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1 Introduction

In today’s industrial environment, designing and managing processes sustainably is in-

creasingly important. With growing concerns about climate change, resource depletion,

and environmental impact, industries face greater pressure to adopt practices that reduce

their ecological footprint.

Sustainable process design is becoming essential for ensuring long-term viability and

meeting environmental regulations. A key aspect of this approach is e�ective condition

monitoring (CM), which helps optimize resource use, minimize waste, and improve overall

e�ciency [1–4].

CM refers to activities aimed at assessing the technical state of machines or systems, in-

cluding monitoring, diagnostics, evaluation, and prognostics. It involves the collection,

processing and interpretation of various data, such as temperature, pressure, �ow rate, or

chemical composition [5].

Based on this data, CM enables the detection of deviations from the normal state and thus

enables real-time adjustments to maintain quality, enhancing e�ciency, and reducing costs

of operation.

It is widely applied in industries such as manufacturing, chemical processing, and energy

production, where precise control over operational parameters is crucial.

However, its application is less prevalent in sectors where processes are less standardized

or where the cost of monitoring equipment is disproportionate and prohibitive.

In these contexts, the advantages of CM must be weighed against the initial investment

and complexity of implementation. Nonetheless, with ongoing research, there is potential

to expand the application of CM to new areas, particularly by developing cost-e�ective and

adaptable monitoring solutions [6–8].

Several sensing techniques are employed in CM, ranging from traditional methods such as

pressure sensors and �ow meters to more advanced technologies like infrared spectroscopy

and acoustic emissions. Among these, ultrasound-based techniques are popular due to their

non-invasive nature and ability to provide detailed insights into the internal structure of

solid as well as �uid materials [9–12].

Ultrasonic signals are highly sensitive to various factors, including pressure, temperature,

and rheological properties. Thus ultrasonic signals, if properly applied and processed are a

versatile tool for monitoring a wide range of process variables. However, this sensitivity

also comes with a downside as the complexity of the signals can make it di�cult to isolate

and accurately monitor speci�c process variables.
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1 Introduction

To address these challenges, current research is exploring advanced methods such as

machine learning, deep learning, convolutional neural networks, and feature extraction

techniques. These approaches are being developed to enhance the processing and interpre-

tation of ultrasound data [13, 14].

In [15] and [16] key challenges are identi�ed in the �elds of acoustic monitoring, structural

health monitoring (SHM), and non destructive testing (NDT). According to them, di�culties

are o�en posed by noise, environmental variability, data scarcity, and the complexity of

current models. Thus, in industrial settings, acoustic monitoring systems o�en struggle

with background noise, making it di�cult to accurately detect anomalies. Similarly, SHM

systems are a�ected by environmental factors like temperature changes, which can distort

sensor readings and compromise the accuracy of data analysis.

Thus, future research should also aim to advance the complexity and robustness of models,

developing more sophisticated approaches that can generalize across di�erent conditions

and structures, reducing false positives and missed detections. The integration of AI and

machine learning into these models should be further explored to automate data processing

tasks and improve the long-term reliability and accuracy of monitoring systems.

Ultrasonic signals o�en exhibit high complexity and generate large volume of data. This

makes preprocessing techniques, speci�cally feature engineering and selection, play an

important role in transforming the raw data into more concise form. This is known as data

reduction, which also supports the data’s interpretability by emphasizing the most relevant

aspects of the signal that correspond to speci�c process variables.

The e�ectiveness of advanced analytical models is also dependent on the features fed into

these models. Suitable features can enhance the performance of these techniques by pro-

viding a more informative and structured input, making it easier for the models to learn

the underlying patterns in the data. Moreover, well-chosen features can reduce the risk of

over�tting, where a model performs well on training data but fails to generalize to new,

unseen data [17, 18].

Considering that di�erent industrial applications have unique requirements and challenges,

speci�cally customizing the feature to suit the applications can signi�cantly improve moni-

toring outcomes. For instance, in a high-temperature environment, features that account

for temperature-related variations in ultrasonic signals may be crucial. Application-speci�c

feature design ensures that the monitoring system is tailored to the speci�c needs of the

process, leading to more accurate and relevant insights.

In this research, the goal was to develop methods for comprehensive monitoring systems

that not only achieve high accuracy in the short term but also maintain robustness over the

long term without the need for frequent maintenance. Several key challenges have been

identi�ed with substantial potential for optimization, particularly in adapting and selecting
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application-speci�c features, and how to assess unmonitored areas outside the physical

reach of the sensors.

Thus this work proposes three approaches to realize:

• De�ning and adapting features

• Selecting features

• Reconstructing data for unmonitored areas

The �rst approach focuses on optimizing the parameters of features to enhance the accuracy

of predicting speci�c process variables.

In the context of ultrasonic CM, features are derived from the raw ultrasonic signals, and

these features are typically in�uenced by various parameters, such as window size, fre-

quency range, or threshold levels. The choice of these parameters can signi�cantly a�ect

how well the features capture the relevant information needed to monitor a particular

process variable.

Adapting the feature parameters to the speci�c application is crucial to maximize the po-

tential of individual features, ensuring that any decisions to exclude and select features

over others are informed and well-founded.

The second approach deals with a common issue that many predictive models, while they

may achieve high accuracy initially, their performance tends to degrade over time. This

phenomenon can be observed in various applications, where the conditions under which

the model was trained may change, leading to a decline in the model’s e�ectiveness.

To address the issue of performance degradation, this research proposes a tailored approach

to feature selection that focuses on creating more robust models. The key idea is to design

or record test data to select features that are relevant to the application and resilient to its

speci�c types of changes and dri�s [19].

The �nal challenge is the placement of the sensors and their limited range. Even with the

implementation of sensor networks and placement optimization, it is not always possible to

cover every area of interest due to the inherent physical constraints of the sensors, limited

number of available sensors or geometrical restrictions.

The information extracted from the monitoring process is inherently dependent on the

placement and reach of the sensors used. Ultrasonic sensors, while e�ective in many ap-

plications, have a �nite range, meaning they can only monitor a limited area primarily

determined by the volume directly beneath the transducer’s contact point with the object.

This constraint poses challenges when trying to achieve comprehensive coverage of the

entire process or system being monitored [16].

By overcoming these challenges, this work not only contributes to the theoretical under-

standing of ultrasound data processing but also provides practical solutions for enhancing

3



1 Introduction

monitoring systems in industry. These solutions are designed to improve the accuracy and

robustness of monitoring systems, ensuring they remain e�ective even in complex and

changing environments.

Ultimately, the research aims to make ultrasound-based techniques more versatile, enabling

their adoption in a broader range of industrial applications where precise and reliable CM

is crucial.

This work is divided into seven chapters. Chapter 1 serves as the introduction. Chapter 2

and Chapter 3 establishes the physical and mathematical foundation and the experimental

setups necessary for understanding the advanced processing techniques introduced in

the forth chapter. Chapter 5 presents the actual application of these techniques to the

processes, followed by a discussion of the results and a summary in Chapter 6 and Chapter

7, respectively.
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2 Theoretical Background

Understanding the fundamental principles underlying ultrasound-based condition monitor-

ing is crucial to advancing its application and e�cacy. This chapter provides a comprehen-

sive overview of the theoretical foundation necessary to support the methodologies and

experimental techniques explored in this research.

It begins with an examination of the physics of ultrasound, detailing the mechanisms

of wave propagation, re�ection, and attenuation in media, as well as the principles of

generation and detection using piezoelectric transducers. These foundational concepts

are essential for understanding how ultrasonic signals interact with materials and convey

information about their internal structures.

Building on this, the chapter introduces the mathematical tools essential for signal analysis,

emphasizing the importance of Fourier transforms and �ltering techniques in processing

high-frequency data. Additionally, key principles of signal preprocessing, such as noise re-

duction, feature extraction, and alignment, are discussed to highlight their role in enhancing

data quality and interpretability.

2.1 Physics of Ultrasound

Propagation

Acoustics as a branch of physics is usually de�ned as the study of mechanical vibrations and

their generation, propagation and impact within certain media. Driven by restoring forces

these vibrations can be described as oscillations about the equilibrium state, exhibiting

a wave-like behaviour described by the familiar properties of amplitude and frequency.

Vibrations of appropriate amplitude and frequency, approximately ranging between 10Hz

and 20 kHz [20], can be perceived by the human ear and thus, are called sound [21]. Then,

ultrasound refers to certain vibrations of frequencies beyond the audible range above 20 kHz

and is frequently used in NDT techniques, commonly known as ultrasonic testing. In many

NDT applications, ultrasound o�ers a favourable balance between resolution and attenua-

tion. Furthermore, since acoustic emission signals generated by microscopic deformations,

such as crack growth, typically occur at frequencies in the lower ultrasonic range [22],

ultrasonic testing has become a widely used and e�cient technique.
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2 Theoretical Background

For a theoretical understanding of the formation and propagation of ultrasonic waves

in solid media consider the stress components �ik of a in�nitesimal volume element as

illustrated in Figure 2.1.

With dA1 = dx2dx3 and neglecting any body forces, the resulting force F1 on the element

Figure 2.1: Di�erential three-dimensional element with the components of the stress tensor.

in 1-direction can be written as

F1 =
)�11

)x1
dx1 ⋅ dA1 +

)�21

)x2
dx2 ⋅ dA2 +

)�31

)x3
dx3 ⋅ dA3 = ()�11

)x1
+
)�21

)x2
+
)�31

)x3 ) ⋅ dV . (2.1)

Thus, using index notation and Newton’s Law, F⃗ = ma⃗ = m ̈⃗u yields

�üi =
)�ik

)xk
, (2.2)

with ui being the displacement component and � the density. Hook’s Law describes the

relation between the stress tensor �ik and the strain tensor �lm = 1
2 ( )ul

)xm
+ )um

)xl ) and is

de�ned as

�ik = Ciklm�lm, (2.3)

with Ciklm as the elasticity tensor exhibiting 81 components. However, applying symmetric

considerations to a given body, the tensor can be reduced to at least 21 components for

generally anisotropic bodies [23]. Combining 2.2 and 2.3 results in a di�erential equation

for the displacement components ui

�üi =
1

2
Ciklm( )2ul

)xk)xm
+

)2um

)xk)xl) . (2.4)

Equation 2.5 represents a plane harmonic wave and is given by

ui = Ai exp(i(kjxj − !t)), (2.5)
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2.1 Physics of Ultrasound

where Ai is the amplitude of particle displacement, ! as the angular frequency and kj
denoting the unit wave vector, yields the Christo�el equation de�ned as

(Ciklmkkkl − �!2�im)um = 0. (2.6)

and can be rewritten as

(�im − �c2�im)um = 0 (2.7)

with c = !2

k2
, ki = |k|ni and �im = Ciklmnknl [24]. Following [25], Equation 2.7 is used to

describe plane harmonic waves propagating in anisotropic media by setting the determinant

of the coe�cient matrix equal to zero.

To demonstrate this approach consider isotropic materials. In this case, the fourth-order

elasticity tensor Ciklm is o�en reformulated using Voigt notation. This compact representa-

tion maps the tensor components to a 6×6 matrix by exploiting the symmetries of the stress

and strain tensors. For isotropic materials, the resulting sti�ness matrix depends only on

the two independent components � and �, known as the Lamé Constants which show the

following relations to the elastic parameters for an isotropic material

E =
�(3� + 2�)

� + �
(2.8)

� =
�

2(� + �)
(2.9)

G = � (2.10)

with the Young’s modulus E, the Possion’s ratio � and the shear modulus G, the sti�ness

matrix C can be written as:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

� + 2� � � 0 0 0

� � + 2� � 0 0 0

� � � + 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Now, based on a harmonic wave with a wave vector of k⃗ = k√

2 [1 1 0] the terms for �im
in Equation 2.7 can be calculated. Then, setting the determinate of |�im − �c2�im| to zero

gives two eigenvalues with the values for c being

c1 =

√
� + 2�

�
=

√
E(1 − �)

(1 + �)(1 − 2�)�
, c2 =

√
�

�
=

√
G

�
. (2.11)
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2 Theoretical Background

The general solution for the corresponding normed eigenvectors are

û1 =
1√
2
[1 1 0] û2 =

1√
2a2 + b2 [−a a b] (2.12)

The dot products k̂ ⋅ û1 = 1 and k̂ ⋅ û2 = 0 help to identify the orientation between wave

vector and displacement vector. While û1 points in the direction of k⃗ and thus indicating a

longitudinal wave, û2 is perpendicular to k⃗ indicating a transverse wave, with velocities

of cl = c1 and ct = c2, respectively. For solid, isotropic materials, where 0 > � > 0.5, the

relation

cl

√
1 − 2�

2 − 2�
= ct (2.13)

yields that cl > ct [20]. Figure 2.2 illustrates the particle movement of a longitudinal and

transverse wave. The euclidean distance between two particles of the same phase, is de�ned

as the wavelength �, which relates to the wave vector k as � = 2�|k| . Similarly, the frequency

f of a wave is de�ned as the number of times a particle passes through the same phase

per unit of time. It is related to the period T and angular frequency ! by the following

relationships:

f =
1

T
=

!

2�
.

Figure 2.2: Schematic propagation of a longitudinal (le�) and a transverse (right) wave along the wave vector

k̂1, k̂2 and with the wavelengths �1, �2, respectively.

Note that, in case of a group of waves with di�erent frequencies, its propagation is associated

with a wave packet which velocity is described by the group velocity vg given by [25]

vg =
d!

dk
= cp + k

dcp
dk

. (2.14)

with cp(k) =
!(k)
k

being the phase velocity. For lossless, isotropic media the group velocity

coincides with the velocity of energy transportation and the phase velocity. In general,

for anisotropic material, cp depends on the wave vector k⃗, so that cg ≠ cp resulting in

dispersion. Active ultrasonic testing o�en uses short pulses of sound that are no longer

composed of a single frequency. The e�ects of dispersion are o�en evident in a gradual

extension of the impulse in space. However, reducing the initial impulse length requires a

broader frequency range.
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2.1 Physics of Ultrasound

In ultrasonic testing the acoustic waves frequently encounter interfaces at the boundaries of

the specimen or within it caused by impurities or porosity. The amplitude of the particle’s

displacement � , the sound impedance Z = �c and the sound pressure p = Z!� are useful

parameters to describe the in�uence of interfaces on the propagation of acoustic waves.

The re�ection factor R and transmission factor T are de�ned as

R =
pr

pi

, T =
pt

pi

(2.15)

with pr, pt and pi as the sound pressure of the re�ected, transmitted and incident wave at

an interface. To derive the dependency from the acoustic impedance Z , consider Figure 2.3.

It shows a plane wave travelling through a material of acoustic impedance Z1 and then

encountering an interface with material of acoustic impedance Z2. Using Equation 2.5 for

the plane wave and applying boundary conditions eventually yields [25]

R =
Z2 − Z1

Z2 + Z1

, T =
2Z2

Z2 + Z1

, (2.16)

for a normal beam incidence.

Z1
Z2

pi

pt

pr

Figure 2.3: Illustration of a sound beam partially re�ected and transmitted at an interface.

Attenuation

The sound pressure p is an important quantity in UT as it is proportional to the displacement

of the particle and thus a crucial quantity in the detection of acoustic waves. The amplitude

of the sound pressure p decreases as the acoustic waves propagate through medium, which

is mainly ascribed to three contributions, the geometric spreading, absorption and scattering.

For comparison pgs is introduced to describe the in�uence of geometric spreading, which

is una�ected by the carrier medium, and pa describing absorption and scattering. Using

normed values for pgs and pa the total sound pressure p is calculated via

ptot = p0pgspa, (2.17)

with p0 as the initial sound pressure.

For the geometric spreading pgs consider a spherical wave. Adhering to the law of con-

versation of energy lead to a decrease of the waves amplitude inversely proportional to

the distance travelled. Then, following the Huygens-Fresnel principle the sound pressure

9



2 Theoretical Background

emitted from emission sources of various shapes can be calculated. A typical emitter used

in this work is a piezoceramic which can be described by a plane, circular oscillator. The

absolute values of the sound pressure along its rotation axis with z as the distance to the

emitter’s centre and D as the diameter follow the equation [20, 26]

pgs = |p02 sin(�

�

√
D2

4
+ z2 − z) |. (2.18)

To describe the modulations of the pressure, its is useful to distinguish between near-�eld

z < N and far-�eld z > N with the near-�eld length

N =
D2

4�
(2.19)

for a circular emitter. The near-�eld, strongly in�uenced by the characteristics of the source,

usually exhibit a complex behaviour, whereas the sound pressure monotonically decreases

in the far-�eld. For D ≫ � the near-�eld length corresponds to the last maximum of p in

positive z-direction, that is

pgs,max = (1 −
�2

D2
)N

D≫�
≈ N . (2.20)

For great distances z the third binomial equation and the small-angle approximation can

be used to show that p
z≫N
≈ p0

�N
z
. Figure 2.4 illustrates the sound pressure pgs with this

approximation using the parameters D = 10mm, � = 3.2mm and N = 7.8mm frequently

encountered in this work. Note that, Equation 2.18 applies to a continuos oscillating source.

However, while short pulses in�uence interference e�ects in the near �eld, the far �eld

remains largely una�ected [20].

The consistency of the far �eld and since the natural focal point, or the point of highest

sound pressure of a circular �at-disc oscillator, aligns with the near �eld length N , it is

advisable to position the sensor at a distance larger than N to achieve reliable results.

So far, the sound �eld is described within a single material with homogenous acoustic

properties. To address the impact of interfaces between two distinct materials, it is crucial

to note that the frequency f remains constant during transmission. Equation 2.19 with the

wavelength de�ned as � = f
c
leads to the relationship between the near �eld lengths of a

material 1 and 2 as follows:
N1

N2

=
c2
c1

(2.21)

Generally, for distances di that correspond to equivalent points in the sound �eld for each

material, the same proportionality factor holds:

d1
d2

=
c2
c1

(2.22)
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2.1 Physics of Ultrasound

Applying these equations, the total near �eld distance Ntot can be calculated for a layered

structure of two di�erent materials. Assuming d1 as the thickness of the �rst material it

follows:

Ntot = d1 + (N1 − d1) ⋅
c1
c2
. (2.23)

Considering an acoustic wave propagating in natural materials, additional e�ects including

0 N/2 N 2N 3N 4N

Distance

0

p
0

2p
0

S
o

u
n

d
 p

re
s
s
u

re
 (

a
.u

.)

p
m

a
x

Sound pressure p

Approximation of p

Last maximum of p

Figure 2.4: Sound pressure p of a circular emitter following Equation 2.18. The distance is illustrated in units
of the near�eldlength N . The red solid line indicats the last maximum pmax and the red dashed line indicating
the approximation for large distances > N .

scattering and true absorption further weaken the amplitude of the sound pressure. Unlike

the attenuation through beam divergence, these e�ects depend on the characteristics

of the wave, such as frequency f and wavelength �. Scattering arises from material

inhomogeneities as foreign inclusions, gas pores, or inherent material �aws, where acoustic

impedance abruptly changes. These variations cause the sound wave to re�ect and refract

in di�erent directions into partial waves, which results in a di�use distribution of the wave

intensity. Then, along the paths of the waves their energy is gradually converted into

heat. This e�ect is called true absorption and is caused by various processes detailed in

[20, 27, 28]. Mathematically it can be described by introducing viscoelastic properties in

Equation 2.4. The impacts of scattering and absorption result in an exponential decay of

sound pressure, attributed to the attenuation coe�cient � in

pa = p0e
−�z, (2.24)

which is measured in decibels per meter and highly dependent on material properties, such

as �ber volume content in composites or grain size in metals, as well as the frequency of

sound waves. Generally, scattering increases signi�cantly when the grain size exceeds

one-tenth of the wavelength. Therefore, reducing the frequency, and thus increasing the

wavelength, can help to mitigate scattering. However, as higher wavelength reduces the

resolution, a compromise between attenuation and minimum size of �aw detection has to

be made. Using ultrasound with a frequency of 2MHz the attenuation coe�cient � ranges

from around 1 dB
m
for light metals to approximately 300 dB

m
for grey cast iron [20]. Figure 2.5

illustrates ptot for di�erent attenuation factors � and shows that the dominant contribution

11



2 Theoretical Background

highly depends on the magnitude of � and on the distance travelled by the sound waves.

To optimize sensor integration for precise measurements, it is imperative to consider this

N 2N 4N 8N 16N 32N 64N

Distance (N)

1

10

100

200

A
m

p
lit

u
d
e
 (

%
) 

, =0 dB
m

, =10 dB
m

, =100 dB
m

, =200 dB
m

, =500 dB
m

Figure 2.5: The amplitude of ptot over distance in units of the near �eld length N and for di�erent attenuation
factors �. Amplitude 100% is arbitrarily set to p0 When � = 0, it indicates pure geometric spreading, where
ptot equals pgs.

interplay between the attenuation e�ects and the speci�c re�ection conditions of the applica-

tion. For example, for low attenuation factors � < 1 dB
m
it is a good approximation to consider

the sound pressure illustrated in Figure 2.4 and adjust the sensor integration so that the

area of high interest of the material to be tested conforms with its maximum sound pressure.
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2.1 Physics of Ultrasound

Generation and Detection of Ultrasound

There are a variety of methods to detect and generate ultrasound based on mechanical,

electrodynamics, optical and thermal e�ects. The most common method however uses the

piezo-electric e�ect due to its capability of producing strong signals with high e�ciency

and its high performance as emitter as well as receiver [20, 29–31].

The piezoelectric e�ect is observed in speci�c solid materials with an asymmetric charge

distribution within their elementary cells, leading to the formation of an electrical dipole.

Common materials used for the generation and detection of ultrasonic waves are piezoelec-

tric ceramics with a perovskite structure such as lead zirconate titanate (PZT) or barium

titanate (BaTiO3) as illustrated in Figure 2.6. Mechanical stress applied to piezoelectric ma-

terial changes its dimensions and its dipole distribution. This imbalance of electrical charge

leads to an electrical �eld proportional to the change of thickness [22, 32]. Thus pressure

Ba2+ O2- Ti4+

Figure 2.6: Illustration of the crystal lattice of BaTiO3 as an example of the perovskite structure [33].

p applied to a piezoelectric plate along the x−axis leads to a change in its dimension �x ,

creating an electric voltage Ur following the equation

Ur = ℎ33�x (2.25)

with the piezo-electric deformation constant ℎ33. The arising voltage Ur can also be ex-

pressed via the pressure p applied to the piezo plate. In this case, consider the thickness d

of the plate following the equation:

Ur = g33dp, (2.26)

with the piezo-electric pressure constant g33. The incoming ultrasonic waves excite the

piezoelectric element, causing it to deform. These deformations generate electrical voltages

across the piezoelectric plate, which can be measured to detect the ultrasonic waves.

Conversely the inverse piezoelectric e�ect occurs, when an external electric �eld is applied

to these materials, which causes them to deform or change shape. The change of thickness

13



2 Theoretical Background

�x is proportional to the transmitting voltage Ut between the surfaces of the plate according

to the equation

�x = d33Ut (2.27)

with the piezo-electric modulus d33 [20]. The inverse piezoelectric e�ect can be exploited

to produce ultrasonic waves by applying an electric �eld to a piezoelectric plate. This

electric �eld induces oscillatory strains in the plate, compelling it to expand and contract

in alignment with the �eld’s direction. These mechanical oscillations then propagate as

longitudinal waves through the medium in contact with the plate. The excitation can be

realized either through a continuous, oscillating electric �eld or via short rectangular pulses.

The emitted ultrasound waves depend on the resonance characteristics of the piezoelectric

plate being excited.

A continuous, oscillating electric �eld induces a forced oscillation within the piezoelectric

plate with the frequency of the excited electric �eld. The amplitude of this oscillation

is governed by the resonance curve of the material. In general, at low frequencies the

amplitude corresponds to static case, increasing with higher frequencies and reaching

its maximum at the resonance frequency and peaks at its odd multiple . In case of small

damping the resonance frequency is approximately the fundamental frequency f0 of the

plate de�ned as

f0 =
c

2d
(2.28)

with the sound velocity c within the plate and its thickness d. Higher damping causes a

broadening of the peak.

Exciting a piezoelectric plate with a short, rectangular pulse induces a free oscillation.

Given that a short, rectangular pulse consists of a continuous spectrum of frequencies, the

amplitudes of the induced oscillations correspond to the resonance curve. This results in

the highest amplitudes at the resonance frequencies and their higher harmonics. In practice,

the excitation pulse has a �nite length, and to generate a clean and well-de�ned ultrasound

wave, the pulse width of the excitation signal should be carefully controlled. For instance, a

rectangular pulse with a duration that matches the inverse of the resonant frequency can

e�ectively excite the piezoelectric plate. However, techniques like frequency sweeps can be

bene�cial in determining the ideal pulse width for the speci�c sensor and application. It is

not always straightforward to determine the optimal pulse width, as multiple factors need

to be considered [34–36].

The piezoelectric e�ect and its inverse essentially enables the design of ultrasonic transduc-

ers capable of converting electrical energy into mechanical energy and vice versa, making

it suitable for the generation and detection of ultrasonic waves. The product of these

constants de�ned via the electro-mechanical coupling factor k33 in

d33ℎ33 =
Ur

Ut

= k233 (2.29)
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can be utilized to assess the e�ciency of the conversion of energies [20]. A higher k33 value

indicates a more e�cient transducer, which is crucial for optimizing the performance of

ultrasonic systems in various applications.

2.2 Signal Analysis Techniques

In the following, essential mathematical methods for signal processing in ultrasound process

monitoring are introduced. The focus is on the mathematical techniques used to process

and interpret ultrasound data, with particular emphasis on the Fourier transformation and

�lters.

The Fourier transformation is fundamental in converting time-domain signals into their

frequency-domain representations, revealing critical frequency components for analysis.

Filters play a crucial role in removing noise and enhancing signal quality. Together, these

methods are indispensable for the accurate processing and interpretation of ultrasound

data [37, 38].

Fourier Transform

The Fourier theorem asserts that any time-dependent signal f (t) can be represented as a

composition of sinusoidal waves, each with its own frequency and amplitude. To compre-

hensively analyse the information embedded in sound waves, it is valuable to examine the

signal in both time and frequency domains.

Time domain analysis explores the dynamics of a signal, providing insights into variations

at speci�c moments. Frequency domain analysis, on the other hand, decomposes a signal

into its fundamental frequencies, unveiling the spectrum of components constituting the

signal. Together, these methods o�er a detailed perspective on the temporal and spectral

characteristics of a signal.

Time-frequency analysis now investigates how a signal’s frequency components evolve

over time. The Fourier transform (FT) links these domains by representing a function f (t)

as a sum of complex exponential functions, each characterized by an angular frequency !:

F(!) = ∫ ∞

−∞

f (t)e−i!t dt (2.30)

Conversely the time signal can be reconstructed using the inverse FT:

f (t) =
1

2� ∫ ∞

−∞

F(!)ei!t d!. (2.31)

However, these equations need to be adapted for digital signals, resulting in the discrete

Fourier transform (DFT). This adaptation introduces deviations from the exact solutions,

as referred to aliasing and leakage. To correctly apply the DFT in signal processing and

feature extraction a thorough understanding of its derivation is crucial and summarized in
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the following.

The FT is denoted by x(t) ↔ X(!). The product theorem [37] is de�ned as:

x(t) ⋅ y(t) ↔ X(!) ∗ Y (!) (2.32)

where ∗ denotes convolution integral between the functions X(t) and Y (!) given by

X(!) ∗ Y (!) = ∫ ∞

−∞

X(�)Y (! − �) d� = ∫ ∞

−∞

X(! − �)Y (�) d�. (2.33)

Consider a band-limited signal x(t), continuously recorded over time with a maximum

non-zero frequency of !c. The exemplary signal x(t) and its FT X(!), representing an

analytical solution of the frequency spectrum, are illustrated in Figure 2.7. However, due to

x(t)

t ω-ωc ωc

X(ω)

Figure 2.7: Le�: Graph of a continuous signal x(t), plotted as a function of time t. Right: Corresponding FT
X(!) ↔ x(t) as a function of frequency !. The frequency !c marks the largest frequency occurring in the
spectrum.

limited computation and storage capacities the digitizing process requires discretization

and truncation of the signal into a �nite number of samples.

To introduce discretization mathematically, the signal x(t) is multiplied by an impulse train

s(t), which yields a discretized signal xs(t):

xs(t) = x(t) ⋅ s(t) = x(t) ⋅
∞∑

n=−∞

�(t − nT ), (2.34)

where �(t) is the delta Dirac function de�ned as:

�[n] =

{
1 if n = 0,

0 otherwise.
(2.35)
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The product x(t) ⋅ s(t) corresponds to discretization with a sampling frequency of f = 1
T
.

The product theorem from Equation 2.32 is used to calculate its FT:

xs[n] = x(t) ⋅
∞∑

n=−∞

�(t − nT ) ↔ Xs = X(!) ∗
1

T

∞∑
n=−∞

�(! − n!s) (2.36)

↔
1

T

∞∑
n=−∞

∫ ∞

−∞

X(! − �)�(� − n!s)d� (2.37)

↔
1

T

∞∑
n=−∞

X(! − n!s) = Xs(!), (2.38)

where xs[n] denotes a discrete signal with n = 0, 1, 2.... Since the FT of s(t) is a impulse

train with a sampling snippet of 1
T
, from Equation 2.38 it follows that the FT Xs of the

sampled signal is a 1
T
-periodic extension of the FT of the corresponding continuous signal

X(t).

Figure 2.8 visualizes the process of Fourier transforming the sampled signal xs(t) and shows,

that the sample frequency 1
T
must be su�ciently large enough to obtain an undistorted

representation of the FT within the frequency range ! < !c. However, if the band-limiting

xs(t)

t ω-ωc ωcT -1/T 1/T

Xs(ω)

Figure 2.8: Le�: Graph of a discretized signal xs(t) with a sampling frequency of 1
T . Right: Corresponding FT

Xs(!) for the case of |!c| < 1
2T .

frequency !c exceeds
1
2T
, the replicas of X(!) overlap, thereby distorting the spectrum of

the original signal. This phenomenon, known as aliasing, is shown in Figure 2.9. To prevent

aliasing, it is crucial to choose a sampling frequency larger than twice the highest frequency

present in the signal. This is also known as the Nyquist-Shannon sampling theorem [39],

which speci�es:

2!c ≤ fN
1

Tmax

, (2.39)

with fN being the Nyquist frequency. Thus it is essential that xs remains band-limited to

enable precise reconstruction of the original signal’s spectrum. Since real signals are seldom

exactly band-limited, careful consideration in the selection of acquisition parameters and

the application of appropriate analogue �lters is crucial.
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Xs(ω)

ω-ωc ωc-1/T 1/T

......

Figure 2.9: FT Xs(!) for the case of |!c| > 1
2T which results in aliasing and a distortion of the frequency

spectrum.

To investigate the e�ects of truncation multiply the signal with a rectangular window of

length N , as expressed by:

w[n] =

{
1 for 0 ≤ n ≤ N − 1

0 otherwise
(2.40)

According to the product theorem of Equation 2.32, this operation corresponds in the

frequency spectrum to the convolution with the FT of w[n], which is is the aliased sinc

function, asinc. Thus, with the substitution 
 = !T the Discrete Time Fourier Transform

XT (
) of the truncated signal xT [n] = x[n] ⋅ w[n] is given by

xT [n] ⟷ XT (
) = X(
) ∗ asinc(
) ⋅ e−
i(N−1)

2 
 (2.41)

where the additional linear phase factor e−
i(N−1)

2 
 occurs due to the non-zero centred window

function. This procedure causes a further distortion of the FT, referred to as leakage, which

can be attenuated by increasing N of the window function as the asinc function gradually

approaches the shape of an impulse and thus reducing the sidelobes.

A common technique to reduce leakage is windowing, that is multiplying the signal by a

window function di�erent from a simple rectangular window. Common window functions

include Hamming and Kaiser window which is compared to the rectangular window in

Figure 2.10. Each has di�erent characteristics and is chosen based on the speci�c require-

ments for spectral resolution and sidelobe attenuation. The rectangular window has high

sidelobes and poor frequency selectivity, while the Hamming window reduces sidelobes

through tapering but loses some resolution. The Kaiser window allows tuning via � (e.g., 3)

o�ers better resolution with higher sidelobes, while higher values (e.g. 10) reduces sidelobes

at the cost of resolution. This �exibility makes it ideal for balancing resolution and sidelobe

suppression.

The FT Xs(!) so far is a continuous function and thus needs to be discretized for storage.
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Figure 2.10: Comparison of the rectangular, Hamming and Kaiser window. The sample length is arbitrarily
set to 500.

Again, this process is mathematically described by a multiplication with a frequency-domain

impulse train. It is given by

XD(
) = Xs(
) ⋅
1

M

∞∑
m=−∞

� (
 −
m

M) . (2.42)

Thus, the frequency resolution of the FT is

�! =
1

MT
=

!s

M
(2.43)

with the sampling frequency !s.

The inverse FT is calculated by

XD(
) ⟷ xD[n] = xs[n] ∗
∞∑

m=−∞

�(n − mM), (2.44)

that implies that XD(
) is actually the FT of xs[n], which is periodically extended with

a period of M . Depending on the desired resolution, M should be at least equal to N . If

M > N , the results of the DFT corresponds to the transformation of the signal xT[n], which

has been extended to the length M by adding trailing zeros. This technique, known as

zero-padding, can be used to increase the frequency discretization in the frequency-domain.

In this study, the discrete fourier transform of a discrete-time vector x[n] of length N is

calculated using an optimized algorithm in MATLAB, known as the fast Fourier transform

(FFT). This is implemented via a library referred to as FFTW [40]. The MATLAB syntax

used is:

Y = �t(X,M); (2.45)

This command returns the FFT Y of length M for one period, with the frequency increment

of fs
M
. Conversely, the command:

X = i�t(Y , n) (2.46)
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returns the n-point inverse fourier transform of Y , padding Ywith trailing zeros up to

length n. For X and Y of length n, these transforms are mathematically expressed as:

Y (k) =
n∑
j=1

X(j)W (j−1)(k−1)
n (2.47)

X(j) =
1

n

n∑
k=1

Y (k)W −(j−1)(k−1)
n , (2.48)

where

Wn = e
−2�i
n (2.49)

is one of the n roots of unity.

Generally, the FFT results are complex, enabling the extraction of the amplitude A and

phase delay � as follows:

An =
√
Re2n + Im2

n (2.50)

�n = arctan( Imn

Ren) . (2.51)

For a real input sequence, theFFT produces a symmetric real component and an antisym-

metric imaginary component in the FT. This symmetry extends to the amplitude as well.

Given the periodic nature of the DFT, only the �rst half of the FFT spectrum represents

unique frequencies, which means the latter half is redundant and can be discarded.

Filter

Understanding the frequency spectrum provided by the FFT is crucial for many signal

processing applications, especially when it comes to �ltering. Filters play a vital role in

manipulating signals by allowing certain frequencies to pass through while attenuating

others. This selective frequency attenuation can be achieved through di�erent types of

�lters, which can be categorized based on their frequency response and their type of

implementation. One can distinguish between four types by frequency response:

• Low-Pass: Passes frequencies below a cuto� frequency, blocks higher ones.

• High-Pass: Passes frequencies above a cuto� frequency, blocks lower ones.

• Band-Pass: Passes frequencies within a frequency range, blocks others.

• Band-Stop: Blocks frequencies within a frequency range, passes others.

The most common types of implementing the �lters are analogue and digital �lters.

Analogue �lters are typically implemented in the signal acquisition process or signal condi-

tioning. They are used to process analogue signals, most commonly voltage signals and

require hardware such as resistors, inductors, and capacitors for implementation, making

them di�cult to modify without redesigning or rebuilding the circuit.
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Digital �lters, in contrast, process signals a�er its conversion into digital form via an

analogue-to-digital converter. Implemented using so�ware algorithms, digital �lters o�er

�exibility to meet speci�c application requirements independent of environmental in�u-

ences like changing temperature [38, 41, 42].

To understand the theory of digital �lters consider a discrete signal x[n] with a sampling

frequency of fs. To obtain a �ltered output signal y[n] the general mathematical operation

is

y[n] = ( P∑
i=0

aix[n − i] −
Q∑
j=0

bjy[n − j]) , (2.52)

where P is the feedforward �lter order,Q the feedback �lter order and a and b its coe�cients,

respectively. With b ≠ 0 this equation represents a recurrent or in�nite impulse response

(IIR) �lter. When b = 0 the �lter is called �nite impulse response (FIR) �lter.

To understand how �lters can be created, consider a low-pass �lter using the window

design method for an FIR �lter. The �lter should eliminate all frequencies above fc. In

the frequency domain this corresponds to a simple operation, multiplying the frequency

spectrum X[!] with a corresponding rectangular function. This removes the unwanted

high-frequency components and yields a �ltered frequency spectrum. According to the

convolution theorem, this operation in the frequency spectrum corresponds to a convolution

with the DFT of the rectangular function a[n] in the time domain, resulting in the equation:

y[n] =
P∑
i=0

a[i]x[n − i], (2.53)

where y[n] is the �ltered output signal, x[n] is the input signal. a[n] is called the impulse

response of the �lter, which can be observed using the Dirac delta function in Equation 2.35

as the input signal x[n] = �[n]. This yields y[n] = a[n]. The impulse response for the

rectangular window corresponds to its DFT, the origin-symmetric sinc function. These

functions are illustrated in Figure 2.11.

To implement the �lter, the sinc function must be shi�ed, sampled, and truncated to achieve

a �nite length. This truncation is done using a window function, which de�nes the shape

and length of the impulse response. However, truncating the sinc function introduces

inaccuracies, manifested as side lobes in the frequency response as illustrated in Figure 2.12.

As elaborated in the previous section, the choice of window function signi�cantly impacts

the performance of the �lter. Di�erent window functions can be used to reduce side lobes

and improve the �lter’s overall e�ectiveness. Common window functions include the

Butterworth, Hamming, Hanning, and Blackman windows. Each of these functions o�ers a

trade-o� between main lobe width and side lobe suppression, allowing for the customization

of the �lter’s characteristics based on speci�c application requirements [38, 43].

In this work the Butterworth �lter is frequently used, yielding good results throughout

di�erent applications. The Butterworth �lter is characterized by a smooth, monotonic
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transition from the passband to the stopband, without any oscillations, where the order of

the �lter determines the steepness of this transition.
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Figure 2.11: Le�: Rectangular window with cut-o� frequency at fc. Right: Corresponding inverse FT in the
time domain.
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response.

2.3 Signal Processing

Central to process monitoring is the transformation of raw signals into actionable informa-

tion, as extracting meaningful information from raw ultrasound data is not as immediately

apparent. Figure 2.13 illustrates the work�ow from acquiring raw data to obtaining higher-

order information that can be utilized for process monitoring.

In general, signals are primarily categorized into analogue and digital signals. Analogue

signals are continuous, varying smoothly over time, and can assume any value within a

speci�ed range. These signals are typical for many natural phenomena, such as sound

waves, which are of interest in ultrasound-based condition monitoring. Conversely, digital

signals exist only at discrete time points, o�en resulting from the sampling and digitization

of analogue signals. Digitization is necessary due to �nite storage and computational

capacities.
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In ultrasound-based condition monitoring, the received signals are generally high-frequency

sound waves that materials under test emit, or sound waves actively excited by a transducer.

However, these waves o�en carry unwanted noise and are subject to various distortions

and interferences in industrial environments, making signal processing an essential step in

process monitoring.

The �rst step in this process is the detection of ultrasonic waves using sensors, such as

piezoelectric sensors, which convert the mechanical vibrations into measurable analogue

electrical voltages. Once the analogue voltage signal is acquired, it typically requires

analogue �ltering and ampli�cation, referred to as signal conditioning, to make it suitable

for further processing. This step helps remove unwanted frequencies and enhances signal

detectability.

Finally, an analogue-to-digital Converter is used to convert the analogue voltage signal into

a digital signal for analysis. It combines sampling and quantization to enable storage and

computation with �nite capabilities. Sampling is where the continuous signal is measured

at speci�c intervals to create a series of discrete time points, adhering to the Nyquist rate to

ensure accurate reconstruction [44]. Quantization follows, assigning each sample a digital

value based on a predetermined number of bits and thus discretizing the signal’s amplitude

[34, 45].

A�er signal acquisition, the next phase is signal preprocessing, where the signal is prepared

for interpretation. This phase includes data cleaning, which removes artifacts or unwanted

elements to enhance data quality. Additionally, feature extraction is performed to identify

and isolate relevant characteristics or features from the signal, reducing the data volume

and supporting the interpretation process.

Finally, the ”the interpretation phase”, o�en named diagnostics, applies various models and

algorithms to extract higher order information. This could involve employing machine

learning models for classi�cation and regression tasks, as well as advanced reconstruction

algorithms that not only visualize localized data but also provide deeper insights into the

underlying patterns and system behaviour, enhancing interpretability and decision-making.

Signal analysis is therefore crucial for e�ective maintenance. Smartly processing raw

ultrasound data helps to identify patterns and anomalies within the ultrasound signals, and

enables statements about the state and functioning of the process under investigation.

Preprocessing, refereed to the collection of techniques applied to data before signal in-

terpretation, is crucial for preparing raw data by enhancing signal quality, standardizing

data formats, reducing noise, and extracting relevant features. Essentially, pre-processing

transforms raw data into a re�ned state, optimized for subsequent analysis [46, 47].

Ultrasound signals, in particular, bene�t signi�cantly from preprocessing techniques due to

their susceptibility to various types of noise, such as mechanical and electronic noise from

the equipment, as well as environmental disturbances. Furthermore, ultrasound data is

o�en voluminous, generating large quantities of data that can strain storage and processing

systems.
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Figure 2.13: An overview of a signal processing work�ow involving signal acquisition, preprocessing, and
interpretation methods for accurate signal analysis and decision-making.

Suitable preprocessing techniques can help mitigate these issues, �ltering out unwanted

noise, improving the clarity of the signals and reducing data size while retaining essen-

tial information. Figure 2.14 illustrates the process of signal preprocessing used in this

work, which is applied between receiving a conditioned signal and ultimately interpreting

it. Signal conditioning involves preparing and optimizing raw sensor signals—through

processes such as �ltering, amplifying, and impedance matching—to enhance signal quality

and ensure compatibility with subsequent digital processing systems [34].

The main preprocessing work�ow is composed of several essential steps. First, the process

of data organization takes place, which includes two key points: data cleaning and data

alignment. Data cleaning involves the removal of errors, inconsistencies, and noise from the

data to improve its quality and reliability. Data alignment involves resampling, adjusting

the signal’s sampling rate and synchronizing the data to ensure consistency and accuracy

in the subsequent analysis. This supports data storage and further processing.

A�er data organization, the next crucial step is signal inspection, which involves a prelimi-

nary examination of the signal’s characteristics to understand the underlying physics of the

signal or to identify any obvious patterns or anomalies. There could be several techniques

for a more in-depth analysis. The techniques are based on an analysis in the time, frequency

or time-frequency domain [48, 49]:

• Time domain analysis: This approach focuses on how the signal’s amplitude changes

over time, providing insight into its temporal behaviour and helping to capture

transient events.

• Frequency domain analysis: In contrast, this method examines the signal’s frequency

components, o�ering a deeper understanding of its periodic characteristics and

underlying structures.

• Time-frequency analysis: This approach combines elements of both time and fre-

quency domain analyses, allowing for a detailed exploration of how the frequency

content of a signal changes over time.

The deeper understanding of the data acquired through initial signal inspections lays the

foundation for e�ective feature extraction.
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Feature extraction is a critical part of preprocessing. In this step, speci�c attributes or

characteristics of the data are identi�ed and extracted for further analysis. Feature extraction

plays a vital role in simplifying the data, reducing its complexity while preserving the most

relevant information. By selecting the most signi�cant features, this step ensures accurate

and e�cient interpretation [47, 50, 51].

Figure 2.14: Signal preprocessing work�ow, beginning with data organization and followed by feature
extraction and selection, ultimately leading to signal interpretation.

2.3.1 Data Organization

Data Cleaning and Outlier Removal

A�er importing well-conditioned signals, the �rst step is to clean and organize the data.

Removing outliers reveals the data’s true structure, una�ected by extreme values due to

environmental noise or measurement artefacts.

Outlier removal can be applied both to raw data and to calculated features at a later stage.

Features such as statistical measures or spectral properties can also contain outliers due to

the propagation of anomalies from the raw data. Identifying and addressing outliers at this

stage further re�nes the dataset and ensures more accurate condition monitoring.

Common methods for identifying outliers involve setting a prede�ned threshold, which

is then compared to statistical measures or distributions. For instance, outliers might be

de�ned as sample points that fall outside a speci�ed percentile range or deviate from the

mean by a prede�ned multiples of standard deviations. Once identi�ed, outliers can either

be removed from the dataset or their values adjusted. In the context of condition monitoring,

where data from di�erent sources o�en need to be aligned, adjusting values is preferable to

removal. This approach preserve the timestamp of the time series or spatial data.

Signal Alignment

Aligning signals to a uniform timestamp is essential when receiving data from multiple

sensors. This o�en requires resampling.
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The sample rate, which is changed in the resampling process, a�ects the accuracy of

information transferred at speci�c frequencies. Adhering to the sampling theorem is

essential, as higher frequencies can become distorted, leading to information loss when

downsampling. Therefore, before downsampling, the signal must be �ltered to eliminate

excessive frequency content to prevent distortion. This is achieved by applying a low-pass

or anti-aliasing �lter. The process is as follows [38]:

• Select a factor M by which to reduce the original sampling rate.

• Apply low-pass �ltering: The cuto� frequency should be less than or equal to half of

the new sampling rate which is de�ned as the Nyquist frequency.

• Decimate the signal by retaining only every M tℎ sample of the original signal and

discarding the others.

The basics of �lter theory, design and its implementation is described above.

2.3.2 Time-Domain Analysis

Time-domain analysis in ultrasound-based condition monitoring involves examining the

raw ultrasonic signal as a function of time. This technique bene�ts from its simplicity,

allowing for direct interpretation of the signal without complex transformations, making

it suitable for immediate feedback in experiments or a �rst assessments of data quality

[25]. For instance, in ultrasound measurements, the signal can be directly plotted in the

time domain to check echo patterns, which indicate whether the sensor is well-aligned and

mounted.

Despite its simplicity, plotting the data in the time domain can su�ce for basic analyses,

such as tracking signal amplitude over time to distinguish di�erent time segments of interest.

For example, the top part of Figure 2.15 displays acoustic data recorded from a gearbox in

alternating conditions. It illustrates how time-domain analysis can distinguish between

the operational modes of the hub based on the acoustic data. The two di�erent conditions

emit di�erent sound pro�les which can be correlated with the speci�c mechanical states.

Operation in condition 1 produces a louder sound, resulting in higher amplitude segments,

clearly visible in the plot. These segments are highlighted in the bottom graph of Figure 2.15.

Time-domain analysis aids in focusing subsequent analyses on relevant time segments.

Comparing the signals with other sensor or machine data can further help to highlight

signi�cant sections and, if necessary, allow for the discarding of irrelevant data. Abrupt

changes in the signals may also indicate signi�cant events and could serve as markers to

check data synchronization accuracy.

For example Several time-domain vibration analysis techniques are used for condition

monitoring of rolling element bearings, including statistical methods, regression models

for analysing non-stationary data, and advanced �ltering and noise separation approaches.
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Thesemethods improve fault diagnosis by e�ectively extracting key features andminimizing

noise [52, 53].

However, time-domain analysis provides information limited to the signal’s amplitude
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Figure 2.15: Recorded acoustic signals of a bicycle hub monitored using an ultrasonic piezo sensor. Both
graphs display the raw amplitude data over time. The bottom graph shows the same signal but additionally
di�erentiates between signals recorded while the hub was in condition 1 (blue) and condition 2 (orange).

and phase over time. Its interpretation becomes challenging when dealing with multiple

overlapping signals or noise and interference components that may be superimposed on the

primary signal. An analysis in the frequency domain can provide a solution in this context.

2.3.3 Frequency Analysis

In frequency analysis, data is examined within the frequency domain. Data is initially

recorded in the time domain and must be transformed into the frequency domain. Tech-

niques such as the FT allow for the visualization of a signal’s frequency content, facilitating

a deeper understanding of its characteristics and the identi�cation of signi�cant frequency

ranges [53, 54].

Relevant frequencies may originate from the process itself, providing insights into the

process state or wear. Conversely, irrelevant frequencies or noise that distorts the signal can

be identi�ed through frequency spectrum analysis. Once identi�ed, �lters can be designed

to remove these unwanted frequencies, thereby enhancing the overall signal quality.

Identifying relevant and irrelevant frequency content and interpreting the spectrum can be

achieved by theoretical or experimental methods. For a theoretical approach consider the

underlying physics of the process. Every mechanical system possesses inherent physical

properties such as distribution of mass, sti�ness, and damping, which dictate its natural
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frequencies and resonance phenomena.

Additionally, considering the operational behaviour is useful. For example, the rotation

speed of a gearbox signi�cantly impacts the frequencies of the generated sound waves.

Thus, changing the rotational speed produce changes in the frequency spectra due to the

direct correlation between mechanical movements and the frequency of vibrations [55, 56].

To e�ectively identify relevant frequencies within a signal, an experimental approach in-

volves analyzing and comparing the spectra of signals under various sensor and process

conditions. By systematically comparing sensor data recorded during di�erent process

states, one can attribute changes in the spectral regions to corresponding changes in the

process. For example, comparing data collected before and a�er a change in conditions can

reveal key frequency patterns that help identify when the change occurred.

Furthermore, by comparing spectra recorded at di�erent times while maintaining consistent

environmental conditions, one can isolate and identify frequency domains that may indicate

wear or developing faults.

Conversely, comparing spectra recorded under consistent process parameters but with

varying environmental conditions can help identify spectral changes caused by environ-

mental factors. These changes can then be discarded as irrelevant, as they do not re�ect the

actual state of the process but rather external in�uences.

The top part of Figure 2.16 shows an exemplary acoustic signal of a bicycle hub operating

in an unloaded state from 0 s to 2 s and in a loaded state from 2 s to 4 s. The loaded state

means the system is subject to an external resistance, such as weight or friction, while the

unloaded state refers to the condition where the system operates without any external

resistance or load, allowing it to perform without interference.

In the time domain, the states are indistinguishable. However, the spectrum reveals their

di�erences. The load distorts the spectrum, which is clearly visible on the logarithmic scale.

The loaded state leads to a general increase of the frequency amplitudes, particularly in

the frequency ranges from 35 kHz to 45 kHz and from 70 kHz to 90 kHz. These ranges are

thus a suitable to identify an unknown state as loaded or unloaded as they show the most

conspicuous di�erences.

2.3.4 Time-Frequency Analysis

Although frequency analysis e�ectively reveals di�erences in the frequency content of

signals, it does not provide information about how these frequencies vary over time. To

address this gap, time-frequency analysis methods are employed.

Common frequency analysis such as the FT, while powerful for identifying the overall

frequency content of a signal, does not provide temporal information about when these fre-

quencies occur. To overcome this limitation, methods such as spectrograms and scalograms

are utilized, both of which decompose signals into their component frequencies while also
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Figure 2.16: Above: Acoustic signal recorded from a bicycle hub, initially in an unloaded state for the �rst 2 s,
followed by a loaded state from 2 s to 4 s. Below: The corresponding frequency spectrums for the unloaded
and loaded states, illustrating the distinct acoustic di�erences of each condition.

considering time information [57, 58].

A spectrogram divides the signal into short, optionally overlapping segments. For each

segment, the spectrum is calculated using the FT. A color plot is then used to visualize

how the power within di�erent frequency bands changes over time. Usually, the horizontal

axis represents time, the vertical axis represents frequency and the color of each data point

re�ects the amplitude of a speci�c frequency at a particular moment.

Longer segments will yield better frequency resolution, ideal for identifying subtle fre-

quency components. This comes at the cost of temporal precision due to less available

data points within a segment. Conversely, shorter segments o�er �ner temporal resolution,

perfect for capturing rapid changes within the signal but with reduced frequency detail.

This trade-o� is essential for tailoring the analysis to speci�c requirements, ensuring that

signi�cant events within the signal are captured adequately [59].

A scalogram uses wavelets instead of sine waves. Wavelets are not only localised in fre-

quency but also in the time domain and come in di�erent sizes and shapes, for example

frequently used wavelets are Morlet or Haar wavelets and can be chosen appropriate to the

application. Being localised not only in the frequency but also time domain makes them

particularly useful for analysing non-stationary, erratic signals.

This method decomposes the signal by scaling and shi�ing the wavelets to match the sig-

nal’s features at various resolutions. The result is a detailed representation of both time and

frequency information, where each point in the scalogram corresponds to a speci�c time

and frequency, with color representing the amplitude or power of the wavelet coe�cients.
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However, with the extra degrees of freedom, more computational power is necessary [60].

Identifying speci�c frequencies within a signal is crucial for various applications. Timely

detection of frequency changes o�ers critical insights into machine performance, enabling

the identi�cation of operational states, such as gear transitions, and early detection of

potential irregularities or faults.. These observations are crucial for implementing predictive

maintenance strategies and e�ective fault diagnosis. For instance, the time snippets of loaded

and unloaded states in Figure 2.16 may not be directly identi�able with the corresponding

spectrum plots. However, the spectrogram in Figure 2.17 provides valuable time-based

information. Frequency analysis has successfully identi�ed relevant frequency snippets,

particularly e�ective for distinguishing loaded and unloaded states. These are notably

within the frequency snippets from 35 kHz to 45 kHz and from 70 kHz to 90 kHz, where

increases in amplitude are observed in the loaded state. This is visibly indicated in the

spectrogram by an abrupt colour change at 2 s, demonstrating how frequency analysis can

signi�cantly aid in the precise identi�cation of operational states in gear monitoring.
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Figure 2.17: The top graph displays the amplitude of the gear signal over time for loaded (orange) and
unloaded (blue) states. The bottom �gure shows a spectrogram of the signal.

2.3.5 Feature Extraction

This section illustrates the feature extraction process and explains the input parameters,

such as snippet length, which are essential for e�ective feature extraction. It aims to high-

light the importance of de�ning appropriate features tailored to the speci�c application and

the adaption of the parameters. An approach for adapting these parameters is subsequently

proposed in Chapter 4.
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In ultrasound-based process monitoring features are distinct attributes or characteristics

derived from data, which help interpreting information. As an essential base for various

subsequent analysis, they can be used to assess, monitor and predict the state of a process

as, for example, input for various machine learning models. The features typically relate

to characteristics of the ultrasound waves that interact with the materials or components

being monitored. These characteristics can include for example amplitude, frequency, echo

time delay or a combination of these.

There are several bene�ts, that come with careful executed feature extraction, enhancing

the e�ciency and accuracy of data analysis. The main bene�ts are [18, 51, 61]:

• Signal analysis and decision making can be enhanced through appropriate feature

extraction as they capture essential information. Thus, these features provide a data

foundation for predictive models.

• Noise and other interferences from environment and measurement system may

corrupt the signal. Feature extraction simpli�es these signals by isolating the essential

characteristics relevant for monitoring and analysis. This makes it easier to interpret

the data and draw meaningful conclusions about the state of the process or system

being monitored.

• Voluminous and complex acoustic data poses a challenge for e�cient processing.

Feature extraction helps conserve storage and computational capacities, facilitating

real-time monitoring. By focusing on key features, the computational load is lessened,

allowing faster processing and immediate response to potential issues detected by

ultrasound signals.

Feature extraction can be applied directly to the raw acoustic signal for an initial assessment

or a�er data cleaning. This is illustrated in Figure 2.14.

Before the actual feature extraction takes place, appropriate features need to be identi�ed

or engineered. Designing features is the initial phase where domain knowledge is used to

conceive new features or use standard features that might be useful for the task at hand.

Ideally, all designed features would be relevant to the speci�c task, but this is not always the

case. In fact, through a careful selection process, useful features can be identi�ed that may

not have been initially apparent through physical considerations alone. Feature selection

then plays a crucial role in choosing the most relevant features from the prede�ned set,

helping to reduce the feature space by eliminating redundant or irrelevant features.

Following [22, 34] before applying the feature extraction, the time-recorded data is divided

into prede�ned time snippets. A�er identifying a suitable feature set, each snippet is

analysed by calculating a sample for each feature using its corresponding feature function.

Given an appropriate length for the time snippet, this approach maintains time accuracy

while ensuring a su�ciently high number of data points for feature analysis.
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Figure 2.18 illustrates this feature extraction process using an ultrasound signal. The top

plot shows the signal’s amplitude versus time over a duration of 1 s. The signal is divided

into equal time intervals, each of length �t = 0.1 s. These segments are highlighted by

orange vertical lines. The middle and bottom plots display the extracted features from each

segment, speci�cally the root mean square (RMS) and Partial Power, which basically mea-

sures the energy proportion within a speci�c frequency range of a signal [22]. The �gure

Figure 2.18: Upper plot: Segmentation of a ultrasound signal of a gearbox into equally spaced time intervals
�t. For t < 0.5 s the gearbox operates in Gear 1 and switches to Gear 2 at t = 0.5 s. The middle and bottom
panels show the extracted features.

demonstrates a straightforward method to obtain feature values by directly applying the

feature function to the regularly arrayed snippets. However, this process can be extended

and adapted based on the application needs. For instance, to increase the time resolution

and the density of feature values without decreasing the length of the time intervals, the

snippets can be overlapped [34].

Before adjusting individual parameters for the features, it is essential to choose an ap-

propriate snippet length, a general parameter that ideally remains consistent across all

features for convenience in signal processing. The time snippets into which the recorded

signal is segmented, serve as the basis for feature extraction. The number and duration of

these snippets directly in�uence both the quantity of feature data points and the temporal

resolution of the analysis.

Instead of directly applying the feature functions to each snippet, preceding mathematical

operations can provide improved results. For instance, each snippet can be further divided

into smaller subsnippets, from which feature subsamples are calculated. Applying statistical

functions, such as calculating the mean of these subsamples, yields a representative feature
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value for the original snippet. This method has been shown to sometimes enhance stability

and reduces the impact of outliers or noise within the snippet, leading to more robust

analysis.

The length of these snippets and methods of calculating the feature points should be adapted

to the process and the intention of analysis. It depends on several factors, which in turn

in�uence each other:

• Computational resources: Shorter snippets increase the number of feature samples,

which can be computationally intensive and require more storage. Assessing the

available computational power and storage capacity is essential to balance the snippet

length with practical constraints.

• Process dynamics: For processes with rapid changes, shorter snippets are preferable

to capture the transient characteristics accurately. Conversely, for slower processes,

longer snippets may su�ce and reduce the volume of data.

• Feature stability: Short snippets provide high time resolution however may lead to

high variability in the extracted features due to noise or transient e�ects. Longer

snippets can help in averaging out these variations, providing more stable and reliable

features.

• Analysis objectives: The intended analysis or application of the features also dictates

the snippet length. For instance, real-time monitoring applications require shorter

snippets.

• Signal characteristics: The inherent properties of the acoustic signal, such as its

frequency content and noise level, in�uence the choice of snippet length. Longer

snippets adequately capture the slower variations in low frequency content or can

help average out the noise, leading to more stable and reliable feature extraction

In conclusion, there is no general recipe of de�ning suitable snippet length, which makes

feature extraction a rather application speci�c task.

Designing feature functions is a creative process, unconstrained by speci�c rules or limita-

tions. A myriad of features have been developed across various disciplines, particularly

in scienti�c time-series analysis. There are frameworks designed to bundle and calculate

features simultaneously, such as the highly comparative time-series analysis (hctsa) frame-

work [62]. It o�ers a comprehensive library of thousands of features speci�cally tailored

for time-series data analysis. However, not all of these features are suitable for speci�c

ultrasound process monitoring. For instance, online monitoring requires high performance,

excluding computationally expensive features in such cases.

For designing new features it may be highly bene�cial to consider the underlying physics

of the process to deduce the interpretation and meaning of the features in the context of
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the current application. This can provide insights into the behaviour of the system being

monitored and help in diagnosing issues. Features that are well-suited to the application

are more likely to capture the important aspects of the data, leading to better performance

and more accurate monitoring.

A straightforward approach for optimizing features is to directly assess the correlation be-

tween the feature and the response variable. Analysing these correlations and dependencies

has several bene�ts[51, 63]:

• Simpli�es initial feature selection: Correlation assessment can quickly identify fea-

tures that have a strong relationship with the response variable. This simpli�es the

initial selection of features that are likely to contribute to predictive power.

• Helps in feature engineering and understanding data: High correlation values can

indicate which features are most relevant, guiding the process of feature engineering.

You can focus on re�ning features with higher correlations, potentially saving time

and e�ort.

• Reduces over�tting risk: By selecting features with strong correlations, you may

reduce the risk of over�tting. Features that are weakly correlated with the response

variable may add noise rather than useful information, leading to over�tting.

In ultrasound process monitoring, basic features have been established [22, 34, 64, 65],

consistently showing good performance across various applications. These can be used as

a standard feature set, complemented with features tailored to the speci�c application. An

overview of frequently used features for ultrasonic signals is provided below.

Time-Domain Features

Time-domain features are extracted directly from the raw ultrasound signal. They provide

insights into the characteristics of the monitored process without requiring complex trans-

formations, making them straightforward to compute and interpret in real-time applications.

For an interpretation of the features in the time domain, consider an incident sound wave

detected by a piezoelectric sensor. The intensity of the acoustic power Ji [W/m2] of that

wave is given by

Ji =
1

2

p2
i

Zm

, pi =
√
2JiZm,

where pi is the sound pressure, and Zm is the acoustic impedance of the medium through

which the wave is travelling [20]. To calculate the sound pressure pp in the piezoelectric
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plate generated by an incoming sound wave of pressure pi, consider the transmission

coe�cient from Equation 2.15 and Equation 2.16. This leads to:

pp = T ⋅ pi = T ⋅
√
2JiZm =

Zp

Zp + Zm

⋅
√
2JiZm,

where T is the transmission coe�cient and Zp is the acoustic impedance of the piezoelectric

plate.

Following Equation 2.26, the electric signal measured at the piezoelectric plate, for small

deformations, is proportional to the sound pressure pp . With the proportional constant g33,

it follows:

U = g33d ⋅ pp = g33d ⋅
Zp

Zp + Zm

⋅
√
2JiZm

If the material properties remain constant during the process, it follows:

U ∝
√
Ji

and since the recorded values of the signal are proportional to the voltage U , the signal is

also proportional to
√
Ji.

• Statistical Features:

There are several features used to measure the statistical characteristics of the signal,

including the RMS, the arithmetic mean, geomean, and the median.

– The RMS value is the square root of the average of the squared signal values

over a speci�ed period: √∑N
i x2

i

N
. (2.54)

Since x2
i ∝ U 2 ∝ J , the square of RMS value provides a comprehensive assess-

ment of the acoustic power, making it particularly e�ective for distinguishing

between states with varying energy levels. For example, defective states in mate-

rials can result in stresses or deformations that lead to higher energy emissions.

– The arithmetic mean corresponds to the average value of the signal amplitudes,

however is highly sensitive to extreme data. It is useful when the signal data is

symmetrically distributed without signi�cant outliers.

– Themedian, and geomean in contrast are less sensitive to outliers and are useful

for datasets with values that span several orders of magnitude, which is o�en

the case with amplitude or power values in ultrasonic signals. It is less sensitive

to outliers compared to the arithmetic mean, providing a more representative

measure of central tendency for signals of varying ranges.

• Peak Amplitude:

The peak amplitude represents the highest value of the ultrasound signal amplitude
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observed within a given time window. It indicates the strength of the re�ected signal,

which is o�en related to the size and nature of the defect or boundary. A higher peak

amplitude generally suggests a more signi�cant re�ection, possibly from a larger or

more severe defect.

• Hjorth parameters:

Caesarendra et al. [66] suggest that Hjorth parameters [67] can serve as e�ective

features in condition monitoring for any time-domain signal, although they were

initially used in medical electroencephalography (EEG) signals. Consider a signal

x = x1, x2 ⋯ xN with the discrete derivative x′
i = xi−xi−1

�t
. These parameters have

meaningful interpretations, particularly for EEG signals, where they help analyse

brain activity patterns. However, they are also applicable to other types of time-

domain signals by providing distinct values that capture di�erent aspects of signal

behaviour. They can e�ectively describe the dynamics and characteristics of these

signals, making them useful for a wide range of applications:

– Hjorth Activity:

act(x) = var(x) = �2 =
1

N

N∑
i=1

(xi − x̄)2,

with x̄ as the arithmetic mean value. Activity measures the variance of the

signal, representing the power or the energy of the signal.

– Hjorth Mobility:

mob(x) =

√
act(x′)

act(x)

Mobility measures the standard deviation of the signal’s �rst derivative divided

by the standard deviation of the original signal. It re�ects the mean frequency

or the speed of the signal’s changes.

– Hjorth Complexity:

com(x) =
mob(x′)

mob(x)

Complexity is the ratio of the Mobility of the �rst derivative of the signal to the

Mobility of the signal itself. It re�ects the similarity of the signal to a pure sine

wave, indicating how much the signal resembles a simple harmonic oscillation.

• Combining features:

Combining di�erent features can lead to more robust and reliable results in ultrasonic

signal analysis. Speci�cally, integrating features with complementary or opposite

responses can enhance the robustness and accuracy of the analysis. For instance the

Crest Factor, de�ned as the ratio of the peak amplitude of a signal to its RMS value.

The crest factor can isolate changes in the signal’s peakiness from general increases in

energy. This means that even if the overall energy (as represented by RMS) increases,
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the crest factor can still detect signi�cant changes in the peak amplitude. This can be

also described as self nominating nature. In systems where the overall energy can

vary due to normal operational conditions (e.g., changes in load, speed, or operating

environment), the crest factor helps maintain sensitivity to fault conditions.

Frequency-Domain Features

Frequency-domain features are obtained by transforming the time-domain signal into

the frequency domain, typically using the FFT. In the following consider a signal x[n] =

x1, x2 ⋯ xN and its FFT x̂ with x̂j corresponding to the frequency fj .

• Statistical Features:

Many general statistics can be extracted from the FFT:

– Mean frequency:

MF(x̂) =
1

N

N∑
j=1

x̂j (2.55)

The frequency mean indicates the average frequency component in the signal.

– Mean Square Frequency:

MSF(x̂) =
1

N

N∑
j=1

x̂2
j (2.56)

The mean square frequency spectral provides a measure of the signal’s power.

– Root Mean Square Frequency (x̂RMS):

x̂RMS =

√
1

N

N∑
j=1

x̂2
j (2.57)

The root mean square frequency re�ects the e�ective power of the signal.

– Root Variance Frequency:

RVF(x̂) =
√
MSF(x̂) −MF(x̂)2 (2.58)

The root variance frequency represents the variability around the mean fre-

quency, indicating signal dispersion.

– Spectral Centroid:

x̂c =
∑N

j=1 x̂jfj∑N
j=1 x̂j

(2.59)

The spectral centroid corresponds to the center of mass of the spectrum, cal-

culated as the weighted average of the frequencies present in the signal. It
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indicates where the majority of the signal’s power is concentrated in the fre-

quency domain. Shi�s in the spectral centroid can indicate changes in material

properties or the presence of defects.

– Spectral Skewness:

skew(x̂) =
1

�3

1

N

N∑
j=1

(x̂j − ̄̂x)3 (2.60)

The spectral skewness measures the asymmetry of the spectral distribution.

– Spectral Kurtosis:

kurt(x̂) =
1

�4

1

N

N∑
j=1

(x̂j − ̄̂x)4 (2.61)

The spectral kurtosis measures the tailedness of the spectral distribution.

• Partial Power: ∑f2
f=f1

x̂2
f∑fend

f=fstart
x̂2
f

,

where f1 and f2 are the are the boundaries of the current range and fstart and fend are

the boundaries of the total range.

The partial power feature is de�ned as the ratio of energy or power within a designated

frequency range to the total energy. Multiple frequency bands can be de�ned, which

may be overlapping or separate, and tailored to the speci�cs of the monitoring process.

The placement of these frequency boundaries is critical. Normalizing the energy

within these bands to the total energy ensures that this feature remains consistent

and e�ective across di�erent scenarios [22].

• Peak Frequencies:

fpeak = f max(x̂)

The peak frequency is the frequency at which the power spectrum is highest. To

extract multiple peak frequencies, �rst identify the highest peak and de�ne a dead

area around it, setting these values to zero. Then, �nd the next highest peak in the

modi�ed spectrum. Repeat this process, each time de�ning a new dead area around

the latest peak, to sequentially extract multiple signi�cant frequency components.

• Combination:

Combining the centroid frequency fc and the peak frequencies fp, the featureweighted

peak frequency fw =
√
fc ⋅ fp [22] captures both the overall distribution of the

frequency spectrum via the centroid and the prominent components via the peaks.

This combination ensures that the feature is sensitive to both broad and speci�c

changes in the signal. The centroid frequency tends to be more stable and less
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susceptible to noise compared to individual peak frequencies. By incorporating the

centroid frequency, the weighted peak frequencies inherit this stability, reducing the

overall variability of the feature.

2.3.6 Feature Selection

One of the primary objectives of CM is to save time and reduce costs by accurately predict-

ing and identifying the state of the monitored system. This allows for timely interventions

to prevent downtime or more severe issues.

For example, studies [68–70] have demonstrated that accurate and reliable CM systems can

enhance the cost-e�ectiveness of wind turbines in energy production. According to the stud-

ies, CM systems can substantially reduce life cycle costs, particularly in the monitoring of

gearboxes and generators. However, achieving accurate and reliable diagnostics is crucial for

e�ectively applying CM systems and the success of wind turbine condition monitoring de-

pends heavily on the selection of appropriate signal processing and data analysis techniques.

An e�ective and reliable condition monitoring system optimizes hardware maintenance

cycles while ensuring long-term stability by minimizing the frequency of so�ware updates.

Central to this is developing a robust initial model with a solid foundation and strong

predictive capabilities, which is supported by a suitable preselection of features.

To achieve this, consider the following points:

• Computation Time: Assess how time-consuming the feature is to calculate and if the

application requires real-time capability.

• Domain knowledge: Initially evaluate the potential importance of the feature for the

application. Physical domain knowledge is useful for predicting feature performance.

• Correlation to other features: A robust model should be free from bias, which can be

introduced by using too many features of the same nature. Avoid features that are

similar and show high correlations. Useful tools for this include correlation matrices,

dendrograms, or hierarchical trees with clustering algorithms.

In addition, there are several common feature selection algorithms which can be categorised

in three groups [71]:

• Filter Type Methods: These methods use statistical techniques to evaluate the rela-

tionship between each feature and the target variable independently of any machine

learning model. Being model-agnostic they are simple, fast, and computationally

e�cient.

• Wrapper Methods: These methods evaluate the usefulness of feature subsets by

actually training and testing a speci�c machine learning model. These methods

consider feature interactions and can lead to higher accuracy since the selection is

based on model performance, however computationally expensive.
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• Embedded Methods: These methods perform feature selection as part of the model

training process. The algorithm inherently selects the most relevant features while

building the model. More e�cient than wrapper methods since feature selection and

model training are combined. They o�en achieve good performance by considering

feature dependencies.

• Filter Methods:

– Analysis of Variance (ANOVA): Used to analyze the data distribution across

di�erent groups. It tests the null hypothesis that the data is drawn from a normal

distribution with a single mean against the alternative hypothesis that the data

is drawn from distributions with di�erent mean values for each group. The

corresponding F-value is calculated, and the associated p-value is used to rank

the features. Applied to feature selection, a feature with a high score indicates a

clear separation of mean values for each label. This suggests that the feature

has a strong impact on the response variable, making it suitable for machine

learning algorithms that aim to cluster and categorize labels. However, it is

important to note that ANOVA does not account for the distribution around the

individual mean values for each group.

– The Kruskal-Wallis test: Assumes that all samples originate from populations

with the same continuous distribution, except for possible di�erences in location

due to group e�ects. Additionally, it requires that all observations are mutually

independent. Unlike ANOVA, which uses the actual numeric values of the data,

the Kruskal-Wallis test computes the test statistics based on the ranks of the

data. To determine ranks, the data are ordered from smallest to largest across all

groups, and each value is assigned a rank based on its position in this ordered

list.

– The Chi-Square Test: Used to determinewhether there is a signi�cant association

between two categorical variables. It tests the null hypothesis that there is no

relationship between the variables, against the alternative hypothesis that there

is a relationship. The test compares the observed frequencies in each category

to the frequencies that would be expected if there were no association between

the variables. To apply the test to continuous variables or features they need

to be discretized or binned. The test statistic, called the Chi-Square statistic,

is calculated by summing the squared di�erences between the observed and

expected frequencies, divided by the expected frequencies. The resulting value is

then compared to a critical value from the Chi-Square distribution to determine

the p-value, which indicates the signi�cance of the observed association.

– R-squared: Measures the proportion of variance in the dependent variable that

can be predicted from the independent variables.
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2.3 Signal Processing

– ReliefF: Evaluates the importance of features based on howwell they di�erentiate

between instances that are near to each other, considering both nearest neighbors

of the same class and di�erent classes to estimate the feature weights.

– Laplacian Score: Evaluates feature importance by preserving the local structure

of the data, using the Laplacian matrix of the graph formed by the data points

to score features.

– In�nite Feature Selection (Inf-FS): Uses an in�nite path approach to select

features based on their importance, scoring features by their ability to connect

di�erent samples in an in�nite random walk model.

– Minimum Redundancy Maximum Relevance (mRMR): Selects features that are

highly relevant to the target variable but minimally redundant among them-

selves, using mutual information to measure relevance and redundancy.

• Wrapper Methods:

– Fitted Discriminant Analysis (FDA): Used for classifying observations into pre-

de�ned groups based on predictor variables. It involves �nding a set of linear

combinations of the predictor variables or features that best separate the groups.

These linear combinations are identi�ed to maximize the distance between the

means of the groups and minimize the variation within each group. FDA then

ranks the features that contribute most to these linear combinations, thereby

distinguishing between the groups. Unlike ANOVA, FDA considers the distri-

bution within each group, providing a more nuanced analysis. However, this

method does not assess the performance of features individually; instead, it

evaluates their e�ectiveness in combination with each other.

– Neighbourhood Component Analysis: Learns a feature weighting by optimizing

a stochastic neighbour assignment objective, �nding a linear transformation of

the input features that maximizes the accuracy of nearest neighbour classi�ca-

tion.

• Embedded Methods:

– Classi�cation Tree: Uses decision tree models to evaluate the importance of

features, measuring feature importance based on how o�en a feature is used to

split the data and how much it improves the model’s performance.

– Classi�cation Ensemble: Combines multiple classi�cation models to improve

the robustness and accuracy of feature selection, evaluating feature importance

by aggregating the importance scores from di�erent models in the ensemble.

– Random Forest Classi�cation Tree: An ensemble of decision trees where each

tree is trained on a random subset of features and data samples, measuring

feature importance by averaging the decrease in impurity (e.g., Gini impurity or

entropy) brought by each feature across all trees.
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2 Theoretical Background

Choosing the right feature selection method depends on various factors including the

nature of the dataset, the complexity of the model, computational resources, and the speci�c

objectives of the analysis.
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This chapter introduces the experimental setups that serve as the foundation for the devel-

opment of the advanced techniques proposed for ultrasound process monitoring. While the

techniques, discussed in Chapter 4, are designed for broad applicability, they were speci�-

cally developed to address challenges encountered during the monitoring of these setups.

To provide the necessary context for understanding the methods, the experimental setups

are described here before delving into the theoretical framework of the advanced techniques.

The experimental setups detailed in this chapter are used for validating the advanced signal

analysis techniques subsequently discussed. These techniques are applied to four distinct

processes, each described sequentially in this chapter, with a focus on the selection and

integration of sensor systems.

In the following section, a gearbox demonstrator, equipped with passive ultrasonic sensors

is examined. It serves for the validation of the proposed feature selection technique. In this

setup, structure-borne noise are analysed with the aim of developing a robust classi�cation

model for distinguishing between di�erent gears.

Next, the setups, the rheometer and the thermoplastic resin transfer moulding (T-RTM),

process are presented successively. For both setups the same sensor and measurement

system are utilized. This consistency is intentional, as the rheometer experiments are

conducted under controlled laboratory conditions, primarily serve as validation tests to

apply their �ndings to the more industrially relevant T-RTM experiments. Thus, the setup is

speci�cally tailored and optimized for the T-RTM process, and this con�guration is applied

to the other experiment.

For the vacuum assisted process (VAP) experiment, the use of any ultrasonic monitoring

system was not necessary, as it was speci�cally designed for optical monitoring to validate

the global reconstruction method. Therefore, ultrasonic sensors were deemed redundant

and were replaced by optical measurements, e�ectively simulating virtual sensors.

Finally, this chapter provides a detailed description of the ultrasound (US) data acquisition

measurement system utilized for the rheometer and T-RTM processes. This system is

described in more detail due to its capability to perform more complex active measurements,

where the sensors function not only as receivers but also as transmitters, in contrast to the

passive measurements used in the gearbox experiments. The chapter also discusses the

process of determining optimal sensor placement to enhance signal clarity, streamline signal
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processing, and improve overall outcomes. Focusing on active sensors applied to multilayer

structures with planar interfaces, it concludes with a graphical method for identifying the

most e�ective sensor placement.

3.1 Gearbox Test Bench

It is useful to investigate new developed algorithms in a controlled environment with clear

de�ned operation states.

For this purpose a gear demonstrator was developed with the experimental setup depicted in

Figure 3.1, which is located at a showroom, instead of noisy industrial environments. Thus

the gear demonstrator serves as the ideal test object to investigate and test the developed

methods for acoustic monitoring.

Within the controlled laboratory environment, this setup o�ers the advantage ofmaintaining

stable parameters, such as a constant temperature, over extended periods. This allows for

description of degradation e�ects, speci�cally wear and tear, without the interference of

larger, unpredictable incidents that might occur in an industrial environment.

Figure 3.1: Experimental setup of the the gear demonstrator, including the gearhub, motor, data acquisition
system, and sensor. The motor drives the system at 1.4 R/s, with power transmitted through chains and gears.
The Shimano Nexus 3-speed internal geared hub SG-3D55 is monitored using a Vallen VS12-E sensor and the
PRO�le Ultrasonic acquisition system provided by BCMtech.

The gear under investigation is the Shimano Nexus 3-speed internal geared hub SG-3D55

[72]. It is designed for a wide range of applications, including bicycles and light industrial

machinery, making it a versatile test subject. With three internal gears, this hub provides

a simple yet su�ciently complex system to test various acoustic monitoring techniques

e�ectively and should serves as an example and as a foundational model for further investi-

gations into other gear mechanics.
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3.1 Gearbox Test Bench

The gear hub is driven as part of a structure involving di�erent gears, modelled a�er bi-

cycle mechanics. The initial rotational frequency is provided by a motor, PLG 63 EP from

Dunkermotoren [73], and is maintained constantly at 1.4Hz. Power transmission occurs

through chains and gears. Since the small gears all have 20 teeth, the gear hub is driven at

the same rate as provided by the motor.

The Shimano Nexus 3-speed internal geared hub SG-3D55 translates the input rotational

speed into three distinct output speeds, corresponding to its three gears. When the driven

rotational frequency is 1.4Hz, the output speeds for each gear are listed in Table 3.1.

Table 3.1: Gear Ratios and Corresponding Rotational Speeds

Gear Gear Ratio Rotational Frequency (Hz)

1st (Low Gear) 0.74:1 1.036
2nd (Direct Drive) 1:1 1.4
3rd (High Gear) 1.36:1 1.904

Sensor Selection

For the gearbox test bench a commercial data acquisition system, the PRO�le Ultrasonic

[74], was used provided by BCMtec.

Selecting the right AE sensor and mounting it in the optimal position are crucial for meeting

these requirements and accurate monitoring. Proper placement maximizes signal capture

and minimizes interference, leading to reliable fault detection and e�ective maintenance.

Although the input sha� maintains a constant rotational speed across di�erent gears, the

acoustic signals change primarily due to the varying gear ratios. Each gear ratio a�ects how

the load and stress are distributed among the gears, altering the dynamics of gear meshing

and the interaction between the components of the gearbox. These changes lead to distinct

patterns in the acoustic emissions, with di�erent gears producing unique frequency signals.

Thus, the sensor should be positioned close to the area where the gears mesh, typically on

the outer housing near the sun gear, planet gears, or ring gear. This location allows the

sensor to capture the acoustic signals generated by the interaction of the gear teeth, which

are critical for detecting the current gear.

This placement ensures that the sensor captures the critical acoustic emissions related to

gear shi�s, without picking up too much of the background emissions that remain un-

changed across gear switching and thus do not contribute to the classi�cation.

To achieve this, the sensor was mounted on a screw axial to the gear hub as shown in

Figure 3.1. To maintain consistent contact pressure, a size-adjustable �xture was designed

for the sensor. The pressure can be adjusted using two screws. To ensure uniform coupling
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of the ultrasonic waves, Korasilon Paste, a silicone lubricant from Kurt Obermeier GmbH,

was used as the coupling agent between the gear hub and the sensor.

The focus of this investigation is to develop a low-maintenance model that is robust over

time, rather than an optimized model that performs extraordinarily well with the test data

but tends to deteriorate over time without thorough maintenance. To achieve long-term

reliability, algorithm optimization was prioritized over sensor selection. While the choice of

sensor is important, the goal was to create an algorithm adaptable across di�erent sensors,

including those that may not be speci�cally optimized. Therefore, two available sensors are

compared.

Two sensors were available within the research group: the Vallen S12-E and the Vallen

VS45-H, whose speci�cations are compared in Table 3.2. The frequency response of the

sensors are illustrated in Figure 3.2 and Figure 3.3, respectively. The horizontal axis repre-

sents the frequency of the acoustic emission signal and vertical axis shows the amplitude

of the sensor’s response in decibels (dB) relative to 1 V per �bar. This is a measure of how

sensitive the sensor is at detecting signals at di�erent frequencies.

The Vallen S12-E operates within a frequency range of 7 kHz to 58 kHz, making it specialized

for detecting low-frequency acoustic emissions. Its frequency response shows a drop below

-75 dB from 15 kHz to 20 kHz, but it remains stable between 21 kHz and 45 kHz, with a peak

at 12 kHz reaching -62 dB.

This characteristic is particularly bene�cial for detecting large, low-frequency events, such

as those associated with low gear meshing frequencies and potential structural issues

within the gear hub. This sensor’s focus on low frequencies also makes it more robust in

environments outside of controlled settings, where high-frequency noise could interfere

with signal clarity.

Table 3.2: Comparison of Vallen S12-E and Vallen VS45-H Ultrasound Sensors

Speci�cation Vallen S12-E Vallen VS45-H

Frequency Range
(fPeak) [kHz]

7 to 58 (12) 20 to 450 (280)

Operating
Temperature [°C]

-5 to +85 -20 to +100

Capacity [pF] 159 270
Weight [g] 154 36
Size (D x H)
[mm]

20.3 x 59.0 20.3 x 22.0

Conversely, the Vallen VS45-H has a broader frequency range from 20 kHz to 450 kHz,

enabling it to capture both low and high-frequency signals. The frequency response dips

below -75 dB around 120 kHz and 230 kHz but maintains consistent sensitivity above -65 dB
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Figure 3.2: Frequency response of the Vallen S12-E sensor. The data is retrieved from the datasheet providied
by Vallen[75].
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Figure 3.3: Frequency response of the Vallen VS45-H sensor. The data is retrieved from the datasheet providied
by Vallen[76].
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around 100 kHz and between 270 kHz and 330 kHz, with a peak at 280 kHz at -62 dB.

This broad range allows the VS45-H to detect a wide spectrum of signals, including subtle

high-frequency emissions that might indicate early-stage wear or minor defects, making it

highly versatile for a variety of applications.

The choice between these sensors depends on which frequency range is most critical for

distinguishing operating states of the gear hub and which range might be disruptive and

should be avoided. If the frequency range of interest can be well-de�ned, a specialized

sensor, like the Vallen S12-E, with its sensitivity range tailored to the important frequencies

could be bene�cial. However, if a broader monitoring capability is desired, the Vallen

VS45-H may be more suitable, albeit potentially requiring subsequent digital �ltering to

focus on the relevant frequency range.

Without prior knowledge of the speci�c frequency range of interest, each sensor is installed

to recorded a test data set with the setup running in Gear 1 and Gear 2. This test data

provides a foundation for running several tests, including a comparison of the frequency

spectra and prediction accuracy of machine learning models.

For e�ective classi�cation, it is advantageous that the frequency spectra of di�erent gears

show clear distinctions. Signi�cant spectral di�erences between the gears enhance the

classi�er’s ability to identify which gear is operating based on the acoustic emissions. If

the spectral di�erences are minimal, the classi�er may struggle to di�erentiate between

gears, leading to lower accuracy.

One method to evaluate a sensor’s ability to distinguish between di�erent gears is by

comparing the spectra measured for each gear. The greater the di�erences between these

spectra, the more likely it is that features and predictive models can identify distinguishing

characteristics between the gears. To quantify this distinction, the RMS of the di�erences

between the spectra of the two gears is calculated. The spectra and the absolute di�erence

between these are illustrated in Figure 3.4. A higher RMS value indicates greater overall

spectral di�erences, which can improve the classi�er’s performance by providing clearer

features for distinguishing between gears.

The Vallen S12-E sensor achieved a higher RMS value and shows especially in the frequency

range from 15 kHz to 40 kHz a higher seperation between the spectra compared to the

Vallen VS45-H.

To further validate the suitability of the sensors, a simple classi�cation model is developed

using the standard features listed in Table 3.3.

Since the model needs to quickly identify the current gear, the frame size from which one

value per feature is calculated and classi�ed should be less than 100ms. An initial sweep

through several machine learning models based on 50ms frame sizes identi�ed the support

vector machine (SVM) with a linear kernel as the most suitable model, achieving the highest

accuracy.
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Figure 3.4: Comparison of the power spectra for Gear 1 and Gear 2 using the Vallen VS12-E (top) and
Vallen VS45-H (bottom) sensors. The blue and red lines represent the power spectra for Gear 1 and Gear 2,
respectively. The yellow line shows the absolute di�erence between the spectra of Gear 1 and Gear 2. The
RMS value of the absolute di�erence is 3.6 for the VS12-E sensor and 3.34 for the VS45-H sensor. The VS12-E
sensor demonstrates clearer distinctions between gears, as indicated by the higher RMS di�erence.

Table 3.3: List of standard features.

Standard Frequency Features

MeanFrequency BandPower
MedianFrequency OccupiedBandwidth
PeakAmplitude PowerBandwidth
PeakLocation

Standard Time Features

Mean RMS
StandardDeviation ClearanceFactor
CrestFactor ImpulseFactor
PeakValue ShapeFactor
SINAD (Signal-to-Noise and
Distortion ratio)

SNR (Signal-to-Noise Ratio)

To re�ne the optimal frame size range, additional tests were conducted using the SVM

model, varying the frame sizes, as illustrated in Figure 3.5. The VS12-E sensor consistently

showed higher accuracy than the other sensor across all frame sizes. The accuracy of

the VS12-E sensor starts relatively high and increases steadily as the frame size increases,

eventually stabilizing around 93% as the frame size approaches 0.1 s. The accuracy of the

VS45-H sensor shows a slower increase and stabilizes around 80%, with a less pronounced

improvement as the frame size increases compared to the VS12-E.

The increase in accuracy with increasing frame sizes can be attributed to the larger amount

of data available for feature extraction in each frame. Larger frame sizes provide more

data points, leading to more reliable and stable feature values. This stability enhances the
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Figure 3.5: Accuracy comparison of gear classi�cation using the Vallen VS12-E and Vallen VS45-H sensors
across di�erent frame sizes calculated 1ms steps. The blue line represents the accuracy achieved with the
VS12-E sensor, while the orange line represents the accuracy with the VS45-H sensor. The more transparent
lines show the actual data points, whereas the full-color lines represent the moving mean of the data.

classi�er’s ability to make accurate decisions. However, it is important to balance frame

size with the need for real-time responsiveness, as larger frame sizes may introduce delays

in classi�cation.

The VS12-E sensor reaches a high accuracy level of around at 0.1 s. This frame size provides

a reasonable trade o� between performance and accuracy capturing enough data to ensure

stable and reliable feature extraction without introducing signi�cant delay or computational

overhead. In addition it showed clearer distictions between the spectra for Gear 1 and Gear

2, expressed by a slightly higher RMS value.

Based on these test further work was conducted using the Vallen VS12-E with a frame size

of 0.1 s .

3.2 Setup for Rheological Investigations

To enable simultaneous acquisition of rheological and acoustic measurements, the MCR

302 rheometer (Anton Paar GmbH, Austria) was equipped with an ultrasonic measurement

system developed at the University of Augsburg [34]. The monomer �-caprolactam (AP-

NYLON®) from L. Brüggemann GmbH & Co. KG (Germany) was used as the starting mate-

rial for the polymerization to polyamid 6, with hexamethylene-1,6-dicarbamoyl-caprolactam

(BRUGGOLEN® C20P from L. Brüggemann GmbH & Co. KG, Germany) serving as the

activator of the reaction. The polymerization reaction is described in more detail in [77, 78]

Figure 3.6 shows the test head of the rheometer. The sample is placed between two plates.

To ensure an ideal polymerization reaction, an inert nitrogen environment is created using

a protective hood.
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The lower plate, whose temperature can be controlled via an integrated Peltier element and

cooling water system, is statically installed in the rheometer.

The upper plate oscillates in the form of rotational oscillation around its own axis for

measurement. This allows the viscosity of the sample to be determined with the aid of prior

calibration.

Ultrasonic Probe Head

Reflected Wave

Transmitted Wave

Coupling Medium

10mm

~1,5mm

22mm

Lower Plate

Sample

Upper Plate
Protective Cover

Figure 3.6: Le�: Photography of the rheometer setup. Right: Schematic drawing of the setup. A sample is
placed between the upper and lower plate. The ultrasonic sensor is mounted to the lower plate [79].

For the ultrasonic measurement, as shown in Figure 3.7, an ultrasonic probe head was

mounted to the underside of the lower plate using a coupling medium (KORASILON®

medium-viscosity paste, Kurt Obermeier GmbH & Co. KG). The sensor holder was adapted

to the geometry of the rheometer and the probe head, and it was additively manufactured

from stainless steel.

Sensor Holder

Lower Plate

Sensor

Figure 3.7: Le�: Photography of the sensor holder mounted to the rheometer sample plate compared to the
corresponding CAD-Model (right) of the sensor holder [79].

At the beginning of the measurements, the rheometer was heated to 120◦C and maintained

at this temperature for 10min to achieve a stable temperature in the measurement setup.

The sample, in the form of solid pellets, was then positioned between the plates and melted.

To start the measurement, the upper plate was moved to a gap distance of about 1.5mm,

which was automatically adjusted during the measurement to maintain continuous contact
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with the sample throughout the polymerization [79].

Both viscosity and ultrasonic measurements were then initiated, with the rheometer’s

temperature being ramped up to 160◦C at a rate of 20 K/min. The oscillation of the upper

plate was controlled via the Rheocompass so�ware (Anton Paar GmbH, Austria) and was

performed at a frequency of 1Hz, with a shear deformation logarithmically decreasing over

time from 10% to 0.1 %.

To monitor the ongoing polymerization using US data a relationship between viscosity and

the state of polymerization needs to be determined.

In [80], research was conducted using the same rheometer and settings to explore the

relationship between the residual monomer content, indicating the stage of polymerization,

and the viscosity. The conversion was determined by analysing the residual �-caprolactam

in quenched polyamid 6 samples using a method developed in [78], as shown in Table 3.4.

The conversion was measured in 100 s intervals from 250 s to 650 s a�er the start of the

Table 3.4: Conversion at di�erent times a�er the start of polymerization [80].

Seconds Conversion (%)

250 63.93
350 91.84
450 98.17
550 98.40
650 98.42

measurement. It was found that a�er 250 s, the conversion rate was 64%, and it rapidly

increased to 91% and 98% at 350 s and 450 s, respectively. Considering a maximum conver-

sion rate of 99%, the polymerization process converges and reaches a plateau around 450 s.

This setup and procedure ensure the accurate capture of both rheological and acoustic data

allowing for a comprehensive analysis of the polymerization process and the monitoring of

material changes through variations in the ultrasonic signal.

3.3 Infusion and Injection Processes: VAP and T-RTM

The VAP is a technique used in composite manufacturing where a vacuum is applied to a

dry �bre preform to draw resin into the preform, ensuring complete impregnation.

The T-RTM process involves injecting a polymer melt into a mould containing a dry �bre

preform. The polymer is driven by a pressure gradient, �lling the mould and impregnating

the �bre preform.

The VAP and T-RTM are both advanced manufacturing processes used in composite material

production.
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VAP involves infusing resin into a �ber preform under vacuum, which ensures a high-

quality �nish with minimal voids, while T-RTM focuses on injecting thermoplastic resin

into a mold containing the �ber preform, allowing for quicker production and recyclability.

The main di�erence lies in the type of resin used and the method of in�ltration, with VAP

emphasizing vacuum-assisted resin �ow and T-RTM using pressure-driven injection.

In the following both processes are described in more detail.

Vacuum Assisted Process (VAP)

The VAP is a vacuum infusion technology initially developed by EADS Deutschland GmbH

for industrial applications. Unlike other vacuum infusion methods, such as VacuumAssisted

Resin Infusion (VARI), VAP o�ers superior reproducibility, uniform part thickness, and low

porosity in composite parts [81].

The VAP setup, illustrated in Figure 3.8, involves a single-sided mould covered with a

dry-�bre textile preform. Auxiliary materials such as peel ply, perforated release �lm, and

�ow media are used to facilitate resin distribution on the preform’s surface and ensure easy

release a�er curing. The entire layup is sealed with a semi-permeable membrane (VAP

membrane), which allows degassing over the whole surface while preventing resin penetra-

tion. The setup is then covered with a vacuum �lm and sealed to the mould. Applying a

vacuum de�nes the preform cavity and compacts the preform, creating a pressure gradient

between the inlet and the cavity that drives the resin into the preform [82].

Figure 3.8: Vacuum assisted process - materials and setup according to [83].

Darcy’s law, which describes the �ow of �uids through porous media [84], can be used to

characterize infusion processes. Flow front propagation, a key aspect of these processes,

serves as a critical parameter for e�ective process monitoring and quality control. For

setups with transparent vacuum bags, visual inspection methods, such as cameras, can be

used to monitor the �ow front e�ectively.

However, in cases involving opaque inserts, complex sub-structures made of di�erent

materials, or closed-mould applications, visual inspection is not feasible. In such scenarios,
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non-visual inspection techniques become essential to ensure accurate monitoring and

control of the �ow front.

In this study, a camera-based �ow front detection method was employed as a reference tech-

nique for validating the reconstruction algorithm. To this end, the conducted infusion test

primarily served to generate a reference data set for assessing the accuracy of the developed

�ow front model. To maintain consistency and comparability, �ow front monitoring of the

VAP process was also carried out using the same camera-based inspection method. The

material to be impregnated was a carbon �ber preform with dimensions of 300 × 600,mm,

placed on a transparent glass plate as part of the VAP setup (see Figure 3.9). Resin EPIKOTE

RIMR135 and curing agent RIMH1366 (HEXION) were used, with the curing process carried

out at room temperature.

The visible contrast between the wetted and non-wetted areas of the preform allowed for

clear detection of the �ow front propagation, as illustrated on the right side of Figure 3.9.

Figure 3.9: Setup of VAP infusion with camera for �ow front detection (le�). Flow front on bottom side of the
textile preform (right).

The resin infusion was recorded with 1 fps and a resolution of 1280 × 720 px.

Thermoplastic Resin Transfer Molding Process (T-RTM)

T-RTM is a manufacturing process where thermoplastic resin is injected into a mold con-

taining a dry �ber preform, resulting in a composite part a�er curing.

It is used for producing high-performance composite materials in industries such as automo-

tive and aerospace. T-RTM is special compared to other manufacturing methods due to its

recyclability, reduced cycle times, and the ability to produce tougher, more impact-resistant

parts.

Figure 3.10 provides an general overview of the four stages of the T-RTM process described

in [85] from which the data for this study is derived.

1. Preparation and Evacuation: In the initial stage of the T-RTM process, a dry �bre

preform is prepared and manually cut to �t the mold. The preform, typically made of
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Figure 3.10: Schematic representation of the four stages in the T-RTM process: (1) Insertion of the preform into
the mold, (2) Injection of the activator, caprolactam, and catalyst, (3) Curing a�er forming, and (4) Removal of
the �nished composite part.

materials like glass or carbon �bre textiles, is then carefully positioned within the

mold. This precise placement is crucial for ensuring uniform resin distribution during

subsequent stages.

Once the preform is properly positioned, the mold is heated to a designated tempera-

ture, around 150°C. The mold is then closed, and a vacuum is applied, serving two

primary purposes: removing moisture from the preform to prevent defects during

polymerization, and enhancing the permeability of the preform to ensure better resin

�ow and impregnation.

2. Injection: In the third stage, the resin or polymer is injected into the mold under

pressure. This step involves driving the resin into the preform using a pressure

gradient, which ensures that the resin thoroughly impregnates the �bre network. The

injection phase is critical for achieving complete wetting and uniform distribution of

the resin throughout the preform.

3. Curing: Finally, the preform undergoes curing, where it is fully polymerized or

hardened under controlled conditions. This stage involves maintaining pressure and

temperature to ensure that the polymerization process completes e�ectively, resulting

in a solid, consolidated composite part.

4. Removing the �nal part: A�er complete curing and cooling down of the �nal part,

the press can be opened to remove the part.

The speci�c materials and sensors used in the experiments conducted within the MAI CC4

CosiMo project are detailed in the following.

Using an injection machine from Krauss Ma�ei Technologies, Germany, and following the
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CAPROCAST technology patented by Tecnalia, Spain, �-caprolactam is injected into a glass

�ber preform, where it polymerizes into polyamide 6. Strong bases, such as alkali metals, act

as initiators to form free �-caprolactam anions, which cause ring-opening anionic polymer-

ization through nucleophilic attacks on other caprolactam monomers. Detailed overviews

of the T-RTMprocess and the reaction kinetics of the polymerization can be found in [85–87].

The mold is a 0.5 m × 1.1 m steel tool designed as a chicane component to introduce

complexity, simulating a battery casing. Various geometries were integrated into the tool

to study their impact on the �ow front and overall process. For comprehensive in-line

monitoring, analysis, and understanding of the process, a sensor network was developed

and integrated into the tool. This network comprises various types of sensors, including

57 ultrasonic sensors, 8 dielectric analysis (DEA) sensors, 4 temperature sensors, and 4

pressure/temperature sensors [85]. However, the focus of this work is on the ultrasonic

sensors.

The primary component of the ultrasound sensor was a piezoelectric plate, which was

a�xed to a 3D-printed adapter and mounted on the tool holder. The plate was bonded to a

plastic spacer using a high-temperature resistant adhesive and was permanently secured

to the holder a�er curing in an oven. The assembly process concluded with the precise

alignment and screwing of the sensors into the mold halves. Figure 3.11 schematically

represents the sensor integrated into the tool.

Figure 3.11: Illustration of the sensor integrated into the tool, according to [85].

Figure 3.12 illustrates the schematic of the sensor network integrated into the tool. The

dimensions of the tool are speci�ed as 50 cm by 110 cm, and the thickness of the resulting
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3.3 Infusion and Injection Processes: VAP and T-RTM

battery casings ranges from 2.5mm to 15mm, as indicated in Figure 3.12. These thicknesses

correspond to the cavity thickness when the press is fully closed.

The sensors were systematically arranged in a �ne-mesh, equidistant grid to ensure com-

prehensive coverage and to further enhance the monitoring capabilities, additional sensors

were strategically placed in areas with complex geometry. This strategic placement allows

for detailed analysis and better detection of variations in the �ow front, particularly in

regions where the �ow behaviour might be more intricate.

Most of the ultrasonic sensors were positioned on the top side of the component to perform

pulse-echo measurements. This positioning was chosen because, in the given experimental

setup, the �ow front propagation primarily occurs on the top side. By concentrating the

sensors in this critical area, enables high-resolution data and precise monitoring of the �ow

front as it progresses during the manufacturing process.

Figure 3.12: Illustration of the tool and the integrated US-sensors.

The remaining 10 sensors were installed on the opposite side, aligned with selected sensors

on the top side, to perform transmission measurements. These transmission measurements

can provide insights into the shape of the �ow front and potentially allow for the extraction

of other parameters, such as sound velocity.

However, for the purpose of �ow front reconstruction presented here, the transmission

measurements are not relevant.

To integrate the sensors into the tool, holes were milled, and the sensors were equipped with

springs to ensure consistent contact pressure throughout the process. For optimal distance

from the cavity, consider the sensor’s near-�eld length N and avoid overlapping echoes

in the received signal. Based on the material values presented in Table 3.5 the near-�eld

lengthN of the sensor with a piezoelectric diameter of 10mm is calculated to beN = 8.5mm.
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Table 3.5: Relevant material parameters, the Speed of Sound c, Attenuation a, density � and acoustic impedance
Z .

# Layer, Material c (m
s ) a ( dB

mm) � ( g

cm3 ) Z ( kg

m2 ⋅s)
1, Steel 5900 0.01 7.8 46.02 × 106

2, Caprolactam 1400 0.07 1.1 1.54 × 106

3, Steel 5900 0.01 7.8 46.02 × 106

The measurement principle for detecting the �ow front is illustrated in Figure 3.13. The

emitted ultrasonic waves are depicted by yellow arrows, with the size of the arrows qualita-

tively representing the energy of the ultrasonic signals. The orange region between the

black tooling represents the �uid, which moves to the le� and gradually impregnates the

preform. The orange-brown gradient illustrates di�erent stages of polymerization.

Flow direction

Tool

Sensor

Preform

Figure 3.13: Exemplary illustration of the signal progression in the T-RTM experiments. As the impregnation
progresses and varying degrees of polymerization occur, the re�ection conditions change, altering the
characteristics of the re�ected ultrasonic waves. According to [10].

The emitted ultrasonic waves travel through the tool until they reach the interface between

the tool (steel) and the cavity containing the preform (air). At this interface, most of the

waves are re�ected back due to the di�erence in acoustic impedance between steel and air.

When the �ow front reaches the interface, the re�ection conditions change signi�cantly.

The wetting of the preform increases its acoustic impedance at the interface.

This increased impedance leads to a stronger transmission of the ultrasonic signal through

the interface and a simultaneous decrease in the intensity of the re�ected pulse.

Multiple re�ections can occur at the upper part of the tool, creating a cascade of main

echoes in the captured signal. The transmitted wave then travels further and encounters

another interface at the lower surface of the cavity, where it undergoes partial re�ection.

Due to the high attenuation of the impregnated preform, echoes from re�ections at the

lower part of the preform are challenging to extract, as they are o�en weak and di�cult to

distinguish from the noise.

To ensure clear detection of the �ow front, the received ultrasonic signals are processed as

follows: The signals are �ltered with a 1 MHz high-pass �lter to remove low-frequency

58



3.4 Data Acquisition System and Sensor Placement

noise. They are then ampli�ed by 40 dB using an instrumentation ampli�er to enhance the

signal strength. Finally, the signals are digitized at a sampling rate of 20 MS/s for detailed

analysis.

3.4 Data Acquisition System and Sensor Placement

For the rheometer and the T-RTM experiments, the measurement system and sensors

developed by Linscheid [34] were utilized. The ultrasonic probe, shown in Figure 3.14

used consists of a piezoelectric ceramic disc (type PRYY-0227, PICeramic) with a thickness

resonance frequency of 2MHz.

The probe is housed in a steel casing with a thread, a damping component, and a spring

that ensures constant contact pressure for sensor coupling. The probe serves both as a

sensor for incoming sound waves and as a pulse generator for generating ultrasonic waves.

Figure 3.14: Photography of the sensor assembly showing the coaxial cable, piezo disk, and sensor holder.

The sensor is connected via the coaxial cable to a hardware module, which primarily con-

sists of selection, �ltering, and ampli�cation circuits, as well as a microcontroller. The

measurement computer digitizes and stores the measurement data and allows the hardware

module to be controlled via the so�ware SBench 6 (Spectrum Instrumentation GmbH,

Germany).

An external control board drives the pulser and performs analogue pre-processing of the

signals. The pulser consists of a MOSFET-driven spike pulse generator and an expander-

limiter design, which excites the sensors with a 12V spike pulse of approximately 300 ns

length without overloading the preampli�er. The acquired echo signal is �ltered with a

1MHz high-pass �lter and ampli�ed by 40 dB using an instrumentation ampli�er (AD8421

from Analogue Devices). This signal is then digitized at 20MS/s using a streaming system
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(M2p.5923-x4, Spectrum Instrumentation GmbH) [85].

For the ultrasonic measurement in the pulse-echo method, ultrasonic pulses are generated

at intervals of 21ms. The signal is stored for further processing in a 1ms time window

following the pulses. The intervals between the individual pulse-echo events do not provide

useful information and are therefore not stored to reduce data volume. This principle is

schematically illustrated in Figure 3.15 according to [79].

Impuls

Segment
Length: 1 ms
Data storage active

Area between the segments
Data storage inactive

Distance between pulse excitations: 21 ms
1. Echo 2. Echo

Si
gn

al

t 

Figure 3.15: Diagram illustrating the timing and signal processing of pulse excitations with 1ms active data
storage segments and 21ms intervals between pulses. The inactive data storage areas and corresponding
echo signals are also shown.

Next, consider a typical use case for Pulse-Echo Measurements which is relevant for the

following sections.

Principle of Pulse-Echo Measurement in Multilayer Structures

Many applications of pulse-echo measurements involve multilayer structures. A multilayer

structure typically consists of a specimen to be investigated placed between two known

materials, o�en with the samematerial used for both the top and bottom layers (i.e., Material

3 = Material 1).

For instance, for the processes described in the following, such as VAP, T-RTM, and the

rheometer experiments the material of interest is sandwiched between two layers. The

theoretical signal progression of an ultrasonic pulse introduced into a three-layer multilayer

structure is illustrated in Figure 3.16. The ultrasonic probe head emits a pulse , generating

main echoes (1st Main Echo and 2nd Main Echo) and secondary echoes as the waves re�ect

at material interfaces. The amplitude of the signal is plotted against time, highlighting the

detection of the echoes at di�erent time intervals.

In this setup, vertically coupled sound waves pass through Material 1 and encounter the

�rst interface. At this interface, the incoming wave packet is partially re�ected and partially

transmitted. The re�ected sound waves at this point generate a pronounced main echo

cascade in the signal. Similarly, at the second interface between Material 2 and Material 3,
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Impuls
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Figure 3.16: Schematic of ultrasonic pulse-echo measurements illustrating the propagation of ultrasonic
waves through three distinct materials. According to [10]

the signal is again re�ected and transmitted. These re�ected sound waves, referred to as

secondary echoes, appear as dampened echoes in the further course of the signal recording.

Figure 3.16 depicts the sound paths in blue and red, with the paths transmitted into Material

3 being neglected for simplicity.

The strength of the main echoes depends on the re�ection factor R between Material 1 and

Material 2. This factor, determined by the acoustic impedance of Material 1 and Material 2,

is given by the equation:

R =
pr

p0

=
Z2 − Z1

Z2 + Z1

(3.1)

where p0 is the sound pressure of the incoming wave, and pr is the sound pressure of the

re�ected wave. Since the sound impedance depends on the material properties, changes in

the re�ection factor a�ect the ultrasonic signal.

Appropriate analysis methods can thus monitor material changes, such as polymerization

or changes in contact conditions between the materials, by observing alterations in the

ultrasonic signal.
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Sensor Placement

E�ective impulse-echo measurements rely on back re�ected ultrasound or echoes, that

occur at boundaries where there is a sudden change in acoustic impedance, such as inter-

faces between di�erent materials. This method is particularly advantageous in processes

characterized by layered or ’sandwich’ structures. The ultrasound waves, when transmitted

into a sandwich structure, are re�ected at the interfaces between di�erent materials which

makes it easier to detect and characterize the internal structure, including the thickness of

layers and the presence of defects.

To optimize sensor setup or evaluate the material’s condition and properties, it is bene�cial

to consider the theoretical model of the expected received signal. The comparison between

the theoretical model and the received signal can facilitate the signal interpretation where

speci�c characteristics of the received signal such as amplitude variations, time of �ight

di�erences, or frequency shi�s can be correlated with potential issues within the material.

To achieve this objective, an application was developed using MATLAB 2022b, designed to

predict impulse-echo measurements for a generic sandwich structure with an adjustable

number of layers. The principle of the calculation method is based on [10]. The tool enables

the customization of the sandwich structure’s composition by allowing users to employ

individual impulses and to specify the number of layers, each with its thickness and its

material properties such as density, sound velocity and attenuation factor. Figure 3.17

illustrates the scheme of a three-layer sandwich structure, the re�ections and transmission

of the sound beam at the interfaces and the relevant input parameter of the model.

The tool can be used to optimize sensor placement, focusing particularly on the length

...

d1, ρ1, c1, a1 

d2, ρ2, c2, a2 

d3, ρ3, c3, a3 

Sound beam

Figure 3.17: Schematic illustration of a ultrasound path travelling through a sandwich structure of three
layers.

of the ’delay line’, the path before the ultrasound waves reach the actual area of interest.

In the �gure the delay line can be de�ned as the �rst layer and strongly in�uences the

composition of the received signal. It should be chosen adequately for a e�ective signal
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analysis.

For a suitable choice of length and material for the delay line there are mainly three things

to consider:

1. Signal clarity: An optimal delay line length, applied before ultrasonic waves reach

the material of interest, can e�ectively separate signals from the material’s surface

from those generated by internal features, defects, or unwanted multiple re�ections.

This separation makes it easier to interpret the amplitudes or time-of-�ight data and

accurately locate and characterize internal defects.

Speci�cally, when testing sandwich structures in impulse echo mode, the back wall

echo contains valuable information about the physical state of the material under

examination. For instance, the time of �ight and the amplitude of the back wall echo

are indicative of the material’s properties and thickness as these characteristics are

determined through the sound velocity and attenuation factor. Thus, for straight-

forward signal analysis, it is bene�cial to obtain a clear back wall echo without any

overlap of the main echoes in the received signal.

2. Control over beam spread and focusing: To further facilitate signal interpretation it

is practical to align areas of maximum sound pressure with regions of the material

of greatest interest. Ensuring that critical areas are subjected to the highest levels

of ultrasonic energy enhances the likelihood of detecting anomalies or variations in

material properties and thereby contributing to more reliable signal interpretations.

3. Surface coupling: To adapt the delay line transducers can be equipped with specialized

sensors mounting, typically made from materials with low adsorption coe�cient or

speci�cally tailored to the process materials to minimize or smooth the transitions of

high acoustic impedance mismatches which could lead to undesired intense re�ec-

tions.

Alternatively, when geometrically feasible, the delay line can be seamlessly integrated

into the process apparatus through adjustments to the process geometry. This inte-

gration o�ers the advantage of minimizing interfaces, and thus reducing disruptive

re�ections and enhancing signal clarity.

To ensure e�ective transmission of ultrasonic waves between the transducer and the

material it is important to select appropriate coupling media. The couplant, typically

a gel, liquid, or paste, is applied to eliminate air gaps that could hinder sound wave

propagation [20].

Figure 3.18 illustrates the e�ect of varying the delay line thickness, d1, on the composition

of the received signal, while keeping all other parameters constant. The �gure shows the

paths of ultrasonic waves traveling through a two-layered sandwich structure with di�erent

lengths of the bottom layer, de�ned as the delay line. The horizontal axis represents time,

and the path of the back-wall echo is highlighted in white.

Below the sandwich structure, the corresponding acoustic signal is shown as received

by a sensor attached to the lower surface of the �rst layer. The �rst peak represents the
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excitation impulse, while the main echoes in the signal are re�ections from the interface

between the �rst and second layers. The time interval t1 between these echoes is directly

in�uenced by the thickness of the delay line, d1.

The main echoes arise due to repeated re�ections at the �rst interface. The length of the

delay line determines the time interval t1 between these echoes, which can be calculated

using the equation

t1 =
2d1
c1

, (3.2)

where c1 is the sound velocity. Consequently, the longer the delay line d1 the greater t1.

Similarly, the thickness of the second layer determines the time of �ight of the �rst back

wall echo, given by

t2 = t1 +
2d2
c2

. (3.3)

Based on the initial pulse duration T relations between the given parameters can be de�ned

to make sure the back wall echo occurs between the �rst and second main echo without

overlap. Thus, to prevent that the back wall echo overlapps with the �rst main echo the

condition

d2 > T ⋅ c2 (3.4)

must be satis�ed, which is independent of the delay line d1. Consequently, for small d2 a

su�ciently short T is necessary to ful�l this condition.

To avoid overlap with the second echo, the condition

d1 > (c1
c2
d2 +

c2T

2 ) (3.5)

must be met for the delay line d1.

O�en, the �rst layer can be easily adjusted to enhance inspection of the second layer. Thus

t
x

d1
d2

t1T

{

{

{ t1

{{

Figure 3.18: Impact of varying the delay line length d1 on the received signal.

for optimization, the delay line can be designed in a way to ensure that the focal point of

the sound source is aligned within the second layer. Since the focal length of the ultrasonic

source corresponds to the near �eld length N it depends on the delay line length d1 of the

given setup as detailed in Equation 2.23.

Consequently, the length of the delay line and the thickness of the second layer are interde-
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pendent and require mutual adjustment. To identify a suitable set of parameter avoiding

overlapping of the echoes consider that the maximum thickness d2,max of layer 2 for a given

delay line is dictated by Equation 3.5. The lower limit is de�ned by Equation 3.4 which only

depends on the impulse length in the given material and thus constant for varying delay

line lengths.

The MATLAB app visualizes these restrictions in a graph to assist in a graphical identi�-

cation of suitable parameter combinations. This approach is demonstrated in Figure 3.19

for a two-layered sandwich structure with parameters listed in Table 3.6 and a near �eld

length of N = 25mm. The green region on the graph highlights feasible combinations of

d1 and d2 that ensure a received signal without any overlap between the main echo and the

backwall echo. The red line marks the position of the near-�eld length within the second

layer and serves as a visual guide to easily identify suitable parameter combinations.

In particular, if the focal length of the sensor N = 25mm should fall within the second layer,

only the combinations above the black line are available. Consequently, the combinations

meeting both conditions must be chosen within the area boarderd by the black dotted line.

To illustrate the case of determining an ideal delay line consider Figure 3.20. If the thickness

of layer 2 is �xed for example at 5mm a horizontal line at can be drawn at d2 = 5mm to �nd

the corresponding d1 for the intersection to the upper limit. The delay length ensuring no

overlapping echoes should therefore be at least 11.5mm and ideally, with the focal length

within the second layer at least 20mm.
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Figure 3.19: Graphical illustration to support the choice of a suitable delay line length. The upper limit follows
Equation 3.5, while the lower limit is given by Equation 3.4 with a pulse length of T = 3.7 �s. The black line
indicates the position of maximum sound pressure in Layer 2.

To identify a suitable delay length for the T-RTM experiments refer to Figure 3.21. The

thickness of the part corresponds to the second layer. As indicated in Figure 3.12 the part
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Figure 3.20: Graphical illustration of determining ideal delay line length.

Table 3.6: Parameters used for creating the graph in Figure 3.19.

Layer Speed of Sound (m
s ) Attenuation ( dB

mm) Density ( g

cm3 )
1 2000 0.01 7.8
2 1400 0.07 1.1

features areas with thicknesses of 2.5mm, 5mm, and 15mm.

To avoid overlap between the main echoes and the �rst secondary echo can be graphically

determined. Thus, the delay length d1 should be > 33mm and > 22mm for a thickness

d2 = 5mm and d2 = 2.5mm, respectively. Due to geometrical and technical restriction the

necessary delay length for laminate thicknesses 15mm is not feasible.

The focal length of the sensor is calculated to be N = 8.5mm. There is no setting for which

the focal length falls within the second layer while avoiding overlapping echoes.

However, due to the large attenuation of the caprolactam infused �bre, it is not expected to

receive signals re�ected from the backwall echo for thicknesses d2 ≤ 5mm which might

disturb the main echoes.

Thus, a uniform distance for the delay line of 22mm is chosen. This is a compromise

between signal clarity and attenuation: it is the shortest delay length to avoid overlapping

echoes for thicknesses of 2.5mm, where a backwall echo is expected, and at the same time

reducing attenuation from geometrical spreading in comparison to longer lengths.
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Figure 3.21: Illustration of determining suitable delay line lengths for laminate thicknesses d2 = 5mm and
d2 = 2.5mm.

The rheometer experiments were initially planned to validate the rheological quantities

derived from the ultrasound data collected during the T-RTM experiments. To ensure

consistency and facilitate direct comparisons between the two setups, the same delay

lengths and sensor con�gurations used in the T-RTM experiments were applied to the

rheometer experiments.
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based Condition Monitoring

This chapter begins with an overview of condition monitoring (CM) systems, highlighting

their physical and non-physical components. A key challenge in these systems is signal

degradation caused by sensor wear, environmental variability, and external noise, which

can compromise reliability. Before detailing the enhanced techniques, the chapter addresses

these challenges and introduces strategies to ensure robust, low-maintenance monitoring

through optimized feature selection and advanced diagnostic modelling.

Many CM systems [88–91], including the ones discussed here, can be divided into physical

and non-physical components. Figure 4.1 shows an overview of typical CM systems.

The physical components include the monitored asset, such as a machine, system, or process,

where measurable phenomena (e.g., vibrations, acoustic emissions, or temperature changes)

arise. These phenomena are acquired via sensors and digitized for further processing.

The non-physical components consist of the so�ware infrastructure responsible for pro-

cessing the digitized signals, ultimately delivering classi�cations and predictions about the

system’s condition. These predictions are based on diagnostic models that assess the state

of the monitored asset connected to variations in the digitized signal.

These variations in the digitized signal can typically be traced back to three sources:

Figure 4.1: Outline of condition monitoring systems.

• Hardware degradation, such as sensor wear or interference from electronic devices

in the acquisition system.
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• External factors, including environmental variability.

• Actual changes in the condition of the asset, which represent the desired signal

changes to be classi�ed and predicted.

Thus, to ensure robust classi�cation and prediction, it is critical to maintain the physical

components regularly. This includes tasks such as sensor calibration to minimize signal

degradation caused by factors other than actual condition changes in the asset.

While eliminating all sources of signal variation unrelated to the asset’s condition is partic-

ularly challenging, especially in the long term, optimizing the non-physical components

contribute to achieve accurate and robust predictions. Key strategies include:

• Designing data processing pipelines and diagnostic models that account for signal

degradation not associated with condition changes in the asset.

• Frequent retraining for diagnostic models and redesign of the data processing pipeline

as needed.

Establishing a solid data foundation reduces the frequency of retraining, improves long-

term reliability, and decreases hardware maintenance demands. The �rst part of this

chapter focuses on optimizing feature selection and adaptation to enable a reliable and

low-maintenance CM system.

A major threat to CM accuracy is the misinterpretation of signal disturbances, such as

sensor degradation or external interference. Understanding the causes of these disturbances

is essential for selecting features that are robust to signal degradation.

However, signal distortions o�en result from multiple overlapping factors, making it di�-

cult to isolate individual causes. To study these e�ects, we propose a controlled approach

using synthetically degraded signals.

This approach introduces arti�cially generated disturbances into signals a�er preprocessing

(e.g., �ltering). This ensures that the evaluation targets the resilience of extracted features,

rather than the preprocessing methods. The goal is to identify features that remain stable

under realistic disturbances.

Synthetic noise is used to simulate various real-world challenges and allows systematic

testing of model robustness. In this context, noise refers to any unwanted signal variation,

such as environmental or electronic interference [92, 93]. According to [92, 94], noise can

be categorized into:

• Steady Noise: Constant continuos sound with minimal �uctuations in sound pressure,

as observed for example in gearboxes.
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• Non-Steady Noise: Includes �uctuating noise with continuously changing noise levels

as grinding or welding and intermittent noise which alternates between background

and elevated levels like machinery acting in work cycles.

• Impulsive Noise: Short bursts (≤ 1 s), categorized as sharp sounds or industrial impacts

(e.g. press, material handling), de�ned by peak pressure, rise time, and duration.

The noise intentional added to the signal should simulate potential real-world challenges

and provide valuable insights into the model’s reliability and performance. A technique is

proposed to generate such disturbances:

• A straightforward approach is to generate random noise as a foundation using tools

such as MATLAB’s pseudorandom number generator [95].

• To customize the synthetically generated noise for speci�c applications, two tech-

niques can be applied independently or in combination:

– Modifying the amplitude probability density function (PDF) in the time domain.

– Modifying the power spectral density (PSD) in the frequency domain.

Following this approach the following common types of noises can be generated [96, 97]:

• Gaussian noise, de�ned as random noise with a PDF in the time domain corresponding

to Gaussian distribution

• White Noise. Signals, especially those transmitted over long distances (e.g., satellite,

cellular networks), are o�en subject to random noise due to factors like thermal noise

and electromagnetic interference.

Due to its prevalence, Gaussian noise is an inherent part of nearly all signals. For example,

additive white Gaussian noise (AGN), is widely used to model thermal noise, noise due to

electrical components and is o�en an issue in image processing [98, 99].

• Linearly Changing Noise: In this approach, the amplitude of the probability density

function (PDF) is linearly modi�ed over time. This method simulates a consistent

trend of signal degradation, such as the gradual loss of sensitivity in a sensor or the

progressive wear and tear of equipment over time.

• Sinusoidal Signals with Varying Frequencies and Amplitudes: Introducing narrow-

band sinusoidal signals as noise can e�ectively simulate speci�c real-world interfer-

ences, such as power line disturbances in electronic circuits or mechanical vibrations

in machinery. By adjusting the frequencies and amplitudes of these signals, the noise

can be tailored to mimic various interference patterns and conditions.

• Coloured noise: To generate more tailored noise, the frequency spectrum can be

modi�ed to follow a speci�c function of frequency. An example is �icker noise (or 1/f
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noise), which is observed in a variety of dynamic systems, including electrical circuits.

It manifests as electrical noise in the current through resistors or as �uctuations in

other physical quantities or ”process variables” across various devices and systems.

Such noise has been extensively studied in physical, electronic, and other systems

[100, 101]

Example: Impact of Signal Degradation on Features and Classi�cation Models

To demonstrate the impact of introducing such disturbances to a signal consider Figure 4.2.

In the �rst column, the top plot shows an acoustic signal superimposed with Gaussian

noise. The signal is recorded by an acoustic sensor mounted on a gearbox to monitor its

operational state, which changes at t = 0.5 s from State 1 to State 2.

Themiddle and bottom plots display the RMS and partial power features, which are extracted

from the signal superimposed with the noise.

Figure 4.2: Illustration of the impact of various types of noise on extracted features and their distributions.

The red dashed line in the feature represents potential boundaries for state classi�cation

and should demonstrate how simple machine learning models make classi�cation decisions

based on these individual features. The middle and right columns illustrate changes in these

features when linear increasing noise and a superimposed frequency sweep are introduced.

The green dashed line highlights a new decision boundary value adapted to the corrupted

signal.

The boundary values B can be de�ned based on the mean values of each state N and are

calculated as:

B =
meanN=1 + meanN=2

2
, (4.1)

This boundary value emphasizes the clustering observed in the feature plots. In the le�

column, representing the signal with only Gaussian noise, this boundary is marked as

a red dashed line. The clustering is clearly visible for both features. For the RMS and
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partial power features, values above the boundary correspond to State 1, while values

below it correspond to State 2. These features, along with the boundary value, form the

basic principle of simple models for predicting and classifying the current State of the signal.

Despite the Gaussian noise, the data points of both features in the �rst column show clear

clustering, indicating a reliable ML - model for classi�cation.

In the second column, in addition to Gaussian noise linear increasing noise is added to the

signal. In the RMS feature values a slight upward trend can be identi�ed with rising noise

levels, leading to less distinct separation between State 1 from 0 s to 0.5 s and State 2 from

0.5 s to 1 s. Using the previous boundary value, indicated by the red dashed line, would lead

to misclassi�cations. However, adapting this boundary value, corresponding to retraining

the machine learning model, can correct for the rising noise levels and restore nearly full

classi�cation accuracy.

In contrast, the partial power feature remains largely unchanged. It is de�ned as the

percentage of energy within a speci�c frequency band relative to a prede�ned, broader

frequency range. One key reason for its robustness against noise is that random noise tends

to distribute energy uniformly across the entire frequency spectrum. As a result, while the

total energy of the signal may increase due to the added noise, the proportion of energy

within the speci�c frequency band compared to the total energy remains relatively stable.

This self-normalizing characteristic ensures that the partial power feature is less sensitive

to the overall increase in energy caused by the noise.

Thus, for the partial power feature the initial and newly calculated boundary value does

not change a lot. Both lines clearly separate the data points. Thus, a�er adding the noise

there is no need to recalculate the value which is representative to retraining a predictive

model. This underlines the robustness of the partial power feature against the nature of the

added noise. However, while the partial power feature generally shows robustness against

noise with even PSD due to its self-normalizing nature, there are speci�c circumstances

where it may become less stable compared to the RMS feature.

For instance, if the noise includes harmonics or speci�c tones that align with the frequency

band of interest, the energy within that band will increase disproportionately, causing

instability in the partial power feature. This type of frequency-speci�c interference can be

synthetically added by introducing a chirp signal to the recorded data. A chirp signal is a

type of frequency-modulated signal where the frequency varies linearly or non-linearly

over time. In the example provided, the MATLAB chirp function [102] is used to generate

an arti�cial signal in which the frequency linearly sweeps from 20 kHz to a higher value of

80 kHz over the whole duration of 1 s.

The results are shown in the right column of Figure 4.2. The added chirp signal causes

disturbances in the partial power feature due to shi�s in the power spectrum across fre-

quencies.

In contrast, the RMS feature, which measures the total energy of the signal across all
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frequencies, is less susceptible to these frequency-speci�c disturbances. RMS provides a

more generalized measure of signal strength and remains more stable in the presence of

frequency-speci�c interference.

These examples illustrate the importance of appropriate feature selection in signal analysis.

They highlight how essential it is to include a combination of features in the model to ensure

robustness against a variety of e�ects. Thus, by selecting a mix of features that complement

each other, the model can leverage the strengths of each feature while compensating for

their individual weaknesses.

All features rely on speci�c settings or parameters that can be �ne-tuned to achieve a strong

correlation with the desired response variable. One crucial parameter for all features is

the position and length of the time snippets. The ultrasound signal is divided into these

snippets, with each snippet generating a data point through feature extraction functions.

Additionally, features like partial power require further settings, such as the de�nition of

frequency bands. These parameters must be carefully selected based on the application’s

speci�c conditions, as they have a signi�cant impact on the quality of the calculated features.

In this chapter, a feature adaptation process is outlined which is designed to achieve the

highest possible correlations with the desired process variables. This step ensures that the

features are closely aligned with the variables to be monitored and set a optimal foundation

for predictive models or a subsequent selection process.

Next, a systematic selection process is introduced for identifying the best features from a

prede�ned list. This approach helps in narrowing down the most relevant features, opti-

mizing the predictive accuracy of the models.

Finally, while predictive models may accurately forecast process variables, one limitation

of ultrasonic sensors are their spatial constraints. Due to the limited �eld of view of these

sensors, the information they capture is localized and cannot fully cover the entire geometry

of the area being monitored. Therefore, it is important to gather information about the areas

between the sensors. In the last section, an approach for interpolating this information

is described by considering the relationship between the geometry and the sensor mea-

surements. This method allows for a more comprehensive understanding of the monitored

space, despite the spatial limitations of the sensors.

4.1 Feature Adaption

As established in Subsection 2.3.5., the feature extraction process involves several parame-

ters, such as the snippet length, which serves as a general parameter across all features,
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and individual parameters, like frequency ranges for partial power features. Selecting

the appropriate features for a speci�c application is crucial, but equally important is the

adaptation of these parameters to suit the application’s requirements. This section proposes

an iterative method for e�ectively adapting these parameters.

The proposed feature adaptation method, illustrated in Figure 4.3, consists of four, iterative

key steps designed to optimize feature extraction parameters for a speci�c application:

1. Select parameters for the features.

2. Calculate the features based on the selected parameters.

3. Assess feature performance:

a) Choose a suitable assessment method.

b) Calculate a performance score for the feature.

4. Assign a score to the parameter combination and visualize the results.

Figure 4.3: Outline of the proposed feature adaptation method, illustrating parameter selection, feature
calculation, performance assessment, and visualization.

The process begins with selecting the parameters for the features. These parameters, such

as snippet length or frequency ranges, serve as the basis for feature extraction and need to

be carefully chosen to ensure compatibility with the data and application goals.

Next, the selected parameters are used to calculate the features, generating measurable

outputs based on the input data. This step involves applying the feature extraction methods

to the dataset, producing feature values that will later be evaluated for their e�ectiveness.

The third step is to assess the performance of the extracted features.

Useful methods to assess the correlation between feature and response variable can be
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4 Enhanced Techniques for Ultrasound based Condition Monitoring

categorized in continuos and discrete response variables:

• For continuous variables the R-square value is used to quantitatively measure of how

well the feature explains the variance in the response variable, with values ranging

from 0 to 1 indicating the proportion of explained variance. R-squared represents a

normalized measure of similarity between quantities, independent of direct or indirect

nature of the correlation [103, 104].

• For discrete variables the F-statistic can be used to compare the variances between

groups of a categorical response variable. The feature value are assigned to the

corresponding groups and then ANOVA (Analysis of Variance) [105] can be applied

to determine if there are signi�cant di�erences between the means of di�erent groups.

A higher F-value suggests a signi�cant relationship or separation between groups of

the response variable based on the de�ned feature.

It is essential to select an appropriate assessment method tailored to the speci�c analysis.

This evaluation provides quantitative feedback on how well the parameter choices con-

tribute to correlations to the response variable and thus meaningful feature extraction.

Finally, the calculated performance scores are assigned to the corresponding parameter

combinations and visualized. Visualization helps to identify trends, robust parameter ranges,

or areas of potential over�tting.

This visual feedback facilitates quick interpretation and iterative adjustments to re�ne the

parameter settings, ultimately improving the feature extraction process.

To illustrate the application of this approach, the following section presents its implemen-

tation on a dataset collected under controlled environmental conditions. By applying the

method to a well-structured dataset, this example o�ers a clear and practical demonstration

of how the approach can identify meaningful patterns

Example: Application to a Gear Hub

Consider an ultrasound signal of a bicycle gear hub as shown in Figure 4.4. During the �rst

two seconds, the gear is in a loaded state, and for the last two seconds, it is unloaded. The

�gure shows analyses highlighting the variations in power distribution across di�erent

frequency ranges under di�erent loading conditions, aiding in the detection and monitoring

of mechanical states.

The task is to distinguish between the states based on appropriate feature selection. This

process is illustrated using the partial power feature, for which suitable frequency intervals

need to be de�ned. The �gure demonstrates the impact of parameter selection on the
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feature’s quality to distinguish between the states.

For instance, the interval set from 0 kHz to 5 kHz does not show any clear distinctions,

however the other frequency intervals show a clear rise around 2 seconds which indicates

a change in the gear. This highlights the importance of appropriate parameter selection.

Careless selection of frequency intervals can result in poor features that do not contribute

e�ectively to distinguishing the appropriate state. Therefore, a suitable method must be

applied to assess the usefulness of the features in predicting the state of the gear hub.
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Figure 4.4: Feature extraction of ultrasound signals for process monitoring. The top plot displays a ultrasound
signal in time domain of a gear hub over 4 seconds, while under load for the �rst 2 seconds. The bottom
three plots illustrate the partial power within speci�c frequency bands: 0 KHz − 5 kHz, 40 KHz − 45 kHz and
70 KHz − 75 kHz.

The feature adaption process is illustrated by applying it to optimize these frequency ranges

of the partial power feature.

It is necessary to develop a method to quantitatively assess the quality of features in distin-

guishing between states. For this purpose, the R-squared value for continuous variables or

the F-value for discrete response variables is used to assess the correlation to the feature.

The parameter settings of the frequency ranges are systematically rastered, and the F-value

is calculated for each combination to identify suitable settings. In the case of a large number

of features and parameters to be optimized, this process can be accelerated using optimiza-

tion algorithms. For instance, gradient descent can e�ciently navigate the parameter space

to �nd the optimal settings by iteratively adjusting the parameters in the direction that

minimally reduces the error. This method can signi�cantly reduce the computational load
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and time required to �nd the best parameter combinations compared to a rastering approach.

The upper plot in Figure 4.5 illustrates the F-value for the partial power feature with dif-

ferent frequency intervals of width 5 kHz. The partial power value corresponds to the

percentage energy content within the de�ned frequency band. Two areas are visible with

higher F-values: from 35 kHz to 45 kHz and from 70 kHz to 85 kHz. Higher F-values suggest

a stronger relationship between the frequency range and the response variable.

The plot in the centre illustrates the power spectrum in decibels, comparing the unloaded

and loaded conditions across frequencies from 0 to 100 kHz. The background colour of

the bottom plot corresponds to the F-values from the top plot, with black indicating low

F-values and red indicating high F-values. It shows that the higher F-values correspond with

the highest di�erences in the power spectrum of the loaded and unloaded states. However,

considering decibels as a unit, the correlation is related to the relative di�erence rather

than the absolute di�erence between the power spectra.

The bottom plot compares the relative di�erence with the absolute di�erence of the power

spectrum between the unloaded state PU and the loaded state PL. The highest absolute

di�erence is below 10 kHz while the high values visible in the relative di�erence (le� axes,

blue) corresponds with the higher F-values.

This means that when analysing features in decibels, the focus should lie on how much

the feature’s value changes relative to its previous value. Large relative changes are more

prominent in decibel measurements, making them more useful for distinguishing between

di�erent states of the gear hub.

This leads to potential conclusions; for example, initial parameter settings for partial power

features could be guided by frequency intervals where the spectra of di�erent states are

most distinguishable. While this might seem intuitive, this example illustrates how the

approach can uncover correlations or provide general guidelines for interpretation and

quick parameter adjustments.

Furthermore, areas of good performance indicate robust parameter settings, while small ar-

eas might signal over�tting. Robust parameter settings are characterized by wide frequency

intervals where high F-values are consistently observed. These wide areas suggest that the

selected parameters are not overly sensitive to small variations in the data, indicating that

the features are reliable and can generalize well to new data. Conversely, small areas of

high performance might signal over�tting, where the parameters are tuned too precisely

to the training data, capturing noise rather than the underlying signal. Over�tted models

o�en perform poorly on new, unseen data because they lack generalizability.

4.2 Feature Selection

Initially, using features that are robust against application-speci�c disturbances helps mit-

igate the e�ects of these deteriorations and reduces the need for frequent retraining. To
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Figure 4.5: Comparison of the F-value (top) and the corresponding power spectrum at a loaded and unloaded
state (middle) and its di�erences (bottom).

address this, a procedure is proposed for selecting methods to identify suitable features for

this task.

The proposed method relies on a variety of analytical models that deliver scores to evaluate

the e�ectiveness of each feature. These scores are then compared to those obtained through

time-e�cient feature selection methods, as described in Section 2.3.

In this context, the selection process based on a model that evaluates feature permutations

is referred to as feature model selection (FMS), while the process of selecting features

using standard feature selection algorithms is termed standard feature selection (SFS). The

�nal scores derived from these methods are denoted as sFMS and sSFS, respectively. This

dual approach ensures a comprehensive evaluation of features, balancing computational

e�ciency and robustness against disturbances.

Figure 4.6 and Figure 4.7 provide an outline of the processes, serving as a guide to follow

the explanations outlined in each step. The main steps of the proposed FMS-method are as

follows:

1. Selecting an extensive feature list: In addition to standard features and general features

from repositories, application-speci�c features can be speci�cally designed to suit

the problem at hand.

2. Preselecting features for e�ciency: To reduce computational costs, consider prese-

lecting a subset of features from the extensive list. Depending on available resources,

select N features to proceed with further analysis.
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Figure 4.6: Overview of the proposed feature model selection approach (FMS).

Figure 4.7: Overview of the standard feature selection approach (SFS).

3. Creating feature combinations: Generate all possible combinations of the preselected

features with a maximum of n features per combination. A value of n = 3 has been

shown to be su�cient, yielding C = ∑n
k=1 (Nk) combinations in total.

4. Building predictive models and scoring features: Train predictive models for each

feature combination and use the resulting accuracies to assign scores to the partici-

pating features. This process results in overall scores sFMS,i for each individual feature

i. Additionally, the test data can be intentionally distorted to evaluate the robustness

of features and tailor the scores to speci�c application needs.

For the SFS method, the following steps are proposed:
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1. Calculate Scores: Compute the scores sSFS,nm for each feature i using each selection

method m separately.

2. Rescale Scores: Since the scales of these scores can vary widely across methods,

rescale the scores for each method to be comparable to each other, e.g. to the interval

0-1.

3. Optional: Weight Methods: Introduce weights wm for each method m to control their

in�uence on the overall feature scores. This allows to emphasize methods that are

more relevant to the speci�c application. A strategy for determining these weights is

proposed later in this chapter.

4. Combine Scores: The �nal scores sSFS,i for each feature i is then calculated via sSFS,i =

wmsSFS,im.

FMS and SFS o�er complementary approaches to feature selection. The FMS approach,

while computationally intensive due to the need to train a large number of models, provides

signi�cant advantages. These include a thorough consideration of feature interactions by

using a myriad of di�erent feature combinations, direct alignment with the desired result,

and the ability to customize the test data. This customization allows the selection process

to be tailored for robustness against speci�c conditions under which the data is recorded.

In contrast, SFS is a far more computationally e�cient process, making it better suited for

applications where rapid calculations are required. By introducing weights wm into the

SFS process, the e�ciency of SFS can be combined with the thoroughness of FMS. These

weights can be derived from initial FMS results, aligning the SFS process with the scoring

insights obtained through FMS.

Notably, while FMS needs to be run once to compute the weights and scores, the resulting

weights can be reused for subsequent feature sets or similar applications. This reuse reduces

the need to repeat the computationally expensive FMS process. For instance, in this work,

weights derived from an acoustic signal analysis of a gear demonstrator could potentially

be applied to other applications involving similar gear mechanics. This integration not

only enhances scalability but also ensures an e�ective balance between the thoroughness

of FMS and the e�ciency of SFS.

The following describes the FMS process, including the determination of appropriate values

for the weights wm and the maximum number of features, n, per combination.

The process begins with an extensive selection of features, either sourced from repositories

or speci�cally designed for the application. Domain knowledge is essential for identifying

and creating relevant features, leveraging insights into the system being analysed. Features

can be derived from the time domain, frequency domain or time-frequency domain (see

section 2.3) ensuring a comprehensive and application-speci�c feature set.
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Since predicting which features will be most valuable is inherently di�cult, this initial list

should be broad, exceeding the maximum number of features N that will undergo thorough

testing.

The second step is to limit the sheer number of possible features to a manageable maximum

of N features, depending on the application and available computational power. This step

narrows down this list to a more focused set of features. For a suitable preselection of

features, consider the computation time, correlation to other features and e�cient, standard

selection methods (FS) as described in section 2.3.

For large datasets, when simplicity and speed are crucial for a quick and straightforward

assessment of feature importance, using individual �lter methods like R-squared or ReliefF

can be e�ective. These methods are computationally less intensive and can provide a good

initial understanding of feature relevance, helping to focus on a smaller subset of potentially

important features for further analysis.

For a more thorough analysis, a combination of tests, following the SFS-approach with-

out applying weights, can be favourable. Using multiple methods can help validate the

importance of features. If a feature is consistently identi�ed as important across di�erent

methods, it is more likely to be genuinely relevant, rather than a result of over�tting. This is

particularly useful in complex datasets where single methods might miss important features.

Combining feature selection methods can help mitigate the biases introduced by any single

method. For instance, some methods might perform well with linear relationships, while

others might capture non-linear interactions or local structures.

This process ensures that the �nal ranking of feature importance considers the diverse

strengths of di�erent methods while allowing for adjustments based on the speci�c needs of

the application. Combining methods provides a more balanced and comprehensive feature

selection, reducing the risk of bias and improving the robustness of the results.

Once an extensive feature list is prepared, the selection process is re�ned by creating

predictive models based on various permutations of n features. These models are then

tested based on signals with additional disturbances, such as arti�cially introduced noise or

degraded signals.

Since the model’s accuracy can be in�uenced by the interactions between features, it’s

crucial to account for these interdependencies. To minimize the e�ect of feature interac-

tions and obtain an individual score for each feature, multiple models are created, each

incorporating di�erent combinations of features.

Training separate models for each feature permutation reduces the bias stemming from

interrelations among the features. This approach allows for obtaining authentic individual

scores for each feature. However, the model itself can introduce bias due to its reliance on

speci�c inherent data structures. Depending on available computational resources, this bias

can be further reduced by using di�erent models to calculate the scores
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For example, given N features and n as the maximum number of features per combination,

the total number of combinations is

C =
n∑

k=1
(Nk). (4.2)

For each combination an analytical model is created, delivering a score based on its accuracy.

The score for each feature is then derived by averaging the accuracies of all models that

include that feature, ensuring that the rating re�ects the feature’s true predictive value

across various model scenarios.

The number of possible combinations of N features increases rapidly when considering

all possible combinations, i.e., n = N , as described by Equation 4.2. However, it may be

su�cient to limit the maximum number of features per combination to a value n smaller

thanN . While this approach does not evaluate every possible feature combination, selecting

an appropriately high value for n can ensure that further increases in n have negligible

impact on the resulting scores. In such cases, training models with up to n features is

su�cient to achieve reliable and meaningful results.

To �nd a suitable value for n, Figure 4.8 plots the FMS scores sFMS for N = 20 features and

for models trained with n = 1…5 features. Particularly for small n, an increase leads to a

general rise in the FMS scores because larger feature combinations provide the predictive

model with more information.

Assume that the purpose of the selection process is to identify the best features in the

prepared set. Then, instead of focusing on the absolute scores of individual features, it is

particularly important to consider how the features perform relative to each other. The

decisive information lies in the changes in relative accuracies, not in their absolute values.

This means that if the scores sFMS of all features increases by the same factor as n increases,

no additional information is gained for distinguishing between features. In such a case,

further increasing n becomes redundant, as it does not contribute to improving the feature

selection process.

To address this, an improvement rate for each feature i, dependent on n, is de�ned using

the following equation:

IR(i, n) =
sFMS,i,n+1

sFMS,i,n
(4.3)

The scores sFMS,i,n for n = 1…5 are shown in Figure 4.8.

The standard deviation of IR(i, n) for constant n is de�ned as:

�IR(n) =

√
1

m

m∑
i=1

(IR(i, n) − IR(n))2 (4.4)
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with IR(n) as the mean improvement rare across all features i for a speci�c n.

Consider a case where the scores sFMS,i,n improve by the same factor as n increases. Then it

follows that the �IR(n) is equal to 0, indicating that no additional information is available to

evaluate the relative importance or interdependence of the individual features.

Thus, �IR(n) serves as a suitable measure of the additional information gained when in-

creasing n compared to n−1. A lower standard deviation indicates smaller relative changes

between the scores sFMS, suggesting diminishing returns from increasing n.

The corresponding graph, illustrated in Figure 4.9, shows �IR(n) alongside the number

of combinations c. For n = 3, the standard deviation drops below 0.02. Considering the

rapid rise in the number of combinations for n = 4 and the relatively modest additional

information gained per combination, it is advisable to limit calculations to n = 3 for

computational e�ciency.
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Figure 4.8: Average accuracy of SVM models attributed to the corresponding features. n designates the
maximum number of features used for the model.

Example: Determining Weights wm for an Acoustic Signal from a Gear

Hub

Figure 4.10 illustrates the determination of the weights for ANOVA and Discriminit Analysis

based on standard features and acoustic data obtained from the gear demonstrator which

setup is described in the application section.
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Figure 4.9: Standard deviation plotted versus n which designates the maximum number of features used to
train the SVM models.

The top plot shows the scores assigned by an SVM model trained on subsets of three

features each. The middle plot displays scores from ANOVA1 analysis, while the bottom

plot presents scores from Discriminant Analysis. The features are listed along the x-axis,

and their respective scores are plotted on the y-axis. Additionally, the table on the right

provides R and R-squared values between the features- and the SVM-scores.

At �rst the scores are calculated via each scoring algorithm separately and rescaled between

0 and 1. The weights wm of the feature selection method m are now based on the strength

of similarity between the method and the SVM scores. Here the Pearson correlation, also

known as the R-value is used for a quantitative measurement of the similarity or the linear

correlation.

The Pearson correlation coe�cient, �(A, B), between two variables A and B is given by

�(A, B) =
1

N − 1

N∑
i=1

(Ai − �A
�A )(Bi − �B

�B ) , (4.5)

where �A and �A are the mean and standard deviation of A, respectively, and �B and �B are

the mean and standard deviation of B [104, 106].

4.3 Global Reconstruction

Measurements in process monitoring are o�en limited by both the geometric constraints of

the investigated process and the physical constraints of the sensors. Each sensor’s speci�c

characteristics, such as range, accuracy, and sensitivity, result in localized measurements

that cannot fully capture the entire process with a �nite number of sensors.

These localized measurements are inherently in�uenced by the surrounding environment.

In theory, information about the surroundings could be inferred by analyzing these localized
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Figure 4.10: Comparison of FMS scores and SFS method, speci�cally ANOVA and discriminant analysis (DA).

measurements and understanding their physical dependencies. However, limitations in

physical understanding and the precision of measurement hardware o�en prevent achieving

the desired accuracy

Consider an active ultrasound measurement using a piezoelectric disc transducer. As de-

scribed in [20], the ultrasonic beam emitted by the transducer has a �nite spread and

directivity, meaning the beam’s energy is concentrated within a speci�c angle. Beyond

this angle, the intensity decreases signi�cantly, limiting the sensor’s e�ective measurement

range to a certain volume directly in front of it. The angle and range of the beam’s coverage

area depend on the transducer’s design and the frequency of the ultrasonic waves. Addi-

tionally, as the waves travel through the investigated material, they experience attenuation,

which further diminishes the e�ectiveness of the ultrasonic measurements with increasing

distance from the source.

To address this issue and expand the area of investigation, sensor networks are o�en em-

ployed [107, 108]. By integrating multiple sensors, these networks enhance data collection

coverage, o�ering a more comprehensive view of the target area. However, the deployment

of sensor networks is experimentally challenging due to limited placement space, potential

sensor interference, and the rising �nancial costs associated with additional sensors.

Consequently, gaps in information may arise between sensors. The challenge then lies in

accurately inferring the data within these gaps to create a continuous measurement pro�le.

One potential solution involves considering physical properties of the environment to

simulate continuous measurements using the locally restricted measurements as starting

points. However, this can be complicated. De�ning a physical model tailored to the speci�c

application is necessary, and the boundary conditions must be well understood. O�en,

simpli�cations need to be made, potentially making simulations inaccurate.
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Therefore, it is desirable to develop a model that is generally applicable without the need

for designing intricate physical models for each speci�c application. Such a model should

leverage the locally restricted measurements of the sensor data and clearly accessible local

boundary conditions, such as the space or form in which the physical variable changes.

A common situation in condition monitoring involves a binary state change that propagates

through space over time, which needs to be continuously monitored in space. Simple cases

include a medium spreading in space whose location-speci�c arrival times (0: medium

not present, 1: medium present) should be monitored, as in the injection and infusion

experiments discussed later in detail here.

This can be extended to various physical variables such as temperature T gradually chang-

ing over time where a threshold TS should not be exceeded (0: T ≤ TS, 1: T > TS).

In the following, a reconstruction method is proposed capable of making predictions for

the area between the sensors for such applications. By integrating geometric information

and the interrelations of sensor data, a reconstruction algorithm can be created to inter-

polate and extrapolate measurements across the entire spatial domain. This approach can

signi�cantly enhance the reliability and utility of sensor networks in various applications,

providing a comprehensive overview of the monitored environment without the need for

exhaustive physical modelling.

The reconstruction algorithm aims to estimate and interpolate the spatial data between

sensor locations within a given area. This process involves several steps, and it utilizes the

principles of graph theory to e�ciently compute the desired values.

The �rst step in the reconstruction method is to prepare and parametrize information which

can be deduced from the recorded data and from the geometry of the process. This should

include:

• Spatial boundaries: The physical limits of the area under investigation.

• Sensor positions in space: The locations where sensors are placed.

• Localized sensor data: The measurements recorded by the sensors.

The relevant parameters for the reconstruction are listed in Table 4.1 and Figure 4.11 pro-

vides an illustration of the graph necessary for the reconstruction. The corresponding input

data must be assigned to the parameters, and following the reconstruction process, the

output data can be obtained as a result. The parameters and their respective meanings are

detailed below. .

For the graph and to digitize the space and its boundaries, de�ne nodes distributed through-

out the space, each with corresponding spatial coordinates x1,2,3. These nodes, denoted as

Nj act as a sca�old at which the data is of interest and should be calculated. Each node Nj

holds the spatial information x1,2,3 and connects it to the calculated or reconstructed data tj.
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Essentially, this data corresponds to the time of a state change from 0 to 1.

The nodes’ distribution pattern should be adapted according to the speci�c application and

the desired resolution. For instance, denser node placement can provide higher resolution

in areas requiring detailed analysis.

To avoid introducing bias into calculations due to preferred orientations, an unstructured

mesh based on Delaunay triangulation is advantageous. In structured meshes, the alignment

of the grid can inadvertently in�uence the results, especially in scenarios where the physical

phenomena being modelled do not align with the mesh’s regular grid structure. This can

lead to anisotropy, where the properties appear to vary depending on the direction.

The connection lines between the nodes form a triangular mesh are denoted as the edges En.

The Euclidean distances dn between connected nodes can be extracted from the geometry

of the process.

In addition to the Euclidean distances, the reconstruction algorithm assigns time weights

Tn to the edges En. These weights represent the time that passes between the change of

states of the connected nodes. The challenge is to de�ne these time weights Tn so that the

�nal reconstructed times tj align with the measured times t̄i at the sample points Si. The

weight function with its input parameters �, �, and R provides a customizable relationship

between the sample points and the remaining nodes. This allows for the incorporation of

geometric and physical boundary conditions into the reconstruction process.

Graph theory provides a useful mathematical framework for bundling the available infor-

mation and e�ciently calculating the desired times. In graph theory, a graph consists of

nodes connected by edges, and various algorithms can solve problems related to paths,

connectivity, and network �ow [109].

Figure 4.11 illustrates a network of nodes (black dots) connected by edges (lines), with

sample points S1 and S2 indicating sensor locations. The goal is to reconstruct the times tj
at each node using the graph.

Table 4.1: Relevant parameters for the reconstruction.

Symbol Name Input data Output data

∙ Node Nj Local coordinates x1,2,3 Reconstructed times tj
— Edge En Euclidean distances dn Time distance Tn
○ Sample point Si Measured time t̄i

Weight function win �, �, R

To calculate tj e�ciently, the shortest path algorithm is used from graph theory. This

algorithm �nds the shortest path between nodes based on the assigned weights. In this
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4.3 Global Reconstruction

Figure 4.11: A graph representation illustrating the nodes, edges, and sample points in a sensor network. The
black dots represent nodes, the lines represent edges connecting the nodes, and the circles labelled S1 and S2
represent sample points. This structure is used to reconstruct arrival times and infer spatial data between the
sensors.

context, the shortest path algorithm calculates tj by �nding the shortest time-weighted path

between nodes based on the time weights Tn. Mathematically, this can be expressed as:

tj = shortestpath(Tn) (4.6)

To use Equation 4.6 the times Tn need to be calculated. This process involves utilizing the

given parameters, geometric information, and sensor data to accurately determine the time

it takes for a state change to propagate across the network of nodes.

First, the geometric information is incorporated by considering the distances between nodes.

Each edge En connecting two nodes has a corresponding Euclidean distance dn, which is

used in the equation:

Tn =
dn
vn

(4.7)

Tn, is the time it takes for the state change to travel along edge En, and vn has units of meters

per second (m/s), which can be interpreted as the speed at which the change moves along

the edge.

Next, the velocity vn are adapted by incorporating the in�uence of the sensor data using

the following equation:

vn =
winv̄i∑iwin

(4.8)

v̄i[m/s] are assigned to each sensor i. While it may seem intuitive to interpret these as local,

point-speci�c velocities, they do not necessarily correspond to the true local velocity at

which the state change propagates through the space. This discrepancy arises because,

typically, only a limited number of sample points are available. Consequently, the recon-

struction algorithm tends to favour v̄i that re�ect broader, averaged velocities over larger

areas, for more accurate results.
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win represents a weight matrix that determines the in�uence of sensor i on edge n. The

entries of the weight matrix can be controlled with parameters �, � and R. These parameters

allow to adapt the weight matrix according to the geometry of the area and the distribution

of the sensors. By carefully tuning these parameters, the in�uence of each sensor on the

corresponding edges can be adjusted, ensuring that the reconstructed data accurately re-

�ects the spatial layout and sensor placements.

In conclusion, it can be inferred that the desired arrival times tj(v̄i, win, dn) are a function of

the average velocities v̄i, the weight matrix entries win, and the distances dn.

While win and dn can be determined based on the geometry and sensor distribution, �nding

the optimal values v̄i might not be as straightforward.

To determine these parameters, the boundary condition can be used that the measured

values t̄i at the sensor locations should coincide with the calculated values tj=i(v̄i, win, dn).

This means that the reconstructed times at the sensor locations should match the actual

measured times. Ideal values for v̄i minimize the error function:

f (v̄i) = (t̄i − ti (v̄i, win, dn))
2 , (4.9)

This function represents the squared di�erence between the measured time t̄i and the

calculated time ti(v̄i, win, dn). Minimizing this error function, ensures that the calculated

values are as close as possible to the measured values.

To start the optimization process, the average speed v̄i,0 =
di
t̄i
is used as an initial guess.

Equation 4.8, Equation 4.7, and Equation 4.6 are subsequently utilized to calculate ti in

Equation 4.9, as well as the remaining times tj , thereby providing the complete set of

information required for the reconstruction results.

The main parameters to consider are the nodes and edges of the mesh and the parameters �,

� and R of the weight function. The following section describes the process for determining

suitable parameters to optimize the results.

Mesh Resolution

Creating a mesh with nodes and edges discretizes continuous space, which is necessary for

computation. However, the discretizing process introduces approximation errors.

A suitable mesh should not be too dense, as this would be computationally expensive.

Conversely, it should not be too sparse, as this would result in a low resolution of the results

and inaccurate representation of the space.

Therefore, mesh resolution becomes a critical parameter, typically involving a trade-o�

between accuracy and computational e�ciency.

Concerning accuracy, consider Figure 4.12, which illustrates a path of unit length composed
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4.3 Global Reconstruction

of N edges. The corresponding equations to calculate the errors are shown in Table 4.2.

Figure 4.12: Illustration of the inaccuracies introduced by meshing. The solid line represents the actual
shortest path between two points A and B in space. The dashed line represents the shortest path along the
edges E1,2,3 of a graph. The angles �1,2,3 represent the deviation of each edge from the shortest path.

Table 4.2: Equations for the error introduced through meshing.

# Edges Average Error per Edge Error of Path Avg Angle

N = 3 1
N
∑N

i=1
Ei−dE,i
dE,i

∑N
i=1(Ei−dE,i)∑N

i=1 dE,i

1
N
∑N

i=1 �i

Due to the �nite number of nodes and edges, the graph discretizes physical space, intro-

ducing inaccuracies. As the length of the edges Ei do not necessarily coincide with the

corresponding direct Euclidean distances dE,i, the shortest path function produces an error

e[%].

Increasing the number of edges N reduces the error. However, e(N ) shows a converging

behaviour while the computational e�ort rises with increasing N . Therefore, there should

be a magnitude of N beyond which a further increase does not e�ectively contribute to a

higher accuracy given the rising computational costs.

The following present a mathematical analysis to assess an appropriate magnitude for the

edge length. A useful quantity to choose a reasonable edge length LE is the decrease of the

average error per computational minute.

For a �rst estimation, consider a circle-shaped area of radius R. The error ep of a path from

the centre to the nodes on the boundary of the circle is given by

ep =
∑N

i=1(Ei − dE,i)∑N
i=1 dE,i

=
N∑
i=1

( 1

cos(�i)
− 1) , (4.10)

With dE,i = cos(�i)Ei follows that e is a function of the angle � between the graph’s edges

Ei and the direct Euclidean path dE,i.

Figure 4.13 shows the course of the relevant quantities presented in Table 4.2 over the

number of edgesNE per path. As the curves monotonically decrease forN > 10, a correction

factor C can be introduced to minimize the error. For example, consider a graph whose

longest path is composed of 250 edges. According to Figure 4.13, the average error per
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edge is AEE(NE) > 3.8%, NE ∈ [0, 250], which makes C = 0.038 a reasonable value for the

correction factor. Thus multiplying 1
1+C

with the Euclidean distances assigned to the graph’s

weights can mitigate the overestimation of the direct path. Note that in the equation for

the error of path, the smaller the error of edges the higher their weight in the calculation.

Therefore it follows: Error of path ≤ Average Error per Edge.

Figure 4.13: Average Errors of a path with N edges calculated using equations from Table 4.2. based on a
graph generated by Delaunay triangulation applied to a 2D surface.

Figure 4.14 shows the error of a path for di�erent C, additionally illustrating the case of

overcorrecting for C = 7% > 3.8 %. Here , instead of decreasing, the error shows increasing

behaviour with rising NE. Using Figure 4.13 for the identi�cation of a suitable correction

term helps to reduce the error to under 2% NE ∈ [0, 250] and creates an optimal foundation

for the reconstruction.

As shown, with an increasing number of edges per path, the curves gradually �atten. That

is, in the limit of �ner meshes, the error decreases slower. At the same time, computational

e�ort increases. To obtain a reasonable assessment for computation time, consider an area

A with the longest direct path L within this area.

With the average edge length LE and faces in triangular shapes of area FA =
√
3
4
L2E, the

number of faces NF of the graph can be calculated via

NF =
A

FA
(4.11)
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Figure 4.14: Error of a path composed of N edges using di�erent Correction values C.

Figure 4.15 presents the computation time to create a graph of NF faces. It is important to

note that the computation time of the reconstruction algorithm itself is not considered in

this context; rather, we focus solely on the creation of the mesh, which is typically generated

once for a given geometry. However, regarding the reconstruction computation, it has

been demonstrated that the computational time is primarily in�uenced by the choice of

optimization algorithm and the number of variables involved, which directly corresponds

to the number of sample points. In this study, we utilize MATLAB’s built-in function

fminsearch [110, 111] to determine the optimal solution. A comprehensive analysis of the

impact of sample points and mesh nodes on computational e�ciency is subject to further

investigation in future work. A polynomial �t of grade 4,
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Figure 4.15: Improvement of the accuracy per computational minute over the number of faces NF.

Computation Time = CT (NF ) =
4∑
i=0

aiN
i
F , (4.12)
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is used to assess the grade of dependency between the computation time and the number

of faces in the graph. The boundary conditions for the computational time entail fCT and

f ′
CT > 0, for NF ∈ [0,∞), with ai > 0 and , i = [0, 1… 4]. The least square �t yields:

Table 4.3: Least square �t parameters for computation time dependency.

Parameter Value

a0 1.36 × 10−46

a1 1.13 × 10−14

a2 1.09 × 10−8

a3 2.89 × 10−33

a4 5.33 × 10−23

The value a2 is more than six orders of magnitude larger than the others, suggesting a

quadratic dependence. Thus, as a �rst approximation, the computation time CT for an area

A and edge length LE can be estimated by

CT (LE) ≈ 1.09 × 10−8N 2
F = 1.09 × 10−8

A2( 3
4
L2E) , (4.13)

which is indicated as a red line in the graph.

A useful quantity to choose a reasonable mesh size is the decrease of the average error

per computational minute. This quantity is denoted as the improvement rate IR, which

helps identify the mesh resolution beyond which any further increase is not justi�ed by the

computational e�ort required for the marginal improvement in accuracy. Considering a

path composed of NE edges, the improvement rate is de�ned as:

IR =
AEP(NE) − AEP(NE + 1)

CT (NE + 1) − CT (NE)
, (4.14)

where AEP(NE) is the average error of path from Figure 4.13 and CT (NE) the computational

time.

To assess a suitable range for LE, consider a circle-shaped area with radius R. With the

centre as the starting point of the paths, this surface serves as an upper limit for regular 2D

shapes. Since the absolute error increases with the length of the path considered, we focus

on the longest direct path within the area. Here, the longest path corresponds to R and is

composed of NE edges with length LE. As a approximation these parameters are related via

NE = R
LE
.

Using a circle-shaped area A = �L2 = �N 2
EL

2
E as an upper limit for regular 2D shapes,

Equation 4.13 yields

CT (NE) = 1.09 × 10−8 ⋅ 16�2
⋅ N 4

E . (4.15)

The corresponding curve for IR(NE) is illustrated in Figure 4.16, and depending on the

necessary resolution, it helps to identify an upper limit of NE for a time-e�cient creation of
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the graph. For instance, considering a geometry with a longest path of 1m, the improvement

rate of accuracy signi�cantly decreases beyond an edge length of LE = L
NE

= 2m
200

= 1 cm.

A�er choosing an appropriate mesh and graph, the following section presents further

insight into the weight function and the identi�cation of its suitable parameters.

100 150 200 250

N
E
 (#Edges of longest path)

0

0.5

1

1.5

2

2.5

3
Im

p
ro

v
e

m
e

n
t 

(%
/m

in
)

Figure 4.16: Improvement of the accuracy per computational minute over NE. NE represents the number of
edges of the longest, direct path between two nodes.

Optimizing the Weight Function

For improved reconstruction of the �ow front, it is favourable to adapt the weight function

for the speci�c problem. Here, a guideline on how to identify appropriate parameters with

respect to the given geometry is presented.

The weight matrix win consists of a radial wrad and angular wang contribution and is de�ned

as:

win =
w′

in

maxi(w′
in)

, (4.16)

where

w′
in = wrad,in + R ⋅ wang,in. (4.17)

The radial and angular weights are given by:

wrad,in =
1

1 + ( 1
�
− 1) ( x2in

dA) , (4.18)
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wang,in = 1 − sin� (�in

2 ) , (4.19)

with xin as the distance between sensor i and edge n. �in is the angle between edge n and

the connecting line of the source, the origin of the state change propagation, and sensor i,

illustrated in Figure 4.17.

Figure 4.17: De�nition of angle �in used to calculate !ang.

The parameters � and � are used to adapt the radial weight wrad and the angular weight

wang, respectively. R controls the angular weight’s contribution to the total weight win.

The average distance of the sample points dA is de�ned by its spatial distribution, thus

constant for a given setup.

Figure 4.18 shows wrad and wang for various parameters. The parameter � ∈ [0, 1] corre-

sponds to the value at the average distancewrad,in(xin = dA). Thus, decreasing � narrows the

radial in�uence of the sensors, and vice versa. Decreasing � ∈ [0,∞] focuses the in�uence

on angles close to 0◦ and 360◦.

Finally, increasing R shi�s the focus on wang, while a decrease below 1 emphasizes wrad.

Figure 4.19 shows the weight matrices wrad,in, wang,in and win for a rectangular shape and

10 sample points. wrad and wang are independent of the sample points. However, following

Equation 4.17, w′
in considers the relation of the sample point distributions autonomously,

resulting in robust results for varying sensor setups. For example, as shown in Figure 4.19,

the weight function for the sensor marked in red is particularly deformed by the adjacent

sensors, taking into account their in�uence in nearby areas according to the relative orien-

tation to the injection point.

Despite the self-adapting nature of the weight matrix, a careful selection of the parameters

increases the accuracy of the results. To this end, it is useful to estimate appropriate arrival

times t̄j,Ref for every node as a reference. This can be achieved by assuming reasonable �ow

front velocities from which t̄j,Ref can be derived or, alternatively, by conducting a reference

experiment.

With the average velocities assigned to the sample points, the arrival times t̄j,calc can be

calculated using Equation 4.6, Equation 4.7 and Equation 4.8. With the error function in

Equation 4.20, t̄j,calc, which depend on the weight function’s parameters, can be compared

with t̄j,Ref .

f (wtot,in) = (t̄j ,calc(win) − t̄j,Ref)2 . (4.20)
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Figure 4.19: 2D illustration of the weight functions for the sample point marked in red. The green dots
indicate the rest of the sample points and the blue dot the injection point.

Minimizing f (wtot,in) should then deliver suitable parameters for win(�, �, R).
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In this chapter, the three approaches introduced in Chapter 4 are demonstrated using the

experimental setups described in Chapter 3.

First, the adaptation process is applied to the rheometer experiments to illustrate how

features can be optimized to assess rheological parameters. These insights are then trans-

ferred to the T-RTM experiments, where the approach is used to evaluate the state of

polymerization.

Next, the feature selection approach is tested on the gear demonstrator, using data collected

over a period exceeding one year. This approach aims to identify the most relevant features

to ensure high prediction accuracy throughout this extended timeframe.

Finally, the reconstruction method is validated using the VAP experiments. Then, the

algorithm is applied to the more complex T-RTM process to reconstruct the temporal

progression of the �ow front.

5.1 Feature Adaption: Rheological Measurements

In this section, the application of the proposed feature adaptation method to rheological

measurements is demonstrated. A rheometer (see Chapter 3) is equipped with an ultrasound

sensor to enable the simultaneous acquisition of ultrasound and rheometer data. The goal

is to adapt the extracted features from the ultrasound data to align as closely as possible

with the rheometer measurements. This demonstrates that the ultrasound data contains

information about the rheological processes in the sample, laying the foundation for mea-

suring rheological changes in the sample using ultrasound sensors, instead of relying on

labor-intensive rheometer experiments.

The setup consists of a multilayer structure, and the impulse echo method is used for

ultrasound data acquisition (see Chapter 3).

To analyse the signal, consider the signal pro�le shown in Figure 3.16, where materials 1

and 3 correspond to the lower and upper plates of the rheometer, and material 2 represents

the sample under investigation. In time-domain feature extraction, applying a time gate

helps isolate critical portions of the signal while excluding irrelevant data. A time gate

de�nes speci�c limits, retaining only the desired segment of the signal for analysis. This

approach improves the relevance and accuracy of feature extraction by focusing on key

components, such as the �rst echo in ultrasound data, while discarding the rest.
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As illustrated in Figure 5.1, the ultrasound signal at T = 2min is segmented using a time

gate, keeping only the relevant portion. This gated segment is then processed to extract a

feature, which can be tracked over time to provide insights into the underlying processes.

By focusing on speci�c signal segments, the gate concept optimizes feature extraction,

emphasizing the most informative parts of the data.

Figure 5.1: Schema of feature extraction using the gate concept.

Similarly, in the frequency domain, spectral energy regions (partial powers) can be analysed.

These regions represent the proportion of energy within a selected frequency range relative

to the total energy of the signal. The speci�c frequency ranges to be analysed should be

chosen based on the task and the e�ects under investigation.

Combining empirical knowledge with a preliminary analysis of the ultrasonic signals and

their frequency spectra can lead to a well-informed estimation of appropriate parameter

settings for gates and frequency ranges.

In practice, however, the clear identi�cation of echoes in the time domain can be compli-

cated by interfering re�ections, deviations in sensor alignment and coupling, and other

measurement artefacts. This highlights the importance of robust feature extraction methods

that can withstand these in�uencing factors.

Systematic variation of gate positions and frequency ranges contributes to the further opti-

mization and interpretation of ultrasonic signals. This approach ensures that the extracted

features remain reliable and meaningful despite the presence of potential disturbances in

the measurement environment.

To determine the optimal parameters for feature calculation, follow the approach outlined

in the previous chapter. Figure 5.2 speci�cally illustrates this process for the parameter

of the gate. The process begins by varying the gate’s start position and width. Features

are extracted from the gated segment and compared to reference measurements, such as

rheological data, to evaluate how e�ectively the gated data captures meaningful physical

phenomena. A score is then calculated to quantify this comparison, and the results are

visualized iteratively in a heatmap to identify the optimal gate settings. The focus is on two

speci�c features for deeper investigation: partial power and RMS.
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Figure 5.2:Work�ow for optimizing gate settings and feature extraction.

Partial power feature is chosen as a representative for a frequency domain feature because

it o�ers the �exibility to adapt its parameters, speci�cally the length and starting point of

the frequency intervals to be investigated. This allows us to tailor the feature extraction

to the most relevant frequency ranges. In contrast, a feature in the time domain can be

extracted from a gate where both the starting point and length can be varied.

The RMS feature was chosen by a preliminary evaluation with random gate settings and

various time domain features. For a speci�c gate position, the feature that showed the

highest correlation (R-value) to the rheometer measurements was awarded a point. The

results of this evaluation are illustrated in Figure 5.3, highlighting the RMS value with the

highest score.

To determine the optimal frequency range for calculating partial powers using the R-value

as the evaluation criterion, the length and starting point of the frequency range were

systematically varied within the ultrasonic sensor’s operating range of 1.4MHz to 3MHz.

To simplify the process and reduce the degrees of freedom, the time gate used for calculating

partial power was �xed, spanning the entire signal segment.

For each parameter setting, calculate the partial power feature and its corresponding R-value

relative to the logarithmic progression of viscosity, as stronger correlations were generally
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Figure 5.3: Each point is assigned the feature with the highest absolute R-value at a �xed gate position. The
histogram illustrates the distribution of points across randomly varied gate positions.

observed compared to a linear progression. Similarly, R-values for the RMS feature were

calculated by varying the time gate.

The R-values are depicted in Figure 5.4 and Figure 5.5 for the partial power and RMS-

feature, respectively as functions of both the frequency and time windows. To facilitate

the distinction of high R-values, a bilogarithmic colour scale is used. This colour scale

helps in identifying the maximum values in the diagram. A high R-value indicates a strong

correlation with the measured viscosity, with the sign indicating whether the correlation is

positive or negative.

A notable observation in Figure 5.4 is the linear distribution of the maximum positive

R-values. These values consistently show that the frequency range ends uniformly around

2.2MHz. The starting value, however, can be chosen �exibly without a signi�cant drop

in the R-value. Therefore, the frequency ranges with high correlation to the rheological

measurement values encompass the sensor’s natural frequency and the lower frequencies.

For comparison, the ultrasonic pulse and its corresponding frequency spectrum in an empty

measurement without a sample are shown in Figure 5.6.

Large negative R-values are observed with a variable length frequency window starting at

approximately 2.2MHz. Consequently, to achieve strong correlations with the rheological

measurements, it is advantageous to set the start or end of the frequency window at 2.2MHz.

When the frequency window includes ranges both above and below this frequency, the

negative and positive contributions to the spectral energy density compete, resulting in

a decrease in correlation. This pattern is consistently observed across various rheometer

experiments, suggesting a general recommendation for the bounds of spectral energy den-

sities. However, further research is needed to extend these �ndings beyond the speci�c

experimental setup used here.

Additional studies on the dependencies between spectral energy densities and the resonance
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Figure 5.4: R-values on a bilogarithmic colour scale for the partial power feature as a function of the frequency
window.
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Figure 5.5: R-values on a bilogarithmic colour scale for the RMS depending on the gate position and width.
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frequency of the ultrasonic sensors can lay the groundwork for adaptive algorithms that

automatically determine suitable parameters. This could lead to more e�cient and accurate

analyses across di�erent experimental conditions and setups.

The reduction in the energy content of higher-frequency ultrasound waves with increasing

viscosity and ongoing polymerization aligns with thermoelastic dissipation. This phe-

nomenon results in increasingly stronger damping of higher-frequency ultrasound waves

[20].

Figure 5.5 shows the results for the R-value obtained from varying the gate parameters for

the RMS feature. The highest values are concentrated at start times and gate widths between

1 �s and 10 �s, with maximum values around 7 �s and 6 �s, respectively. The calculated

travel times for the �rst and second main echoes are approximately 7 �s and 14 �s a�er

pulse emission, theoretically placing the �rst main echo within the gate range. However,

this echo is not clearly identi�able in the signal shown in Figure 5.6.
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Figure 5.6: Impulse and frequency spectrum of the ultrasound sensor used. The areas marked in red are
within the time or frequency window ideal for the RMS and partial power feature.

Figure 5.7 and Figure 5.8 compare the partial power feature and RMS with the measured

viscosity, using parameter settings deemed optimal based on the result plots in Figure 5.4

and Figure 5.5. Generally, the partial power exhibit higher correlations. The increase in the

RMS value re�ects a rise in echo amplitude, caused by altered re�ection conditions due to

the progressing polymerization.

In Figure 5.9 and Figure 5.10, the partial power and RMS values, with the identi�ed optimal

parameters, are applied to another experiment. Despite the disassembly and reassembly of

the experimental setup and the associated readjustment of the sensor, a high correlation,

particularly of the spectral energy density with the progression of viscosity, is observed.
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Figure 5.7: Temporal progression of the Partial Power feature in a frequency window from 2.05MHz to
2.19MHz compared to the logarithmically plotted viscosity.
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Figure 5.8: The temporal progression of the RMS value in a time window from 7 �s to 13 �s a�er pulse
emission compared to the logarithmically plotted viscosity.
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This enables the estimation of the temporal changes in viscosity based on ultrasonic mea-

surements, allowing for the monitoring of the saturation behavior of the polymerization

reaction. This is especially valuable for industrial processes like the T-RTM process.
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Figure 5.9: Temporal progression of the partial power feature for a di�erent measurement and with the same
settings for the frequency window as in Figure 5.8.
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Figure 5.10: The temporal progression of the RMS value for a di�erent measurement and with the same
settings for the time window as in Figure 5.8.
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5.1 Feature Adaption: Rheological Measurements

To investigate whether the feature parameters identi�ed could be applied across di�erent

experiments for this speci�c US-sensor, the same parameters identi�ed for the rheometer

experiments are used and applied to the T-RTM process.

In the T-RTM experiments there is no sensor available to directly measure the degree of

polymerization as a benchmark measurement. However, the tool was equipped with DEA

sensors. In [78, 85] it has been shown that based on the DEA data, it was possible to deduce

a conversion factor � to assess the time of su�ciently advanced polymerization. In the

following this time can be used as a benchmark.

Here the task was to monitor the ongoing polymerization in the T-RTM process using US

data. In previous experiments, described in Chapter 3 a relationship between viscosity and

the state of polymerization was identi�ed and since it was established that viscosity can be

tracked using US data, it should be therefore possible to assess the polymerization process

through the US data.

These previous �ndings can be compared to the measurements of this work, as the same

experimental setup was used. Figure 5.11 compares the viscosity and the partial power

feature to the measured conversion ratio, which is de�ned as 1 - rest monomer content.

The curves show similar behaviour with the plateau of the viscosity marking the point

when the polymerization accelerates.
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Figure 5.11: Comparison of the measured viscosity, the partial power features and the conversion of �-
caprolactam found in [80].

The data shows a rapid increase followed by saturation, indicating that viscosity and partial

power, as well as the conversion, reach a plateau, although at slightly di�erent times.

To establish a relationship between the partial power feature and the state of polymerization,

the time shi� between the curves needs to be assessed. For this purpose consider Figure 5.12.

The upper plot compares the normalized partial power feature with the conversion rate.

The �rst measurement point is de�ned above 98% conversion as the time at which poly-

merization is su�ciently advanced for practical applications like T-RTM, occurring at 450 s.

The point where the normalized partial power value consistently exceeds 0.9 is de�ned as
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the beginning of its saturation phase .

-100 0 100 200 300 400 500 600 700

Time (s)

0

0.2

0.4

0.6

0.8

1

P
a

rt
ia

l 
P

o
w

e
r 

(a
.u

.)

60

70

80

90

100

C
o

n
v
e

rs
io

n
 (

%
)

300 350 400 450 500

Time (s)

0.85

0.9

0.95

1

1.05

P
a

rt
ia

l 
P

o
w

e
r 

(a
.u

.)

70

80

90

100

C
o

n
v
e

rs
io

n
 (

%
)

Figure 5.12:Relationship between partial power and polymerization state. The upper plot compares normalized
partial powerwith conversion rate, showing a time shi� between partial power saturation andwhen conversion
exceeds 98%, marking su�cient polymerization. The lower plot zooms in on critical time points.

The lower plot in Figure 5.12 provides a close-up view of the area of interest to facilitate

easier identi�cation of critical times. At around 315 s, the partial power begins the saturation

phase.

This means that a�er the partial power value stabilizes, it takes an additional 135 s for the

polymerization to reach its saturation level.

Next, the aim was to apply these observations to the T-RTM process. The application should

test the approach’s applicability beyond the rheometer experiment.

However, the general applicability of such an estimation face challenges like:

• Material and scalability: Although the same material is used, there are signi�cant

di�erences in size.

• Temperature pro�le: Both experiments target the same �nal temperature (around 160

degrees Celsius), but with di�erent heating rates.

• Process dynamics: The T-RTMprocess involvesmorematerial and dynamic conditions

compared to the small static samples in rheometer tests.

For validation, the conversion times for the T-RTM process, estimated in [85], are used.

The dielectric signals from DEA-sensors have been combined with a reaction kinetic model

108



5.2 Feature Selection: Gearbox Test Bench

based on quasi-isothermal di�erential scanning calorimetric investigations. This allows to

monitor the conversion during polymerization, achieving a degree of conversion of 98.5%

approximately 342 s a�er injection.

This value is de�ned as the target value and compared with the expected value derived

from the partial power features. Figure 5.13 illustrates this comparison process.
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Figure 5.13: Determining the polymerization time based on partial power features.

Based on the r-values tested, limits are established for the partial power. Applying the 90%

threshold method, the time of reaching the saturation value is determined, which is around

210 s. The estimated time shi� to complete polymerization was assessed to be 135 s, leading

to an expected saturation point of polymerization around 345 s. This compares well with

the expected value at 342 s, indicating a good assessment.

5.2 Feature Selection: Gearbox Test Bench

Here, the Feature Model Selection (FMS) and Standard Feature Selection (SFS) approaches

(see Chapter 4) are demonstrated using the gearbox test bench (see Chapter 4). The neces-

sary data for applying and validating these methods was collected over an extended period

of more than one year. During each data collection session, the test bench was operated in

three di�erent gears. The goal is to identify robust features using FMS and SFS that can re-

liably distinguish between these gears across all datasets and throughout the entire timeline.

Before thoroughly assessing the performance of each individual feature, the proposed

selection method is tested on preselected features listed in Table 5.1.

The features in this list were selected based on following considerations. Part of this list
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comprises frequently used features with proven performance in various applications (AE)

[22, 34, 90]. For instance, in [34] these features were successfully utilized for analysing

acoustic emission signals during drilling processes.

To these features, common statistical features are incorporated, that are fast to compute.

These features allow for e�cient analysis while maintaining high relevance to the signal

characteristics.

Additionally, features commonly used in other �elds, such as the Hjorth parameters in elec-

troencephalography (EEG), are included. Initially employed in medical electroencephalog-

raphy signals, Caesarendra et al. [66] suggested that these features could be e�ectively

used for condition monitoring [67].

Additionally, as proposed in [112] Spectral Negentropy is included, which measures the

spectrum of the negentropy of the squared envelope and its spectrum, which is reported to

capture the impulsive nature of faults in frequency bands.

Finally, features are considered that analyse the underlying data distribution, including

Compared Distribution Entropy 1-2, Compare Gaussian Fit, Compare Extreme Value Fit,

and Compare Uniform Fit. Compared Distribution Entropy calculates the change in kernel-

smoothed distribution entropy when ignoring 20% or 30% of outlier values from a dataset,

while the other features evaluate how well a dataset �ts Gaussian, Extreme Value, and

Uniform distributions. These features were identi�ed through the Highly Comparative

Time-Series Analysis (HCTSA) and have shown good performance in feature selection

methods.

To assess the importance of individual features, the feature selection method outlined

in section 4.2 was followed. Figure 5.14 shows the general approach, while Figure 5.15

illustrates a speci�c example using the RMS feature.

The evaluation involved determining the performance of each feature using a Support Vec-

tor Machine (SVM) model. Speci�cally, models were created for every possible combination

of feature subsets containing one to three features, drawn from a preselected list of 51

features in Table 5.1.

This approach resulted in the generation of∑3
i (51i ) unique models, allowing for an in-depth

examination of how various feature combinations performed in distinguishing between the

di�erent gears. Each model’s performance was assessed based on the percentage of correct

predictions it produced.

To tailor the evaluation results to speci�c needs, test datasets with either natural or arti�-

cially introduced distortions can be chosen. This customization helps identify features that

perform particularly well in handling speci�c types of distortion, providing insights into

their robustness and suitability for varying conditions.

To calculate the contribution of a speci�c feature, only the models in which that feature

was included were considered. The performance scores of these models were averaged

and assigned exclusively to that speci�c feature. This ensured that each feature’s score

re�ected only the instances where it was actively contributing to the model’s predictions.

110



5.2 Feature Selection: Gearbox Test Bench

Table 5.1: Overview of Features and Domains.

No. Feature Domain Notes

1 Maximum amplitude Time FS
2 Root mean square (RMS) Time AE
3 Mean amplitude Time AE
4 Mean absolute amplitude Time AE
5 Standard deviation Time FS
6 Skewness Time FS
7 Kurtosis Time FS
8 Energy Time FS
9 Sum absolute amplitude Time AE
10 Sum root amplitude Time AE
11 Root energy amplitude Time AE
12 Crest factor Time FS
13 Clearance factor Time FS
14 Hjorth activity Time Proven in EEG analysis [66]
15 Hjorth mobility Time Proven in EEG analysis [66]
16 Hjorth complexity Time Proven in EEG analysis [66]
17 Compared distribution entropy 1-2 Time Assesses change in distribution entropy
19 Compare gaussian �t Time Evaluates Gaussian distribution �t
20 Compare extreme value �t Time Evaluates Extreme Value distribution �t
21 Compare uniform �t Time Evaluates Uniform distribution �t
22 Spectral entropy Frequency Captures impulsive nature of faults [112]
23 Spectral negentropy Frequency Measures spectrum negentropy [112]
24 Peak frequency 1-5 Frequency AE
29 Fractional peak position 1-3 Frequency AE
32 Weighted peak frequency 1-5 Frequency AE
37 Partial power 1-6 Frequency AE
43 Alpha ratio Frequency FS
44 Spectral mean Frequency FS
45 Spectral mean square Frequency FS
46 Spectral centroid Frequency FS
47 Root mean square frequency Frequency AE
48 Root variance frequency Frequency AE
49 Spectral skewness Frequency FS
50 Spectral kurtosis Frequency FS
51 Spectral �ux Frequency FS

The averaged scores, based on the prediction accuracy, were then used to rank the features.

Figure 5.16 illustrates the results of investigating the features’ robustness against arti�cially

introduced noise. For this purpose, the model is trained on undisturbed, recorded data

and tested on unseen data, which was arti�cially corrupted by introducing random noise

with di�erent levels L. L represents the percentage of the root mean square (RMS) of the

111



5 Application

Figure 5.14: General approach for feature selection: generating SVM models for all combinations of 1-3
features from a preselected list of 51 features to compute average scores for each feature.

Figure 5.15: Evaluation of the RMS feature in combination with other features using SVM models to calculate
predictive performance scores.

initial signal, with values ranging between L = 0% and L = 25%. The bottom plot shows

the mean and standard deviation in blue for each features across the di�erent noise levels

corresponding to the upper plot. The standard deviation measures the extent to which the

performance of features varies across di�erent noise levels. Consequently, it can be used to

quantify robustness against noise: the higher the standard deviation, the more susceptible

the feature is to changes in noise levels.

A robustness score against noise is illustrated in orange circles. To de�ne such a score, the

mean value is incorporated to account for generally high performance across noise levels,

while also favouring low standard deviations to ensure consistency and stability.

However, consider that features that already perform poorly at L = 0% have limited

potential to experience substantial losses in accuracy. This can be described as a lower

”fall height”. Consequently, smaller standard deviations may be attributed to general low

accuracies, rather than exclusively to the feature’s robustness against noise. To account for

this e�ect, the �nal scores are calculated for measuring noise robustness using the equation:

sN = mean −
std

1 + mean
(5.1)

Dividing the standard deviation by the mean value plus 1 before subtracting it from the

mean value itself allows us to account for the fall height e�ect. Since mean values range

between 0 and 1, adding 1 to the mean before division ensures that the term std
1+mean

increases

monotonically with the mean. This approach prevents features with initially low values

but high variability from being unfairly advantaged or disadvantaged in the �nal scoring.
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Figure 5.16: Evaluation of noise in�uencing feature performance. The top plot shows the average accuracy of
various features across di�erent noise levels. The bottom plot presents the corresponding mean values and its
standard deviations in blue. The orange circles show the noise robustness score calculated via Equation 5.1.

For low to medium noise levels L ≤ 20 % the distribution features achieve the best scores.

They perform exceptionally well in the absence of noise but show a higher drop in perfor-

mance as noise increases. This is represented by high standard deviation values.

The sum root amplitude starts with a high value for the noise-free signal and maintains the

highest values even for larger noise levels < 20 %.

The spectral mean exhibits very small standard deviations and good performance under high

noise levels. This indicates that the spectral mean is a stable feature, showing consistent

performance with minimal variation, even as noise increases.

The majority of features show a similar trend: decreasing scores with increasing noise

levels. This trend highlights the general challenge of maintaining model accuracy as the

noise in the data increases. Features with smaller error bars in the robustness noise plot are

more reliable as they demonstrate consistent performance across varying noise levels.

Next, following the same approach but instead of using arti�cial corrupted data as test data,

data recorded at a later time is employed.

As a result of extensive use, the gear demonstrator exhibited visible signs of wear, such as

usage marks and chain abrasion. Additionally, the sensor position and screws on the holder

were intentionally le� unadjusted, further contributing to the investigation of the features’

performance under conditions of wear and tear.

These factors altered the signal characteristics, against which the features should demon-

strate robustness.

The expectation is that, compared to arti�cially adding noise, through these time-induced

changes, the test data is much closer to a real world scenario. The algorithm might identify

signal characteristics that change unpredictably over time, which are not reliable for robust

classi�cation, and avoid relying on them. Instead, it would focus on the stable characteristics

that are still useful for accurately classifying the gears.
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Figure 5.17 illustrates the results of investigating the features’ robustness against this real

signal degradation over time. For improved visualization in the graph, only four dates were

selected, including the training data. The additional measurements are illustrated later on.

The top plot shows the average accuracy of various features tested on subsequent data.

The bottom plot presents the corresponding mean values, standard deviations and the �nal

scores calculated via Equation 5.1
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Figure 5.17: Evaluation of wear and tear in�uence over time on feature performance. The legend displays the
date and the number of days elapsed since the previous one.

Contrary to the expectation that predictive power would continuously decrease, there is no

clear trend observed across all features. Initially, the model shows signs of degradation, but

a�er additional time has passed, several features show recovery. One possible explanation

is that patterns in the data that the model was previously trained on reappeared in the

later dataset, enabling the model to regain predictive accuracy. This recurrence of familiar

patterns may help the model recalibrate or re-align with the underlying data structure,

temporarily boosting performance.

The ”distribution features”, compared distribution entropy 1 & 2, compared extreme value

�t, compare uniform �t and speci�cally compare Gaussian �t, achieve the highest score

with a low standard deviation, indicating strong performance and stability over time. The

Sum Root Amplitude feature also stands out with higher values.

Figure 5.18 compares the result of data that solely deteriorated over time from Figure 5.17

with robustness scores of arti�cially corrupted data of Figure 5.16. In both scenarios, the

distribution features exhibit the highest scores. However, in the case of arti�cially intro-

duced noise, this is less pronounced.

On the other hand, several frequency features, such as root variance frequency, root mean

square frequency, spectral centroid, and alpha ratio partial power 5 & 6, perform relatively

poor in terms of robustness scores when arti�cial noise is introduced compared to the
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5.2 Feature Selection: Gearbox Test Bench

scores from time-induced deterioration.

For the other features, despite varying test conditions, the scores exhibit a similar trend,

suggesting that arti�cially introduced noise generates dependency patterns comparable

to those produced by time-induced distortions. Using arti�cial noise could be advanta-

geous, as collecting data over time and waiting for natural deterioration is signi�cantly

more time-consuming. Thus, replacing natural degradation with arti�cially introduced

noise could serve as a practical alternative, yielding comparable relative scores. However,

further investigation is necessary to clarify several in�uencing factors, such as the speci�c

application contexts, the nature of time-induced distortions and the type of arti�cial noise

used.
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Figure 5.18: Comparison of Time and Noise Robustness Scores. The plot shows robustness scores for each
feature, with blue circles representing robustness to degradation over time and orange circles indicating
robustness against arti�cially introduced noise. Higher scores suggest greater feature reliability in maintaining
predictive performance under the respective conditions.

Considering that for N features it is necessary to train∑3
i (Ni )models, it is not suitable for a

quick feature selection. A conventional, yet faster method, which avoids training numerous

models, is to use the standard feature selection algorithms presented in the previous chapter.

To bundle these algorithms, thus reducing bias introduced when using only one method, 15

algorithms are employed to calculate scores sji for each algorithm j and feature i. For each

feature 15 scores are obtained from each selection algorithm.

For each method the scores are rescaled on a scale from 0 to 1 for each feature individually:

rji,rescale =
sji − minj(sji)

max(sji) − min(sji)
(5.2)

Then the average score for each feature is calculated as follows:

si = meanj(rij) (5.3)
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Because the algorithms operate on di�erent scales, rescaling scores before averaging ensures

that each method has an equal in�uence on the �nal score.

The result is illustrated in Figure 5.19. For the speci�c selection algorithms refer to Fig-

ure 5.20.
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Figure 5.19: Average Score of the 15 Feature selection algorithms.

Again, the distribution features and the sum root amplitude show high scores with the

compared gaussian �t achieving the highest score.

However, in this selection process using standard algorithms (SFS), although time-e�cient,

the selection cannot be adjusted to prioritize signal degradation caused by wear and tear

or increasing noise levels, as it is possible in the previous Feature Model Selection (FMS)

process through feature permutation and the use of various datasets.

To combine the bene�ts of FMS, which adapts to noise and wear e�ects, with the e�ective-

ness of SFS, the weights wj are calculated for each algorithm j. These weights are used to

derive a weighted average, favouring the algorithms that tend to highlight similar features

as the FMS method. If this similarity arises from fundamental patterns in the datasets,

making these weights applicable for general gearbox measurements beyond the speci�c

application. Using the weights, instead of just using Equation 5.2 and Equation 5.3 the �nal

scores can then be calculated via:

si =
∑j wjsji

maxj(sji)
(5.4)

The weights and the comparison between SFS and FMS is illustrated in Figure 5.20. The

�gure shows the feature scores for the SFS methods and for the FMS algorithm using SVM

models and arti�cial noise. The R-square value is then used to compare the scores of each
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5.2 Feature Selection: Gearbox Test Bench

SFS method with the FMS scores. The Chi-Square Test yielded highest R-value.

SVM (subsets of 3) score R/R2

ANOVA1 0.66/0.44

DiscriminantAnalysis 0.25/0.063

ClassifEnsemble 0.23/0.053

ChiSquareTest 0.85/0.72

TreeClassif 0.81/0.65

InfFS 0.64/0.41

kNN 0.81/0.67

KruskaWallis 0.6/0.36

Laplacian 0.29/0.082

MRMR 0.087/0.008

NCA -0.1/0.011

neuralNetwork 0.78/0.61

RandomForest 0.58/0.34

RReliefF 0.58/0.33

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051

# Feature

R2 0.57/0.33

Figure 5.20: Comparison of the SVM scores with the scores of fast feature selection algorithm. The top plot
shows the SVM score for each feature and the lower plots show individual feature scores. The corresponding
R and R-square values between each algorithm and the SVM scores are listed on the right with R-sqaure value
being used as the �nal weight assigned to each method.

Figure 5.21 compares the �nal scores for each method and feature. The scores are rescaled

between 0 and 1 for comparison across all 15 selection algorithms. Compared to the un-

weighted FS scores, the weighted FS scores emphasize the distribution features, maintaining

their high values while many other features see a decrease.
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Figure 5.21: Comparison of di�erent scores.
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Since the weights were designed to adjust toward the noise robustness results, the weighted

FS scores should align more closely with the noise robustness scores. This general tendency

is indeed observable. To quantify this, the RMS di�erence between the noise robustness

scores and the unweighted and weighted FS scores are calculated, respectively. The RMS

value decreased from 0.39 to 0.36 a�er introducing the weights, con�rming this shi�.

A�er rating the features a further step is to identify the optimal number of features. Several

studies [18, 113, 114] describe the bene�ts of reducing the feature dimensionality across

several �elds: Reducing features in classi�cation problems can signi�cantly enhance model

performance by minimizing over�tting, which helps the model generalize better to new

data. It simpli�es the model, making it faster to train and easier to interpret, while also

lowering computational costs.

However theoretically determining the optimal number of features for a specify case is not

straightforward [115]. To identify the optimal number for this application, an experimental

approach is chosen to evaluate prediction accuracies across di�erent sizes of feature subsets.

Starting with models based on a single feature, extra features are sequentially added in the

order of their robustness scores. The results are illustrated in Figure 5.22.
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Figure 5.22: Prediction accuracy for varying number of features. The features were added consecutively
corresponding to the SVM Time, SVM Noise, the weighted and unweighted FS scores. The mean does only
take the unweighted FS scores into account in order to avoid overvaluing the results of the FS scores.

All methods show that the initial few features are crucial, as most accuracy gains occur

within the �rst 5 to 10 features. Adding more features beyond this point (around 10-20)
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5.2 Feature Selection: Gearbox Test Bench

leads to accuracy declines or �uctuations, suggesting that additional features may introduce

noise or over�tting and reducing the model’s generalization capability.

The investigations in [113] on the e�ect of number of features on classi�cation of roller

bearing faults con�rm these �ndings and show good high accuracies for < 10 features using

SVM and PSVM models.

Thus, the di�erent scores are compared based on SVM models with 5-10 features and

calculated the corresponding mean values. Figure 5.23 illustrate these values with the

standard deviations, indicated by dotted lines in the respective colors.

The dates of the data are plotted on the x-axis in equidistant steps, regardless of the actual

recording dates. While it may be useful to plot the results against a variable linked to

the expected deterioration of the demonstrator, such as its usage and strain, a neutral

approach with equidistant steps is chosen for clarity. Although the elapsed days and

external visitor use of the demonstrator were recorded, many unregistered factors—such as

internal tests, relocations, and exhibitions—also contributed to signal deterioration. Speci�c

events, like impacts during relocations or improper use by external visitors, may have

caused abrupt changes in the recorded data, accelerating deterioration. Consequently,

de�ning a reliable measure to accurately represent wear and tear is challenging, making

the neutral, equidistant approach a practical choice for an overview.

However, as elapsed days and the number of external visitors are undeniably linked to wear,

Figure 5.24 additionally displays the measurements on the corresponding x-scales.
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Figure 5.23: Prediction accuracy for the SVM models trained on the �rst data set at 2022-07-07 and tested on
the other. The number of features used to train the models are varied from 5 to 10. The mean value are then
illustrated with the solid line, and the dotted line represent the standard deviation.
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Figure 5.24: Analog to Figure 5.23 but with di�erent x - scales.

All methods showed improvement compared to using the full set of 51 features. The highest

scores were achieved by the SVM-Time scores. It is important to note that the datasets

from 2023-03-17, 2023-05-23, and 2023-10-18 were used to identify these scores, which may

introduce a bias towards better results.

However, the remaining, unseen datasets still delivered the best results, con�rming the

robustness and e�ectiveness of the SVM-Time scores.

The second-best scores are based on the SVM-Noise scores. This is a good result as the only

dataset used to identify these scores was recorded on 2022-07-07.

The FS method also achieved improved results compared to the full dataset and was �ne-

tuned by the weighted FS scores. Using these weights across di�erent applications assume

the FMS scores as a benchmark indicating robustness and resistance to both arti�cial noise

and other signal degradation e�ects.

This is justi�ed for two main reasons: �rstly, by speci�cally using modi�ed testing data

to create scores that are robust against intended modi�cations; and secondly, by the high

accuracy demonstrated in the �gure.

The accuracies for the data recorded on 2023-08-28 are notably reversed compared to other

datasets, with a conspicuous peak observed when using the entire feature set. Since the full
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5.3 Global Reconstruction

feature set generally yields the worst average performance, it can be inferred that the model

may have selected features that capture random e�ects rather than robust characteristics.

This selection likely resulted from the high accuracy achieved in the training data from

2022-07-07, which was in�uenced by these random e�ects. Consequently, the peak observed

in the 2023-08-28 dataset could be due to the recurrence of these random characteristics

identi�ed during the training phase

Furthermore the dataset recorded on 2023-08-28 may have issues related to data quality.

This could include noise, missing values, or other anomalies that were not present in the

other datasets. Such issues can signi�cantly impact the performance of the other SVM

models.

In summary, every method shows improvement over using the full set of 51 features. The

highest scores are achieved by the SVM-Time method, which consistently delivers better

results even when applied to unseen datasets. This indicates that the scores identi�ed are

e�ective in improving accuracy. The second-best performance comes from the SVM-Noise

method, which is particularly noteworthy as it only relies on the initial dataset recorded on

2022-07-07 for score identi�cation. The FS method also shows improved results compared

to using the full feature set, and these results are further re�ned by applying the weighted

FS scores.

5.3 Global Reconstruction

This section explores the application of the global reconstruction algorithm to two speci�c

processes: the VAP and the T-RTM process. In both cases, accurately predicting and

controlling the �ow front, the leading edge of �uid as it in�ltrates the �bre preform, is

crucial to ensuring the quality and integrity of the �nal composite material.

Monitoring and controlling the �ow front dynamics is essential for two main reasons [10,

116]:

• Complete wetting: Ensures that the entire preformmaterial is adequately impregnated

with resin or polymer melt.

• Avoiding pores: Prevents the formation of air bubbles, which can lead to defects in

the �nal composite material.

During both processes, it is crucial to ensure that the entire preform material is wetted,

consolidated, and chemically cured.

To understand the physical characteristics of liquid composite moulding processes, such as

vacuum infusion and injection moulding consider Darcy’s law [84]:

Q

A
= u = −

K

�

dp

dx
(5.5)
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The Darcy velocity, u is de�ned as the quotient of the volumetric �ow rate Q and the �ow

area A. This velocity depends on the permeability K of the impregnated �bre preform, the

viscosity � of the liquid and the pressure gradient dp
dx
.

The permeability is in�uenced by the architecture of the textile preform and the degree of

compaction when vacuum is applied and the viscosity is mainly in�uenced by the liquid’s

temperature. The pressure gradient is determined by the pressure di�erence between the

cavity (vacuum) and the resin pot. This pressure di�erence is typically the ambient pressure

for resin infusion or approximately 5 bar for transfer injection moulding [84, 117].

The complexity of �ow front dynamics, in�uenced by factors such as pressure gradients,

�uid viscosity, and �bre architecture, presents signi�cant challenges for accurate predic-

tion through theoretical models or simulations. These models and simulations are heavily

dependent on physical domain knowledge and precise physical parameters, which are not

always readily available.

As a result, the VAP and the T-RTM processes serve as excellent examples of where the

global reconstruction method could be particularly bene�cial, o�ering valuable insights into

the critical variable of �ow front dynamics. Unlike other methods, the primary advantage of

this reconstruction technique is that it relies solely on sensor measurements and geometrical

relationships to accurately reconstruct the �ow front dynamics.

Using a simple, �at tooling setup, the VAP experiments provide a controlled environment to

test the basic functionality of the algorithm for reconstructing resin propagation. This setup

allows for comprehensive data recording, which is crucial for validating the algorithm. In

contrast, applying the algorithm to the T-RTM process involves highly complex tooling

and limited monitoring capabilities, serving as a �eld test of the algorithm’s robustness.

However, it is important to note that while comparing these methods, their di�ering ap-

plication areas must be considered. The reconstruction method is not designed to predict

process dynamics but rather to function as a measurement tool.

For the VAP process, a triangular mesh grid consisting of 30,000 nodes with a maximum

edge length of 0.28 cm is �tted to the tool’s surface, which measures 30 × 60 cm.

The arrival times t̄i are automatically extracted from a recorded image sequence and as-

signed to the corresponding nodes i.

Using MATLAB 2023a, a �ow front detection method was developed. It identi�es the

boundary of the resin �ow front by comparing the current image to a reference image

recorded earlier. The contrast between the reference and the current picture is calculated

by taking the absolute di�erence in the luminance channel.

This contrast image is converted into a binary image using a threshold value �, where

pixel values ≤ � are assigned 1, and values > � are assigned 0. Based on experimental

122
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optimization, the threshold � is set to one-quarter of the maximum contrast value.

To improve the binary image, noise is removed and morphological closing are applied using

a disk-shaped structuring element, which �lls small holes and gaps. The boundaries of

the connected components are detected using MATLAB’s built-in function ’bwboundaries’

[118]. The largest boundary is selected as the �ow front boundary.

The time t of a current recording is then assigned to the pixels within the �ow front bound-

ary, which have changed between the current and its previous recordings. This time t is

de�ned as the arrival time.

Figure 5.25 illustrates the process of identifying the arrival times for the �ow front. The

�gure shows a camera recording, zoomed in on the �ow front. The boundary of the �ow

front at t = 30 s is highlighted in red. Noticeably, there are isolated �uid segments that

advance ahead of the main �ow front, visible as slight discolourations. These segments are

correctly detected and disregarded by the algorithm.

An earlier recording, taken 1 s prior, depicts the �ow front’s boundary outlined in green.

Nodes that fall between the red and green boundaries are assigned an arrival time of t = 30 s.

This intermediate region is marked in blue within the �gure.

9 cm

30 cm

Figure 5.25: Photography of a VAP experiment and identi�cation of �ow front. The red boundary marks the
current �ow front. The green boundary represents its position one recording earlier. The area enclosed in
between these boundaries is marked in blue.

This comprehensive spatial data enables an e�ective examination of di�erent virtual sensor

setups. In the absence of physical sensors, arrival times are extracted from chosen nodes

corresponding and treated as measurements of virtual sensors. The grid and the extracted

arrival times, representing virtual sensor data, were used as initial parameters for the �ow

front reconstruction.

Finally, a comparison of the recorded data with the results of the reconstruction allows

for veri�cation of the algorithm. A measurement for the global average time di�erence

between recorded and reconstructed data is calculated per node using the equation:

f =
∑i |t̄i,Recorded − t̄i,Reconstructed|

Number of Nodes
(5.6)
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A�er choosing 16 nodes as sample points with their extracted arrival times and using

Equation 4.20 an appropriate parameter set for the weight function win, see Equation 4.16,

is identi�ed, listed in Table 5.2

Table 5.2: Parameter values for VAP and T-RTM processes.

Parameter VAP T-RTM

� 0.01 0.02
� 35 20
R 5 4

Applying the reconstruction algorithm as described in the previous chapter delivers the

results represented in Figure 5.26. It illustrates the boundaries of the recorded �ow front

in green for times t ranging between 50 s and 250 s. In correspondence to these times the

contour of the reconstructed �ow front is illustrated in red. The background, represented

as a greyscale metric, visualizes the deviation between reconstructed and recorded arrival

times using the formula |t̄j ,Recontructed − t̄j ,Recorded |. The average absolute delay is f = ±4.6 s,

which is, in comparison to the total time of the process of 278 s, a percentage deviation of

1.7%.

Figure 5.26: Contour plot showing the absolute deviation between the recorded and reconstructed arrival
times. Blue dots indicate the locations of the sample points. Contour lines represent the �ow front based on
recorded arrival times (green) and reconstructed arrival times (red) across observation periods ranging from
50 s to 250 s.

The calculated �ow front interpolation o�ers deeper insights into the process, highlighting

locations that are di�cult to impregnate. This demonstrates the algorithm’s adaptability, as

it can be �ne-tuned by adjusting the weight parameters as previously described.

The application of the algorithm to the VAP process demonstrated its e�cacy, showing an
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average temporal deviation of just 1.7% compared to the total process time. This level of

accuracy enables the detection of deviations and anomalies in the �ow front based on the

reconstructed data.

In the experiment illustrated in Figure 5.26, the algorithm’s ability to handle typical phe-

nomena such as wrinkled �ow fronts and dragging along the edges was tested. These issues

arise due to variable permeability of the preform and increased friction. The resolution

of the interpolated �ow front is dependent on the density of the sensor network, as the

estimation relies on information from surrounding sensors, which is managed by the weight

function.

By identifying potentially critical areas, strategic sensor placement can enhance the accu-

racy of the calculated �ow front. E.g. to address the common issue of lagging �ow fronts

along the edges observed in the VAP experiments, additional sensors were placed near the

edges, as shown in Figure 5.26. This setup allowed the reconstruction to accurately present

the �ow front propagation.

However, some deviations occurred due to the wrinkled �ow front, which could not be

fully captured by the algorithm because the average distance between sensors was smaller

than the wrinkled structure of the �ow front. To resolve this issue, a signi�cantly higher

number of sample points would be required in these locations to provide the necessary

input data for accurate interpolation.

In the following section, the application of the reconstruction algorithm to the data recorded

by the ultrasonic (US) sensors during the T-RTM experiments is described. Since the �ow

front dynamics in these experiments cannot be optically tracked and validated, all infor-

mation regarding the �ow front relies solely on the sensor data. Therefore, as a crucial

�rst step, the ultrasonic signals recorded during the T-RTM experiments are analyzed by

comparing them with machine data and other sensor readings, such as pressure data, to

understand how the US signals correspond to events during the T-RTM process.

To illustrate this analysis, refer to Figure 5.27, which compares the press position with

the RMS values extracted from the US signals. The red-shaded interval indicates the time

period during which the injection occurs. The process begins with the tool being closed to

approximately 3.5mm above complete closure to facilitate vacuuming. This initial closure

helps in evacuating the cavity to reduce moisture and improve permeability. A�er evacu-

ation, the tool is further closed to a 2mm gap, which is the set position for the injection

phase.

This step is also visible in the RMS as the preform gets compressed and pushed against the

tool surface, altering the re�ection conditions.
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Figure 5.27: Illustration of the RMS-feature extracted from a US-Signal and tool position during resin injection.

The injection of the resin starts at this point. Shortly a�er the injection begins, there is a

sudden drop in the RMS value. This drop corresponds to the arrival of the �ow front and

the abrupt change in re�ection conditions due to the resin wetting the preform.

During the injection phase, the RMS shows considerable �uctuations. These �uctuations

could be attributed to the high pressure gradients and uneven spread of the �ow front as

the resin advances.

For example, as observed in the VAP experiments, illustrated in Figure 5.25, the �ow front

can initially wet the pores between the �bre bundles before gradually impregnating the

bundles themselves. This uneven progression can lead to air entrapment within the preform,

causing intermittent changes in the re�ection conditions.

Additionally, varying permeability of the preform introduces localized di�erences in �ow

speed and direction, which contribute to the irregular shape of the �ow front.

Figure 5.28 presents a representative set of RMS values extracted from recorded ultrasonic

signals, highlighting the typical characteristics observed during the �ow front detection

process and their comparison with pressure data. The �gure illustrates the dependency of

the ultrasonic signals on changing re�ection and transmission conditions at the cavity’s

surface, as well as their correlation with the pressure variations within the cavity.

The �gure demonstrates the RMS dependency on pressure, which arises from changes

in the re�ection coe�cient induced by pressure. This occurs because the pressure alters

the material properties, such as the density of the material, which in�uences the acoustic

impedance and therefore the re�ection indices. Another factor is the changes in contact

that occur. The preform is not necessarily completely �at, lacking full contact with the

cavity. Applying pressure can �atten the preform, increasing the contact with the cavity

and thus altering the re�ection conditions.

The pressure is monitored using sensors located on the surface of the cavity. The positions

of the relevant sensors, which are strategically integrated into the tool, are depicted in
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Figure 5.28: Illustration of the behaviour of the RMS of two channels and pressure over time during a
composite manufacturing process. The y-axis on the le� represents the RMS and the y-axis on the right
represents the pressure. The red-shaded area indicates the time period when the mixing head is on.

Figure 5.29.

Figure 5.29: Sensor positions within the tool layout.

The pressure curve captures the key stages of the process. Initially, there is a sharp rise in

pressure, corresponding to the activation of the mixing head, indicated by the start of the red

shaded area. A�er the injection ceases, further closure of the cavity from 3.5mm to 2mm

results in an additional pressure increase, reaching its peak value. During polymerization,

mold shrinkage e�ects cause a gradual pressure drop. Over the subsequent 5-minute dwell

period, the matrix polymerizes, attaining its �nal sti�ness. Any irregularities in the pressure

during this phase are attributed to the polymerization process. Finally, in the last step, the

tool is opened, and the fully polymerized part is manually removed. [86]
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The red and blue curves, representing the RMS of the ultrasound signals, remain relatively

stable before the injection process begins. Immediately a�er the activation of the mixing

head, both channels exhibit a sharp decrease in amplitude. This decrease occurs sequentially,

re�ecting the temporal order corresponding to the distance from the injection point. This

behaviour suggests a signi�cant change caused by the arrival of the �ow front, resulting in

a sudden alteration in the re�ection conditions. Channel 14 shows minor �uctuations but

remains relatively stable compared to Channel 4.

The �uctuations in the RMS of Channel 4 begin with the injection phase and the rising

pressure. When the pressure drops and stabilizes, the �uctuations stabilize as well. The

RMS extracted from the signal of Channel 14 shows a di�erent behaviour, the RMS abruptly

rises sharply to the initial value, indicating a return to the initial re�exion conditions which

could be interpreted as a complete loss of contact between the impregnated preform and

the surface.

During the high pressure gradients the RMS show rather unpredicted behaviour in com-

parison to the low gradient zones. This underlines the in�uence of the pressure on the

US-signals.

A�er the injection, the RMS value stabilizes somewhat, indicating that the �ow front dy-

namics have slowed down as polymerization begins. The resin solidi�es, and the system

reaches a more stable state. Following the injection, the RMS value stabilizes, indicating

that the �ow front dynamics have slowed down as the polymerization process begins. As

the �uid solidi�es, the system transitions to a more stable state, with fewer changes in

re�ection conditions and less �uctuation in the ultrasonic signal. Gradually, the RMS value

converges, suggesting the completion of the polymerization process.

In general, there are three trends observed in the signals throughout the experiments. The

�gure Figure 5.30 depicts three distinct types of RMS value behaviours during the T-RTM

process, each corresponding to di�erent physical phenomena within the system.

• Abrupt, complete increase: The RMS value shows a sudden and complete rise. This

behaviour could be indicative of a sudden detachment of the preform from the cavity

surface, possibly due to stresses that are abruptly released. Such a sharp increase in

the signal suggests that the resin has caused an immediate change in the re�ection

conditions, re�ecting a rapid interaction with the preform.

• Gradual increase: The RMS value gradually increases to its maximum value. The

gradual rise in the signal following the arrival of the �ow front suggests a slow

detachment of the preform from the surface, potentially due to material shrinkage.

As the resin impregnates the preform, it may cause the preform to slowly li� away

from the tool surface, leading to incremental changes in the acoustic impedance and

a corresponding gradual increase in the RMS value.
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Figure 5.30: Illustration of three distinct RMS value behaviours during the T-RTM process, each re�ecting
di�erent physical phenomena.

• Saturation behaviour: The signal initially rises and then slowly decreases over time,

reaching a stable plateau. The initial abrupt decrease indicates the arrival of the

�ow front, while the gradual, steady decrease over time (up until around 24min)

likely corresponds to the ongoing polymerization process. The absence of abrupt

changes such as pressure drops or sudden detachment of the preform suggests a

stable interaction between the resin and the preform, with the steady signal decrease

re�ecting the progress of polymerization and eventual stabilization.

The T-RTM experiment does not allow for optical validation, making it di�cult to ascertain

that the initial abrupt drop in ultrasonic signals is due to the arrival of the �ow front. To

address this, validation experiments were conducted using the same sensors and a transpar-

ent plexiglass as a tool, for which custom 3D-printed sensor holders were designed.

For practicality and cost-e�ectiveness, vegetable oil was used instead of �-caprolactam.

Since the primary objective was to validate the arrival of the �ow front, vegetable oil served

as a suitable substitute. The polymerization process was not a concern in this context.

Using Equation 2.16 Table 5.3 compares the theoretical re�ection index values with those

derived from the material parameters of Table 5.4.

The acoustic impedance of plexiglass is closer to that of oil than to that of steel, resulting in

signi�cantly lower re�ection values for validation trials with plexiglass. Although there are

di�erences in viscosity and corresponding re�exion indices between oil and caprolactam,
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Table 5.3: Re�ection indexes for various material pairs and the ratio of the echoes amplitude before and a�er
the �ow front arrival of caprolactam and oil (Air/Caprolactam) and (Air/Oil) which is given by the division of
the corresponding re�exion indices.

Material Pair Re�ection Index Ratio

Steel/Air 1.0000 -
Steel/Caprolactam 0.9363 0.9363
Plexiglass/Air 0.9997 -
Plexiglass/Oil 0.4694 0.4695

Table 5.4: Sound velocities, densities, and impedances for various materials [20, 119].

Material Velocity of Sound (m/s) Density (g/cm3) Sound Impedance (Pa⋅s/m)

Caprolactam 1330 1.1 1463
Steel 5700 7.8 44460

Plexiglass 2700 1.2 3240
Air 340 0.0012 0.408
Oil 1300 0.9 1170

which can cause absolute di�erences in the signals, the critical factor for detection is the

relative drop rates in the RMS value, making oil an appropriate replacement.

In [120], various methods for �ow front detection based on ultrasonic signals were examined

and validated through camera recordings. The following methods were compared, focusing

exclusively on the RMS value due to its straightforward interpretability. When the preform

is wetted, the RMS value typically drops because the liquids used generally have an acoustic

impedance closer to the tooling than air. And since air has a much lower acoustic impedance

compared to the tooling, a drop in the re�ection index occurs, leading to a decrease in the

amplitude of the re�ected signal and, consequently, the RMS value. Therefore, methods

were developed to identify the time of this abrupt drop, corresponding to the �ow front

arrival. The straightforward interpretation of the RMS value o�ers a signi�cant advantage

over other features, where interpretation and general method development for �ow front

detection are not as straightforward.

• Threshold method: This method involves normalizing the RMS value based on the

average signal value before the �ow front arrives. The �ow front arrival is detected

when the RMS value drops below a prede�ned threshold. The method proved e�ective

in detecting the �ow front within the visually determined arrival time range. Using

di�erent thresholds (e.g., 0.9, 0.95, 0.99) allowed for �exibility in adjusting detection

sensitivity. Signal smoothing was applied to minimize noise, enhancing the method’s

performance.

• Di�erentiation method: This approach involves numerically di�erentiating the RMS

value to detect abrupt changes associated with the �ow front arrival. The di�er-
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entiation process highlights sharp drops in the signal. The algorithm searches for

the minimum value in the di�erentiated signal, which corresponds to the �ow front

arrival. While the method successfully identi�ed the �ow front, it was sensitive

to noise and required signal smoothing for optimal performance. It struggled with

gradual changes and was less e�ective for slower �ow front movements.

• Change point detection method: MATLAB’s ischange function [121] was used to

identify change points in the signal. The function splits the signal into segments at

points of abrupt change, optimizing the segmentation based on a cost function. This

method providedmore precise detection compared to the threshold and di�erentiation

methods but was computationally intensive and required careful parameter tuning.

All methods were tested with RMS values extracted from various gate positions and lengths.

Ultimately, it was decided to continue with the threshold method due to its ease of ap-

plication, robust results, and minimal need for parameter adjustments across di�erent

experiments and sensors. A threshold value of 0.95 consistently yielded reliable results.

A�er validating the reconstruction algorithm, it was applied to the T-RTM process. In

this process, the solid steel tooling hinders optical monitoring. However, the results of

the reconstructed �ow front are compared with the manufactured parts from successful or

prematurely aborted experiments.

For the complex T-RTM mold, the mesh used as a base for the graph is �tted to the tooling’s

CAD model, consisting of 130,000 nodes with a maximum edge length of 1 cm. Table 5.2

lists the parameters for the weight function, and Figure 5.31 presents the reconstruction of

an experiment, enabling an estimation of the �ow front during the process.

Figure 5.31: Illustration of the reconstructed �ow front (red) applied to the T-RTM process. The blue dots
represent US-sensor locations.

Figure 5.32 illustrates an un�nished component where the experiment had to be aborted

because the catalyst was depleted during the injection process. The �bre preform was there-

fore partly impregnated, providing snapshots of the �ow front. Despite this interruption,
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it can be inferred that the �ow front propagation followed similar global trends to those

observed in other experiments, as the other parameters, such as temperature and pressure,

remained within the expected ranges.

In general, a preferred direction of propagation can be observed. In Figure 5.32, the �ow

front predominantly moved along the negative x-direction (west). This preference might be

due to the resin encountering fewer obstacles when moving along the negative compared

to the positive x-direction. Additionally, the �anges were more e�ectively wetted. These

trends were deduced from the un�nished parts as illustrated in the Figure 5.32.

Furthermore, this assumption is reinforced by the recurrent dry spots along the right edge

of the component, indicating slower wetting rates in this direction.

Figure 5.32: Photography of a un�nished part. The �gure shows the preferred �ow direction of the resin.

To mitigate this issue, strategic cuts were made in the preform, as depicted in the Figure 5.32.

These cuts aimed to improve resin distribution and reduce the occurrence of dry spots.

These dry spots are clearly visible in manufactured parts as well as in the reconstructions.

Figure 5.33 compares the reconstruction of a successful experiment with the corresponding

manufactured part, highlighting a location of crucial interest where dry spots frequently

occurred. This location correlates with conspicuously long impregnation times estimated by

the �ow front reconstruction demonstrating that even smaller critical areas can be identi�ed.

However, spatially localized e�ects, such as the �ow channel formations observed in

Figure 5.31, may remain undetected by the algorithm if the sensor network is unfavourably

distributed.

These �ow channels are o�en associated with tight curvatures in the mold, which can cause

compressions and wrinkling in the preform. Detecting irregularities in the �ow pattern

requires strategically placing sensors in critical areas to capture detailed data. However,

132



5.3 Global Reconstruction

Figure 5.33: Comparison of a manufactured part (top) with its reconstruction (bottom).

in some cases, the small surface areas and sharp radii in these regions may make sensor

placement challenging or even infeasible. Despite these limitations, optimizing sensor

placement can signi�cantly enhance the algorithm’s ability to analyze �ow front dynamics,

ultimately improving quality control and the e�ciency of the T-RTM process.
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This chapter presents an overview of the three advanced processing techniques proposed

in this work: the Feature Adaption Approach, the Feature Selection Approach, and the

Global Reconstruction Algorithm. For each method, the objectives and methodology are

summarized, highlight the key �ndings. Finally, limitations and challenges are discussed

considering scalability, accuracy and propose potential strategies for addressing these

challenges in future research.

6.1 Feature Adaption

Objective and Methodology

The primary objective of the feature adapting approach is to optimize feature extraction

parameters for ultrasound-based process monitoring to enhance the accuracy and predictive

power of the monitoring system. This involves dynamically adapting the parameters of

features to suit speci�c applications, which is crucial given that the optimal parameters can

vary signi�cantly from one application to another.

The adaptation of features from ultrasound-based measurements plays a critical role in the

accuracy and robustness of process monitoring systems. Feature adaptation ensures that

key aspects of the signal are preserved and enhanced in variable environments, which is

particularly important in industrial applications where noise, environmental variability,

and complex material interactions can impact the reliability of the extracted features.

Many features, whether simple or complex, require predetermined parameters such as

frame size length, partial power limits, etc. These parameters are critical in de�ning the

feature extraction process.

Through this approach the aim was to optimize process monitoring and set a foundation for

robust analytical models. This involves a systematic approach to adjusting and validating

feature parameters to achieve the best correlation with the desired physical properties, such

as viscosity, curing degree, or polymerization progress.

For the experimental setup a rheometer equipped with an ultrasonic measurement system

is used. The setup includes a piezoelectric ceramic transducer for both emitting and re-

ceiving ultrasound signals. The signals are collected during the polymerization process of

�-Caprolactam to Polyamide-6, with the rheometer providing reference viscosity measure-
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ments.

Ultrasound signals are captured at regular intervals. These signals are then preprocessed

using digital �ltering techniques to enhance signal quality by removing noise and irrelevant

frequency components. A�er that the features are extracted.

The focus was on partial power features (representative of the frequency spectrum) and

RMS (root mean square) as a time-domain feature.

• Partial Power: Ratio of the energy in speci�c frequency bands to the full energy.

• RMS: This measures the signal amplitude over time, providing insights into the overall

energy and consistency of the ultrasonic signal.

These were chosen for their ease of interpretability, which is essential for practical applica-

tions. This simplicity helps to understand optimization process and to judge if the features

generalize well across di�erent conditions, avoiding the risk of over�tting. This is a major

concern when tailoring features too speci�cally to an application.

The methodology involves varying the parameters of the selected features and calculating

the Pearson correlation coe�cient (R-score) with the desired outcome (e.g., viscosity mea-

sured bz the rheometer). This iterative process helps in identifying the optimal parameter

settings that provide the highest correlation with the monitored property.

For partial power features, the frequency bands are varied to �nd the most responsive

range and for RMS, di�erent time windows are tested to capture the most signi�cant signal

segments.

Over�tting occurs when the model or features are too closely tailored to the training data,

resulting in poor generalization to new data. By interpreting the R-scores general patterns

to avoid over�tting can be identi�ed. For example, for the rheometer experiments it can

be deduced, that the optimal frequency ranges for the partial power feature consistently

ended at about 2MHz - 2.2MHz. This frequency correlates with the sensor’s eigenfrequency.

To validate this approach, it was applied to the T-RTM process, where monitoring poly-

merization is crucial. In this context, the same material, �-Caprolactam, was used as

in the rheometer experiments. This application aims to investigate if the �ndings from

the laboratory-controlled rheometer experiments can be e�ectively translated to entirely

di�erent setups within industrial environments.

Key �ndings

The methodology successfully identi�ed parameter settings that achieve high correlations

between features and desired process variables while also providing insights into the under-

lying physical principles. By carefully interpreting and visualizing the results, it becomes
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possible to uncover physical correlations, providing insights that can be applied across

various applications.

Speci�cally, the study found signi�cant correlations between the extracted ultrasound

signal features and the viscosity measurements obtained from the rheometer. Notably, the

partial power feature consistently showed high correlation values across di�erent experi-

ments, demonstrating its reliability in tracking changes in viscosity. A deeper analysis of

the correlation values revealed relationships with the sensor characteristics. For instance,

the optimal parameter setting for the partial power feature consistently showed that the

frequency window ended around 2.2MHz.

This pattern, observed across di�erent experiments, provided a general recommendation

for the limits of spectral energy densities. The consistent �nding that the optimal frequency

window aligned with the sensor’s resonance frequency indicated that the method was not

over�tting to the noise or random �uctuations. This �nding is opposed to a random value

caused by over�tting but a constant property of the sensor and could be a general frequency

range applicable to di�erent applications.

This approach is further investigated if it can be applied to more complex, non-laboratory

processes. Therefore, the �ndings on viscosity tracking from the rheometer experiments

were evaluated for their applicability to T-RTM experiments. In T-RTM, an important

aspect for e�cient production is accurately determining the time of full polymerization.

Achieving full polymerization ensures that the �nal composite material exhibits the desired

mechanical properties and structural integrity.

Based on this work, a relationship between polymerization and viscosity could be estab-

lished. It could be observed that the time to reach full polymerization o�en shows a delay

compared to the time required to achieve a constant viscosity. By calculating this time shi�

and leveraging the established correlation between viscosity and ultrasound (US) signal

features, the time to full polymerization can be assessed solely based on US data.

The results of this approach showed excellent agreement with more complex methods

that combine simulation models and DEA data. This validation demonstrates that this

ultrasound-based monitoring technique can reliably predict the time of full polymerization,

simplifying the monitoring process while maintaining accuracy. This approach not only

enhances the e�ciency of the T-RTM process but also underscores the potential of ultra-

sound monitoring as a versatile tool in various industrial applications.

In general, the success of ML-based approaches is highly dependent on the quality and

relevance of the features used in the model. Features represent the underlying patterns

or properties in the data, and if they are not well-de�ned or relevant, the algorithms may

struggle to make accurate predictions [122–124].
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Proper feature engineering, therefore, becomes essential. Extensive research exists on

feature selection methods, such as �ltering, wrapper methods, and embedded techniques,

which help in selecting or ranking features from an existing pool [61, 122, 124]. These

methods mainly aim to reduce dimensionality and improve model performance by focusing

on the most informative features. In this work, however, we not only apply feature selection

techniques but also focus on optimizing individual features before they are selected. Thus

using Pearson correlation the individual features are evaluated and optimized based on

their relationship with the target variables, ensuring that the features are meaningful and

contribute to model accuracy.

It is logical to �rst optimize and properly de�ne features before selecting them because the

quality of the features directly in�uences the e�ectiveness of feature selection techniques.

If the features are poorly de�ned or improperly tuned, even a well-performing selection

method might overlook their potential value. By optimizing features beforehand, we ensure

that they re�ect the most relevant aspects of the process, making feature selection more

e�cient and accurate.

Adapting individual features in this way has three primary bene�ts:

• Revealing the physical background and interpretation of the process and signal.

• Obtaining strong correlations with the desired variables.

• Improving the foundation for ML model performance.

Limitations

• Speci�c focus of study: Although the �ndings from the rheometer experiments and

their application to the T-RTM process are promising and accurate, further research

is needed to validate the method’s applicability to other materials and processes.

Since this study focused on a speci�c polymerization process and material system,

additional experiments are essential to con�rm the robustness of the approach.

To broaden the application scope, future work should include testing the developed

methods on a wider range of materials and manufacturing processes. This would

help in establishing the generalizability and robustness of the techniques.

To this end improving applicability and facilitate industrial implementation, develop-

ing adaptive algorithms that can automatically adjust feature extraction parameters

in real-time based on changing process conditions will enhance the practicality and

e�ciency of ultrasound-based monitoring systems.

• Computational intensity: The iterative optimization process for feature extraction

parameters can be computationally intensive, potentially limiting its use in real-
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time industrial applications. Further optimization of this approach, including the

integration of techniques such as parallel computing, could signi�cantly enhance

computational e�ciency.

Currently, this method is best suited for o�ine application as a tool to re�ne features

and improve the corresponding predictive model. By applying the method beforehand,

it can also aid in uncovering the underlying physical principles of the process by

identifying optimal parameter settings, thereby enabling robust feature selection.

• Complexity of quantitatively predictions: The method has been shown to qualitatively

monitor rheological properties e�ectively. As a next step, appropriate models with

optimized features as input parameters can be developed to provide not only qualita-

tive predictions but also quantitative determinations of rheological measurements.

To quantitatively predict process variables or material properties from ultrasound

measurements, machine learning (ML) and deep learning (DL) approaches can be

employed. However, these methods require a robust and extensive data foundation,

which can be costly and time-consuming to generate.

Alternatively, mathematical models such as physical inversion models [125] can be

developed. However, constructing accurate physical models and identifying reliable

correlations is also a challenging and resource-intensive task. These models are

highly dependent on process variables such as pressure and temperature, and their

complexity increases signi�cantly in real-world applications, where sound wave paths

are non-linear or pass through multiple material interfaces [123, 126].

To address these challenges, re�ning the feature adaptation approach by simultane-

ously optimizing multiple parameters presents a promising alternative. By adapting

features to strongly correlate with the desired properties, this approach can uncover

simple and e�ective mathematical relationships for predicting process variables,

reducing reliance on extensive theoretical modeling.

6.2 Feature Selection

Objective and Methodology

In many cases, the primary issue with machine learning models is not the initial accuracy

achieved but rather the robustness of the model as conditions change over time. This is

also known as data dri�, where the statistical properties of the target variable shi� due

to environmental or operational changes, making long-term model accuracy harder to

maintain. [19]. This can occur due to the model focusing on noise or other properties that

are not constant over time, thereby failing to generalize well to new data.

To mitigate these issues, analytical models require high maintenance, including regular

retraining, updating training data and adaptive learning techniques.

139



6 Discussion

While the aforementioned methods are essential, the approach discussed here aims to com-

plement them by reducing maintenance e�orts and extending intervals between retraining

or supporting adaptive learning techniques. The feature selection approach focusses on

enhancing the robustness and accuracy of predictive models by carefully selecting and

optimizing features. This approach integrates both common feature selection algorithms

[71, 124, 127] and model-based permutation methods to create a comprehensive feature

selection framework.

The methodology is at follows:

1. Preselection Features: Depending on computational resources an initial extensive

list of features is compiled from various sources, including domain knowledge and

previous successful applications.

2. Feature Model Selection (FMS): This method involves training separate models for

each possible combination of features and averaging their accuracy scores. While

it provides a direct link between feature scoring and model performance, it is com-

putationally intensive. To tailor the scores for robustness, introduce synthetically

distorted data customized for the application or use data recorded later in time that

exhibits real signal degradation. This approach ensures that the selected features

remain e�ective under various conditions, enhancing the overall reliability of the

model. However, this approach, especially with a large number of features, can be

computationally demanding. Additionally, datasets containing real degraded data

might not always be readily accessible.

3. To combine the bene�ts of the FMS method while maintaining an e�cient selection

algorithm, utilize weighted standard feature selection algorithms (SFS). The weights,

derived from FMS and calculated only once, are used to adjust the importance of

features within the SFS algorithms, thereby enhancing robustness. This approach

retains the accuracy and reliability of FMS and can be e�ciently applied to larger

feature sets.

To test this method, a setup for gearbox monitoring was constructed, allowing us to

con�gure three di�erent gears in a controlled environment. The setup was equipped with

an ultrasound sensor and the trained ML model is expected to identify these gears based on

the recorded ultrasound data and selected features.

Over time, it is anticipated that the prediction power of the model will decline due to wear,

mechanical misalignment and changes in environmental conditions. This can lead to altered

acoustic emission patterns or degradation of the acoustic signal. To evaluate the selected

features and their performance under the in�uence of a degraded signal, the setup was

deliberately not readjusted or maintained.
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Key Findings

Using the recorded data from this setup, the proposed selection methods can be applied and

compared to standard feature selection algorithms. To do this, 51 features are preselected

out of which the best n features are identi�ed by each corresponding algorithm. The

number of features n was varied from 7 to 14 to minimize bias and ensure a comprehensive

evaluation. The features were selected based on the following methods:

1. FMS: Based on arti�cial corrupted data with random noise.

2. FMS: Based on recorded data later in time.

3. Standard Feature Selection Methods.

4. Weighted Feature Selection Methods

5. All 51 features.

For each method, the selected features are used to train SVMmodels on previously recorded

data. Then the models’ prediction accuracy was tested on data recorded at a later time to

evaluate their performance under real signal degradation conditions. The results showed

that, on average, except for one dataset, every selected feature set performed better than

using the full set of 51 features. This indicates that feature selection plays a crucial role in

improving model accuracy and robustness.

Disregarding the single anomaly, it was found that the proposed feature selection methods

outperformed the standard feature selection algorithms. The FMS model based on recorded

data from a later time achieved the best performance. This suggests that features identi�ed

using naturally degraded data provide a more realistic and e�ective selection for long-term

model reliability.

Overall, this study demonstrates the e�ectiveness of combining FMSwith weighted standard

feature selection methods to enhance feature robustness and model accuracy, even in the

presence of signal degradation. This approach o�ers a practical solution for improving the

performance of machine learning models in real-world applications where data quality may

deteriorate over time.

Limitations

• Dependence on temporal data: The best-performing model, the Feature Selection

Model (FMS), which was based on recorded data from a later time, bene�ted from

prior exposure to the data. This exposure allowed the model to learn patterns of

degradation and recognize speci�c characteristics that are crucial for robust feature

selection. Consequently, the model had an inherent advantage, as it could identify and

adapt to these patterns more e�ectively than models trained on earlier or synthetic

data with noise.
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Despite the advantage of prior exposure, the model also demonstrated superior per-

formance on new, unseen data. This indicates that the model has not only learned

to identify critical patterns in the training data but has also developed a level of

robustness that enables it to generalize to other data variations. This suggests that

the model’s feature selection process is highly e�ective at capturing the essential

characteristics required for accurate predictions, even under data variability.

To achieve the best possible results, it is crucial to record data over time. In real-world

applications, data availability for the FMS approach can be limited, particularly in

industrial systems where degraded data is scarce due to the need for maintaining op-

timal conditions. In such cases, synthetic corrupted data with noise can be employed.

Methods based on arti�cially corrupted data with random noise and weighted feature

selection methods also showed improved robustness compared to standard feature

selection models. These methods provide an advantage because they avoid selecting

features based solely on correlations, instead focusing on capturing deeper, more

meaningful relationships.

So far, simple techniques such as superimposing white noise was used. By introducing

more sophisticated disturbances based on physical considerations—such as expected

frequency shi�s—the feature selection process can be further enhanced. This allows

the simulation of potential degradation scenarios, providing a more comprehensive

basis for robust feature selection.

• Causual understanding: In the proposed approach, the aim was to tailor a feature

selection algorithm speci�cally to the given application without requiring a full un-

derstanding of the physical relationships. The proposed method allows users to adapt

the algorithm to work with synthetic corrupted data or data exposed to degradation

over time, ensuring that the selected features are robust to this type of perturbation.

The standard feature selection algorithms typically select features based on correla-

tions between predictive features and the target variable. However, correlations only

indicate how o�en features occur with the corresponding target variable, without

uncovering deeper or causal relationships.

However, as shown in [128, 129], correlation between shoe size and reading ability in

children or between being in bed and dying are not causally meaningful predictors.

These examples illustrate that relying solely on correlations can result in predictors

that lack robustness and interpretability.

Thus, for robustness, it is bene�cial to understand the physical relationships and

cause-and-e�ect dynamics underlying the data, leading to more prudent feature

selection. However, identifying these relationships is not always straightforward

due to complex dependencies, environmental factors, uncontrollable conditions, and

unknown physical parameters. These complexities make it challenging to fully un-

derstand the underlying causal mechanisms, particularly in real-world applications.

The problem of unstable feature selection has also been highlighted in recent de-
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velopments, where causality-based feature selection methods are being developed.

These methods aim to identify features that directly in�uence the outcome, rather

than relying on mere correlations [128–130].

Causality-based features have a direct cause-and-e�ect relationship with the target

variable, making them more reliable than correlated features. Various methods of

causal feature selection, such as Bayesian networks and Markov boundary theory,

help identify features relevant for predicting the target variable. These methods can

be broadly categorized into constraint-based approaches, such as the Markov blanket,

which represents the minimal set of variables that render the target variable condi-

tionally independent of the rest, and score-based approaches, which use statistical

measures (e.g., likelihood, BIC) to �nd the best causal relationships, o�en based on

Bayesian networks.

These causality-based methods could be combined with the current approach. For

instance, instead of weighting standard feature selection methods, weighted causality-

based feature selection methods could be employed. Alternatively, they could be used

as pre- or post-processing steps to enhance the robustness of feature selection.

Incorporating these advanced methods o�ers a more robust feature selection process

that goes beyond correlation, making it �exible and adaptable to various complex

real-world data scenarios.

• Model longevity: A critical question remains of how long will the model maintain

this robustness. As the system continues to degrade and new patterns emerge, the

model’s ability to adapt and remain accurate will be tested.

Further investigation is necessary to con�rm the model’s robustness over extended

periods. Speci�cally, long-term testing with data recorded over longer timeframes will

help determine how well the model maintains its performance as new degradation

patterns develop.

• Computational intensity: Addressing the issue of computational e�ciency, optimizing

the code can signi�cantly reduce computation time. Techniques such as parallel

processing, multi-core processors, distributed computing, and GPU acceleration can

speed up the process and improve scalability.

• Application breadth: The methods can be tested across di�erent applications. Future

research should investigate their performance in general gearbox con�gurations

and other industrial applications. This would involve validating the robustness and

adaptability of selected features and weights across various scenarios and equipment

to ensure their broad applicability.
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6.3 Global Reconstruction

Objective and Methodology

In process monitoring, data collection is o�en con�ned to the detection range and sensitivity

of the sensors. The primary goal of the proposed reconstruction method is to leverage this

limited, localized sensor data to generate comprehensive, full-coverage information, which

is essential for thorough and optimal monitoring.

This research focuses on the propagation of �ow fronts, as seen in injection and infusion

processes like T-RTM and VAP. In these manufacturing processes, accurately monitoring

and understanding �ow fronts is crucial for ensuring product quality and process e�ciency.

The study illustrates how the proposed method is used for a �ow front reconstruction

addressing challenges posed by sparsely distributed sensors and complex geometries. Espe-

cially in processes like the T-RTM process, where visual inspections are not feasible, such

data reconstruction simpli�es automated process monitoring and subsequent diagnosis of

process anomalies.

The global reconstruction algorithm’s methodology involves the following key steps which

are illustrated in Figure 6.1:

1. Sensor Integration 2. Data Extraction 3. Mesh Grid Generation

4. Designing Weights 4. Finding Sensorvalues

t2 t1 

t3 

t2 t1 

t3 

t2 t1 

t3 

v2,t2 v1,t1 

v3,t3 

t2 t1 

t3 

6. Reconstruction

v2,t2 v1,t1 

v3,t3 

Figure 6.1: Illustration of the global reconstruction algorithm steps: (1) Strategical Sensor integration into
the process geometry. (2) Relevant data is extracted. (3) A mesh grid is generated to represent the process
geometry. (4) Weight functions are optimized for accurate representation. (5) Sensor values are optimized to
minimize error. (6) The data is reconstructed based on the determined parameters.

1. Sensor integration: A network of sensors is strategically integrated into the process

with minimal interference.
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2. Data Extraction: Higher-level information of interest, such as the �ow front arrival

times t1⋯3, is extracted from the acquired data.

3. Mesh grid generation: A triangular mesh grid is generated to cover the relevant

geometries of the process. The size of the mesh is adapted to balance e�ciency

and accuracy. The extracted information from the previous step is assigned to the

corresponding nodes representing.

4. Weight function design: A weight function is tailored to the geometry, with parame-

ters optimized by assigning expected values for the propagating variable, such as �ow

front velocity. Iterative adjustments are made to minimize error, and the parameter

set with the lowest error is chosen for the next steps.

5. Sensor values optimization: The �nal step involves determining sensor values that,

in combination with the weight function, enable full reconstruction. Optimal sen-

sor velocities are found by �tting the reconstruction to the measurements t1⋯3 as

boundary values. Minimizing the error yields the parameters v1⋯3. In the context of

reconstructing the �ow front, these values correspond to velocities, consistent with

the units involved.

6. Reconstruction: When the crucial parameter, such as mesh grid, weight function

and sensor values are determined, the data can be reconstructed and for each node.

For instance, the �ow front can be visualized by couriering the areas for which the

majority of corresponding nodes indicate its arrival.

Key Results

Using sensor networks, the reconstruction algorithm is adaptable to various applications

and geometries through a careful selection of parameters.

The presented applications of the algorithm demonstrate its e�ectiveness in monitoring

�ow front propagation. Particularly, the focus is on processes such as the VAP and T-RTM

and have demonstrated the algorithm’s e�ectiveness in capturing the �ow front.

In the T-RTM experiments, where large-scale observation is challenging, the recontruction

method helped to identify critical areas that are not directly detectable during the process.

Based on these insights, proactive interventions were successfully implemented in subse-

quent experiments to prevent defects, such as dry spots, and optimize production.

Thus the identi�cation of critical spots in the T-RTM process, and the low temporal de-

viation achieved in the VAP, 1.7% compared to the total process time, demonstrate the

algorithm’s potential for real-world applications.

In addition to geometric information, the algorithm requires only the arrival times of the

�ow front extracted from the sensor data. Without any assumption about the underlying
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physics, the algorithm provides a generic method for reconstructing propagating mediums.

With the adaptable weight function, the fundamentals of the algorithm extend beyond

�ow front simulations and can be applied to a variety of processes and diverse geometries

without needing extensive modi�cations.

In the T-RTM process, which involves a two-stage polymerization with a complicated

viscosity pro�le and permeability variations in�uenced by press pressure and fold forma-

tion, traditional simulations can be extremely challenging. The reconstruction algorithm,

however, provides a straightforward and e�ective overview of the �ow front dynamics.

Thus, the algorithm is capable to provide insights into the process e�ciently.

For instance, it can quickly deliver the preferred directions of �ow propagation even without

conducting abortive tests, the algorithm would have identi�ed the preferred �ow front

propagation directions in the T-RTM process. And it can highlight critical areas, such as

the frequently observed dry spots, by analyzing the extended wetting times. This allows

for proactive adjustments and optimizations in the manufacturing process.

This issue of �ow front estimation has been addressed by combining pressure sensors with

neural networks and physics simulation [131]. Other approaches [132, 133] use pressure

sensors with �ow front modelling based on Darcy’s Law.

This approach suggests a generic algorithm for estimating a propagating quantity and

applies it to reconstruct the �ow front in infusion and injection moulding processes. There-

fore, no physics-based simulation or alongside modelling of the actual process is required.

The algorithm is based on graph theory, using the geometrical boundary conditions and

the arrival time of the �ow front at individual sensors. Given that the applied sensors

can properly detect the arrival time of the �ow front, the algorithm is independent of the

speci�c sensor type.

It should be noted, however, that the reconstruction algorithm is not intended to replace

simulations. Simulations require detailed knowledge of physical material parameters and

are primarily used before the process to conduct feasibility studies and make preventive

adjustments. The �ow front algorithm, on the other hand, is applied post-process to provide

recommendations for subsequent experiments by interpreting the results and identifying

critical areas.

Limitations

While the reconstruction algorithm o�ers signi�cant advantages for monitoring and con-

trol in composite manufacturing processes, it also has several limitations that must be

acknowledged. Despite these limitations, the reconstruction algorithm developed for de-

tecting and analyzing �ow front propagation in composite manufacturing processes holds

signi�cant potential for advancing industrial practices. There are several key areas in which
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further development contribute to to fully realize the algorithm’s capabilities and extend

its applicability:

• Dependence on Sensor Placement: The accuracy and reliability of the reconstruction

depend on the strategic placement and density of the sensors. Inadequate sensor

coverage, particularly in complex geometries or critical areas, can lead to inaccuracies

in the reconstructed data. Critical areas with high complexity require a higher density

of sensors to capture the details of the �ow front accurately. This need for extensive

sensor networks can increase costs and complicate the setup.

Future work should focus on integrating advanced sensor technologies and optimizing

sensor networks. This includes exploring new sensor types that provide higher

resolution and sensitivity, as well as employing machine learning techniques to

optimize sensor placement dynamically. By re�ning the sensor network, the accuracy

and reliability of the �ow front reconstruction can be signi�cantly improved.

• Sensitivity to Initial Parameter Settings: The performance of the reconstruction

algorithm is sensitive to the initial parameter settings of the weight function and

sensor velocities. Incorrect parameterization can result in signi�cant deviations from

actual values, necessitating careful calibration and optimization.

• Post-Process Application: The reconstructionmethod is typically applied post-process,

meaning it cannot provide real-time monitoring or immediate feedback during the

manufacturing process. This limitation restricts its ability to facilitate on-the-�y

adjustments and corrections.For real-time applications, the algorithm would need to

be integrated with real-time data acquisition systems and control frameworks, which

could introduce additional technical challenges.

Developing real-time monitoring and feedback systems is a critical next step. Imple-

menting the algorithm in a real-time framework will allow for continuous monitoring

of the manufacturing process, enabling immediate detection and correction of anoma-

lies. This will not only enhance process control but also reduce the likelihood of

defects, improving overall product quality.

• User-Friendly Interface and Visualization Tools: Creating a user-friendly interface and

advanced visualization tools will make the algorithm more accessibles. By providing

intuitive visualizations and easy-to-use controls, users can better understand the �ow

front dynamics and make informed decisions during the manufacturing process.

• New Applications: While the algorithm has shown promise in VAP and T-RTM pro-

cesses, exploring its application in other manufacturing methods and industries can

uncover new opportunities. Adapting the algorithm to di�erent materials, processes,

and industry requirements will test its utility.

147





7 Summary and Outlook

The primary challenge addressed in this dissertation was to improve the e�ectiveness

of ultrasound-based process monitoring systems, ensuring they maintain accuracy and

robustness even under complex and variable industrial conditions.

Several key challenges in advancing process monitoring were identi�ed and addressed:

• Feature Adaption: The parameters of the extracted features are optimized to better

capture relevant process variables, thereby increasing the precision and reliability of

the monitoring system. This approach ensures that the features used are �nely tuned

to the speci�c conditions of each application, allowing for more accurate predictions.

• Feature Selection: Recognizing that many predictive models experience performance

degradation over time, the focus was placed on selecting features that are not only

relevant but also resilient to changes and dri�s in operational conditions. An innova-

tive aspect of this approach is that the selection algorithm can be customized to the

speci�c application by individually choosing the test datasets. This allows for the

selection of features that are particularly robust against the challenges presented in

the test datasets. As a result, the long-term e�ectiveness of the monitoring systems

can be maintained, even as the industrial environment evolves.

• Due to the physical limitations of sensor placement, techniques were developed to

reconstruct data from regions beyond the immediate reach of sensors. This innovation

expands monitoring coverage, ensuring that critical areas are not overlooked despite

sensor constraints. The algorithm operates independently of physical models or

simulations, enhancing the sensor-acquired data. It can be e�ectively applied without

relying on o�en di�cult to determine physical parameters of the processes.

These approaches help to enhance the accuracy and resilience of monitoring systems. By

combining customizable feature engineering with data reconstruction, it becomes possible

to e�ectively operate even with limited sensor access, thereby increasing the systems’

versatility and adaptability across a broader range of industrial applications.

While the contributions of this work represent signi�cant progress, there remain numer-

ous opportunities for further advancement in ultrasound-based monitoring systems. The

complexity and creativity inherent in data acquisition, processing, and interpretation o�er

multiple avenues for development. Various techniques have emerged for the detection of

anomalous sounds, such as Autoencoders, which are unsupervised neural networks that
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learn to reconstruct input data, thereby identifying abnormal operations. Another approach

is Gaussian Mixture Model-Based Anomaly Detection, which models the distribution of

normal acoustic features to identify anomalies based on the low probability of a data point

�tting within this distribution. [15, 89] .

Recent enhancements extend beyond just processing and interpretation techniques. There

is also signi�cant potential in improving the quality of raw data, advancing sensor technol-

ogy, and re�ning data processing methods. For instance, Phased Array Ultrasonic Testing

(PAUT), as demonstrated in [134], o�ers substantial advantages over conventional Single

Element Ultrasonic Testing (SEUT) in inspecting composite materials. PAUT’s ability to

focus signals, reduce noise, and detect smaller defects with higher accuracy makes it a

superior choice in many applications.

So far there have been signi�cant advancements across various areas of ultrasound-based

monitoring, ranging from the development of advanced sensor technologies to improve-

ments in data acquisition hardware and the emergence of sophisticated processing tech-

niques. These progressions have collectively enhanced the capabilities and applications of

ultrasound monitoring systems.

However, future research and applications should not merely focus on individual advance-

ments but rather aim to integrate these developments to fully unlock the potential of

ultrasound-based monitoring systems. The real challenge lies in navigating the broad and

complex �eld of ultrasound monitoring. Thus, it is essential to not only focus on speci�c

areas of this expansive �eld but also to determine and combine the most suitable approaches

for each unique application.

Navigating this ”jungle” of recent innovations requires a strategic approach, where the goal

is to maximize the e�ectiveness, precision, and reliability of ultrasound-based monitoring

systems. By carefully selecting and integrating the best advancements, tailored to the

speci�c demands of each application, the full potential of these systems can be realized.
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Glossary

Ciklm Elasticity tensor. 6, 7, 150

En Edges of the graph. 150

E Young’s modulus. 7, 150

G Shear modulus. 7, 150

Nj Nodes of the graph. 150

N Near �eld length. 10, 150

R Parameter to control the angular weight contribution.

88, 89, 96, 98, 124, 150

R Re�ection factor. 150

Si Sample points of the graph. 150

T Transmission factor. 150

Z Sound impedance. 150

� Parameter to control the characteristics of angular

weight. 88–91, 96–98, 124, 150, 170

� Parameter to control the characteristics of radial weight.

88–91, 96–98, 124, 150, 170

� Poisson ratio. 7, 150

�ik Stress tensor. 6, 150

p Sound pressure. 150

sFMS Final feature score based on feature model selection

approach. 80, 83, 84, 150

sSFS Final feature score based on standard feature selection

approach. 80, 150

tj Reconstructed time values [s]. 150

win Weight function de�ning the contribution of sample

point i to node n in the graph. 124, 150

x1,2,3 Local coordinate [m]. 150
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Acronyms

ANOVA Analysis of Variance. 39, 40, 86, 150, 170

CM condition monitoring. 1, 3, 4, 38, 150

DFT discrete Fourier transform. 19–21, 150

FFT fast Fourier transform. 19, 20, 36, 150

FMS feature model selection. 80–83, 86, 150, 170

FT Fourier transform. 15–17, 19, 27, 28, 150

NDT non destructive testing. 2, 5, 150

RMS root mean square. 31, 34, 36, 48–50, 100–106, 126, 150,

168, 171

SFS standard feature selection. 80–82, 86, 150, 170

SHM structural health monitoring. 2, 150

T-RTM thermoplastic resin transfer moulding. 43, 52–56, 58, 99,

106–108, 121, 122, 124, 125, 128, 129, 131, 133, 144–147,

150, 169, 172

US ultrasound. 43, 107, 150

VAP vacuum assisted process. 43, 52–54, 99, 121–126, 144,

145, 147, 150, 169, 172
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von akustischen Überwachungsverfahren.”, Thesis, (2022).

[35] P. R. Stepanishen, “Pulsed transmit/receive response of ultrasonic piezoelectric

transducers”, The Journal of the Acoustical Society of America 69, 1815 (1981).
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