is successful,
and only for the seqpartree.x STGs without initial CSC internal signals had to
be added during synthesis. Comparing the overall synthesis times of decomposition
(i.e. decomposition plus synthesis of the components with Mpsat) with the direct
synthesis of the specification with Petrify and Mpsat we get the following result:
Petrify is always slower – from a few seconds for the small STGs from 2pp.x and
3pp.x up to 6 hours (aborted) for the large ones of these series, and more than 12
hours (aborted) for the seqpartree.x STGs. Mpsat is faster for the 2pp.x and
3pp.x series (less than 1 second) but much slower for the seqpartree.x series (also
aborted after 12 hours).

We had hoped that Aggregation would reduce the decomposition runtimes since
it saves some reduction steps. Actually, the decomposition runtimes do not differ
much from the ones of Tree and are therefore omitted. Furthermore, it turned out
that Aggregation also has little impact on the synthesis time and therefore we
present only benchmark results for the impact on the size of the state graphs of the
components, see Table 6.5. Aggregation was performed with the bounds 3 to 15 for
the number of signals a component is allowed to have, i.e. a subtree was aggregated
when the corresponding intermediate STG contained not more than this number of
signals. In the table the results are given for the value 3, the value 15, and for the
value which has resulted in the smallest components. In each case, the total number
of reachable markings over all components is given under ‘size’, and the number of
components under ‘#C’. For the smallest result, also the values for which this result
was achieved are given under ‘best’.

Aggregation might also have an impact on the quality of the components: in gen-
eral, larger components allow for better optimisation during synthesis, and therefore it
might be better to produce components which are just small enough to be synthesised
in a reasonable time. This topic is left for further research.

Since Tree turned out to be the best decomposition strategy, the remaining bench-
marks are now performed only with Tree, DeMpSy resp.

In Table 6.6 the effects concerning the synthesisability of the components for three
approaches are presented: we compared Tree with allowing self-triggering, Tree

154

6.7 Conclusion

Agg. 3 Agg. best Agg. 15
Name Size #C Size #C best Size #C

2pp.arb.nch.03.csc 123 8 92 3 7 960 1
2pp.arb.nch.06.csc 171 14 166 9 4 2048 2
2pp.arb.nch.09.csc 219 20 214 12 4 16384 2
2pp.arb.nch.12.csc 267 26 262 16 4 12160 3
2pp.wk.03.csc 40 5 40 3 3, 4 128 1
2pp.wk.06.csc 88 11 88 6 3, 4 8192 1
2pp.wk.09.csc 136 17 136 9 3, 4 4608 2
2pp.wk.12.csc 184 23 184 14 3, 4 36864 2
3pp.arb.nch.03.csc 309 11 273 5 7 2248 2
3pp.arb.nch.06.csc 381 20 381 14 3, 4 18688 2
3pp.arb.nch.09.csc 453 29 453 19 3, 4 14536 4
3pp.arb.nch.12.csc 525 38 525 25 3, 4 24776 4
3pp.wk.03.csc 64 7 64 4 3 - 5 1024 1
3pp.wk.06.csc 136 16 136 10 3, 4 10752 2
3pp.wk.09.csc 208 25 208 15 3, 4 9728 3

Table 6.5: Impact of Aggregation on the size and number of the components.

without allowing self-triggering and DeMpSy (viz. CSC-aware decomposition); here,
the finest partition was used for the seqpartree.x, too. For every approach, the de-
composition time, the synthesis time and the number of synthesisable components are
given. All specifications have CSC initially, but when allowing self-triggering, there
are components which could not be synthesised in each case, even when introducing
new internal signals. Forbidding self-triggering helps to perform the 2pp.x and 3pp.x

series successfully and reduces the number of failures for seqpartree.x.

DeMpSy is able to generate synthesisable components also for the
seqpartree.x series. However, this success is somewhat flawed since it depends
on the decomposition tree: to speed up the calculation of the latter, the presented
bottom-up algorithm is partially randomised (see Section 8.1.2) resulting in a dif-
ferent result for every run of DesiJ, and only for some runs all components where
synthesisable; but in every run the number of failures was smaller than for first two
variants. The respective results are marked with ∗.

One can observe that decomposition and synthesis are slightly slower for the second
and third approach. This is due to more frequent backtracking and the CSC conflict
detection and resolution (by Mpsat) for DeMpSy. The synthesis time is increased
since the final components are larger and more of them have to be synthesised. How-
ever, this increase is not critical, especially when considering the success of these
approaches.

155

6 Advanced Decomposition Strategies

S
el

f-
T
ri

g
g
er

in
g

A
ll
ow

ed
S
el

f-
T
ri

g
g
er

in
g

F
o
rb

id
d
en

D
e
M

p
S
y

N
a
m

e
d
ec

.
sy

n
.

su
c.

d
ec

.
sy

n
.

su
c.

d
ec

.
sy

n
.

su
c.

2
p
p
.a

rb
.n

ch
.0

3
.c

sc
<

1
<

1
9

/
1
0

<
1

<
1

1
0

/
1
0

<
1

<
1

1
0

/
1
0

2
p
p
.a

rb
.n

ch
.0

6
.c

sc
<

1
<

1
1
5

/
1
6

<
1

<
1

1
6

/
1
6

<
1

<
1

1
6

/
1
6

2
p
p
.a

rb
.n

ch
.0

9
.c

sc
<

1
<

1
2
1

/
2
2

<
1

<
1

2
2

/
2
2

1
<

1
2
2

/
2
2

2
p
p
.a

rb
.n

ch
.1

2
.c

sc
<

1
<

1
2
7

/
2
8

<
1

<
1

2
8

/
2
8

<
1

<
1

2
8

/
2
8

2
p
p
.w

k
.0

3
.c

sc
<

1
<

1
7

/
7

<
1

<
1

7
/

7
<

1
<

1
7

/
7

2
p
p
.w

k
.0

6
.c

sc
<

1
<

1
1
3

/
1
3

<
1

<
1

1
3

/
1
3

<
1

<
1

1
3

/
1
3

2
p
p
.w

k
.0

9
.c

sc
<

1
<

1
1
9

/
1
9

<
1

<
1

1
9

/
1
9

<
1

<
1

1
9

/
1
9

2
p
p
.w

k
.1

2
.c

sc
<

1
<

1
2
5

/
2
5

<
1

<
1

2
5

/
2
5

<
1

<
1

2
5

/
2
5

3
p
p
.a

rb
.n

ch
.0

3
.c

sc
<

1
<

1
1
3

/
1
4

<
1

<
1

1
4

/
1
4

<
1

<
1

1
4

/
1
4

3
p
p
.a

rb
.n

ch
.0

6
.c

sc
<

1
<

1
2
2

/
2
3

<
1

<
1

2
3

/
2
3

1
<

1
2
3

/
2
3

3
p
p
.a

rb
.n

ch
.0

9
.c

sc
<

1
<

1
3
1

/
3
2

1
<

1
3
2

/
3
2

1
<

1
3
2

/
3
2

3
p
p
.a

rb
.n

ch
.1

2
.c

sc
1

<
1

4
0

/
4
1

2
<

1
4
1

/
4
1

2
<

1
4
1

/
4
1

3
p
p
.w

k
.0

3
.c

sc
<

1
<

1
1
0

/
1
0

<
1

<
1

1
0

/
1
0

<
1

<
1

1
0

/
1
0

3
p
p
.w

k
.0

6
.c

sc
<

1
<

1
1
9

/
1
9

<
1

<
1

1
9

/
1
9

<
1

<
1

1
9

/
1
9

3
p
p
.w

k
.0

9
.c

sc
<

1
<

1
2
8

/
2
8

<
1

<
1

2
8

/
2
8

<
1

<
1

2
8

/
2
8

3
p
p
.w

k
.1

2
.c

sc
<

1
<

1
3
7

/
3
7

<
1

<
1

3
7

/
3
7

2
<

1
3
7

/
3
7

se
q
p
a
rt

re
e.

0
4
.c

sc
<

1
1

5
0

/
7
0

<
1

1
6
5

/
7
0

2
1

7
0

/
7
0

se
q
p
a
rt

re
e.

0
5
.c

sc
2

2
1
1
4

/
1
3
4

2
2

1
2
6

/
1
3
4

4
2

1
3
4
∗

/
1
3
4

se
q
p
a
rt

re
e.

0
6
.c

sc
5

6
2
1
0

/
2
9
4

6
6

2
6
7

/
2
9
4

8
7

2
9
4
∗

/
2
9
4

se
q
p
a
rt

re
e.

0
7
.c

sc
7
3

1
5

4
6
6

/
5
5
0

8
3

1
6

5
2
0

/
5
5
0

9
4

1
6

5
5
0
∗

/
5
5
0

se
q
p
a
rt

re
e.

0
8
.c

sc
7
3
2

6
7

8
5
0

/
1
1
9
0

7
9
1

6
9

1
1
0
9

/
1
1
9
0

8
3
4

7
4

1
1
9
0
∗

/
1
1
9
0

Table 6.6: Comparison of methods for preserving CSC.

156

6.7 Conclusion

Name dec. syn. int.

seqpartree.05 2 3 41
seqpartree.06 11 7 105
seqpartree.07 15 12 169
seqpartree.08 138 37 425
seqpartree.09 610 79 681
seqpartree.10 4639 263 1705

seqpartree.05.csc 1 < 0 0
seqpartree.06.csc 3 2 0
seqpartree.07.csc 12 3 0
seqpartree.08.csc 87 10 0
seqpartree.09.csc 649 32 0
seqpartree.10.csc 4543 123 0

Table 6.7: Results of DeMpSy for large benchmarks.

Finally, we present the results of DeMpSy for the seqpartree.x series with and
without CSC in Table 6.7, and the results demonstrate the real power of the com-
bined approach. The corresponding STGs are very large, and we consider it as an
important achievement that the proposed combined approach could synthesise them
so quickly. As one can see, an STG with more than 4000 signals is synthesised in
about 80 minutes, whereas, as mentioned above, stand-alone Petrify and Mpsat

cannot synthesise either of these benchmarks within 12 hours.

6.7.2 Application to other Decomposition Approaches

In this section, we discuss how the new strategies could be used to improve the
decomposition methods of Carmona and Cortadella [CC03,Car03] and Yoneda, Onda
and Myers [YOM04].

Both of these decomposition methods start with an STG which initially has CSC,
and guarantee that each final component will also have CSC. They also assume that
each component produces exactly one output (for this reason, Aggregation is not
considered in the rest of this section).

In contrast to our decomposition method, in the method of Carmona and Cortadella
all relevant signals are determined before reduction: starting with the syntactical
triggers, integer linear programming problems are solved to repeatedly add additional
relevant signals until CSC can be guaranteed for this component, cf. also Section 5.4.

When these signals are determined, all other ones are lambdarised, and a restricted
subset of our reduction operations is applied. If there are non-contractible dummy

157

6 Advanced Decomposition Strategies

transitions, they are removed later in the reachability graph with automata-theoretic
methods. As a consequence, backtracking is not needed for this method, and therefore
LazySingle and LazyMulti cannot be applied.

On the other hand, Reordering can be used to accelerate the reduction of the final
component. Furthermore it might be possible to contract more dummy transitions,
which is not as crucial as for our method, but can help to generate a smaller reacha-
bility graph.

Tree can also be applied, and since postponing does not occur (as backtracking
does not occur), there is no need to change the hopefully optimal pre-calculated
decomposition tree during reduction. The application of Tree will therefore definitely
increase the efficiency of this decomposition method.

In contrast to the previous approach, in the method of Yoneda, Onda and Myers the
relevant signals are determined through repeated reduction: for some specification
N , they also start with components corresponding to the finest partition and perform
reduction similar to our reduction operations. If the resulting component does not
have CSC, additional relevant signals are delambdarised in the initial component
and reduction is performed again. This is repeated until a component with CSC is
generated.

As above, Reordering can be applied to increase the efficiency of reduction. Tree

can be used to accelerate the overall component generation in the following way:
calculate the decomposition tree for all initial components (only outputs and their
triggers), perform Tree and determine for each component the additional signals.
Then use this new information to update the decomposition tree, and so on. If a
component has CSC eventually, it does not have to be included in the next iteration,
thus making the decomposition tree smaller and smaller when approaching the final
result.

6.7.3 Conclusion

The prototype implementation of the decomposition algorithm of [VW02] was very
successful compared to the former direct synthesis approach. Nevertheless, the im-
proved DesiJ implementation demonstrated that there are enough possibilities to
improve performance. Especially Tree in combination with Reordering for the
reduction in the nodes turned out to be an excellent strategy for saving time and
memory, and DeMpSy additionally has a positive effect on the synthesise of the final
components.

As mentioned above, the pre-calculated decomposition tree is not necessarily optimal
for the final components, since signals might be moved from nodes to their children.
Future work in this direction will be to consider the top-down algorithm for building

158

6.7 Conclusion

preset trees in [KK01]. This strategy starts at the root node – as the tree decompo-
sition does – and adds branches iteratively to the tree. The idea is to interleave this
building process with decomposition itself – including postponing – in order to get a
better decomposition tree.

The purely structural decomposition approach of [VW02, VK06] can handle large
specifications, but it does not take into account the properties of STGs related to
synthesisability, such as the presence of CSC conflicts. In contrast, Mpsat can resolve
CSC conflicts and perform logic synthesis, but it is inefficient for specifications with
more than 40 to 50 signals. In Section 6.6 we demonstrated how these two methods
can be combined to synthesise large STGs very efficiently.

One of the main technical contributions was to preserve the safeness of the STGs
throughout the decomposition, because Mpsat can only deal with safe STGs. This
is not just an implementation issue or a compensation for a missing Mpsat feature,
but it is also far more efficient than working with non-safe nets, for which unfolding
techniques seem to be inefficient. We also showed how dynamic properties like im-
plicitness and auto-conflicts can be checked with unfoldings and how these checks can
be combined with cheaper conservative structural conditions.

Future research is required for the decomposition tree, the calculation of which takes
a cubic runtime and memory usage in the number of signals and exceeds the memory
usage for decomposition and synthesis by far, see also Section 8.1.2. Here, heuristics
are needed which explore the tradeoff between the quality of the decomposition tree
and the amount of memory needed for its calculation.

Furthermore, we consider the handling of large STGs resulting from Balsa hand-
shake components as very important, see also Chapter 9. The Balsa system can
handle very large specifications due to its approach of syntax directed translation as
discussed in Section 2.2.3, but the resulting circuit is inefficient due to a large number
of unnecessary state-holding elements, which increase the circuit area and latency.
Our combined approach can help here by performing so called resynthesis: instead
of implementing each handshake component separately, one can combine several such
components, hide the internal handshake signals, and synthesise one circuit imple-
menting this network of components. As shown in [CC06], resynthesis can halve the
area of the circuit and improve its latency. Finally, Aggregation might help here
to detect which components should be combined.

159

Chapter 7

Output-Determinacy

When a circuit is synthesised from an STG, it is often assumed that the specification
is deterministic (in the sense of automata theory), and that its semantics is the set of
its possible traces, i.e. its language. As the final implementation must be determin-
istic, it may seem reasonable to confine oneself to deterministic specifications only.
However, sometimes this turns out to be too restrictive in practice. There are several
situations which naturally give rise to non-deterministic specifications which still can
be synthesised:

Spec-Dummies For convenience of modelling, the designers often use spec-dummies
in STGs, which are ‘silent’ transitions not corresponding to any signal change.
Such transitions make the STG non-deterministic.

OR-causality When modelling a situation with a safe Petri net, where the sys-
tem has to respond to any of several possible stimuli in the same way, non-
determinism naturally arises,1 as shown in Fig. 7.1. OR-causality has been
studied in [YKKL94,YKK+96]. For the importance of safe STGs see the dis-
cussion in the previous section.

Lambdarising of Signals Non-determinism naturally arises when in a determinis-
tic specification some of the signals are lambdarised, as illustrated in Fig. 7.2.

So far, no satisfactory formal semantics of non-deterministic STGs and in particular
for dummy transitions2 has been given (we will show below that the language is not a

1OR-causality can also be modelled as an non-safe Petri net without non-determinism [YKKL94,
YKK+96], but in practice safe Petri nets are preferable as they are much easier to analyse.

2In practical STGs, the designers intuitively avoid using dummy transitions in situations where
their semantics would be ambiguous. However, such situations do exist, in particular when firing a

161

7 Output-Determinacy

b+

a+

x+

x+

c+

c+

b−

a−

x− c−

Figure 7.1: OR-causality (the ‘interesting’ part of the STG is highlighted): a+ and b+ are
concurrent inputs, and the output x+ can be produced upon arrival of either of them. Note
that the two transitions labelled x+ are in dynamic auto-conflict, i.e. the specification is non-
deterministic. However, it still can be implemented by the deterministic circuit [x] = a ∨ b.

a+

b+

c+

c+

x+

d+

x+

c+

c+

x+

d+

x+

Figure 7.2: Non-determinism due to lambdarisation. After lambdarising signals a and b,
the STG becomes non-deterministic, but it is output-determinate and can be implemented
(the system can simply wait for c, and produce x upon receiving it; input d can be ignored).
Note that the two branches after the non-deterministic choice are not entirely symmetric, as
the upper one has an input d which is not present in the lower one.

162

7.1 Definitions

satisfactory semantics in the non-deterministic case). In this chapter, a formal seman-
tics of non-deterministic STGs is proposed and justified. For this, we introduce the
concept of output-determinacy , which is a relaxation of determinism, and argue that
it is reasonable and useful in the speed-independent context; cf. for example [Mil89]
for the concept of determinacy.

As an important application of the developed theory of output-determinacy, we will
generalise the decomposition algorithm of Chapter 3 and prove its correctness with
the new theory.

Our approach also allows to make the decomposition algorithm more efficient. Each
component is obtained from the original STG by lambdarising some of the signals in
it, and then contracting the corresponding transitions. The success of this algorithm
depends on the ability to securely contract all such transitions. If this is not possible,
the decomposition algorithm has to backtrack and re-introduce some of the signals
into the component, even if they are not really needed for the implementation. In
our new version of the algorithm, one can leave such non-contracted lambdarised
transitions in the component and proceed with synthesis for a component with fewer
signals, which was obtained in a shorter time. While previously the components were
deterministic and correct by construction, components can be non-deterministic now;
to guarantee correctness, they have to be checked for output-determinacy in the end.

The correctness proof for the new version is essentially just language-based, and might
be easier to grasp than the proofs in [VW02,VK06]. Furthermore, it is easier now to
prove the validity of the STG-transformations (like transition contraction) forming
the heart of the decomposition algorithm; it should now also be easier to find further
valid transformations. Indeed, also a new transformation is described and proven
valid.

This chapter is organised as follows: in the next section, the new notion of output-
determinacy is introduced and justified. In the following section, we present the new
STG-decomposition algorithm and prove its correctness, and give a list of semantics-
preserving transformations. In Section 7.3, we show that violations of output-determinacy
cannot be resolved while preserving the behaviour. We close with some experimental
results and a conclusion.

7.1 Definitions

In this section, we define when a deterministic STG can be regarded as a correct
implementation of a specification STG N ; we only consider deterministic implemen-

dummy transition can disable other transitions.

163

7 Output-Determinacy

tations here, since the final implementation of N will be a circuit, which is deter-
ministic by nature. Considering the case that N is non-deterministic, we introduce
the concept of output-determinacy, which is a relaxation of determinism. It turns out
that output-determinate STGs are exactly the STGs which have correct implemen-
tations according to our notion. Hence, non-output-determinate STGs are ill-formed
(in particular, they cannot be correctly implemented by a circuit). This shows that
the language is not a satisfactory semantics of non-deterministic STGs in general;
in particular, synthesising the determinised state graph of a non-output-determinate
STG may either fail or result in an incorrect circuit.

For the class of output-determinate STGs we show that their language is an adequate
semantics, and re-formulate the notion of correct implementation purely in terms of
the language; this notion will play an important role as part of the invariant in the
proof of correctness of our STG decomposition algorithm described in Section 7.2,
which we view as an important application of the developed theory. Moreover, we
introduce a set of semantics-preserving STG transformations, which are, in particular,
used in our decomposition algorithm. This set can easily be extended since the
definition of semantics-preserving is simple.

An STG N specifies the behaviour of a system in the sense that the system must
provide all and only the specified outputs and that it must allow at least the specified
inputs. As a consequence, the system must be able to perform at least all traces of N .
In fact, N also describes assumptions about the environment the system will interact
with; namely, the environment will only produce the inputs specified by N . A correct
implementation of N may allow additional inputs, but these inputs and subsequent
behaviour will never occur in the envisaged environment. In other words, when the
system is running in a proper environment, only traces of N can occur.

The implementation may actually have fewer input signals than N , keeping only those
that are relevant for producing the required outputs. In this case, the environment
may provide irrelevant inputs, but the implementation simply ignores them — and
in this sense, they are always allowed (e.g. in the STG in Fig. 7.2, inputs a and
b are irrelevant for producing x and can be ignored). See also the discussion after
Definition 3.4.

The following definition assumes a deterministic implementation (as it is the case in
circuit design), but the specification can be non-deterministic. The projection of a
trace w of N onto the signals of C, obtained by deleting all signal edges where the
signal belongs to InN \ InC , is denoted by w C .

Definition 7.1 (Correct Implementation – Language Based)
A deterministic STG C is a correct implementation of an STG N if InC ⊆ InN ,
OutC = OutN , and for all w and all M such that MN [w〉〉M the following hold:

164

7.1 Definitions

(C1) w C is a trace of C, i.e. MC [w C〉〉M
′ for some marking M ′ of C (note that M ′

is unique as C is deterministic);

(C2) If a ∈ InN and M [a±〉〉, then either M ′[a±〉〉 or a 6∈ InC ;

(C3) If x ∈ OutN , then M [x±〉〉 iff M ′[x±〉〉. △

This definition is a formalisation of the considerations above: the implementation
must be able to perform all traces of the specification, maybe dropping some irrelevant
input signals (C1); all the inputs allowed by the specification must be allowed (or
ignored) by the implementation (C2); and the implementation must produce exactly
the specified outputs (C3). In particular, every deterministic STG N is a correct
implementation of itself.

A non-deterministic specification can perform the same trace in two different ways,
reaching different states M1 and M2. In the speed-independent context the only
information available to the circuit is the execution history, i.e. the trace performed,3

and so an implementation cannot know whether its current state corresponds to M1

or M2. Hence, a deterministic implementation must behave consistently with the
specification no matter in which of these markings it is.

Our definition of correctness requires that the implementation must provide exactly
the outputs enabled by M1 and exactly the outputs enabled by M2. This is only
possible if M1 and M2 enable the same outputs. In contrast, the implementation
must allow at least the inputs enabled under M1 and the inputs enabled under M2;
this is very well possible, even if these sets of inputs differ – i.e. the implementation
may allow the union of these sets or any of its supersets. This observation leads to
our central notion of output-determinacy.

7.1.1 Output-Determinacy

Definition 7.2 (Output-Determinacy)
An STG N is called output-determinate if MN [w〉〉M1 and MN [w〉〉M2 implies for
every x ∈ OutN that M1[x

±〉〉 iff M2[x
±〉〉. △

For example, the STG in Fig. 7.2 is output-determinate after lambdarising a and b.
Clearly, a deterministic STG is also output-determinate; note also that – in contrast
to a deterministic STG – an output-determinate STG may contain λ-transitions.

3In a non-speed-independent context some additional information such as timing of events may
help to resolve non-determinism.

165

7 Output-Determinacy

Now we demonstrate that the notion of output-determinacy is useful for defining a
semantics of non-deterministic specifications (in particular, allowing λ-transitions),
and we also justify this semantics.

First of all, the näıve approach consisting in determinisation of a non-deterministic
specification using the usual procedure for finite state automata and then proceeding
with the synthesis is not always correct. In the context of STGs and circuit synthesis,
the result of determinisation can manifest some problems, e.g. non-output-persistency,
as illustrated in Fig. 7.3; Fig. 7.4 illustrates a much more dangerous scenario, where
the determinised STG contains no apparent problems but the resulting circuit is
incorrect according to Definition 7.1. In both cases, it is wiser to inform the designer
of an error than to determinise and synthesise such a specification. Below we show
that determinisation can be safe only for output-determinate specifications.

Semantic Rule 1. A non-output-determinate specification of a
speed-independent system cannot be implemented deterministically
and thus is ill-formed.

This rule can be justified by Proposition 7.3.

Proposition 7.3
Let C be a correct implementation of N ; in particular, C is deterministic. Then N
is output-determinate.

Proof. Assume that N has a trace w and two reachable markings, M1 and M2, such
that for some x ∈ OutN , MN [w〉〉M1[x

±〉〉, and MN [w〉〉M2 and ¬M2[x
±〉〉. Then,

by (C1) of Definition 7.1, w|C is a trace of C; moreover, since C is deterministic,
it has a unique reachable marking M ′ such that MC [w|C〉〉M

′. Now, by (C3) of
Definition 7.1, M ′[x±〉〉 due to M1[x

±〉〉, and, on the other hand, ¬M ′[x±〉〉 due to
¬M2[x

±〉〉, a contradiction.

Observe that a non-output-determinate STG always has CSC conflicts, as, according
to Definition 7.2, any violation of output-determinacy implies the presence of two
states which can be reached by the same trace (and thus have the same encoding)
and enable different sets of outputs. It is shown in Section 7.3 that such a CSC
conflict is irreducible.

On the other hand, output-determinate specifications can safely be determinised, and
so there is no reason to distinguish between the specification itself and its determinised
form:

166

7.1 Definitions

a+

a+

x+

y+

a+

x+

y+

Figure 7.3: Non-output-persistency due to determinisation. A output-persistent but not
output-determinate STG (left) and the non-output-persistent STG (due to the choice be-
tween the outputs x and y) obtained from it by determinisation (right). Note that deter-
minisation can also result in a choice between an input and an output (this would be the
case if y were an input).

a+

a+

x+ a+ x+

Figure 7.4: Incorrect determinisation: a non-output-determinate STG before (left) and
after (right) determinisation. The latter STG, though implementable, is not a correct im-
plementation of the original specification, since it can cause a failure in the environment by
producing x when the environment does not expect it.

a+ x+ a− x−

a+ x+

a+ x+ a− x−

Figure 7.5: Determinisation: an output-determinate STG N with a deadlock (left) and the
deadlock-free STG obtained from N by determinisation (right). The latter STG is a correct
implementation of N ; intuitively, the execution of x− is correct, since it only occurs when
the environment signalled with a− that the system is in the ‘lower’ branch of N . The circuit
[x] = a implements either of these two STGs.

167

7 Output-Determinacy

Semantic Rule 2. The semantics of an output-determinate specifi-
cation of a speed-independent system is its (prefix-closed) language.

This rule can be justified by the following result.

Proposition 7.4
Let N be output-determinate and C be the deterministic automaton
DA(N) obtained by determinisation of the reachability graph of N . Then C is a
correct implementation of N .

Proof. Determinisation does not change the language of N ; therefore, MN [w〉〉M [s±〉〉
(w ∈ (Sig±N)∗, s ∈ SigN) implies directly MC [w〉〉M ′[s±〉〉. This proves (C1), (C2) and
the ‘⇒’ part of (C3).

To show the ‘⇐’ part, assume M ′[x±〉〉 (x ∈ OutN). This implies MN [w〉〉M ′′[x±〉〉
for some marking M ′′, otherwise the language is not preserved. Since N is output-
determinate, also M [x±〉〉.

The proposed semantics has interesting consequences, in particular, a specification
with deadlocks can be ‘equivalent’ (cf. Definition 7.13) to one without them, as illus-
trated in Fig. 7.5. Hence, arbitrary language-preserving transformations of output-
determinate specifications are allowed, as long as the resulting STG is still output-
determinate. That is, there is no need to preserve stronger equivalences such as
bisimulation. We present valid transformations in Section 7.2.1.

In view of Semantic Rule 2, one would expect that the notion of correct implemen-
tation given in Definition 7.1 can be re-formulated purely in terms of the language
if the specification and the implementation are known to be output-determinate. In
fact, we generalise the definition to allow a non-deterministic implementation, as long
as it is output-determinate.

Definition 7.5 (Trace-Correct Implementation)
An output-determinate STG C is a trace-correct implementation of an output-deter-
minate STG N if InC ⊆ InN , OutC = OutN , and for every trace w of N the following
hold:

(TC1) w C is a trace of C;

(TC2) If w Cx± is a trace of C for some x ∈ OutC , then wx± is a trace of N . △

This definition can be viewed as a denotational notion of correctness, as opposed to
the operational one given in Definition 7.1. However, it should be emphasised that
this notion explicitly requires the specification to be output-determinate (i.e. this

168

7.2 Decomposition into Output-Determinate Comp.

purely trace-based view is unable to distinguish between output-determinate and
non-output-determinate specifications). The result below shows that this notion is
equivalent to Definition 7.1 if the implementation is deterministic and the specification
is output-determinate.

Proposition 7.6 (Justification of the notion of trace-correct implementation)
Let N be an output-determinate STG and C be a deterministic STG such that InC ⊆
InN and OutC = OutN . Then C is a correct implementation of N iff it is a trace-
correct implementation of N .

We postpone the proof of this result until the next section, where it is formulated
and proven for the more general case of a distributed implementation C = ‖i∈ICi.
(Note that C in the above result can be seen as being a distributed implementation
comprised of a single component.)

At the end of this section we quote the following theorem from [KSV07] about the
complexity of checking output-determinacy:

Theorem 7.7
Checking output-determinacy is PSpace-complete for safe and bounded STGs, and it
is ExpSpace-hard for unbounded STGs.

7.2 Decomposition into

Output-Determinate Components

In this section, we describe how the developed theory of output-determinacy can be
applied to derive a new algorithm for decomposition of STGs into smaller compo-
nents. First, we consider distributed implementations, i.e. implementations which
can be represented as a parallel composition of STGs, and derive a correctness con-
dition for such implementations, which is consistent with the ones developed in the
previous section. Then we describe our decomposition algorithm and formally prove
its correctness.

In contrast to the decomposition algorithm from Section 3.3, this new algorithm allows
non-deterministic specifications (if they are output-determinate).

Now, implementations consisting of a family of components (Ci)i∈I are considered.
Recall that we assume all STGs to be bounded; this is preserved by all TCOD-
transformations described in this chapter. For each of the Ci, synthesis is performed
separately and the resulting circuits are simply connected with wires for their common
signals. Clearly, an output must be produced by only one component. On the other

169

7 Output-Determinacy

hand, several components can listen to the same signal, produced by the environment
or another component. On the level of STGs, this is captured by the parallel com-
position of the (Ci)i∈I . We first specialise Definition 7.1 to families of components,
additionally taking care of computation interference as explained after the previous
correctness definitions.

Definition 7.8 (Correct Decomposition)
Let N be an STG and C = ‖i∈ICi be a parallel composition of deterministic compo-
nents. Then (Ci)i∈I is a correct distributed implementation (or correct decomposition)
of N , if C is a correct implementation of N (cf. Definition 7.1) and the following holds:

(C4) If w is a trace of N , MC [w C〉〉(Mi)i∈I for some marking (Mi)i∈I of C, and
Mj [x

±〉〉 for some j ∈ I and x ∈ Outj , then (Mi)i∈I [x
±〉〉 (no computation

interference). △

This definition is equivalent to Definition 3.4 for general N .

(C4) forbids computation interference; here the same arguments and considerations as
after Definition 3.4 are valid. In particular, Definition 7.8 is a generalisation of Defi-
nition 7.1: if (Ci)i∈I consists of only one component C1 then C = C1, no computation
interference can occur, and (C4) can be dropped.

Analogously to the notion of correct implementation, the notion of correct distributed
implementation can be re-formulated purely in terms of the language, if the specifi-
cation and the implementation are known to be output-determinate.

Definition 7.9 (Trace-Correct Distributed Implementation)
Let N and (Ci)i∈I be output-determinate STGs. Then (Ci)i∈I is a trace-correct
distributed implementation (or trace-correct decomposition) of N , if for C = ‖i∈ICi

(TC1) and (TC2) of Definition 7.5 hold and for every trace w of N the following
holds:

(TC3) If w Cj
x± is a trace of Cj for some x ∈ Outj , then w Cx± is a trace of C

(no computational interference). △

Observe that the components (Ci)i∈I have to be output-determinate rather than their
parallel composition C, since they will be synthesised separately and not C.

Again, this definition can be viewed as a denotational notion of correctness, as opposed
to the operational one given in Definition 7.8. The result below shows that this
notion is equivalent to Definition 7.8 if the implementation is deterministic and the
specification is output-determinate. Proposition 7.6 is obtained as a special case of
this theorem by considering I = {1} and C = C1.

170

7.2 Decomposition into Output-Determinate Comp.

Theorem 7.10 (Justification of trace-correct distributed implementation)
Let N be an output-determinate STG and let C = ‖i∈ICi be a parallel composition of
deterministic STGs such that InC ⊆ InN and OutC = OutN .

Then (Ci)i∈I is a correct distributed implementation of N iff it is a trace-correct
distributed implementation of N .

Proof. First we prove that, if (Ci)i∈I is a correct distributed implementation of N ,
then it is also a trace-correct distributed implementation of N . We consider each
requirement of Definition 7.9 in turn, and show that they follow from Definition 7.8.

(TC1) Coincides with (C1).

(TC2) Let w be a trace of N , i.e. MN [w〉〉M for some reachable marking M of N .
Then, by (C1), MC [w C〉〉(Mi)i∈I for some marking (Mi)i∈I of C. Since all the
components are deterministic, the marking (Mi)i∈I is uniquely determined by
w C , and thus for any x ∈ OutN : if w Cx± is a trace of C, then (Mi)i∈I [x

±〉〉
and wx± is a trace of N by (C3).

(TC3) Let w be a trace of N , i.e. MN [w〉〉M for some reachable marking M of N .
Then, by (C1), MC [w C〉〉(Mi)i∈I for some marking (Mi)i∈I of C. Suppose
now that x ∈ Outj and w Cj

x± is a trace of Cj for some j ∈ I. Since all the
components are deterministic, Mj is uniquely determined by w Cj

, and thus
Mj [x

±〉〉. Therefore, by (C4), (Mi)i∈I [x
±〉〉 and w Cx± is a trace of C.

Now we show that if C is a trace-correct distributed implementation of N then it is
also a correct implementation of N . We consider each requirement in Definition 7.8
in turn, and show that it follows from Definition 7.9.

(C1) Coincides with (TC1).

(C2) Let w be a trace of N , i.e. MN [w〉〉M for some reachable marking M of N . Then,
by (TC1), MC [w C〉〉M

′ for some reachable marking M ′ of C. Let a ∈ InN be
such that M [a±〉〉. Since wa± is a trace of N , wa±

C is a trace of C by (TC1),
i.e. either a /∈ InC or M ′[a±〉〉, as M ′ is uniquely defined by w C due to the
determinism of C.

(C3) ⇒ Similar to the case for (C2).

⇐ Let w be a trace of N . Then for some marking M of N , MN [w〉〉M . Suppose
MC [w C〉〉(Mi)i∈I [x

±〉〉 for some marking (Mi)i∈I of C. Then wx± is a
trace of N by (TC2), i.e. MN [w〉〉M ′[x±〉〉 for some reachable marking M ′

of N , and so M [x±〉〉 due to the output-determinacy of N .

171

7 Output-Determinacy

(C4) Let w be a trace of N . Then MN [w〉〉M for some marking M of N , and
MC [w C〉〉(Mi)i∈I by (TC1). Suppose x ∈ Outj and Mj [x

±〉〉 for some j ∈ I.
Then w Cx± is a trace of C by (TC3). Since C is deterministic, the marking
(Mi)i∈I is uniquely determined, and thus (Mi)i∈I [x

±〉〉.

The next theorem shows that trace-correctness can be applied hierarchically, i.e. given
a trace-correct distributed implementation, any of its components can in turn be
replaced with its own trace-correct distributed implementation (cf. also Section 5.2).

Theorem 7.11 (Hierarchical Trace-Correct Decomposition)
Let (Ci)i∈I be a trace-correct decomposition of N , and for some i′ ∈ I let (Cj)j∈J be
a trace-correct distributed implementation of Ci′ , where I ∩ J = ∅. Then (Ck)k∈K is
a trace-correct decomposition of N , where K = (I \ {i′}) ∪ J .

Proof. Clearly, the components (Ck)k∈K are all output-determinate. We define C =
||i∈ICi, C ′ = ||j∈JCj and C ′′ = ||k∈KCk. Proving InC′′ ⊆ InN and OutC′′ = OutN is
comparatively simple but a bit tedious; a proof can be found in [SV07]. To simplify
the notion, e.g. (TC1/C) denotes applying (TC1) for the parallel composition C, and
instead of w|Ci

we will just write w|i. Also, we treat (TC3) before (TC2). Now let
w ∈ L(N).

(TC1) (TC1/C) implies w|C ∈ L(C) and therefore ∀i ∈ I : w|i ∈ L(Ci). In partic-
ular, w|i′ ∈ L(Ci′). Then, by (TC1/C ′), w|C′ ∈ L(C ′) and therefore ∀j ∈ J :
w|j ∈ L(Cj). Together, ∀k ∈ K : w|k ∈ L(Ck), and hence w|C′′ ∈ L(C ′′).

(TC3) w|kx± ∈ L(Ck) for k ∈ K and x ∈ Outk. We consider the following two
cases.

k 6∈ J Then, (TC3/C) implies w|Cx± ∈ L(C), and by (TC2/C) wx± ∈ L(N).

k ∈ J Then, (TC3/C ′) implies w|C′x± ∈ L(C ′). By (TC2/C ′), w|i′x
± ∈

L(Ci′). Applying (TC3) and (TC2) for C in the same way implies wx± ∈
L(N). In both cases, w|C′′x± ∈ L(C ′′) follows with (TC1/C ′).

(TC2) w|C′′x± ∈ L(C ′′) for x ∈ OutC′′ . Obviously, x ∈ Outk for some k ∈ K and
w|kx± ∈ L(Ck). Then, wx± ∈ L(N) as just shown in case (TC3).

Corollary 7.12
The relation ‘trace-correct implementation’ (i.e. the relation {(N,N ′) | N ′ is a trace-
correct implementation of N}) is a pre-congruence for
parallel composition.

172

7.2 Decomposition into Output-Determinate Comp.

Proof. Reflexivity is trivial. Transitivity follows from the above theorem if I and J
each consist of a single component. Now precongruence follows when considering that
in a parallel composition a component is replaced by another single component.

We will use this result for the new correctness proof at the end of this chapter.

7.2.1 Valid STG transformations

Due to Semantic Rule 2, any language-preserving STG transformation of an output-
determinate specification is valid, as long as the resulting STG is output-determinate.
Actually, as Theorem 7.11 (for |J | = 1) suggests, it is sufficient to preserve trace-
correctness. However, it is also desirable for a transformation to preserve non-output-
determinacy as well, so that an ill-formed STG does not become well-formed after its
application; that is, a transformation should propagate errors rather than eliminate
them, so that they can eventually be detected. This motivates the following notions.

Definition 7.13 (≈lod , ¹tcod and LOD/TCOD-transformations)
Two STGs N and N ′ are LOD-equivalent, denoted N ≈lod N ′, if

• N and N ′ are both non-output-determinate, or

• N and N ′ are language-equivalent and both output-determinate.

They are in the TCOD relation, denoted N ¹tcod N ′, if

• N and N ′ are both non-output-determinate, or

• N ′ is a trace-correct implementation of N and both are output-determinate.

An STG transformation is an LOD/TCOD-transformation if the original and the
transformed STG are LOD-equivalent / in the TCOD relation.

△

Obviously, every LOD-transformation is also a TCOD-transformation, but not vice
versa.

One can observe that any transformation yielding a bisimilar STG is a LOD-transfor-
mation, but there are LOD-transformations which yield a non-bisimilar STG, e.g. de-
terminisation of an output-determinate STG, as illustrated in Fig. 7.6. Moreover, any
transformation preserving the language and output-determinacy can be made into an
LOD-transformation if its domain is restricted to output-determinate systems.

173

7 Output-Determinacy

a+ b+

a+ c+

a+

b+

c+

Figure 7.6: Two LOD-equivalent STGs which are not bisimilar.

Below we list the TCOD-transformations which will be used for our decomposition
algorithm. For one of the transformations and for further use, we first introduce some
notions.

Definition 7.14
For transitions t, t′ of some STG, t is a (syntactic) trigger of t′ or triggers t′ if
t• ∩ •t′ 6= ∅. A λ-transition t is a weak trigger of t′, if it triggers t′ or another
weak trigger of t′. A transition t with l(t) 6= λ is a signal trigger of t′, if it triggers t′

or a weak trigger of t′.

A transition t is in a weak syntactic conflict with t′, if it is in syntactic conflict with
t′ or with a weak trigger of t′. △

List of TCOD-transformations

RedPD Deletion of a redundant place.

RedTD Deletion of a redundant transition.

SecTC1 Type-1 secure contraction of a λ-transition.

LOD-SecTC2 Type-2 secure contractions of λ-transitions restricted to output-de-
terminate STGs.

SecTC2’ Type-2 secure contractions of λ-transitions which are not in weak syntactic
conflict with an output transition.

IIC Increasing the concurrency of inputs for deterministic and safe STGs (Defini-
tion 7.16). This operation was not used in the context of decomposition before;
it is discussed below.

174

7.2 Decomposition into Output-Determinate Comp.

The first three transformations in this list always yield a bisimilar STG and thus are
LOD-transformations. Below we prove that LOD-SecTC2 and SecTC2’ are LOD-
transformations and that IIC is a TCOD-transformation (it is not an LOD-transfor-
mation since it changes the language). IIC is not intended as a reduction operation,
but it may be applied to the final deterministic components, where it is sometimes
useful for converting speed-independent circuits into delay-insensitive ones [SKC+99].
Observe also that the determinisation of an output-determinate STG N is an LOD-
transformation. Indeed, if N is output-determinate, then constructing DA(N) gives a
language-equivalent STG, which is not only output-determinate, but even determin-
istic. The same is true if one additionally minimises the deterministic automaton.

Theorem 7.15
If N ′ is obtained from some STG N by LOD-SecTC2 or SecTC2’, then N and N ′

are LOD-equivalent.

Proof. A secure contraction gives a language-equivalent result in any case by Theo-
rem 3.6.

Now, we consider an output-determinate N and show that N ′ is also output-de-
terminate. If MN ′ [w〉〉M ′

1[x
±〉〉 and MN ′ [w〉〉M ′

2 (w ∈ (Sig±)∗, x ∈ Out), then
MN [w〉〉M1 and MN [w〉〉M2 with (M ′

1,M1), (M
′
2,M2) ∈ S ′ for the ready simulation

S ′ of Theorem 3.6(1). Furthermore, M1[x
±〉〉 due to simulation, M2[x

±〉〉 due to
output-determinacy, and M ′

2[x
±〉〉 due to ready simulation.

This settles the case of LOD-SecTC2, while for SecTC2’ (applied to transition t) it
remains to show that N is output-determinate if N ′ is; so assume the latter.

Consider firing sequences u, v of N such that l(u) = l(v), MN [u〉[x±〉〉 and MN [v〉M1.
We will now apply the simulation S of Theorem 3.6(1); to get a result on the level
of transitions, observe that this relation also is a simulation if the labelling of N is λ
for t and the identity otherwise. This consideration implies that e.g. u is simulated
by u −t, obtained by deleting all occurrences of t in u. Thus, we get MN ′ [u −t〉[x

±〉〉
and MN ′ [v −t〉M

′
1.

Since N ′ is output-determinate and l(u −t) = l(v −t), we have M ′
1[x

±〉〉. Therefore,

we can take some t′ ∈ T and a minimal w ∈ T
∗

such that M ′
1[wt′〉, l(t′) = x± and

l(w) = λ. By minimality, each transition in w triggers a transition in wt′; hence each
transition in w is a weak trigger of the output transition t′, and (∗) it does not share
a preset-place with t by assumption of SectTC2’; neither does t′.

We conclude the proof by showing inductively that M1[w
′〉 with w′

−t = wt′. As
induction base, we have M1[λ〉. So assume M1[w

′′〉M and M ′
1[w

′′
−t〉M

′, where
w′′

−t is a proper prefix of wt′ with M ′
1[w

′′|−t〉M
′ due to simulation S, and let t1 be

the next transition of wt′. If M [t1〉M
′ we are done.

175

7 Output-Determinacy

It remains to consider the case that ¬M [t1〉. We observe that M ′[t1〉, that M and
M ′ coincide on the places not adjacent to t, and that t1 and t do not share a preset-
place by (∗). Thus, the only reason for ¬M [t1〉 is that for some p0 ∈ t• we have
W (p0, t1) > M(p0).

We choose p1 ∈ t• such that m1 = W (p1, t1) − M(p1) is maximal; m1 is positive
due to p0. We check that t can fire m1 times under M : for all p ∈ •t, we have
M(p) + M(p1) = M ′((p, p1)) ≥ W ((p, p1), t1) = W (p, t1) + W (p1, t1) (where the
inequality follows from M ′[t1〉), and thus M(p) ≥ W (p1, t1)−M(p1)+W (p, t1) ≥ m1;
recall that t has only arcs of weight 1. Firing t under M m1 times gives a marking
M ′′, which also satisfies the marking equality with M ′. By our above considerations
and choice of p1, M ′′ enables t1; recall that t1 needs no tokens from •t and is only
disabled because of some missing tokens in t• – and even the largest of these deficits
has been compensated in M ′′. Thus, M [tm1t1〉.

The following definition of IIC can only be applied to safe and deterministic STGs;
these requirements are not too strict, since – as mentioned above – it is intended for
the final deterministic components.

Definition 7.16 (Increasing Input Concurrency)
Let N be a safe STG and let t1 and t2 be two transitions which are labelled with
edges of two different input signals a and b. If t1 is a syntactical trigger of t2 via a
single place p2 with no other incident arcs, •t1 = {p1} and t2

• = {p3} with p1
• = {t1}

and •p3 = {t2}, increasing input concurrency (IIC) of t1 and t2 results in the net N ′

defined as follows (cf. Figure 7.7):

• T ′ = T and l′ = l

• P ′ = P \ {p1, p2, p3} ∪ {pa
1 , pb

1, p
a
3 , pb

3}

• W ′(p, t) = W (p, t) and W ′(t, p) = W (t, p) for p ∈ P ∩ P ′ and t ∈ T ′,

W ′(pa
1 , t1) = W ′(pb

1, t2) = W ′(t1, p
a
3) = W ′(t2, p

b
3) = 1,

W ′(t, pa
1) = W ′(t, pb

1) = W (t, p1) and W ′(pa
3 , t) = W ′(pb

3, t) = W (p3, t) for
t 6= t1, t2,

W ′(x, y) = 0 otherwise.

• MN ′ = iic(MN), where the function iic : [MN 〉 → NP ′

0 is defined as follows:
M ′ = iic(M) if

M ′(p) = M(p) for p ∈ P ∩ P ′

If M(p1) = 1, then M ′(pa
1) = M ′(pb

1) = 1 and M ′(pa
3) = M ′(pb

3) = 0.

176

7.2 Decomposition into Output-Determinate Comp.

p1

t1 a±t1

p2

t2 b±t2

p3

⇒

pa
1 pb

1

t1 a±t1 t2b± t2

pa
3 pb

3

Figure 7.7: Increasing input concurrency for the case M(p2) = 1.

If M(p2) = 1, then M ′(pa
1) = M ′(pb

3) = 0 and M ′(pa
3) = M ′(pb

1) = 1.

If M(p3) = 1, then M ′(pa
1) = M ′(pb

1) = 0 and M ′(pa
3) = M ′(pb

3) = 1.

If M(p1) = M(p2) = M(p3) = 0, then M ′(pa
1) = M ′(pb

1) =
M ′(pa

3) = M ′(pb
3) = 0.

(Note that these four cases are mutually exclusive since N is safe.) △

Theorem 7.17 (IIC is a TCOD-transformation)
Let N ′ be the result of applying IIC for the transitions t1 and t2 to a deterministic
safe STG N . Then

(1) S = {(M, iic(M)) | M ∈ [MN 〉} (i.e. S and iic coincide) is a transition simulation
between N and N ′; if (M,M ′) ∈ S and t 6= t2 or M ′(pa

1) = 0, then M ′[t〉M ′
1

implies M [t〉M1 with (M1,M
′
1) ∈ S.

(2) [MN ′〉 = M
.
∪ M′, where M = S([MN 〉) and M′ = {M ′

1 | ∃M ′ ∈ M : M ′(pa
1) =

1 ∧ M ′[t2〉M
′
1 in N ′}.

(3) N ′ is safe.

(4) N ′ is deterministic.

177

7 Output-Determinacy

(5) N ′ preserves consistency of N .

(6) N ′ is a trace-correct implementation of N .

Proof. Let l(t1) = a± and l(t2) = b± for a 6= b.

(1) By definition of MN ′ , (MN ,MN ′) ∈ S, so assume (M,M ′) ∈ S and M [t〉M1.

• t 6∈ {t1, t2}∪p3
•: then •t ⊆ P∩P ′ and, since M ′ = iic(M), M ′|•

t
= M |•

t
and

M ′[t〉M ′
1. By definition of W ′, M ′

1|P∩P ′ = M1|P∩P ′ . If p1 ∈ t•, observe that
M(p1) = M(p2) = M(p3) = 0 because N is safe, and M ′(pa

1) = M ′(pb
1) = 0

by definition of M ′; therefore, M1(p1) = 1 and M ′
1(p

a
1) = M ′

1(p
b
1) = 1. Also,

M ′(pa
3) = M ′

1(p
a
3) = M ′(pb

3) = M ′
1(p

b
3) = 0 and thus, M ′

1 = iic(M1).

• t ∈ p3
•: then M(p3) = 1 (by the safeness of N), M ′(pa

3) = M ′(pb
3) = 1 and

M ′[t〉M ′
1. With similar arguments as above, (M1,M

′
1) ∈ S.

• t = t1: then M(p1) = 1 and M1(p2) = 1. Therefore, M ′(pa
1) = M ′(pb

1) = 1
and M ′(pa

3) = M ′(pb
3) = 0. Hence, M ′[t1〉M

′
1 with M ′

1(p
a
1) = M ′

1(p
b
3) = 0

and M ′
1(p

a
3) = M ′

1(p
b
1) = 1. Clearly, M ′

1|P∪P ′ = M1|P∪P ′ and (M1,M
′
1) ∈ S.

• t = t2: similar to the case t = t1.

Now assume M ′[t〉M ′
1. A similar case analysis shows that t 6= t2 or M ′(pa

1) = 0
implies M [t〉M1 with (M1,M

′
1) ∈ S.

(2) Since (M,M ′) ∈ S implies M ∈ [MN 〉, we have M ⊆ [MN ′〉 by (1); this in turn
implies that M′ ⊆ [MN ′〉, too.

Due to (1) and MN ′ ∈ M, a marking in [MN ′〉 \ M can only be reached via
firing t2 from a marking which marks pa

1 , i.e. such a marking is in M′. Now take
M ′

1 ∈ M′, i.e. ∃(M,M ′) ∈ S, M ′[t2〉M
′
1 and M ′(pa

1) = 1. This implies M(p1) = 1
in N , and M ′

1(p
b
3) = 1, M ′

1(p
a
3) = M ′

1(p
b
1) = 0 and M ′

1|P∩P ′ = M1|P∩P ′ in N ′.

We now consider all markings reachable directly from M ′
1. Clearly, M ′

1[t1〉M
′
2 with

(M2,M
′
2) ∈ S for M [t1t2〉M2, i.e. M ′

2 ∈ M. Let now M ′
1[t〉M

′
3 with t 6= t1. We

have t 6= t2 due to M ′
1(p

b
1) = 0 and t 6∈ p3

• due to M ′
1(p

a
3) = 0. Therefore, •t∩(•t2∪

t2
•) = ∅ in N ′, and t is activated concurrently to t2 under M ′: M ′[t〉M ′

4[t2〉M
′
3

and M ′
4(p

a
1) = M ′(pa

1) = 1. Additionally, (1) implies M [t〉M4 and (M4,M
′
4) ∈ S.

Thus, M ′
3 ∈ M′ implying [MN ′〉 ⊆ M∪M′, which proves the claim.

(3) Follows from (2) when considering the properties of M and M′.

(4) For M ′ ∈ [MN ′〉, M ′[t〉, M ′[t′〉 and t 6= t′ we will show that l(t) 6= l(t′); the
claim is obvious for the case {t, t′} = {t1, t2}, and in what follows we assume that
{t, t′} 6= {t1, t2} (∗).

178

7.2 Decomposition into Output-Determinate Comp.

Let M ′ ∈ M. Therefore, (M,M ′) ∈ S for some M . If t2 /∈ {t, t′} or M ′(pa
1) = 0,

then (1) implies M [t〉 and M [t′〉, and we are done since N is deterministic. Let
w.l.o.g. t = t2 and M ′(pa

1) = 1; thus, M(p1) = 1 and M ′(pb
1) = 1. Hence,

M [t1〉M1[t2〉. On the other hand, we have M [t′〉 due to (1) and t′ 6= t1 by (∗).
Together, this gives M1[t

′〉 and again the claim follows from the determinism of
N .

Let M ′ ∈ M′. Due to (2), there is a marking M ′′ ∈ M with M ′′[t2〉M
′ and

M ′′(pa
1) = 1. With (3), we conclude t2 6∈ {t, t′} and M ′′(pa

3) = M ′(pa
3) = 0. The

latter shows that p3 6∈ •t ∪ •t′ and thus M ′′[t〉 and M ′′[t′〉. Hence, there is a
marking M of N with M [t〉 and M [t′〉, which proves the claim.

(5) Let sv be the consistent state encoding of N . We define a state encoding sv of N ′

as follows: if M ′ ∈ M, there is a (unique) marking M of N with (M,M ′) ∈ S, and
sv′

M ′ = svM . If M ′
1 ∈ M′, there is a (unique) marking M ′ ∈ M with M ′[t2〉M

′
1,

and svM ′

1
= sv′

M ′ ⊕ t2, where the latter denotes the state vector obtained from
sv′

M ′ , either by adding 1 to the signal s if l(t2) = s+, or by subtracting 1 if
l(t2) = s−.

Let M ′[t〉M ′
1 be a firing in N ′, such that M ′ ∈ M due to (M,M ′) ∈ S. For t 6= t2

or M ′(pa
1) = 0, the consistency conditions for sv′ are fulfilled due to (1).

So let M ′[t2〉M
′
1 with M ′(pa

1) = 1. In this case, M ′
1 ∈ M′ and sv′

M ′

1

= sv′
M ′ ⊕ t2

by definition of sv′, and the consistency condition is trivially true.

Now, let M ′
1[t1〉M

′
2. Then there is a marking M2 of N as in the proof of (2) with

M [t1t2〉M2 such that (M2,M
′
2) ∈ S. Therefore, sv′

M ′

2

= svM2
= svM ⊕ t1 ⊕ t2 =

svM ⊕ t2 ⊕ t1 = svM ′ ⊕ t2 ⊕ t1 = svM ′

1
⊕ t1.

Finally, let M ′
1[t〉M

′
3 with t 6= t1. Then, there are markings M ′

4 and M ′
3 of N ′

as in the proof of (2) with M ′[t〉M ′
4[M

′
3〉. Now, a similar argumentation as above

shows that svM ′

3
= svM ′

1
⊕ t.

(6) Let MN ′ [v〉〉M for some v ∈ (Sig±)∗. Since N is deterministic, there is a unique
transition sequence u with l(u) = v. Due to (1), MN ′ [u〉M ′ with (M,M ′) ∈ S,
and obviously MM ′ [v〉〉M ′, which proves (TC1).

If M ′[x±〉〉 for some x ∈ OutN ′ , clearly this is due to M ′[t〉 with t 6= t2. Then (1)
implies M [t〉 and therefore M [x±〉〉, which proves (TC2).

Theorem 7.17(4,6) shows that IIC is indeed a TCOD-transformation. Furthermore,
this result can easily be extended to more general cases:

• Three or more sequential transitions t1, . . . , tn (each labelled with a different
input) can be made concurrent with a similar construction.

179

7 Output-Determinacy

• It is also possible to allow more than one place in the preset of t1 and the postset
of tn.

• A bit surprisingly, t1 could also be labelled with an output signal.

For the first two cases, the proof structure stays the same – the proof gets only more
complicated. In the last case, the proof stays the same since it never uses the fact
that t1 is labelled with an input.

Regarding termination, IIC can only be applied finitely many times to a final com-
ponent: consider the place p2 ‘in the middle’, which only has a single transition in
its pre- and in its postset; IIC reduces the number of such places. Observe that IIC
cannot be applied to the new places (pa

1 , pb
1, pa

3 and pb
3).

Finally, observe that N has to be deterministic rather then output-determinate as the
counterexample in Figure 7.8 demonstrates.

a+ a+

b+ c+

c+

x+

x+

⇒

a+ a+

b+ c+c+

x+

x+

Figure 7.8: Counterexample for application of IIC to an output-determinate but non-
deterministic STG. The STG on the left hand side is output-determinate, but the STG
resulting from applying IIC for b+ and c+ is not, i.e IIC is not a TCOD transformation in
this case.

180

7.2 Decomposition into Output-Determinate Comp.

7.2.2 New Algorithm

The new decomposition algorithm works nearly as the old one described in Section 3.3.
There are only a few modifications:

• The specification does not have to be deterministic any more.

• The condition (F2) for a feasible partition is modified such that the signal trigger
of an output have to be included in the component.

(F2): If there are t, t′ ∈ TN such that l(t′) ∈ Outi and t is a signal trigger of t′,
then the signal of t is in Ini ∪ Outi.

• The initial components are built as usual.

• Every TCOD-operation can be applied.

• Eventually, check each component for output-determinacy. If the check fails,
perform backtracking for some lambdarised signal or, if no lambdarised signal
is left, report that N is not output-determinate. Otherwise, the component is
constructed.

Observe that a non-output-determinate STG cannot be synthesised, thus checking
output-determinacy can be omitted in principle. However, since the final components
are (hopefully) small, we advise to perform this check anyway, since synthesis can
also fail for other reasons.

In an optimistic strategy, one performs TCOD-transformations as long as possible –
with our list of TCOD-transformations, this will terminate eventually, see below, –
and only backtracks if forced to in the last step.

The algorithm of this paper is a generalisation of the decomposition algorithm of
Section 3.3, where the latter only dealt with deterministic specifications; for these, the
latter algorithm considered the same partitions, transformations, and backtracking.
Since the concept of output-determinacy was not available, it was required to remove
all λ-transitions; thus, backtracking had also to be performed for a lambdarised signal
if a respective transition could not be contracted just for technical reasons, e.g. because
it was on a loop or had an arc with weight greater one. Since backtracking applies
to all transitions of a signal, one had to delambdarise a number of transitions just
for technical reasons, although they had already been removed successfully. This can
make the reachability graph much larger, while from the perspective of circuit design
the additional signal might not be needed. Now, we have the chance to avoid this,
which is an important contribution.

181

7 Output-Determinacy

If a transition contraction generates a new dynamic auto-conflict, then – as explained
in Section 3.3.2 – this is an indication that the original signal of the contracted
transition might be important for producing the proper outputs; here we can add
that if the latter is indeed the case, one has a violation of output-determinacy. Thus,
to be sure to get a correct result, it was recommended to backtrack in case of a new
dynamic auto-conflict; to make this strategy efficient, one has to avoid the generation
of the reachability graph, hence it was recommended to backtrack in case of a new
structural auto-conflict. With this strategy, the algorithm of Section 3.3 is guaranteed
to find a correct decomposition without any final check.

When using the risky strategy, the algorithm does not backtrack in case of a new
structural auto-conflict. The hope is that the conflict might not indicate a dynamic
auto-conflict, and that avoiding backtracking gives a smaller component. The price
to pay is a final sanity check as in the new algorithm of this section: in the end,
components had to be checked for determinism, which is more restrictive than our
check. The experience is that the hope is most often in vain, cf. Section 6.7.

Consequently, a conservative strategy is recommended for the new algorithm: when-
ever the contraction of a dummy transition creates a new structural auto-conflict, one
should backtrack on the respective signal – unless the conflicting transitions are dupli-
cates and one of them can thus be deleted. In this latter case, the conflict clearly does
not indicate a violation of output-determinacy. There is no obvious recommendation
if a new structural auto-conflict is created by the contraction of a spec-dummy, where
backtracking is not possible.

If all components are constructed successfully, circuits are synthesised from them using
tools like Petrify or Mpsat. Such tools build the reduced state-vector tables for
Boolean minimisation for each Ci, which can be viewed as derived from the respective
deterministic finite automaton DA(Ci). Hence, the equations derived from the state
graphs give a correct implementation of the specification N , as we will prove in the
next subsection.

Before we present the correctness proof, observe that notions like signal trigger and
weak syntactic conflict (Definition 7.14) are concerned with λ-transitions; when we
speak of signal triggers in condition (F2), we consider N , i.e. the respective λ-
transitions are spec-dummies; when we apply SecTC2’ to a component and check for
a weak syntactic conflict, the respective λ-transitions could be component-dummies
as well as spec-dummies.

We start with two lemmata. The first of them implies that during decomposition we
have as an invariant that some Ci is not output-determinate or (Ci)i∈I is a trace-
correct distributed implementation of N (also cf. the proof of the correctness theorem
below).

182

7.2 Decomposition into Output-Determinate Comp.

Lemma 7.18
Let N be an STG with an initial decomposition (Ci)i∈I where all components are
output-determinate. Then (Ci)i∈I is a trace-correct distributed implementation of N .

Proof. (TC1) Let w ∈ L(N) due to u ∈ T ∗. Then, for one transition of u after the
other, we can fire all copies of the respective transition in the Ci. In more detail, all
copies with label not equal to λ are synchronised in the parallel composition and fire as
one transition; the other copies fire one after the other. This shows that w C ∈ L(C).

(TC2) & (TC3) Again, let w ∈ L(N) due to u ∈ T ∗. To show (TC3), consider j ∈ I
such that x ∈ Outj and w Cj

x± ∈ L(Cj) due to the firing sequence vt with l(t) = x±.
Since lj(v) = w Cj

= lj(u) and Cj is output-determinate, we have a firing sequence
uu′t′ of Cj with lj(u

′) = λ and lj(t
′) = x±; choose such a u′ with minimal length.

By minimality, each transition in u′ triggers a succeeding transition in u′t′; thus, if u′

contained a lambdarised transition, we could consider the last one, which would be a
signal trigger of t′, a contradiction to (F2) for Cj . We conclude that all transitions in
u′ are spec-dummies. Thus, firing uu′t′ in all Ci as in the first part of this proof, we
get that w Cx± is a trace of C.

Whenever w Cx± is a trace of C, we have w Cj
x± ∈ L(Cj). So from the above

argument, we also see that (TC2) holds since we can fire uu′t′ in N as well, showing
wx± ∈ L(N).

Lemma 7.19
Let N be a non-output-determinate STG with an initial decomposition (Ci)i∈I . Then
some Ci is not output-determinate.

Proof. Suppose that MN [wx±〉〉 and MN [w〉〉M in N with x ∈ Outj . Then
MCj

[w Cj
x±〉〉 and MCj

[w Cj
〉〉M in Cj . Assume now that Ci is output-determinate,

i.e. M [x±〉〉 and M [vt〉 with l(t) = lj(t) = x± and lj(v) = λ. As in the previous proof,
we choose v to be minimal; then, all transitions in v are weak triggers of t in Cj ,
none of them can be a signal trigger in N , and thus they all are spec-dummies. This
shows that M [vt〉 also gives rise to M [x±〉〉 in N , hence N is output-determinate
contradicting the hypothesis.

183

7 Output-Determinacy

Theorem 7.20
Consider the application of the decomposition algorithm to an STG N .

(1) If all components are constructed successfully, then N is output-determinate,
(Ci)i∈I is a trace-correct distributed implementation of N and (DA(Ci))i∈I is
even a correct distributed implementation of N .

(2) If the algorithm reports that N is non-output-determinate, then this is the case.

(3) If only the TCOD-transformations from the list in Subsection 7.2.1 are applied,
the algorithm terminates.

Proof. (1) Suppose all components are constructed successfully. If N were not out-
put-determinate, we could consider the initial components that arise after the last
backtracking. By Lemma 7.19, one of them would not be output-determinate,
and this would be preserved by the TCOD-transformations, contradicting our
hypothesis.

This consideration also implies that all initial components are output-determi-
nate; hence, by Lemma 7.18 this initial decomposition (Ci)i∈I is a trace-correct
distributed implementation of N . Furthermore, due to the definition of TCOD
transformations, each final component is a trace-correct implementation of its
corresponding initial component. Theorem 7.11 then implies also that the set of
final components is a trace-correct distributed implementation of N .

Also determinisation of the Ci is an TCOD-transformation, and the third claim
about the deterministic automatons (DA(Ci))i∈I follows from Theorem 7.10.

(2) The algorithm reports that N is non-output-determinate only if there is some
component without hidden signals which is non-output-determinate. In this case,
the respective initial component is also non-output-determinate; this initial com-
ponent is identical to N except that some outputs of N might be inputs. It is
easy to see that in this situation the violation of output-determinacy carries over
to N .

(3) This is a result from [VK06]: backtracking delambdarises a lambdarised signal,
which can only be done finitely often. When no backtracking occurs, contractions
and transition deletions reduce the number of transitions, while the deletion of
places reduces the number of places without increasing the number of transitions.

Recall that IIC is only applied to the final components after determinisation and
not mixed up with the other operations; as it was argued above, it can be applied
only finitely often then.

184

7.3 Output-Determinacy and Internal Signals

It should also be noted that for a consistent N only consistent components are pro-
duced, cf. Section 3.5 and Theorem 7.11(5).

Compared to the approach of [VK06], the above correctness proof is considerably
simpler and deals with more general specifications. The price we pay is the check for
output-determinacy, which can be avoided in the approach of [VK06]. Additionally,
the proof in [VK06] takes care to show that, for deterministic specifications, type-
2 secure contractions can be applied without restriction. Since we use the same
operations as in [VK06], we can read off from the correctness proof there that the
same result applies here if in the specification N there are no weak triggers of or λ-
transitions in structural conflict with output transitions; this observation means that
we do not have to check for weak syntactic conflicts and this can save a little time.

7.3 Output-Determinacy and Internal Signals

In this chapter, we considered only STGs without internal signals so far. Usually,
such signals are introduced automatically into the STG during the synthesis process,
mainly in order to resolve CSC conflicts, but also to perform logic decomposition
(i.e. splitting large gates into smaller ones) or – as a recent application – to resolve
CSC during decomposition [WW07].

There are several possible interpretations for internal signals, depending on the role
the STG plays. Though an STG is always a specification of an asynchronous circuit,
it is common for an STG to go via a series of refinements, until eventually the ‘final’
STG is produced from which the circuit is synthesised. Hence, the ‘distance’ from
the STG to the circuit can vary; in particular, in the context of decomposition, the
specification STG is ‘far’ from the final circuit, while the component STGs are ‘close’
to it.

As a consequence, a far-off specification should only describe the external behaviour
of a circuit (i.e. its interface to the environment) rather than details of the physical
implementation. For this purpose internal signals are not needed, and so a specifi-
cation STG should not contain them. (If it does contain them, they can be treated
like a designer’s suggestion; in particular, the synthesis tool is free to turn them into
dummies, as they are ignored by the environment anyway.) On the other hand, for
the ‘final’ STG the internal signals are useful and can be mapped to physical wires.
Hence, for this STG, it makes sense to consider them as outputs of the circuit, which
(unlike dummies) occur in traces and are a part of the state encoding.

The semantics of internal transitions (i.e. whether they are treated as dummies or
as outputs) is important for the definition of output-determinacy; indeed, whether
the STG is output-determinate or not may depend on the chosen semantics. As

185

7 Output-Determinacy

described above, we choose to treat internal transitions as dummies in the specification
STG and as outputs in the implementation STG. Such a treatment might be seen as
somewhat unusual, particularly considering the internal transitions in the specification
as dummies. However, we argue that it is reasonable, as considering these transitions
as outputs leads to undesirable situations where a non-output-determinate STG is
implementable by a deterministic one, as illustrated in Fig. 7.9. On the other hand,
the proposed treatment allows us to lift Proposition 7.3 to the case of STGs with
internal signals, stating that only output-determinate STGs can be deterministically
implemented.

a+

v+
1

x+a−

v−1

x− a+

v+
2

x+ a−

v−2

x− a+

x+a−

x−

Figure 7.9: Counterexample: the non-output-determinate STG on the left with internal
signals v1, v2 has the same external behaviour as the right STG.

Now, we generalise the notion of correct implementation given in Definition 7.1 to
implementations with internal signals. Observe that we require IntC ∩ ExtN = ∅ for
technical reasons only; this can always be achieved by a suitable renaming.

Definition 7.21 (Correct Implementation with Internal Signals)
A deterministic STG C (with internal signals) is a correct implementation of an STG
N without internal signals if InC ⊆ InN , OutC = OutN , IntC ∩ ExtN = ∅, and for
all w and all M such that MN [w〉〉M the following hold:

(IC1) There is a trace v of C such that MC [v〉〉 with v|ExtC
= w|ExtC

.

For every trace v of C such that MC [v〉〉M ′ with v|ExtC
= w|ExtC

:

(IC2) If a ∈ InN and M [a±〉〉, then either M ′[a±〉〉 or a 6∈ InC .

(IC3) If x ∈ OutN , then M [x±〉〉 iff M ′[vCx±〉〉 for some vC ∈ (Int±C)∗.
△

186

7.3 Output-Determinacy and Internal Signals

In this definition, the items (IC1)/(IC2)/(IC3) correspond to (C1)/(C2)/
(C3) from Definition 7.1 with the following differences: clearly, every trace of the
specification must be possible in the implementation. However, now the implemen-
tation might produce this trace with the help of internal signals. Hence, in (IC1)
we just require that these traces coincide externally, and although C is deterministic,
there is the possibility that different traces look externally equal and that a trace v
of N can be matched in different ways by C. Observe that the implementation is still
allowed to have fewer inputs than the specification.

Since internal signals are introduced for technical reasons like resolution of CSC
conflicts, the resulting components are not to be considered as a specification but
rather like a hardware-close implementation. Therefore, the internal signals should
be treated like invisible outputs. This has two consequences for the handling of inputs
in (IC2), resulting from the fact that the environment cannot observe the internal sig-
nals of C: inputs of the environment are produced whenever a corresponding external
trace has occurred, no matter in which state the implementation is. Therefore, the
implementation must be ready to receive an activated input in all states correspond-
ing to an external trace, in particular, in the corresponding STG an input cannot
be triggered by an internal transition. (While the latter condition is common and is
also needed to guarantee speed-independence, the former condition differs from the
handling of inputs in the definition of output-determinacy.) In contrast, outputs can
be preceded by internal signals, because the environment will wait for the circuit until
the output is produced.

Further justification of soundness and usefulness of these assumptions can be found
in the discussion after Definition 5.2.

Violation of output-determinacy always results in a CSC-conflict, because if a trace
can be executed in two different ways, the reached states obviously have the same
state-vector. Below we show that this special conflict cannot be resolved by inser-
tion of internal signals. In fact, we prove a more general statement: a non-output-
determinate specification cannot be implemented by a deterministic STG with internal
signals. Thus, behaviour-preserving insertion of internal signals into a non-output-
determinate STG always results in a non-output-determinate STG, and the latter still
has CSC conflicts. The result below is an extension of Proposition 7.3 to implemen-
tations with internal signals.

Proposition 7.22
Let N be an STG without internal signals and C (with internal signals) be a correct
implementation of N . Then N is output-determinate.

187

7 Output-Determinacy

Proof. For x ∈ OutN , let MN [w〉〉M1[x
±〉〉 and MN [w〉〉M2. Then, by (IC1) of Defini-

tion 7.21, we get MC [v〉〉M ′ for some v such that v|ExtC
= w|ExtC

, and thus, M ′[v′x±〉〉
for some v′ ∈ (Int±C)∗ by M1[x

±〉〉 and (IC3). Therefore, by (IC3), M2[x
±〉〉.

7.4 Results

As described in the previous sections, it is now possible to leave λ-transitions in the
final components as long as they are output-determinate. Moreover, the new ap-
proach can also be used to speed up existing decomposition strategies, in particular
Tree (Section 6.4) (denoted TreeOld here). TreeOld generates all components
together, re-using the intermediate STGs which are generated during decomposition.
For efficiency, only some signals are contracted at each stage of the algorithm, re-
sulting in re-usable intermediate STGs. If not all transitions of some signal s can be
contracted, the contraction of s is postponed to later stages of the algorithm, which
is detrimental for performance due to the decreased usability of intermediate STGs.
Note that all the transitions of s are postponed, even if only one of them cannot
be contracted, because backtracking is performed for signals rather than individual
transitions. For practical STGs however, most of the postponed signals can actually
be contracted at later stages of the algorithm.

In the new approach (TreeNew), such postponing of signals can be avoided under
certain circumstances: if, in an intermediate STG, a transition of a signal s cannot
be contracted due to a new structural auto-conflict, postponing for s is performed
as in TreeOld. But if not all transitions are contractible due to technical reasons
only (e.g. due to a violation of safeness-preservation), no backtracking is performed
and the remaining non-contractible transitions are simply left as dummies in the
intermediate STG. As mentioned above, most of them will be contracted at later
stages, and otherwise these dummies will remain in the final component.

We applied TreeNew to the seqpartree.x series from the previous chapter; again
the initial partition was chosen in such a way that each component of the decompo-
sition corresponds to one handshake component.

We applied four variants of tree decomposition to these benchmarks, as well as stand-
alone synthesis with Petrify and Mpsat. (The tool for CSC conflict resolution and
decomposition presented in [CC06,Car03] was not available from the authors.) The
experiments were performed on a PC with Pentium 4 HT/3GHz processor and 2GB
RAM.

TreeOld is compared with TreeNew for ordinary contractions as described in
Subsection 3.3.2 as well as for safeness-preserving contractions, see Section 6.6.2 Es-
sentially, the preservation of safeness is another condition which can prevent some

188

7.4 Results

Safe Non-Safe
Benchmark TreeNew TreeOld TreeNew TreeOld Synthesis

seqpartree.05 1 1 1 2 5
seqpartree.06 4 4 3 5 16
seqpartree.07 8 9 8 9 22
seqpartree.08 17 32 19 21 1:02
seqpartree.09 1:18 1:27 1:24 1:29 1:30
seqpartree.10 6:03 42:37 5:49 7:04 4:32

Table 7.1: Results for the handshake benchmarks. Columns 2 – 5 give the pure decomposi-
tion time, the last column gives the Petrify synthesis time for the components. Times are
given in seconds or as minutes:seconds. Safe means safeness-preserving contractions, the old
method does not leave λ-transitions in the intermediate results, the new one does.

contractions and thus increases the runtime. This resulted in the mentioned four
series of experiments, see Table 7.1.

In the end, the final components were synthesised (which includes the resolution of
CSC conflicts) with Petrify, which was possible for every component. As a con-
sequence, this shows that the decomposition is correct: a necessary condition for
synthesis is the absence of CSC conflicts. However, non-output-determinism is a spe-
cial case of a CSC conflict, which cannot be resolved as discussed in the previous
section. Hence, the resulting components are indeed output-determinate, and Theo-
rem 7.20(1) guarantees the correctness. Moreover, the resulting components turn out
to be the same for all series, and hence the synthesis times are given only once. Ob-
serve that the latter property makes these benchmarks especially useful for comparing
the four variants of the algorithm presented in Table 7.1.

The synthesis with stand-alone Petrify or Mpsat has not terminated within 12
hours, even for SeqParTree-05, as the corresponding STGs are very large. We
consider it as a notable achievement that the proposed approach could synthesise
them so quickly – e.g. seqpartree.05 with more than 4000 signals was synthesised
in less than 11 minutes. One can see that leaving non-contractible transitions as
dummies in the intermediate STGs is useful, especially for safeness-preserving con-
tractions. The reason is that, in this variant, the decomposition algorithm encounters
more λ-transitions which are non-contractible due to technical reasons (viz. they do
not preserve safeness). TreeOld would backtrack and postpone for the respective
signals, which significantly increases the runtime of this approach. As one can see,
the new approach leaving such transitions as dummies in the intermediate STGs is
much faster.

189

Chapter 8

DesiJ – A Tool for
STG-Decomposition

Premature optimization is the root of all evil

– or at least most of it – in programming.

Donald Knuth, 1974

In this chapter, the implementation DesiJ (decomposition Java) of the decomposition
algorithm is described. Based on [VW02,VK06], B. Kangsah implemented a prototype
version Desi in C, which covered only the Basic strategy. Since this implementation
was simply not extendable, we decided to start a new implementation from scratch.
This time, Java was chosen instead of C++ (or even C as for Desi), in order to
focus on the implementation itself instead of technical details of the programming
language, as this often happens for C/C++. Furthermore, performance was not the
prime objective for the following reasons:

• The decomposition algorithm works only structurally, i.e. it is explicitly avoided
to perform expensive operations in particular building reachability graphs.

• The main focus was the easy extensibility with the new features developed
during the STG decomposition project.

• Additionally, the performance of Java is not so bad compared to C/C++ any-
more, due to the availability of Java virtual machines with just-in-time-compiling.

191

8 The Tool DesiJ

Java Runtime Environment External libraries
jgraph, lpsolve, ...

STG
Place, Transition,
Signal, ...

Algorithms
reachability, shortest path,
bisimulation, redundancy, ..

I/O
Parser,
Conversion

Conditions
Collectors
Operations
StructuralConflict,
SignalOf,
ConflictSignalOf,
...

Strategies
Basic, Lazy, Tree, CSC-Aware

Handshake

Command line
batch, interactive

GUI

Figure 8.1: Structure of DesiJ

To guarantee the extensibility, DesiJ was developed in three layers, based on the Java
runtime environment (JRE) and some external libraries, see Figure 8.1:

• The STG layer provides basic functionality for STG handling independent of
decomposition.

• The decomposition layer implements the various decomposition strategies and
provides features for the generation and handling of handshakes circuits (cf. also
Chapter 9)

• The interface layer provides three access possibilities for the implemented func-
tionality: a batch command line mode, which is the most powerful mode with
the most options, an interactive command line mode and a graphical user inter-
face for decomposition. The features of the command line mode are presented
in Section 8.2.

• The Conditions, Collectors and Operations block is something special: these
operations are independent of decomposition, but provide useful features for it
which belong to the STG layer on a functional level, nevertheless. They are
described in Section 8.1.3.

• Additionally, there are independent blocks with prototype implementations of
new ideas and concepts (not shown).

192

8.1 Implementation

This chapter is organised as follows: in the first section, some implementation issues
are discussed and justified. In Section 8.2 an overview of the implemented functional-
ity of DesiJ is given in form of its commented command line options and parameters.

8.1 Implementation

8.1.1 STG Undo Implementation

In the first implementation of the decomposition algorithm, backtracking was realised
by generating copies of the respective component STGs. This is inefficient for Lazy-

Back, Tree and Aggregation, because between two savepoints, decomposition-
tree nodes resp. often only small parts of a component are modified. Undoing few
changes is clearly more efficient than to copy all the unchanged parts, especially for
a large STG. In Basic and Reordering, backtracking means to restore the initial
component. If this is performed for a small intermediate STG, copying might be more
efficient: in particular, during reduction a lot of redundant places are produced and
deleted afterwards. When undoing, the places are first introduced and then deleted
again. Nevertheless, it turned out that even these strategies benefit from undoing,
see Section 6.7.

Furthermore, copying the STGs increases the memory usage very much, because
there are a lot of intermediate results which have to be stored – this is especially
important for Tree, where all components are created at the same time and even
more intermediate results have to be stored.

Instead, in DesiJ an undo mechanism is implemented which can restore previous
versions of an STG very efficiently. Functionally, it works as a stack like in most
applications (e.g. text or image editors), i.e. only the latest performed operation can
be undone.

There are only three supported operations: adding/removing nodes with their incident
arcs and changing the signature. All high-level operations like transition contraction
are reduced to these ones; at the moment, there is no operation for changing arc
weights, since it is not needed so far.1

For every change in an STG the corresponding undo operation
(UndoOperation) is generated and pushed on the undo stack
(STG.undoStack). When an undo is performed, the last operation is removed from
the undo stack and is applied, i.e. the corresponding change is undone. (Undo-
Operation.apply()).

1Arcs with a weight greater than 1 can be produced during decomposition, but their weight does
not change afterwards.

193

8 The Tool DesiJ

t1t1

p1 t2t2

p2

a

b

c

d

Initial STG with arcs

t1t1

p1 t2t2

p2

a

b

c

d

Initial STG with pointers

t1t1

p1 t2t2

p2

a

b

c

d

p2 removed

t1t1

p1 t2t2

p2

a

b

c

d

t2 removed

t1t1

p1 t2t2

p2

a

b

c

d

p2 added out of order

Figure 8.2: STG undo example. The internal representation (upper right) of the initial
STG (upper left) contains two pointer for every arc – a forward pointer and a backward one
(dotted). Here, the arc labels denote the arc names.

194

8.1 Implementation

To understand the undo mechanism, we will first have a short look at the data struc-
ture of an STG in DesiJ, cf. also the first row in Figure 8.2. Essentially, an STG is
a graph (and the undo stack can also applied to them in principle), and it is stored
with adjacency lists kept in the nodes. The nodes are double-linked, i.e. for every arc
from node x to node y, two pointers are stored: one forward pointer in x pointing to
y, and one backward pointer in y pointing to x.2 Furthermore, all nodes of a net are
stored in a list.

Undoing the adding of a node is quite easy: the respective node and incident arcs
are simply removed from the STG. Undoing the removal of a node x is a bit more
complicated and harnesses that the nodes are double-linked: if x should be removed
from a net, it is not deleted completely, but only removed from the list of nodes and
all pointers pointing to x are deleted in the respective nodes, i.e. the STG ‘forgets’
about x. On the other hand, the outgoing pointers of x are kept, i.e. x itself still
‘knows’ about its former connections.

For an example, have a look at Figure 8.2. The initial STG (upper left) contains four
nodes and four arcs (a, b, c and d). In the internal representation (upper right), each
of these arcs is represented by a forward pointer and a backward pointer (dotted). If
the nodes p2 and t2 are removed in this order, we get the internal representations in
the middle row. As one can see, only the respective outgoing pointers remain. If the
operations are undone, the states are encountered in the reverse order.

It depends on the direction of an arc which of the corresponding pointers is deleted,
e.g. in the STG in Figure 8.2, t2 lies on a loop with p1 formed by the arcs b and c.
When t2 is deleted, the backward pointer of c but the forward pointer of b is deleted
in p1. If the deletion of x should be undone, all ingoing pointers to x are restored in
the respective nodes from the outgoing counterparts in x, and x is added again to the
list of nodes.

In principle, it is possible to apply undo operations out of order as in the last row,
where p2 was added before t2. Observe, that this STG is not well-formed: the back-
ward pointer of arc d is dangling, i.e. it points to a node which is not contained in
the list of nodes. Therefore, only STGs corresponding to a proper stack state3 are
guaranteed to be well-formed, but it is also possible that independent operations are
undone, resulting in well-formed data structures, e.g. if the respective nodes are not
adjacent. Undoing out-of-order might allow to perform undo operations concurrently
on multi-processor systems.

2Java does not have pointers in the same sense as C++, but all variables in Java are actually
references and therefore some kind of pointer, although there is no pointer arithmetic.

3We can imagine that non-top-elements removed from the stack are replaced by dummy elements,
which will be removed automatically if they become the top element. Then, a stack is proper if it
contains no dummy elements, and this is exactly the case if this state was encountered previously
when applying the operations which are now undone.

195

8 The Tool DesiJ

The undo operations for the modification of the signature just keep track of the old
state and restore it if needed. For example, the STGs keeps record of each occurring
signal (also for lambdarised signals the signal name is kept – the signal type is just
changed to dummy). If the last transition of a signal is deleted, this signal is removed
from the list of signals and re-inserted if the deletion of the transition is undone.

Additional features of the undo stack are combined undo operations which encapsu-
late associated modifications; at the moment, this is only used for transition con-
tractions. Furthermore, one can push special parametrised undo markers onto the
stack. They are used to simplify backtracking: the Basic strategy puts a marker
on the stack before the reduction starts. If it is necessary to backtrack, the method
STG.undoToMarker(Object) is called to undo all operations performed after the re-
spective marker was added. Different strategies use different markers, which makes it
possible that the other strategies can use Basic to perform reduction in an intermedi-
ate STG: Basic only undoes its own changes when backtracking, and other strategies
can undo to their own markers ignoring the Basic marker.

A typical stack for Tree might look as in Figure 8.3 (undo markers are shaded). At
the bottom of the stack, there is a ‘entered node’ marker, which corresponds to the
begin of the decomposition algorithm when the root node of the decomposition tree
is entered with the specification STG. Then Basic is performed for the signals to be
contracted in this node. A ‘basic marker’ is set to enable backtracking to this point.
As one can see, directly on top of this marker there is another ‘entered node’ marker,
i.e. in the root node no contractions took place. Then, the first real change happened,
viz. the type of some signals was changed to dummy (i.e. they were lambdarised), and
the contractions of the corresponding transitions by Basic took place. Each undo
operation encapsulating a contraction is built from several smaller undo operations
as described above: first the new combined places are added, then the old ones are
removed, then the signature is updated (it is possible that the transition was the last
of a signal, and finally the contracted transition is removed. In the lower contraction,
the respective transition has exactly one place in its pre- and postset; in the upper
contraction, both, the preset and the postset contains two places.

8.1.2 Calculation of Decomposition Trees

For the decomposition strategy Tree (see Section 6.4), it is needed to precalculate a
decomposition tree which is the plan for the decomposition process. Every node stores
a set of signals which should be lambdarised and contracted when entering it with
an STG, and decomposition starts at the root node with the initial STG. Therefore,
every leaf corresponds to a final component, in which all signals on the path from the
root to this leaf are contracted.

196

8.1 Implementation

entered node

basic

entered node

signature

basic

contraction

contraction

entered node

signature

basic

contraction

contraction

added place

removed place

removed place

updated signature

removed transition

added place

added place

removed place

removed place

removed place

updated signature

removed transition

Figure 8.3: Undo stack during Tree (growing to the top). Shaded entries are undo markers,
contractions are combined undo operations consisting of several operations.

Since the purpose of this tree is to minimise the absolute number of contractions
while generating all components, we consider a tree as optimal if the overall number
of signals in the nodes is minimal. This is a slightly relaxed assumption, since the
number of transitions is not the same for each signal, but in practical STGs most
signals have only two transitions. Furthermore, as it was mentioned in Section 6.4,
the tree will be changed during decomposition due to postponing contractions.

In general calculating optimal decomposition trees is NP-complete (see [KK01], de-
composition trees are called preset trees there). Also in [KK01], a heuristic algorithm
is given, which performs reasonably well: it starts with a set of trees – one for each
component, containing only one node with all signals to be contracted in the respec-
tive component. Then the algorithm works bottom-up, combining root nodes which
share the most signals, until only one tree remains.

For these calculations, a data structure which is a combination of an associative
array and a sorted tree is used for storing all pairs of root nodes together with the

197

8 The Tool DesiJ

intersection of their signal sets. It supports the following operations (n is the number
of signals):

• Given two sets of signals, adding the entry for the intersection of them is done
in O(n): O(n) for generating the intersection and O(log n) for adding.

• Retrieving the largest intersection is done in O(1).

• Given two sets of signals, removing all corresponding entries and adding new
entries for their intersection is done in O(n2).

Initially, this data structure contains all possible intersections between the signals of
all root nodes. If n is the number of signals of the specification, setting this up takes
O(n3) time, O(n2) entries of O(n) size. Obviously, also the initial memory usage is
in O(n3). If one wants to generate the finest partition, the memory usage as well as
the runtime is in Ω(n3).

The main loop iteratively retrieves the largest intersection of two signal sets, combines
the corresponding trees T1 and T2 and updates the data structure. T1 and T2 are
combined by generating a new tree node T which stores the intersection and which
has T1 and T2 as children. Furthermore, the intersection is removed from the signal
sets stored in T1 and T2. Since in every step the number of trees is decreased by 1,
the main loop is executed exactly n − 1 times resulting in a O(n3) overall runtime.

To make the implementation more efficient, the signal sets are stored as fixed length
bitsets, which improves the runtime and memory usage by a constant factor. If this
is still not efficient enough, the algorithm can be partially randomised: the set of
leafs is (randomly) partitioned into sets of a fixed size and the presented bottom-up
algorithm is applied to each of them separately, resulting in a number of preset trees.
The root nodes of these trees are considered as leafs for a new iteration and so on
until only one tree remains.

For a large STG like seqpartree.10 (cf. Section 7.4), the decomposition tree can be
calculated in less than a minute with the partially randomised version; the resulting
tree reduces the number of contractions to be performed with Tree to about 15%
compared to Basic, if backtracking is not considered. In random benchmarks which
mimic the characteristics of STG decomposition trees4, the bottom up algorithm is
about 2 percentage points better than the partially randomised version. The com-
pletely random strategy, which combines in each step two arbitrary trees, is of course
even more faster – runtime and memory usage are in O(n2) – and reduces the num-
ber of contractions to about 20%. This algorithm will possibly be needed for larger
specifications.

4The size of the initial sets as well as their number is related to each other as it is the case for
STGs, where e.g. each initial set contains nearly all signals.

198

8.1 Implementation

8.1.3 Conditions, Collectors and Operations

The condition/collector/operation concept was introduced to enable the fast (some-
times prototype) implementation of the necessary algorithms.

Conditions (stg.traversal.Condition) check if a given object fulfils some proper-
ties, for instance, if the signal of a transition is in a given set, or if a node is the
child of another node. Furthermore, there are special classes which allow to combine
predefined conditions to more complex conditions: the NotCondition just negates a
condition, the class MultiCondition combines a set of conditions with AND, OR or
XOR.

Collectors (stg.traversal.Collector) derive certain information from objects, e.g.
the children or syntactical triggers of a node. An overview of the currently imple-
mented conditions and collectors can be found in Tables 8.1 and 8.2. Additionally,
operations (stg.traversal.Operation) can perform certain tasks for all elements of
a given set; there are no predefined operations.

In the following, List<T> denotes a list with elements of Type T,
Condition<T> denotes a condition which can be applied to objects of type T and
Collector<T,R> denotes an operation which is applied to objects of type T and re-
turns objects of type R. A Collection is the most general superclass of the List

class (except of the Object class itself); it defines the basic interface for representing
a bunch of objects.

Although each condition or collector could be used stand-alone or for just one object,
they are usually used in combination with one of the following methods.

• List<T> getElements(Collection<T> c, Condition<T> cond)

Returns the elements from c for which cond is true.

• List<R> collect(Collection<T> c, Condition<T> cond,

Collector<T,R> col)

Returns the results of cond for the elements of c for which cond is true.

• void modify(Collection<T> c, Condition<T> cond,

Operation<T> op)

Applies the operation op to all elements of c for which cond is true.

In some cases, the usage of a condition or collector was replaced with a specialised
implementation, either for efficiency or due to growing complexity. In particular, the
Contractible condition was moved to STG.isContractable(STG stg, Transition

transition):

199

8 The Tool DesiJ

checking if a contraction is applicable and to determine the exact reason when this is
not the case, has become quite complex, since there are several optional reasons for
backtracking, e.g. safeness-preserving contractions.

In general, during the development of DesiJ, the condition/collector/operation con-
cept turned out to be very useful. It allows to implement pseudo-code style descrip-
tions of an algorithm in a very straightforward way, because it separates different
layers of the implementation from each other.

8.1.4 Verification of the Implementation

In most cases, scientific programming is inherently more complex than business pro-
gramming: the data structures are rather complex and the algorithms are not well-
known but newly developed.

Therefore, it is even more important to ensure the correct functionality of the devel-
oped software. In particular, DesiJ works on large input files for which the results
cannot be checked by hand. While this is possible for small benchmarks, it is easily
possible that new effects and errors arise only for large STGs.

To guarantee5 the correctness of the decomposition algorithms, the following approach
was chosen: an independent package of DesiJ tries to find a proper STG-bisimulation
for an STG and its decomposition. If this is successful for a sufficient number of
runs of several benchmarks (in particular for large ones), the implementation of the
respective algorithm is considered correct. This introduces redundancy: since the two
parts of DesiJ only share the low level implementations of the STG layer, it is rather
unlikely that both parts work incorrect in such a way that an incorrect decomposition
is reported as correct.

The correctness checking package is divided into two parts:

• A general-purpose simulation engine (Simulation), which tries to build a rela-
tion between the states of two systems according to certain rules.

• A set of RelationPropagators which define the corresponding rules. Rules
are of the form: if this element is in the relation, then also this or this or . . .
element has to be. A rule also defines which elements have to be in the relation
unconditionally, e.g. the element (MN ,MC′) for an STG-bisimulation.

In particular, the STGBisimulationPropagator defines the rules of an STG-bi-
simulation.

5Of course, this is no 100% guarantee in the sense of verification. The implemented algorithms
itself are proven correct anyway – this is a check of their correct implementation.

200

8.1 Implementation

Name Description Comb.

Activated If a transition is activated
Adjacent(Set<Node> n) If a node is adjacent to a node from n •
All Always true
ArcWeight(int n) If a node is incident to arcs with weight > n
ChildOf(Node n) If a node is a child of n •
Contractible If a transition can be contracted. Not used

any more, cf. text.
•

DuplicateTransition

(Transition t)

If a transition is a duplicate of t

EqualTo(Object o) If an object equals o (in the sense of Java)
LoopOnly If a node is a loop-only node
LoopWith(Node n) If a node forms a loop with node n •
MarkedGraphPlace If place has only one incoming and one out-

coming arc, both with weight 1
MultiNodes(Set<Node> n) If a node is contained in n

NewAutoConflict If a transition contraction creates a new auto-
conflict pair

NumberOfChildren(int n) If a node has more than n children
NumberOfParents(int n) If a node has more than n parents
ParentOf(Node n) If a node is a parent of n •
RedundantPlace If a place is redundant. This is the most com-

plex condition.
•

RedundantTransition If a transition is redundant
SafeContractable If a contraction preserves safeness
SecureContraction If a contraction is secure •
SelfTriggeringPlace If a place connects two transitions labelled

with the same signal
•

signal/signature Several conditions related to the labelling of
transitions

StructuralConflict

(Transition t)

If a transition is in structural conflict with t

Table 8.1: Implemented Conditions. The ‘Combined’ column is marked if the respective
condition is a MultiCondition or NotCondition, or if its implementation mainly uses other
conditions. The All condition may seem a bit pointless, but it is used if collect or modify
should be applied without any preconditions.

201

8 The Tool DesiJ

Name Description

AutoConflict Returns the signals for which a place constitutes a
structural auto-conflict

Children Returns the children of a node
ConflictSignal Returns all signals which are in structural conflict

for a transition
Identity Returns the object itself
Marking Returns the marking of a place
NewAutoConflictPair Returns all signals for which a contraction will create

new structural auto-conflicts
Parents Returns the parents of a node
Signal Returns the signal of a transition
String Returns a string representation of an object
SignalTrigger Returns all weak syntactical triggers of a transition
SyntacticalTrigger Returns all syntactical triggers of a transition

Table 8.2: Implemented Collectors.

8.2 Command Line Options and Parameters

In this section, the various command line options of DesiJ are listed, in order to give
an overview of the implemented features and to give an impression of the complexity
of the whole system.

There are command line options and command line parameters. The first ones can
be given in a long and in a short form. For instance, the help option can be given as
--help or just as -h. The short forms can be combined, i.e. instead of -m -Z, just -mZ
can be used. Furthermore, options have a default value, either true or false, which is
switched by the presence of the option. The default value is given in brackets on the
right. Parameters are given in the form parameter=value. If there is a default value,
it is also given in brackets.

The default values for options and parameters are chosen such that in most cases just
typing desij some stg results in a fast and sufficient decomposition of some stg.

202

8.2 Command Line Options and Parameters

operation=[bisim|check|cl|convert|create|decompose|info|info1| info2|

killdummies|rg|reddel|show] (decompose)

Determines the working mode for DesiJ as follows:
bisim <specification> <components>
Finds and prints an STG bisimulation between the STG in <specicfication> and the
parallel composition of the STGs in the <components> files.
check <specification> <components>
Same as for bisim, but only checks if a STG-bisimulation exists. It is also faster than
bisim.
cl <file1>

Opens the interactive command line mode.
convert <file1> <file2> ...

Converts the input STG to a different format. See format parameter for more details.
create

Creates a predefined STG model (e.g. seqpartree.x). When using this, the model

parameter is mandatory.
decompose <file1> <file2> ...

Decomposes the given STGs. This operation is affected by various other parameters
and options.
info,info1,info2 <file1> <file2> ...

Prints several information of the given STGs. info2 gives the most detailed ones.
killdummies <file1> <file2> ...

Contracts all dummy transitions, if possible.
rg <file1> <file2> ...

Creates the reachability graph.
reddel <file1> <file2> ...

Deletes all redundant places.
show <file1> <file2> ...

Converts the STG to PS and opens a viewer.

--help -h (false)

Shows the help message.

--values -V (false)

Shows the values of all command line options and parameters.

--stat-server -E (true)

Starts the statistic server, which is a simple TCP/IP server providing information about
the decomposition process and allows a basic control over running DesiJ processes.

--silent -Z (false)

Suppresses the starting message.

verbose=[0|1|2|3] (1)

Writes detailed information of what is happening at the moment to the command line.
0: no information, 3: nearly every operation.

203

8 The Tool DesiJ

--punf-mpsat-output -m (false)

Shows Punf and Mpsat output for debugging.

--gui -G (false)

Starts the graphical user interface.

--productive -v (true)

Several optimisations take place. Essentially, the places are just numbered after contrac-
tions. This makes the result more readable and accelerates the computations. Other-
wise, a reduction combines the name of the resp. places, which is helpful for debugging.

Control of the Decomposition Algorithm

version=[basic|csc-aware|lazy-multi|lazy-single|tree] (csc-aware)

The decomposition strategy to use.

--aggregation -a (false)

Performs tree aggregation. Works only for tree decomposition and CSC-aware decom-
position.

--leave-dummies -l (false)

Do not backtrack for dummy transitions which are not contractible due to structural
reasons, cf. Chapter 7.

max-csc-backtracking=[1..MAX INT] (3)

When CSC aware decomposition is enabled, this value determines how often a CSC-job
is pushed upwards.

mcs=[1..MAX INT] (10)

The maximum number of signals a component can have to perform component aggre-
gation.

--recontract -# (true)

After solving CSC with known signals, the signals not destroying CSC cores are con-
tracted again.

--stop-when-backtracking -A (false)

Stops decomposition if backtracking is about to be performed for the first time. Mainly
for debugging.

--risky -Y (false)

When true, structural auto conflicts are ignored.

204

8.2 Command Line Options and Parameters

conflict-signal-exception

Which signals are treated different in case of an auto-conflict (see conflict-strategy).
Turns conservative to risky and vice versa.

--incomplete-partition -i (false)

Checks the given partition only for conflicts between outputs and not if it is complete.
i.e. all outputs occur within.

--remove-redundant-transitions -T (true)

Redundant transitions are removed during decomposition.

partition (finest)

Output signals of the components, the inputs are determined according to the require-
ments of a feasible partition.
For instance, partition=x:y z1:z2 ack will create the three components (x,y),
(z1,z2) and (ack). partition=finest automatically determines the finest possible
partition.

--order-dummy-transitions -o (true)

Enables Reordering.

--postpone-contractions -p (true)

If a transition contraction is not possible it is tried later again, as long as there are other
contractions possible.

--forbid-self-triggering -s (true)

Consider transitions as non-contractible if their contraction leads to a self-triggering
situation and the respective places are not redundant.

--safe-contractions -f (true)

Performs only safeness preserving contractions.

--safe-contractions-unfolding -x (true)

Check safeness preserving contractions with Mpsat.

deco-tree=[combined|random|top-down] (combined)

The method used to generate the decomposition tree.

max-unfolding-size=[0..MAX INT] (100)

The maximum size of an STG (#Transition + #Places) for which properties are checked
on the unfolding. See also Section 6.7.

205

8 The Tool DesiJ

Handling of Redundant Places

When the deletion of redundant places is activated, it is checked for (in this order):

• easy special cases (e.g. a place with empty preset is always redundant)

• loop only places

• duplicate places

• shortcut places

• implicit places (with unfoldings)

The latter two possibilities are only checked if they are enabled (see below), the last one
only if the STG is small enough, see also max-unfolding-size.

--remove-redundant-places -P (true)

Redundant places are removed during decomposition.

--shortcutplace -u (true)

Check also for shortcut places when looking for redundant places.

shortcut-length=[2..MAX INT] (MAX INT)

Maximal path length for shortcut places.

--red-unfolding -X (true)

Use Mpsat to check for implicit places. When this option is enabled, every implicit
place is found.

--check-red-often -O (false)

It is checked for redundant places (and transitions) before every contraction. Reduces
performance significantly.

max-place-increase=[1.0..MAX FLOAT] (1.1)

If during the contraction of some transitions the number of places exceeds the original
number multiplied by this value, redundant places are deleted before it is proceeded
with the contraction. Prevents the ‘explosion of places’ during contraction.

Synthesis of Components

--synthesis -y (false)

When enabled DesiJ tries to synthesise the components with an external tool.

equations (equations)

The file in which the equations are stored if synthesis is enabled.

206

8.2 Command Line Options and Parameters

syn-tool=[mpsat|petrify] (mpsat)

The given tool is used for synthesis of the components.

syn-param=[arbitrary]

The following parameters are forwarded to the synthesis tool.

Various Options

hide

The set of hidden signals when checking for bisimilarity.

model=[art|seq|par|multipar|seqpartree|parseqtree]

When the operation is create, this parameter defines the generated STG model.

--hide-internal-handshakes -H (false)

When creating models out of handshake components, the internal handshakes are hid-
den, i.e. labelled with lambda in this case.

--handshake-component-csc -c (false)

When creating models out of handshake components, the components are generated
with CSC.

Output Options

--write-logfile -L (true)

Writes a logfile.

logfile (desij.logfile)

Name of the logfile.

--intermediate-results -I (false)

Intermediate STGs are written to disk. Mainly for debugging.

format=[g|dot|ps] (g)

Fileformat of the written STGs. *.g is the standard exchange format for STGs, *.dot is
a dot (from GraphViz) source file for the generation of graphical representations, *.ps
is a PostScript file.

--save-all-places -S (false)

When saving in *.g format, all places are saved explicitly.

207

8 The Tool DesiJ

--reddel-before-save -b (false)

Removes redundant places and transitions before an STG is saved. Not needed for
decomposition.

--reachability-graph -R (false)

Writes the reachability graph of an STG instead of the STG itself.

label=

User defined label/caption for output in graphic formats.

outfile=

Name of output file for operations different from decompose.

208

Chapter 9

Conclusion and
Future Research

This thesis dealt with the STG decomposition algorithm of [VW02, VK06]. A variety of
properties and improvements of this algorithm as well as of related topics from the field of
asynchronous circuits and STGs have been presented.

In Chapter 4, it was shown that the STG decomposition algorithm presented in [VW02] is
determinate if applied to live marked graphs, a subclass of considerable interest in the area
of circuit design. The proof of this result is based on several statements, and only one of
them could be shown for general Petri nets. It would be clearly interesting to generalise at
least some other partial results to other net classes.

Related to the determinacy result, but also of independent interest, is the conceptionally and
algorithmically easy characterisation of redundant places in live marked graphs, for which
we provided a new easy proof. Again, we would like to generalise this result; it is clear that
in S-Systems [DE95] — which coincide with finite automata — no place can be redundant.1

The next more general class are free-choice nets, in which two transitions either have the
same preset, or their presets are disjoint; clearly, marked graphs are a subclass of free-choice
nets. It is still unclear how redundant or implicit places could be characterised structurally
for this class, and a determinacy result is rather unlikely since a contraction does in general
not preserve the free-choice property.

In Chapter 5, we have generalised the correctness definition of [VW02,VK06], Definition 3.4
resp. to decompositions of STGs with internal signals and proven that speed-independent

1In S-Systems, every place must have a transition in its postset. This is allowed for finite au-
tomata, and such places/states would be indeed implicit.

209

9 Conclusion and Future Research

CSC-solving as performed e.g. by Petrify is correct. We have shown that the new correct-
ness is preserved in a top-down decomposition, and this result has a number of consequences:
now we can use step-wise decomposition in the decomposition algorithm of [VW02,VK06] to
improve efficiency as it is described in Section 6.6, and we know that this algorithm in com-
bination with speed-independent CSC-solving gives correct results. Applying the correctness
definition to compare two STGs, we get an implementation relation, and consequences of our
result are that this is a preorder and, with a small restriction, a precongruence for parallel
composition, relabelling and hiding.

As another application of the correctness definition, it was shown that a decomposition
method based on integer linear programming [CC03] is correct. It remains an open problem
whether a related method in [YOM04] is correct: while the first method checks on the original
STG to be decomposed whether a set of signals is a CSC-support and in the positive case
removes the other signals, the related method removes some signals and checks CSC on the
remaining STG; this is in general not sufficient, but it might be sufficient under the specific
circumstances of the algorithm in [YOM04].

Finally, we compared our implementation relation with the one derived from the notion of
I/O-compatibility in [CC02] and the one defined by Dill [Dil88]. We have shown that our
implementation relation is strictly stronger than the latter ones.

While the previous chapters are concerned with theoretical findings, in Chapter 6 practical
strategies for the implementation of the decomposition algorithm were introduced. These
improvements increased the performance of decomposition very much. Especially Tree and
DeMpSy turned out to be excellent strategies for saving runtime and memory.

As mentioned in Section 6.4, the pre-calculated decomposition tree is not necessarily optimal
for the final components, since signals might be moved from nodes to their children. Further
work in this direction will be to consider the top-down algorithm for building preset trees
in [KK01]. This strategy starts at the root node – as the tree decomposition does – and
adds branches iteratively to the tree. The idea is to interleave this building process with
decomposition itself — including postponing — in order to get a better decomposition tree.

Furthermore, for the time being, DesiJ looks only for so-called shortcut places (cf. also
[SVJ05,STC98]), which are a subclass of redundant places. Improving this more algorithmic
part of DesiJ would reduce backtracking (since undetected redundant places can prevent
secure transition contractions) and therefore improve runtime and quality of the components.

This is partially done with the help of unfoldings, cf. Section 6.6, but only for comparatively
small STGs; structural conditions like shortcut places in marked graphs could be more
helpful.

The purely structural decomposition approach investigated in this thesis can handle large
specifications, but it does not take into account the properties of STGs related to synthesis-
ability, such as the presence of CSC conflicts. In contrast, Mpsat can resolve CSC conflicts
and perform logic synthesis, but it is inefficient for large specifications. In Section 6.6,

210

we demonstrated how these two methods can be combined to synthesise large STGs very
efficiently.

One of the main technical contributions of this chapter was to preserve the safeness of the
STGs throughout the decomposition, because Mpsat can only deal with safe STGs. This
is not just an implementation issue or a compensation for a missing Mpsat feature, but it
is also far more efficient than working with non-safe nets, for which unfolding techniques
seem to be inefficient. We also showed how dynamic properties like implicitness and auto-
conflicts can be checked with unfoldings and how these checks can be combined with cheaper
conservative structural conditions.

Further research is required for the calculation of the decomposition tree, the size of which
is cubic in the number of signals and exceeds the memory usage for decomposition and
synthesis by far. Here, heuristics are needed which explore the trade-off between the quality
of the decomposition tree and the amount of memory needed for its calculation.

In Chapter 7 the new notion of output-determinacy is introduced. This concept is a re-
laxation of determinism and determinacy and fits very well into the speed-independent and
STG synthesis context. It also gives a first formal semantics for the use of dummy transitions
in STGs.

Based on this, it was also possible to give a simplified correctness notion, an extended
algorithm with new reduction operations and a simplified correctness proof thereof. The new
algorithm can also decrease runtime because it allows for dummy signals in the components
which avoids unnecessary backtracking. Furthermore, increasing input concurrency was
applied for the first time in the context of decomposition.

Additionally, all these results and algorithms were implemented in the tool DesiJ, which
was presented in the previous chapter.

For every chapter there are some problems and unanswered questions, like the detection
of redundant places, the optimisation of the decomposition strategies, the invention of new
reduction operations or the handling of internal signals.

While all these problems are of some interest, it is more important that future research
helps turning asynchronous design from art to engineering as mentioned in the introduction.
One step in this direction is the handling of really large specifications in order to make
asynchronous design attractive for industrial applications.

Unfortunately, the synthesis of large specifications – in particular of STGs – suffers from
the state space explosion problem which makes synthesis impossible for interesting designs.
A major advantage of decomposition is that it makes the synthesis of such large designs
possible, as it was shown in Section 6.6 and 7. Improving these aspects of decomposition is
essential for the future.

Another way to cope with the state space explosion problem is to use syntax-directed trans-
lation. This is essentially the idea behind Balsa [EB02] and Tangram as mentioned in
Section 2.2.3. This technique, although computationally efficient, often yields circuits with
large area and performance overhead compared with their synchronous counterparts. Due

211

9 Conclusion and Future Research

to this, the resulting circuits are highly over-encoded, i.e. they contain many unnecessary
state-holding elements.

For asynchronous circuits to be competitive, one has to combine somehow the advantages
of logic synthesis (high quality of circuits) and syntax-directed translation (guarantee of a
solution, efficiency) while compensating for their disadvantages. A natural way of doing
this is to apply logic synthesis to the control path extracted from a Balsa specification.
This control path can be partitioned into smaller ‘lumps’ which can be handled by logic
synthesis, and the ‘lumps’ on which this fails (because of either inability to find a solution
in the given gate library or exceeding memory or time constraints) are implemented using
the syntax-directed translation. The initial experiments conducted in [CC06] showed that
this combined approach can half the area devoted to control flow and improve its latency,
compared with the traditional syntax-directed translation, as long as the size of ‘lumps’
which can be confidently handled by logic syntax is sufficiently large.

In [CC06] NP-complete ILP-problems are solved for the full specification In contrast, with
the presented decomposition algorithm, we follow a more scalable approach, which tries to
avoid performing expensive operations (such as resolving encoding conflicts) on the original
specification. The resulting components in our approach, unlike those in the technique
described above, are generally not free from encoding conflicts. If a component has an
encoding conflict, it can happen due to one of the following two reasons: this conflict was
present already in the original STG, or this conflict was introduced by contracting a necessary
signal. The technique described in Section 6.6 allows one to check which of these two reasons
applies, and in the latter case to find signals which need to be added to the component to
prevent such encoding conflicts. Finally, the remaining encoding conflicts are resolved in
each component, and they are synthesised.

Recently, it turned out that in order to decompose handshake STGs properly, it is probably
needed to introduce internal communication signals between the components (Chapter 5).
First experiments in [WW07] showed that this is indeed possible, but still a lot of research is
necessary. It might also help to enhance STGs with timing information, which can be used
to steer the decomposition algorithm, as it was proposed in [YMKM05,YM06].

Such improvements of the presented approach to STG decomposition may eventually help to
reduce the complexity of large circuits derived from handshake description and to increase
their working speed.

To conclude this chapter and the thesis, it was shown that STG decomposition is a useful and
extensible concept linked to theoretically interesting questions, and it seems to be possible
to combine it with other promising asynchronous design approaches in order to synthesise
large real-world circuits.

212

BIBLIOGRAPHY

Bibliography

[Ber87] G. Berthelot. Transformations and decompositions of nets. In Petri Nets: Cen-
tral Models and Their Properties, LNCS 254, pages 359–376. Springer-Verlag,
1987.

[Ber93] K. v. Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI
Programming. International Series on Parallel Computation, 5, 1993.

[Bes87] E. Best. Structure theory of Petri nets: The free choice hiatus. In W. Brauer
et al., editors, Petri Nets: Central Models and Their Properties, LNCS 254,
168–205. Springer, 1987.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, 1998.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[Car03] Josep Carmona. Structural Methods for the Synthesis of Well-Formed Concur-
rent Specifications. PhD thesis, Universitat Politècnica de Catalunya, 2003.

[Cav07] J. Cavanagh. Sequential Logic, Analysis and Synthesis. Taylor & Francis, Boca
Raton, 2007.

[CC02] J. Carmona and J. Cortadella. Input/output compatibility of reactive systems.
In Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD), 2002.

[CC03] J. Carmona and J. Cortadella. ILP models for the synthesis of asynchronous
control circuits. In Proc. ICCAD’03, pages 818–825, 2003.

[CC06] J. Carmona and J. Cortadella. State Encoding of Large Asynchronous Con-
trollers. In Proc. DAC’06, pages 939–944. IEEE Computer Society Press, 2006.

[CCJS94] J. Campos, J. M. Colom, H. Jungnitz, and M. Silva. Approximate throughput
computation of stochastic marked graphs. In IEEE Transactions on Software
Engineering 20, pages 526–535, 1994.

[Chu87a] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Speci-
fications. PhD thesis, MIT, 1987.

215

[Chu87b] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifica-
tions. In IEEE Int. Conf. Computer Design ICCD ’87, pages 220–223, 1987.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of
asynchronous controllers. IEICE Trans. Inf. and Systems, E80-D, 3:315–325,
1997.

[CKK+02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Logic Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag,
2002.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,
Cambridge, 1995.

[Dil88] D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent circuits. MIT Press, Cambridge, 1988.

[EB02] D. Edwards and A. Bardsley. Balsa: an Asynchronous Hardware Synthesis
Language. The Computer Journal, 45(1):12–18, 2002.

[Ebe92] J. Ebergen. Arbiters: an exercise in specifying and decomposing asynchronously
communicating components. Sci. of Comp. Prog., 18:223–245, 1992.

[ERV02] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of mcmil-
lan’s unfolding algorithm. Formal Methods in System Design, 20(3):285–310,
2002.

[Esp98] J. Esparza. Decidability and Complexity of Petri Net Problems — an Introduc-
tion. In Lectures on Petri Nets I: Basic Models, LNCS 1491, pages 374–428.
Springer-Verlag, 1998.

[GVC97] F. Garcia-Valles and J.M. Colom. Structural analysis of signal transition graphs.
In Petri Nets in System Engineering, 1997.

[Huf64] D. A. Huffmann. The synthesis of sequential switching circuits. In E. F. Moore,
editor, Sequential Machines: Selected Papers. Addison-Wesley, 1964.

[Kho03] V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, Newcastle University, 2003.

[Kho07] V. Khomenko. Efficient automatic resolution of encoding conflicts using STG
unfoldings. In T. Basten and S. Shukla, editors, ACSD 2007, pages 137–146.
IEEE Computer Society Press, 2007.

[KK01] V. Khomenko and M. Koutny. Towards an efficient algorithm for unfolding Petri
nets. In K.G. Larsen and M. Nielsen, editors, CONCUR 2001, LNCS 2154, 2001.

[KKY04] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting state coding conflicts in
STG unfoldings using SAT. Fundamenta Informaticae, 62(2):1–21, 2004.

[KKY06] V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asynchronous
circuits based on Petri net unfoldings and incremental SAT. Fundamenta In-
formaticae, 70(1–2):49–73, 2006.

[KS07] V. Khomenko and M. Schaefer. Combining decomposition and unfolding for
STG synthesis. In ATPN 2007, 2007.

[KSV07] Victor Khomenko, Mark Schaefer, and Walter Vogler. Output-determinacy and
asynchronous circuit synthesis. In ACSD, pages 147–156, 2007.

[MB59] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceed-
ings of an International Symposium on the Theory of Switching, pages 204–243.
Harvard University Press, 1959.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Proc. of the
IEEE, 77(4):541–580, 1989.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut fr
Instrumentelle Mathematik, 1962.

[Pet81] J.L. Peterson. Petri Net Theory. Prentice-Hall, 1981.

[Rei85] W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science
4. Springer, 1985.

[Ren95] J. Renegar. Linear programming, complexity theory and elementary functional
analysis. Math. Programming, 70(3, Ser. A):279–351, 1995.

[Sch86] Alexandeer Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., New York, NY, USA, 1986.

[SKC+99] H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, and A. Yakovlev. What is
the cost of delay insensitivity? In Proc. CAD’99, pages 316–323. IEEE Comp.
Soc. Press, 1999.

[STC98] M. Silva, E. Teruel, and J.M. Colom. Linear algebraic and linear programming
techniques for the analysis of place/transition net systems. In Lectures on Petri
Nets I; Basic Models, LNCS 1491, 309–373. Springer, 1998.

[SV07] M. Schaefer and W. Vogler. Component refinement and CSC solving for STG
decomposition. to appear in Theoretical Computer Science, 2007.

[SVJ05] M. Schaefer, W. Vogler, and P. Jančar. Determinate STG decomposition of
marked graphs. In G. Ciardo and P. Darondeau, editors, ATPN 05, LNCS
3536, 365–384. Springer, 2005.

[SVWK06] M. Schaefer, W. Vogler, R. Wollowski, and V. Khomenko. Strategies for opti-
mised STG decomposition. In Proc. ACSD’06, 2006.

[Ung69] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience,
John Wiley & Sons, Inc., New York, 1969.

[VK06] W. Vogler and B. Kangsah. Improved decomposition of signal transition graphs.
Fundamenta Informaticae, 76:161–197, 2006.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In
Concurrency and Hardware Design, LNCS 2549, pages 152 – 190. Springer-Ver-
lag, 2002.

[Wen74] Siegfried Wendt. Petri-netze und asynchrone schaltwerke. Elektronische
Rechenanlagen, 16(6):208–216, 1974.

[Wen77] S. Wendt. Using Petri nets in the design process for interacting asynchronous
sequential circuits. In Proc. IFAC-Symp. on Discrete Systems, Vol.2, Dresden,
130–138. 1977.

[Wol97] R. Wollowski. Entwurfsorientierte Petrinetz-Modellierung des Schnittstellen-
Sollverhaltens asynchroner Schaltwerksverbünde. PhD thesis, Uni. Kaiser-
slautern, FB Elektrotechnik, 1997.

[WW07] D. Wist and R. Wollowski. Avoiding irreducible CSC conflicts in component
STGs. In Proceedings of the 19th UK Asynchronous Forum. Imperial College
London, 2007.

[YKK+96] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-
Koutny. On the models for asynchronous circuit behaviour with or causality.
FMSD, 9:189–233, 1996.

[YKKL94] A. Yakovlev, M. Kishinevsky, A. Kondratyev, and L. Lavagno. OR Causality:
Modelling and Hardware Implementation. In Proc. ATPN’94, LNCS 815, pages
568–587. Springer-Verlag, 1994.

[YM06] Tomohiro Yoneda and Chris J. Myers. Effective contraction of timed stgs for
decomposition based timed circuit synthesis. In ATVA, pages 229–244, 2006.

[YMKM05] Tomohiro Yoneda, Atsushi Matsumoto, Manabu Kato, and Chris J. Myers. High
level synthesis of timed asynchronous circuits. In ASYNC, pages 178–189, 2005.

[YOM04] T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent circuits
based on decomposition. In ASYNC 2004, pages 135–145. IEEE, 2004.

LIST OF FIGURES

List of Figures

2.1 Simple circuit and corresponding truth table 16

2.2 Digital circuit classification . 17

2.3 Flip-flop core — NAND-Flip-flop — operations of the latter 18

2.4 Basic structure of synchronous circuit . 19

2.5 C-Element and non-atomic implementation 21

2.6 Setting c = 0 for a C-Element . 22

2.7 Circuit with possible glitch . 23

2.8 VME Bus Controller . 24

2.9 8 bit Buffer out of handshake components . 28

2.10 Textual description of the 8 Bit Buffer . 28

3.1 Producer-consumer Petri net. 33

3.2 Example of a parallel composition . 50

3.3 Laws of a circuit algebra . 51

3.4 Transitivity of Simulations . 67

3.5 Two lbc but not sbc STGs. The cloud does not contain any x± or y± labelled
transitions. 71

3.6 Level place insertion. 72

4.1 For determinacy of reduction . 84

4.2 For determinacy of reduction . 86

4.3 For determinacy of reduction . 88

4.4 Loop after Contraction . 89

4.5 Two redundant places p1, p2 with p1 6∈ Q2, p2 ∈ Q1 91

4.6 Confluence of shortcut place deletion and transition contraction 93

219

5.1 Example of an event insertion . 109

5.2 Counterexample for the proof of Theorem 5.22. 122

6.1 Ordinary Backtracking . 126

6.2 Backtracking of LazyMulti . 127

6.3 Tree Decomposition . 132

6.4 Unfolding prefix of VME bus controller . 139

6.5 Outline for CSC-aware decomposition . 140

6.6 Examples of non-safeness-preserving contractions 144

6.7 seqpartree.03 . 150

7.1 OR-causality . 162

7.2 Non-determinism due to lambdarisation . 162

7.3 Non-output-persistency due to determinisation 167

7.4 Incorrect determinisation . 167

7.5 Determinisation and deadlocks . 167

7.6 Two LOD-equivalent STGs which are not bisimilar. 174

7.7 Increasing input concurrency . 177

7.8 Counterexample for IIC . 180

7.9 Counterexample for output-determinacy and internal signals 186

8.1 Structure of DesiJ . 192

8.2 STG undo example . 194

8.3 Undo stack during Tree. 197

LIST OF TABLES

List of Tables

4.1 Structures of possible places after two transition contractions 84

4.2 All possible places after two transition contractions 85

4.3 Possible places after two transition contractions 87

6.1 Benchmark STGs . 149

6.2 Comparison between undo stack and copying STGs. 151

6.3 Detection of implicit places . 152

6.4 Comparison of the decomposition strategies. 153

6.5 Impact of Aggregation on the size and number of the components. 155

6.6 Comparison of methods for preserving CSC. 156

6.7 Results of DeMpSy for large benchmarks. 157

7.1 Results for the handshake benchmarks . 189

8.1 Implemented Conditions . 201

8.2 Implemented Collectors . 202

221

LIST OF EXAMPLES

List of Examples

3.1 Producer-Consumer . 34
3.2 Producer-Consumer continued . 35
3.3 Producer-Consumer continued . 37
3.4 Unfolding Example . 41
3.5 C-Element: State Graph and Input-Output Conflict 44
3.6 Reachability Graph of VME Bus Controller 46
3.7 Handshake Paralleliser: CSC Solving . 48
3.8 Decomposition of VME Bus Controller 1 . 56
3.9 Decomposition of VME Bus Controller 2 . 58
3.10 Transition Contraction . 62
3.11 Decomposition of VME Bus Controller 3 . 64
5.1 VME Bus Controller: CSC solving . 112

222

INDEX

Index

1-live, 35

active port, 27
adjacency list, 195
alphabet, 35
arbiter, 25, 99
arc, 32
asynchronous circuit, 15, 20
auto-cc-preserving, 124
auto-concurrency, 36, 124
auto-conflict, 36, 124
autonomous circuit, 20

backtracking, 63, 163, 181, 193, 196
backward pointer, 195
balanced, 38
bipartite, 32
bisimulation, 36, 54, 122, 168

weak b., 99
bisumulation

transition-b., 66
bounded, 33

safe, 33
burst mode, 26

C-element, 20
circuit algebra, 51, 98
clock, 19
clock cycle, 19
clockless circuits, 15
code change, 45, 114
collector, 199
combinatorial circuit, 16
combined undo, 196

complementary set, 137
Complete State Coding, see CSC
complex gate, 21
component, 53
component-dummy, 59, 182
computation interference, 49, 54, 55, 98, 170
concurrently enabled, 35
condition, 199
configuration, 137
conflict, 25, 35
conflict pair, 137
conflict pair, new, 61
confluence, 81
conservative strategy, 182
consistency, 43, 70, 125, 185

language based, 43
contraction, 61
control path, 212
core, 137
correct decomposition, 53, 97
CSC, 45, 185
CSC conflict, 166, 185
CSC support, 114
CSC-conflict

irreducible, 47
CSC-job, 138

dead signal, 70
deadlock, 168
deco-dummy, 59
decomposition operations, 55
decomposition tree, 196
delambdarise, 55, 63
delay-insensitive, 29, 175

223

DesiJ, 12, 191
determinacy, 163
determinate, 75
determinisation, 166
deterministic, 36, 52
diamond property, 82
digital circuit, 15, 16
Dill, 116
distributed implementation, 169, 170
distributed system, 31
double-linked, 195
dummy, 42

component-dummy, 59
deco-dummy, 59
input-dummy, 59
internal-dummy, 59
output-dummy, 59
spec-dummy, 59

dummy transition, 42
dynamic auto-conflict, 182
dynamic conflict, 35

edge, 16
EMI, 20
empty word, 35
enabled

e. concurrently, 35
transition, 32
transition sequence, 33

energy, 19
environment, 42, 96, 164
event insertion, 108
extended duplicate, 76
extended marking equality, 68, 145
external isomorphism, 47
external signal, 42

feedback, 17
feedback loop, 16
final component, 55
fire, 32
firing rule, 33
firing sequence, 33, 65
flip-flop, 17

flow table, 26
forward pointer, 195
free-choice-net, 80, 209
fundamental mode, 26

gate, 15
glitch, 23

handshake channel, 27
handshake circuit, 27

4-phase, 27
handshake component, 27
hazard, 21
hierarchical decomposition, 95, 100, 172
home state, 33
HS circuit, 27
Huffman mode, 26

I/O-compatibility, 119
IIC, 176
ILP, 13, 39, 114
implementation, 53, 163

distributed implementation, 169
implicit place, 38, 136
inconsistent, 45
increasing input concurrency, 176
initial component, 55, 59
initial state vector, 70
input burst, 26
input proper, 96
input proper insertion, 109
input signal, 42
input-dummy, 59
input-output mode, 27
interference-free, 107, 108
interleaving semantics, 38
internal signal, 42, 95, 185

internal-dummy, 59
inverse projection, 138
irreducible, 47, 135, 166
isochronic fork, 25

lambdarise, 59, 161
language, 164

lazy backtracking, 126
level place, 71
live, 35, 70

signal-live, 70
livelock-free, 116, 119
local confluence, 82
local signal, 42
LOD-operation, 173
logical high, 15
logical low, 15
loop-only place, 76

marked graph, 76
marking, 32

home state, 33
initial m., 31
reachable marking, 33

marking equality, 61
extended m. e., 68

ME-element, 25, 99
meta-stability, 23
Mpsat, 13

next-state-function, 19
normal form, 82

occur, 32
operating mode, 26
operation, 199
optimistic strategy, 181
OR-causality, 161
output signal, 42
output-determinacy, 163, 165, 181

complexity of, 169
output-dummy, 59
output-persistency, 25, 166

paralleliser, 48
passive port, 27
Petri net, 31

labelled Petri net, 35
petrify, 13
place, 31
place projection, 63, 145

port, 27
postponing, 197
postset, 32
preorder, 96
preset, 32
producer-consumer, 34
Punf, 13

race, 17, 23, 25
reachability graph, 38
reachable, 33

reachable from, 33
reachable m., 33

ready simulation, 61
reduce, 55
reduction, 55
reduction rule, 81
reduction system, 81
redundancy, 136
redundant place, 38, 136

reference set, 38
valuation, 38

redundant transition, 60
reference set, 38
reversible, 33
risky, 64, 148, 182, 205

optimistic strategy, 181

S-system, 209
safe, 33
safeness-preserving, 136, 141, 188
savepoint, 126
secure contraction, 61, 163
self-triggering, 135
semantics, 164
sequential circuit, 16, 17
shortcut place, 39, 64, 76, 210
SI, 25
signal, 16

dead s., 70
signal change vector, 141
signal edge, 16, 42
signal insertion, 109
signal transition graph, 40

signal trigger, 181
signal-live, 70
simulation, 36, 65
skew, 25
spec-dummy, 59, 161, 182
specification, 53
speed-independent, 25, 43, 163, 165, 175
state assignment, 43
state duplication, 73
state vector, 43

initial s. v., 70
STG, 27, 40

timed, 13
STG-bisimulation, 53, 200
structural auto-conflict, 36, 182
structural auto-conflict, new, 61
structural conflict, 35
structural duplicate, 129
subcomponent, 100
synchronous circuit, 15, 18
syntactical trigger, 59, 114
syntax-directed, 29
synthesis, 12

T-system, 76
TCOD-transformation, 173
technology mapping, 21
term rewriting, 81
terminating, 81
timed STG, 13, 212
timing assumptions, 24, 97
token, 32
trace, 36, 65, 164
trace structure, 13, 117

canonical t. s., 117
trace-correct, 168
transition, 31
transition-bisimulation, 66
truth table, 16
type-1 secure, 61
type-2 secure, 61

unbounded gate delay model, 24
undo, 193

combined u., 196
undo marker, 196
unfolding, 13, 40, 124

u. prefix, 40
Unique State Coding, 45
Universal Do-Nothing module, 122
USC, 45

valuation, 38
VME, 24

weak bisimulation, 99
weight function, 31
wire, 15
worst-case-delay, 19

